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This report is broken down into four major parts that correspond to the 4 major components of 

the research efforts for the RT-115 efforts for FY 2014. Each of the reports are standalone 

descriptions of the activities, the findings and the proposed future work for each of the focus 

areas. 

Part 1a  - System Aware Cyber Security for an Autonomous Surveillance System On Board an 

Unmanned Arial Vehicle – Describes the Phase 2 efforts to apply System-Aware techniques to 

protected an unmanned surveillance platform. 

Part 1b - System Aware Cyber-Security Application to Unmanned Aircraft Systems (UAS) – 

Describes the Phase 2 efforts conducted by Georgia Institute of Technology. 

Part 2  - Human Factors Engineering and System-Aware Cybersecurity – Begins addressing 

necessary human factors related solutions as part applying System-Aware Cyber Security 

solutions, addressing the necessity to instill confidence in needed operator decision-making 

under what can be very uncertain attack situations. 

Part 3 - Cloud Architectural Assurance and Protecting Systems with Cloud-based System-

Aware Methods – Addresses two efforts, 1) providing assurance techniques to private cloud 

architectures, and 2) providing protections to systems using System-Aware methods while 

taking advantage of the agility of private cloud platforms. 

Part 4 – System-Aware, Model-based Cyber Assessments  – Activities in architectural selection 

focused on investigating the hypothesis that a scalable and agile approach to the mission-

focused architectural selection problem can be found by making use of, and integrating, two 

structured modeling approaches: System Models and Attack Models. 
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Executive Summary 

The Systems Engineering Research Center (SERC) has developed a novel cybersecurity concept for 

embedding security solutions into systems called System-Aware Cybersecurity. The overall goal of the 

System-Aware program is to develop low cost methods of protection against cyber exploits by our 

adversaries.   Working through the SERC, the University of Virginia (UVa) and the Georgia Tech Research 

Institute (GTRI), Phase 1 efforts of the program were focused on advancing the System-Aware 

Cybersecurity concepts and evaluating a number of specific security design patterns that were intended 

to be reusable across a variety of applications. The major goal Phase 2 goal of the Sentinel program was 

to demonstrate the feasibility of System-Aware Cybersecurity design patterns designed in Phase 1 and 

to demonstrate the capabilities of a physical version of those protections to protect a system in a live 

environment and to experiment with the protections in order to monitor selected critical system 

functions of that system – in this case, an unmanned aerial vehicle (UAV). We call the physical 

implementation of this novel protection the Sentinel. Furthermore, those critical system functions were 

identified and analyzed for system vulnerabilities using an architectural selection methodology 

developed in Phase I of the project.  Another goal of the Phase 2 project effort was to enhance and to 

progress that selection methodology in order to investigate more automated approaches to finding 

critical system functions in systems that can benefit from System-Aware protections in the face of 

potential threats emanating from such places as trusted insiders or compromised supply chains. 

To demonstrate the effectiveness of the System-Aware design patterns in Phase 1, specific examples 

were developed for an unmanned aerial vehicle (UAV) application.  In Phase 2 of the project, we 

developed and successfully tested an evaluation version of the System-Aware Cybersecurity protections 

(the Sentinel) designed in Phase 1. Designs were implemented to test the operational feasibility for the 

protections of various navigation, command and control, and payload hardware and software systems 

onboard an automated surveillance platform and in the supporting operator ground-station. Our chosen 

test UAV case was the GTRI Aerial Unmanned Sensor System (GAUSS) aircraft. The GAUSS platform is a 

small research UAV with a widely used, commercial off-the-shelf autopilot system and camera gimbal.  

The demonstration showed how the System-Aware approach can be used to thwart cyber-attacks 

against autopilot and sensor systems. Live flight experimental testing was accomplished during flight 

tests, which were run in Blakely, GA during the week of October 7th-10th, 2014. 

During the Phase II effort the UVa/GTRI team achieved a number of significant accomplishments during 

the flight evaluation: 

 Miniaturization of the System-Aware protections to fit the power usage and form-factor 
requirements of our test UAV. 

 Simulated attacks were developed for a sampling of typical UAV systems including: 
o The navigation systems including a GPS walk-off attack and attacks on the flight 

plan waypoint controls and attacks  
o The flight payload systems including the camera gimbal controls and on the video 

imagery exploitation system. 

 Built a prototype smart security Sentinel to host System-Aware Cybersecurity solutions to 
protect against the sample cyber-attacks. 

 Successfully demonstrated the Sentinel protections against attacks in live-flight evaluations. 
o Created a data set including video, screen recordings system data and Sentinel 

related data for all flight experiments. 

 Integrated the new SiCore technology designed in Phase 1 into the protections for the 
Sentinel platform.  
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1 Project Status Overview 

The Systems Engineering Research Center (SERC) has been engaged with the Department of Defense 

(DoD) in developing a novel cyber security concept for embedding security solutions into systems; this 

new concept is referred to as System-Aware Cyber Security. These solutions provide greater assurance 

to the most critical system functions by providing an additional layer of defense that complements 

perimeter and network security solutions that serve to guard the entire system from penetration. 

System-Aware solutions are effective at guarding against insider and supply chain attacks in addition to 

attacks that circumvent perimeter security solutions. The broad objective of the System-Aware program 

can be thought of as reversing cyber security asymmetry from favoring our adversaries, to favoring the 

US; i.e., requiring adversaries to make large investments in developing complex cyber exploits based on  

low cost System-Aware cyber security solutions for protecting critical system functions.  

To-date, the SERC and a University of Virginia (UVa) led team, consisting of the UVa and the Georgia 

Tech Research Institute (GTRI), have advanced the System-Aware cyber security concept and evaluated 

a number of specific design patterns that are intended to be reusable across a variety of applications. 

These patterns include, but are not limited to, employing diverse redundant components in critical 

subsystems, using voting techniques across diverse redundant components for real-time discovery and 

elimination of infected components, dynamically modifying the configuration of software components 

in systems through virtual configuration hopping techniques, dynamically modifying the configuration of 

the hardware/software components in systems through physical configuration hopping techniques, 

using system specific data consistency-checking to determine if critical system information has been 

manipulated, and where applicable, use of analog components as trusted elements to perform critical 

security functions in systems. Furthermore, a decision support framework has been developed for use 

by systems engineering teams in selecting a subset of available design patterns for integration into a 

cyber security system architecture. A central part of the System-Aware concept is to implement the 

Sentinel in a manner that is expandable and to include a high degree of advanced security features. 

In addition, a Phase 0 effort consisting of an evaluation of possible applications of existing, developed 

design patterns as part of the SERC-sponsored RT-28 design efforts undertaken in FY 2013 to a specific 

application has been completed. The results of this effort identified an unmanned air vehicle (UAV) 

system configured for conducting surveillance missions as suitable for a follow on Phase 1 and Phase 2 

prototyping pilot efforts for validating the System-Aware Cybersecurity concept. The application to UAV-

based systems was inspired by the wide variety of subsystems that are used in UAV configurations, the 

range of potential cyber-attacks that can seriously impact the critical missions of these systems, and the 

significant power, space and performance constraints that System-Aware designs must address in order 

to operate in UAV-based configurations. The successful simulation prototypes in Phase 1 led to the 

design of a Phase 2 prototype that shows the feasible capabilities of using System-Aware techniques in a 

live-flight demonstration system that was successfully delivered and demonstrated in flight evaluations 

in Blakely, GA in October, 2014. 

This document outlines the Phase 2 project that consisted of activities undertaken to integrate the 

results of the Phase 0 and 1 efforts into the GTRI Aerial Unmanned Sensor System (GAUSS) aircraft in 

order to create and to evaluate a flight-ready demonstrations of the System-Aware protections. In  

Phase 2, we accomplished the following: 
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 Implementation of the System-Aware protections to fit the power usage and form-factor 
requirements of our test UAV. 

 Development of attacks and protections for a sampling of typical UAV-based systems 
including attacks on: 

o The navigation systems including a GPS walk-off attack and attacks on the flight 
plan waypoint controls. 

o The flight payload systems including the camera gimbal controls and on the video 
metadata that supports ground-based imagery exploitation. 

 Development of a prototype, smart security Sentinel to host System-Aware Cybersecurity 
solutions and to protect against the sample cyber-attacks in live flight tests on various sub-
systems. 

 Successful demonstration of the Sentinel protections against attacks in live-flight 
evaluations in Blakely, GA during October 2014. 

o Creation of a data set from experiments including video, screen recordings of 
system data and Sentinel related data for all flight experiments. 

o Creation of a video in support of efforts to raise awareness of the System-Aware 
Cybersecurity techniques to organizations outside DoD.  

 Integration of the new SiCore implementation technology designed in Phase I into the 
protections for the Sentinel platform itself. 
 

2 Project Emulation and Simulation and Flight Evaluation Environments 

The platform selected for demonstrating methodologies to protect unmanned autonomous systems 

(UASs) from cyber-attacks is the GTRI GAUSS aircraft.  This UAV uses the Piccolo II unmanned aerial 

avionics system (hereafter referred to as Piccolo or Piccolo II) and a TASE 150 camera gimbal system, 

both supplied by Cloud Cap Technology™, a United Technology Corporation™ company.  Prior to flight-

testing any new technology with this aircraft, extensive testing is conducted using ground-based 

simulators and emulators to ensure flight safety.  The Piccolo II autopilot system supports both a 

software-in-the loop (SiL) simulation capability and a hardware-in-the-loop (HiL) emulation capability.  

These simulation environments have been used in Phase 1 and 2 of the project for testing and 

evaluation of the System-Aware protections to be highlighted in our flight evaluations. Both the UVa and 

the GTRI have versions of the SiL and HiL environments for supporting on-site development and testing 

at their respective locations. The GTRI emulator also includes the capability to integrate the TASE 

camera gimbal into HiL emulation environment.  Following the tests conducted in the simulation 

environments, there is extensive testing that is accomplished on the aircraft platform itself before 

certification for live flight tests. The following subsections describe the SiL and HiL development and test 

environment at each project location as well as the flight testing environments and flight configurations 

used during flight evaluations that were conducted in October 2014 at the Early County Airport in 

Blakely, Georgia.  

2.1 UVa Piccolo II HiL Emulation Environment 

The UVa utilizes the out-of-the-box simulation and emulation capabilities provided by Cloud Cap 

Technology with their Piccolo II autopilot.  The HiL emulation environment uses a simulator to represent 

the state of the aircraft (e.g., the power levels, aileron settings, and fuel), as well as to generate GPS 

data to simulate the aircraft flying over any location. The actual control of the aircraft is accomplished 

by using the Piccolo II operator interface for remote operator control of the Piccolo II, and the 

supporting ground transmitters and receivers. As seen in Figure 1, the operator interface, Piccolo 

Command Center (PCC), connects directly to a ground station. This ground station is used to send and 



receive commands and status information from the Piccolo II. For the Hil emulation environment, the 

Piccolo II is connected to a PC that hosts a simulator of the aircraft as well as of the GPS satellites. This 

computer can be the same one that is hosting the PCC or a separate computer, as depicted in Figure 1. 

Piccolo Command Center Aircraft Simulation 

r--------

________ , 

CAN-to-USB 

900 MHz Radio 

Ground Station Piccolo II 

Figure 1. Basic Hil configuration for the Piccolo II. 

In both the UVa and the GTRI Hil emulation environments, the waypoints for the fl ight path are sent 

from the operator' s interface (PCC) to the Piccolo II via a radio link between the ground station and the 

Piccolo II; this is the same link that is used in an actual fl ight. A six degree of freedom (6 DoF) flight 

dynamics model of the aircraft running on the aircraft simulator computer provides the aircraft's state 

to the Piccolo II via a CAN bus (controller area network). The Piccolo II calcu lates the aircraft' s actuator 

commands and sends them to the 6 DoF simulation via the same CAN bus. In the GTRI Hil, the aircraft' s 

pose (posit ion and attitude) are also sent to the gimba l v ia the CAN bus to simulate the output of its 

own integrated GPS and inertial measurement unit. 

The UVa team has leveraged this emulation capability as it has designed the system attacks, the Sentinel 

monitoring and detections capabilit ies, and any restorative actions using this environment. Phase 2 tests 

were conducted in the Hil simulation before the flight eva luations in order to verify system funct ions 

before being shipped to GTRI for their testing in their simu lation and on the actual flight hardware 

platform. The details of how the Hil emulation environment was augmented to include the Sentinel's 

monitoring, detection, and restoration techniques. 

2.2 GTRI Hil Emulation Environment 

The GTRI team util ized a Piccolo Hil emu lation/simulation environment that is identica l to the UVa 

environment w ith the addit ion of the TASE 150 gimbal system from Cloud Cap Technology and its 

associated hardware and software. As seen in Figure 2, the GTRI's Hil emu lator consists of a Piccolo II 

autopilot, TASE 150 gimbal, Cloud Cap video processing system (VPS), and ground station. 

13 
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Figure 2. GTRI HIL Simulator with System Aware Cyber Security Components Installed 

Figure 3 shows the data communications between the various avionics systems for the HiL environment 

shown in Figure 2.  The aircraft pose data is used by the gimbal system to automatically steer the gimbal 

when it is locked on a point of interest (POI).  The gimbal outputs metadata to the VPS which overlays 

gimbal status information on the video via a serial line using the RS-232 standard; e.g., the current pan, 

tilt, and zoom of the camera.  The camera also sends NTSC analog video to the VPS which performs 

image stabilization before sending the video to the video display via a radio link.  In the HiL emulation 

environment, the analog video from the camera is replaced with synthetic video from a scene generator, 

MetaVR.  MetaVR, depicted in Figure 4, is an additional HiL capability that allows for the visualization of 

camera imagery of an aircraft in flight. MetaVR, a virtual reality scene generator, decodes the state 

information of the aircraft via a network interface with ViewPoint, the program used to view the video.  

The software generates a scene based on the aircraft GPS information and gimbal angles. Any scene 

within the Southeast United States or Afghanistan can currently be generated, allowing a variety of 

CONOPS to be visualized. The analog video is converted to a digital format (H.264) and displayed at the 

video display using the ViewPoint software. 

Figure 3 also shows the location of data monitoring points on the serial connections that are used to 

detect the injection of a cyber-attack.  To conduct this monitoring GTRI developed a snooping device 

known as a Serial Spy that is a microcontroller-based device designed to monitor and/or manipulate RS-

232 serial data between two devices. (see section 4.2).  These snoopers can intercept the serial data, 

decode the information, and retransmit the data into the system. 



RS232 
Monitor e 

Point 

UHF Antenna 

Meta VR 

Pose 

-

Video 

Converter 

H.264 
Encoder 

Figure 3. Data flow diagram for the GTRI Hil emu lation environment. 

Figure 4. View Point user interface for streaming video created by the MetaVR scene generator 
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2.3 Phase 2 Flight-Ready Integrated System Environment 

During Phase 2, technical designs developed during Phase 1 were implemented into a version that could 

fit into the power and size requirements of the GAUSS platform used for the flight evaluations on this 

project. The attacks we addressed during the evaluations required both air and ground components in 

order to provide System-Aware monitoring, detection, alerting and protection capabilities to the system 

operators and to protect against attacks that were coordinated on the aircraft and on the ground. Figure 

5 shows the final configuration of the configurations used in the airborne portion of the protections 

during flight-testing. This figure highlights the components that were used to inject attacks, the 

hardware that housed the System-Aware technologies and the additional sensors that were added to 

the system (such as diverse, redundant GPS receivers) for use by the System-Aware monitoring 

capabilities. Figure 6 shows the corresponding ground architecture that was utilized during the flight 

evaluations. Attacks such as the Stuxnet attack have highlighted the need for protections against attacks 

where persistent effects on the systems under attack were hidden from the operators. Our ground and 

air System-Aware protection architectures provide a complete solution for monitoring system behaviors 

for potential threats. In this case, the coordinated attack we chose to highlight was a masking attack 

that hides an attack on flight-plan waypoints occurring on the airborne platform from the operators and 

their command and control systems on the ground.  

2.3.1 Flight-test Hardware in the Loop Simulator Testing 

Prior to any flight test activity, extensive testing of the Sentinel system was conducted in the GTRI 

hardware in the loop (HIL) simulator.  The components integrated into the GTRI HIL simulator are 

indicated in Figure 5 and Figure 6 while Figure 2 shows the actual simulator.  Three Raspberry Pi single 

board computers (shown in orange as Attack Pi 1 and Attack Pi 2 in Figure 5 and as Masking Attack Pi in 

Figure 6) are used to effect the cyber-attacks.  Attack Pi 1 executes the waypoint attack onboard the 

aircraft that changes the list of waypoints in the autopilot’s flight plan.  This attack causes the aircraft to 

deviate from its intended course.  The Masking Attack Pi at the ground control station hides the fact that 

the aircraft has gone off course.  The second onboard attack Pi intercepts and corrupts the GPS position 

data being sent from the autopilot to the camera gimbal.  This attack corrupts the target geo-location 

information that is included as metadata in the video stream.  Also included in the attack system is an 

onboard Ethernet switch to allow developers and the test director to communicate with the attack 

devices.   

The components shown in green in Figure 5 and Figure 6 constitute the cyber defense systems.  The 

primary aircraft component is the SiCore Shield II computer that serves as the onboard Sentinel.  A 

Raspberry Pi SBC (the Ground Sentinel Pi in Figure 6) works in conjunction with the onboard Sentinel to 

detect waypoint attacks even if they are masked.  The Passive serial splitter is used to monitor the 

autopilot’s flight plan through the autopilot’s COM port 3 as part of the defense against waypoint 

attacks.   

The SerialSpy shown in Figure 5 monitors the communications between the autopilot and the gimbal.  

This device defends against GPS attacks by checking the autopilot’s GPS position data against validated 

position data provided by the Sentinel. A detailed description of the SerialSpy is provided in Section 4.2.  
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Three additional Raspberry Pis (labeled Air Sentinel 1, Air Sentinel 2, and AS3 in Figure 5) are included as 

part of a triple redundant voting scheme to validate GPS position data.  Two of these Raspberry Pis have 

independent GPS receivers while the third uses the autopilot GPS data acquired via the Ethernet link.  If 

the GPS position data does not match the validated data within some user-controllable error bound, an 

attack is indicated and the SerialSpy passes on to the gimbal the validated position data provided by the 

Sentinel. 

The final component of the cyber defense system is the Cyber Commander Station (on the right in Figure 

6). This is an application that runs on the ground control station and provides alerts to the operator in 

the event of an attack. 

 

 

Figure 5. Airborne System Architecture 
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Figure 6. Ground System Architecture 

 

Before designing and developing the attacks and associated protections for the UAV system, the UVA 

and GTRI teams used a new methodology to identify the critical system functions that were to be 

protected by the System-Aware technology. This method is known as the System-Aware Architectural 

and Assessment methodology and is described below. 
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3 Review of Phase II Activities 

3.1 System-Aware Architectural Selection and Assessment Methodology 

The System-Aware Architectural Selection and Assessment methodology is a process that has been 

developed as part Phase 1 and Phase 2 of this project in order to identify the critical system components 

for a particular system, to identify the possible attack paths to attack those components, to determine 

which of those attack paths would be most desirable an adversary, to identify possible cyber security 

defenses against those attacks as well as to evaluate the impacts of those defenses on the attacker, to 

assess the effects on system performance of potential defenses, and to estimate the security trade-offs 

of the various architectural solutions. The relational System-Aware Architectural Selection and 

Assessment methodology is composed of six steps; each step having a well-defined goal, required 

deliverables, and responsible team(s) for that stage.  Phase 1 focused on a manual approach to 

implementing these steps.  The manual processes developed in Phase 1 include (i) a scoring system that 

highlights cost-benefit tradeoffs for decision makers and (ii) a method based on influence diagrams 

designed to aid decision makers in understanding ways in which uncertainty could be introduced into an 

attacker’s outcomes.  Phase 1 methodology was successfully applied to the UAV surveillance system, 

both to develop the concepts through case studies and as a practical method for selection of research 

targets for the attack and defense teams. From these applications, it became apparent that while the 

methods left participants with a clear sense of having successfully explored the design space, the 

manual effort they required would not scale well with system complexity.  In Phase 2 we began to focus 

on developing methods for automating the processes for evaluation of the architectural selections of 

critical system functions to be protected on a cyber-physical system.   The Phase 2 approach is based on 

exploiting modeling paradigms and open source or commercial software.  Specifically,  the System-

Aware Architectural Selection and Assessment methodology is recast in terms of use of model-based 

systems engineering tools, such as SysML, and attack tree tools, such as the commercial package 

SecurItree.  Much of the Phase 2 effort was directed at developing concepts and software to integrate 

systems models with attack trees to facilitate an iterative architectural design process in which decision 

makers could “flip” back and forth between defender and attacker views of the system or mission. 

The Phase 2 activity culminated in a workshop in November 2014 with participants from 10th Fleet Cyber 

Command and the Johns Hopkins Applied Physics Lab. The goal of the workshop was for participants to 

discuss the complexities of the decisions and tradeoffs inherent in choosing a defensive architecture as 

well as to introduce a methodology and toolset being designed to support decision makers.  The format 

was interactive; participants engaged in the design of a defensive architecture for aspects of the UAV 

system, including the video surveillance mission.  Highlights of the exercise included the use of the 

architectural scoring tools and an introduction to SysML and cyber-attack tree support tools, such as 

SecurITree, that can represent the system from an integrated defender and attacker perspective.   

Discussion focused on opportunities for systems-aware cybersecurity deployment and how future 

versions of the tools might best support decision makers. 

The following sections review both the Phase 1 activities in architectural selection.  First, we address the 

manual and the facilitated methods accomplished in the project. Then we describe the progress towards 
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the automation of the System-Aware Architectural Selection methods combining system modeling 

techniques (such as SysML) and attack tree vulnerability analysis tools (such as SecureItree) into an 

integrated and automated method for identifying critical system functionality to protect. The automated 

methods are further described in Part 4 of the report. 

3.1.1 Architectural Selection and Assessment 

3.1.1.1 Definitions 

The System-Aware cyber assessment methodology described here was designed to be an iterative 

process that relies on inputs from a range of stakeholder communities. In order to ensure that the 

information being used is as accurate and certain as possible, it was imperative to ask individuals 

questions that were appropriate to their backgrounds and areas of expertise. This is accomplished by 

initially dividing the stakeholders into three distinct groups:  

Red Team - The red team is made up of individuals with knowledge of cyber-attacks and potential threat 

agent classes. Their work is focused on developing candidate attack vectors and assessing the 

effectiveness of the proposed design patterns. 

Blue Team - The blue team consists of designers and users of the system being protected. Their 

responsibilities include identifying and prioritizing the critical system functions to protect, as well as 

determining which security design patterns can be implemented on which system functions. 

Green Team - The green team, which is comprised of experts in system cost analysis and adversary 

capability, analyzes costs, to both the attacker and defender, for candidate architectural solutions.  

3.1.1.2 Methodology Process Steps 

Step 1: Define the Variables and Relationships within the System to be Protected  

The initial step of the methodology is focused on framing the problem to ensure that all participants in 

the process are on the same page regarding the system to be protected. The process begins by 

identifying the critical functions of the system and defining the variables and influence relationships 

within that portion. Step one is to be performed by the blue team and is intended to outline the 

expected functionality of the system with minimal defensive strategies implemented. At this point, a 

system influence relational diagram is constructed using directed acyclic graph (DAG) notation. This 

diagram is created for the system without the consideration of a cyber-attack to ensure that everyone 

involved in the process is in agreement on the most basic structure and components before the 

additional complication of an adversary. 

Step 2: Identify the Possible Paths an Attacker Could Take to Exploit the System  

Step two introduces one of the issues that make this specific problem unique: an intelligent adversary. 

While the system influence relational diagram represents a system where success may be compromised 

by random failures, the cyber security architecture selection problem introduces concerns where the 

decisions made by an active player in the system can also compromise mission success. In step two, the 

red team is tasked with constructing an attack tree for the system functions identified in step one. By 
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looking at the system from the perspective of an adversary, attack trees can be utilized to understand 

the possible paths an attacker could take to exploit a specific feature of the system. 

Step 3: Determine the Subset of Attack Actions Most Desirable to an Attacker  

Considerable analysis can be conducted after the construction of an attack tree. However, rather than 

focusing on quantitatively calculating the probability of success for a specific attack path, as is typically 

done in attack tree analysis, the analysis included in this framework considers a more qualitative, 

abstract metric space. In step three, the green team develops a set of variables that can be used to 

assess the difficulty of a particular attack path. These variables are called behavioral indicators and can 

include, but are certainly not limited to, resources such as technical ability, time, manpower, money, 

equipment, facilities, presence of an insider, and access to system design information. These variables 

are used to make two separate types of judgments: leaf node assessments and adversary profile 

construction.  

Step 4: Identify Appropriate Defensive Actions and Their Impacts on the Attacker  

After the red and green teams have identified the actions that an adversary would need to take to 

successfully execute an attack and the subset of those that are most attractive to a particular adversary, 

the blue team can then determine which of their existing defensive actions may be appropriate. The 

relational methodology relies on the assumption that a portfolio of design patterns has already been 

developed—either by previous blue teams or by an external group no longer involved in the process. If 

the current blue team was not responsible for developing the set of design patterns, it is assumed that 

they have access to the portfolio and the have the necessary knowledge regarding the meaning of each 

design pattern.  

The goal of step four is to select design patterns from the existing portfolio that could be implemented 

to make the actions captured in the leaf nodes of the attack tree less desirable to the attacker. This can 

mean increasing the difficulty, cost, or probability of detection to the adversary or lessoning the 

consequences felt by the defense in the case of a successful attack. 

Step 5: Evaluate the Impacts of the Selected Potential Actions on the Defense  

While step four captures the design patterns’ impacts on the adversary, step five transitions to 

evaluating how those same choices impact on the performance of the system to be. The green team is 

able to apply their second class of intelligence information here: cost analysis estimates for the 

defensive solution choices. At this point, each of the design patterns selected in step four is evaluated in 

regards to implementation cost, lifecycle cost, and collateral system impacts. The green team is 

responsible for estimating the monetary cost of a solution, but the blue team also adds input on a 

solution’s collateral system impact here. The blue team performs the evaluation of the solution’s 

collateral impacts since they have knowledge regarding the system, how it will be used, and what 

impacts are unacceptable. Any solutions that are deemed to be beyond the allocated budget for System-

Aware security or introduce unacceptable impacts on system performance can be eliminated from 

further analysis at this point.  
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There is one deliverable for this step: a reduced list of possible defensive choices, filtered from the 

original existing design pattern portfolio, to only those that increase the difficulty for the considered 

attacker while still remaining at an acceptable impact to the defense. 

Step 6: Weigh the Security Trade-offs to Determine Which Architectural Solutions Best Reverse the 

Asymmetry of a Potential Attack  

The goal of the sixth and final step is for all three teams to participate in a collaborative discussion 

regarding the security trade-offs that exist with the potential choices determined in step five. While 

each defensive strategy remaining after step five provides some potential security benefit, has an 

acceptable impact on the system being protected, and fits within the allocated budget the exact mixture 

of security to defense to budget varies by solution. 

3.1.1.3 Vulnerability and Threat Analysis Process 

When trying to protect a UAV or UAS from a cyber-based attack, important questions arise when 

identifying priorities for potential threats, purposes, consequences and level of effort to achieve them: 

Which UAV systems and functions, if compromised, can lead to significant disruption? What UAV 

components or system configurations are inherently vulnerable to classes of cyber-attack? Where can 

these threats originate? 

One approach to answering these questions is to begin with a cyber-attack classification schema that 

allows one to reason about vulnerabilities and impacts in a structured way. While most schemas in other 

domains are one or two dimensional in nature, cyber-attacks on cyber physical systems such as UAV 

systems are usually multi-dimensional owing to the fact that the exploits, deployment, and effects of the 

attacks usually involve a multi-vector approach that can occur anywhere along the lifecycle of the UAV. 

Our research aimed to develop a structured methodology to identify potential vulnerabilities, reason 

about the attack surfaces that exploits may use, and rank the impacts of potential cyber-attacks to allow 

more systematic development of cyber defenses.  

An architectural selection framework for System-Aware cyber enhancement was developed and applied 

to the autopilot system in the project.  We provide an overview of activities for cyber threat analysis 

efforts in this section that supports the overall cyber enhancement architectural selection process:  

1. Define the system functions and relationships between those functions within the system. 

2. Identify the critical system functions and subsystems. 

3. Identify of potential cyber-attacks. 

4. Determine the subset of attack actions most desirable to an attacker. 

3.1.1.4 System Functions and Their Interrelations     

The purpose here is to develop an influence graph between major systems such that functional 

dependencies between systems can be reasoned about.   

By studying the general architecture of the autopilot in Figure 7, we can see a natural grouping of 

relationships for the autopilot into four categories:  
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 The Controller: The onboard processor executes all of the control laws, flight director functions, 

management of INS (inertial navigation system), GPS, actuators, and the communication links. 

The controller is composed of those functions represented by the red circle in Figure 7. The 

flight controller requires inputs from the sensory subsystem state estimator (e.g. INS, GPS, 

altitude, and speed) to regulate the aircraft to a desired state, speed, position and attitude.  The 

controller also takes input from the flight director, which contains the desired trajectory 

reference states for the aircraft. The flight controller uses the information stored in the flight 

director as tracking inputs; thus the flight controller is progressively issuing actuation commands 

to the control surfaces to minimize the error between track references and current aircraft state 

and position. As such, the autopilot continuously flies the aircraft to each geographical waypoint 

in succession. Attacks directed to the hardware and software of the flight controller can affect 

the behavior of the flight controller so that it does not perform its function as intended.   

 Sensory and Measurement Subsystem:  The sensory subsystem (shown as the blue circle in 

Figure 7) provides all of the sensed vehicle state information needed by the controller to 

maintain stable flight. The functions in this system include the INS, which provides vehicle 3-axis 

accelerations, angles, and velocities; GPS which provides geo-reference position and velocities; 

magnetometer which is used to sense heading direction. Thus the total vehicle state is (φ, θ, ψ 

ve, vn, vd, ax, ay, az, and heading)). The total sensor readings combined with the GPS information 

are sensed by the controller on regular time intervals (every 100ms). Examples of attacks against 

the sensory subsystem include false data injection attacks to manipulate sensory data, 

vehicle/system component state data manipulation, and navigational waypoint data 

manipulation.  

 The Communication System: The communication system is responsible for (1) transmitting 

commands to the UAV to alter its flight path and (2) receiving telemetry information about the 

UAV in flight (the communication system is identified by those components in the green circle in 

Figure 7).  The command signals to control the aircraft are transmitted by the operator via a 

line of sight communication transceiver. The ground station communication link operating 

frequency is usually in one of several designated bands (900 MHz or 2.4 GHz are common). 

Various signal modulation methods are used to encode the link channels.  Various channels are 

allocated for each command or telemetry class; i.e., pitch, roll, yaw, and throttle will be on a 

separate channel than GPS. After the onboard receiver decodes the signals from the ground 

station transmitter, the signals are converted to digital commands, processed by the onboard 

main processor. Attacks that target the communication system could affect both the aircraft and 

the command/control station. Telemetry data can be spoofed from the UAV, command 

information can be intercepted an altered, disabling of the communication link, etc.   

 Gimbal Pointing Camera system: UAVs are predominantly used as Intelligence, Surveillance, and 

Reconnaissance (ISR) platforms carrying sensor payloads such as EO/IR cameras, synthetic 

aperture radar, signals intelligence systems, and others. The purple circle shown in Figure 7 

encapsulates the onboard gimbal mounted camera of the UAV. The gimbal is capable of target 

tracking, scene steering and electronic image stabilization.  The gimbal system features an 

onboard processor to control the stabilization effectors, a VPS, and a communication link to 



send images to ground station and to the ViewPoint operator station. The ViewPoint operator 

station is capable of integrating with a moving-map, real-time mosaicing, target tracking, and 

video recording functions. 

Figure 7. UAV Onboard Systems showing the four major system groups. 

To understand the relationships between the major subsystems, we utilize an influence diagram, which 

is a type of DAG. DAGs provide value in situations where a system is characterized by a large number of 

inter-dependent functions/variables that have highly coupled process coordination. Understanding the 

possible attack scenarios is dependent on understanding the interrelationships among these coupled 

functions. For this reason, they work well for considering a system ofthis scale and have been used for a 

variety of applications in the safety and reliabi lity fields. 

As shown in Figure 8, a DAG includes a set of nodes and a set of edges connecting the nodes. In the 

system influence diagram shown in Figure 8, nodes represent a functional resource within the system. 

These can be hardware or software components, interfaces, or externa l factors, all of which have system 

functionality and can influence the outcome of the system service or behavior. The edges connecting 

the nodes represent the influence relations between the nodes. If two nodes are connected that means 

one node is influenced by the other node in order to provide expected service to UAV system. The arrow 

on the edge connection signif ies a provides relation. The accepting node signifies a requires relation 

from the edge. Similarly, if two nodes are not connected, the funct iona lity of one node does not have 

an influence on the other. While a DAG alone overlooks a crit ica l aspect of the problem at hand (the 

presence of an adversary), its construction enables the team to reach a common understanding of the 

system. 
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Figure 8. Influence diagram for used to understand the relationship between the UAV subsystems used 
for navigation. 

 

Figure 8 shows that the output of the Aircraft Navigation (i.e., the success or failure of the aircraft 

navigation function) is dependent on three major factors: (1) the actions of the human operator, (2) the 

functionality of the autopilot hardware/software, and (3) the weather conditions where the platform is 

currently operating. In turn, the autopilot function is dependent (i.e., influenced) by a number of its 

upstream nodes. These include state estimates from the sensor subsystems, pre-flight configurations, 

stored waypoints, communication links, INS, GPS, etc.  All of these upstream nodes, if compromised by a 

cyber-attack, may alter the navigation of the UAV. For instance, if the GPS receiver is compromised in 

such a way that the latitude and longitude coordinates are offset then the navigation tracker will think 

the UAV is in a location where it is not and attempt to move the UAV to the desired waypoint. That is 

this type of cyber-attack would cause the UAV to divert from its planned path.   

Similarly, the diagram shows that the status of the operator display is influenced by static information; 

e.g., maps that are stored in the software and variable information of the state estimates which are 

collected on-board the platform. In turn, the information showed on the display influences the actions 

of the human operator.  

Figure 9 shows the influence diagram for the gimbal camera pointing system. The subsystems of interest 

in this diagram are the camera control processor, GPS, and the sensors and effectors. The camera 

control processor executes software (SW) to implement functions such as, pan-zoom-tilt (PZT), auto-

tracking, point-of-interest tracking, etc. The GPS receiver provides the necessary geo-reference data to 

the control processor and camera to locate and track objects of interest.  The sensor and effector group 
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provides motion-stabilization to the mounted camera during flight. These three factors provide the 

greatest influence to the success or failure to the surveillance mission.  

 

 

Figure 9. Influence diagram used to understand the relationship between the UAV subsystems used for 
gathering surveillance data. 

With a firm understanding of the UAV system functions and how their interrelationships can influence or 

affect the UAV navigation, we can now transition toward identifying critical systems onboard the 

aircraft.   

From Figure 8 and Figure 9, three major subsystems have been identified for further analysis:  

 Autopilot subsystem. 

 GPS subsystem. 

 Gimbal camera pointing systems. 

3.1.1.5 Identifying and Classifying Potential Cyber Attacks  

To support this effort we developed a cyber-taxonomy to assist the red team and blue team members to 

think broadly about the origins, effects, and extent of potential cyber-attacks on the UAV. A taxonomy 

or classification schema allows practitioners to have a common basis of understanding. It also allows 

one to systematically reason about cyber-attack characterization as classes. In doing so the analysis of 

cyber-attacks is more organized and easier to transfer to other cyber defense engineering practices.  Our 
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taxonomy was developed to support the following analysis inquiries required of the System-Aware cyber 

security framework:  

 What are the different ways of perpetrating an attack against UAV systems? 

 What kind of damage or consequence can these attacks cause? 

 What are the challenges in preventing such attacks? 

 What are vulnerabilities that allow the attack to manifest? 

 What are potential propagation channels of the cyber-attack? 

Figure 10 shows the taxonomy model. Each node at level 2 of the tree (the tree in Figure 10 contains 9 

levels) can be thought of as a dimension in an ordinal structure. That is, each dimension has a specific 

place in the order of the taxonomy. The dimensions of the model include the objectives of the attack, 

propagation means, origin of attack, actions of the attack, vulnerabilities exploited, and target resource, 

effects and consequences. Here the order is organized around the following chain of inference: 

An attack OBJECTIVE by means of PROPAGATION from a lifecycle ORIGIN using malicious 

ACTIONS exploiting a VULNERABILTY on a RESOURCE/TARGET can change system EFFECTS that 

have system CONSEQUENCES 

Below each dimension are sub-dimensions or categories that characterize the parent class dimension 

with respect to the domain of applicability.  This classification schema recognizes that these sub-

dimensions or categories can be modified to fit other domains; e.g., a cyber-attack on a power grid may 

have different sub-dimensions than a UAV (i.e., the target dimension for the power grid would be 

substations and control centers). In addition, new types of attacks that may require new sub-dimensions 

can be added to the schema without altering the basic dimensions.   
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Figure 10. Cyber-taxonomy.  

 

3.1.1.6 Selection of Cyber Attacks to move forward  

Based in part on the cyber-attack profiling detailed in Barbara Luckett’s 2013 thesis, and the 

categorization of cyber-attacks by the taxonomy method described above, we selected several classes of 

cyber-attacks for more detailed analysis and to carry forward to the System-Aware cyber test-bed phase 

and ultimately into flight evaluations for our UAV surveillance platform: 

 Parameter-Based System Attack 

 GPS System Attacks 

 Gimbal System Attacks 

 Hardware Security Against Manufacturing and Design Attack 

The selection of these attacks is based in part on (1) how each cyber-attack is uniquely different and 

thus stresses the System-Aware cyber security methodology, and (2) how the application of each cyber-

attack may result in different effects on the overall UAV system operations. Before we discuss the 

specific cyber-attack profiles, we first introduce the concept of an attack surface.  While the taxonomy 

described above is beneficial in postulating about the classes of cyber-attacks, it is not intended to 

describe in detail the specific mechanisms or vectors that an attack uses to penetrate the system.  In 

order for our emulated cyber-attacks to reflect actual cyber-attacks, we need to ensure that realistic 

attack surfaces exist for the emulated cyber-attacks in the UAV.         
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3.1.1.7 Understanding Attack Surfaces 

The attack surface of a software environment is the sum of the different points (the attack vectors) 

where an unauthorized user (the attacker) can try to enter or extract data from an environment. The 

model in Figure 11 illustrates the concepts of attack surfaces on several important points. First, 

successful cyber-attacks usually require several attack surfaces to be breached for success. The second 

notion is reachability. Reachability describes the depth or breadth of the influence effects of the attack. 

In this case, the red arrow indicates an attack that deeply penetrates all layers to achieve its objective. 

The third notion is entry and exit points. Entry points define the places where data is inputted into the 

system; thus providing a means for ingress into the system by cyber-exploit. Entry points are associated 

with channels. Channels are means for moving or observing information into a system either directly or 

indirectly. A channel could be a network port, an unused debug port, or a wireless snooper.  The exit 

points define where data or control information can be acquired from a system.  Finally, resources that a 

device uses to input, move, process, and output data are part of the attack surface. Resources have 

entry and exit points, processing channels, and storage. 

 

Figure 11. Attack Surface Concept Model. 

3.1.2 Cybersecurity Architectural Selection – a UAV Case Study 

Earlier sections have outlined a model-based approach for identifying possible attack vectors that could 

be used to exploit the UAV system being protected, those system functions that would benefit from 

System-Aware protections, and applicable System-Aware Cybersecurity design patterns to provide those 

protections. However, due to limited resources (e.g., money, power, size, and weight) it may not be 

possible to implement a comprehensive solution. As a result, decision makers will be required to decide 

when and how to best utilize their limited resources to realize potential solutions to mitigate the 

identified threats. In initial tool set was developed in this project to address a facilitated approach for 

the identification and selection of key architectural functions that system owners would want to protect 

on their systems. Figure 12 shows a flowchart for the architectural selection tool that can be used to aid 

decision makers in how best to expend their limited resources on the solutions identified in previous 
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sections. This process includes the selection of those critical system functions to be protected using 

System-Aware security from those identified using the model-based approach previously outlined, 

relative ranking of the effectiveness of System-Aware solutions at addressing asymmetric attack vectors, 

selection of design patterns to protect those system functions from potential cyber attacks, the 

integration of those system functions and System-Aware design patterns into candidate architectures, 

and finally an evaluation of how the architecture affects the asymmetry between potential attackers 

and the system being protected. As described in Section 3.1.1.1, each of these steps is to be carried out 

with the assistance of one of three teams: 

 System design (Blue) team – Members of this team includes those that understand how the 

system was designed, implemented, and operates 

 Cyber attack (Red) team – Members of this team are knowledgeable about the resources 

necessary to create and design exploits 

 Cost Analysis (Green) team – Members of this team are responsible for determining the costs of 

designing, implementing, and integrating the selected System-Aware security services 

The remainder of this section details how steps 1 through 11 (i.e., the selection of suitable architectural 

candidates) are accomplished supported by the prototype tool developed in this project. Section 3.1.3 

outlines the prototype implementation of the tool for the selection of suitable architectural candidates, 

as well as discusses its application to a use case – the systems on board the experimental UAV 

surveillance platform.  
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Figure 12. Flowchart illustrating the Cybersecurity Architectural Selection framework. This framework 

enhances the previously outlined identification and evaluation framework by including a process to 

help design and select one or more architectural candidates from the potentially vast set of possible 

System-Aware architectures given a limited set of resources. Each step is also marked with the 

team(s) designated to perform that step. 
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3.1.2.1 Selection of System Functions for Protection 

The first step in designing a System-Aware architecture is to identify which of the system functions will 

be protected using System-Aware Cybersecurity. This includes, (1) identifying those system functions 

that could possibly benefit from System-Aware Cybersecurity, and (2) determining the relative 

importance—from a cyber security viewpoint—of protecting those functions from a cyber-attack. This 

importance is relative because it is based on a comparison of every system function to every other 

system function. Furthermore, as the importance is relative, it enables the ability for all system functions 

to be ranked. As discussed in Section 3.1.4.4, this ranking will be used to compose a subset of all 

identified system functions into a set of the most important functions to protect. It is emphasized that 

the relative importance assigned to protecting a system function is based on its contribution to 

achieving the mission objectives of the system and not on its susceptibility to attack.  

The identification of system functions is accomplished using the methods outlined in earlier sections. 

The ranking of their security importance should be performed with the aid of a system design team (i.e., 

Blue Team), as it possess the knowledge necessary to determine functions are exposed to types cyber-

attacks System-Aware security is designed to address and how those functions are used to achieve the 

system’s mission objectives.  

3.1.2.2 Identification of Asymmetric Attack Vectors 

After the system functions to be protected have been identified, each of those functions is assessed to 

determine possible asymmetric threats. An asymmetric threat is one that, with only a minimal analysis 

of the system function to be exploited, could be designed, developed, and maintained utilizing a small 

amount of resources, and has the potential to severely compromise or damage the system to be 

protected. In the absences of System-Aware security, such threats are potentially difficult to detect and 

deflect. This step is to be performed by a red team using the information provided by the model-based 

approach outlined in previous sections.  

3.1.2.3 Selection of System-Aware Design Patterns 

Once all of the system functions that could benefit from System-Aware security have been identified, it 

is then necessary to select System-Aware design patterns to be considered for protecting those 

functions. A design pattern is selected if it provides one or more of the following 

1. Makes it significantly more difficult for the compromised system function to cause damage to 

the system or compromise the system’s ability to complete its designated mission objective 

2.  Improves the robustness of the system function by either 

a. Preventing a compromised system function from taking certain damaging actions 

b. Allowing for the restoration of a compromised system function into a non-

compromised—and possibly less capable—state  

3. Increases the likelihood of identifying when the system function has been compromised and/or 

information about the source of compromise (i.e., identifying attributes about the adversary) 

Since determining the efficacy of applying a System-Aware design pattern to a given system function 

requires knowledge of how that function operates, as well as how it integrates into the overall system 

design, the selection of System-Aware design patterns is performed with the aid of the system design 
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team (i.e., Blue Team). Note that this selection does not consider issues associated with attackers’ 

developing and executing exploits. This is deferred for a subsequent stage in the analysis process.  

3.1.2.4 Determining the Security Effectiveness 

Given a set of system functions, each with a set of System-Aware design patterns, it is then necessary to 

determine the potential efficacy (i.e., the effective security) each System-Aware design pattern affords 

to the function it has been selected to protect. Several approaches exist. For example, one approach is 

to utilize structured arguments to organize a large body of evidence into well-structured rigorous 

arguments about the effectiveness—from a cyber security viewpoint—of a proposed solution. The 

architectural selection method outlined in this section outlines a streamlined process for creating a 

manageable set of System-Aware architectural candidates to be evaluated. This screening process 

involves the identification and evaluation of all system functions that could benefit from System-Aware 

cyber security, as well as all possible System-Aware design patterns that could be utilized to protect 

those functions. This is accomplished by assigning an integer valued score to a single System-Aware 

design pattern protecting a single system function based upon two criteria 

1. The System-Aware design pattern’s ability to increase the complexity, cost, and time for a 

hypothetical adversary to develop an exploit for the system function being protected 

2. The ability to decrease the probability that an attack against the system function being 

protected will be successful 

This simplified analysis assumes that every combination of System-Aware design pattern and system 

function provides the system with its own independent effective security; i.e., there are no 

(dis)economies of scale exist. In addition, this method assumes that the security effectiveness of a given 

System-Aware architecture is simply the sum of the security effectiveness scores for all of the included 

combinations of System-Aware design patterns and system functions.  

Such an evaluation requires knowledge about the resources necessary to design and develop exploits; as 

such, this step is to be performed by a cyber attack team (i.e., Red team). In addition, the cyber attack 

team should perform its evaluation without knowing the relative rank ordering of system functions 

performed by the system design team or the reasoning behind the selection of System-Aware design 

patterns.  

3.1.2.5 Determining the Resources Necessary to Develop the System-Aware Architecture 

System-Aware architectures are evaluated in terms of their security effectiveness, collateral impacts on 

system performance, and costs to design, implement, and maintain. Thus, candidate System-Aware 

architectures cannot be designed or evaluated without a method for estimating their potential costs. 

For the Cybersecurity Architectural Selection approach resented here, these costs are to be estimated 

by a special cost analysis team (i.e., Green Team) for all of the System-Aware design patterns proposed 

for all of the identified system functions. As was the case for security effectiveness, these costs 

represent the costs of designing, implementing, and maintaining a single design pattern for a single 

system function. This analysis assumes that no (dis)economies of scale exist, and the total cost of a 

System-Aware architecture is simply the sum of the cost for each of the selected combinations of 
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System-Aware design pattern and system function. This analysis is to be performed by a specialized cost 

analysis team. 

It is observed that the costs analysis team can also evaluate the costs for an adversary to analyze, 

design, implement, and maintain counter measures to the proposed System-Aware security measures. 

This information can be utilized to assess the amount of asymmetry, if any, between the costs to 

implement System-Aware security measures and the costs to overcome those measures. In turn, the 

relative levels of asymmetry can then be used to help evaluate the security effectiveness of the 

candidate architectures. It is noted that this asymmetry is dependent on the perceived resources of the 

adversary versus the system being defended; e.g., assume there is an adversary with a small amount of 

resources and a System-Aware architecture is being designed to protect a critical large system that was 

expensive to design and maintain. In this circumstance the adversary only has a small amount of 

resources to overcome any System-Aware defensive measures that are developed. However, the 

System-Aware architecture can consume a larger amount of resources, but this can still be relatively 

small compared to resources being protected. Thus, it is the costs relative to the resources available that 

determine the asymmetry. 

Collateral impacts on system performance is a rough estimate provided by the system design team and 

are used solely to eliminate System-Aware design patterns that would unacceptably degrade system 

performance. Collateral impacts are not used more extensively for the purposes of designing candidate 

architectures as only the system owner can decide whether the potential security benefits outweigh the 

loss in system performance, and due to the potential for mitigating solutions (e.g., increasing the 

system’s processor speeds or the amount of available memory). During architectural evaluation, 

collateral impacts can be estimated using more rigorous methods as desired.   

3.1.2.6 Selecting Architectural Candidates 

Once all of the system functions that could benefit from System-Aware Cyber Security have been 

identified, System-Aware design patterns have been selected and their potential security effectiveness 

have been evaluated, and their costs and impacts have been assessed, it is then necessary to select 

architectural candidates for evaluation. However, while selection and evaluation can be treated as 

separate activities, it can be beneficial to combine these steps. In the architectural scoring framework 

this is accomplished through a combination of automated decision tools and user interaction. 

Automation is utilized to generate a small set of candidate architectures. User input is utilized to provide 

constraints and to create candidate architectures by modifying the candidate architectures with the 

support of automation tools. The candidate architectures are created by utilizing the relative 

importance of system functions, as determined by the system design team, the potential security 

effectiveness afforded by applying System-Aware design patterns to system functions, and the costs of 

implementing the selected System-Aware design patterns. In addition, these criteria can be used to help 

users modify these architectures; e.g., users could replace a subset of System-Aware design patterns 

chosen by the automated system with more expensive System-Aware design patterns that offer a 

greater degree of effective security. Section 3.1.3 provides a discussion of a prototype architecture that 

illustrates one approach to using automation and user interaction to generate candidate architectures. 

The result of this process is a set of suitable architectural candidates.  
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3.1.2.7 Limitations of the Proposed Enhanced Architectural Scoring Framework 

While the decision support system outlined in this section provides several enhancements to the 

System-Aware architectural evaluation process, it still offers room for improvement 

1. The enhanced scoring framework assumes that no relationship exist among the System-Aware 

design patterns applied to protect the system function; i.e., no conflicts or redundancies are 

present 

2. The security effectiveness and resource cost only apply to a single System-Aware design pattern 

applied to a single system function this allows them to be assessed independently and can be 

combined in a simple additive manner (i.e., linear) with the security effectiveness and resource 

cost of other design patterns to obtains the security effectiveness and resource cost of the final 

architecture; i.e., no economies—or diseconomies—of scale exist 

System-Aware architectures that have the same costs and security effectiveness are equally desirable to 

a decision maker regardless of the number and particular System-Aware design patterns implemented 

and system functions protected; i.e., an architecture with a single highly secured system function based 

on the integration a number of design patterns, can be as valuable as an architecture with several 

system functions protected, but with fewer design patterns utilized to protect each function. 

3.1.3 Prototype Architectural Assessment Support Tool 

To help in the creation of the Cybersecurity Architectural Selection framework described in section 

3.1.2, a prototype decision support system was constructed using Microsoft Excel. There were two 

principle goals in developing this prototype system. First, was to develop algorithms for automatically 

generating architectural candidates. Second, was the creation of tools to help users explore the set of all 

candidate architectures by making adjustments to the automatically generated architectures. This also 

included the creation of tools and visualization aids to help users compare and contrast the candidate 

architectures. Finally, while these make up the main contribution of the prototype decision support 

system, it is noted that the prototype is fully functional; i.e., it supports all of the steps laid out in section 

3.1.2. 

3.1.4 Selection of System Functions for Protection 

Figure 13 shows how the prototype system supports the selection of system functions for protection for 

a simple example system. As can be seen, three system functions have been identified and assigned a 

relative ranking according to their importance to protect by the Blue Team. For the system shown in 

Figure 13, the System Control function has been designated the most important system function to 

protect, and the User Display the least; i.e., a higher ranked function is more important then a lower 

ranked function. It is noted that while only three system functions are shown here, the prototype 

system can support any number of functions. 
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Figure 13. Represents the prototype decision support system’s support for selecting system functions 

to protect and assigning them a relative rank ordering. In this case three system functions have been 

identified by a Blue Team for protection and ranked. A higher rank signifies a system function that is 

more important to protect; e.g., in this instance the most important function to protect is the one 

responsible for System Control. 

 

3.1.4.1 Selection of System-Aware Design Patterns 

After the system functions that would benefit from System-Aware security solutions have been selected, 

System-Aware design patterns are chosen by the Blue Team to protect these functions. Figure 14 shows 

this for the System Functions identified in Figure 13. As can be seen, the user first selects one of the 

identified system functions from a drop down list. After selecting a function for security consideration, a 

System-Aware design pattern is chosen for that system function. Finally, each combination of system 

function and System-Aware design pattern is assigned a unique identifier.  

The prototype system offers two methods for creating this identifier. The method illustrated in Figure 14 

uses the previously designated relative rank combined with a short acronym of the System-Aware 

design pattern. This method is intended to produce an identifier that would allow the user to intuitively 

recognize the relative importance of the system function as well as the method used to protect it. 

However, this scheme requires all available System-Aware design patterns to be assigned a unique short 

hand identifier before the process is started. Depending on the number of design patterns available, this 

may not be practical. To address this potential pitfall, a second method is available. This method 

recognizes that a System-Aware design pattern can only be applied to a system function once; i.e., each 

combination of system function and design pattern should be unique. Hashing these unique 

combinations generates a unique identifier. This has the benefit of generating unique identifiers without 

requiring additional information from the user; however, unlike the former method, the identifiers will 

not have intuitively derived meaning.  
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Figure 14. Illustrates how the prototype system is used to support the selection of System-Aware 

design patterns. For this instance the available system functions are assumed to be those presented in 

Figure 13. As can be seen, only those functions previously selected for protection can be selected in 

this step. Also note that every combination of system function and System-Aware design pattern is 

assigned a unique identifier. For this instance, the identifier is composed a combination of the relative 

rank of the system function and the first letter of every word of the System-Aware design pattern. 

 

3.1.4.2 Determining the Resources Necessary to Develop the System-Aware Architecture 

As discussed in section 3.1.2, every combination of system function and System-Aware design pattern 

should be evaluated independently to determine its costs and collateral impacts on the system. For the 

prototype architecture, it is assumed that all resources can be represented by a single monetary cost. 

This is more restrictive then outlined section 3.1.2, where there can be multiple costs represented in 

different units (e.g., money, power, and space). The decision to reduce this to a single monetary cost 

was made to both support a more robust set of algorithms for automatically generating architectural 

candidates, and to make it easier for a user to compare and contrast competing architectural 

candidates. 

Figure 15 builds upon Figure 14 to illustrate how this is done in the prototype system. As can be seen, 

every combination of system function and System-Aware design pattern is assigned a single monetary 

cost. For the prototype system, these costs are considered to be independent.  
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Figure 15. Illustrates how the prototype system supports the assessment of the necessary resources 

needed to implement a given System-Aware architecture. In this instance every combination of 

System-Aware design pattern and system function generated in Figure 14 is assigned a monetary cost.  

 

3.1.4.3 Determining the Security Effectiveness 

Figure 16 illustrates how the prototype system supports the evaluation of the security potentially 

afforded by each combination of system function and System-Aware design pattern to be evaluated. In 

the prototype evaluation system the ID, System Function, and Design Patterns, fields are automatically 

populated based on the inputs received in the previous steps The Deterrence Score is used to represent 

the security effectiveness potentially afforded by each combination of system function and design 

pattern. As noted in section 3.1.2, the security effectiveness score can be any integer value; however, 

for the prototype system, this score is limited to 1, 2, 3, or 4, with higher scores relating to more value. 

This limitation is not imposed by the evaluation system, but rather stems from the criteria used to 

determine the effective security score 

 Score = 4, Complexity, cost, and time to develop exploits are high and the probability of a 

successful exploit is low 

 Score = 3, Complexity, cost, time to develop exploits are high and the probability of a success 

exploit is high 

 Score = 2, Complexity, cost, time to develop exploits are low and the probability of a success 

exploit is low 

 Score = 1, Complexity, cost, time to develop exploits are low and the probability of a success 

exploit is high 

The particular system in Figure 16 is built using those combinations illustrated in Figure 14. 
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Figure 16. Illustrates how the prototype supports the assigning of security effectiveness scores to all 

combinations of system function and design pattern. This instance assigns scores for those 

combinations identified in Figure 14. 

 

3.1.4.4 Selecting Architectural Candidates 

As discussed in section 3.1.2, the selection of architectural candidates is performed through a 

combination of automation tools and user input. The user provides constraints that are used to guide 

the automated execution of algorithms in the creation of a subset of candidate System-Aware 

architectures. In addition, the user is then able to modify one or more of these candidate architectures 

to generate additional candidate architectures. This process can result in one of two outcomes 

1. A set of candidate architectures to be evaluated using a more rigorous criteria 

2. Select the architecture that will be implemented 

The prototype system can support both outcomes; however, the prototype only supports the creation of 

candidate architectures and does not provide any additional support to perform a more rigorous 

evaluation. 

3.1.4.5 User Constraints 

The prototype decision support system accepts user constraints on the total amount of resources that 

are available for implementing System-Aware design patterns to protect system functions. Since the 

prototype system assumes that only one monetary resource exist, this step is presumed to be the user 

allocating a budget. Figure 17 illustrates the options available to the user (it assumes the resources 

shown in Figure 15). 

 User is allowed to set a value between 0 and the sum total of the resource costs of selecting 

every combination of system function and design pattern (this is 19,950 in Figure 17) 
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 User can move a slider between the values of 0 and the sum total of the resource costs of 

selecting every combination of system function and design pattern (this is 19,950 in Figure 17) 

The maximum budget value is automatically computed based on the inputs supplied. Furthermore, the 

budget values are always integer—the maximum value is always rounded up to ensure that is can cover 

the difference. This is done to support the automatic generation of candidate architectures.  

 

Figure 17. Illustration of the budget slider used in the prototype system. This slider is currently set to a budget of 

$10,000, has a maximum possible value of $19,950, and a minimum value of $0. 

 

3.1.4.6 Automated Support to Generate Candidate Architectures 

After a maximum budget has been set and System-Aware design patterns have been selected, their 

security effectiveness evaluated, and their cost determined for each of the system functions identified 

as possibly benefiting from System-Aware security, an automated decision support system is then 

utilized to generate two exemplar System-Aware architectures 

1. Blue Perspective – The prototype decision support system will select a system function to 

protect based upon the importance placed on protecting that system function by the system 

design team. First, the prototype system will select the highest ranked (i.e., most important) 

system function. Next, System-Aware design patterns will be selected to maximize the 

protection of the chosen system function. Design patterns will be selected until either the costs 

meet the available budget or all available patterns have been selected. In the former case, 

design patterns will be selected to maximize the total security effectiveness offered (the sum of 

the selected combinations of system functions and design patterns) within the user defined 

budget. This process will be repeated until either all of the identified system functions have 

been protected by all available System-Aware design patterns or the total cost meets the 

maximum user defined budget. As discussed in section 3.1.2, it is assumed that the costs and 

security effectiveness scores for each combination are independent of all other combinations; 

thus, the total cost and security effectiveness of the candidate architectures can be computed 

through a simple summation of the individual values.  

2. Red Perspective – The prototype decision support system will select system functions and 

corresponding System-Aware design patterns in order to maximize the security effectiveness of 

the final System-Aware architecture. To do so the prototype decision support system makes the 

same assumptions as the Blue Perspective: that the individually assigned scores for security 

effectiveness and the costs can be computed from a simple summation in order to derive the 

values for the candidate architecture. In the event that two or more System-Aware design 
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patterns consume the same amount of resources and afford the same security effectiveness for 

different system functions, and only one of those functions can be protected, the importance 

placed upon protecting the system function by the system design team will be used to 

determine which of the functions is protected.  

For both of these cases, it is recognized that the maximization of the security effectiveness subject to a 

budget constraint is an instance of the knapsack problem. As a result, the prototype decision support 

system has been designed to try and take advantage of this fact. First, it is known that the knapsack 

problem can be solved in pseudo polynomial if all of the weights (i.e., resource costs associated with 

each combination of system function and design pattern) are non-negative integers. As discussed 

earlier, the weights are monetary cost estimates. This means that all of the weights are nonnegative. In 

addition, the maximum budget is an integer value. Finally, the prototype system will round up all of the 

individual weights to integer values before trying to maximize the security effectiveness. This last step 

ensures that all of the weights (i.e., costs) are integers. This last step is deemed acceptable as the costs 

of each of the proposed solutions (i.e., combinations of system functions and design patterns) are 

considered to be large enough that the change can be safely ignored. Of course, it is still possible that 

the time required to determine the optimal solution is unacceptable. As a result the prototype systems 

allows user to use a heuristic algorithm in place of the optimal solution. This algorithm is not guaranteed 

to find the optimal solution, but it will run in polynomial time.  

These candidate architectures are meant to represent two edge cases, thus providing a starting point for 

user the exploration of the available design 

 Blue Perspective – Protects the system by protecting system functions according to the system 

design teams evaluations  

 Red Perspective – Protects the system by maximizing the security effectiveness of the final 

architecture based upon the evaluations of the cyber attack assessment team 

3.1.4.7 Tools to Support User Exploration 

After the prototype decision support system has generated the two candidate architectures, the user is 

then able to adjust those architectures to generate additional candidates. The prototype decision 

support system offers several tools to support the user in this given task 

 Overview and summary statistics describing the candidate architecture generated using the Blue 

Perspective approach. As seen in Figure 18, this includes a list detailing which combinations of 

system functions and design patterns were selected and summary information about this 

architecture 

o Deterrence Score: The sum of the deterrence scores of the selected combinations as 

well as the deterrence score of summing all possible combinations 

o Cost: The sum of the costs of the selected combinations as well as the costs of selecting 

all combinations 
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o Higher Ranked Blue: Represents the number of important system functions that were 

included in the candidate architecture. A system function is important if its relative 

ranking is greater than or equal to the maximum ranked function divided by half 

o Lower Ranked Blue: Represents the number of less critical system functions that were 

included in the candidate architecture. A system function is less critical if its relative 

ranking is less than half the maximum ranked function 

o Bigger Det Red: Represents the number of design patterns included in the candidate 

architecture that contributed a significant amount of effective security. A significant 

amount of effective security is a security effectiveness score greater than or equal to 

half the maximum possible score. For the prototype decision support system this is a 

score of 4 or 3 

o Smaller Det Red: Represents the number of design patterns included in the candidate 

architecture that contributed a small amount to the effective security. A small amount 

of effective security is a security effectiveness score less than half the maximum 

possible score. For the prototype decision support system this is a score of 2 or 1 

 Overview and summary statistics describing the candidate architecture generated using the Red 

Perspective approach. As seen in, this includes a list detailing which combinations of system 

functions and design patterns were selected and summary information about this architecture. 

This information is exactly same as that discussed earlier for the Blue Perspective 

 Two quad charts representing the summary statistics of the candidate architectures. The first 

chart, seen in Figure 20, shows all of the combinations including in the candidate architectures 

(Blue Perspective and Red Perspective). This information includes the relative importance of the 

system function being protected and its contribution to the effective security of the candidate 

architecture. This also includes the amount the combination contributes to the overall costs of 

architecture (this is represented by the size of the glyph). The second chart, seen in Figure 21, 

shows the same information as the first; however, the combinations plotted are those NOT 

included in the candidate architecture 

 As discussed in section 3.1.2, the user should be able to create additional architectural 

candidates by adjusting those generated through more automated means. In the prototype 

architecture this is done by allowing the user to select a candidate architecture and add or 

remove combinations of system functions and design patterns. This interface is shown in Figure 

22. In addition, the prototype decision support system highlights how these changes affect the 

selected architecture. These include highlighting which combinations have been added and 

removed, as well as highlighting any positive or negative changes in the summary statistics. An 

example of this can be seen in Figure 23 

 When the user creates a new architectural candidate, the prototype decision support system 

allows the user to save that candidate so it can be compared to all other candidate architectures 
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created. The prototype system provides tools to allow for the user to compare candidates in 

terms of their security effectiveness, costs, and selected combinations of system functions and 

design patterns in a pair wise manner 

 The prototype decision support allows the user to keep a history of all candidate architectures 

created, the steps (i.e., adjustments to the automatically generated architectures) that were 

taken to create those candidates, and a history of the reasoning behind those changes 

 

Figure 18. The architecture candidate created automatically using the Blue Perspective. The top 

displays summary information, including deterrence score, total costs, and rough break down of the 

importance of the system functions protected and the effectiveness of the design patterns chosen to 

protect those functions. The bottom shows which combination of system functions and design 

patterns were selected. This instance was generated using the information shown in Figure 15 and 

Figure 16. 

 

Figure 19. The architecture candidate created automatically using the Red Perspective. The top 

displays summary information, including deterrence score, total costs, and rough break down of the 

importance of the system functions protected and the effectiveness of the design patterns chosen to 

protect those functions. The bottom shows which combination of system functions and design 

patterns were selected. This instance was generated using the information shown in Figure 15 and 

Figure 16. 
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Figure 20. Quad chart displaying all of the selected combinations of system functions and design 

patterns in the candidate architectures generated by the prototype decision support system for the 

Blue Perspective and the Red Perspective. Those combinations selected as part of the Blue Perspective 

are represented by blue diamonds. Those combinations selected as part of the Red Perspective are 

represented by red circles. The size of the glyph (diamond or circle) represents that combinations 

relative contribution to the overall cost (bigger glyph represents a larger contribution). This instance 

represents the candidate architecture shown in Figure 18. 

 

Figure 21. Quad chart displaying all of the combinations of system functions and design patterns not 

included in the candidate architectures generated by the prototype decision support system for the 

Blue Perspective and the Red Perspective. Those combinations not selected as part of the Blue 

Perspective are represented by blue diamonds. Those combinations not selected as part of the Red 
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Perspective are represented by red circles. The size of the glyph (diamond or circle) represents that 

combinations costs compared to the costs of the other combinations not included in that perspective. 

This instance represents the candidate architecture shown in Figure 19. 

 

Figure 22. Set of tools the user can use to adjust the candidate architectures generated by the 

prototype decision support system (Blue Perspective and the Red Perspective). This includes the 

ability to select an architecture to modify—Hierarchical Goal (Blue Perspective) or Max Det Score (Red 

Perspective)—a selected combination of system function and design pattern to remove (left of the 

Swap button), and a combination not included in the candidate architecture to add (right of the swap 

button). This instance represents the information show in Figure 18. 

 

Figure 23. Illustrates how the prototype decision support system supports the user as they adjust the 

candidate architectures into new architectures. In this instance the combination of system function 

and design pattern with ID 3—VCH was removed and the combination with ID 2—CBH was added. The 

changes to the effectiveness and costs of the architectures are show in summary statistics. 

Furthermore, these changes have been highlighted to indicate (potentially) positive (green) or 

negative (red) changes. 
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3.1.4.8 Additional Use Case – The Navy 10th Fleet  

During the course of developing the prototype decision support system, it was utilized as part of 

workshop with the Navy 10th Fleet. This afforded the opportunity to learn more about the benefits and 

limitations of both the prototype system and the Cybersecurity Architectural Selection and Assessment 

approach generally. However, before discussing the lessons learned several important limitations should 

be noted. First, the entire process was condensed into a short 1.5 hour window. This means that the 

process had to be simplified in order to fit into the allotted time. This led to many of the steps being 

streamlined so as to create fewer categories for ranking. Second, due to the short window and small 

number of participants, separate teams could not be created for each of the steps as outlined in section 

3.1.2. Instead, all of the steps were performed by having all participants serve as the members for each 

team. 

Despite the limitations of the meeting’s setting, the proposed decision support tool was able to provide 

the group with a useful way of designing and selecting a System-Aware architecture. This included the 

ability to aid in the identification of important system functions as well in the selection—and creation—

of System-Aware design patterns to protect those system functions. In addition, several additional areas 

for improvement were suggested. First, it is important that the steps be well structured and all 

participants have some training with process. For example, those participants that were more familiar 

with the tool and its usage were more readily able to participate in the exercise. However, those 

participants that were engaging in the activity for the first time were unsure how to provide the rankings 

or whether to begin with ranking the relative importance of system functions or the potential 

deterrence afforded by a given System-Aware solution. Second, having more technical experts (i.e., the 

Red, Blue, and Green teams) available to provide answer decision makers questions would aid in the 

scoring process. Third, the prototype system currently assumes that all system functions are prioritized 

only according to the possible consequences that could result from a cyber-attack; however, initial 

usage suggest that the prioritization of a system’s functions is, in fact, a combination of multiple factors. 

For example, during the discussion all system functions were found to classified into three broad 

categories, (1) functions related to the system’s operations, (2) functions used to carry out the system’s 

specific mission objectives, and (3) functions related to the system operators ability to control the 

system. Some members considered those functions related to the performance of the system as most 

critical: believing that these functions could be used to cause catastrophic damage to the entire system 

and compromise the mission. Other members disagreed with this assessment. They believed that such 

attacks could be easily identified and deflected by other means—such as operator intervention—and, 

furthermore, may degrade the system’s functionality but not prevent it from accomplishing its mission. 

Finally, all members noted that those system functions that would be built from more stable 

components should be ranked higher; i.e., some system functions may be built using components that 

will be in service for years, while others may be built from components that will be upgraded frequently. 

Those system functions that will be upgraded frequently should receive a lower priority as the constant 

upgrading would provide a certain degree of protection by possibly deterring an adversary.  

Currently the prototype system only provides the cyber attack assessment (red) team with the ability to 

assign an integer value of one to four to the security afforded by each system function design pattern 
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solution. During the discussion, it was suggested that a larger range of values be available to allow the 

red team to more accurately assess the security offered by a given solution. 

3.1.5 Model-based Cyber Assessment 

As described in Sections 3.1.1 to 3.1.4, the scoring and influence diagram approaches to architectural 

selection were used successfully in the context of the UAV system.   These applications made it clear 

that the methods were less than ideal in that they exhibited the following characteristics:  

 A lack of associated model semantics giving clear and repeatable meaning to the model 
elements. 

 Manual construction that proved to be both tedious and time consuming. 

 Absence of integration between the system (defender) and attacker perspectives. 

 Limited support for understanding tradeoffs between cost, system impact, security, and other 
objectives. 

More generally, the Phase 1 methods do not support application to complex systems or systems-of-

systems or use in agile planning environments. The Phase 2 activity in architectural selection focused on 

investigating the hypothesis is that a scalable and agile approach to the mission-focused architectural 

selection problem can be found by making use of two structured modeling approaches:   

 Systems models using model-based systems engineering tools and languages such as SysML , 
which provides a mechanism for detailed description of of system structure, functions, and 
information flows in a searchable data format.   

 Attack models using attack tree tools, such as SecurItree, which provides a paradigm (similar to 
fault trees) that can be used to describe vulnerabilities to cyber attack and that can be filtered 
to account for the particular capabilities or characteristics of potential adversaries.   

 

Research, described in Part 4 of this reports, was directed in the following thrusts: 

 Refinement of the architectural selection methodology that is an iterative process in which 
defender, attacker, and procurement viewpoints are alternately considered in the choice of 
which defenses to employ where.   

 Creation of model integration concepts that support a unified system and attack model. 
See Part 4 of this report for more details. 

3.1.6 Future Activity in Systems-aware Architectural Selection and Assessment 

The Phase 2 activity led to substantial progress in the development of model-based tools and techniques 

to support Systems-aware Architectural Selection and Assessment.  However the hypothesis that these 

tools yield a truly scalable approach remains largely untested.  In our opinion, future efforts should focus 

on the following items: 

 Continued development of integration between systems and attack tree models. 

 Extension of the six-step methodology to support application in hierarchical and 
systems-of-systems settings. 
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Application of the methods in hierarchical and systems-of-systems case studies concepts to assess the 

overall effort involved in the selection of the defensive architecture and the degree to which the 

concept can support an agile environment through the reuse or combination of architectures. 

3.2 Attack Development  

3.2.1 Parameter-Based System Attack  

UAV autopilot systems are designed to be reusable across a diverse set of aircraft configurations and 

support a variety of mission scenarios. As a result, many of the variables that govern the control 

algorithms for a given flight are parameterized: 

 Maximum and current fuel capacity. 

 Maximum allowable pitch, yaw, and turning radius. 

 Maximum altitude the aircraft can safely operate. 

 Flight plan for a given mission. 

However, while these parameters allow a given autopilot to fulfill a large number of missions, they also 

provide a potential attack vector that a malicious adversary could use to damage an UAV or compromise 

its ability to carry out its mission objectives. For example, as discussed in section 3.2.3, UAVs are 

primarily used as platforms for providing ISR. An adversary could use a parameter-based attack to 

neutralize a UAVs ability to carry out its surveillance operation through the usage of an embedded 

Trojan horse that would be capable of disrupting the UAV’s ability to gather surveillance in key regions; 

i.e., the Trojan horse would alter the UAV's flight plan when the UAV entered certain geographic 

regions.  

This section will outline one potential parameter-based attack vector against a UAV autopilot. This 

attack will be in the form of a Trojan horse designed to modify the UAV's flight plan stored in the 

autopilot system. The adversary will leverage the fact that the flight plan is stored in the autopilot 

system as a series of waypoints (i.e., destinations) that the aircraft will fly between. When the aircraft 

enters a key geographic region, an embedded Trojan horse will automatically divert the aircraft to 

another waypoint in the flight plan.  

For the UAV navigation system attack example, the red team constructed three trees for three different 

attack types; each attack type potentially possessing a different value to a possible attacker: 

1. A minor trajectory change where the adversary makes a minor change to the waypoints in order 

to cause the platform to deviate slightly from the flight path. The intent of this attack is to 

prevent the UAV from operating in designated regions. This attack assumes that the deviation’s 

magnitude and duration are small enough to go unnoticed by the aircraft operator.  

2. A major trajectory change where the adversary drastically alters the flight trajectory in order to 

cause the platform to lose control and crash into the ground. This attack assumes that the flight 

trajectory alterations occur too quickly for the pilot to prevent the aircraft from losing control 

and crashing. 
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3. A concealed major trajectory change where the adversary drastically alters the flight trajectory 

in order to reroute the UAV to an alternate destination. This attack assumes that the trajectory 

change on its own will be noticed and can be prevented by an operator taking appropriate 

action(s). As a result, this attack assumes that the adversary will take action to conceal or mask 

the major trajectory change in order to prevent the operator from taking any actions that might 

thwart the attack. 

The Concealed Major Trajectory Change (option 3) tree was selected for the analysis moving forward 

into testing for two reasons. First of all, structurally, all three trees are similar in regards to how the 

exploit is realized. This results in the Concealed Major Trajectory Change tree including the nodes of the 

other two as well as the nodes representing actions to lower the detectability of the attack. Second, the 

value gained from the Concealed Major Trajectory Change attack was most in line with the expected 

preferences of the adversary profiles the project team was most concerned with. For demonstration 

purposes in this project, the project team for this application chose implementation of the parameter 

assurance for the waypoint change and it was also enhanced to include protection on both the ground 

and in the air covering the case where an attacker might launch a coordinated attack to try to hide the 

effects of a waypoint change from operators on the ground. This is the use-case that was demonstrated 

in the flight evaluations performed in October 2014. 

3.2.1.1 Parameter-Based Attack Implementation Details 

There exist multiple insertion points where a malicious adversary could embed the Trojan horse into the 

Piccolo autopilot in order to divert the aircraft to another waypoint in the flight plan: 

1. Directly into the Piccolo autopilot's hardware.  

2. Algorithms used to control the aircraft's flight. 

3. The Piccolo autopilot provides support to allow up to five external devices to connect serially 

using the RS-232 protocol. Once connected, these devices are able to passively monitor the 

flight status of the Piccolo autopilot, extract information from the Piccolo autopilot, and modify 

the Piccolo autopilot's flight parameters.  

The attack outlined in this section assumes that the adversary will utilize option (3): 

 All three attack vectors will enable the adversary to alter the flight plan; however, option (3) 

requires the least modification to the existing Piccolo autopilot. 

 Simplifies the reconfiguration of attack parameters; e.g., option (3) makes it simpler to 

experiment with alternative triggering mechanism used in the attack. 

 Attack can be implemented on any platform that can send and receive using the RS-232 

protocol, including laptops, desktops, SBCs, etc. 

For the Phase 2 implementation of the parameter-based attack, the Trojan horse has been implemented 

on a Raspberry Pi labeled as Attack Pi 1 from Figure 5. This Single Board Computer (SBC) is located on 

the airborne platform and can be executed from the ground on command our automatically based on 

geographic region. It is connected to the Piccolo autopilot over one of the available serial connections – 
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COM1. In addition, the Trojan horse is able to be triggered by either entering a specific geographic 

region, or, to facilitate experimentation, the SBC allows for a malicious user to redirect the aircraft to 

any waypoint through a simple text based interface.  

3.2.1.2 Masking the Parameter-Based Attack to Prevent User Detection 

The attack implementation outlined in section 3.2.1.1 would be sufficient to compromise a UAV's 

capacity to fulfill its designated mission. For example, an adversary would be able to use the embedded 

Trojan horse to create no-fly zones for the UAV's; enabling them to operate in a given region without 

the risk of detection. However, changing a UAV's flight plan mid-flight is an action that could be readily 

recognized by the UAV's operator. As a result, the attack might only be effective for a short duration 

before it was detected and corrected. In addition, the operator might be able to take actions to salvage 

the mission; e.g., the operator might call in the assistance of one or more near-by UAVs to take over the 

mid-mission. Thus, if an adversary desires such an attack to be effective over the course of multiple 

missions, they will need to take steps to ensure that the attack is not easily detectable. 

To reduce the risk that the embedded Trojan horse will be detected, the adversary decides to 

coordinate the parameter-based attack (i.e., flight-plan alteration) with an attack against the operator 

display (i.e., PCC). This attack will mask any alterations in the flight plan from the operator display. 

Specifically, when the Trojan horse embedded into the Piccolo autopilot redirects the UAV to an 

alternate waypoint the attack against the PCC will display the UAV flying along the previously unaltered 

flight-plan. 

During Phase 2 of the project, as the ground-station portion of the attack, a rudimentary physics engine 

was developed based on the GPS location of the waypoints in the UAV flight plan. The current position 

in the flight plan was coupled with the velocity, bearing, direction and type of the flight plan to create 

falsified data that was inserted into the stream of flight data that determined the location of the aircraft 

on the maps in the Piccolo Command Center displays. Once the attack on the waypoint was initiated in 

the autopilot of the UAV, a signal was sent down to the ground that triggered the secondary attack on 

the operator displays. When the attacks were coordinated, any changes in the flight-plan waypoints 

were hidden from the operator’s station. 

This attack was particularly important in the testing and the safety of our flight tests. To maintain the 

safe operations of the aircraft, it was decided that it was necessary to have a second PCC workstation as 

a backup in to the PCC that would be attacked during the flight tests. In case of loss of control, the 

second workstation and the second operator could both see the real picture of what the aircraft was 

doing at that time and have the capability to take over control of the aircraft if needed. In the tests, this 

turned out to also offer an interesting test for the System-Aware protections, which we will describe in 

the Special Note in section 3.2.1.4. 

Figure 24 shows how the attack platform used to attack the operator display is integrated into the HiL 

emulation environment. In this instance, the attack is hosted on a SBC that intercepts all communication 

between the operator display (PCC) and the ground station. As was the case for the Trojan horse 

embedded onto the UAV, this configuration affords an easily reconfigurable attack platform to facilitate 



experimentation while minimizing its impact on existing systems. It is noted that this is not the only 

available point for insertion. For example, the display masking attack could be embedded into the PCC 

itself. 
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Figure 24- Embedded attack platform for masking the operator display on a SBC. 

3.2.1.3 Implementation of the Parameter-Based Attack by Compromising the PCC 

As described in section 3.2.1.2, it is possible for the adversary to initiate a clandestine parameter-based 

attack against the Piccolo autopilot. However, such an attack requires two embedded attack platforms 

working in a coordinated fash ion. Furthermore, each of these platforms has to be embedded into two 

distinct subsystems. This section explores an alternative attack vector requiring the adversary to 

compromise only one subsystem. 

Figure 25 shows the configuration for the Hil emu lation environment that initiates a ground-based 

version of the same parameter-based attack as described section 3.2.1.2. For this configuration the 

embedded Trojan horse responsible for initiating the parameter-based attack is embedded directly into 

the PCC using its plugin capabilities. This attack has the advantage of on ly requiring the adversary to 

compromise the ground-based operator display; however, it is also a potentially easier attack to purge. 

As the attack is not embedded with the Piccolo autopilot, it can be purged mid-fl ight by simply swapping 

in an uncompromised PCC to control the aircraft. This is identical to the actua l Phase 2 flight hardware 

which utilized the same functional ity to attack the ground components. 
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Figure 25. Piccolo II HiL configuration with Embedded Attack Platform to dynamically direct the UAV to a 
specified waypoint during flight while masking the change from operator display. Attack is a plugin 
embedded into the PCC. Embedded attack platform for masking the operator display is a SBC that sits 
between the connection from the PCC and the ground station. 

 

3.2.1.4 Flight Demonstration - The Waypoint Attack 

The waypoint attack changes the waypoints in the autopilot’s flight plan causing it to flight a different 

trajectory from the one intended by the operator.  As shown in Figure 26 the aircraft’s commanded 

flight plan was one of two rectangular patterns aligned with the runway.  The other rectangular pattern 

was used as the set of waypoints for the attack flight plan.  The coordinates of the waypoints are 

provided in Table 1 or Table 2.   

The flight director initiated three flight passes in order to test the use of the Sentinel to monitor and to 

detect system behavior for possible cyber attacks. During the first evaluation flight pass, the operator 

initiated a normal waypoint change. The Sentinel successfully noted the change in plan, verified that the 

change did come from the operator, and indicated that a normal change had occurred in the Cyber 

Commander Interface. During the second evaluation flight pass, an attack was triggered that injected a 

false waypoint change into the flight plan. The Sentinel successfully noted the change, did not find an 

associated operator system change to the plan, and indicated a possible cyber attack to the Cyber 

Commander. The interface offered the appropriate corrective actions to the operator which included 

restoring the original flight plan, flying the aircraft back to its home location, and flying to another 

waypoint or flight plan of the operator’s choice. The demonstration scenario called for a change back to 

the original plan. 
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For the third flight plan pass, the attack on both the airborne and the ground-station components were 

triggered in order to both change the waypoint plan and hide the result from the operators. During the 

initial portion of this part of the demonstration, the aircraft was commanded by the operator to fly the 

rectangular pattern consisting the waypoints in Table 1. With the defense disabled the flight test 

director initiated the waypoint attack and the aircraft diverted to the other rectangular pattern made up 

of the waypoints in Table 2.  Unfortunately, the masking portion of the attack did not work properly.  

When the masking attack was engaged, the aircraft’s position froze on the 900 MHz ground control 

station display.  The aircraft’s true location could still be seen on the 450 MHz ground control station 

display.  During the next pass through the pattern the defense against the waypoint attack was enabled.  

This time, when the attack was initiated, the Sentinel alerted the operator to the change in the flight 

plan. We believe that this communications problem may have been caused by a disagreement between 

the physics engine that enabled the masking attack to the PCC and the information being sent from the 

aircraft to the ground. This had been tested thoroughly in the SiL and HiL testing environments. 

However, more testing will be needed to find the problem from the airborne tests.  

Special Note: An interesting and most important result came from this communications failure.  Because 

the system froze on the 900 MHz PCC when the secondary attack was initiated on the main operator’s 

center, the operator of the backup, 450 Mhz ground control system was forced to make changes to the 

flight plan to keep the aircraft flying in the correct flight plan.  During the setup of the tests, the Sentinel 

was not made aware of the presence of the 2nd flight control station. So, when the operator initiated the 

change on the unknown station, the Sentinel detected the change as an unverified change and alerted 

the Cyber Command station that a cyber attack was underway. This attack is very similar to a spoofing 

attack where a false operator station would attempt to take over flight operations for a UAV. This was a 

critical point in the tests where the Sentinel worked as designed to protect the flight plan in an 

unplanned scenario and was a defining moment for the tests. The Sentinel was doing what it was 

designed to do, protect the system functions and offered corrective actions to the operator. 

Table 1. Waypoints on North West side of runway 
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Table 2. Waypoints centered over runway 

 

 

Figure 26. Waypoint Attack Flight Plans 
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3.2.2 GPS System Attacks 

3.2.2.1 Applying the Relational System Aware Architectural Assessment Methodology to GPS   

Step 1 

The process begins by identifying the critical functions of the gimbal system and defining the variables 

and influence relationships among those functions. Step one is to be performed by the blue team and is 

intended to outline the expected functionality of the system with minimal defensive strategies 

implemented. At this point, a system influence relational diagram is constructed using DAG notation as 

described previously.  

Figure 27 shows the influence diagram for the gimbal camera pointing system. As seen in the diagram, 

the subsystems of interest are the camera control processor, GPS, and the sensor and effector group. 

The camera control processor executes SW to implement functions such as Pan-Zoom-Tilt, auto-

tracking, point of interest tracking, etc. The GPS receiver provides the necessary geo-reference data to 

the control processor and camera to locate and track objects of interest. The sensor and effector group 

provides motion-stabilization to the mounted camera during flight. The camera control processor also is 

a downstream device to the GPS receiver; thus, it is also a possible host for embedded malware to alter 

GPS measurements as they are streamed into the control processor. The GPS receiver, gimbal sensors 

and effectors, and gimbal control processor are the three systems that most influence the success or 

failure of a given surveillance mission. Of these three, the GPS receiver is of particular interest because 

GPS measurements greatly influence the geo-referencing of the image data from the camera.     

 

Figure 27. Camera gimbal influence diagram. 
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Step 2  
 
In step two, the red team is tasked with constructing an attack tree for the specific system function 

considered in step one. In this case, it is the attacks on GPS metadata. Metadata is all of the recorded by 

the gimbal and the UAV to provide a complete solution to geo-referencing the surveillance information 

collected by the UAV. This typically includes gimbal-pointing angles, PZT of the camera, UAV attitude 

data, GPS data, etc. By looking at the system from the perspective of an adversary, attack trees can be 

utilized to understand the possible paths an attacker could take to exploit a specific feature of the 

system. The attack tree in Figure 28 represents the possible vulnerabilities an adversary could exploit to 

alter GPS measurements in the metadata stream.  The attack tree is organized into four viable attacks 

categories:   

Supply Chain Attack on GPS Receiver: A Trojan embedded into the firmware of the GPS 

receiver. 

Down-stream GPS Malware Attack: An attack on a downstream device that is receiving GPS 

data. The GPS data it receives is manipulated before it is used by the device.   

Manipulated GPS Firmware Attack: An attack injected during system integration. In this 

scenario, updated system patches or firmware for the GPS receiver is altered prior to being 

loaded onto the GPS receiver.  

External GPS Attack (Spoofing): Spoofing one or more GPS signals external to the UAV from a 

phase-coherent spoofing device that causes the GPS receiver to falsely lock onto the spoofed 

signals.   

 

 

Figure 28. Attack tree for GPS attacks to alter georeference data.  

In Figure 28 the attacks are organized from left to right based on difficulty of executing the attack. The 

first attack is the manipulated firmware attack. GPS devices are pervasive in consumer products; as 

such, the suppliers of GPS often provide open API’s and a variety of firmware packages to suit the needs 

of a diverse customer base. The firmware packages offered are usually placed on a FTP server (File 
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Transfer Protocol) for customers to retrieve. This leaves them open to skilled adversaries who can 

retrieve the GPS firmware by either masquerading as a legitimate client or simply crack the FTP site. 

Once the firmware binaries are downloaded, reverse engineering methods and tools can be applied to 

the firmware to deduce its functionality and operations.  After analysis of the firmware is complete, 

suitable locations in the firmware are selected for inserting malware to alter GPS position calculations 

based on trigger. The compromised malware is then delivered to a specific target system integrator or 

user of the UAV.  There are a number of delivery mechanisms that can be used to fool the vendors into 

inheriting the compromised firmware. One such method employs special probe detectors in the 

vendor’s servers that detect a request to the firmware FTP site by the vendor personnel. The probe 

detectors will allow the download request to proceed, but it will swap and replace the authentic 

firmware with the compromised the compromised firmware unbeknownst to the users.     

The second attack is an indirect attack on GPS measurements. That is, the systems that use or process 

GPS sensor data are compromised in such a way that the GPS data is altered before they can use it. This 

type of attack exploits vulnerabilities in the system dataflow protocol and development tools for the 

systems that use the GPS data. In this attack, the communication API’s of the system that define how 

data is formatted, where certain data is identifiable by header packets, and protocol for 

communications is exploited for intercepting and modifying GPS data before it is used by the 

downstream device. Typically, this attack requires a man-in-the-middle attack posture. In our case the 

GPS device and Gimbal Control Processor are directly connected together via a serial link. Thus, the 

man-in-the-middle exploit will reside on the input of the control processor as part of the input 

processing software or protocol conversion software. In either case, it requires some form of malware 

to be loaded onto the control processor. The malware will alter the GPS database on a trigger.  

The next type of attack is a supply chain attack. In this case, an insider in the GPS vendor company is 

colluding with an external agent to place stealthy malware deep into the GPS firmware. The insider must 

have access and authorization to configure the firmware on the SW development tools, hide the 

changes from test engineers, and be skilled enough to craft or insert the malware in the right place. This 

type of attack requires the coordination of many complex activities involving human intelligence, skilled 

adversaries to work with an insider, and circumventing product security measures. This attack is the 

most difficult, only possible in the realm of highly developed adversaries, but can extremely effective.  

The last type of attack is external GPS signal spoofing. All of these exploits are externally executed 

through a special RF spoofing device (phase-coherent signal synthesizers)—a device that simultaneously 

receives and transmits civil GPS signals. This type of attack causes the GPS receiver to falsely lock onto a 

fake GPS signal that is used to provide false updates to the UAV systems.  We provide this type of attack 

in the tree as a measure of completeness, we do not intend to investigate countermeasures to this type 

of attack as it out of scope of this project, and has been widely researched by others. 

Triggers for GPS system attack are considered as well. Typically, an adversary who has embedded a GPS 

exploit in the gimbal system would want to coordinate the attack with some form of trigger. An example 

of a trigger could be when the gimbal camera system is deployed activate the attack, or when the GPS 

stream data indicates XYZ latitude and longitude coordinates activate the attack.  These triggers can be 
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embedded internally with malware or perhaps triggered externally.  For an external trigger to work, the 

adversary would have to gain access to the RF telemetry channel that is used to communicate to the 

ground station.  This could possibly be accomplished by spoofing the telemetry channel on duplicate but 

a higher powered transmitter of the same type as the ground station. Alternatively, the ground station 

software could be compromised in such a way as to stealthily upload trigger commands to the gimbal 

system.      

Step 3  

In step three, the red and blue team develops a set of variables that can be used to assess the difficulty 

of a particular attack action. These variables are called behavioral indicators and can include, but are 

certainly not limited to, resources such as technical ability, time, manpower, money, equipment, 

facilities, presence of an insider, and access to system design information. These variables are used to 

make two separate types of judgments: leaf node assessments and adversary profile construction. The 

adversary profile is the characterization of an attack agent. In our work, these are nation states, cyber-

criminal groups, terrorists groups, and rogue agents.  Leaf node assessments are directed with respect 

to a particular adversary group. Annotating the leaf nodes with a graded five-point scale from low to 

high provides the basis for pruning the attack tree to select attacks that are desirable to attackers.  An 

example of a pruned tree is in Figure 29, where the supply chain attack has been pruned due to the 

relative difficulty of the attack for the rogue agent to perform. Pruning is always done with respect to a 

specific threat agent profile; as such, the supply chain attack would not be pruned for the nation state 

threat agent because it is within their capability to conduct such a complex attack.  

 

 

Figure 29. Pruned Attack Tree. 

 

Based on the analysis of step three, all attacks are within the capability of the nation state threat actors.  

Rogue agents, cyber-criminals groups, and terrorists groups can execute manipulated firmware attacks 

and downstream GPS attacks. Cyber-criminal groups can additionally execute GPS spoofing attacks. For 

the remaining analysis in steps four through six we focus on nation state actors and evaluate cyber 
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defenses for the gimbal system.  Based on the attack tree analysis the most desirable attacks for a 

nation state actor are ranked in the following order:  

1. Manipulated Firmware attacks 
2. Downstream GPS malware attack  
3. External Spoofing 
4. Insider supply chain attack 

 

Steps 4-6  

Step three identified attack scenarios and actions that an adversary would need to take to successfully 

execute an attack and those that are most attractive to a particular adversary. Based on the ranked 

attack scenarios the blue team can determine which cyber defensive actions may be appropriate to 

provide strong asymmetry against the attack scenarios. Referring to Table 3, the design patterns are 

assessed with respect to the four attack scenarios. Column 1 is the attack scenario provided by step 

three. Column 2 is the selected design pattern to defend against the attack. Column 3 is the 

implementation cost of the design pattern. Column 4 is the collateral system impacts of the design 

pattern; i.e., how the design pattern negatively impacts the performance of the system. The design 

patterns evaluated for the GPS gimbal attacks are diverse redundancy of GPS modules and verifiable 

voting of the diverse GPS module measurements. Diversity of GPS modules provides defense against 

supply chain attacks. Redundancy of GPS modules provides defense against directed attacks on a 

specific GPS modules firmware. Redundancy and consistency checks are required for detecting a 

downstream GPS attack. Recall in a downstream attack, the source GPS module is not compromised but 

the downstream components that use GPS measurements are corrupted. In this case, the downstream 

devices need a consistency check on their GPS data, and this is accomplished by feeding back their GPS 

measurements to the Sentinel for checking against the redundant measurements. In the presence of an 

attack, the downstream devices received measurements that would be different from the ensemble of 

redundant GPS modules. GPS spoofing can be detected by a number a methods that are available in the 

open literature.  The Tippenhauer is one such method. The basic idea of the Tippenhauer 

countermeasure is the following:  four GPS receivers are placed on the UAV separated by at least 4 

meters. The distances between the GPS is accurately surveyed and known.  If the GPS receivers can 

exchange their individual GPS surveyed locations, they can check if their calculated locations preserve 

their physical formation (within certain error bounds). In the case that the calculated GPS locations do 

not match the known formation, an attack must be suspected and there should be a warning message. 

This defense requires additional GPS receivers (beyond what is needed for UAV operations) to be placed 

on the UAV at maximal separation points of the vehicle, such as the nose, tail and wingtips.   

 

 

 

 



Attack Type Design Pattern Implementation Collateral System 
Cost Impacts 

Embedded GPS Receiver Attack Diverse Redundancy Low-Med Low-Med 
(Supply Chain Attack) of GPS Modules and 

Verifiable Voting 

Down-stream GPS Malware Redundancy of GPS Med Med 
Manipulation Attack Modules, feedback, 

Consistency checks 

External Spoofing of GPS Signal Tippenhauer Method Med-High Low-med 

Manipulated GPS Firmware Attack Diverse Redundancy Low-Med Low-Med 

of GPS Modules and 
Verifiable Voting 

Table 3. Impact of design patterns on the system. 

The f ina l steps in the process are to weigh the security trade-offs to determine which design pattern 

solutions are appropriate. The f ina l steps are collaborative, all three teams return together and 

participate in a discussion regarding the security trade-offs that exist with the potential choices. While 

each defensive strategy remaining after step four has an acceptable impact on the attacker and on the 

defense, some may be better choices than others based on cost, effectiveness, and complexity. To carry 

out this assessment we go back to the influence diagram and instantiate the graph with the cyber

defense design patterns we have pre-selected. The annotated graphs shows w here the design patterns 

are present in the system data-flow, what components are influenced by the additional 

hardware/software, and the security coverage of the design pattern with respect to the system as a 

w hole. For sake of brevity, w e provide a synopsis of the process in Table 4. The second row in the 

header indicates the specific attack scenario. The third header row indicates design patterns used to 

defense against the attack. The fourth header row indicates impact to designer (in terms of cost, and 

collateral impacts) and impacts to adversary. In the case of adversary impacts, the behavioral indication 

reflects the increase, decrease, or unchanged skills needed to carry out the attack after the design 

pattern has been added. This is an indication of the asymmetry effectiveness against threat actor. 

Overall, both design patterns increase asymmetry of the system. The trade-offs occur by examining 

w hat the designer's costs are for implementing the design patterns versus the cost to adversary to carry 

out the attack in view of the added defenses. In both cases, the costs to the adversary are significantly 

increased, while the system designer's costs are only modestly increased. In summary, both proposed 

design patterns are acceptable choices to carry forward. 
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Gimbal GPS Metadata Attack 
Embedded GPS Receiver Attack (Supply Dow n-stream GPS Malware Manipulatio n 

Chain) Attack 
Diverse Redundancy and Verifiable Voting Redundancy of GPS Modules, feedback, 

Consistency checks 
Impact to Defense Impact to Adversary Impact to Defense Impact to Adve rsary 

Implementation Design Knowledge: Implementation Design Knowledge: 

Cost: Increased to High Cost: Increased - Med-

Low-Med Med high 

Collateral System Attack-Specific Collateral System Attack-Specific 

Impact : Technical Ability: Impact: Technical Ability: 

Low-Med Increased Med-High Med Increased to Med-

High 

Resources: Resources: 

Increased to High Unchanged -Med 

Insider Prese nce Insider Prese nce 

(Operational): (Operational): 

Increased to Med Increased - Low-med 

Insider Prese nce Insider Prese nce 

(Supply Chain): (Supply Chain): 

Unchanged High Unchanged low 

Manpower/Time: Manpower/Time: 

Increased to Med-High Increased- Med-high 

Table 4. Effects of System-Aware defense on the system and attacker for the gimbal GPS metadata 
attack. 
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3.2.2.2 Introduction to GPS System Attack 

Many autonomous and unmanned systems rely on GPS for navigation and control. This makes GPS an 

especially enticing target for the cyber-attacker. This attack scenario assumes that malicious hardware 

or software has been inserted into the GPS processor at some point along the supply chain. A triggering 

mechanism is included in this malicious hardware or software so that the GPS processor will report 

incorrect position information when triggered. The malicious deviation to the reported position will be 

introduced in a manner so that it is difficult to distinguish the malicious deviations from natural changes 

in position information. 

The triggering mechanism may be external or internal to the GPS processor. An external trigger might 

arrive through an external radio channel or through conditions presented by other systems or sensors in 

the vehicle. An internal signal might be based on the sensed position. Thus, when the vehicle 

approaches coordinates stored in the GPS processor the malicious response is triggered. 

While the malicious response could involve rapid and significant corruption of the position reported by 

the GPS, such rapid corruption of navigation data would be quickly and easily detected. A rapid and 

significant navigation disruption might be misinterpreted as a faulty GPS processor rather than a 

malicious attack, but either interpretation would prompt an immediate response to address the 

problem. Thus, the attack scenario anticipates that the malicious deviations will be introduced in a 

manner to make them difficult to distinguish from natural changes. An example of such masked 

deviations might involve a gradual introduction of error into the position data over a period of time so 

that the vehicle navigation system is slowly walked off of the correct position. The navigation system 

response would be to compensate for this slowly introduced position error in order to keep the vehicle 

on its intended course. These compensating corrections would slowly move the vehicle further and 

further off of its intended course. 

3.2.2.3 High Level Description of GPS Attack 

Two illustrative examples for this attack scenario have been prepared. The first of these examples is 

applied using HiL emulation in a laboratory environment. The second of these examples is applied to an 

autonomous vehicle in operation. This report describes the approach taken and the results obtained for 

the first of the two examples. 

The first example uses the Piccolo autopilot hardware and software in the HiL emulation. The autopilot 

includes both GPS and INS components, but these systems are not used for the HiL emulation. Rather, 

this data is supplied by a simulator. Similarly, the autopilot normally provides control signals to actuators 

that control the behavior of the vehicle. During the HiL emulation, these control signals are sent to the 

simulation. Thus, the simulator establishes the initial position and orientation of the vehicle. The 

autopilot has a desired path to follow, and it sends control information to the simulator in an attempt to 

move the vehicle along this desired path. The simulator interprets the control information in the context 

of the vehicle capabilities and determines the updated position and orientation data that is sent to the 



autopilot. The particular autopilot used in this example communicates w ith the simulator using a CAN 

bus interface as described as described in section IZJ. 

The second example will not be allowed to influence the trajectory of the vehicle directly because of 

safety concerns. However, there are enough other uses of posit ion data on autonomous vehicles so that 

the scenario can be adapted to retain its attack capabilit ies while not compromising safety. The 

anticipated variation w ill apply the malicious and stea lthily corrupted posit ion to the metadata 

associated w ith captured images. Any live images linked from the vehicle to the base station w ill not be 

changed, but the changes in metadata will make it difficu lt to correlate captured data with cartographic 

databases. This attack and associated System-Aware protections were successfully demonstrated in the 

fl ight evaluations in October. 

3.2.2.4 GPS System Attack Specifics 

The first example uses Hil emulation in a laboratory environment. The particular autopilot used in this 

example communicates w ith the simulator using a CAN bus as i llustrated in Figure 30. 

Autopilot r; ... lll(l---------1)1~ Simulator ~ ! CAN Bus ~ 
~-----

Vehicle Status Data 

Figure 30. Autopi lot to Simulator communications. 

The figure shows that the control signals from the autopilot are conveyed to the simulator over the CAN 

bus. The simulator sends status data to the autopilot that would normally come from various sensors in 

the vehicle or in the autopi lot. The GPS posit ion data that would normally come from a GPS unit in the 

autopilot instead comes from the simulator through the CAN bus. 

The CAN bus conveys data between devices in message frames. A frame contains header information 

along w ith the data in channels. For example, the message frame containing the GPS posit ion data 

includes t wo channels: one for latitude and one for longitude. Each frame is distinguishable by its 

header information. Channels for each frame are then found in locations fixed for each message type 

w ithin the data portion of the frame. 

3.2.2.5 The Attack Simulation 

The Hil emulation configuration suggests a direct path for implementing the example attack scenario. 

The simulation can be attacked by breaking the CAN bus between the autopilot and the simulator and 

inserting another device that can interpret and modify the message frames. This simulated attack 

configuration is i llustrated in Figure 31. 

63 



Autopilot Simulator 

Figure 31. Simulated attack configuration. 

The figure shows that a ll message traffic between the autopilot and the simulator passes through the 

attacker. For normal operations, the attacker forwards to the simu lator a ll message frames sent by the 

autopilot. The attacker a lso forwards to the autopi lot a ll message frames sent by the s imulator. In this 

mode of operation, the Hil emulation proceeds as it would without the attacker in place. Initial 

experimentation confirmed that the Hil emu lation proceeded as normal when the attacker s imply 

forwarded a ll message frames in this manner. 

The simulated attack requires that all message frames from the autopilot continue to be forwarded 

unchanged to the simulator. Also, message frames from the simu lator must continue to be forwarded 

unchanged to the autopilot unless they are GPS posit ion message frames. The attack requires that the 

attacker modify the data in the channels of the GPS position message frames before it is forwarded to 

the autopilot. These channels convey the latitude and longitude data to be corrupted. 

The attack simulation was implemented using Lab View running on a personal computer with two USB to 

CAN bus converters. This personal computer acted as the attacker. The physical CAN bus between the 

autopilot and the simulator was disconnected. The simulator CAN bus was connected to the attacker 

computer through one of the CAN bus converters. The autopilot was connected to the attacker 

computer through the other CAN bus converter. A LabView Vl1 was written to accept CAN message 

frames from both CAN interfaces and forward the frames received on each interface to the other 

interface. In this configuration, the simulation acted as normal. 

The LabView VI in the attacker computer was then modified so that a ll CAN message frames continued 

to be forwarded as initia lly configured unless the CAN frames from the simulator were detected to be 

GPS position frames. The channels in these GPS posit ion frames were decoded into latitude and 

longitude values and were written to a fi le . In addition, the LabView VI accepted latitude and longitude 

corruption value inputs that were added to the latitude and longitude values before the VI reassembled 

the GPS position message frame and sent it to the autopilot. Thus, the VI supported arbitrary 

adjustment to the GPS position values reported to the autopilot. 

1 LabView is a graphical language that is proprietary to National Instruments. A Lab View VI is a Virtual 

Instrument that is roughly equiva lent to a computer programming routine. 
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As the attacker adjusted the reported GPS posit ion, the autopilot adjusted the vehicle controls to 

correct the perceived position error. Thus, the autopilot drove the vehicle off of its intended course to 

correct the error introduced by the attacker. This is illustrated in Figure 32 which shows the deviation in 

the UAV's ground track. 
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Figure 32. Example of GPS attack. 
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The figure shows the intended path for the vehicle using the solid gray line. At some point, the attacker 

starts moving the reported position down as shown in the figure so that the reported path deviates 

below the planned path . This is shown as a dotted line in the figure. The autopilot responds by adjusting 

the controls to keep the vehicle on the planned path. This actually causes the vehicle to deviate from the 

planned path in a direction opposite to the malicious change. This actual path is shown as a dashed line 

above the planned path in the figure. After the vehicle has moved beyond the area that the attacker 

wanted to protect, the attacker reduces the ma licious deviation in the reported path until the vehicle 

returns to the planned pattern 

3.2.2.6 Flight Demonstration - GPS Walk-Off Attack 

For the flight demonstration, when the aircraft enters a pre-defined geographic region around the Early 

County Airport in Blakely, GA, an attack is triggered and the GPS location data from the autopilot to the 

camera gimbal is corrupted with a s lowly increasing bias. The corrupted GPS data is included in the 

video stream as metadata that provides the coordinates of the area being viewed by the camera. As a 

result of this attack, the video imagery has erroneous position data associated with it. 
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The aircraft’s commanded flight path was a right hand pattern on Runway 23 as shown in Figure 33.  The 

geographic region for the attack was defined as a circular area centered to the Northeast of the 

aircraft’s flight path with a radius of 609 m. This resulted in a partial overlap with the aircraft’s 

commanded path as shown in Figure 33.  As the aircraft crossed into the attack region the GPS walk-off 

attack was initiated.  During the first pass through the attack region the Sentinel defense was disabled 

and the position data being fed from the autopilot to the gimbal was observed to deviate from the true 

position.  During the next pass through the attack zone the defense was enabled and the GPS walk-off 

was detected almost immediately.  The SerialSpy as described in Section 4.1, then replaced the 

corrupted GPS position data with validated data from the Sentinel and forwarded the data to the 

camera gimbal and into the video processing unit. 

 

 

Figure 33. GPS walk-off attack region shown as upper right orbit. Typical flight path shown as right 
hand pattern on Runway 23 

3.2.3 Gimbal System Control Attacks 

3.2.3.1 Introduction to Gimbal Attacks 

UAVs are predominantly used as ISR platforms carrying sensor payloads such as EO/IR cameras, 

synthetic aperture radar, signals intelligence systems, and others.  As a result, sensor technology is 

evolving quickly, with new sensor systems being developed for all classes of UAVs.  However, in the push 

to quickly field these new sensor suites and take advantage of their capabilities, cyber security is 

sometimes neglected.  This creates an opportunity for an attacker to compromise a mission by 
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exploiting weaknesses in the payload security; e.g., an attacker could degrade or deny the payload 

service or spoof the information coming from it. 

To investigate methods for preventing, detecting, and countering potential cyber-attacks against UAV 

sensor payloads, the GTRI studied potential cyber-attacks and corresponding cyber security solutions for 

the TASE 150 camera gimbal system on its GAUSS UAV.  The TASE 150 is a member of the popular and 

widely used family of TASE camera gimbal systems developed by Cloud Cap Technologies ™. The 

following sections describe potential attack vectors for the camera gimbal. Section 3.3.2.3 describes one 

approach to protect against these attacks.  

3.2.3.2 High Level Description of Gimbal Attack 

In order to determine the simplest vector to compromise the TASE camera gimbal, the GTRI analyzed 

the specifics of the TASE gimbal, the ViewPoint ground station software (used to view the video), and 

the communications protocol used to issue commands to the gimbal as well as receive status updates 

from the gimbal. This analysis revealed that the simplest attack vector would be to cause a denial of 

service or degradation of service by sending malicious, unauthorized commands to the gimbal from a 

malware exploit running on the operator interface machine (i.e., the machine hosting the PCC and 

ViewPoint). 

This type of attack is possible because it is assumed that the source for all gimbal commands can be 

trusted. This means that as long as an attacker can communicate with the gimbal, she can have it 

execute any command that she wants. In addition, there are multiple commands that can potentially be 

exploited by an attack to cause a denial or degradation of service. Together, these factors suggest this 

path of attack. 

The attack vector chosen for this study embeds a malicious exploit into ViewPoint. Embedding the 

malicious exploit is made possible by the open architecture of the ViewPoint and PCC software that 

allows developers to create plug-in software modules for added functionality.  In addition, the PCC and 

ViewPoint allow users to go online and download maps and aerial imagery from several different map 

databases.  No particular security measures are in place for users downloading maps onto the machine 

hosting the PCC or ViewPoint. Together these features provide a potential attack vector. 

An alternative attack vector was considered that required communicating with the gimbal directly from 

a rogue wireless command tower. However, it was determined that the simplest solution would be to 

use the already established communication channel. In addition, solutions designed to detect malicious 

data sent from the operator interface should also be able to detect malicious data sent from an 

alternate source. 

3.2.3.3 Gimbal Attack Specifics 

The attack is an exploit embedded into ViewPoint that sends malicious data to the gimbal. The data will 

be unauthorized but properly constructed command packets designed to cause a denial or degradation 

of service. The exploit has the ability to construct the command data, compute the checksum, and send 

it to the gimbal. In addition to sending malicious data, the exploit can also produce non-malicious data 

at random intervals to attempt to hide the malicious data. The following are commands that could be 
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used for a degraded or denial of service attack. For the flight demonstration, the Extend/Retract Gimbal 

command and the Gimbal command were chosen as examples of Denial-of-Service attacks that could be 

monitored by the Sentinel. 

0x00 / 0x43: Extend/Retract Gimbal 

By issuing commands to retract the gimbal during critical points in the mission, an attacker can cause 

the loss of a significant amount of information. By continuously issuing the command to retract the 

gimbal an attacker can cause a complete denial of service of the payload. 

 0x00 / 0x70: Disable Motor Driver 

As with the Retract Gimbal packet, this command can cause a similar denial of service by interfering with 

the operator’s ability to steer the camera gimbal.  

0x00 / 0x80: Gimbal Command 

This command controls the location in which the gimbal is pointed.  Pointing the gimbal away from the 

target can cause a denial of service. Random or erratic movement of the gimbal may cause the camera 

operator to assume a technical malfunction has occurred and recall the UAV. 

0x00 / 0x40: Gyroscope Zero 

This command sets the zero of the gyroscope on board the TASE gimbal. The gimbal documentation 

warns that the operator should not issue this command while the gimbal is in motion. Doing so may 

cause the gyroscope to be calibrated improperly, causing a degradation of service that would be difficult 

to fix mid-flight. This may force a recall of the UAV. The full extent to which this would affect 

performance has not yet been determined. 

0x28 / 0x00: User Warning Packet 

This packet is sent to the ViewPoint software instead of the gimbal. The software will display an error or 

warning message to the operator, which may be used to social engineer the operator into aborting the 

mission or taking other actions based on false information. 

3.2.3.4 Flight Demonstration - Gimbal Command Attack 

During the flight tests, when the aircraft entered a predefined geographic region, an attack is triggered 

and non-operator commanded gimbal commands were issued to the gimbal causing it to retract or slew 

the sensor point of interest (SPOI) upwards.  The retract attack is referred to as Attack 2a and the SPOI 

attack is referred to as Attack 2b. The attacks appear to the operator as a malfunction of the gimbal 

mechanism and prevent him from conducting surveillance within the attack region. 

The aircraft’s commanded flight orbit was centered over the runway as shown in Figure 34.  The 

geographic region for the attack was defined as a circular area centered to the Northeast with a radius 

of 609 m. This resulted in a partial overlap with the aircraft’s commanded orbit as shown in Figure 34.  

As the aircraft crossed into the region encompassed by the attack orbit the SPOI attack was initiated 
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(Attack 2b).  During the initial pass through the attack region the defense was disabled and the SPOI 

slewed upwards at the test director’s command.  During the next pass, the defense was enabled.  The 

defense blocked the SPOI command preventing the camera from being slewed upwards. 

After the SPOI attack was demonstrated it was deactivated and the gimbal retract attack (Attack 2a) was 

enabled. During the initial pass through the attack region the defense was disabled and the gimbal 

retracted when the operator tried to track an object at the center of the orbit.  During the next pass, the 

defense was enabled.  The defense blocked the gimbal retract command when the operator initiated a 

tracking command and the operator was able to successfully track a ground object. 

 

Figure 34. Gimbal command attack region shown as upper right orbit. Typical flight orbit shown as 
lower left orbit. 

3.2.4 Hardware Security Against Design and Manufacturing Attacks 

3.2.4.1 Introduction to Design and Manufacturing Attacks 

Many attacks, including those outlined in section 3.1, could be injected into a UAV via the supply chain 

or by an insider that could embed malicious hardware:  

 Designer adds malicious hardware functionality, which may not be detected in code review, IC 
inspection, and etc. 

 Malicious functionality may be added in the fabrication process and escape detection in IC 
inspection. 

 An attacker can reverse engineer unencrypted bitstreams to reveal the original design, or even 
modify the bitstream and add malicious functions. 
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 If a bitstream is encrypted using encryption algorithms such as AES, an attacker may still be able 
to decrypt it by using power analysis, or physically hacking into the device and obtaining the 
private key, which is used for encryption. 

 An inside attacker may replace or modify the hardware that is ready for deployment. 
 Attacks maliciously modify data during conversion between protocols; e.g., converting RS-232 to 

Ethernet. 
For this project, we will focus on attacks against data protocol converters as potential attacks that 

maliciously modify data during protocol conversion not only serve as a vector for compromising an UAV, 

but also have the potential to compromise the Sentinel.  

3.2.4.2 Flight Demonstration - High Level Attack Scenarios 

As outlined in section 3.3 the prototype Sentinel converts information from RS-232 into Internet 

protocol (IP) packets. If an adversary could compromise this functionality, they could disable the 

protections afforded by the Sentinel. For example, assume that a Sentinel is monitoring a UAV’s 

autopilot system. Furthermore, assume that all of the data is sent to the Sentinel using the RS-232 

protocol and is converted by the Sentinel to Ethernet to simplify the implementation of protection 

algorithms. Now let us assume that an adversary has embedded a Trojan horse into the hardware 

performing the conversion on the Sentinel that looks for a specific pattern in the RS-232 data stream to 

trigger a denial of service attack against the Sentinel. As discussed in section 3.3, the protocol 

conversion will be implemented by running bare-metal applications on soft-cores implemented in a 

field-programmable gate array (FPGA).  

A FPGA was selected for its configurability and flexibility that makes it favorable for the purpose of 

prototyping and concept proving. In this project, the soft-cores for protocol conversion and all 

hardware-based protections are implemented on FPGAs.  

3.3 Design and Development of the Super Secure, Sentinel  

This section outlines the implementation of a prototype super secure smart Sentinel to protect a UAV 

against the attacks outlined in section 3.1. The prototype Sentinel is capable of monitoring the 

autopilots subsystems, detecting when those subsystems have been compromised (i.e., when they have 

been altered through malicious activity), alert the appropriate authorities, and taking appropriate 

actions to restore those subsystems to an uncompromised state. For this project, whenever the Sentinel 

detects malicious activity it will alert a specially designated cyber officer responsible for ensuring the 

integrity of the UAV. To ensure that such an action cannot be intercepted by an adversary, the UAV has 

been equipped with a highly secured back channel that can be used by the Sentinel to communicate 

critical security information and ensure that the cyber officer is able to both receive information 

regarding the true state of the UAV, as well as continue to issue commands in the event the main 

communications channel is compromised.  

3.3.1 Sentinel Platform Development 

3.3.1.1 Single Board Computers 

The Raspberry Pi, shown in Figure 35, is a 3.4” X 2.2” X 0.8” Single Board Computer (SBC) which has 

gained popularity because of its affordability (approximately $35). The design team chose the Raspberry 
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Pi as the major development platform for the flight test. This platform provides a relatively small, 

lightweight, and inexpensive option to use numerous platforms for snooping or corrupting serial data. 

The Raspberry Pi has a 700 MHz Armv7 based processor, and an SD card slot for memory storage. For 

our purposes, an 8 GB SD card is sufficient to host the Raspbian operating system, a version of Debian 

Linux specifically designed for the Raspberry Pi. The Raspberry Pi hosts C code written by the GTRI and 

the UVa teams which is responsible for byte-wise decoding of information as it is passed to and from the 

gimbal. It is also possible for the Raspberry Pi to host the communications software development kit 

(SDK) provided by Cloud Cap. This allows for easily maintainable and more legible C code to be used to 

decode the same information. 

In addition to hosting the standardization of the data streams that are used by the Sentinel, the SBC’s 

are also the platform where the code base for the System-Aware monitoring of the data from the 

system function(s) being protected, the detections based on the analysis of that data, the alerting 

mechanism to indicate the potential threat, and the corrective actions resides. Those algorithms are 

implemented in a combination of C code and Python code and are relatively small – under 600 lines of 

code each. This enables the Sentinel to provide multiple, diverse implementations of the code base in 

order to aid in the protection the Sentinel functions. In addition, the Raspberry Pi also allows for 

diversity in the operating systems (OS) in which the Sentinel logic resides. During the flight evaluations, 

both Debian-based Raspbian and Arch LINUX were implemented onboard the Pi’s on the aircraft. This 

enabled the implementation of the diverse, redundant hopping security design patterns into the 

Sentinel implementation for the flight test. This software diversity introduces new challenges for the 

adversary should they choose to attack the Sentinel platform.  

During the research effort, the use of SBC’s from diverse vendors was also investigated in the bench top 

lab environment. We evaluated the Minnowboard – an Intel processor-based solution running Windows 

8.1 and the Beaglebone Black – another ARM-based processor running Arch Linux as hardware and 

software solutions used to add diversity to the Sentinel solutions. The results of these tests showed that 

the Sentinel functions themselves were fairly agnostic to the hardware they were running on due 

primarily to the relatively small size of the code base. In addition, the diverse implementations of 

hardware and software environments offered low-cost solutions to increasing the complexity of the 

attack surface to an adversary tipping the symmetry of the attack space in favor of the system owner. 

For the flight tests, however, the team decided to introduce only diversity in the operating systems, not 

in the hardware so only Raspberry Pi’s we used in the actual tests. A set of three Raspberry Pi boards 

were implemented using triple modular redundancy in the processes for the System-Aware logic, and 

secured voting and random hopping were all used as security design patterns to protect the Sentinel 

while in operation in the flight tests. 



Figure 35. Raspberry Pi SBC. 

3.3.1.2 SiCore SHIELD 2 Coprocessor 

During Phase 1, the focus of the w ork performed with SiCore has been to design a solution that 

leverages the secure platform provided by the SHIELD card as a delivery mechanism for Sentinel 

functionalit y. The result of those activit ies is a new version of the SHIELD card called SHIELD II that 

serves as the central interface point between the system being protected, the UAV, and the Sentinel 

securit y design patterns that protect it. For the purposes of convenience for the demonstration of the 

Sentinel capabi lit ies on this project, we choose to eliminate some of the hardened infrastructure for the 

SHIELD card and focused on adjusting the infrastructure of the card for t wo purposes: 

1 . Enabling the types of interfaces that are required to interface with the Piccolo autopilot system. 

2. Protecting the data traversing the Sentinel architecture. 

One of the goa ls in this effort was to look at delivering Sentinel funct ionality as a generic capability, 

w hi le demonstrating that funct ionality on a specific system. To that end, we have decided to use IP as 

the standard protocol for Sentinel ana lysis functions. This particular system uses the serial RS-232 

protocol for the majority of its inter-component communications. So, the conversion of RS-232 to TCP/ IP 

becomes an important function and a potential area of vulnerabi lity for attack. The design effort in this 

phase and described here reflect our desire to standardize the protocol and to protect that conversion 

process. This design should apply equally to other types of interfaces on other systems. 

During Phase 2 the actual implementation and fabricat ion of the SHIELD 2 card was designed to meet 

the specifications described in section3.3.3 .4 . That section will also detail the design decisions that were 
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made during Phase 1. By using the SiCore SHIELD II card, we will be adding additional potential security 

features to the Sentinel including protections of the data bitstream, secured storage in the form of the a 

SD Card, securing the traffic within and outside the card and utilizing the OODA  (Observe, Orient, 

Decide and Act) real-time controller methodology to aid in responding to events within the Sentinel 

security architecture.   

3.3.2 Attack Detection, Mitigation and Restoration  

3.3.2.1 Parameter-Based Attack Detection, Mitigation, and Restoration 

To defend against the parameter-based attack outlined in section 3.2.1, a prototype super secure smart 

Sentinel that is capable of monitoring the autopilots parameters, detecting when the integrity of those 

parameters have been violated (i.e., when they have been altered through malicious activity), alerting 

the appropriate authorities, and taking appropriate actions to restore the integrity of those parameters 

(i.e., restoring them to an authorized state) has been integrated into the HiL emulation environment 

(see section 2.1). As seen in Figure 36, when the parameter integrity of the autopilot has been violated 

the Sentinel will alert a specially designated cyber security officer of the integrity violation. Several key 

factors affected the decision to send the information to a specially designated cyber security officer: 

 Pilot Workload: We did not want to increase the pilot’s workload further by making them 

responsible for deciding how best to respond to a cyber-security attack. 

 Desired Response: There may be more than one way to respond to a cyber-security attack 

against the UAV, including allowing the attack to continue in order to gather information about 

the attacker’s intention. A specially designated security officer would have the knowledge and 

experience necessary to work with the UAV flight crew to make those decisions. 

 Insider Attack: It is possible that the attack was the result of an insider, possibly even the pilot of 

the aircraft themself! A special cyber security officer can make facilitate our ability to address 

the attack without alerting the insider. 

These prototype efforts were taken forward into the design and implementation of the Sentinel that 

were flown in October.  



Legend 

RS-232 
Ethernet 

Piccolo II 
Autopilot 

Ground Statton 

900 
MHz 

Radio 
Link 

------- -------- ---------
: Sentinel / UAV System Protection : 

r------------
Air Sentinel 

1----------------- ------ -------- -------- ---· 
Ground Sentinel 

Figure 36. Super secure smart Sentinel for protection with a designated cyber security officer. 

As the attack out lined in section 3.2.1 was focused on altering an UAV's flight plan by altering the UAV's 

waypoints, the init ial prototype Sentinel wi ll provide the cyber security officer (the Cyber Commander 

Interface) with information whenever a waypoint change occurs. In addit ion, as the attack cou ld 

originate from the Piccolo autopilot or the operator interface, the cyber security officer will also be 

provided w ith information regarding where the malicious attack originated. For the init ial prototype, the 

cyber security officer can respond to a cyber-attack in one of two ways: 

1. Allow the attack to continue. 

2. Restore the original flight plan. 

In addit ion, to ensure that information sent by the Sentinel to the cyber security officer cannot be 

intercepted by an adversary, the UAV has been equipped w ith a highly secured back channel that can be 

used by the Sentinel to communicate crit ical security information and ensure that the operator is able to 

both receive information regarding the true state of the UAV as well as continue to issue commands in 

the event the main communications channel is compromised. For the init ial prototype this security back 

channel is represented as a secure 802.11 network. This was replaced during the f light test to use the 

native flight radio available on the Piccolo II system. 

The operator of the UAV may also make changes to the flight plan. As a resu lt, the Sentinel must be 

capable of being able to distinguish changes authorized by the operator (i.e., legit imate) from changes 

made by the embedded Trojan horse (i.e., illegit imate). For the fl ight demonstration of the Sentinel, this 

74 



75 

 

was accomplished through the usage of an open source key logging program installed on the machine 

hosting the operator/pilot interface (i.e., PCC) in order to monitor the operator's inputs and send this 

information to the cyber security officer’s work station. When the Sentinel protecting the autopilot 

detects a change in the flight plan, it will send an alert over the secure communications channel to the 

cyber security officer. This alert will then be cross-referenced against the inputs made by the operator 

for a corresponding change in flight plan. If an operator input for changing the waypoint is found, the 

cyber security officer is notified of an operator change in waypoints. If no operator input directing the 

UAV to another waypoint is found, then the cyber security officer is informed that a possible embedded 

attack has led to the UAV being directed to another waypoint. The cyber security officer is then 

presented with a list of options, which in the prototype only includes the option to restore the UAV to 

the original flight plan. If the cyber security officer decides to restore the aircrafts original flight plan, a 

message will be sent to the Sentinel over the secure communications channel and the Sentinel will 

restore the original flight plan, and alert the cyber security officer that the flight plan has been restored. 

As outlined in section 3.2.1, a parameter-based attack may also be launched from a compromised 

operator interface (i.e., PCC). To protect against this attack an additional Sentinel was incorporated to 

monitor the data flowing into and out of the PCC.  

3.3.2.2 GPS System Attack Detection and Mitigation  

Before we can describe our Phase 2 detection and attack mitigation methodologies for the GPS system, 

we must first explain the proposed architecture of the diversely redundant navigation components in 

the Sentinel. Next, we describe the analytical tools used to improve the system’s resiliency under an 

attack. We explain how these components are implemented and how these components work together. 

Third, we outline the recovery procedures built upon the analytical tools. Finally, we list the benefits of 

such an approach—including the speediness of recovery compared to traditional methods and capturing 

information on the adversarial strategy and motive. 

We implemented an architecture of several stand-alone navigation systems (i.e., GPS INS, and the 

Piccolo navigation system) or the addition of GPS sensors from multiple vendors and hence, different 

manufacturing vendors and processes. We have attached these extra redundant navigation systems into 

the Sentinel as shown in Figure 5. Each of these components carries diverging algorithms for navigation. 

The de facto Piccolo II navigation system uses an INS and a GPS in tandem to give the autopilot the 

estimated location of the aircraft. The strap-on INS calculates the aircraft location based on accumulated 

data from motion sensors (accelerometers) and rotation sensors (gyroscopes) to estimate the aircraft’s 

position. The GPS uses time signals from multiple GPS satellites to triangulate an aircraft’s location.  

To supplement the de facto navigation system of the Piccolo II, we decided to add secondary GPS units. 

These units are supplied by a vendor different than those embedded into the Piccolo II and connect 

directly to the Sentinel. We use these components to verify the behavior of each component to see if 

one or more of these components are performing anomalously and also to give the system a fallback 

source of location data. Note that if further flight tests are conducted, we would augment the use of 

GPS systems with another source of location data such as non-GPS assisted INS/IMU as a source for 

verification of the GPS streams and as a potential fallback location data source. 



In order for an adversary to successfully exploit a UAV navigation system, they must be able to 

simultaneously manipulate all sensory information. Diverse redundant components-like the ones 

previously described-have the potential to increase the difficu lt y and cost (t ime, resources, and labor) 

to the adversary. 

3.3.2.2.1 Frame of Discernment 

The purpose of the Frame of Discernment (FOD) is to enumerate the exhaustive and mutually exclusive 

scenarios. For our purposes, Table 5 shows the FOD of our UAV navigation architecture. The columns 

represent each stand-alone component and the rows enumerate the possible 32 events. The red cell 

indicates an attack on its indicated component, w hile a yellow cell indicates a proper functioning 

component. For example, we define Event 1 as the event w here all components are reliable and 

functioning as expected. Event 2, in contrast, is defined as the event w here the Piccolo II is manipulated. 

The Frame of Discernment organizes the unobservable and inscrutable events into one in w hich we 

cou ld compute and compare each individual event' s likelihood of taking place given the observable live 

data streaming from these components. 

Table 5. Frame of Discernment for Navigation Architecture. 

3.3.2.2.2 Similarity Measurement 

In this section, we t ie in the concept of Similarit y Measurement procedures with the Frame of 

Discernment. Similarity measurements quantify the compactness and intimacy of the streaming sensor 

readings against another sensor. Under this similarity procedure, w e should be able to adapt to the 

variabi lit y of error the sensor measurement with one another (See Appendix: Proposed Mass Function 

for FOD). 

Let us define Gaussian random variables Xt, Yt, Zt to represent the values of the Piccolo navigation 

system, INS, and GPS respectively at time t . We use these random variables as elements to measure the 

mass funct ion for each the events in the FOD. As a candidate mass function, we choose for Event 1: 

m (X = x Y. = Z = z ) = [ prob(x - y) ] * [ prob(x - z ) ] * [ prob(z- y) ] 
l, t t ' t y, t max prob(x - y) max prob(x - z ) max prob(z - y) 
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The mass function will decrease as one of these random variables deviates from one another. The 

maximum value of m1,t is 1 (for the case x = y = z), and the minimum value is 0. We develop a list for 

candidate mass function for each event in the FOD. To examine the mass functions for the rest of the 

events in the FOD, refer to appendix 6.1 at the end of this report. 

3.3.2.2.3 Analytical Equivalent Pairings 

There exists analytical pairings in the FOD in which events are indiscernible with each other. These 

events share an identical mass function. For example, Event 2 and Event 7 is an analytical pairing in 

which we cannot discern if the Piccolo II’s navigation system is, or simultaneously both the INS and GPS, 

are attacked. Although we cannot distinguish which of the event is occurring, we can palliate such 

occurrences by adding additional N redundant navigation components to the system; thus extending the 

FOD from 23 to 23+N events. In effect, the mass functions have to adapt to the additional N 

components. 

For example, if N = 2, adding an barometric altimeter (ALT) and a location estimator (EST), then the 

FOD table becomes: 



2 
3 

4 

5 

6 

7 

8 

9 

10 
11 

12 
13 

14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 

25 
26 
27 

28 
29 
30 

31 
32 

Table 6. FOD with Alt imeter and Location Estimator. 

Using 5 navigation components, to completely control an aircraft, the adversary needs to manipulate 3 

components simultaneously-increasing the difficulty of success. By increasing the number of 

components to 5 and augmenting the elements of the FOD to 25 = 32 events, we increase the difficulty 

of success for the adversary by forcing the adversary to capture 3 components. Even if the adversary 

successfu lly infiltrates the majority of the components, UAV managers have enough evidence to f lag it 

as a major attack and shut down the f light mission. 
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3.3.2.2.4 Sequential Change Detection 

We propose a sliding w indow of size W to estimate the mass function of a system. A simple average 

procedure would be a reasonable and effective method for estimating the mass funct ions. However, it is 

possible to use a Likelihood Ratio (GLR) algorithm to estimate the mass funct ions provided that we have 

a variance matrix Q for each mass function. We can find Q using empirical tests in normal flight i.e., flight 

without attacks. 

The estimate then is 

Where for each j in the FOD and 1 is the vector of ones with size equal to that of Mj and 

The event w ith the greatest mj(t) is the event most likely occurring. Choosing a larger W wou ld slow 

dow n the identification of m j,t and a narrow W would result in a noisier m j ,t for each element j in the 

FOD. 

As our recovery protocol, we create predetermined procedures for each element in the FOD 

Suppose we have updated estimated mass functions with a sliding window of size W for each t ime t . The 

event in the FOD with the highest mass funct ion signifies the event with the highest likelihood of taking 

place. For each event, we map a predetermined navigation procedure. 

1 
2 

3 

4 

5 

6 

7 

8 

Table 7. Navigation procedures. 

For 5 components, the proposed procedure becomes 

p 

INS2, DGPS 
p 

p 

Failure 

Failure 

Failure 

Failure 

79 



10 

11 

12 

13 

14 

15 

16 
17 
18 
19 

y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 

11 y(t) = 
12 y(t) = 
13 y(t) = 
14 y(t) = 
15 y(t) = 

y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 
y(t) = 

Table 8. Procedures for f ive navigat ion components. 

p 

INS2,DGPS 
p 

p 

p 

DGPS 

IN 52 

INS2,DGPS 
p 

p 

p 

Failure 

Failure 

Failure 

Failure 

Failure 
p 

INS2,DGPS 
p 

p 

p 

Failure 

Failure 

Failure 

Failure 

Failure 

Failure 

Failure 

Failure 

Failure 

Failure 

Failure 

If we have 5 components, we force t he attacker to be capable of manipulating 3 component s for her t o 

be successful. 

This approach improves the resil iency and reliability of t he Navigation System and increases the 

difficulty to attain success and provide t he managers information on the adversaria l strat egy and 

mot ive. 
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Using this architecture with the proposed protocol, we are able to increase the difficulty of adversaria l 

success. The adversary is required to successfully manipulate the majority of the components. The 

Frame of Discernment enables the user to compare events based on mass funct ions and detect which 

event has the maximum likelihood of occurring. The FOD also organizes which recovery procedure to 

choose in order to isolate the component under attack. 

Also, using similarity measurements, we improve the recovery speed compared to simple threshold 

procedures-which gives adversaries room to manipulate the aircraft, and give false negative and false 

positive in noisy systems if the threshold values are incorrectly provided. 

By allowing the adversary to freely manipulate the sensors without shutting down the fl ight mission, we 

can gather information relating to the adversarial attack strategy and adversarial motive-which may be 

va luable to managers and strategists. This is another important feature that the proposed procedure 

provides which threshold methods do not immediately and directly deliver. 

For Phase 2, we w ill apply the methods described above to enhance the security of the UAV fl ight 

camera metadata and will utilize three sources of GPS data coordinates - the native GPS from the 

Piccolo II and the 2 new GPS sensors added to support the Sentinel. 

G 
PICCOLO II AUTOPILOT 

G 

1-------1 VIDEO PROCESSING 1-+-----

CAMERA SYSTEM 

Figure 37. Architecture for camera system. 

Figure 37 summarizes the proposed defense architecture for the flight camera system of the UAV. The 

box encapsulating the Piccolo 11, Sentinel, and camera system modules carried on the UAV. The camera 

outputs two types of streaming signals: video and metadata associated with the video stream. The 

metadata includes GPS coordinates of the streaming fi les, which an adversary could manipulate v ia 

corrupting CAM-GPS system in the camera. 
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We propose to use the defense procedures for the navigation system for the use of securing the 

metadata. We w ill continue to use diverse, redundant navigation components-diverse GPS systems 

housed in the Sentinel, and the GPS housed in the camera system. Also available for use is the GPS and 

INS navigation system for the Piccolo II . 

Table 9 below enumerates the events in the FOD. 

Table 9. FOD for camera system. 

We will continue to use the same type of mass functions for each of the events in the FOD. This t ime, 

however, we have four components. Let W, X, Y, Z be Gaussian random variables representing the 

navigation measurements for each of the sensors. Then the mass function for Event 1 where all 

components are reliable is 

m1,t CWt = w, Xt = x, Yt = y, Zt = z) 

[ 
prob(w - x) ] [ prob(w - y) ] [ prob(w - z) ] [ prob(x- y) ] 

= max prob(w -x) * max prob(w - y) * maxprob(w -z) * maxprob(x- y) 

[ 
prob(x- z) ] [ prob(z- y) ] 

* max prob(x - z) * max prob(z- y) 

Again, we use the recovery procedures outlined in Phase 1 to determine which signa ls the Sentinel 

shou ld be allowed to send. Below is the recovery procedures linked w ith each event in the FOD. 
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7 

8 

9 

10 
11 

12 
13 

14 
15 
16 

Table 10. Procedures for camera system. 

3.3.2.2.5 Flight Demonstration - Navigation System Protection 

CAM-GPS 

CAM-GPS 

CAM-GPS 

DGPS 

DGPS 

CAM-GPS 

DGPS 

Failure 

Failure 

Failure 

Failure 

Failure 

Failure 

Failure 

Failure 

During Phase 2 of the project, the security design patterns that were designed for the protections of the 

in Phase 1 were implemented to protect the navigation and imagery metadata collection systems w hich 

rely on GPS navigation data from attacks which would either walk-off the aircraft to an undesired 

location or corrupt the GPS location metadata on the imagery data that is being collected by the 

surveillance platform. For safety reasons, it was decided to use the imagery data corruption in the f light

test scenarios rather than risk losing control of the aircraft. However, the same attack methods and 

protections would be applied in either case. 

The basic configuration for the GPS navigation system on board the GAUSS UAV simply consisted of one 

GPS device integrated in to the autopi lot system on board the aircraft. This device was solely responsible 

for plotting the aircraft's location coordinates in the air and on the ground and also for providing GPS 

location information to the payload video collection system that tags the video data with location 

metadata. In the case of a cyber-attack emanating from a supply-chain or from an insider-based attack 

w here perimeter defenses have been penetrated, there was no system in place for defending the aerial 

vehicle and protecting the GPS location data that is critical to systems throughout the surveillance 

platform. In Phase 1 we sought to increase the securit y of the navigation system by bringing in System

Aware Cybersecurity strategies and developed a security design pattern w hich implemented 

inexpensive, redundant location sensors to the UAV's systems and proposed a strategy for comparing 

location information from those diverse data sources and a secured vot ing procedure for eliminating 

potentially compromised sources of data. This method could include the use of diverse types of location 

information coming from systems other than GPS such as Inertial Navigation Systems (as proposed in 
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Section 3.3.2.2) thus addressing situations where the entire GPS system has been attacked whether 

through a jamming or a spoofing attack. For the flight evaluations, we determined that the specific 

attack we would address was focused on an attack on a particular chip set commonly used in GPS 

receivers. We added redundant, inexpensive ($100 each) GPS receivers from diverse manufacturers to 

the Sentinel in order to increase the complexity for an adversary who is attempting to corrupt the 

supply chain for GPS systems.  

Two additional GPS sensors were added to the existing sensor suite on board the GAUSS to sit alongside 

the existing autopilot GPS. Each of these new GPS sensors was plugged into the secured environment of 

the Sentinel via a USB ports as shown in Figure 36. These are listed as Adafruit GPS1 and GPS2. For the 

flight evaluations, it was decided that the Sentinel configuration would be made up of three 

components that were Single Board Computers (SBC) running diverse operating environments. 

Furthermore, two of the SBC’s were augmented with the diverse, redundant GPS receivers. This 

provides at least three sources of data that is a requirement for our data comparison and voting 

algorithms. Those SBC’s ran a small data receiver program that collected GPS data in the form of 

“(TIMESTAMP, LATITUDE, LONGITUDE)”. Each of the receiver programs then sent this data to other logic 

programs on each of the three SBC environments which are in turn responsible for taking the outputs 

from all three devices (Autopilot GPS, additional GPS receiver 1, and additional GPS receiver 2), and the 

latitude and longitude values from each of the three sensors and running the Sentinel data comparison 

algorithm to check for irregularities between the data streams. In addition, the algorithms are small, on 

the order of approximately 500 lines of code or less, and are implemented in multiple programming 

languages (C and Python). This diversity makes the Sentinel logic much more difficult to attack. Any 

location data streams that are showing irregularities within the boundaries of the tuning parameters of 

the algorithm are voted out on each SBC. If there is no discrepancy in the streams, the SBC randomly 

chooses the current source for the data. Furthermore the output of the logic program from each board 

is then sent to another voting algorithm and the values are again compared. Again, if all are in 

agreement, the secured voter randomly chooses from the available location sources for the system to 

use. The system can also be configured to allow the main system GPS to be used unless an attack has 

been detected. If there is a discrepancy detected, then the potentially corrupted stream is voted out and 

the new, reliable source of location data is randomly chosen from the remaining sources. 

3.3.2.2.6 Issues We Addressed in the GPS Development Efforts 

 We ran into several issues with augmenting the Sentinel with the additional GPS sensors and integrating 

the information from the new sensors into the existing systems we were monitoring on the aircraft. 

First, there was a difference between the frequencies of the sampling rates of the GPS sensors we added 

and the existing GPS information flowing through the Piccolo autopilot. The two external GPS sensors 

that we acquired would send data to the receiver program once per second and the receiver program 

would then pass that data to the logic program at the same rate; whereas the GPS data coming from the 

autopilot system was sent to the logic program in “chunks” every 5 to 6 seconds. This complicated the 

comparison process. Instead of being able to constantly compare data between sensors, we had to 

make the comparisons an event-driven process so that we were only doing comparisons when we 

received a chunk of new location data from the autopilot. We designed code within the logic program 
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that buffered the data from the two external sensors. When a chunk of 5 seconds of autopilot data 

came in, we would take the autopilot data from each second and compare its timestamp. Then we 

would search the buffers of both external GPS sensors, searching for a timestamp match. When we 

found a match, we would then compare the latitude and longitude values that corresponded to this 

timestamp from each sensor. This process would be done for all 5 seconds of data within the chunk sent 

by the autopilot.   This led us to a second issue related to the timestamp format of the different GPS 

receivers. This was relatively simple to fix, but the two external GPS devices used Unix time for their 

timestamp, whereas the existing autopilot GPS sensor used Coordinated Universal Time. Code was 

deployed in order to change the format of the autopilot GPS timestamp, so that Unix time became our 

system-standardized form for time.  

Once our algorithms were implemented in order to collect the data and send it along using the receiver 

programs, we then needed to set the standard for what the logic programs would define as a sensor 

behaving “irregularly”. For example if the output of one sensor varied from the other two sensors by 

one-thousandth of one degree of latitude, would we consider that “irregular” or simply account that to 

GPS noise that is inherent with these sensors? The detection algorithm that we developed was entirely 

based off the Master’s thesis of J. Vincent Pulido (2014) entitled, A Method for the Detection and 

Diagnosis of Stealthy False Data Injection Attacks in Cyber-Physical Systems and in described in Section 

3.3.2.2.  

The first step in the process is “calibrating” the detection algorithm to our specific sensors. This involved 

finding the standard noise for each of the three GPS sensors. To do this we set the three sensors in a 

fixed location and collected and stored data from each for an hour at a time. We then simply calculated 

the residual values by simple subtraction. That is, we took the latitude value from additional GPS1 at 

each second, and subtracted the latitude value from additional GPS2 sensor at the corresponding 

second. The same process was done for longitude. The mean residual value was calculated, as were the 

variance and the standard deviation. The mean, variance, and standard deviation residual values are 

essential for calibrating the algorithm that described in his the Pulido thesis. Data from additional GPS2 

sensor was compared with the autopilot GPS to create the mean, variance, and standard deviation 

residual values. These values were included into our detection method, and were used to standardize 

latitude and longitude residual values between the sensors. Once calibrating the algorithm is done, you 

are then ready to start utilizing the detection algorithm.  

Essentially, the detection algorithm operated by evaluating a chunk of data as it passes from the 

autopilot GPS, and the data from all three sensors are compared, and the residuals are calculated. These 

residuals are then standardized using the mean and standard deviation values that determined during 

the calibration process. The detection algorithm then runs a hypothesis test using a Chi-Squared 

distribution. The alpha value chosen for this hypothesis test, by default, is .01. However the user is able 

to increase or decrease this value at any point in order to obtain a desired false alarm rate and 

sensitivity for a certain mission. A challenge that we ran into when implementing the algorithm was the 

complexity of actually conducting a hypothesis test with a Chi-Squared distribution. Do to the 

mathematical complexity, we found it convenient to simply put the entire GSL Scientific Library that 
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contains a Chi-Squared function on the single-board computers that housed the logic programs. This 

library would need to be validated as secured in operational use. 

 The project team determined that in the event of an algorithmic detection, the system would 

only warn the cyber commander of a potential cyber security attack if one device “consistently” 

behaved irregularly. That is, if a device behaves irregularly just a few times, then we are willing to write 

the anomalous behavior off as GPS noise. In order to define a consistent behavior, we established a 

“sliding window” evaluation method within the program logic. The sliding window consists of two user-

adjustable parameters: window size and condition. The value that is set for the window size tells the 

program how many seconds of data the algorithm will consider. The condition value controls when an 

alert will actually be sent to the ground. For example, if you set the window size to be 60 and the 

condition to be 50, then one minute of data will be viewed (60), and if 50 of those 60 readings say that a 

specific GPS sensor was behaving irregularly, then that will register as a detection and will indicate an 

attack. If the user does not set sliding window values, then the program defaults to having a window size 

of 30 and a condition value of 25. Choosing the ideal window size and condition values is something that 

could be researched further in the future as experiments with the algorithm are applied to different 

system types. 

 In the current system and by default the final latitude and longitude values that are sent to the 

ground are the data from the autopilot GPS sensor. If the autopilot data consistently behaves irregularly, 

the ground station will be notified of the potential attack and will be given the choice to do nothing and 

continue using the autopilot data, or to take restorative action and switch to the coordinates from one 

of the external GPS sensors. If the cyber commander elects to take restorative action, the system will 

randomly select between the two external sensors and output their latitude and longitude values 

instead. 

 In order to add an additional layer of diverse redundancy, we chose to not only have multiple 

sensors collecting data, but also to have three single-board computers running the comparisons 

independently of each other. Two of these boards were attached to the additional GPS sensors, and the 

other simply sat alongside them. The two boards that were connected to the additional sensors were 

each given the receiver program. All three of the boards were given the logic program. In addition to 

these two programs, the use of three single-board computers required us to build a voting program, and 

put that program on each of the three boards. 

Essentially, the receiver programs would collect the timestamp, latitude, and longitude data from the 

two additional GPS devices. The receiver program then sends out the coordinates using the RabbitMQ 

messaging system (described in Section 4.7.7). Each of the three boards would then use their logic 

program to gather the data from all three GPS devices. The logic program then conducts the detection 

algorithm, and adjusts the sliding window. The logic programs output a string containing “(TIMESTAMP, 

LATITUDE, LONGITUDE, ATTACK_INT)”. Attack_int is simply a way of displaying, which, if any, of the GPS 

devices were under attack. Attack_int is capable of holding the values 0, 1, 2 ,and 3. For example, if the 

attack_int equals 0, then no devices are under attack. However, if attack_int were to equal 1,then that 

would mean that additional GPS1was consistently behaving irregularly. Similarly, if it were to equal 2, 
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additional GPS2 would be considered under attack; and if attack_int were to equal three then the 

autopilot GPS would be consistently behaving irregularly. 

 The outputs from all of the three single-boards are sent to a voting program, where it is determined 

what data from which computer will actually be sent to the ground. If the outputs from all three logic 

programs are exactly identical, then the voting program will randomly select the data from one of the 

three boards, and send that information out to the rest of the system. If the three outputs are not an 

identical match, then they will be put through an algorithm nearly identical to that of the sensor 

detection algorithm that is described above. If this detection algorithm determines that all of the data 

seems regular, then the voting program will again randomly select the data from one of the three 

boards to output. However if the algorithm determines that one of the boards is outputting bad data, 

then it will randomly select between the data of the other two boards, and send an alert to the ground 

warning them of a potential single-board computer attack. The voting program outputs a string 

containing “(TIMESTAMP, LATITUDE, LONGITUDE, ATTACK_INT, SINGLE_BOARD_ATTACK, 

DEVICE_USED)”, this string is sent to the ground station. Single_board_attack is capable of equaling the 

values 0, 1, 2, and 3. If all the single-board computers’ logic algorithms appear to be outputting similar 

or equivalent data, then single_board_attack will equal zero. However, if one single-board computer is 

consistently behaving irregularly, then the single_board_attack value will be 1, 2, or 3; depending on 

which computer is considered to be under attack. The device_used field is capable of being 1, 2, or 3. 

This value tells us which single-board computer’s data is actually sent to the ground station.  

 In order to provide even more diversity, we created the voting program so that it hops between 

the single-board computers. The voting program is housed on all three single board computers, and one 

of them is randomly selected to run the voting program. A new voter is selected every five seconds. That 

is, no one board is responsible for conducting the voting.  

 One additional security measure that we took was to code the boards in different programming 

languages. So in our current setup, two of the boards solely have code written in C. One of the boards, 

however, has their logic and voting programs written in Python. The issues that we ran into include 

altering code structure, and finding a suitable replacement for the GSL Scientific Library that houses the 

method required for conduction the Chi-Squared hypothesis test. 

There are several areas where additional research can be conducted. First, the entire system relies 

heavily on the RabbitMQ messaging system. Additional protections and securities for this system should 

be researched. Second, instead of solely comparing GPS data, it would be more secure to also acquire 

additional, external accelerometers. These accelerometers could be used to validate the GPS data to add 

an additional layer of security.  Third, while collecting an hour’s worth of data was suitable for our tests 

of calibration purposes, it may be desirable to collect more data to refine this system.  It should be 

researched, how many data points are actually required to have a fine-tuned detection algorithm. Lastly, 

it may also be desirable to research a self-adjusting alpha value for our detection algorithm. In poor 

weather the current algorithm often produces many false alarms. It could be advantageous if the alpha 

value in our Chi-Squared hypothesis test automatically adjusted depending on the number of satellites 
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that each GPS sensor had a “fix” on. Research regarding what alpha value should be chosen given 

certain weather circumstances should be looked into.  

3.3.2.3 Gimbal Attack Detection and Mitigation 

Degradation and denial of service attacks are possible because the gimbal trusts the sender of any 

commands that it receives. To prevent this type of attack, the system should be able to evaluate of any 

command it receives to determine its validity. 

Changes cannot be implemented in how the ViewPoint software issues commands or how the gimbal 

responds to them because they are commercial products and the source code is not available. However, 

it is possible to place a piece of in-line hardware or software on the UAV that receives the command 

packet before the gimbal and can decide whether or not to forward it along to the gimbal based on 

mission conditions. 

Several methods can be used to make decisions on the validity of gimbal commands. One method to 

help catch unauthorized commands is to implement an authentication scheme, possibly by appending a 

cryptographic signature to messages sent from the ViewPoint software to the gimbal. However, this will 

not protect the gimbal system from the case in which a malicious agent has compromised the PCC. 

Depending on the degree of compromise, the malicious agent could still be able to send messages the 

UAV would consider authorized.  

In a similar manner, providing additional authentication to commands capable of causing damaging 

effects would be helpful but not sufficient. An attacker who has not fully compromised PCC to the point 

of recovering the cryptographic key would be halted by such a defense, but further compromises may 

render this ineffective. 

To protect from compromises of PCC the UAV should be able to judge the legitimacy of commands. To 

do this a run-time analysis can be performed to determine whether or not executing a command makes 

logical sense. For example, if the system received a command to retract the gimbal while it is in a pre-

specified area of interest an intelligent decision would be to not immediately trust the command and 

attempt to verify its authenticity. In addition, authorized operators should be able to issue whatever 

commands they need, so there must be an override capability to verify that traditionally illogical 

commands are in fact legitimate.  

3.3.2.3.1 Using Mission Context to Detect Gimbal Attacks 

Cloud Cap software provides flexibility for a wide variety of mission operations, which makes the system 

susceptible to inside attacks involving seemingly valid commands that interfere with user operations. To 

prevent these, systematic rules based on mission context have been developed to limit when and where 

certain commands should be considered authentic. 

The following algorithms use structures and methods from the software development kit provided by 

Cloud Cap for ViewPoint plugin creation and are aimed toward detecting the attacks found most feasible 

from section 3.2.3.3. Despite the following algorithm being written using an SDK, one could decode the 

information bytewise from the message streams and follow the same algorithms. 
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3.3.2.4 Packet Detection 

The method LookForGimbalPacketInQueue() searches through a queue of packets and determines if a 

packet of gimbal type (i.e., a gimbal packet) is present in the message stream. It then stores this packet 

in a predefined buffer. The packet is then inspected to see if the packet type is a gimbal command. All of 

the vulnerabilities in section 3.2.3 fall into this type with the exception of the user warning packet.  

3.3.2.5 Retract/Deploy Command Detection 

The gimbal packets are further inspected to determine if the packet group is that of Gimbal command 

and control group. If so, then it is passed to the method that checks if it can be decoded into a 

retract/deploy struct pointer. If the method returns false the packet is ignored and the monitoring of the 

stream for packets continues. If the method returns true then the stream is decoded into information 

determining whether the gimbal is being commanded to either retract or deploy.  

Under the assumptions that normal operations would entail the retraction and deployment of the 

gimbal directly after take-off and directly before landing, the velocity of the gimbal relative to Earth and 

the distance of the gimbal from the ground station should be relevant criteria to determine  whether the 

gimbal retract/deploy command appears to be authentic. 

The aircraft velocity and position can be determined by monitoring the gimbal telemetry stream for 

packets of type HOST_GPS_DATA_GIMBAL_PKTTYPE and of group 

GIMBAL_POSITION_INFORMATION_GROUP. These telemetry packets can be decoded to give the GPS 

position and velocity of the aircraft. These two pieces of information can be used to determine what 

phase of flight the aircraft is in. If the phase is take-off or approach/landing, then the retract/deploy 

command is considered authentic. If the aircraft is in cruise or loiter mode then the retract/deploy 

command should be considered malicious. 

For the initial flight evaluations in Phase 2, it was determined that we should use an approach where if 

the aircraft was flying into a particular geographic region as determined by an adversary, that the 

camera would retract and not function whenever attempts were made to use the imagery collection 

system.  

3.3.2.6 Erratic Gimbal Command Detection 

To protect against a Gimbal Command attack it is assumed that during normal operations the gimbal 

should never be slewed to view a location above the horizon. Similar to the process in section 3.3.2.5, 

the telemetry stream is checked for gimbal packets in the queue. The method 

DecodeGimbalCmdPacket() is used to give an elevation angle of the gimbal. Gathering the GPS 

information using the same algorithm in section 3.3.2.4, the aircraft altitude is determined. If the aircraft 

altitude is higher than the altitude at which the gimbal is pointed, then the command is authentic. If the 

gimbal is pointed at a higher altitude than the aircraft then the command is considered malicious and 

the user can be warned via a message sent through a payload message stream using the autopilot 

command and control link. 
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Further constraints can be placed on the gimbal angles by limiting the gimbal orientation based on 

mission CONOPS. For example, if the UAV mission is to loiter overhead a specified target then the gimbal 

field of view should never extend outside the orbit of the aircraft.   

3.3.3 Hardware Security Against Design and Manufacturing Attacks – Securing the Protocol 

Conversion 

3.3.3.1 An FPGA-Based Application of Protocol Conversion with TMR 

 Today, many mission-critical and safety-critical systems, including the target UAV system of this 

project, depend on integrated circuits (ICs). The supply chain for integrated circuits (ICs) is difficult to 

secure, involving multiple firms (processor design, fabrication, packaging, etc.), each with large teams of 

designers and technicians. A “hardware Trojan” can be very small and easy for a single individual to 

insert, especially at the design stage, where it might be as simple as one or two lines of innocuous-

looking programming, or a few transistors and wires in a physical chip layout. Consequently, effective 

security techniques are required to prevent adversaries from interfering with the correct operations of 

the UAV system. 

 Our solution for this project is triple modular redundancy (TMR). The three components vote on 

all actions, ensuring that a single corrupt unit will be outvoted. Redundancy also provides fault tolerance 

at no extra cost, and fault tolerance is becoming increasingly important as transistor miniaturization 

continues and transistors become more vulnerable to electrical upsets. 

 Compared to software-based protections, which usually have a "big picture" of what the system 

is doing on the function level, hardware-based protections focus on behavior on the instruction and 

word level, and require very high level of hardware sophistication and coordination to defeat, hence 

increase the difficulty to attack. Our TMR solution operates at the hardware layer and directly protects 

the most critical system functions. These solutions are embedded within the protected hardware and 

don't require modification to the application software.  

 The target UAV has an autopilot system and a monitoring system, called Piccolo and Sentinel, 

respectively. Piccolo communicates using RS-232 protocol, while the Sentinel communicates using 

TCP/IP protocol. We first implement an application with the basic functions: 1) protocol conversion 

between RS-232 and TCP/IP, and 2) SD card access. These two functions are the initial test cases in this 

project. Then TMR is applied to protect the critical hardware, e.g. the microprocessor, in the protocol 

converter. 

 The re-configurability and flexibility of field programmable gate array (FPGA) makes it favorable 

for the purpose of prototyping and proving our protection concepts. In this report, the soft-core 

processors for protocol conversion and all hardware-based protections are implemented on FPGAs to 

verify their feasibility. In addition, FPGAs may also be suitable for the purpose of deployment, because 

of their short design-to-product time. 

 The following subsections will describe the functionality of the initial test cases. 
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3.3.3.2 Protocol Conversion 

  Serial input data in RS-232 protocol is converted to TCP/IP packets and then sent through the 

Ethernet PHY. TCP/IP input packets are analyzed and the data bytes are converted to RS-232 format, and 

then sent through the universal asynchronous receiver/transmitter (UART) pin. 

 The TCP/IP stack needs to process two data streams: one for Piccolo data and the other for user 

data. Each stream occupies an individual port  of the TCP/IP stack. 

3.3.3.3 SD Card Access 

 Besides protocol conversion, the application also needs to store in the SD card the gold-standard 

waypoints information sent from the Sentinel, and read it when requested. In order to protect the data 

stored in the SD card, Triple-DES encryption algorithm is applied to both write and read access of the SD 

card. 

3.3.3.4 Design Implementation 

 The application is implemented in a custom board, SiCore SHIELD II board. Below is a summary 

of the board (Digilent, 2013): 

 Xilinx Kintex-7 XC7K325T-1FFG676 FPGA 

 Low-jitter 200 MHz oscillator 

 Four 10M/100M/1G Ethernet PHYs with RGMII 

 1Gb BPI Flash 

 One SD card slot 

 Eight UART transceivers 

 Four on-board LEDs and four on-board general-purpose buttons 

 512MB DDR3 memory (800 MHz) 

Figure 38 shows a picture of the SiCore SHIELD II board. 

Further Modifications to SiCore SHIELD card for the Sentinel creating the SHIELD 2 card 

 Removal of the PPC460EXr 
Since bitstream integrity is handled by the FPGA, the PPC460EXr was 
removed from the UAV SHIELD. The cryptographic capabilities are handled 
by the FPGA. Interfaces to the RS-232 and Ethernet ports are also handled 
by the FPGA. 

 Removal of the MAXQ1103 and Anti-Tamper Circuitry 
The anti-tamper circuitry was removed to reduce the weight of the card. 
With this removal, it also allowed the removal of the Cyclone II FPGA, 
which acted as a conduit between the PPC and MAXQ and battery holders 
which were used for backing up the MAXQ's battery-backed and zeroizable 
memory. 

 Removal of the PCIE Interface 
The UAV SHIELD operates as a standalone card and does not interface with 
a host system, which allowed the PCIE interface to be removed. 

 Switch from SATA HDD to Secure Digital (SD) Card 
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The amount of storage offered by a SATA HDD was not needed for the UAV 
SHIELD. In addition, a change to an SD card reduced the weight of the card 
and the number of components with moving parts. 

 Addition of RS-232 and Ethernet Interfaces 
The UAV SHIELD communicates with three Raspberry Pis through Ethernet, 
which required the addition of more Ethernet ports. It communicates with 
other hardware on the UAV, which required the addition of an RS-232 octal 
UART chip and eight RS-232 ports. 

 Additional Modifications 

• 512MB DDR Memory upgraded to 1GB 

• 64MB Flash Memory upgraded to 128MB 
 

 

Figure 38 - SiCore SHIELD II Board 

 We choose an FPGA to implement our design due to two reasons: (a) FPGA is great for the 

purpose of prototyping because of its re-programmability and fast reconfiguration time, and (b) there 

are multiple open-source soft-core processors available for FPGA implementation. 

 We choose to build the protocol conversion and SD card access functionality on LEON3, an 

open-source soft-core processor (LEON3 Processor). LEON3 uses SPARC V8 instruction set and AMBA-

2.02 AHB bus interface. It is released as synthesizable VHDL files, and is configurable through the use of 

VHDL generics. 

 The protocol conversion and SD card access is implemented as a bare-metal application, 

meaning that there is no operating system running on the processor. Less complexity in the 

                                                           
2
 AMBA is a registered trademark of ARM Ltd. 
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implementation means less design effort and more importantly, fewer loopholes that might be taken 

advantage of by adversaries. 

 Figure 39 shows a simplified block diagram of the LEON3 architecture. 

 Due to the lightweight use of memory in this application, we use on-chip block RAMs (BRAMs) 

to implement the RAM and ROM. The BRAMs are memory resources available in the FPGA chip, and 

enables faster access time. The ROM is a module written in VHDL that contains hard-coded instructions, 

which are automatically loaded to the CPU when the FPGA configuration is complete. The ROM can be 

generated from C program using a PROM generator (see Section 3.1 for more details). AHB bus is used 

for high-speed operations, such as writing and reading data between CPU and memory. APB bus is used 

for low speed operations, such as communications to the peripheral components. The peripheral 

components include general purpose I/O (GPIO), UART, Ethernet PHY, and etc. 

 

 

Figure 39 A Block Diagram of the LEON3 Architecture 

3.3.3.5 Protocol Conversion 

 We use uIP, an open-source TCP stack, to establish TCP/IP connections and process TCP/IP 

packets. Figure 40 shows the implementation of the TCP stack. 

CPU 

AHB BUS 

RAM ROM APB 

APB BUS 

GPIO UART ETH 



uiP 
Transport layer 

Network layer 
~-------------------+-- --- --- --- --- --- -

Driver Data link layer 

~-------------------+-- --- --- --- --- --- -
LEON3 Ethernet 

Controller 
Physical layer 

Figure 40 Implementation of TCP Stack 

On the physical layer, LEON3 Ethernet controller drives the pins of the Ethernet PHY. On the 

data link layer, a driver w rites data to the transmitter of the Ethernet controller and reads data from the 

receiver. On the network layer and transport layer, uiP establishes and manages TCP/ IP connections, 

e.g., sending and receiving packets, updating acknowledgement number and sequence number, etc. 

The received TCP/ IP packets are f irst analyzed, and then the data bytes are sent to the buffer of 

the UART transmitter. When the DATA_READY flag of the transmitter's buffer is high, the controller 

reads from the buffer and sends the data in RS-232 format. When there is incoming serial data, the 

DATA_READY flag of the receiver's buffer is set high, and the data will be processed when the CPU is 

id le. 

3.3.3.6 SD Card Access 

FatFS, an open-source FAT fi le system (FatFS - Generic FAT File System Module), is used to 

implement the SD card access functionality. FatFS uses GPIO signals to drive the pins of the SD card slot 

in serial peripheral interface (SPI) mode. Write and read commands can be sent to the SiCore board 

through the user TCP/ IP stream. 

To issue a write command to the SD card, the user can send the follow ing text to the TCP/ IP port 

of user data: 

Write SD <content> 

The command is case sensitive. After receiving the w rite command, the program w ill invoke the SD w rite 

function to write <content> to SD card. 

To issue a read command to the SD card, the user can send the follow ing text to the user data 

port: 

Read SD 

94 
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The command is case sensitive. After receiving the read command, the program will invoke the SD read 

function to read from the SD card. 

 In order to protect the data stored in the SD card, Triple-DES encryption algorithm is applied in 

the design. We choose an open-source hardware module (3DES (Triple DES) / DES (VHDL) :: Overview) to 

implement it. The use of hardware encryption can make the encryption process faster as well as reduce 

the software code size. When a write command is issued, the data is first sent to the Triple-DES module 

for encryption. The encrypted data is then written to the SD card. When a read command is issued, the 

encrypted data is read from the SD card and then sent to the Triple-DES module for decryption. 

3.3.3.7 TMR – Triple Modular Redundancy 

 The entire LEON3 implementation described earlier, including CPU, buses, RAM, ROM, and all 

peripheral components, is triplicated in the FPGA. The three implementations currently have the same 

configuration, share the same clock, reset, and input signals. Additional comparators and MUXs are 

created to act as majority voters. The output signals of GPIO, UART, and ETH components are sent to 

their individual voters.  

 The most important function that TMR performs is to compare the output signals of the three 

implementations. In order to compare the UART output data, three FIFOs are used to store the data sent 

to the UART transmitters, one for each implementation. Every time data is sent from the bus to the 

UART transmitter, a copy of the data is also written to the corresponding FIFO. When all FIFOs are 

written, the three copies of data are read and compared. Similar approaches are applied to compare the 

output signals of GPIO and ETH components. 

 Figure 41 shows a block diagram of the TMR design and its connections to other systems. 
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 In a TMR design, synchronization between the three implementations is critical to ensure 

correct operation. A small difference in the progress of program execution can result in different 

outputs, which will lead to false positives reported by the TMR design. Since the three LEON3 

implementations have identical configuration and share the input signals, ideally they should have 

exactly the same behavior in a cycle-by-cycle fashion. 

 In practice, however, we observed out-of-sync behavior among the three implementations. The 

cause is still under investigation. In order to make the TMR design work correctly, we added several 

synchronization points in the program to enforce synchronization. When a synchronization point is 

reached in program execution, a GPIO sync_out signal is set to 1 and this signal is sent to the top level of 

the TMR design. When all three sync_out signals are 1, a controller sets a GPIO synchronize signal to 1 

and this signal is sent back to each LEON3 implementation. After seeing the asserted synchronization 

signal, each LEON3 implementation sets their own sync_out signal to 0 and proceeds in program 

execution. 

 This synchronization method has been proved to be reliable by running tests for tens of hours 

without errors.   

Figure 41 A Block Diagram of the Protocol Conversion Application with TMR 
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3.3.3.8 Lessons Learned 

 This section summarizes the problems and issues we have encountered, as well as the solutions 

we took during the implementation of the design. 

3.3.3.8.1 Generating VHDL PROM Module from C Code 

 Although we can use a JTAG cable to load an executable to the LEON3 core, it is more 

convenient and practical to add a PROM in the design so that the LEON3 core can automatically load 

program from it when the FPGA configuration is done. 

 To generate a VHDL PROM module, the following commands are used: 

 sparc-elf-gcc uip_sd_sicore_tmr.c -c -o uip_sd_sicore.o -luip 

 sparc-elf-gcc sd.c device.c ff.c mmcbb.c uip_sd_sicore.o libuip.a -o uip_sd_sicore.exe 

 mkprom2 uip_sd_sicore.exe -freq 50 -msoft-float -baud 57600 -ramsize 128 -romsize 1024 -romws 15 -

romwidth 64 -rmw -dump -o uip_sd_sicore.out 

 make ahbrom.vhd FILE=uip_sd_sicore.out 

 The first and second commands compile the C code and generate an executable. The third 

command takes the executable and generates a .out file. More details of mkprom2 options can be found 

in (Eisele, 2013). The last commands takes the .out file and converts it to a VHDL module. By 

instantiating the ahbrom.vhd module, the PROM is added in the design. 

 A lesson we have learned in generating the PROM is that we need to keep the file size minimum. 

Our initial approach to generate the PROM was as follows: 1) Compile all .c files and generate separate 

.o files. 2) Use all .o files to generate the .out file. 3) Use the .out file to generate the VHDL module. The 

drawback of this approach is that the generated .out file is considerably large and results in a large 

PROM file (>1MB), which is not able to fit in the FPGA BRAMs. As a result, the PROM is mapped to LUT 

RAMs in the implementation phase, drastically increasing the used logic and routing time. The new 

approach presented above (.c -> .o -> .exe -> .out -> .vhd) keeps the generated PROM at an acceptable 

size (~600KB) so that it can be implemented using BRAM primitives in the FPGA. This greatly reduces 

logic use and place and route time during the implementation phase. 

3.3.3.8.2 Sending Packets in uIP 

 The TCP stack we use, uIP, is designed to process only one outstanding TCP packet at a time, 

meaning that an ACK must be received before uIP can send another packet. Therefore three states are 

added in the application code to control the sending status: 



98 

 

 

 Figure 42 States of Sending TCP Packets in uIP 

 As illustrated in  Figure 42, there are three states in sending TCP packets using uIP: 

PACKET_READY, PACKET_SENT, and PACKET_ACKED. After a packet is sent, the application code enters 

the PACKET_SENT state. If the timer expires, then function uip_rexmit() is called for a retransmission. 

When an ACK for an outstanding packet is received, the application code enters the PACKET_ACKED 

state. Then if a new packet is ready to be sent, the code enters the PACKET_READY state. The code will 

only enters the PACKET_READY state when it is already in the PACKET_ACKED state and new packet is 

ready. In this way, the order of receiving ACK and sending new packet is ensured. 

3.3.3.8.3 TCP Delayed ACK 

 TCP delayed acknowledgement is a technique used by some TCP/IP implementations to improve 

network performance (TCP delayed acknowledgement). Several ACK responses may be combined 

together into a single response to reduce the overhead in transmission. A TCP receiver using this 

algorithm will only send an ACK for every other received packets (Dunkels). After receiving a packet, if 

no following packet is received within a specific time period, then an ACK is sent. In Windows Vista and 

7, this time period is set to 200ms.  

 As mentioned earlier, uIP is designed to process only one outstanding TCP packet at a time. 

Therefore, the feature of TCP delayed ACK practically reduces network performance as each 

transmission has to wait for at least 200ms. 

 To solve this problem, we can set two Windows registry keys, TcpAckFrequency and 

TcpNoDelay, to 1. By setting these two registry keys, we force Windows to send an ACK for each packet 

it receives. 

 Linux implementations should have similar settings. If the TCP throughput is lower than 

expected, then these settings should be checked. 

3.3.3.8.4 Bug in uIP 

 The uIP version we use, uIP 0.9, has a bug in the code for updating TCP/IP sequence number. In 

a rare case where uIP processes a new received packet immediately after it sends one, it wrongly sets 

the length of outstanding data to 0. In this case, uIP "forgets" that it still has outstanding data that has 

not been acknowledged, and the following sequence numbers will be wrong. 

PACKET_READY 

PACKET_SENT 

PACKET_ACKED 

uip_send() 

uip_acked() 

uip_rexmit() 
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 This bug has been fixed. A new release of uIP, uIP 1.0, has also fixed the bug and reported it in 

its log file. 

3.3.3.8.5 Bug in ETH driver 

 Gaisler provides a driver for uIP to run on LEON3 Ethernet PHY, but it has a bug which reduces 

performance.  In uip_greth.c, function libio_uip_greth_initialize_hardware (): 

 GRETH_REGSAVE(rx_bd[i].stat, GRETH_BD_EN); 

should be changed to: 

 GRETH_REGSAVE(rx_bd[i].stat, 0); 

 In uip_greth.h, GRETH_BD_EN is defined as 0x800, which corresponds to the enable bit of the 

receive descriptor (Gaisler, 2013). The enable bit being 1 indicates that the receive descriptor is busy 

and other accesses must wait until the bit is 0. The original line sets the enable bit to 1 during hardware 

initialization, and therefore unnecessarily postpones the access to the receive descriptor (because the 

program has to wait until enable bit is 0). The modified line fixes this problem and significantly improves 

the speed in TCP packet receiving. 

3.3.3.8.6 UART Flow Control Signals 

 In RS-232 protocol, optional RTS (ready to send) and CTS (clear to send) signals are used to 

control the data flow between a transmitter and a receiver that are at different speeds. The UART 

transceivers on the SiCore board do not include these signals. In the LEON3 implementation, the VHDL 

generic "flow" should be set to 0 (default is 1). 

3.3.3.8.7 Clock Signal for Ethernet PHY 

 The Ethernet PHY works in 10Mb full duplex mode, which requires a 2.5MHz clock signal for the 

PHY. In Kintex-7 FPGAs, the minimum frequency an MMCM (mixed mode clock manager) can generate is 

10Mhz, therefore the PHY clock signal cannot be generated using MMCM. Instead we used a counter to 

generate the required 2.5MHz clock signal. 

 Note that the user generated clock signal should be routed using dedicated clock trees instead 

of general routing paths to minimize clock skew. This can be done by sending the clock signal to a BUFG 

primitive, which is part of the FPGA clock trees. 

3.3.3.8.8 Pin Assignments for LDs 

 We started the project with the CML NetFPGA board and later switched to the SiCore SHIELD II 

board. The two boards have almost the same components and configurations, but there are some 

differences that should be noted. 

 The FPGA pin assignments for LDs are different on the CML NetFPGA board and the SiCore 

SHIELD II board: 
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 CML NetFPGA SiCore SHIELD II 

LD0 E17 AF14 

LD1 AF14 W19 

LD2 F17 E17 

LD3 W19 F17 

Table 11 Different Pin Assignments on NetFPGA and SiCore Board 

 When switching to other boards, the designer needs to pay attention to the differences in pin 

assignments. These signals include Ethernet PHY signals, UART signals, buttons, LDs, and clock signals. 

When targeting the design to other FPGAs, the design needs to be modified to suit the new FPGA. 

Gaisler provides template LEON3 designs for various FPGAs. 

3.3.3.8.9 Buffer Size of UART Transceiver 

 The original UART module in LEON3 design has buffers for its transmitter and receiver. The 

buffer size is configurable from 0 to 32, which is far from enough for this application. When the CPU is 

processing other tasks, for example, sending TCP packets or reading from SD card, serial data may come 

in simultaneously and cause overflow. Therefore larger buffers are required for correct UART 

operations. 

 The original UART buffers are implemented using LUTs (look-up tables), which are distributed 

and expensive FPGA general logic resources. We replaced them with more centralized BRAM FIFOs. Each 

transmitter and receiver has a 4KB buffer, which has been proven by tests to be sufficient. 

3.3.3.8.10 Timing Requirements 

 The target frequency of this design is 100MHz. To achieve this frequency, some unnecessary 

components in the LEON3 design can be removed to improve the delay in the critical path. Several 

settings are changed in the configuration file config.h: 

 constant CFG_LDDEL : integer := 2; 

 constant CFG_MMUEN : integer := 0; 

3.3.3.8.11 Synchronization 

 TMR synchronization has brought problems to the design. We have observed out-of-sync 

behaviors among the three LEON3 implementations. Different progress in program execution could 

result in different behaviors and cause TMR to report false positives when there is no attack. The source 

of the diverged timing behavior is still under investigation. Possible reasons include: 

 The LUT-generated clock signal for Ethernet PHY has glitches 

 Clock signal has skew in distribution  

 For example, the following code reads data from the UART receiver buffer: 

 while(uart_1[1] & DATA_READY) { 

  uart_1_in_buf[uart_1_in_len++] = uart_1[0]; 
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  if(uart_1_in_len == 1446) break; // Max length reached 

 } 

 The while loop checks the status register of the UART receiver to see if it has data ready to be 

read. Keep in mind there are three copies of this code running simultaneously. It is possible that the 

execution of copy 0 is a little ahead of copy 1 and copy 2, and when it reaches the while condition line, 

no more data is ready, therefore it exits the while loop. Then copy 1 and copy 2 reaches the while 

condition line, and a byte of new data has just arrived in the small gap. In this case, copy 1 and copy 2 

will continue execution in the while loop to read this new byte. As a result, the data held by copy 0 is 

different from that of copy 1 and copy 2, and a mismatch in behavior will be reported later by TMR. 

 A solution is to wait for a while after the DATA_READY flag becomes low. In the following 

modified code, a new line, delay_us(174), adds a 174ms delay, which is the time for receiving one 

character with Baud rate 57600. In this way, the faster copy (copy 0) will wait for another character to 

come. If no character is received during this time, then it means that this chunk of characters is over, 

and it is safe to exit the while loop.  

 do { 

  while(uart_1[1] & DATA_READY) { 

   uart_1_in_buf[uart_1_in_len++] = uart_1[0]; 

   if(uart_1_in_len == 1446) break; 

  } 

  delay_us(174);  // wait for another character, baud rate = 57600 

 } while (uart_1[1] & DATA_READY); 

 Similarly, when three copies of the same program reach an if condition, a mismatch could occur. 

For example: 

 // Read UART input when the previous packet has been acked 

 if((uart_0[1] & DATA_READY) && (stream_0_state == PACKET_ACKED)) 

  uart_0_input(); 

 Again, if copy 0 is faster than the other two, then it is possible that copy 0 judges the if condition 

as false, while the other two judge it as true. In this case, copy 0 will not read the UART input, but copy 1 

and copy 2 will. As a result, copy 0 does not have TCP packet to be sent, whereas copy 1 and copy 2 will 

send as TCP packet the data they read from UART. This again will cause a mismatch in behavior that will 

be reported by TMR. 
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 To solve this problem, synchronization points are added into the code as described in Section 2. 

An example of the modified code is shown below. The added synchronization point ensures that the 

three copies of code judge the if condition at the same time. 

 synchronize(); 

 // Read UART input when the previous packet has been acked 

 if((uart_0[1] & DATA_READY) && (stream_0_state == PACKET_ACKED)) 

  uart_0_input(); 

  Figure 43 shows a waveform when a synchronization point is reached. Signals sync_out_0, 

sync_out_1, and sync_out_2 are outputs from the GPIO components. They are asserted to 1 to indicate 

that the three copies have all reached the synchronization point. When all three signals are asserted, 

signal synchronize, an input to the GPIO components, is asserted as a response. After seeing the 

asserted synchronize signal, each copy de-asserts its sync_out signal, and proceeds in execution. After 

sync_out signals are de-asserted, synchronize is also de-asserted. 

 The extra synchronization points lead to performance overhead to the TMR design, because the 

faster copies need to wait for the slower ones when they are out-of-sync. It is observed that the gap 

between the fastest and the slowest copies can reach 40 clock cycles, or 400 ns when the clock 

frequency is 100 MHz. This amount of delay has barely any impact on real-time operations of the UAV. 

Since the three copies are periodically forced to synchronize, the gap in delay will not accumulate over 

time. 

 

Figure 43 Waveform of Synchronization Point      
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3.3.3.8.12 Solutions and Detection/Restoration Mechanisms 

Detection of malicious or faulty operations is usually performed by adding hardware redundancy, such 

as dual modular redundancy (DMR) and triple modular redundancy (TMR). With DMR recovery can be 

done by periodically storing circuit states into checkpoints. When a mismatch between the two copies is 

detected the latest checkpoint is used to restore the system to a correct state. With TMR a fault can be 

masked by using a majority vote. The output of the voter can also be fed back to all three copies so that 

they all keep the correct value. 

In addition, hardware redundancy can provide fault tolerance. Radiation-induced single event upset 

(SEU) can cause transient errors in electronic systems, and the error rate increases as the altitude rises. 

As technology node shrinks it is more and more likely that an SEU causes multiple bit errors in a memory 

cell. Therefore it is important for aircraft, such as UAVs, to be fault tolerant. When redundancy is applied 

to a UAV for the purpose of security it also brings the ability of fault tolerance for free. 

Assuming that a processor could be compromised by supply chain attacks, it is insecure to use three 

identical processors from the same source. Thus, heterogeneous cores from different manufacturers are 

considered. Processors with different instruction set architectures (ISA) are an option, but different ISAs 

may result in different instruction and/or memory access orders, which significantly increase the 

difficulty of synchronization. Unlike software synchronization, which can be done by inserting 

synchronization points into the code, hardware synchronization can only be done by monitoring register 

and memory values. Therefore heterogeneous processors with the same ISA are more favorable. The 

processors can have different configurations such as speed, clock signal, cache size, and etc.  

Similar to synchronization, detection and restoration of deviated operations also depend on monitoring 

register and memory values. The assumption is that if multiple processors perform exactly the same 

operations (e.g., write the same data to memory) on an instruction-by-instruction basis then they are 

considered to have the same behavior.  

3.4 Evaluative Criteria 

As the project has progressed from the formulation of System-Aware security patterns to a prototyping 

pilot effort used for validating the System-Aware cyber security concept, our team has been addressing 

a set of generic design-related questions that can support future efforts related to implementations of 

the System Aware Cyber Security concept. These questions continue to be addressed in the form of 

additional use cases for other systems that can potentially benefit from the System-Aware techniques. 

The answers to these questions impact the potential viability of using the System Aware concept in a 

potential application and the level of performance that can be achieved: 

 What are potential attacks? Which system components and functions are most critical to the 

system? How vulnerable to attack are they, and how could an adversary do the most damage to 

degrade functionality with the least cost to the adversary? In turn, which attacks can we protect 

against for the least cost to us while increasing the cost and complexity to the adversary?  

 What are the available data measurements from the system to be monitored? In order to 

provide a reliable Sentinel platform to detect and classify anomalous behaviors and attacks in 
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critical functional areas, we must possess the ability to interface with and to extract data from 

those critical functions. In addition, the data that can be extracted may directly affect the 

security design patterns that are employed to enhance a given system’s security. For example, 

as the variety of measurements about the state of a critical function increases, so does the 

potential number of diversely redundant algorithms available for ensuring the integrity of that 

the critical function.  Finally, the amount of data that can be extracted from the Sentinel is 

critical to accurately gauge the Sentinel’s ability to protect a system function and restore that 

function when it is under attack. 

 What should be measured to protect against potential cyber-attacks? What are the critical 

pieces of information that are needed to adequately determine the state of the system? Should 

new sensors be added to the system to enhance the monitoring capabilities of the Sentinel 

while not degrading normal system behaviors? If information is needed from multiple parts of 

the system to verify a system state, how is that information integrated to provide an accurate 

system state and better detection of anomalous system behavior? 

 Can we standardize the data collection protocols for collecting the data provided by the 

monitored system? The ability to standardize the data extracted from system functions into a 

form that can be utilized by the Sentinel is necessary to integrate with legacy systems and 

facilitate reusability across a diverse set of domains. This standardization can potentially impact 

the Sentinel’s ability to deal with the timing and latency issues associated with monitoring 

functions, differing interfaces for the system that are required to extract the data, and the 

potential collateral effects on the system function being monitored and on other parts of the 

system. 

 What is the rate of the data measurements that are needed to adequately detect a cyber-

attack? To understand this question, one must investigate the normal rate of change of the 

system configuration, the nature of specific attacks, the rate of change in system configuration 

that would be deemed to be unacceptable, the consequences of potential attacks, acceptable 

responses to successful exploits, the stability of the configurations of the system, and the 

sensitivity of the rate of change of those configurations related to the monitoring and detection 

functions of the Sentinel. 

 What are the methods needed for assuring the integrity of an operation? When looking at the 

critical system functions, which security design patterns make the most impact in providing 

protection for the system without hindering the operation of the system? Which patterns create 

the greatest difficulty for adversaries in terms of developing alternative attacks that achieve 

similar outcomes? If you distribute those security design patterns across several platforms, how 

do they communicate and how often do they update each other? 

 What is the complexity of the algorithms used for securing the system to be protected? We 

must evaluate the complexity of the algorithms and the tradeoffs with complexity versus system 

security and system performance.  

 How should the Sentinel respond once an attack has been detected? Under what 

circumstances does the system automatically get restored to another state? If the system is not 

automatically restored, who should be informed in the event an attack has taken place? What 
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information should those individuals be provided, and what options are they given for 

restoration? Should the attack be allowed to continue for analysis purposes so as not to tip off 

the attacker that their attack has been detected? 

As we continue to address new types of physical systems where there will be potentially more time 

sensitive systems to protect and also the introduction of multiple Sentinels in place to protect those 

functions, this framework of questions will continue to be refined. 

4 Phase II - Flight Evaluations 

This section outlines the Phase 2 efforts by the UVa and the GTRI to transition the System-Aware cyber 

security solutions developed under RT-42 into a Sentinel configured to meet the size, weight, power and 

functional requirements necessary for airborne use, including a flight-ready demonstration of the 

Sentinel. As part of this effort, a flightworthy Sentinel has been developed based on the SiCore SHIELD II 

CoProcessor board discussed in section 3.3.1.2.  The Sentinel algorithms for detecting the attack, 

alerting the operator, and taking remedial action will be based upon those developed in RT-42 have 

been developed on diverse Single Board Compute (SBC) platforms. The following subsections describe 

the tasks that were performed in order to prepare and conduct flight evaluations of the Sentinel 

concept. 

4.1 Flight Evaluation Results Overview 

As part of the ongoing research effort described in Phase 1, a prototype Sentinel system was designed, 

developed and deployed on a Griffon Aerospace MQM-170 Outlaw UAV equipped with a Cloud Cap 

Piccolo II autopilot and Cloud Cap TASE Gimbal video surveillance payload. The Piccolo II autopilot 

includes a pilot station to issue commands to the aircraft, as well as switch between autonomous and 

manual control. It also includes a ground station to transmit and receive information from the aircraft to 

the pilot station. The deployment of the prototype Sentinel included conducting flight evaluations at the 

Early Count Airport in Blakely Georgia. The flight evaluations were designed to emulate the scenario in 

which a UAV that is unable to accomplish its assigned surveillance mission to identify and track targets 

due to a cyber-attack embedded into the UAV’s autopilot. Figure 26 shows the flight plans used as part 

of the flight evaluation activity.  

The flight evaluations included 2 flights of the UAV to test the Sentinels ability to protect against 3 

different cyber-attack scenarios 

1. Cyber-Attack against the UAV’s payload: This scenario focused on disrupting the UAV’s ability to 

gather video surveillance of an adversary’s facility—represented by a hangar located at the 

airfield—by disrupting the onboard video surveillance system when it entered a pre-determined 

geographic area. This attack was initiated by a cyber-attack box deployed on the aircraft to 

emulate a cyber-attack embedded in the autopilot responsible for relaying a remote pilot’s 

commands to the UAV’s payload. This attack included two levels of disruption: 

a. Prevent the collection of all video surveillance data in a specified geographic region: 

Whenever the UAV entered a pre-determined geographic region the cyber-attack would 
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automatically trigger the onboard camera system to retract inside the aircraft. In 

addition, as long the aircraft remained in the pre-determined geographic region, the 

cyber-attack would prevent the camera from redeploying.   

b. Prevent the UAV from tracking identified targets in a specified geographic region: Part of 

the onboard camera system’s capabilities includes allowing an operator to select a 

target for automatic tracking; i.e., the camera will automatically readjust the camera to 

keep the operator specified target centered in the camera’s field of view. This cyber-

attack focused on disrupting the camera’s ability to track targets by either (a) retracting 

the camera ONLY when an operator issued a command to the onboard camera to track 

a target or (b) point the camera in a random direction away from any target the 

operator selected to track. 

2. Cyber-attack to corrupt the metadata associated with video surveillance: This is the same 

scenario as described in Section 3.2.2.4; however, rather than preventing the onboard camera 

system from recording video, this cyber-attack would focus on reducing the value of the 

recorded footage by corrupting the metadata associated with the onboard camera’s geographic 

location. Specifically, when the UAV entered the pre-determined Attack Active Zone, the cyber-

attack would shift the latitude and longitude associated with the camera’s geographic location 

by 1000 meters. In addition, to prevent an operator from noticing a sudden shift in the cameras 

reported position, the cyber-attack would shift the latitude and longitude by walking the UAV 

off at a rate of 100 meters per second. The cyber-attack was emulated by a cyber-attack box 

that would monitor and corrupt the GPS position reported by the autopilot to the onboard 

payload. 

3. Cyber-attack to corrupt the flight plan (parameters) of the aircraft: This scenario is meant to 

closely emulate the cyber-attack scenario described in section 3.2.1.4. In this scenario the 

aircraft would be prevented from collecting surveillance data from a given geographic region by 

altering the aircraft’s flight plan to redirect it away from a pre-determined region. To emulate 

this attack, a cyber-attack box was situated onboard the aircraft that would redirect the aircraft 

between two different flight plans. The flight plans selected were 0->1->2->3->0 and 10->11-

>12->13->10 as shown in Figure 26. In addition, for safety, the attack was initiated by an 

operator on the ground to ensure the aircraft would remain close to the airfield and minimize 

the turning radius needed for the aircraft to shift between flight plans. Finally, this attack 

included the ability to mask the pilot’s operator display; i.e., the pilot’s display would NOT show 

the aircraft moving between flight plans. Instead it would show the aircraft continuing along the 

original flight plan unaltered. This masking of the display was accomplished by corrupting the 

data reported by the ground station to the pilot display. For safety, the masking could be run 

independently from the attack onboard the aircraft. 

All of the previously outlined scenarios were conducted at an altitude of 750 feet AGL. 

To protect against the previously outlined scenarios two prototype Sentinels were used. In addition, a 
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special cyber security operator station was created that could receive security information from the 

Sentinel, adjust the sensitivity of the Sentinel’s detection algorithms, and allow an operator to use the 

Sentinel to take corrective actions to restore the system to a non-compromised state.  

One prototype Sentinel was a payload deployed on the UAV with the following protections: 

 Monitor the parameters of the UAV’s autopilot to detect changes. 

 Detect possible cyber-attacks against the UAV and report this to the cybersecurity operator 

located on the ground. 

 Defend against cyber-attacks aimed at compromising the UAV’s payload. This protection was 

accomplished by inserting a small microcontroller between the autopilot and the payload to 

monitor communications. 

 Enable the cybersecurity operator on the ground to take corrective actions to restore the UAV 

to a non-compromised state after a possible cyber-attack has been detected. 

 Designed with protections to secure the prototype Sentinel: 

o Three separate single board computers to vote on and perform all Sentinel monitoring, 

detections, and restoration actions. Only actions that passed a majority vote (2 out of 3) 

were accepted. All disagreements between boards were recorded for future forensic 

analysis and the cybersecurity operator on the ground was alerted immediately. 

o Diverse implementations of the cybersecurity algorithms. The algorithms providing 

protections against cyber-attack scenario 2 were implemented in two different 

programming languages: C and Python. 

o Isolated storage area containing the critical autopilot parameters of the aircraft before a 

flight is initiated. This was used to store the flight plans to protect against cyber-attack 

scenario 3. 

o Secure monitoring of the autopilot. Autopilot data monitored by an RS-232 connection 

that was converted to TCP/IP for consumption of the cybersecurity algorithms. This 

conversion process was performed by an FPGA running three softcore processors and 

preforming triple modular redundancy checking of the softcores to detect and isolate 

any compromised components. 

o Each of the cybersecurity algorithms used to protect against the outlined attack 

scenarios was composed of 500 lines of code or less to facilitate code validation. 

A second prototype Sentinel was deployed on the ground. This highly simplified Sentinel was only used 

to provide security for the ground station, but related to the objectives of the flight evaluations, did not 

require any secure implementation features. This Sentinel included one component attached to the 

ground station used to transmit and receive information and commands from the UAV, and a second 
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component to monitor the pilot’s operator station. This component would monitor the ground station, 

as well as relay information from the Sentinel onboard the aircraft to the cybersecurity operator station 

capable of taking restorative action if a cyber-attack was detected.   This component attached to the 

pilot’s station was used to monitor the pilot’s commands to the aircraft.  

The prototype Sentinel system included the following protections: 

 To protect against cyber-attack scenario 1, the Sentinel onboard the aircraft would monitor the 

commands issued to the autopilot, as well as the state of the aircraft to determine if the 

commands were consistent with intended system operations. For example, under normal 

operations, a command to direct the onboard camera to begin tracking a target should not be 

immediately followed by a command to retract the camera system. In addition, the tracking by 

the onboard camera would normally be disabled before a command to retract the system is 

received. The Sentinel would defend against this cyber-attack by monitoring the commands 

issued to the payload and disabling commands that were determined to be inconsistent with the 

current state of the aircraft. In addition, if an inconsistent command was received, a 

cybersecurity operator on the ground was informed of the event. 

 To prevent against cyber-attack scenario 2 the Sentinel onboard the aircraft was equipped with 

two GPS sensors. These sensors were used by the Sentinel to independently validate the 

latitude and longitude reported by the autopilot to the onboard camera system. The GPS 

hardware in the Sentinel was purposefully selected to contain a different hardware 

implementation than the autopilot’s GPS implementation, so as to help avoid a supply chain 

injected attack. If the diversely redundant independent positional information deviated too far, 

the Sentinel could take actions to defend against the potential attack in real-time and support 

ground-based correction of corrupted metadata that would occur at a future date. To respond 

to the described attack, the Sentinel could replace the faulty positional data reported by the 

autopilot with data reported from a valid GPS device. A valid GPS device is a device approved by 

a majority vote (2 out of 3) of the available GPS devices; i.e., the autopilot’s GPS and the two 

Sentinel GPS devices. To aid in correcting corrupted metadata at a future date the Sentinel 

records when a deviation is detected, the corrupted positional information, and the trusted 

positional information. All detections of a corrupted GPS were reported to a cybersecurity 

operator on the ground. In addition, the cybersecurity operator could, in real-time, alter the 

sensitivity of the algorithms used to validate the positional information.  

 To protect against cyber-attack scenario 3, the Sentinel onboard the aircraft would coordinate 

with the Sentinel located on the ground to determine whether deviations from the current flight 

plan were initiated by a pilot. Whenever the pilot would initiate a change to the flight plan, the 

ground Sentinel would securely forward this information to the Sentinel onboard the aircraft. 

Any changes to the flight plan were reported to a cybersecurity operator station on the ground. 

If the alteration was due to a pilot’s action, it would be reported as normal. If the alteration was 

due to a cyber-attack—i.e., no pilot action could be associated with the action—the 

cybersecurity operator was informed of the potential cyber-attack. At this point the 
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cybersecurity operator could take a corrective action to restore the aircraft to the previous flight 

plan. For safety, the operator was limited to restoral actions that ensured that the aircraft 

stayed within the airfield and minimized the maneuvers needed to move between flight plans. 

An important unanticipated outcome of the flight evaluation activity was the knowledge gained about 

assuring safety while conducting cyber-attacks during actual flights of UAVs at an active airport. 

4.2 Development of the Serial Spy 

The SerialSpy is a microcontroller-based device designed to monitor and/or manipulate RS-232 serial 

data between two devices.  It uses a Microchip dsPIC33EP digital signal controller to passively monitor 

bidirectional serial data transparently from the host serial devices, insert new serial data packets, modify 

serial data packets, or completely block specific serial data.  The SerialSpy is controlled through a USB 

serial interface or through telnet over Ethernet. 

The SerialSpy is designed to be inserted between two devices connected via RS-232.  In the UAV 

implementation of the Sentinel, the SerialSpy is inserted between the Piccolo autopilot and the camera 

gimbal as shown in Figure 44.   

 

Figure 44. Simplified Block Diagram Showing SerialSpy Usage in a UAV Sentinel 

The SerialSpy was specifically designed to overcome latency issues that arose with other methods of 

monitoring and modifying serial data.  Previous design iterations of a serial communications monitor 

had used a Raspberry Pi single board computer and two USB to RS-232 adapters.  A program written in C 

would monitor the serial ports and pass data between them passively in addition to modifying or 

blocking data as required.  This approach had several disadvantages.  First, the Raspberry Pi takes time 

to boot up before any such software could run, on the order of 30 seconds to 1 minute.  This means that 

the autopilot and gimbal would be unable to communicate until the Raspberry Pi had fully booted and 

launched the software.  Additionally, there is a certain latency and overhead associated with this 

approach.  Each USB to serial converter adds several milliseconds of delay, and the Linux kernel also 

adds some delay.  Although the processing time of the software is negligible, it must wait for the entire 

serial data packet to be received before re-transmitting the packet out the other RS-232 port. 

The SerialSpy runs on a bare-metal microcontroller with no operating system, and so it boots up in 

milliseconds and immediately allows data to flow passively between the RS-232 ports.  When not 



actively monitoring the data packets, the SeriaiSpy is able to pass data between the serial ports one byte 

at a t ime, effectively eliminating the delay. It does not have to wait and receive an entire serial packet 

before beginning to transmit data on the other serial port. For its RS-232 interfaces the SeriaiSpy uses 

DB9 connectors. Pl is a DB9-fema le connector wired as standard Data Terminal Equipment (DTE). P2 is 

a DB9-male connector wired as standard Data Circuit-terminating Equipment (DCE). The opposite 

gender connectors and appropriately crossed transmit/ receive lines a llow the SeriaiSpy to be inserted 

between two RS-232 devices. The Seria iSpy can use baud rates from 1200 baud to 115200 baud. 

Communications with the SeriaiSpy are provided by a USB-serial interface with a micro USB connector 

and an Ethernet interface with a standard RJ-45 connector. Both of these interfaces can be used to 

control and configure the SeriaiSpy. Commands include switching the device between passive and 

active mode, configuring the RS-232 baud rate, monitoring seria l traffic in either direction, and 

configuring the various packet analysis modes for active mode. 

As previously noted, the SeriaiSpy has two operational modes: passive and active. Passive mode will 

pass all data between the RS-232 ports without modifying or blocking any data . This mode is protocol 

agnostic; any format of data can pass through and be monitored . Active mode enables the SeriaiSpy's 

data processing module, which can modify or block serial data. Active mode is protocol-dependent and 

requires specific code to be written for protocol analysis. In e ither mode, the data can be monitored 

through the USB port or over Ethernet. 

For the UAV implementation of the Sentinel, the data passing between the autopilot and the camera 

gimbal used the Piccolo gimbal communications protocol3• This protocol defines the specific packet 

structure of the data that includes a start-sequence header and length byte for each packet. The 

SeriaiSpy can be configured to be strict and on ly a llow valid packets to flow through, or to a llow all 

packets through, even if they are malformed. 

For defense against cyber-attacks the SeriaiSpy was configured to search for specific packet types. Table 

l lists the packet types that were ana lyzed. 

Table 12. Commands that the SeriaiSpy searched for in Gimbal Communications 

Group Cmd Description Actions 

Ox10 Ox47 Gimba l telemetry Compare GPS coordinates to truth data, alter if needed 

Ox10 OxlO Host GPS Data Compare GPS coordinates to truth data, alter if needed 

Ox10 Ox40 SPOI command Block or a lert when detected 

OxOO Ox45 SPOI command Block or a lert when detected 

OxOO Ox46 SPOI command Block or a lert when detected 

OxOO Ox43 Gimba l retract Block or a lert when detected 
Messages that contained GPS coordinates from the autopilot were compared to known "truth data", 

which was provided over Ethernet from the SiCore computer portion of the on board Sentinel. If the GPS 

coordinates were detected to be greater than 100 meters from the truth data, an alert was sent to the 

3 
Vaglient i, B. (2011). Gimbal Communications v2.2.0.d. Cloud Cap Technology 
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Sentinel.  Optionally, the correct GPS coordinates provided by the SiCore computer could also be 

inserted into the datastream for the camera gimbal to use as metadata. 

To defend against SPOI attacks and gimbal retract attacks, the operator could elect to have commands 

for SPOI and gimbal retract either completely blocked from being transmitted or to have an alert sent to 

the Sentinel over Ethernet 

4.3 Development of the Tester’s Interface 

The tester’s interface (shown in Figure 45 as the Test Director Station) was developed primarily to allow 

the test director to monitor the aircraft’s true state while it is undergoing a cyber-attack. For example, 

the waypoint attack takes command of the UAV’s flight plan while masking the attack on the operator’s 

ground control station.  As a result of the masking, the operator’s display shows the aircraft on the 

intended route while, in reality, the aircraft’s flight path is being rerouted.  The tester’s interface takes 

advantage of GAUSS’ dual radio links for command and control operating at 450 and 900 MHz.  Two 

separate instances of the operator interface software are run at the ground control station, one for each 

frequency.  While the masking attack is underway on the 900 MHz ground control station, the tester’s 

interface uses the 450 MHz control station to monitor the true status of the aircraft.   

The situational display is based on GTRI’s FalconView map display software.  A FalconView plugin 

visualizes the current state of the system (see Figure 45). As indicated by the legend in the upper left 

corner of the display, the interface can show where the aircraft really is (Truth, in blue), where the 

aircraft operator sees it on his Piccolo Command Center (PCC) and where camera operator sees it on 

ViewPoint while the attack is happening (Attack, in red), and where the defensive systems indicate the 

aircraft’s correct location is (Defense, in green).   
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Figure 45. FalconView Display on the Tester’s Interface 

The HUD indicators below the legend give information about the status of various applications.  When 

the FalconView plugin is actively communicating with those components, the HUD boxes expand as 

shown in Figure 46.  The Component Indicators light up for each component when an attack or defense 

occurs.  These components, ViewPoint Plugin, Attack Pi, and Waypoint Masking are described in detail 

later in this section. 

Figure 47 shows the Tester’s Interface displaying the Aircraft Indicators.  These are aircraft icons in 

different colors that indicate the aircraft’s true position, attack position, and defense position.  The 

aircraft’s true position shown in blue indicates where the aircraft really is. This data is retrieved from the 

450 MHz Piccolo ground station.  The attack position, shown in red, indicates where the PCC is 

displaying the aircraft’s position during a waypoint attack with masking. It also indicates where 

ViewPoint is showing the aircraft position in the case of the GPS walk-off attack.  The defense position, 

shown in green in Figure 48, indicates the aircraft location as determined by the Sentinel in response to 

a waypoint or GPS walk-off attack. 

 

 

Figure 46. HUD Indicators 
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Figure 47. Tester’s Interface Showing Truth and Attack Positions for the Aircraft 

 

Figure 48. Tester’s Interface Showing the Defense Position for the Aircraft (in green) 

The tester’s interface can also be used to set up several of the cyber-attack scenarios. The main menu 

for setting the various parameters for an attack is shown in Figure 49.  Starting in the upper left corner 

of the menu, the section labeled “UDP Connections” (see Figure 50) controls the UDP connections to 
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various components in the system.  In particular, the “Plugin” refers to the ViewPoint plugin software 

used to implement the as described in Section 3.2.3.4.  The “Pi Attack” refers to the software on Attack 

Pi 2 used for the GPS walk-off attack.  The “Pi Defense” refers to the software on Attack Pi 2 that could 

be used to defend against the GPS walk-off attack.  However, the defense against the GPS walk-off was 

also available on the SerialSpy (at address 192.168.1.205) and during testing it was decided that the 

attack software and the defense software should be hosted on separate devices.  This was done to avoid 

potential confusion over the roles of the various components for attack and defense.  The “Masking 

Address” refers to the Masking Attack Pi at the ground station as shown in Figure 6.   

When the UDP receive and transmit sockets are successfully created, the text box turns from red to 

green as shown in Figure 50 (b).   

 

Figure 49. Tester’s Interface 

    

 (a) (b) 

Figure 50. UDP Connections Control (a) Sockets not Connected, (b) Sockets Connected 
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The Defense section (Figure 51) controls the Defense Software component located on the Attack Pi. 

i. Defend Against Retract Command - This defense removes all retract commands from 
the command stream as it heads to the gimbal. This defense can be enabled or 
disabled. 

ii. SPOI Defense: Valid SPOI Area - SPOI commands should only place the camera within 
the mission area. This section allows the user to specify the mission area where SPOI 
commands are valid. When enabled, this defense will remove all SPOI commands 
with an altitude above the current aircraft altitude or outside the mission area. 

 

Figure 51. Defense Section of the Tester’s Interface 

The Attack section controls with the ViewPoint plugin attack component (gimbal command attacks) and 

the Attack Pi 2 attack software (GPS walk-off).  The “Center Lat” and “Center Lon” parameters allow the 

tester to set the latitude and longitude of the center of the geographic area in which attacks will occur.  

The “Radius” is used to specify the radius of the attack region. 
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Figure 52. Attack Section of the Tester’s Interface 

The section labeled “ViewPoint Plugin” (see Figure 53) is used to control the gimbal command attacks.  

By clicking the appropriate button, the tester can initiate several instantaneous attacks on various 

gimbal commands: 

Retract Gimbal – sends a retract gimbal command which causes the gimbal to retract into the 

aircraft’s fuselage 

Gyro Zero – sends a Gyro Zero command zeros all the gimbal angles and throws off the 

calibration of the gimbal 

Look Up SPOI – send a command to point the camera directly upward using the sensor point of 

interest (SPOI) gimbal command message 

Look Up Cmd – sends a command to point the camera directly upward using the camera angle 

command message 

The SPOI Attack on SPOI Cmd section allows the tester to enable or disable the SPOI attack.  Enabling 

this attack causes the camera to point upward whenever the payload operator tries to track a spot on 

the ground using the SPOI command.  The attack modifies the SPOI command by setting the point of 
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interest directly above the aircraft’s location so that it will point upward instead of pointing at the 

correct location on the ground.  

 

Figure 53. ViewPoint Plugin Section 

The “Attack Pi” subsection (Figure 54) is used enable a gimbal retract attack and to set up and enable 

the GPS walk-off attack. The “Retract Attack on Track Cmd” section allows the tester to enable or disable 

the gimbal retract attack.  When the attack is enabled and the aircraft enters the geographic region for 

the attack, the camera gimbal retracts whenever the operator tries to engage the tracking feature.  The 

ViewPoint plugin with the attack software (hosted on the Test Director station) sends a retract 

command to the gimbal when the operator clicks on a spot in the video in order to lock the camera on 

an object for tracking. As a result this commonly-used gimbal feature is rendered useless unless the 

corresponding defense is active on the SerialSpy. 

The “GPS Walkoff Attack” subsection controls how the GPS position that is being fed from the autopilot 

to the camera gimbal is corrupted.  The GPS walk-off attack offsets the true GPS location of the aircraft 

by the specified Increment in the compass direction specified by Angle every time a GPS update occurs. 

The “Max Walkoff” limits the magnitude of the position error.  The corrupted data is then passed on to 

the camera gimbal and is included in the video metadata that is sent to ViewPoint. Recall that the 

location and radius in which this attack will be triggered is set at the top of the Attack section (see Figure 

52).  

The “Trigger at Curr Loc w/this Radius” allows the tester to initiate the GPS walk-off attack at the 

aircraft’s current location rather than waiting until the aircraft enters the attack region. It does so by 

setting the center of the attack region to the aircraft’s current location.   
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Figure 54. Attack Pi Section 

The “Masking” section of the Tester’s Interface, shown in Figure 55, allows the tester to set up and 

enable the waypoint attack with masking.  This attack hijacks the aircraft while hiding the attack from 

the aircraft operator on the Piccolo Command Center. 

 

Figure 55. Masking Section of Tester’s Interface (Orbit Waypoint Selection) 

The “Waypoint Type” drop-down menu lets the tester to specify whether the waypoints for hijacking the 

route are either an orbit waypoint or a waypoint list (for a route).  If a orbit waypoint specified, the 

tester can set the latitude and longitude of the center of the orbit and the radius of the orbit.  If the 

tester wants to send a list of false waypoints, he can create a list by adding waypoints and specifying 

their latitude and longitude (Figure 56). 
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Figure 56. Masking Section of Tester’s Interface (Waypoint List Selection) 

The “Aircraft Speed” box allows the tester to set the speed of the aircraft once the attack has taken 

control of the aircraft. 

4.4 Aircraft Integration 

Integration of the Sentinel components in GTRI’s GAUSS air vehicle required the design and fabrication 

of wiring harnesses, additional GPS antenna mounts, and a chassis to hold all of the components (Figure 

57).  In addition, a power kill switch was added to the system to enable the flight test engineer to kill 

power to all of the payload components via a discrete command from the autopilot system.  This was 

done to ensure that all of the non-flight critical components communicating with the autopilot could be 

killed in the event of an emergency. 
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Figure 57. Payload Chassis 

 

4.5 Flight Test Demonstration Attacks 

The flight test demonstration was conducted during the week of Oct. 6 – 10 at the Early County airport 

in Blakely, GA.  Three types of attacks were successfully demonstrated: a GPS walk-off, a gimbal 

command attack, and a waypoint attack. 

4.6 Sentinel Protections For Selected Attacks 

4.6.1 Gimbal Attack Detection and Mitigation 

Degradation and denial of service attacks are possible because the gimbal trusts the sender of any 

commands that it receives. To prevent this type of attack, the system should be able to evaluate any 

command it receives to determine its validity. 

Changes cannot be implemented in how the ViewPoint software issues commands or how the gimbal 

responds to them because they are commercial products and the source code is not available. However, 

it is possible to place a piece of in-line hardware or software on the UAV that receives the command 

packet before the gimbal and can decide whether or not to forward it along to the gimbal based on 

mission conditions. 

Several methods can be used to make decisions on the validity of gimbal commands. One method to 

help catch unauthorized commands is to implement an authentication scheme, possibly by appending a 

cryptographic signature to messages sent from the ViewPoint software to the gimbal. However, this will 

not protect the gimbal system from the case in which a malicious agent has compromised the Piccolo 
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Command Center (PCC). Depending on the degree of compromise, the malicious agent could still be able 

to send messages that the UAV would consider authentic. 

In a similar manner, providing additional authentication to commands capable of causing damaging 

effects would be helpful but not sufficient. An attacker who has not fully compromised PCC to the point 

of recovering the cryptographic key would be halted by such a defense, but further compromises may 

render this ineffective. 

To protect from compromises of PCC the UAV should be able to judge the legitimacy of commands. To 

do this a run-time analysis can be performed to determine whether or not executing a command makes 

logical sense based on mission context. For example, if the system received a command to retract the 

gimbal while it is in a pre-specified area of interest, an intelligent decision would be to not immediately 

trust the command and attempt to verify its authenticity. In addition, authorized operators should be 

able to issue whatever commands they need, so there must be an override capability to verify that 

commands that may seem illogical are in fact legitimate.  

4.6.1.1 Using Mission Context to Detect Gimbal Attacks 

Cloud Cap software provides flexibility for a wide variety of mission operations, which makes the system 

susceptible to insider attacks involving seemingly valid commands that interfere with user operations. 

To prevent these, systematic rules based on mission context have been developed to limit when and 

where certain commands should be considered authentic. 

The following algorithms use structures and methods from the software development kit provided by 

Cloud Cap for ViewPoint plugin creation and are aimed toward detecting the attacks that have been 

found to be the most feasible. Despite the following algorithm being written using an SDK, one could 

decode the information bytewise from the message streams and follow the same algorithms. 

4.6.1.2 Packet Detection 

The method LookForGimbalPacketInQueue() searches through a queue of packets and determines if a 

packet of gimbal type (i.e., a gimbal packet) is present in the message stream. It then stores this packet 

in a predefined buffer. The packet is then inspected to see if the packet type is a gimbal command. 

Almost all of the gimbal command vulnerabilities fall into this type with the exception of the user-

warning packet.  

4.6.1.3 Retract/Deploy Command Detection 

The gimbal packets are further inspected to determine if the packet group is that of Gimbal command 

and control group. If so, then it is passed to the method that checks if it can be decoded into a 

retract/deploy struct pointer. If the method returns false the packet is ignored and the monitoring of the 

stream for packets continues. If the method returns true then the stream is decoded into information 

determining whether the gimbal is being commanded to either retract or deploy.  

Under the assumptions that normal operations would entail the retraction and deployment of the 

gimbal directly after take-off and directly before landing, the velocity of the gimbal relative to Earth and 
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the distance of the gimbal from the ground station should be relevant criteria to determine  whether the 

gimbal retract/deploy command appears to be authentic. 

The aircraft velocity and position can be determined by monitoring the gimbal telemetry stream for 

packets of type HOST_GPS_DATA_GIMBAL_PKTTYPE and of group 

GIMBAL_POSITION_INFORMATION_GROUP. These telemetry packets can be decoded to give the GPS 

position and velocity of the aircraft. These two pieces of information can be used to determine what 

phase of flight the aircraft is in. If the phase is take-off or approach/landing, then the retract/deploy 

command is considered authentic. If the aircraft is in cruise or loiter mode then the retract/deploy 

command should be considered malicious. 

4.6.1.4 Erratic Gimbal Command Detection 

To protect against a Gimbal Command attack it is assumed that during normal operations the gimbal 

should never be slewed to view a location above the horizon. Similar to the process previously 

described, the telemetry stream is checked for gimbal packets in the queue. The method 

DecodeGimbalCmdPacket() is used to give an elevation angle of the gimbal. The GPS information is used 

to determine the aircraft altitude. If the aircraft altitude is higher than the altitude at which the gimbal is 

pointed, then the command is authentic. If the gimbal is pointed at a higher altitude than the aircraft 

then the command is considered malicious and the user can be warned via a message sent through a 

payload message stream using the autopilot command and control link. 

Further constraints can be placed on the gimbal angles by limiting the gimbal orientation based on 

mission CONOPS. For example, if the UAV mission is to loiter overhead a specified target then the gimbal 

field of view should never extend outside the orbit of the aircraft.   

A simple diagram illustrates the application of mission context to limit the functionality of the gimbal. 

With this limited functionality, if the gimbal deviates from its intended use then a warning message will 

be emitted to the Cyber Commander. Using the image centroid location and intercepting the vehicle 

center of orbit position, a comparison will be done to ensure that the tracked object is within the orbit’s 

radius. This makes sense if the mission context is to circle overhead an object for recon purposes. 
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In steady, level flight the relationship between the aircraft’s bank angle ( a), velocity (Va), and turn radius 

(Ra) can be expressed as  

𝑅𝑎 =
𝑉𝑎

2

𝑔 ∗ tan (𝜙𝑎)
 

where g is the gravity force. 

The function defined as G relates the latitude and longitude of the gimbal and orbit centroid to a 

distance. This is done using an ellipsoidal Earth (WGS-84) model and calculating the distances using 

Vincenty’s formulae. 

4.7 Cyber Commander Interface Design and Development 

During Phase 1, the Cyber Commander interface lacked flexibility and displayed attack and restoration 

information in a manner confusing to non-developers. Additionally, only one aircraft could be plotted on 

the map. Increasing the number of planes involved manually encoding a unique aircraft into the test 

telemetry data. Initial development efforts focused primarily on increasing the flexibility of the existing 

interface rather than adding new UI elements and features. 

Recognizing the need for monitoring multiple aircraft simultaneously, we included an aircraft table in 

the database structure. This table stored both a 32-digit hexadecimal UUID in canonical form. We added 

URL commands for both inserting a new aircraft and deleting existing ones. AJAX calls are used to check 
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for the addition of new aircraft. If one is found and corresponding telemetry data is available, then plane 

symbol is plotted on the map to represent the aircraft’s movement. Movement is defined as a redrawing 

of the aircraft icon using new telemetry data read from the database. The initial design moved 

chronologically through the database, grabbing one row of telemetry information every 2 seconds. In 

our initial modifications to the code, we read in one row at a time, but used the difference in timestamp 

between the current row and the next row in the telemetry table to dynamically adjust the timing of the 

AJAX function responsible for moving the aircraft. 

A crucial capability of the cyber commander is to verify this aircraft movement against an existing flight 

plan, consisting of a closed loop of waypoints connected with directional arrows. We added a table 

containing waypoint information to the database structure, as well as a URL command for saving new 

waypoints or editing existing ones. This waypoint data is used for three primary purposes in the front-

end display. First, the latitude and longitude attributes allows for Google map markers to be plotted. 

Second, the specified destination value in the ingested telemetry data is used to draw a path to an 

aircraft’s current destination, mirroring functionality included in the Piccolo Command Center. Third, the 

combination of destination, latitude, and longitude data is used to draw directional arrows between 

waypoints on the Google map display.  

An important requirement of the cyber commander interface is its ability to update in real time. We 

elected to use recursive AJAX calls to repeatedly update features on the map at set intervals. A side 

effect of this implementation was that the number of map features gradually increased over time, 

leaking memory and crashing the browser. To remedy this problem, we decided to completely delete 

and redraw all elements each time the AJAX functions refreshed. For the directional paths connecting 

the waypoints, this logic worked sufficiently. Infrequently, however, an arrow is not drawn, an issue we 

likely attribute to the single-threaded nature of JavaScript. Waypoints had to be handled in a different 

manner. Complete redrawing of waypoint markers introduced a highly distracting ‘flickering’ effect on 

each refresh. To address this issue, we introduced logic that cross checks the waypoints stored in the 

interface against those returned from the database. If any differences are identified, then only the 

changed waypoints are altered. In future iterations of the GUI, we would like to apply the same cross 

checking logic to the directional arrows connecting the waypoints. 

4.7.1 Development of Interface 

Once the original code base had been modified to handle an arbitrary number of aircraft and flight plan 

markers, we focused our efforts on developing a more user-friendly interface for the cyber commander 

station. Our first brainstorming session produced an interface quite similar to the current GUI 

implementation. We used the Balsamiq mockups tool to create and refine a representation of the 

interface.  

We drew heavily on the usability heuristics as described by Jakob Nielsen in crafting the original design.  

4.7.2 Visibility of system status 

The left hand terminal existed in the original mockup and is meant to keep the user informed of the 

system status at all times by signaling both expected and unexpected aircraft commands.  
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4.7.3 Match between system and the real world 

Additionally, the displaying of aircrafts and navigation of the Google map are consistent with 

applications used for monitoring geographic areas. It is natural for the cyber commander to assume a 

‘bird’s eye view’ of the monitored aircraft. Throughout the interface, terminology was selected to match 

the vocabulary associated with the domain of aircraft surveillance. 

4.7.4 Flexibility and efficiency of use 

We addressed system flexibility by providing multiple points of entry into the alerts stored in the 

system. For example, a user can select an alert from the left terminal or open a search window to 

manually filter for specific types of alerts. This filtering uses the aircraft id value, the timestamp of the 

alert, and the alert type. To accommodate more advanced users, we allow direct access to an aircraft’s 

alerts by clicking on the corresponding map icon. 

4.7.5 Aesthetic and minimalist design 

Information visible to the user is kept as minimal as possible. We strictly defined the types of messages 

that can be displayed, which helped preserved this minimalism. At the highest level, the user can see 

aircraft names, positions, and movement, as well as a recent history of command and attack alerts; this 

information is consistent with the monitoring goals of the cyber commander. 

4.7.6 Recognition rather than recall 

Recognizing that distinguishing between these hexadecimal numbers put a large strain on an operator’s 

working-memory, we decided to incorporate a more understandable front end identifier. For example, 

instead of a 32-digit hexadecimal identifier, the aircraft would be recognized as “aircraft1,” or any other 

arbitrary name. This means the possibility of duplicate names exists, but the operator can still 

distinguish aircraft by clicking the corresponding map icon and seeing their unique ID values. 

Difficulties arising during development stemmed from web browser idiosyncrasies. The current iteration 

of the interface functions in both Firefox and Google Chrome web browsers. Initially, we experienced 

some difficulty in transitioning from Firefox to Chrome; the browsers have different protocols for 

handling user selection from drop down lists. Memory management in both browsers is also handled by 

in fundamentally different way. At one point during development, a small error in the code resulted in a 

difficult to find recursive memory leak. In chrome, the Windows task manager showed a slight, almost 

imperceptible increase in memory usage over time. Firefox, however, suffered immediate performance 

decreases as the allotted memory rapidly increased in size. Once we resolved these issues, the interface 

functioned equivalently on both browsers. 

Future work involves fully fleshing out planned features that depend on the communication protocol 

with the monitored aircraft, and the type of hardware information that a user would want to access. For 

example, a ‘Home’ and ‘Abort’ button are included in the interface’s maps. Ideally, in an emergency 

situation, an operator could either halt flight commands or force an aircraft to return to its deployment 

site. Understandably, this feature would require deep knowledge of the protocols used for 

communicating remotely with the aircraft. The backend database affords the storage of a variety of 

relevant hardware information. For example, the database could be expanded to store more detailed 
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aircraft information such as physical dimensions or engine type. Elements have been added to the 

interface to allow a user to query for this information, but with an empty database these elements are 

currently nonfunctional. 

The Django backend handling the routing of incoming URL commands currently runs using the provided 

development server. Before final implementation, a shift to a more robust and secure production server 

such as Apache 2 is essential. From testing perspective, the lightweight Django server functioned well in 

our highly dynamic development environment. Django’s method of serving static files to clients caused 

frustration in initial attempts at transitioning to a production environment.  

Future iterations of the interface would benefit greatly from usability testing. The current interface has 

only been handled directly by the development team, so testing would help ensure that the system 

image provides the necessary information for users to form a conceptual model consistent with that of 

the team. Feedback from the usability studies will be essential to finely tuning the target users’ 

interactions with the system. 

For the sake of simplicity, we constrained the interface development to work on a laptop or desktop 

web browser environment. We can see tremendous value in expanding our design into the mobile 

market, allowing the cyber commander to monitor aircraft status on a tablet device such as an Apple 

iPad. We imagine the first iteration of this expansion being an application that can be accessed through 

the tablet device’s browser. Future work could also include the development of native applications that 

could better leverage the available hardware resources on mobile devices. Again, these new interfaces 

would require usability tests and modifications, as a touch input method offers new challenges not 

apparent when using a touchpad or mouse. 

4.7.7 RabbitMQ 

A big part of the project was using the RabbitMQ messaging service which served as messaging system 

between the interface and the Sentinel. Essentially, the RabbitMQ delivers messages to locations same 

binding key as the routing key from which the message was sent. A producer program from a part of the 

sentinel (e.g. Gps Algorithm, Waypoint Algorithm, etc.) would send comma-separated messages to front 

end where a consumer program would read them, interpret them and call a URL with the information to 

store a database eventually.  

Upon start of the consumer program, a producer code block requests a list of waypoints that will be sent 

immediately back by another part of the system. A problem that occurs is that the aircraft will not be 

shown on the screen without a set of waypoints. Additionally, if there is an error in the sequence of 

waypoints (i.e. a waypoint is missing or the waypoints are not in the logical sequence), the aircraft will 

again not populate on the screen. The interface should be modified to show the aircraft independently 

of whether a correct set of waypoints are in the database. Further investigation is needed to accomplish 

such a task, but on first thought, it might be possible to override the requirement of the system to 

display waypoints. What is happening is there is logic flaw in the javascript code which creates an error 

to the whole website. To possibly override such an error, a series of if-statements could fix the interface 
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to display waypoints when only correct ones are stored. Additionally, it might be helpful to have other 

parts of the system to check for correct waypoints to better insure the reliability of the interface.  

The consumer program has a set of binding keys that are constantly being read to check if messages 

have arrived from the various sources in the sentinel. A message from the same binding key will have 

distinct information that is separated by commas. This allows for easy parsing of the message into 

individual pieces of data. From there, the program will concatenate the data into a suitable URL and 

temporarily opens the URL to transport the information into the database. The process of URL calls is 

the convenience of Django. Of course, messages from different binding keys will contain different data 

which eventually call different URL. Therefore, the keys need to be unique as they are now. Problems 

can also occur if there is not the same binding key in the consumer as the routing key in the producer. 

Challenges arose when spelling errors occurred, or specific protocols were not established. A major issue 

that happened was when the data is not in the specified format. Examples include data in the wrong 

order, missing data, or the data was not compatible with the URL regular expressions that interpreted 

the URL calls. For the future, a more robust way of interpreting the data needs to be used. 

Unfortunately, it is inherent to the RabbitMQ to have exactly the same binding and routing keys.  

General Comments: The RabbitMQ is a central part of the system because it delivers essential messages 

from each part eventually ending up in the front end interface. It is uncertain whether the current 

security on the RabbitMQ is secure enough. If the RabbitMQ was attacked, that would compromise 

significantly what the operator sees. A recommendation is to run additional testing on how the 

RabbitMQ could be compromised. If the results are significant enough to be concerned, additional 

security should be added or a new way to send messages should be implemented. Security methods for 

the messaging needs to be researched further. 

4.7.8 GPS Parameter Display 

On a separate display away from the Cyber Command display, an operator can enter values for the 

alpha and sliding window that the GPS algorithm incorporates when determining if there is an attack. As 

a result, the Cyber Command operator can set bounds to let the GPS algorithm know what determines 

an attack. The display is fairly straightforward with two input boxes and descriptions next to each. After 

the operator chooses the values and presses submit, the message will be sent over the RabbitMQ and 

the Cyber Command display will change accordingly. Additionally, if the inputs entered are not valid 

entries, the system will let the operator know. 

As of the flight test, it was unclear whether having a separate display through a separate URL is 

insufficient or not. It might be beneficial to have that as a plug-in to the Cyber Command display to 

minimize workload. Furthermore, the parameter display is very rough and could be built to look more 

refined; however, there would not be much added practical significance.  
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5 Conclusions and Future Work 

This paper discusses implementation issues associated with the recently introduced System-Aware 

cybersecurity concept, and discusses a flight evaluation activity of a prototype implementation using 

those concepts to protect a UAV based surveillance mission. This includes an architectural concept that 

employs Sentinels for cybersecurity, and the introduction of the term super-secure Sentinel. Super-

secure smart Sentinels are employed to monitor system functions and assure that they are operating in 

a manner that is consistent with their design and configuration. In cases where the Sentinels detect 

inconsistencies, they also designed to automatically determine if the observed differences are due to a 

cyber-attack. The paper introduces the Sentinel approach for implementation of generally applicable 

System-Aware architectural solution, resulting in the identification of many design trade-offs related to 

possible Sentinel implementation. While the trade-offs are conceptually dealt with in this paper, there is 

a need for related design trade-off studies that address the following Sentinel design trade-off issues 

 Multiple Sentinels can be distributed throughout a system, to monitor subsystems and then 

coordinate on the detection and response to a cyber-attack. Alternatively, a single Sentinel can 

monitor multiple subsystems and make determinations regarding detection and response. The 

paper highlights management factors that would contribute to design decisions related to the 

degree of distribution/centralization.  

 Systems that include geographically distributed subsystems, by necessity, must include multiple 

coordinating Sentinels. Research is required to explore possible architectures for securely 

integrating Sentinels, and to explore possible information exchange and decision-making 

architectures required to effectively deal with distribution. Design concepts to support the 

development of groups of coordinating Sentinels will need to be created to support security for 

functions that are executed across a system of systems. The paper highlights the integration of 

UAV-based surveillance, such as imagery collection, which is integrated with a UAV ground-site, 

UAV autopilot system, and operator control station, as an example of a system of systems for 

collection and interpretation of imagery. Sentinel designs must be predicated on a systematic 

approach for (1) identifying potential distributed attacks that require coordination for detection 

and response, (2) allocating functions to individual Sentinels, and (3) designing the needed 

secure coordination among Sentinels to detect and respond to such attacks. 

 Sentinels can include more functionality related to detection and attack response, but at the 

expense of expanded and more complex software yielding potential reductions in the security of 

the Sentinel’s implementation. New work is required to develop metrics or design principles 

that address the relationship between security gained from added functionality and the security 

compromised from the corresponding additional software and the added complexity of the 

software design. 

 Sentinels need to be secure and can be secured through a variety of techniques. Based upon the 

experience gained from the UAV-based rapid prototyping project and flight evaluations 

discussed in section 4.1, the paper provides tangible evidence regarding the ability to 
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advantageously utilize strong but not scalable security techniques, since many (if not all) of a 

Sentinel’s monitoring and control functions would require little and non-complex software for 

implementation. Assuming that this observation is representative of a large fraction of the 

implementation requirements for future Sentinel design patterns, the opportunity to exploit 

past work on constrained security techniques and to initiate new research on such techniques 

becomes an increasingly important opportunity. 

 Operators will likely be engaged in making what could be critical response decisions in the face 

of a cyber-attack. The decisions will impact not only current operations, but also must account 

for intelligence gathering opportunities about the attack and attackers’ objectives, the 

possibilities for flight replacement instead of system restoration, the consequences of a wrong 

decision, especially in cases where the fail-over mode is inferior to the primary mode of 

operation, etc. This points to the need for operations and human factors research regarding 

decision-making in response to detected (possibly falsely detected) cyber-attacks. 
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6 Appendix 

6.1 Supporting Calculations for GPS System Attack 

Proposed Mass Function for FOD (3 components) 

Event 1 and Even 8: 

m1,t = m8,t = [
prob(x − y)

max prob(x − y)
] ∗ [

prob(x − z)

max prob(x − z)
] ∗ [

prob(z − y)

max prob(z − y)
] 

Event 2 and Event 7: 

m2,t = m7,t = [
1 − prob(x − y)

max{1 − prob(x − y)}
] ∗ [

1 − prob(x − z)

max{1 − prob(x − z)}
] ∗ [

prob(z − y)

max prob(z − y)
] 

 

Event 3 and Event 6: 

m3,t = m6,t = [
1 − prob(x − y)

max{1 − prob(x − y)
] ∗ [

prob(x − z)

max prob(x − z)
] ∗ [

1 − prob(z − y)

max{1 − prob(z − y)}
] 

Event 4 and Event 5: 

m4,t = m5,t = [
prob(x − y)

max prob(x − y)
] ∗ [

1 − prob(x − z)

max{1 − prob(x − z)}
] ∗ [

1 − prob(z − y)

max{1 − prob(z − y)}
] 

The probability of the difference of two Gaussian random variables X and Y with means μX, μY and 

standard deviations σX, σY respectively is the Gaussian distribution with mean  μX − μY and standard 

deviation √σX
2 + σY

2. This automatically organizes the variability and accuracy of each sensor. This 

enables the user to implement cheaper or lighter components with differing accuracy from other 

components which may improving the scalability and diversity of use of this system. 

 

GLR ALGORITHM 

Let μ1 , the deviation way from μ0 , be of the form 

μ1 = μ0 + Γv, 

Where Γ is a known vector, and υ is an unknown scalar change magnitude. Substituting this expression 

for μ1 allows one to deduce the following expression of the cumulative sum, Sj
t(v) 

Sj
t(v) = ∑ ln

pμ0 +Γv(Mj
t)

pμ0 
(Mj

t)

t

i=t−W
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= ∑ vΓ′Q−1(mj,i −

k

i=j

μ0 ) −
1

2
v2μ0 Γ′Q−1Γ 

These probabilities are assumed to have a Gaussian distribution. 

∂Sj
k(v)

∂v
= ∑ vΓ′Q−1(mj,i −

k

i=j

μ0 ) − (t + 1)Γ′Q−1Γ v 

= (t + 1)Γ′Q−1 [
1

t + 1
∑ mj,i − μ0 

t

i=t−W

] − (t + 1)Γ′Q−1Γv 

= 0 

So, 

v̂(k, j) =  
Γ′Q−1 [

1
k − j + 1

∑ mj,i − μ0 
t
i=t−W ]

Γ′Q−1Γ
 

In our algorithm, we have Γ = 1, and k − j = W our estimate simplifies to 

v̂j(t) =
1Q−1(Mj

t − μ0 )

1Q−11
 

where 

Mj
t =

1t + 1
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Executive Summary 

The increasing ubiquity of computerized, automated systems has led to growing interest in the 

development and application of methods for defense against cyber-attacks.  The concern is that 
vulnerabilities may exist in unmanned autonomous systems that could be easily exploited to 

compromise the effectiveness of the system.  The Georgia Tech Research Institute (GTRI) 
worked with the University of Virginia on the System Aware Cyber Security project with the goal 
of developing low-cost, embedded techniques for cyber-attack defense.   

The embedded defenses in the System Aware approach are designed to protect the most 
critical system functions.  In designing these defenses the objective is to turn the tables in 

asymmetric cyber-warfare.  Instead of an adversary being able to spend a small amount of 
money to exploit a system vulnerability and cause great damage, the System Aware designer 
develops a low-cost defense that forces the adversary to expend significantly greater resources 

to execute an effective attack.  To further keep costs low in applying the System Aware 
concept, security design patterns should be created that are reusable and that can be repe ated 
at the design level for various types of systems.  The System Aware cyber assessment 

methodology involves identifying the critical system components and determining the likely 
attach vectors for them.   Cyber defenses are then identified and assessed in terms of their 
potential effect on system performance and the cost to implement. 

To illustrate the methodology with a suitable example, the System Aware design process was 
applied to the GTRI Unmanned Airborne Sensor System (GAUSS).  GAUSS is based on an Outlaw 

ER airframe manufactured by Griffon Aerospace and is equipped with a widely used commercial 
off the shelf autopilot system and camera gimbal system.  A vulnerability assessment of both 
systems identified several critical aspects of the system incl uding the autopilot parameters 

(flight plan waypoints, gains, and limits), gimbal commands, the GPS used for navigation, and 
the data links used for command and control.  Three types of attack were selected for 
development for the demonstration program: an attack that changes the coordinates of the 

waypoints in the flight plan while masking the aircraft’s course change on the operator’s 
display, an attack the corrupts the GPS position data being provided to the camera gimbal for 
inclusion in the video metadata, and attacks on the camera gimbal commands that make the 

gimbal appear to malfunction.  Methods to detect and defend against these attacks were 
developed and implemented with a system called the Sentinel.  The Sentinel employs design 
patterns for validating data such as diverse redundancy, data consistency checking, and state 
estimation. It monitors the serial communications between system components onboard the 

aircraft and at the ground control station.  When a cyber-attack is detected, it notifies the 
operator through a Cyber Commander interface. 

The Sentinel system and the components for carrying out the cyber-attacks were integrated 

with the GAUSS autopilot system and tested in GTRI’s hardware in the loop simulator.  The 
simulator testing allowed the hardware and software configurations to be finalized and 

thoroughly vetted before the system was integrated into the flight vehicle.  After integration 
and airworthiness qualification, the aircraft was cleared for flight under a certificate of 
authorization from the FAA for operations at the Early County airport in Blakely, GA.  During 
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two flights on Oct. 9, 2014 the Sentinel successfully detected and halted the three types of 
attacks selected for the demonstration. 
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1 Introduction 

Several incidents in the past few years have increased concerns about the vulnerability of the 

U.S. UAS fleet.  In one incident, reported in December 2009, militants in Iraq used $26 off -the-

shelf software to intercept live video feeds from U.S. Predator drones, potentially providing 
them with information they need to evade or monitor U.S. military operations  (Gorman, 
Dreazen, & Cole, 2009).  In another incident, occurring on December 4, 2011, a Lockheed 

Martin RQ-170 Sentinel UAS was captured by Iranian forces near the city of Kashmar in 
northeastern Iran.  The Iranian government claimed that the UAS was commandeered by its 
cyber warfare unit although U.S. officials dispute this claim.  Both of these incidents involved 
high value assets that would be expected to have numerous security features to prevent cyber-

attacks.  The less expensive and far more numerous systems such as the tactical UASs and small 
UASs may not have significant cyber security measures and would thus be far more vulnerable 
to a cyber-attack.  The ubiquity of these systems on the modern battlefield heightens the 

concern over their vulnerability.  This provides ample motivation for applying the principles of 
cyber security asymmetry to develop low cost protection features that greatly increase the 
effort and cost that an adversary must expend to exploit the system’s vulnerabilities.  

Cyber-attacks on unmanned systems may come from a number of different sources including 
attacks through the supply chain of components used in the system, insider attacks from 

people with access to the system, malware attacks from corrupted software sources , and 
attacks through the command and control data link. The goal of System Aware Cyber Security is 
to develop low-cost, embedded techniques for cyber-attack defense (Jones & Horowitz, 2012).  

The approach is to create reusable system aware security designs that can serve as patterns for 
solutions and that can be repeated at the design level for various types of systems.   

This report illustrates how the System Aware approach may be applied to an actual unmanned 

aircraft system.  The research program was conducted in two phases.  In the first phase a 
widely used commercial autopilot and the camera gimbal system were examined for 

vulnerabilities and several potential attack vectors were identified.  A subset of these attacks 
was then selected for development along with methods to detect and defend agai nst these 
attacks.  In the second phase of the program the hardware and software required for 

demonstrating System Aware on a UAS was developed.  The system was thoroughly tested in 
simulation then demonstrated in a flight test on October 9, 2014.  This re port documents both 
phases of the System Aware program. 

2 System Aware Cyber Security 

Developing low-cost, embedded techniques for cyber-attack defense has been the goal of a 

research program sponsored by the Systems Engineering Research Center (SERC) and the 
Department of Defense.  The research team, consisting of the University of Virginia (UVa) and 

the Georgia Tech Research Institute (GTRI), developed a novel cyber security concept for 
embedding defense mechanisms within highly automated systems such as UAS.  This concept is 
referred to as System Aware cyber security.   
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System Aware operates at the system application layer to provide security inside the system 
network; i.e. behind the perimeter protection provided for the whole system.  While networked 

systems typically have some measure of protection at their points of access, these defenses can 
be breached.  In addition, attacks by trusted insiders or through the supply chain of the system 
components are potential avenues that can bypass network perimeter defenses.   

The embedded defenses in the System Aware approach are designed to protect the most 
critical system functions.  In designing these defenses the objective is to turn the table s in 

asymmetric cyber warfare.  Instead of an adversary being able to spend a small amount of 
money to exploit a system vulnerability and cause great damage, the System Aware designer 
develops a low-cost defense that forces the adversary to expend significantly greater resources 

to execute an effective attack.  To further keep costs low in applying the System Aware 
concept, security design patterns should be created that are reusable and that can be repeated 
at the design level for various types of systems. 

The design patterns that may be used for cyber defense include, but are not limited to: 

 Diverse redundancy by using diverse redundant components in critical subsystems to 

restore functionality in the event one component is disabled 

 Diverse redundancy with voting by using diverse redundant components, comparing 
their outputs, and looking for differences outside of the expected error bounds to 

detect an attack.  In a triplex system, two components that are in agreement can detect 
the failure of the third component and eliminating the infected component.   

 Configuration hopping by physically or virtually modifying the configuration of the 
hardware/ software components in systems dynamically to provide a moving target 

defense 

 Data consistency checking for data integrity and operator display protection  

 Physical confirmations of digital data for data integrity  

 Use of analog components for diversely redundant solutions 

 State estimation using existing information in the system to estimate other state 
variables in the system and inferring the overall state of the system  

To develop effective, low cost System Aware design patterns researchers at UVa have 

developed the relational System-Aware cyber assessment methodology.  The process consists 
of the following six steps: 

1. identify the critical system components for a particular system  

2. identify the possible paths to attack those components  
3. determine which of those attack paths would be most desi rable to an adversary 

4. identify possible cyber security defenses against those attacks as well as evaluate the 
impacts of those defenses on the attacker 

5. assess the effects on system performance of potential defenses 

6. estimate the security trade-offs of the various architectural solutions 

Details of this methodology are provided in our Phase I Final Report.   This is the methodology 

that was applied to developing System Aware design patterns for UAS as described in this 
report. 



3 General Description of UAS Systems 

3.1 Autopilots 

The current proliferation of unmanned aircraft has been greatly aided by the avai labi lity of 

severa l commercial off-the-she lf (COTS) autopilots. Among the most popu lar systems are the 
Piccolo fami ly from Cloud Cap Technology, the MP2x28 series from MicroPilot, and the Kestrel 
autopi lot from Lockheed Martin (Figure 1). These autopi lots include a number of sensors such 

as a GPS receiver for gee-location, an inertia l measurement unit (IMU) consisting of 

accelerometers and rate gyros, and pressure transducers to measure airspeed and altitude . 
They also include a microprocessor that performs signal processing and hosts the feedback 
control laws used to stabi lize and steer the aircraft. A digital spread spectrum radio link 

enables the ground operator to send flight plans to the autopi lot, adjust system parameters, 
and receive te lemetry and status messages. 

Piccolo II MP2128 Kestrel 

Figure 1. COTS Autopilots 

Figure 2 shows the functiona l structure of a typical autopilot system. The system has two 
primary components: the autopi lot onboard the aircraft and the ground control station 

consisting of a transmitter/receiver, a pi lot console, and a computer hosting the operator 
interface software and serving as a display. In the autopilot, the guidance function receives the 
flight plan in the form of a series of waypoints from the operator. Based on the aircraft's 

current position and heading and the location of the next waypoint, the guidance function 

determines the heading rate and cl imb/ dive rate to steer the aircraft to the waypoint. The 
control laws generate commands to the f light control actuators to stabilize and control the 

aircraft's motion and manage its power setting. An example of a control law structure for the 
longitudinal axis is presented in Figure 3. In the innermost loop pitch rate is fed back to the 
elevator to provide damping and improve the aircraft's stability. In the next loop, pitch attitude 

is fed back to stabilize the aircraft's phugoid mode (a low frequency airspeed-altitude 
osci llation) . The outermost loop could employ airspeed feedback to control the airspeed (as 
shown) or, alternatively, altitude and altitude rate cou ld be fed back to contro l the attitude . 
Limiters are used to prevent saturation of the control loops and saturation of the actuator 

commands. The gains and limits are initially set by the fl ying qualities engineer based on 
simulation and further tuned through f light testing. 

141 



The aut opi lot sensor suite incl udes a GPS receive r for determini ng t he aircraft's locat ion, 
ground speed, t rack angle, and geodetic altitude. The IMU measures t he aircraft angu lar rates 

about t he pit ch, roll, and yaw axes, as we ll as t he accelerations along t hese axes. Pitot and 
static pressure transducers measure t he aircraft ' s ai rspeed and alti t ude. A magnetometer is 
used to measure the aircraft's yaw angle wit h respect to magnetic north . Other sensors are 

typical ly included t o measure engi ne speed and t emperature and the ai rcraft's height above 
ground level. Usually t he signals from t he sensor suite are processed t hrough a Kalman fi lt er to 
mi nimize t he effect s of noise and biases and t o est imate st at es t hat are not measured di rectly, 
such as the aircraft's pit ch and roll angles. The resu lt ing ai rcraft st ate vect or is fed back to t he 

control laws for stability and control and to the guidance function t o compute t he out er loop 
flight path commands. The information is also te lemetered t o t he ground cont rol st ation to 
inform the operat or of t he aircraft's trajectory and status. 

~-------------------~ I 
I 
I 
I 
I 
L-

I 
Operator Status I 

Commands Display I 
I 
I ---. ---------

_____ .. 
GPS waypoints 

Ground Control Station 

Autopilot --- ·-------------------------------------
Guidance 

Aircraft states 

Heading, fit path angle, speed cmds 

Control 
----+ Actuators 

Aircraft Sensors Signal 
----+ ---+ f--+ -Laws Dynamics (GPS/IMU) Process ing 

t 
Aircraft states 

L-------------------------------------------

v, 
(airspeed 

command) 

Figure 2. Typical Flight Cont rol Function Diagram 

Limit 

q (pitch rate) 

Elevator 

Actuator 

V (airspeed) 

Figure 3. Longitud inal Axis Control Laws 

3.2 Camera Systems 

Ka lman 
Fi lter 

UAS usually ca rry some type of payload consist ing of sensors for monitori ng t he ext ernal 

environment. Most oft en t he payload sensor is a video camera system that relays ful l motion 
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video back to a payload operator collocated with the UAS operator.  Figure 4 presents a generic 
functional diagram for a camera gimbal system.  Through an interface at the ground control 

station the camera operator is able to send commands to control the orientation of the camera, 
select operating modes such as target tracking, and control camera settings such as the zoom 
level.  A processor within the camera gimbal executes control algorithms to point the camera in 

the desired direction while compensating for the aircraft’s motion.  This motion may be 
measured by a GPS/IMU sensor suite within the gimbal or be provided by the autopilot’s 
GPS/IMU.  The gimbal states are also relayed to the operator to provide him awareness of the 
gimbal’s orientation and status. 

The video from the camera may be further processed to stabilize the scene and add text 

overlays containing information about the image such as the coordinates of a target.  More 
sophisticated camera gimbal systems include tracking algorithms that allow the camera 
operator to designate a portion of the image and have the camera system automatically track 

it.  These algorithms may be executed by a processor within the camera gimbal or in the ground 
control station. 

 

 
Figure 4. Camera Gimbal Functional Diagram 

4 UAS System Vulnerabilities 

4.1 Autopilot Vulnerabilities 

Today’s COTS autopilots are extremely versatile and can be easily tailored for a variety of 

applications.  This versatility, however, also provides a number of avenues for exploitation that 
could be used to adversely affect the behavior of the aircraft.  Figure 5 illustrates the fact that 

many of the components that make up an autopilot have inputs from external sources.  
Guidance receives waypoint lists, flight path commands, and mode commands, such as flight 
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termination, from the ground control station.  The control laws have a number of gains and 
limits that can be changed via the ground control station.  The results of changing these 

parameters could be subtle, such as an annoying inability to maintain a desired altitude or flight 
path, or catastrophic, such as flight into terrain or an engine shutdown.  For an example of how 
one small change could adversely affect a UAS’s behavior, consider the longitudinal axis control 

laws shown in Figure 3.  Simply setting the pitch rate gain (kq) to zero would effectively lock out 
control to the elevators.  This could also be accomplished by setting the actuator command 
limiter to zero.  Nearly all of the parameters in the flight control laws can be changed by the 
operator through the radio link while the aircraft is in flight.  The details of what parameters  

can be changed, what impact they have on the flying qualities, and what data security measures 
are employed are particular to each autopilot make and model.  

 
Figure 5. External Input Sources for Autopilots 

To illustrate the significance of this issue, Table 1 presents a partial list of the parameters that 

can be changed in the Piccolo II autopilot while the aircraft is in flight.  The list is color coded to 
indicate the potential severity of changes to these parameters.  Exploitation of items colored in 
red will cause the loss of the aircraft.  For example, certain gains and limits could lock out 
control of the aircraft if they are set to zero.  Items colored in orange could possibly cause the 

loss of the aircraft, depending on its current state.  For instance,  raising the bank angle limit 
above 30 degrees could potentially allow the aircraft to enter too tight of a turn causing the 
wing to stall and resulting in loss of control.  Items color coded in yellow could degrade the 

aircraft’s flying qualities by preventing it from holding trim, for example. Items not color coded 
need to be assessed through simulation to understand their potential impact on the flying 
qualities and control of the aircraft. 

Table 1 also indicates the security measures for the autopilot parameters.  In many cases, 
changing a parameter value requires the operator to enter a password before the change is 



accepted. This is an example of an inexpensive approach to ensuring data integrity. As a resu lt , 
the more li ke ly avenue of attack wi ll be on parameters that are not password protected. 

Tab le 1. Piccolo Parameters 
Group Parameter Purpose Possible exploitation Protection 

spoofing timing sifJials 
Navigation GPSsignals geolocation could result in a false 

position solution 

Actions Abort 
action depends on 
current aircraft state 

Engine On 
aiiCNJs user to enable 

not prot ected 
or disable engine 

not prot ected, 

Flight plan 
waypoint control flight path of altitudecan be zeroed, but changes 
coordinates aircraft waypointcan be moved reflected on 

operator display 
Command dynamic pressure 

I imi t aircraft airspeed 
password 

limits limi t protected 
pressure altitude 

I imi t aircraft altitude 
password 

limi t protected 
extending I imit beyond password 

bank angle l imit I i mi t aircraft turn rate 30• could cause aircraft 
protected 

to stall 

aileron travel limitsautopilotcmds 1D 
setti ng limits to Ocould 

password 
Output limits shutdown actuator 

limits ailerons 
cmds 

protected 

elevator travel limitsautopilotcmds 1D 
setti ng limits to Ocould 

password 
shutdown actuator 

limits elevator 
cmds 

protected 

rudder travel limitsautopilotcmds 1D 
setti ng limits to Ocould password 
shutdown actuator 

limits rudder 
cmds 

protected 

throttle travel limitsautopilotcmds 1D 
setti ng limits to Ocould 

password 
shutdown actuator 

limits throttle 
cmds 

protected 

l imits autopilot cmds1o 
setting I i mits to 0 could 

password 
f lap travel l imits 

flaps 
shutdown actuator 

protected 
cmds 

Mission 
controls switch to setting I imit to 0 wi II 

password 
pi I ot ti meout autopilotwhen no block possibility of 

limits 
manual i nput manual flight 

protected 

controls when Lost 
password 

comm t imeout Comm Waypoint plan is 
executed 

protected 

def ines the amount of 

GPStimeout 
time for the aircraft to password 
continue without a GPS protected 
sol ution 

Lateral gains roll rate ga in roll damping 
setti ng thi s ga in to zero password 
wi II disable roll control protected 

rol l rate i ntegral used to trim errors in setting gain to zerowi II password 
gain the ai lerons disable ability of protected 
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autopilot to t ri m out 
ai leron errors 

Longitudinal 
energy ra te error gai n on integral of 

setting gain to zero wi II password 
gains 

i ntegra l to energy rate error to 
in hi bitth rottle tri m protected 

throttle throttle 

altitudeerrorto 
gain on altitude error 

setting ga in to zero wi II pa ssword 
to commanded altitude 

altitude rate gain 
rate 

inhibit altit ude control protected 

Al titude rate error Gai ns sets the 
setti ng ga in to zero wi II pa ssword 

to Zacceleration bandwidth for the 
cmd desired vertical rate 

inhibit altitude control protected 

Limit s Ai leron Max 
Maximumaileron Setting I i mit to zero wll pa ssword 
output lock out aileron control protected 

Elevator M in 
Minimum elevator Setting I i mit to zero wll pa ssword 
output lock out aileron control protected 

Elevator Max 
Maximumelevator Setting I i mit to zero wll pa ssword 
output lock out aileron control protected 

4.1.1 Global Positioning System 

Another potent ial vul nerability of most autopi lots is t hei r heavy re liance on the Global 

Navigat ion Sate llite System (GNSS), in particular t he Global Posit ioning Syst em (GPS), for 
navigation. Th is dependence on GPS leads them to be susceptible to jamming or spoofing 

attacks. Although jamming is much more straightforward t o accomplish, it can lead to t he 
t ermi nal fl ight of t he aircraft and wil l be immediat ely obv ious to t he operat or of the vehicle. 
Spoofing can be covert and is capable of control I ing the vehicle' s f light through t he att ack. 

Adversaries developing GPS spoofing attacks can take advantage of the open knowledge of t he 
GPS sat ellit e messages. In civil GPS systems, the pseudo-random number code is defined in 

openly ava ilable GPS interface document s. The repetition every mil lisecond allows the message 
t o be easily predict ed. If a spoof ing signal can broadcast t his message w ith a sl ightly varying 
phase, then the receiver's coordinat es can be alte red, al lowi ng t he attacker to commandeer t he 

ai rcraft. This was demonstrat ed by Kerns2 at the University of Austin, Texas in 2012 when a 
rotorcraft UAV was covertly captured v ia a spoofed satel lit e signal and subsequently controlled 
by the spoofed UAV coordinates. 

Several methods of ant i-spoofi ng are present in modern day GPS sensors. Jamming-to-noise 
monit oringtri ps an alarm wheneverthe power level in a given band reaches a certain dB higher 

t han the background noise in typical condit ions. Frequency unlock monitoring is an effective 
deterrent t o spoofi ng because it requires t he att acker to have specific data about the aircraft's 
ve locity. Another common met hod is innovat ions t esting. This compares the position-ve locity 

output of t he GPS to t he st at e est imator in t he Kalman fi lter. If t he two values disagree then an 
alarm is t riggered. The University of Aust in demonstrated that even w ith t hese metho ds, t he 
system is stil l vu lnerable and t he attacker can st i ll covertly bypass these prevention techniques 

(Kerns, Shepard, Bhatti, & Humphreys, 2014). 

One prevention method presented in t he System Aware program is t riple modular redundancy 

w ith dissi milar systems. Using various GPS sensors and a voting scheme, t he vu lnerabi lity in one 
system can be compensated by t he other two. The best situation would be to have GNSS 
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systems using different satellite constellations, e.g. one GPS, one Galileo, and one GLONASS 
system. The variation in the carrier frequencies and messaging protocols for each of these 

systems ensures that all three systems could not be spoofed at the same time.  

4.1.2 Data Links 

Yet another avenue of attack on autopilot systems is through their command and control link.  

A recent study by Hartmann and Steup (Hartmann & Steup, 2013) looked at several types of 
data links currently being used in UAVs and assessed their susceptibility to cyber-attack.  The 
links included the Tactical Common Data Link (TCDL) in the Ku band, line of site (LOS) 
communications in the C band, and in the WiFi bands using the IEEE 802.11 standard.  Another 

commonly used band is the industrial, scientific, and medical (ISM) band at 900 MHz and 2.4 
GHz.  The command and control link for the Piccolo II autopilot used in this project is the MHX-
910/2400 frequency hopping radio from Microhard Systems Inc.  GTRI analyzed this radio 

system to determine how the link might be compromised.  Our initial assessment is presented 
in Appendix E. 

4.2 Camera System Vulnerabilities 

UAVs are predominantly used as ISR platforms carrying sensor payloads such as EO/IR cameras, 
synthetic aperture radar, signals intercept systems, and others.  As a result, sensor technology 

is evolving quickly with new sensor systems being developed for all classes of UAVs.  However, 
in the push to quickly field these new sensor suites and take advantage of their capabilities, 
cyber security is sometimes neglected.  This creates an opportunity for an attacker to 

compromise a mission by exploiting weaknesses in the payload security; e.g., an attacker could 
degrade or deny the payload service or spoof the information coming from it.  

Currently, video cameras are the most prevalent sensors used on UAS.  Camera gimbal systems 

share some of the same vulnerabilities as autopilots such as the ir dependence on GPS for 
position data. They also typically use the autopilot’s command and control link to pass 

messages from the operator’s station through the autopilot to camera gimbal.  Exploitation of 
these vulnerabilities could significantly compromise the effectiveness of the UAS’s mission 
without the need to attack the autopilot system itself.  For example, a cyber-attack could 

corrupt the GPS position data used by a camera gimbal system for determining the geolocation 
of the video image.  When the erroneous position data is included in the video metadata any 
targeting value is lost.  This type of attack could be difficult to detect since it does not affect the 

behavior of the aircraft.  In a similar vein, cyber-attacks on the gimbal commands can make it 
appear that the system is malfunctioning and thus reduce the mission effectiveness.  Examples 
of these types of attacks include malicious commands sent to the camera gimbal that interfere 

with gimbal deployment and object tracking.  Because these types of attacks are subtle,  the 
operator may not realize that the system is under attack and just chalk it up to a random 
malfunction. 

To investigate methods for preventing, detecting, and countering potential cyber-attacks 

against camera gimbal payloads, the GTRI studied potential cyber-attacks and corresponding 

cyber security solutions for the TASE 150 camera gimbal system on its GAUSS UAV.  The TASE 
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150 is a member of the popular and widely used family of TASE camera gimbal systems 
developed by Cloud Cap Technology.  

4.2.1 High Level Description of Gimbal Attacks 

In order to determine the simplest vector to compromise the TASE camera gimbal, GTRI 

analyzed the specifics of the TASE gimbal, the ViewPoint ground station software (used to view 

the video), and the communications protocol used to issue commands to the gimbal as well as 
receive status updates from the gimbal. This analysis revealed that the simplest attack vector 
would be to cause a denial of service or degradation of service by sending malicious, 
unauthorized commands to the gimbal from a malware exploit running on the operator 

interface machine (i.e., the machine hosting the Piccolo Command Center (PCC) and 
ViewPoint). 

This type of attack is possible because it is assumed that the source for all gimbal commands 

can be trusted. This means that as long as attackers can communicate with the gimbal, they can 

have it execute any command they want. In addition, there are multiple commands that can 
potentially be exploited by an attack to cause a denial or degradation of service. Together, 
these factors suggest this path of attack. 

The attack vector chosen for this study embeds a malicious exploit into ViewPoint. Embedding 

the malicious exploit is made possible by the open architecture of the ViewPoint and PCC 

software that allows developers to create plug-in software modules for added functionality.  In 
addition, the PCC and ViewPoint allow users to go online and download maps and aerial 
imagery from several different map databases.  No particular security measures are in place for 

users downloading maps onto the machine hosting the PCC or ViewPoint. Together these 
features provide a potential attack vector. 

An alternative attack vector was considered that required communicating with the gimbal 

directly from a rogue wireless command tower. However, it was determined that the simplest 
solution would be to use the already established communication channel. In addition, solutions 

designed to detect malicious data sent from the operator interface should also be able to 
detect malicious data sent from an alternate source. 

4.2.2 Gimbal Attack Specifics 

The attack is an exploit embedded into ViewPoint that sends malicious data to the gimbal. The 

data will be unauthorized but properly constructed command packets designed to cause a 
denial or degradation of service. The exploit has the ability to construct the command data, 
compute the checksum, and send it to the gimbal. In addition to sending malicious data, the 

exploit can also produce non-malicious data at random intervals to attempt to hide the 
malicious data. The following are commands that could be used for a degraded or denial of 
service attack. 

4.2.2.1 0x00 / 0x43: Extend/Retract Gimbal 

By issuing commands to retract the gimbal during critical points in the mission, an attacker can 

cause the loss of a significant amount of information. By continuously issuing the command to 

retract the gimbal an attacker can cause a complete denial of service of the payload.  
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4.2.2.2 0x00 / 0x70: Disable Motor Driver 

As with the Retract Gimbal packet, this command can cause a similar denial of service by 

interfering with the operator’s ability to steer the camera gimbal.  

4.2.2.3 0x00 / 0x80: Gimbal Command 

This command controls the location in which the gimbal is pointed.  Pointing the gimbal away 

from the target can cause a denial of service. Random or erratic movement of the gimbal may 
cause the camera operator to assume a technical malfunction has occurred and recall the UAV.  

4.2.2.4 0x00 / 0x40: Gyroscope Zero 

This command sets the zero of the gyroscope on board the TASE gimbal. The gimbal 

documentation warns that the operator should not issue this command while the gimbal is in 

motion. Doing so may cause the gyroscope to be calibrated improperly, causing a degradation 
of service that would be difficult to fix mid-flight. This may force a recall of the UAV. The full 
extent to which this would affect performance has not yet been determined.  

4.2.2.5 0x28 / 0x00: User Warning Packet 

This packet is sent to the ViewPoint software instead of the gimbal. The software will display an 

error or warning message to the operator, which may be used to social engineer the operator 
into aborting the mission or taking other actions based on false information.  

4.3 Attacks Selected for Demonstration 

Three types of cyber-attacks were chosen and fully developed for the demonstration program:  

an attack that changes the list of waypoint in the autopilot’s flight plan, an attack that corrupts 
the GPS position, and attacks on the camera gimbal that appear as gimbal control malfunctions.  

The demonstration program proceeded from the premise that the defense against a particular 
type of cyber-attack should be general enough that it is largely agnostic to the specifics of how 
the attack was implemented.  In other words, regardless of whether the attack was caused by a 
corrupted avionics component, a hacked data link, malware infecting a ground control station, 

or some other means, the defenses should be able to detect and halt the attack.  Therefore, 
rather than trying to hack into the various autopilot system components and install the attack 
software directly on them, we used several Raspberry Pi single board computers (SBCs) to host 

the attack software.  The devices were connected to the serial communications links between 
components where they could intercept and modify message traffic to effect the various 
attacks.  The specific attacks that were implemented are described in the following subsections. 

4.3.1 Waypoint Attack 

The waypoint attack changes the waypoints in the autopilot’s flight plan causing it to fly a 

different trajectory from the one intended by the operator.  To execute the attack, the tester 

sends a new list of waypoints via Ethernet to a Raspberry Pi onboard the aircraft that is 
connected to one of the autopilot’s serial communication ports.  The attack Pi pushes the new 
list of waypoints to the autopilot through the autopilot message stream.  Since the autopilot 
sends the updated waypoint list to the operator’s station, the change would normally be readily 
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apparent.  However, researchers at UVa developed a companion attack at the ground control 
station that would mask the change to the waypoint list as well as mask the location of the 

aircraft as it flies the new flight plan.  As a result, during the attack the operator’s station 
displays the aircraft where he expects it to be. 

4.3.2 GPS Walk-off Attack 

When the aircraft enters a pre-defined geographic region, the GPS location data that is sent 

from the autopilot to the camera gimbal is corrupted with a slowly increasing bias.  The 
corrupted GPS data is included in the video stream as metadata that provides the coordinates 
of the area being viewed by the camera.  As a result of this attack, the video imagery has 

erroneous position data associated with it and it loses all value for ISR and targeting purposes.  
The GPS walk-off attack is implemented with a Raspberry Pi SBC located on the serial link 
between the autopilot and the camera gimbal.  When the attack is disabl ed, serial 

communications pass between the autopilot and camera gimbal unaltered.  When the attack is 
underway, the attack Pi intercepts the GPS data packet, adds a growing position bias to it, and 
passes it on to the camera gimbal. 

4.3.3 Gimbal Command Attacks 

These attacks use the gimbal command set to make the gimbal appear to malfunction.  When 

the aircraft enters a predefined geographic region, spurious gimbal commands are issued to the 

gimbal causing it to retract or slew the sensor point of interest (SPOI)  upwards.  The gimbal 
retract command is issued whenever the aircraft is in the attack zone and the camera operator 
tries to engage the camera’s tracking function.  Similarly, when the SPOI attack is enabled the 

camera will slew upwards when the camera operator engages the gimbal’s SPOI function.  
These attacks are caused by malware hosted on the camera gimbal operator’s station.  The 
software monitors the operators inputs and uses them to trigger the retract and SPOI attacks.   

Implementing the attacks through separate SBC devices greatly mitigates the risk in flight 

testing.  Because the flight critical avionics components remain unchanged and the attack 

software is hosted on separate SBC devices, these devices can be shut down to restore normal 
functionality in the event of an in-flight emergency.  Another measure that was taken to reduce 
risk was how the GPS attack was implemented.  Instead of attacking the GPS data used directly 

by the autopilot system for navigation (which could be extremely dangerous),  the GPS data 
provided to the camera gimbal was attacked.  This allowed us to demonstrate the ability of the 
system to detect and defend against GPS attacks without put the aircraft at risk.  

5 Attack Detection and Mitigation Techniques 

5.1 Waypoint Attack Defense 

The spoofing of waypoints to the autopilot is possible because of the lack of authentication 

between the autopilot and the command’s source. The prevention of this attack is 
accomplished by using a Python based key logger and image capture on the ground station to 

record the operator’s inputs. Onboard the aircraft the autopilot commands are monitored for 
changes to the waypoint list.  These changes can then be sent to the ground station where they 
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are compared to data from the key logger. If the command is not found within the logged data, 
then it must not have originated from the ground station. In this event, a flag can be sent to the 

operator notifying him of the attack.  

5.2  GPS Walk-off Attack Defense 

To mitigate or eliminate this attack a triple modular redundant (TMR) system of GPS receivers is 

used. The autopilot GPS and two additional GPS receivers are used to vote on the aircraft’s 
position. A threshold is set in the TMR system which triggers a notification if the GPS error of 

one of the systems was greater than a specified limit.  The TMR system can maintain 
functionality by using the GPS position report from the two systems in agreement.  

5.3 Gimbal Command Attacks Defense 

Degradation and denial of service attacks are possible because the gimbal trusts the sender of 
any commands that it receives. To prevent this type of attack, the system should be able to 

evaluate any command it receives to determine its validity. 

Implementing defenses by modifying how the ViewPoint software issues commands or how the 

gimbal responds to them was not practical because these are commercial products and the 
source code is not available. However, it is possible to place a piece of in -line hardware or 
software on the UAV that receives the command packet before the gimbal and decides whether 

or not to forward it to the gimbal based on mission conditions.  

Several methods can be used to make decisions on the validity of gimbal commands. One 

method to help catch unauthorized commands is to implement an authentication scheme, 
possibly by appending a cryptographic signature to messages sent from the ViewPoint software 

to the gimbal. However, this will not protect the gimbal system from the case in which a 
malicious agent has compromised the PCC. Depending on the degree of compromise,  the 
malicious agent could still be able to send messages that the gimbal would consider authentic.  

In a similar manner, providing additional authentication to commands capable of causing 

damaging effects would be helpful but not sufficient. An attacker who has not fully 

compromised PCC to the point of recovering the cryptographic key would be halted by such a 
defense, but further compromises may render this ineffective.  

To protect from compromises of PCC the system should be able to judge the legitimacy of  

commands. To do this a run-time analysis can be performed to determine whether or not 
executing a command makes logical sense based on mission context. Determining the mission 

context is a form of state estimation in that aircraft states can be used to infer indirectly what 
stage of the mission the UAS is in.  For example, if the system received a command to retract 
the gimbal while it is in a pre-specified area of interest, an intelligent decision would be to not 

immediately trust the command and attempt to verify its authenticity. In addition, authorized 
operators should be able to issue whatever commands they need, so there must be an override 
capability to verify that traditionally illogical commands are in fact legitimate. Appendix B 
provides details on the defenses that were developed for the TASE camera gimbal.  
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6 Demonstration Program 

The demonstration program was conducted during the second phase of the System Aware 

project.  The demonstration platform was provided by GTRI and the System Aware concept was 

implemented on hardware and in software for this platform.  The following subparagraphs 
describe the demonstration effort. 

6.1 Demonstration Platform 

The UAS selected demonstration purposes was GTRI’s Airborne Unmanned Sensor System 
(GAUSS) (see Figure 6).  GAUSS is based on an Outlaw ER airframe manufactured by Griffon 

Aerospace and is equipped with a Piccolo II autopilot system and a TASE 150 camera gimbal 
system, both manufactured by Cloud Cap Technology™.  The Piccolo II’s datalink employs a 
frequency hopping radio from Microhard Systems Inc. operating at 910 MHz.  GAUSS is 

equipped with a secondary radio link at 450 MHz for additional reliability.   Communications 
through the radio datalink with the ground control station are managed with several message 
streams such as a pilot in the loop stream for manually piloted operation, an autopilot stream 

to communicate with the Piccolo avionics, a gimbal stream to control a camera gimbal, and a 
payload stream for serial communication with a payload.  These bi -directional streams are 
multiplexed onto the wireless link. At either end of the RF link is a serial RS-232 port to connect 
to either the onboard processor in the autopilot and the operator interface computer at the 

ground control station. GAUSS can also be controlled manually from a wireless joystick console 
broadcasting at 2.4 GHz. 

 
Figure 6. GTRI Airborne Unmanned Sensor System 

As shown in Figure 7 the autopilot has a several serial communication ports and discrete I/O 
lines for interfacing with payloads and other components.  One of the serial COM ports is 
occupied by the 450 MHz radio.  Another COM port is used to communicate with the TASE 150 

camera gimbal.  A third COM port is connected to a discrete magnetometer that provides a 
heading reference for the navigation filter that is independent of the GPS receiver.  Two of the 
general purpose I/O (GPIO) lines are dedicated to the manual pilot control at 2.4 GHz.  The two 

receivers are oriented orthogonal to each other to ensure reliable communications with the 
pilot console on the ground.  A level shifter board adjusts the voltage level between the 
receivers and the GPIO lines.  Another GPIO line is used to control a kill switch on the payload 
power supply board.  This arrangement allows the GAUSS operator to kill power to the payload 

systems from the Piccolo operator interface. 
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Figure 7. GAUSS Autopilot System Block Diagram 

6.2 Development of the Sentinel 

To implement the System Aware cyber defenses for the UAS application with GAUSS, UVa and 

GTRI developed the concept of a Sentinel which monitors the serial communications between 
system components and looks for anomalies.  Onboard the aircraft, the Sentinel comprises a 

microcontroller called the SerialSpy, three Raspberry Pi single board computers (SBCs), a serial 
communications splitter, an Ethernet switch, and a SiCore secure communications interface 
board called the Shield II.  Figure 8 shows how the Sentinel interfaces with the existing 

autopilot and camera gimbal system.  In implementing the demonstration system we used two 
of the serial COM ports on the autopilot which required the magnetometer to be disconnected.   

The SerialSpy shown in Figure 8 monitors the communications between the autopilot and the 

gimbal.  A detailed description of the SerialSpy is provided in Appendix A.  The SerialSpy 
defends against GPS attacks by checking the autopilot’s GPS position data against validated 

position data provided by the SiCore Shield II. Three additional Raspberry Pis ( referred to as Air 
Sentinels and labeled AS1, AS2, and AS3 in the figure) are included as part of a triple redundant 
voting scheme to validate GPS position data.  Two of these Pis have independent GPS receivers 

while the third uses the autopilot GPS data acquired via the Ethernet link.  If the GPS position 
data does not match the validated data within some error bound, an attack is indicated and the 
SerialSpy passes on to the gimbal the validated position data provided by the Sentinel.   The 

SerialSpy also monitors and validates the gimbal commands that are relayed through the 
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autopilot to the camera gimbal.  The SerialSpy disables commands that defy normal operating 
procedures such as a gimbal retract command during a critical portion of the mission.  

The SiCore Shield II monitors serial inputs to the autopilot and checks the message streams for 
changes to autopilot parameters such as the waypoints in the flight plan.  A passive serial 

splitter is used to tap into the communications between the autopilot and other devices 
connected to it.  As shown in Figure 8 the splitter is located on the line to the COM3 serial port.  
This is the serial port that was used to inject malicious changes to the flight plan during the 

demonstration. In general a tap would be placed on each of the communication lines leading 
into the autopilot.  The Shield II also manages the voting scheme used to validate data in triple 
redundant systems.  The version of the Shield used for the flight demonstration is based on 

SiCore Technologies’ Shield coprocessor which incorporates a number of security and anti -
tamper measures.   

The ground-based portion of the Sentinel is shown in Figure 9.  A Raspberry Pi SBC (the Ground 

Sentinel in the figure) works in conjunction with the onboard Sentinel to detect attacks that 
affect autopilot parameters such as the waypoints in the flight plan.  The onboard Sentinel 

monitors the inputs received at the autopilot while a ground-based Sentinel monitors the 
operator’s inputs by analyzing the logged keystrokes.  When a command such as a change to 
the waypoint list is received by the autopilot, the onboard Sentinel checks with the ground-

based Sentinel for a corresponding input at the operator’s control station.  If no corresponding 
input is found, the Sentinel alerts the operator that the system may be under cyber-attack.  The 
alert is delivered by the Cyber Commander station shown in on the right in Figure 9. This is an 

application that runs on the ground control  station and provides alerts to the operator in the 
event of an attack. 

 
Figure 8. Onboard Sentinel 
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Figure 9. Ground-based Sentinel 

6.3 Hardware in the Loop (HIL) Simulation 

Figure 10 and Figure 11 show how the components for implementing the cyber-attacks and the 

Sentinel were integrated with the autopilot system.  Three Raspberry Pi single board computers 
(shown in orange as Attack Pi 1 and Attack Pi 2 in Figure 10 and as Masking Attack Pi in Figure 

11) are used to effect the cyber-attacks.  Attack Pi 1 executes the waypoint attack onboard the 
aircraft which changes the list of waypoints in the autopilot’s flight plan.  This attack causes the 
aircraft to deviate from its intended course.  The Masking Attack Pi at the ground control 

station hides the fact that the aircraft has gone off course .  It does this by intercepting the 
aircraft’s position from the telemetry stream and modifying the coordinates so that the aircraft 
appears to be on the desired route.   

The second onboard attack Pi intercepts and corrupts the GPS position data being sent from the 

autopilot to the camera gimbal.  This attack corrupts the target geolocation information that is 

included as metadata in the video stream.  The third attack originates at the ground control 
station and affects the gimbal commands (the ‘malfunction’ attack).  This attack software is 
hosted on the Test Director’s Station which also hosts the Tester’s Interface software.  The Test 

Director’s Station allows the test director to set up attacks and trigger attacks.   
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Figure 10. Airborne System Architecture 

 
Figure 11. Ground System Architecture 
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The Piccolo autopilot system includes a hardware-in-the-loop (HIL) and software-in-the-loop 
(SIL) simulation capability that is essential for properly setting autopilot parameters and tuning 

gains.  While simulation cannot replace flight testing, it greatly reduces the risk by allowing 
software bugs and other problems to be found in the lab.  Figure 12 shows the baseline HIL 
simulator set-up for GAUSS.  The heart of the simulator is the six degree of freedom (6 DOF) 

flight dynamics model running on one of the lab’s computers and the CAN interface to the 
Piccolo autopilot.  The Piccolo sends servo control commands over the CAN bus to the 6 DOF 
simulation running on the computer.  The simulation calculates the dynamic response of the 
aircraft and sends aircraft state data (sensor data) over the CAN interface to the autopilot.  This 

same aircraft state data is also provided to the CAN interface for the camera gimbal to simulate 
the gimbal’s IMU sensors.  The autopilot communicates to two computers running the operator 
interface software, Piccolo Command Center (PCC).  One link is through the ground station over 

the 910 MHz radio and the other link is through a serial connection on one of the autopilot 
COM ports to simulate the 450 MHz link.  To simulate the analog video signal from the camera, 
we use the 3D visual simulator software MetaVR to generate the scene as it would be seen by 

the camera in flight.  The analog video output from the video processing system is converted to 
Ethernet format with an H.264 encoder and routed to a computer running the ViewPoint 
software. Figure 13 shows the actual simulator hardware with the cyber-attack hardware and 

Sentinel components installed. 

 

 
Figure 12. Baseline HIL Set-Up for GAUSS 
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Figure 13. GTRI HIL Simulator with System Aware Cyber Security Components Installed 

During the simulation stage of testing we found the HIL simulator to be an indispensable tool 
for debugging many of the communications issues between the various components on the 
network.  In addition, the simulator allowed us to thoroughly rehearse each attack scenario in 

preparation for the succeeding flight test.  These rehearsals were critical to ensuring that the 
aircraft’s airworthiness was not compromised with the addition of the System Aware attack and 
defense components. 

6.4 Tester’s Interface 

The tester’s interface (shown on the right in Figure 11 as the Test Director Station) was 

developed primarily to allow the test director to monitor the aircraft’s true state while it is 
undergoing a cyber-attack. For example, the waypoint attack takes command of the UAV’s 
flight plan while masking the attack on the operator’s ground control station.  As a result of the 

masking, the operator’s display shows the aircraft on the intended route while, in reality, the 
aircraft’s flight path is being rerouted.  The tester’s interface takes advantage of GAUSS’ dual 
radio links for command and control operating at 450 and 910 MHz.  Two separate instances of 

the operator interface software are run at the ground control station, one for each frequency.  
While the masking attack is underway on the 910 MHz ground control station, the tester’s 
interface uses the 450 MHz control station to monitor the true status of the aircraft.   

The situational display is based on GTRI’s FalconView map display software.  A FalconView 
plugin visualizes the current state of the system (see Figure 14). As indicated by the legend in 

the upper left corner of the display, the interface can show where the aircraft really is (Truth, in 
blue), where the aircraft operator sees it on his Piccolo Command Center (PCC) and where 
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camera operator sees it on ViewPoint while the attack is happening (Attack, in red), and where 
the defensive systems indicate the aircraft’s correct location is (Defense, in green).  To do this, 

the tester’s interface takes advantage of GAUSS’ dual radio links for command and control 
operating at 450 and 910 MHz.  Two separate instances of the operator interface software are 
run at the ground control station, one for each frequency.  While the masking attack is 

underway on the 910 MHz ground control station, the tester’s interface uses the 450 MHz 
control station to monitor the true status of the aircraft.   

On the display the aircraft icons are in different colors to indicate the aircraft’s true position, 

attack position, and defense position.  The aircraft’s true position shown in blue indicates 
where the aircraft really is. This data is retrieved from the 450 MHz Piccolo ground station.  The 

attack position, shown in red, indicates where the operator’s station is displaying the aircraft’s 
position during a waypoint attack with masking. It also indicates where camera operator’s 
display is showing the aircraft position in the case of the GPS walk-off attack.  The defense 

position, shown in green, indicates the aircraft location as determined by the Sentinel in 
response to a waypoint or GPS walk-off attack. 

The indicators below the legend give information about the status of various applications.  

When the FalconView plugin is actively communicating with those components, these boxes 
expand as shown in Figure 15.  The Component Indicators light up for each component when an 

attack or defense occurs.  These components, ViewPoint Plugin, Attack Pi, and Waypoint 
Masking are described in detail later in this section. 

 
Figure 14. Tester’s Interface Situational Display 
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Figure 15. HUD Indicators 

Figure 16 shows the Tester’s Interface displaying the Aircraft Indicators.  These are aircraft icons 
in different colors that indicate the aircraft’s true position, attack position, and defense 

position.  The aircraft’s true position shown in blue indicates where the aircraft really is. This 
data is retrieved from the 450 MHz Piccolo ground station.  The attack position, shown in red, 
indicates where the PCC is displaying the aircraft’s position during a waypoint attack with 
masking. It also indicates where ViewPoint is showing the aircraft position in the case of the 

GPS walk-off attack.  The defense position, shown in green in Figure 17, indicates the aircraft 
location as determined by the Sentinel in response to a waypoint or GPS walk-off attack. 

 
Figure 16. Tester’s Interface Showing Truth and Attack Positions for the Aircraft 
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Figure 17. Tester’s Interface Showing the Defense Position for the Aircraft (in green)  

The tester’s interface can also be used to set up several of the cyber-attack scenarios. The main 
menu for setting the various parameters for an attack is shown in Figure 18.  Starting in the 
upper left corner of the menu, the section labeled “UDP Connections” (see Figure 19) controls 

the UDP connections to various components in the system.  In particular, the “Plugin” refers to 
the ViewPoint plugin software used to implement the  gimbal command attacks.  The “Pi 
Attack” refers to the software on Attack Pi 2 used for the GPS walk-off attack.  The “Pi Defense” 

refers to the software on Attack Pi 2 that could be used to defend against the GPS walk -off 
attack.  However, the defense against the GPS walk-off was also available on the SerialSpy (at 
address 192.168.1.205) and during testing it was decided that the attack software and the 

defense software should be hosted on separate devices.  This was done to avoid potential 
confusion over the roles of the various components for attack and defense.  The “Masking 
Address” refers to the Masking Attack Pi at the ground station as shown in Figure 11.  When the 

UDP receive and transmit sockets are successfully created, the text box turns from red to green 
as shown in Figure 19 (b).   
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Figure 18. Tester’s Interface 

    

 (a) (b) 
Figure 19. UDP Connections Control (a) Sockets not Connected, (b) Sockets Connected 

The Attack section (Figure 20) controls with the ViewPoint plugin attack component (gimbal 
command attacks) and the Attack Pi 2 attack software (GPS walk-off).  The “Center Lat” and 
“Center Lon” parameters allow the tester to set the latitude and longitude of the center of the 

geographic area in which attacks will occur.  The “Radius” is used to specify the radius of the 
attack region. 
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Figure 20. Attack Section of the Tester’s Interface  

The section labeled “ViewPoint Plugin” (see Figure 21) is used to control the gimbal command 
attacks.  By clicking the appropriate button, the tester can initiate several instantaneous attacks 

on various gimbal commands: 

Retract Gimbal – sends a retract gimbal command which causes the gimbal to retract 

into the aircraft’s fuselage 

Gyro Zero – sends a Gyro Zero command zeros all the gimbal angles and throws off the 

calibration of the gimbal 

Look Up SPOI – send a command to point the camera directly upward using the sensor 

point of interest (SPOI) gimbal command message 

Look Up Cmd – sends a command to point the camera directly upward using the camera 

angle command message 

The SPOI Attack on SPOI Cmd section allows the tester to enable or disable the SPOI attack.  

Enabling this attack causes the camera to point upward whenever the payload operator tries to 
lock onto a spot on the ground using the SPOI command.  The attack modifies the SPOI 

command by setting the point of interest directly above the aircraft’s location so that it will 
point upward instead of pointing at the correct location on the  ground.  
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Figure 21. ViewPoint Plugin Section 

The “Attack Pi” subsection (Figure 22) is used enable a gimbal retract attack and to set up and 
enable the GPS walk-off attack. The “Retract Attack on Track Cmd” section allows the tester to 

enable or disable the gimbal retract attack.  When the attack is enabled and the aircraft enters 
the geographic region for the attack, the camera gimbal retracts whenever the operator tries to 
engage the tracking feature.  The ViewPoint plugin with the attack software (hosted on the Test 

Director station) sends a retract command to the gimbal when the operator clicks on a spot in 
the video in order to lock the camera on an object for tracking. As a result, this commonly-used 
gimbal feature is rendered useless unless the corresponding defense is active on the SerialSpy.  

The “GPS Walkoff Attack” subsection controls how the GPS position that is being fed from the 
autopilot to the camera gimbal is corrupted.  The GPS walk-off attack offsets the true GPS 

location of the aircraft by the specified Increment in the compass direction specified by Angle 
every time a GPS update occurs. The “Max Walkoff” limits the magnitude of the position error.  
The corrupted data is then passed on to the camera gimbal and is included in the video 

metadata that is sent to ViewPoint. Recall that the location and radius in which this attack will 
be triggered is set at the top of the Attack section (see Figure 20).  

The “Trigger at Curr Loc w/this Radius” allows the tester to initiate the GPS walk -off attack at 

the aircraft’s current location rather than waiting until the aircraft enters the attack region. It 
does so by setting the center of the attack region to the aircraft’s current location.   

 
Figure 22. Attack Pi Section 
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The “Masking” section of the Tester’s Interface, shown in Figure 23, allows the tester to set up 
and enable the waypoint attack with masking.  This attack hijacks the aircraft while hiding the 

attack from the aircraft operator on the Piccolo Command Center. 

 
Figure 23. Masking Section of Tester’s Interface (Orbit Waypoint Selection)  

The “Waypoint Type” drop-down menu lets the tester specify whether the waypoints for 
hijacking the route are either an orbit waypoint or a waypoint list (for a route).  If an orbit 
waypoint is specified, the tester can set the latitude and longitude of the center of the orbit and 

the radius of the orbit.  If the tester wants to send a list of false waypoints, he can create a list 
by adding waypoints and specifying their latitude and longitude ( Figure 24).  The “Aircraft 
Speed” box allows the tester to set the speed of the aircraft once the attack has taken control 

of the aircraft. 

 
Figure 24. Masking Section of Tester’s Interface (Waypoint List Selection)  
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6.5 Aircraft Integration 

6.5.1 System Aware Payload 

Integration of the Sentinel components and cyber-attack devices into the GAUSS air vehicle 

required the design and fabrication of wiring harnesses,  additional GPS antenna mounts, and a 
chassis to hold all of the components (Figure 25).  This chassis was installed in the aircraft’s 

forward payload bay as indicated in Figure 26. 

   
Figure 25. Payload Chassis 

   
Figure 26. Payload installation in GAUSS 

6.5.2 Airworthiness Qualification 

Integrating systems such the System Aware Sentinel and the cyber-attack components into a 

UAS requires extra attention to safety and airworthiness.  GTRI follows an airworthiness 
qualification (AQ) process similar to that outlined for UASs in (MIL-HDBK-516B).  The primary 
focus of the AQ process for this demonstration was ensuring that the System Aware test 
components (the Sentinel and cyber-attack systems) did not compromise the ability of the 

autopilot system, including data links, to function properly at all times.   
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The goal of the AQ process is to ensure that the UAS meets the FAA’s primary concerns for 
operations in the national airspace system (NAS): 

 Containment – the ability of the aircraft to be contained within the proposed flight area 

 Lost link – the sequence actions that the UAS will execute in the event the command 
and control link is lost leading to a safe resolution 

 Flight conclusion – an independent means to safely conclude a flight in the event the 
command and control cannot be reestablished 

Many desired safety features are standard functions on today’s autopilots such as the Piccolo II.  

These include programmable behaviors for what the aircraft should do in the event 
communications and GPS are lost.  In the case of lost communications, if the autopilot has not 

heard from the ground station within a specified amount of time (e.g., 20 seconds) , it can be 
programmed to have the aircraft orbit in a predetermined flight plan, typically near the ground 
station.  If communications are not reestablished before the flight timer expires, the autopilot 
can be set to execute an auto-landing at a predefined waypoint.  If GPS is lost, the autopilot can 

rely on the inertial navigation system (INS) alone for a short period of time. After the GPS 
timeout expires, the autopilot will assert a flight termination command which can be used to 
trigger several actions such as closing the throttle and commanding maximum right aileron and 

rudder and up elevator for an aerodynamic termination.  For aircraft equipped with a flight 
recovery system, such as a parachute, the flight termination signal can be used to deploy the 
parachute.   

To help ensure containment, the Piccolo autopilot can be programmed with a three 
dimensional airspace boundary called a geo-fence. The geo-fence coordinates reside in the 

autopilot and they set hard limits on where the UAS can be commanded to go.  In addition to 
preventing the creation or execution of flight plans that would take the aircraft outside of the 
fence, flight termination can be asserted if the aircraft flies outside the fence .  The geo-fencing 

feature was not used during the demonstration program because the aircraft was kept within a 
fairly tight pattern around the airport under the watchful eye of the safety pilot.  

In addition to the standard safety features of the Piccolo autopilot system, GTRI’s GAUSS 

employs several additional safety measures.  These include a secondary radio link at 450 MHz 
for command and control.  As mentioned previously, this link is used to provide truth data on 

the aircraft’s location when the 910 MHz link is under cyber-attack.  The aircraft is also 
equipped with two orthogonal 2.4 GHz receivers as part of the wireless pilot manual control 
system.  Thus, the aircraft can be controlled manually via the 910 MHz link using the wired pilot 

console connected to the ground station or through the 2.4 GHz link using the wireless pilot 
console. 

Other safety features include a kill switch on the power supply for the payload, an emergency 

retrieval beacon, and a three axis magnetometer.  Because of the potential for the payload 
system to interfere with the aircraft’s operation,  a kill switch was added to the payload power 

supply circuit to enable the flight test engineer to kill power to all of the payload components 
via a discrete command from the autopilot system.  This was done to ensure that all of the non-
flight critical components communicating with the autopilot could be shut down in the event of 

an emergency.  A schematic diagram of the kill switch circuit is provided in Appendix C. 
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All fixed-wing unmanned aircraft flown by GTRI carry an emergency retrieval beacon.  This 
device transmits a periodic tone at about 219 MHz which can be used to locate a downed 

aircraft.  This commercially available product can operate for up to 2 weeks using a primary 
lithium battery.  Work is under way to integrate this capability directly into the on board 
avionics.  The goal of this work is to provide more reliable operation and reduced cost.  

All unmanned aircraft typically navigate using GPS.  In the event of a loss of GPS, the aircraft can 
fly away or, if so configured, immediately ditch.  Both options are undesirable.  When resources 

permit, GTRI equips its UAVs with an electronic compass referred to as a magnetometer.  This 
allows the aircraft to approximate its heading and navigate via “dead reckoning”.  While this is 
not as accurate as GPS navigation, it can provide some time for GPS recovery or a more 

controlled flight termination.  GTRI’s GAUSS is equipped with a Honeywell HMR-2300 3-axis 
magnetometer which feeds into the navigation filter; although, as noted earlier, the 
magnetometer was not used during this demonstration.  Work is underway to produce a 

smaller, more integrated magnetometer to more easily integrate this capability in test aircraft.  
The current design is smaller, lighter, and less expensive than the Honeywell HMR-2300.  This is 
possible using very small magnetometers found in devices like cell phones.   

6.6 Flight Testing 

6.6.1 Flight Conditions and Restrictions 

The flight test demonstration was conducted at the Early County airport in Blakely, GA under a 
Certificate of Authorization (COA) from the FAA.  The COA permits operations in Class E and 

Class G airspace at or below 5000 ft above ground level in the vicinity of the airport (see 
Appendix D).  Other operational restrictions include: 

 Operations must be in visual meteorological conditions during daylight hours 

 No operations (including lost link procedures) over populated areas 

 Sterile cockpit procedures during all critical phases of flight 

 All crew members must have a current second class airman medical certificate and 
current crew resource management training 

 The pilot in command must hold, at a minimum, a current FAA private pilot certificate  

 Supplemental pilots must have, at a minimum, successfully completed private pilot ground 
school and passed the written test  

 A Notice to Airmen must be issued not more than 72 hours in advance, but not less than 48 
hours prior to the operation 

As part of the COA application, GTRI submitted a contingency plan that addressed emergency 

recovery or flight termination of the unmanned aircraft (UA) in the event of unrecoverable system 
failure.  In particular, the plan covered lost link and flight termination procedures based on the 

autopilot’s safety features described in section 6.5.2. 

6.6.2 The Test Team 

The test team consisted of eight personnel with the following roles and responsibilities:  

 Lead flight test engineer – supervised execution of the flight test plan, monitored the 
aircraft status during the tests, made Unicom radio calls to alert local traffic 
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 Pilot in command – Supervised flight operations, watched for other aircraft in the 
vicinity, monitored Unicom radio traffic 

 Safety pilot – performed manual takeoffs and landings, watched for other aircraft in the 

vicinity 

 Visual observer – watched for other aircraft in the vicinity 

 Autopilot operator – commanded and monitored the aircraft through the autopilot 
system, operated the camera gimbal system 

 System Aware operator 1 – initiated gimbal attacks and GPS walk-off attacks, monitored 
Sentinel defense responses 

 System Aware operator 2 – initiated waypoint and masking attacks, monitored Sentinel 
defense responses 

 Videographer – recorded video and still images to document the demonstration 

Figure 27 shows the test team inside the GTRI UAV trailer.  The first set of wall -mounted 

monitors, on the far left in the picture, served as displays for the 910 MHz PCC operator’s 
station manned by the autopilot operator.  The second set of monitors was used for the 450 

MHz PCC station manned by the flight test engineer.  To the right of these monitors was a 
laptop computer running a Hyperterminal interface to the SerialSpy which implemented the 
defenses against gimbal command attacks and attacks on the GPS data provided to the gimbal .  

In the middle of the picture is a laptop computer running the Tester’s Interface software.  The 
third set of wall-mounted monitors served as multi-purpose displays.  The top monitor 
displayed the ViewPoint interface during gimbal testing and the Cyber Commander interface 

during waypoint attack testing.  The lower monitor was used to display the status of the various 
Raspberry Pi SBCs and the SiCore board.  Also at this station, was a laptop computer running 
the interface for the waypoint attack software. 

 
Figure 27. Test Team inside the GTRI UAV Trailer 
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The test team maintained communications with each member via a Clear-Com radio intercom 
system.  This communication system also allowed the pilot in command and the flight test 

engineer to talk directly with local traffic over Unicom frequency 122.9 MHz.  

6.6.3 Attack Demonstrations 

Three types of attacks were demonstrated in flight: a GPS walk-off, a gimbal command attack, 

and a waypoint attack.  Testing began with the GPS walk-off attack because it was the most 
benign in terms of the potential effects on the aircraft.  Next were the gimbal command attacks 
which would not affect the aircraft’s ability to fly, but did pose a slight risk of damage to the 
camera gimbal.  The waypoint attack was scheduled for last because it posed the greatest risk 

to loss of control over the aircraft.  The following paragraphs describe these attacks and the 
results. 

GPS Walk-off:  The aircraft’s commanded flight path was a right hand pattern on Runway 23 as 

shown in Figure 28.  The geographic region for the attack was defined as a circular area 

centered to the northeast of the aircraft’s flight path with a radius of 609 m. This resulted in a 
partial overlap with the aircraft’s commanded path as shown in Figure 28.  As the aircraft 
crossed into the attack region the GPS walk-off attack was initiated.  In this demonstration, the 
attack was configured to add a growing bias the aircraft’s latitude coordinate causing its 

reported position to shift northward as illustrated in Figure 29.  During the first pass through 
the attack region the Sentinel defense was disabled and the position data being fed from the 
autopilot to the gimbal was observed to deviate from the true position.  During the next pass 

through the attack zone the defense was enabled and the GPS walk-off was detected almost 
immediately.  The SerialSpy then replaced the corrupted GPS position data with validated data 
from the Sentinel and forwarded the data to the camera gimbal. 

 
Figure 28. GPS Walk-off Attack Region  
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Figure 29.  GPS Walk-off Attack Position Report 

Gimbal Command Attacks:  The retract attack is referred to as Attack 2a and the SPOI attack is 

referred to as Attack 2b. The aircraft’s commanded flight orbit was centered over the runway as 
shown in Figure 30.  The geographic region for the attack was defined as a circular area 
centered to the northeast with a radius of 609 m. This resulted in a partial overlap with the 

aircraft’s commanded orbit as shown in Figure 30.  As the aircraft crossed into the region 
encompassed by the attack orbit the SPOI attack was initiated (Attack 2b).  During the initial 
pass through the attack region the defense was disabled and the SPOI slewed upwards at the 

test director’s command.  During the next pass, the defense was enabled.  The defense blocked 
the SPOI command preventing the camera from being slewed upwards.   

After the SPOI attack was demonstrated it was deactivated and the gimbal retract attack 

(Attack 2a) was enabled. During the initial pass through the attack region the defense was 
disabled and the gimbal retracted when the operator tried to track an object at the center of 

the orbit.  During the next pass, the defense was enabled.  The defense blocked the gimbal 
retract command when the operator initiated a tracking command and the operator was able 
to successfully track a ground object. 
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Figure 30. Gimbal Command Attack Region  

Waypoint Attack:  The waypoint attack changes the waypoints in the autopilot’s flight plan 
causing it to fly a different trajectory from the one intended by the operator.  The aircraft’s 

commanded flight plan was one of two rectangular patterns aligned with the runway as shown 
in Figure 31.  The other rectangular pattern was used as the set of waypoints for the attack 
flight plan.  The coordinates of the waypoints are provided in Table 2 and Table 3.   

For this demonstration the operator commanded the aircraft to fly the rectangular pattern 

consisting of the waypoints in Table 2.  During the first pass through the pattern the test 
director initiated a waypoint attack with the defense disabled.  The aircraft diverted to the 
rectangular pattern made up of the waypoints in Table 3.  This exercise verified that the attack 
was working properly with regard to taking control of the aircraft.     

The defense was then enabled and the operator commanded the aircraft to return to the 

original pattern.  In this case the Sentinel successfully noted the change in the flight plan, 
verified that the change came from the operator, and indicated on the Cyber Commander 
interface that a normal change had occurred.  During the next pass through the pattern when 

the attack was initiated the Sentinel successfully noted the change and, because it could not 
find an associated operator input for the change, alerted the operator via the Cyber 
Commander interface of a possible cyber-attack.  The Cyber Commander interface offered the 
appropriate corrective actions to the operator which included restoring the original flight plan, 

flying the aircraft back to its home location, and flying to another waypoint or flight plan of the 
operator’s choice. For this demonstration the operator elected to have the Sentinel change 
back to the original plan. 
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In the next pass through the pattern the masking attack on the 910 MHz ground control station 
was triggered along with the waypoint attack onboard the aircraft.  Unfortunately, the masking 

portion of the attack did not work properly.  When the masking attack was engaged, the 
aircraft’s position froze on the 910 MHz ground control station display.  The aircraft’s true 
location could still be seen on the 450 MHz ground control station display.  

The failure of the masking attack led to an interesting and unplanned situation.  The 910 MHz 
control station is the primary display used by the operator for controlling the aircraft.  When 

the masking attack froze this station the operator had to switch to the 450 MHz ground station 
to issue waypoint commands to return the aircraft to the desired pattern.   During the setup of 
the tests, the Sentinel was not made aware of the presence of the 450 MHz ground control.  As 

a result, when the operator initiated the change from this “unknown” station, the Sentinel 
detected the change as an unverified change and alerted the Cyber Commander station that a 
cyber-attack was underway. This attack is very similar to a spoofing attack where a false 

operator station would attempt to take over flight operations for a UAV. This was a critical 
point in the tests where the Sentinel worked as designed to protect the flight plan in an 
unplanned scenario and was a defining moment for the tests. The Sentinel was doing what it 
was designed to do, protect the system functions and offer corrective actions to the operator. 

 

Table 2. Waypoints on northwest side of runway 

 
 
 

Table 3. Waypoints centered over runway 
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Figure 31. Waypoint Attack Flight Plans 
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Appendix A:   SerialSpy 

The SerialSpy is a microcontroller-based device designed to monitor and/or manipulate RS-232 

serial data between two devices.  It uses a Microchip dsPIC33EP digital signal controller to 

passively monitor bidirectional serial data transparently from the host serial devices, insert new 
serial data packets, modify serial data packets, or completely block specific serial data.  The 
SerialSpy is controlled through a USB serial interface or through telnet over Ethernet.  

The SerialSpy is designed to be inserted between two devices connected via RS-232.  In the UAV 
implementation of the Sentinel, the SerialSpy is inserted between the Piccolo autopilot and the 

camera gimbal as shown in Figure 32.   

 
Figure 32. Simplified Block Diagram Showing SerialSpy Usage in a UAV Sentinel  

The SerialSpy was specifically designed to overcome latency issues that arose with other 
methods of monitoring and modifying serial data.  Previous design iterations of a serial 

communications monitor had used a Raspberry Pi single board computer and two USB to RS -
232 adapters.  A program written in C would monitor the serial ports and pass data between 
them passively in addition to modifying or blocking data as required.  This approach had several 

disadvantages.  First, the Raspberry Pi takes time to boot up before any such software could 
run, on the order of 30 seconds to 1 minute.  This means that the autopilot and gimbal would 
be unable to communicate until the Raspberry Pi had fully booted and launched the software.  

Additionally, there is a certain latency and overhead associated with this approach.  Each USB 
to serial converter adds several milliseconds of delay, and the Linux kernel also adds some 
delay.  Although the processing time of the software is negligible, it must wait for the entire 
serial data packet to be received before re-transmitting the packet out the other RS-232 port. 

The SerialSpy runs on a bare-metal microcontroller with no operating system, and so it boots 

up in milliseconds and immediately allows data to flow passively between the RS -232 ports.  
When not actively monitoring the data packets, the SerialSpy is able to pass data between the 
serial ports one byte at a time, effectively eliminating the delay.  It does not have to wait and 

receive an entire serial packet before beginning to transmit data on the other serial port.  For 
its RS-232 interfaces the SerialSpy uses DB9 connectors.  P1 is a DB9-female connector wired as 
standard Data Terminal Equipment (DTE). P2 is a DB9-male connector wired as standard Data 
Circuit-terminating Equipment (DCE).  The opposite gender connectors and appropriately 



crossed t ransmit/receive lines allow the SeriaiSpy to be inserted between two RS-232 devices. 
The SerialSpy can use baud rates from 1200 baud to 115200 baud. 

Communications with the SerialSpy are provided by a USB-serial interface with a micro USB 
connector and an Ethernet interface with a standard RJ-45 connector. Both of these interfaces 

can be used to control and configure the SerialSpy. Commands include switching the device 
between passive and active mode, configuring the RS -232 baud rate, monitoring serial traffic in 
either di rection, and configuring the various packet analysis modes for active mode. 

As previously noted, the SerialSpy has two operationa l modes: passive and active. Passive mode 
wi l l pass al l data between the RS-232 ports without modifying or blocking any data. This mode 

is protocol agnostic; any format of data can pass th rough and be monitored. Active mode 
enables the SerialSpy's data processing module, which can modify or block serial data. Active 
mode is protocol-dependent and requ ires specific code to be written for protoco l analysis. In 

either mode, the data can be monitored through the USB port or over Ethernet. 

For the UAV implementation of the Sentinel, the data passing between the autopi lot and the 

camera gimbal used the Piccolo gimbal communications protocol 1
. This protocol defines the 

specific packet structure of the data which includes a start-sequence header and length byte for 
each packet. The SerialSpy can be configured to be strict and on ly al low val id packets to f low 

th rough, or to allow all packets th rough, even if they are malformed. 

For defense against cyber-attacks the SerialSpy was configured to search for specific packet 

types. Table 1 lists the packet types that were analyzed. 
Table 4. Commands that the SerialSpy searched for in Gimbal Communications 

I Group Cmd Description Actions 

OxlO Ox47 Gimbal telemetry Compare GPS coordinates to truth data, a lter if needed 

OxlO OxlO Host GPS Data Compare GPS coordinates to truth data, a lter if needed 

OxlO Ox40 SPOI command Block or a lert when detected 

OxOO Ox45 SPOI command Block or a lert when detected 

OxOO Ox46 SPOI command Block or a lert when detected 

OxOO Ox43 Gimbal retract Block or a lert when detected 

Messages that contained GPS coordinates from the autopi lot were compared to known "truth 

data" , which was provided over Ethernet from the SiCore computer portion of the onboard 
Sentine l. If the GPS coordinates were detected to be greater than 100 meters f rom the truth 
data, an alert was sent to the Sentine l. Optionally, the correct GPS coordinates provided by the 

SiCore computer could also be inserted into the datastream for the camera gimbal to use as 

metadata. 

To defend against SPOI attacks and gimbal retract attacks, the operator cou ld elect to have 

commands for SPOI and gimbal retract either completely blocked from being transmitted or to 

have an alert sent to the Sentinel over Ethernet 

1 Vaglienti, B. (2011). Gimb al Communications v2.2.0.d . Cloud Cap Technology 
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Appendix B:  Gimbal Defenses 

The following algorithms use structures and methods from the software development kit 

provided by Cloud Cap for ViewPoint plugin creation and are aimed at detecting the attacks 

found most feasible from section 4.2.2. Despite the following algorithm being written using an 
SDK, one could decode the information byte-wise from the message streams and follow the 
same algorithms. 

Packet Detection 

The method LookForGimbalPacketInQueue() searches through a queue of packets and 

determines if a packet of gimbal type (i.e., a gimbal packet) is present in the message stream. It 
then stores this packet in a predefined buffer. The packet is then inspected to see if  the packet 

type is a gimbal command. All of the vulnerabilities in section 4.2.2 fall into this type with the 
exception of the user warning packet.  

Retract/Deploy Command Detection 

The gimbal packets are further inspected to determine if the packet group is that of Gimbal 

command and control group. If so, then it is passed to the method that checks if it can be 
decoded into a retract/deploy struct pointer. If the method returns false, the packet is ignored 

and the monitoring of the stream for packets continues. If the method returns true, then the 
stream is decoded into information determining whether the gimbal is being commanded to 
either retract or deploy.  

Under the assumptions that normal operations would entail the retraction and deployment of 
the gimbal directly after take-off and directly before landing, the velocity of the gimbal relative 

to Earth and the distance of the gimbal from the ground station should be relevant criteria to 
determine  whether the gimbal retract/deploy command appears to be authentic.  

The aircraft velocity and position can be determined by monitoring the gimbal telemetry 

stream for packets of type HOST_GPS_DATA_GIMBAL_PKTTYPE and of group 
GIMBAL_POSITION_INFORMATION_GROUP. These telemetry packets can be decoded to give 

the GPS position and velocity of the aircraft. These two pieces of information can be used to 
determine what phase of flight the aircraft is in. If the phase is take-off or approach/landing, 
then the retract/deploy command is considered authentic. If the aircraft is in cruise or loiter 

mode, then the retract/deploy command should be considered malicious.  

Erratic Gimbal Command Detection 

To protect against a gimbal command attack it is assumed that during normal operations the 

gimbal should never be slewed to view a location above the horizon. Similar to the process just 
described, the telemetry stream is checked for gimbal packets in the queue. The method 
DecodeGimbalCmdPacket() is used to give an elevation angle of the gimbal. The aircraft’s 

altitude can be determined from the GPS position data. If the aircraft altitude is higher than the 
altitude at which the gimbal is pointed, then the command is authentic. If the gimbal is pointed 
at a higher altitude than the aircraft then the command is considered malicious and the user 
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can be warned via a message sent through a payload message stream using the autopilot 
command and control link. 

Further constraints can be placed on the gimbal angles by limiting the gimbal orientation based 
on mission CONOPS. For example, if the UAV mission is to loiter overhead a specified target 

then the gimbal field of view should never extend outside the orbit of the aircraft.   

A simple diagram (Figure 33) illustrates the application of mission context to authenticate the 

validity of the gimbal commands. With this paradigm, if the gimbal deviates from its intended 
use, then a warning message will be sent to warn the operator. The assumption is that when 
the aircraft is orbiting a location, the area being imaged by the camera should be within the 

radius of the aircraft’s orbit.  As shown in the figure, the image centroid location is determined 
by the function G which calculates the distance of the image centroid to the orbit center using 
the latitude and longitude of the gimbal and orbit centroid. This is done using an ellipsoidal 

Earth (WGS-84) model and calculating the distances using Vincenty’s formulae.  

 

Figure 33. Gimbal Command Authentication 

The radius of the aircraft’s orbit (Ra) in steady, level flight can be found from its relationship to 
the aircraft’s bank angle ( a), velocity (Va),  

𝑅𝑎 =
𝑉𝑎
2

𝑔 ∗ tan(𝜙𝑎)
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If the centroid of the image lies outside the radius of the orbit, the operator will be warned that 
the gimbal pointing command does not appear to be authentic.  
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Appendix C: Schematic Diagrams 

Figure 34 illustrates the circuit used to provide over discharge protection to the payload 

batteries.  This circuit also allows the Piccolo to disconnect power to the payload.  In the 

situation where the payload malfunctions or has some deleterious effect on other aircraft 
systems, it can be powered down.  This also provides the ability to remotely restart the payload 
and return it to a known state. 

Figure 35 is a schematic of the complete payload installation.  The payload includes elements to 
simulate various attacks and is networked using a typical LAN topology.  External to the payload 

enclosure is an Ethernet radio permitting communications with the payload ground station.  
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Appendix D: COA Information 

 

 
Figure 36. COA Area of Operations  
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Figure 37. COA Area of Operations in Detail 
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Appendix E:  Microhard Radio Vulnerability 

Introduction 

GAUSS’ primary radio link is the MHX-910 (910 MHz) frequency hopping radio by Microhard 

Systems Inc.  Microhard also offers 2.4 GHz radio systems which have been used on other 
GAUSS missions and are popular among other commercial-grade UAVs.  GTRI researchers 

obtained several MHX-2420 2.4 GHz frequency-hopping radios (Figure 38) and were able to 
reverse-engineer the radio frequency (RF) protocol used to send data between the ground 
station and the UAV using software-defined radio (SDR) techniques and decompiling the radio’s 

firmware.  Although the Microhard MHX2420 radios use a different frequency, the modulation 
and hoping techniques and protocol are similar on the 910 MHz system.   

 
Figure 38. Microhard MHX2420 radio module 

UAV Data Link 

The RF data link is a pair of Microhard radios that connects a ground station to the UAV with a 

transparent serial connection.  Each Microhard radio has a serial port.  The ground radio’s serial 
port is connected to the ground station, and the UAV’s  radio is connected to the autopilot.  

These serial ports are connected over an RF link established between the Microhard radios.   
The radios are configured independently from the UAV systems; the UAV software has no 
contextual information about the status of the link.  This leaves open several vulnerabilities.  

Since the serial communication protocol between the ground station and the autopilot is 
known, simply being able to monitor the RF datalink would provide information about the 
aircraft’s position, status, and payload data.  Additionally, there is a possibility of injecting 
malicious commands or hijacking the datalink entirely so that a rogue ground station could 

assume complete control of the UAV. 

The Microhard radios are configured over an additional serial port on the radio.  For UAV use, 

the radios are typically configured as a master and slave radio. 
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Radio Analysis 

GTRI researchers used a proprietary software-defined radio (SDR) system that is able to 

dynamically monitor and analyze large amounts of RF spectrum.   The documentation for the 
Microhard radio indicates that the radios use frequency hopping spread spectrum (FHSS) within 

the 2.4000-2.4835 GHz spectrum.  

For initial analysis, one MHX2420 radio was configured as a master and the slave radio was not 

powered up.  Using the SDR, it was observed that the master radio broadcasts a “beacon” 
packet. 

Additional information was gathered by downloading the radio firmware from Microhard’s 

website and decompiling the firmware in order to learn more about the radio’s functionality.  

The beacon signal from master is broadcast at the beginning of each hop interval.  The slaves 

transmit in timeslots within the overall interval thereafter. 

The beacon signal uses BFSK modulation at a data rate of approximately 172776 bps.  The main 
lobe is approximately 200 kHz wide and mark and space frequencies are roughly +-86388 kHz.  

Figure 39 and Figure 40 show spectral properties of a single beacon dwell that has been tuned 
down to a baseband center frequency of approximately 18 kHz.  Figure 41 shows the FM 
demodulated output (green trace) of the dwell and the resulting symbols transmitted therein if 

a rate of 172776 bps is used.   

 

 
Figure 39. Spectrum Plot of Beacon Dwell Centered at 18 kHz 



 

189 

 

 
Figure 40. Zoomed In Plot of Beacon Dwell Centered at 18 kHz 

 
Figure 41. Overlaid Plot of FM Demodulated Audio (Green) and Assigned Symbols (Pink) of 

Beacon Dwell 
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Hop Structure 

According to the MHX2420 manual, a total of 49 hopsets are available for use, the last 5 of 

which may be user-defined.  Each hopset contains exactly 76 channels, and each repeats a 76-
hop pattern repetitively.  The base 76-hop pattern for all 49 hopsets was identified within the 

decompiled firmware. Each is listed in terms of the overall channel number instead of the 
actual frequency value.  Channel numbers represent each consecutive 400 kHz channel, where 
channel 1 = 2.4016 GHZ and channel 202 = 2.4820 GHz.  Although there are 202 total available 

channels, no hopset uses any channel higher than 191 (2.4776 GHz).  However, the user may 
change this for hopsets 44-48 if desired. 

Bit Decoding 

1. The beacon transmits approximately 359 bits per dwell.  Symbols must first be digitized 

into bits, and we assigned the high frequency a ‘1’ and the low frequency a ‘0’. 

2. Over-the-air bits must be Manchester decoded.  If assigning mark/space frequencies as 

just mentioned, then a 0b10 bit pair is a Manchester decoded ‘1’ and a 0b01 bit pair is a 

Manchester decoded ‘0’. 

3. Manchester decoded bits must be grouped into 8-bit bytes, where the LSB of each byte 

was transmitted first (on the left side if incoming bits are plotted on a horizontal row).  

There are 8 possible byte alignment locations, so a receiver should scan through all of 

them. 

4. The beacon transmits a fixed preamble of either 0x66666666E60060 or 

0x60666666E60060.  The byte alignment starting position from step 3 that produces a 

match with this preamble is the one that should be used for proper dwell alignment.  

Both preambles were observed in practice, and with the sole discrepancy being the 

second nibble in the sequence, the first two nibbles could be disregarded, with the 

remaining 6 bytes being used instead. 

 
Figure 42. Example decoding process for a single over-the-air dwell 
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RF Packet: Beacon Dwell Bit Structure 

In order to properly decode the messages, it is important to determine the bit structure of each 

RF packet. Each beacon dwell transmits a total of 21 bytes, including the 7-byte preamble.  
After the preamble are the following bit fields: 

1. FEC Identifier – 4-bit nibble 

2. Unknown 4-bit nibble – likely simply a fixed ‘0’ frame start identifier 

3. Packet Count – 1 byte 

4. Net Address – 2 bytes 

5. Unit Address – 2 bytes 

6. Hopset – 1 byte 

7. Hop Interval – 1 byte 

8. Packet Minimum Size – 1 byte 

9. Packet Maximum Size – 1 byte 

10. Hop Counter – 1 byte 

11. Operating Mode – 4-bit nibble 

12. Extension Flag – 4-bit nibble 

13. CRC16 value – 2 bytes  (Calculates CRC on data from Packet Count – Extension Flag) 

 
Figure 43. Interpreted bit field of beacon dwell RF packet example  

RF Packet: Master Serial Data Bit Structure 

When data is sent from a master, it is appended directly to the end of the aforementioned 
Beacon signal with no dead time in between.  If the encryption key is set to 0, no encryption is 

used (see next section, “Encryption”).  With an unencrypted data transmission, the Master 
dwell structure is the following: 

1. Full Beacon as defined previously.  The Extension flag will be a 0x1 when data follows 

that is sent directly from a Master as opposed to 0x0 when transmitting a Beacon only.  

2. Directly after the CRC16 in the base Beacon, a 1-byte length field is transmitted 

3. ASCII values of the transmitted data follow.  The “Packet Minimum Size” parameter 

determines how many characters are transmitted per dwell.  When simply holding down 

a key from an attached serial PC, the minimum number of characters are always sent in 

a packet.  If transmitting a file, the “Packet Maximum” would likely be sent, although I 

did not test this. 

4. A second 2-byte CRC16 is appended after the serial data.  This CRC16 is calculated from 

all dwell data between the Packet Count and the final serial character using the same 

algorithm.  
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Data dwells are transmitted asynchronously within regular Beacon transmissions, and each 
packet may be repeated over a number of consecutive dwells according to the “Packet 

Retransmissions” parameter (register S113).  Figure 44 shows an example data raster of a 
master transmission – dwells containing serial data are easily identified by their extended 
length. 

 
Figure 44. Data Raster of Master Transmission of Data 

Encryption 

The encryption scheme employed by the system is nothing more than a simple XOR operation 

with the encryption key.  Encryption is applied to the serial data characters only, and not to any 
portion of the base beacon signal or the length parameter of a data transmission.  Encryption is 
performed by XORing each 2-byte pair with the 16-bit encryption key selected by the user.  If 

only one 8-bit character is available, it is XOR’d with the MSbyte of the encryption key.  Analysis 
of the binary representation for the power-of-two keys shows the clearest view of the simple 
XOR operation. 

CRC Calculation 

A 2-byte CRC16 value is appended both to the end of a regular Beacon portion of a dwell and 
after the extended serial data portion of the dwell as well.  Both CRC’s are calculated according 

to the standard CRC16 CCITT algorithm using a polynomial of 0x8005.  The encryption key 
serves as the initial seed value for each CRC calculation, so varying the encryption key changes 
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the checksum for a given set of data.  For the beacon portion of the checksum, the CRC is 
calculated over the last 11 bytes of the dwell (consisting of the packet count through the 

extension flag).  When serial data is appended to the end of a dwell, another checksum is also 
calculated over all data (including the first beacon CRC value) from the packet count through 
the last serial byte.   

Forward Error Correction 

All data presented previously dealt with the “Wireless Link Rate” set to a value of 2, which turns 

off Forward Error Correction (FEC).  Setting this to a value of 4 incorporates the use of FEC in 
the transmission.  Analysis of the beacon data with FEC enabled shows that the difference is a 

simple 4-bit to 8-bit recoding via a lookup table.  All bytes from the packet count through the 
final CRC are simply remapped according to the lookup table listed below.  FEC is applied as the 
last step in the transmission chain.  

Unencoded FEC Encoded 

0 10 

1 b1 

2 52 

3 b3 

4 b4 

5 55 

6 b6 

7 87 

8 78 

9 49 

a aa 

b 9b 

c 9c 

d ad 

e 4e 

f 7f 

RF Packet: Slave Dwell Bit Structure 

Minimal time and effort were spent on analyzing the slave data since the emphasis was on 

master signals.  However, from brief data captures the dwell structure of the slave seems 
apparent: 

Slaves use an identical 7-byte preamble as the master.  Following the preamble are the 

following bit fields: 
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1. FEC Identifier (?) – 4-bit nibble.  This field showed a value of ‘0’ for a slave, whereas it 

showed a ‘f’ or ‘a’ for FEC or non-FEC master transmissions 

2. Unknown 4-bit nibble – likely simply a fixed ‘0’ frame start identifier 

3. Packet Count – 1 byte 

4. Net Address – 2 bytes 

5. Unit Address – 2 bytes 

6. Hopset – 1 byte 

7. Data Length  – 1 byte 

8. Serial Data – Size ranges from packet min to packet max parameters 

9. CRC16 value – 2 bytes  (Calculates CRC on data from Packet Count – End of Data) 

Since the slave only transmits when serial data arrives (i.e. it sends no fixed beacon), it always 
includes a length byte and serial data thereafter.  Unlike the master dwell, there is only one CRC 

value, and it is calculated in an identical fashion as that of the master from the packet count to 
the final data character.   

An example of the characters A-I being transmitted is shown in Figure 45.  Since the packet min 

was set to 1 character, dwells send only one character at a time.  Although encryption and FEC 
parameters were not varied for slave data, it is likely that they use the same algorithms as 

those previously discussed for master transmissions. 

 
Figure 45. Example RF packets of slave dwell bit structure with characters A-I being transmitted 

Conclusion 

At this point we know sufficient enough information about the master Beacon signal that we 
should be capable of both deciphering it and replicating it in a custom system.  By monitoring a 

single frequency channel, a sample Beacon dwell could be obtained.  The structure of this dwell 
would tell us if FEC is applied or not, and it could then be easily converted to its non -FEC 
equivalent.  At this step the beacon data from packet count to extension bit could be used 

along with the successive CRC value for obtaining the encryption key used.  By running a brute -
force CRC analysis over all 65536 possible initial seed values, the seed value that produced the 
observed CRC with the observed data is the encryption key in use.  Once this is determined any 

additional serial data that may be transmitted from a master may also be deciphered.  Finally, 
since all hopsets follow a repeating pattern, the hop count value in the dwell could be cross -
checked along with the actual frequency channel in use to potentially identify the exact hopset 

in use as well.  If this single dwell was insufficient to identify the lone hopset (i.e., multiple 
hopsets use the same frequency during the same hop dwell), rece ption of only a few more 
dwells should be sufficient to isolate the set.  Since the preamble is a fixed data pattern and the 
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remaining Beacon bits are known, full knowledge of the hopset and encryption key would allow 
for a custom system to fully generate any valid Beacon signal of interest.   

By implementing the above attack methodology, a system that monitors or injects data packets 
into a live UAV datalink is definitely a plausible attack vector. 
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Executive Summary 

The Systems Engineering Research Center (SERC) has developed a novel cybersecurity concept for 

embedding security solutions into systems called System-Aware Cybersecurity. The overall goal of the 

System-Aware program is to develop low cost methods of protection against cyber exploits by our 

adversaries.   Working through the SERC, the University of Virginia (UVa) and the Georgia Tech Research 

Institute (GTRI), Phase 1 efforts of the program were focused on advancing the System-Aware 

Cybersecurity concepts and evaluating a number of specific security design patterns that were intended 

to be reusable across a variety of applications. The major goal Phase 2 goal of the Sentinel program was 

to demonstrate the feasibility of System-Aware Cybersecurity design patterns designed in Phase 1 and 

to demonstrate the capabilities of a physical version of those protections to protect a system in a live 

environment and to experiment with the protections in order to monitor selected critical system 

functions of that system – in this case, an unmanned aerial vehicle (UAV). We call the physical 

implementation of this novel protection the Sentinel. Furthermore, those critical system functions were 

identified and analyzed for system vulnerabilities using an architectural selection methodology 

developed in Phase I of the project.   

Another goal of the Phase 2 project effort was a new Phase 1 effort to begin to evaluate two key areas 

surrounding cyber security protections and the use of private cloud infrastructures. The first area of our 

research focus was evaluating the use of the agile features of a cloud architecture as a platform for the 

delivery of System-Aware Cybersecurity protections to another system. Two use-case applications were 

the subject of evaluations in this project phase: 1) Experimentation of a prototype implementation of a 

simulated video surveillance system application in a private cloud architecture and the application and 

testing of System-Aware Cybersecurity security design patterns using the cloud infrastructure as a 

method to protect the application for an attack, 2) the Sentinel protection applications which were 

developed for the protection or the UAV system in the other part or our research efforts. A third effort is 

under way to implement a video imagery exploitation application called AIMES used by the Air Force 

and the Army to analyze video from manned and unmanned surveillance platforms (this portion is 

complete), and to apply System-Aware techniques to protect functions within that system using System-

Aware methods running in the cloud.  The attack scenarios and monitoring and detection of possible 

attacks is currently in design and will continue to be our focus for next year’s activities.   

In addressing the goal of evaluating the feasibility of securing the cloud infrastructure itself, we 

developed two new methods of assurance for the platform while utilizing the Openstack private cloud 

architecture as an example platform. First, we introduced the concept of cloud infrastructure reporting. 

The basic idea was these report notifications would provide experimental timing information as the 

baseline for normal (correct) private clouds operations; these baseline measurements would then be 

consulted as the basis for asserting anomalous behavior. The second concept we introduced was the use 

of active probes to evaluate the behavior of the cloud infrastructure. Specifically, we experimented with 

the delivery mechanism of resources for virtual machine creation. We designed a self-contained, new 

activity that was scheduled on-demand and whose functionality was to actively probe the infrastructure 

for anomalous behavior. 

The concepts which we designed during this phase proved out that both the use of the cloud to provide 

an agile platform for Sentinel protections is feasible and adds value, and that new methods are feasible 
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to begin to provide assurance to the cloud infrastructure through the development of new security 

design patterns for the cloud platform itself.  
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1   Background   

Cloud architectures, both private and public, are quickly becoming the platform of choice for system 

deployment for major systems due to their flexibility in assigning computing resources and the impact 

that flexibility has on costs of reallocating resources on an as-needed basis. The University of Virginia 

(UVA) has undertaken research activities investigating how to use the agility of cloud architectures to aid 

in cyber security by providing a platform for deploying System-Aware Cybersecurity design patterns for 

enhancing system protection. This effort was based largely on previous SERC research efforts conducted 

at UVA, mainly focused on developing and utilizing security design patterns to protect physical systems.  

In our early efforts on cloud architectures, two specific areas of research interest have developed as new 

research questions, which we have expanded in the past year:  

 Can we exploit the agility of cloud service architectures to serve and to enhance the platform for 
delivering Sentinel-based, cyber security protections?  

 Can we build a control system-based theoretical framework for addressing how to protect the 
private Cloud Sentinel?  

 

System-Aware Cybersecurity 

The Systems Engineering Research Center (SERC) has been engaged with the Department of Defense 

(DoD) in developing a novel cyber security concept for embedding security solutions into systems; this 

new concept is referred to as System-Aware Cyber Security. These solutions provide greater assurance 

to the most critical system functions by providing an additional layer of defense that complements 

perimeter and network security solutions that serve to guard the entire system from penetration. 

System-Aware solutions are particularly effective at guarding against insider and supply chain atta cks 

that circumvent perimeter security solutions. The broad objective of the System-Aware program can be 

thought of as reversing cyber security asymmetry from favoring our adversaries, to favoring the US; i.e., 

from favoring a small investment in straightforward cyber exploits to favoring small investments in 

System-Aware cyber security solutions for protecting critical system functions.  

To-date, the SERC and a University of Virginia (UVa) led team, consisting of the UVa and the Georgia 

Tech Research Institute (GTRI), have advanced the System-Aware cyber security concept and evaluated 

a number of specific design patterns that are intended to be reusable across a variety of applications. 

These patterns include, but are not limited to, employing diverse redundant components in critical 

subsystems, using voting techniques across diverse redundant components for real-time discovery and 

elimination of infected components, dynamically modifying the configuration of software components 

in systems through virtual configuration hopping techniques, dynamically modifying the configuration of 

the hardware/software components in systems through physical configuration hopping techniques, 

using system specific data consistency-checking to determine if critical system information has been 

manipulated, and where applicable, use of analog components as trusted elements to perform critical 

security functions in systems. Furthermore, a decision support framework has been developed for use 

by systems engineering teams in selecting a subset of available design patterns for integration into a 

cyber security system architecture.  

This portion of the project focuses attention on the use of private cloud architectures as both a host for 

System-Aware protections and methods for the assurance of private could architectures as trusted 

platforms.  
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2   Research Activities 

2.1. Investigating the Use of Private Cloud Platforms for Hosting Sentinel Application 

Components and Design Patterns  
As the Sentinel concept has been developed, certain security design patterns have emerged as 

candidates for implementation on a cloud platform. Specifically, diverse redundancy, secure voting and 

configuration hopping are candidate security design patterns for delivering Sentinel application services 

across private cloud architectures. During the past year’s efforts, the cloud architecture’s inherent 

capabilities to use multiple hypervisors working on different operating systems within a single private 

cloud infrastructure (e.g., OpenStack) or the ability to configure multiple cloud infrastructures (e.g., 

Microsoft Hyper-V Cloud Services in addition to an environment such as Openstack) as a way to provide 

a diverse environment for deployment of Sentinel functionality. The figure below illustrates an example 

of a diverse environment for adding security to a system through the use of monitoring and control 

design patterns implemented in multiple clouds serving as a Sentinel.  

 

Figure 1. An example of a diverse environment for delivering security to a system and its applications using 
design patterns implemented in multiple clouds: OpenStack (left) and Microsoft Hyper-V Cloud (right). 

There are many unanswered questions that need to be addressed as we began to look at cloud 
architectures as a part of a Sentinel-based, System-Aware protection mechanism. In our efforts this year 
in this area - leveraging the cloud environment in order to provide a more diverse and agile platform for 
the Sentinel protections, we have experimented with two different implementations of Sentinel 
protections. The first step required the implementation of a private cloud test-bed environment to host 
virtual computing platforms that would execute Sentinel monitoring and protection code. We developed 
an implementation of the Openstack private cloud architecture as a host for both the Sentinel 
protection algorithms and a place to run applications in the cloud for future experimentation. This 
environment is described in Section 2.5. 
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For our initial experiments with using the agility and diversity of the cloud architecture, we first 
implemented a sample video surveillance system in order to develop a proof-of-concept environment to 
test initial theories on implementing System-Aware Sentinel protections utilizing the agility of a cloud 
for for hosting cybersecurity projections (described in Section 2.5.1.1). We then chose to re-implement 
the same protections that were used in our unmanned aerial vehicle (UAV) project to protect critical 
flight control and payload system functions on board the aircraft (described in Section 2.5.1.2). As a 
more substantive use case, we have successfully implemented a working demonstration system of the 
(Advanced Imagery Exploitation System - AIMES) in order to experiment and test methods for securely 
protecting ground-based systems that are directly interacting with an airborne system (described in 
Section 2.5.3).  
 

2.2. Implementation Feasibility of a Cloud Integrity Assurance Theory  
The cloud architecture itself can be viewed as a control system as it is responsible for managing the 

delivery of computing resources to the applications and users that are requesting environments to 

support their functional requirements. This control system is vulnerable to cyber attacks. If the 

infrastructure of the cloud is compromised, then the applications supported by that infrastructure are 

also vulnerable. In this effort we investigated the feasibility of creating a theoretical security monitoring 

framework for assuring cloud infrastructure integrity and providing example implementations as a step 

in proving feasibility. 

Our goals for this portion of the effort included 1) Developing an initial theoretical framework for 

assuring cloud infrastructure integrity, 2) Identifying both the opportunities to apply the theory and 

practical limitations regarding application of the theoretical framework, 3) Developing illustrative design 

patterns for implementing system integrity solutions, 4) Demonstrating selected design patterns using 

an off-the-shelf cloud infrastructure, including both attack detection and responses to those attacks.  

2.2.1.  Conceivable Persistent Threats 

In considering a new security monitoring framework for cloud architectures, we must first investigate 

the potential risks inherent in the infrastructure itself and potential threats to the data that moves in 

and out of the systems hosted on the cloud platform: 

 Disrupting Cloud Management - Attacking the management framework of the cloud infrastructure to 
introduce application latencies that impact military operations. 

 Data Barriers Within the Cloud - Attacking the Cloud infrastructure so that it disrupts normal access to 
timely, mission critical data. 

 Data Barriers at the Cloud Edge - Attacking the Cloud infrastructure so that it delays or denies data flow 
into or out of the Cloud storage environment for selected periods of time related to specific military 
operations. 

 Data Confidentiality - Attacking the Cloud infrastructure to gain access to sensitive data that is co-located 
on the cloud system (adversary learns what you know). 

 Data corruption - Attacking the Cloud infrastructure to create mechanism for insertion of arbitrary bit-
errors for all  data, so as to complicate use and response for selected or random periods of time 

 

2.2.2. Research Questions addressed: 

Private cloud platforms offer flexible architectures capable of delivering scalable, flexible and cheaper 

computing platforms in support of mission critical applications in our organizations. It is crucial that we 

understand the new cyber-security risks that are introduced by the cloud infrastructure and cloud 
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management architectures that serve as hosts to those applications. Our research effort aims to 

investigate the security issues around the cloud and start to answer questions in four major areas:  

The first questions focus attention on the use of the flexibility of a cloud to protect other cyber 

physical or information systems. 

1. Can we leverage the diversity and flexibility of the cloud architecture and our previous research 
efforts into methods of utilizing security design patterns to further enhance the protection of 
command and control systems in mission critical applications?  

2. Can we build a prototype and demonstration environment, through a specific use case such as 
the AIMES imagery exploitation system provided by Leidos, that can monitor and detect changes 
in the cloud architecture and provide a more “trusted” delivery platform for private cloud 
architectures and the applications that they ultimately host? 

 

Additionally, questions are focused on the protections of the private cloud architecture itself. 

3. What theoretical approaches can be developed in or adapted from other areas of computer 
science to monitor and to detect potential anomalous behavior in the cloud stack itself and 
ultimately protect its vulnerabilities? We aim to address issues including: What data needs to be 
collected and where is it sourced? What are the analytical techniques needed to leverage the 
data collected for monitoring purposes, detection of anomalous behaviors, and classifying 
detections? What are the potential responses to different classes of detections?  

4. Can we build an approach for monitoring and for detection which will look at the at the cloud 
services stack from a “bottom-up” view?  We will concentrate on how the cloud environment 
itself operates including its interactions with the hosting hardware environment first, and move 
up the cloud’s operational stack addressing the specific applications that are running in the 
cloud and associated virtual machine environment as a last step. We will look very closely at 
how the cloud configuration itself interplays with the applications and how those interfaces can 
be monitored. 

2.3. Potential Cloud Platforms 
To begin the process of looking at the vulnerabilities of a cloud’s architecture, we must first identify and 

fully understand the specific architecture that we wish to protect. Both commercial and governmental 

organizations are turning to the open source cloud software world to support the development of 

private cloud architectures for their enterprises. The primary drivers for this are the low cost entry-point 

and the prospect for portability of applications across the enterprise. Three leading open source 

solutions come to the front for consideration: Openstack, Apache CloudStack and Eucalyptus.  

The Openstack open source platform is maintained and developed through the OpenStack Foundation. 

The foundation is supported and sponsored through a vast network of individuals and companies 

(https://www.openstack.org/foundation/companies/) including IBM, HP, AT&T, Rackspace and 

Canonical – the main supporter for the Ubuntu Linux operating system. In fact, the OpenStack 

environment is included in the basic distribution of the Ubuntu OS. It is also a fully supported option for 

SUSE and Redhat versions of LINUX. Rackspace both provides extensive development efforts for the 

Openstack platform and also uses the environment for delivery of public cloud services. Rackspace and 

NASA were the original developers of the OpenStack environment. OpenStack has a broad and quickly 

expanding user base and a very deep pool of open source developers and seems to have momentum as 

the open source cloud platform of choice at this point.  
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The Apache CloudStack platform is a technology platform that was first developed in 2009, purchased by 

Cirtix in 2011 and released it through to the Apache Software Foundation (ASF) open source community 

in 2012 .  The ASF is also supported by many individuals and companies 

(http://www.apache.org/foundation/thanks.html) that provide varying levels of development and 

monetary support. CloudStack is a more “polished” cloud delivery platform, especially in terms of 

installation. It is widely used and hosts many production application environments. 

The Eucalyptus cloud architecture is the oldest of the open source cloud environments. It is a major 

cloud architecture partner with the Amazon public cloud service (Amazon Web Services). They too are 

supported by many corporate sponsors (https://www.eucalyptus.com/ ) – including Microsoft, HP, 

Google and Citrix. Because of the relationship that they have with AWS, they market their capabilities to 

offer a hybrid solution of private and public based clouds that enable easy migration to and from the 

public and private environments as needed by the user. 

In the end, our research activities should apply generically to any of these platforms as they all 

ultimately deliver similar functionality in various cloud services while they each offer their own specific 

features, benefits and drawbacks for different implementations. However, for our purposes, we will 

need to focus on one platform for use as a testing, analysis and management platform for clouds. As we 

see that the OpenStack platform is getting a very large amount of attention from organizations wishing 

to move applications into open source, private cloud-based platforms, we will focus on the Openstack 

implementation for this project. If we find use cases that require other platforms, will include those in 

our analysis, as needed, including integrating other cloud services into the mix of diverse platforms in 

order to provide security to the protections and to the systems we are protecting using System-Aware 

techniques. 

It should also be noted that there are other commercially focused private cloud solutions from 

companies such as Microsoft (Hyper-V based services) and the VMware solutions for virtualiz ing 

computing may play a role in this research, as well. Initially, the focus will be on open source solutions as 

they offer the most cost effective entry-point solution for organizations as they move into privately 

hosted clouds.  In addition, these solutions are more commonly referred to as virtual computing 

environments and may not meet the definitions of private Infrastructure as a Service (IaaS) offering.   



Cybe~ecurity11HDpenstac~ICEHOUSE)IJirivatefl:loudiJirototypingiJ>Iatformlll 

Createll:yber-Diversity(lhroughlllnonito...r!l 
runningll>nllnultipleiDS'~e.gJJedora)!l 
Windows,llJNIXIIIndllJbuntu)!ll 
Different!ltypervisorsQKVM)IlEMU,IJ(EN!!I 
andlliyper-v)!!l 
Cyber!ltoppingflapabilitiestl>etween!!l 
virtualttlstance~ftlhel'lnonitoring[!l 

softwaretm/ideolfilot!llop(tate!!l'!!lcned!!l 

Figure 2- Openstack Overview Diagram 

2.4. Cloud Simulation Environment 

Piccolol5oftware-in-the-Loop(5imulator!BIII 

We anticipate another important aspect of our research endeavors will focus on a need to create a 

cloud simulation and test-bed environment. This environment will be utilized for testing of new 

monitoring and detection techniques and also w ill be used to create test data sets that could serve as 

part of the monitoring and detection algorithms applied to physical cloud systems. We w ill attempt to 

find and to use functiona lity provided by existing simulators or emulators that will allow us to simulate 

and ana lyze components of the cloud architecture including the cloud configuration parameters, 

networking design within the cloud, hypervisors, virtualization control and management of storage, 

memory and processors. The Openstack environment is described further in Section 2.5. 

2.5. Cloud Test-bed Environment 
We implemented our private OpenStack {ICEHOUSE version) cloud using a set of scripts provided by 

StackGeek.com. These scripts automated the process of installing necessary packages and libraries, and 

making changes to various configuration files. In addition, a URL provided during setup facil itated the 

addit ion of new nodes to the cluster. 

The current cluster consists of one controller node and one compute node. We have the option of 

adding more compute nodes as necessary. We initially decided during the setup process to exclude a 

node dedicated to Openstack Swift object storage, as it was not necessary for the direction of our cloud 

research. Compute nodes met our goa l of providing an environment in which to potentially offload 

Sentinel protections current ly isolated in Raspberry Pi single-board computers. However, as the resea rch 
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continues to progress, the Swift module will play a more important role. Particularly, Swift, which is the 

persistent, shared storage management system for the Openstack private cloud will needed to aid in the 

evaluation of security of the cloud infrastructure and the methods that are used to move and store data 

in and between virtual instances inside the cloud environment. It is anticipated that the Swift storage 

will become the main imagery and metadata repository for the AIMES system for experimentation 

during the follow-on phase of the project. 

2.5.1. Use-Cases: System-Aware Protections In The Cloud 
For our initial experiments with using the agility and diversity of the cloud architecture, we chose two 
different applications to test out the feasibility of running System-Aware Cybersecurity security design 
patterns in a cloud architecture and to see if we could leverage the flexibility and agility of the could to 
enhance those protections. The first application was a simulated video security surveillance system. The 
second was the Sentinel applications themselves, basically a re-implementation of the same protections 
that were used in our unmanned aerial vehicle (UAV) project to protect critical flight control and 
payload system functions on board the aircraft.  
 

2.5.1.1. Use-Case: Cloud-based System-Aware Protections of a Security Video Surveillance Platform 
This task was designed as an early, proof-of-concept step to demonstrate the capability to implement 
System-Aware Cybersecurity design patterns utilizing the agility and flexibility of a private cloud, our 
multiple private cloud architectures as a hosting platform for a few security design patterns. For this 
effort, we implemented two sample cloud environments, an implementation of an Openstack private 
cloud and an implementation of a Microsoft Cloud Services Cloud which is an environment configured to 
utilize the Hyper-V product-line to deliver on-demand virtual environments to used in a Microsoft Active 
Directory Domain.  
 
The overall goal for project task: Investigate the use of private cloud platforms for hosting Sentinel 
application components and security design patterns. This was accomplished by: 

• Enabling Diverse Redundancy/Voting and Configuration Hopping System-Aware Cybersecurity 
design patterns by delivering Sentinel application services for a sample system across a private 
cloud architecture utilizing: 

– Multiple hypervisors supporting the deployment of different operating systems within a 
single private cloud infrastructure (OpenStack). 

– Showing the addition of a second, diverse cloud service delivery platform, in this case 
Microsoft Hyper-V Cloud Services so the design patterns could be executed across 
multiple, diverse cloud infrastructures. 

 
To test the ability to apply our test design patterns, we first needed an example application to test the 
effects of executing time-sensitive functions such as System Configuration Hopping and Diversity with 
Secured Voting techniques.  The first test case chosen was a video surveillance server (shown in Figure 3 ) 
installed into the cloud system architectures. Every effort was made to make the environment as 
possible with the server components installed in different operating systems, spread to different 
hypervisors (such as QEMU, KVM, XEN and Hyper-V) and across cloud architectures (Openstack and 
Microsoft). We chose the video surveillance application specifically because latencies that were 
introduced into the system by the security design patterns would be very visible to the end users and 
would affect the smoothness of the video displayed to the end user.  
 



We then implemented our design patterns. The Configuration Hopping design pattern required us to 
insta ll multiple versions of our sample system and to implement a mechanism to show the System
Aware protections which were to Hop between those application environments and vote out bad 
streams either automatica lly or on command. We then developed a basic attack scenario, a piece of 
ma lwa re which enabled a video-replay attack available on command to infect the video server and make 
the live video stream repeat a segment of video, thus hiding activit ies from the live stream from the 
viewer. We developed a simple interface to show the attack, and then enable the protections System
Aware protections and show the attack again with the protections in place. Careful efforts we designed 
into the demonstration to show the ability to hop between system funct ions without having latencies 
impact the surveillance system viewer's experience. Much of this work was based on Rick Jones' Masters 
thesis - 2011. (Figure 4 shows an overview of the system and the System-Aware protections in place). 

In this demonstration system, we were able to successfully demonstrate the ability to execute the 
selected design patterns in a very diverse, cloud-hosted architecture. This work ha s la id the cornerstone 
for the other efforts undertaken as part of the cloud-based project. 

Demonstrationl1lfl!urve il lance~ystem!Jo~ystem

Aware~entine llll 
r--------------, Sensorlllystemlll 

· - {g 
r-------------1 

Userlllystemlll 

Figure 3 - Demonstration Security Video Distribution System 
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Figure 4 ·Using System-Aware Design Patterns to Protect and Application 

2.5.1.2. Use-Case: The UAV Sentinel Applications in the Cloud 

Though the cloud computer environment lacks the physical interfaces necessary to hook directly to the 

physica l Piccolo II autopilot, system we w ere able to utilize the softw are-in-the-loop (Sil l simulation 
environment provided by Cloud Cap Technologies in order to emulate the aircraft in flight and to 
generate attacks on parts of the flight system. We w ere then able to successfully implement the same 
protections we developed for use on a physica l Sentine l protecting our rea l UAV system with the same 
code base on to virtua l computing platforms running inside the Openstack Cloud-based infrastructure. 
This enabled a test-bed for trying diversity and hopping securit y design patterns on applications and 

gave us a base-line for comparisons for other applications that could be protected using the private 
cloud as a hosting platform. Results from this process indicated that the t iming and latency impacts on 
the Sentinel protection algorithms run in the private cloud versus running in the physica l instantiation of 

the Sentinel on single board computers (SBC's) much like the Raspberry Pi's used in the UAV System

Aware example, yielded similar good results. This provided us with a simple way to alter the operating 
conditions for the Sentinel logic in terms of resources (size), operating systems and host hypervisors, 
and provided a mechanism to sca le the supporting Sentinel architecture on an as-needed basis to either 

larger or sma ller platforms. These results encouraged us to move forw ard to the next step in the 
research process, w hich was to investigate and to implement a more rea l-world test-bed application, in 

this case, the AIMES video exploitation system from Leidos. 
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Figure 5 - Cloud Implementation of System-Aware / Sentinel Protections on the UAV system functions 

2.5.2. Issues in Test-bed Configuration 

Initial attempts at configuring the cluster to work with the lab’s private network infrastructure proved to 

be a challenge. The scripts used to install the Openstack software made use of DNSMASQ, a lightweight 

DHCP server. This server conflicted with the DHCP currently established in the lab’s network, leading to 

an incorrect allocation of IP addresses and ranges which control the distribution of address to the virtual 

computing environments hosted within the Openstack cloud architecture. After eliminating the problem 

by disabling DNSMASQ, we successfully instantiated virtual machines (VMs). Each VM has direct access 

to the Internet through an assigned public floating IP address from a pol of addresses made available to 

this effort. Through this Internet connection, we pulled all sentinel functions from the project team 

GitHub repository which maintains the development code-base for System-Aware protections and for 

the open source libraries which are needed to support the monitoring and detection functions of the 

Sentinel logic.  

Our first VMs functioned only as headless servers with no user interface. We desired the ability to run 

the cyber commander GUI interface (the main Sentinel alerting and correction interface for the UAV 

example) in a cloud environment, however, necessitating an exploration of VNC in OpenStack. The 

administrative view of the OpenStack dashboard provides basic VNC functionality. Exploration of the 

OpenStack Nova API revealed commands that return a URL which allows http access to virtual machines 

using a standard web browser. After instantiating a Ubuntu 14.04 desktop VM, we successfully 

connected to the controller node using an SSH connection on the university’s public network. With the 

returned URL, we accessed the VM with no apparent degradation in speed or responsiveness. 

2.5.3. Creating the AIMES Test-bed Environment 
As a second use case, we have successfully implemented a working demonstration system of the 
(Advanced Imagery Exploitation System - AIMES) in order to experiment and test methods for securely 
protecting ground-based systems that are directly interacting with an airborne system. The ground-
based system will employ a private Cloud-based Sentinel that provides agility features that can help to 
protect the Sentinel from attack. Our intention is to evaluate the agility limits of diverse redundancy and 
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configuration hopping solutions, and also the complexity trade-offs of voting algorithms for cloud-based 
monitoring of a real-world system. As the research continue to progress, the experimentation will be 
based upon results obtained through the monitoring of a COTS-based UAV imagery processing system 
produced by Leidos Corporation. Leidos has provided a software license to UVA for AIMES, and support 
for integrating AIMES into the UVA simulation laboratory and will provide support for determining the 
necessary information required to protect AIMES, and for supporting testing of the possible AIMES 
system responses to simulated attacks and corresponding Sentinel inputs to AIMES. The activities 
achieved during this portion of the effort have included 1) Integrating AIMES into a UVA simulation 
evaluation environment which has been a, 2) Designing a working cloud-based Sentinel prototype on 
simulated system. The efforts on the AIMES environment continue to address conducting simulation 
experiments that allow for trade-off analyses of Sentinel complexity vs. attack detection and design 
evaluations of Sentinel security vs. Sentinel complexity, using trade-off results as a basis for developing a 
Sentinel design methodology for cloud-based Sentinels, and identifying potential initial operational 
prototype opportunities for advancing the work beyond this AIMES-based effort. 

 

3   AIMES System– An Example of Applications in the Cloud and As a System to Apply 

System-Aware Techniques 

3.1. AIMES Overview 

AIMES (Advanced Imagery Exploitation System) is a video exploitation system from Leidos that is used 
by the Air Force and the Army to provide intelligence capabilities on video streams coming from video 
surveillance platforms in the field. The three central VPC AIMES components include the primary image 
capture and transformation element (PICTE), the AIMES motion imagery library, and the desktop 
exploitation software (AIMES Exploit).  

The image capture element receives all real-time, full motion video (FMV) data, synchronizes the video 
and embedded information (such as time and geolocation), and transforms the synchronized 
multiplexed stream into a standards-compliant output stream that is used by the rest of the AIMES 
system. The streaming output from the PICTE can be viewed immediately in real-time using the AIMES 
exploitation software, or archived in the motion imagery library. The AIMES motion imagery library 
server is the storage processing system, which is used to store the streams from the PICTE, as well as 
serving the video to the AIMES Desktop Exploitation Client, which provides analysts access to the video 
and to the system user functions necessary to tag and analyze the video data.  

The AIMES system supports the ingestion, tagging, and viewing of MISP compliant full motion 

video streams. The AIMES server connects to sensor platforms and receives data in real time, 

streamlining an analyst’s job of communicating findings and generating intelligence reports. Ingestion of 

the FMV data involves storing both slice and frame information in a PostgreSQL database. Each video 

frame is associated with metadata describing the position and state of the sensor platform, such as 

latitude, longitude, and altitude. 
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3.2. The AIMES Test-bed Implementation 

 

Figure 6 - Overview of AIMES System Architecture 

 The AIMES system consists of four primary components: the sensor platform, the PICTE server, 

the ADMST server, and the AIMES Exploit software. For purposes of developing both attacks and 

System-Aware Cybersecurity / Sentinel protections, the current configuration does not have direct 

access to an actual sensor platform. Instead, MIRestream software is used to multicast video data from 

a predetermined location in the file system, simulating the existence of a sensor platform. The PICTE 

server receives the FMV feed from the sensor platform and gives the feed a unique identifier. PICTE 

provides direct control over the source and destination of the FMV stream, either through unicasting or 

multicasting. The stream information is received by the ADMST server, which marks the current feed as 

active in the PostgreSQL database. Additionally, PICTE handles the transfer of the video files using FTP to 

the server. The server is responsible for monitoring an ingest directory and extracting all video metadata 

for storage in the database. Additionally, a set of web services provided by the server, allow client 

machines running the AIMES Exploit software to send requests in a Simple Object Access Protocol 

(SOAP) format. The server responds by providing the information necessary for the client to find and 

view the requested streams. Additionally, analysts can perform searches using a variety of other 

parameters such the contents of a chat message log associated with a particular video stream.  

3.3. Virtualization for the AIMES Application Test-bed 
 The current configuration of the system allows for a smooth transition to a fully virtualized 

environment. MIRestream and PICTE each run on a separate virtual machine running Windows Server 

2008. These virtual machines are managed using the Hyper-V hypervisor on a physical machine running 

Windows Server 2012. The ADMST server and the AIMES Exploit client software both run on physical 

hardware – though the ADMST server is perfectly viable for a virtual delivery. The client software, AIMES 

Exploit, requires updated graphics drivers that are not compatible with a virtual environment. We plan 

to virtualize the ADMST server software as the project research progresses. All system components are 
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configured to communicate over a shared private network. All required data for streaming is stored 

directly in the file systems of the physical and virtual machines, so no public network interface is 

required. As we move towards evaluating the application in the private cloud environment and applying 

System-Aware techniques to protect both the application data streams and the integrity of the cloud 

infrastructure which supports the Openstack private cloud, we will migrate the virtual environment into 

the cloud. 

3.4. Progression of Test-bed Configurations 
Initial implementations of the test-bed involved minimal hardware so we could focus our efforts on 

understanding the installation options and the functions of components that make up a working AIMES 

implementation. This was accomplished with the help of Leidos system designers. The first version of 

the demo system was configured to entirely on one machine, including the client software. This enabled 

the team to become familiar with the installation of the system.   

Our second implementation occurred on two machines with the client software extracted out to a 

separate laptop. This setup was used for quick and relatively portable demonstrations of the system’s 

capabilities while beginning the process of understanding the distribution of system functions and the 

mechanisms for video dissemination from the sources to the analysts performing user functions.  

In our last implementation iteration, we separated the individual system components with the intent of 

accurately mirroring how the system is actually deployed, and to enable our ability to insert ourselves 

between the system components in order to simulate attack that might emanate from compromised 

insiders or supply chain-based attacks.  In an attempt to leverage access to powerful physical hardware, 

we attempted to freshly install the components in a Windows Server 2012 environment. However, the 

supported platform specification for AIMES is Microsoft Windows Server 2008. Configuration of the 

PostgreSQL database in Server 2012 resulted in multiple fatal system errors. After troubleshooting 

efforts, the project team elected to virtualize the Windows Server 2008 environment rather than replace 

the existing operating systems on the physical hardware.  

Once the virtual machines had been instantiated and the Windows 2008 operating system installed, 

installation of the individual components proceeded smoothly, with most of the detailed configuration 

handled by installation scripts provided by the Leidos team. MIRestream and PICTE were installed on 

two virtual machines and initial attempts at running the system showed that the two components were 

successfully communicating. MIRestream multicasted the raw video data, and the PICTE received and 

processed the video into sixty-second slices, as the system dictates. A link between these components 

and the server remained missing, however, with the active feed not appearing in the database. We 

remedied this problem by changing the target address of the server’s metadata broker service in PICTE 

to the actual IP address of the server machine. Before, the service was assumed to run on local 

loopback, meaning that all stream information was isolated from the server machine. With the target 

address fixed, the server saved the active feed identifier into the database, and the client could query 

the server for active feeds and view the live-streamed video.  

Upon examining the contents of the database, however, we realized that the server was not 

storing any video metadata in the database. In fact, it was not receiving any video data at all. After 

reading through documentation for the server, we realized that the only remaining missing component 

was a simple FTP server running on the same machine as the ADMST server. Once this was installed and 
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the appropriate credentials were provided to PICTE, video data was successfully transferred to the 

server machine and ingested into the database. 

3.5. Potential Attack Opportunities 
Once all components had been completely separated, we focused our attention on identifying potential 

vulnerabilities and attack vectors. In parallel, we also consider possible monitoring mechanisms to 

address these attacks. Currently, we are pursuing two possible points of attack.  

 The first involves tampering with or rerouting the raw video stream, possibly introducing replays 

or large latencies into the video monitoring in order to obfuscate illicit activities.  

 The second involves using SQL injection to taint the contents of the PostgreSQL database, which 

would render the forensic analysis capabilities of the AIMES system inaccurate and unreliable.   

In configuring the system, we recognized that no ingestion to the database occurs if the raw 

video files are not transferred to the server by PICTE. This characteristic is ideal from the perspective of 

an attacker; however, as the FMV feed still streams successfully to the AIMES exploit software on the 

client. This suggests that the client machine only needs to know the address of the stream to view it. The 

client software does not perform any check against the information stored in the database as video is 

streamed to the client. An analyst can still perform search queries and receive access to active feeds, 

with the only degeneration in aesthetics being the lack of a thumbnail in the feed description. This 

results because no links to extracted thumbnails have been saved in the database. A manually saved 

thumbnail could quickly mask this visual quirk. Regardless, the direct streaming of video to the client 

invites a man-in-the-middle attack, which fundamentally alters the video received by the client and will 

be the primary focus of our initial attack approach. 

As a secondary attack avenue, we have evaluated injecting our own commands into the 

database, basically an SQL injection attack, and have deemed it as a viable, though somewhat less 

promising attack vector. Metadata saved to the database is packaged in an XML file as part of an HTTP 

request sent to the server. Initial searches show that the mechanism by which the server executes the 

commands to save the video metadata is hidden inside compiled code. The database could play a larger 

role in the detection of attacks; by comparing the stored metadata with the metadata of the incoming 

video stream, the current state of the incoming stream may be validated. Our intention are not to affect 

changes on the source code itself, but to rely on attack components that either insert attacks between 

components or rely on attacks on the cloud infrastructure to modify system behaviors and then to 

enable the System-Aware protections in order to protect those system functions.  
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3.6. Ensuring the Private Cloud Infrastructure 
A comprehensive effort is required to ensure the integrity of private cloud infrastructures.  Clouds, like 

other IT infrastructures, are certainly vulnerable to cyber security attacks. If the infrastructure of the 

cloud is compromised, then the applications supported by that infrastructure are also vulnerable. I n this 

part of the effort, we looked to investigate the feasibility of creating a theoretical security monitoring 

framework for assuring cloud infrastructure integrity and providing example implementations as a step 

in proving feasibility. We identified a sample attack, designed and implemented the infrastructure to 

monitor for such attacks, and designed and implemented classes of techniques to respond to such an 

attack.  

In considering a new security monitoring framework for cloud architectures, we must first investigate 

the potential risks inherent in the infrastructure itself and potential threats to the data that moves in 

and out of the systems hosted on the cloud platform: Disrupting Cloud , Data Barriers Within the Cloud, 

Data Barriers at the Cloud , Data Confidentiality and Data corruption. These are described in detail in 

Section 2.2.1. Areas that offer potential attack vectors in the Openstack platform are highlighted in 

Figure 7. 

To ensure that our research is manageable, relevant, and scoped properly, we began our FY14 efforts by 

focusing on cyber attacks that successfully introduce application latencies within a private cloud 

infrastructure -- that is, cloud applications continued to operate, except at a pace slower than designed 

and/or expected. For example, applications would deliver information to each other later than "normal", 

prevented via a number of attack mechanisms within the cloud networking layer, or within the cloud 

infrastructure services, or within the cloud infrastructure software, etc.  
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To develop a theory for correct private cloud operations, we decided to pursue a bottom-up 

methodology, in which a specific cloud deployment provides the concrete basis for research. That is, we 

decided to construct a plausible and narrow cyber attack on a specific cloud with corresponding specific 

cyber attack discovery mechanisms and mitigation strategies. We chose the most popular and important 

open-source private cloud software, OpenStack. We pursued a research plan of gradually expanding the 

scope of cyber attacks on OpenStack clouds, with the intent to generalize in all dimensions as the 

research progressed. 

We further divided our increased-latency cyber attack into two equivalence classes: operations 

necessary for correct cloud application behavior, and operations necessary for correct cloud behavior. In 

the first category, we focused on the cloud object store ("OpenStack Swift"), and in the second category, 

we focused on cloud scheduler operations ("OpenStack Nova"). While we made progress on bother 

equivalence classes, our development efforts focused on cloud scheduler operations. 

We studied approaches to ensure that scheduling of virtual machines (VMs) was reasonable in a private 

cloud that might be under attack. For example, a successful cyber attack could result in new cloud 

activities (VMs) be placed incorrectly on already-heavily-loaded physical machines. Normally, 

simplistically, VMs should be placed onto physical machines that are relatively lightly loaded. A 

successful attack would then significantly slow down the operation of the newly-spawned cloud 

application (VM) as it contends for resources already under duress.  

 

Figure 7 - Diagram of possible attack vectors within the Openstack Infrastructure  

After studying the OpenStack  design and software, we determined that there were two best options by 

which to detect this cyber attack: 

 Cloud Infrastructure Reporting. We modified the OpenStack software by adding event-driven 

notifications both (a) to measure the duration for a new VM to be scheduled and  report into the 
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cloud monitoring infrastructure; and (b)  to measure the duration of cloud object storage operations 

("blob store"). The basic idea was these notifications would provide experimental timing information 

as the baseline for normal (correct) private clouds operations; these baseline measurements would 

then be consulted as the basis for asserting anomalous behavior. Reporting of scheduling duration 

did not require any new methods be added to OpenStack. We did need to modify existing methods 

to add timing information and then we needed to invoke the existing notification sub system.  

Adding notifications to the blob storage system was a little more involved. OpenStack is currently 

transitioning between notification systems and while the scheduler uses the newer notification 

system the blob storage system still uses the older one. After trying to hook into the older system 

we ended up adding code to the blob storage system that would allow us to send notifications 

through the newer notification system. In assessing the results of the new notifications we realized 

that if the cloud was compromised and the scheduler was getting bad information it would make 

bad decisions in about the same time that an uncompromised system would make good decisions. 

So while the scheduler notifications would detect an attack on the node that was responsible for 

making the decisions it wasn’t very effective at detecting when worker nodes were compromised 

and sending bad state information to the scheduler. 

 

 Active Probing.  In contrast to the first approach, in which the pre-existing cloud monitoring system  

was modified to collect new information (and use that information as the basis for asserting that a 

cyber attack is occurring), we also designed a self-contained, new activity that was scheduled on-

demand and whose functionality was to actively probe the infrastructure for anomalous behavior. 

Generally, this is the basis of a self-contained infrastructure that can be scheduled and executed 

outside the OpenStack mechanisms (such as VM scheduling). In this case, this active probe 

functionality attempts to perform an independent assessment of the computational load on the 

physical machine, and then use probe-specific mechanisms to report its results to the probe-

initiator. 

We believe that diverse mechanisms provide a more reliable mechanism by which to detect the 

anomalous behavior, and thus provide complementary detection information. Each approach has 

different pros and cons. The advantage of "Cloud Infrastructure Reporting" is that it is passive and 

measures how long it takes for work that needs to happen anyway. It adds very little overhead to the 

existing system. However, there are some natural variances in how long operations take on an active 

node so finding an appropriate threshold was challenging. Too low and false positives will quarantine 

healthy nodes while too high will delay detection of an attack. The "Active Probing" approach allows us 

to run some code to measure the health of the machine. In our prototype code, we opted to run a quick 

benchmark on the system. With the right benchmark you can also probe individual sub components of a 

node so you can gain more information about why a node might be slow. The disadvantage of this 

approach is that time spent running the benchmark is time that could be spent doing some more useful 

computation in a VM. If the benchmark is run too often or runs for too long you will achieve the goal of 

slowing down the system for the attacker. To ensure comprehensive results, we chose the Pystone 

benchmark. While Pystone doesn’t give performance numbers for system components, it runs fairly 

quickly and is easily configured to run for different durations. Also while we only investigated a 

homogeneous cloud we believe that it will be easier to reason about node performance in a 

heterogeneous cloud with benchmark numbers that just the durations of the passive approach.  
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In the event that either of these cyber attack mechanisms are triggered and assert that a latency-

introducing cyber attack is being executed successfully on the private cloud infrastructure, we designed 

and implemented a mechanism by which to identify those nodes suspected of being compromised. This 

was also performed via a new, probing mechanism. These nodes were subsequently removed from 

future scheduling decisions.  We are also researching approaches by which to further isolate those 

suspected nodes from the overall continuing operation of the private cloud.  

4   Future Work 

The next steps for this part of the research program are to generalize various aspects of the particular 

attack and response (introduce new cyber attacks that introduce latencies in cloud operations, expand 

and generalize mechanisms by which to discover successful attacks that introduce latencies, and expand 

and generalize attack mitigation strategies). While the focus on OpenStack, we argue, is an important 

means by which to create concrete and relevant results (Openstack is the most widely-deployed open 

source software for private clouds), we recognize that an important future step is to move beyond the 

particular software architecture and philosophy of OpenStack and generalize to other private clouds. 

Additionally, we have identified and are currently pursuing threats beyond latency. For example, we are 

beginning to expand the general functionality of the probe to more properly regulate frequency of 

probe, intent of probe, better handling of false positives, better handing of false negatives, etc.) We are 

also creating a theory and mechanism beyond the probing mechanism (e.g., through the widespread use 

of cryptography such as via digital signatures).  

Research areas scheduled for activities in Phase 2 of the cloud activities include:  

 Further developing the prototype AIMES cybersecurity sentinel. The researchers shall identify 

attacks that are of concern to operators, which can be detected and possibly contained through 

use of the Sentinel. The researchers shall investigate using diverse redundancy in terms of 

multiple cloud implementations, perhaps geographically separated as well, for monitoring and 

reconfiguration. 

 Develop and conduct experiments on a diverse set of integrity assurance functions for use while 

the cloud-based Sentinel is performing its operational functions. Such functions should include 

active testing of cloud performance. The SERC researchers should investigate the potential to 

discover situations where system parameters, data storage locations and data distribution 

methods could be exploited. 

The activity focused on the monitoring of a Cloud for integrity confirmation produced the early 
stages of a concept for actively testing a Cloud through a Sentinel by initiating test SW programs for 
execution and observing Cloud responses as described above. In particular, this concept was applied 
in a test case for determining if an adversary had forced a Cloud platform to bypass its normal 
methods of deploying a virtual machine. Specifically, we looked at a hypothetical case where an 
adversary forced a virtual machine to be deployed to an overloaded piece of hardware in order to 
introduce latencies into the functions on that virtual environment.. This cybersecurity design pattern 
of test during operational use of the Cloud can potentially be expanded to discover situations where 
adversaries manipulate system data values, misdirect distribution of data, modify data storage 
locations, etc. 

 
Based on these results, this project will advance these initial findings by: 



220 
 

1. Developing a prototype of an AIMES cybersecurity Sentinel that is employed on a Cloud. This will 
entail identifying attacks that are of concern to operators and that can be detected and possibly 
contained through employment of the Sentinel. In addition, as part of assuring the operation of 
the Sentinel, we will explore employment of diverse redundancy in terms of multiple Clouds 
(perhaps geographically separated) for monitoring and reconfiguration. Prototype results will be 
made visible to the AIMES user community to gain interest in starting to develop a transition 
strategy for the Cloud-based Sentinel concept. 
 

The ongoing FY14 project has started the learning activity regarding AIMES that will be required 
to select and implement attacks to defend against and to determine monitoring opportunities to 
support attack detection. The needed UVA learning efforts have been and will continue to be 
supported through a Leidos software support effort that provides UVA with needed information 
related to potential cyber-attacks and cybersecurity pertinent to the design of a prototype 
AIMES Sentinel (AIMES is a Leidos-developed software system). 
 

2. Expanding the active testing concept described above to include the development of and 
experimentation on a diverse set of integrity assurance functions and operate those protections 
while the Cloud is performing its operational Sentinel functions. Two example Cloud 
infrastructures will provide the basis for gaining experimental results regarding the boundaries 
of applicability of the active testing concept and the performance within those boundaries. The 
results of this effort will potentially define a pathway for advancing Cloud security beyond the 
application to Sentinels that will be exposed to the wide range of DoD stakeholders that are 
interested in employing private Cloud-based systems. 
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Executive Summary 

The System-Aware Architectural Selection and Assessment methodology is a process that has been 
developed as part Phase 1 and Phase 2 of this project in order to identify the critical system components 
for a particular system, to: 1) identify the possible attack paths to attack those components, to 
determine which of those attack paths would be most desirable to an adversary, 2) identify possible 
cyber security defenses against those attacks as well as to evaluate the impacts of those defenses on the 
attacker, 3) assess the effects on system performance of potential defenses, and 4) estimate the security 
trade-offs  across alternative architectural solutions. The System-Aware Architectural Selection and 
Assessment methodology is composed of six steps; each step having a well-defined goal, required 
deliverables, and responsible analysis team(s) for that stage.  Phase 1 focuses on a manual approach to 
implementing these steps.  The manual processes developed in Phase 1 include (i) a scoring system that 
highlights cost-benefit tradeoffs for decision makers and (ii) a method based on influence diagrams 
designed to aid decision makers in understanding ways in which uncertainty could be introduced into an 
attacker’s outcomes.  Phase 1 methodology was successfully applied to the UAV surveillance system, 
both to develop the concepts through case studies and as a practical method for selection of research 
targets for the attack and defense teams. From these applications, it became apparent that while the 
methods left participants with a clear sense of having successfully explored the design space, a set of 
analysis support tools could make an important contribution for enhancing the manual effort as part of 
addressing more complex systems as well as mission-based, integrated system-of-system security 
assessments.   
 
In Phase 2 we began to focus on developing methods for computer-based support to the processes for 
evaluation of the architectural selections of critical system functions to be protected on a cyber-physical 
system. The Phase 2 approach is based on exploiting and supplementing existing modeling paradigms 
with computer-based support based upon open source or commercial software.  Specifically, the 
System-Aware Architectural Selection and Assessment methodology has been recast in terms of use of 
model-based systems engineering tools, such as SysML, and attack tree tools, such as the commercial 
package SecurItree.  Much of the Phase 2 effort was directed at developing concepts and software to 
integrate systems models with attack trees to facilitate an iterative architectural design process in which 
decision makers could easily switch back and forth between defender and attacker views of the system 

or mission as part of selecting solutions for defense.  
 
The Phase 2 activity culminated in a workshop in November 2014 with participants from 10th Fleet Cyber 
Command, the Office of the Secretary of Defense the Johns Hopkins Applied Physics Lab and the Center 
for Naval Analysis. The goal of the workshop was for participants to discuss the complexities of the 
decisions and tradeoffs inherent in choosing a defensive architecture as well as to introduce the 
methodology and toolset being designed in this research activity. The format was interactive; 
participants engaged in the design of a defensive architecture for aspects of the UAV system, including 
the video surveillance mission.  Highlights of the exercise included the use of the architectural scoring 
tools and an introduction to SysML and cyber-attack tree support tools, such as SecurITree, that can 
represent the system from an integrated defender and attacker perspective. Discussion focused on 
opportunities for systems-aware cybersecurity deployment and how future versions of the tools might 
best support decision makers. The workshop provided useful perspectives regarding the future 
opportunities for enhancing and using computer-based support tools that served to impact future 
research plans. 
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1   Introduction 
 
At present, the state of the practice for augmenting Cyber Physical Systems security is primarily 
perimeter-based security (such as firewalls, intrusion detection mechanisms, anti-viral signature 
software, encryption, and advanced user authentication). However, the trend in adversarial attacks is 
moving toward well-formed coordinated multi-vector attacks that compromise systems in such a way 
that detection and identification of attacks is challenging through perimeter security solutions and 
human monitoring alone [Wulf and Jones 2009]. These styles of attacks are possible due to the recent 
advent of stealthy Advanced Persistent Attacks (ATP’s) - where attackers penetrate firewalls and 
intrusion network devices by very sophisticated malware, and then quickly steal information on the 
operational aspects of critical infrastructure systems before they are detected, if they are detected at all 
[[i]].   The information retrieved by an adversary from a “smash and grab” ATP attack is subsequently 
used to craft special multi-vector malware that targets the critical digital components of infrastructure 
systems. 
 
As an end result, it has been recognized that perimeter security needs to be strongly augmented by 
other approaches for addressing the current and emerging cyber threat potential for Cyber Physical 
Systems [[ii], [iii], [iv]]. Reliance and dependability of CPS will depend upon not only on the 
understanding of threats, but also upon the development of well-engineered science based approaches 
to protect critical assets that; (1) are effective at deflecting multi-vector APT attacks, (2) do not interfere 
with safety, dependability and reliability aspects of the CPS, and (3) reverse the cyber asymmetry from 
the attackers’ advantage to the defenders’ advantage.  
 

Vulnerability analysis today is performed largely at two extremes as shown in Figure 1; at the very low 
level which is typified by binary analysis and debugging and use of packet analysis tools, and conversely 
at the very high level which includes tools like attack trees, graphical methods, and tabular auditing 
methods.  At the low level, the focus is on very specific interactions at the program machine interface 
level, which largely excludes larger system context. At the higher level, the focus is on system level with 
focus on postulated attacks or vulnerabilities with respect to the system, with little support to 
determine what is the real set of vulnerabilities and possible exploits of those vulnerabilities.  
Consequently, today we practice Cyber-systems vulnerability analysis in a disjointed, fragmented fashion 
 

 
 

[i] F. Yarkochkin, “Hunting in the Shadows: In depth Analysis of Escalated APT Attacks”, BlackHat 
Conference 2013, Las Vegas, Nevada  
[ii] NIST 2013 Workshop on the Foundations of Cyber Physical Systems, prepared by Energetics 
Corporation. http://www.nist.gov/cps/ 
[iii] A.A. Cardenas, T. Roosta, and S. Sastry.  “Rethinking security properties, threat models, and the 
design space in sensor networks: A case study in SCADA systems”. Ad Hoc Networks, 2009.  
[iv] GAO. Critical infrastructure protection. Multiple efforts to secure control systems are under way, 
but challenges remain. Technical Report GAO-07-1036, Report to Congressional Requesters, 
September 2007. 
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 that leaves recognition of what can be important exploits undetected, due to the fact that a systems 
perspective of cyber-vulnerability analysis is lacking.  We argue that a model base systems perspective 
can provide the basis for a potential solution to this dilemma, guided by well-formed principles of 
architectural level cyber analysis. This would bring the power of system level modeling to enable a more 
holistic perspective on cyber security.  
 

 
Figure 1: Spectrum of approaches to vulnerability analysis. 

 
The key advantage of employing a model based cyber-vulnerability analysis approach is viewing the 
system from several important perspectives and dimensions of abstraction within a framework.  These 
perspectives include the mission perspective, which provides context to the consequences of exploiting 
vulnerabilities, the architecture domain which embodies the organization and relationships between 
sub-systems and platforms, and the platform domain, which represents all of the functions, and 

components that are working together to achieve a mission. Figure 2 shows the concept of model 
based CVA.  
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Figure 2 - Levels of cyber vulnerability analysis. 

Model based analysis allows us to support decision making by providing reasoning along these 
dimensions. It provides models to collect insight that otherwise could be overlooked. It allows us to 
integrate information from a variety of relevant vulnerability analysis tools that address  the spectrum of 
Cyber Vulnerability Analysis needs, such as Attack Trees tools, to the framework. It enables us to assess 
the criticality of platforms and functions with respect to mission, and finally it allows us to evaluate 
potential cyber-defenses in a broad-based and objective manner, accounting for the multiple classes of 
attacks and threat agents.  
 
An important question is, why do we want a multi-perspective model of the system? While modeling at 
this level requires a hopefully modest upfront investment (one of the important objectives of this 
research effort relates to cost and productivity regarding employment of advanced analysis tools), the 
model becomes a living representation of the system, allowing system engineers to support decision-
making activities that must evaluate the impact of modifications or upgrades to the protected system in 
the context of preserving security for various missions.  Perhaps most importantly, through information 
extracted from the model via querying tools, decision makers can achieve higher levels of confidence in 
their selection of cyber security solutions.  The model-based approach has the potential to provide 
insight into important questions such as:  

● Did we overlook important attacks or important defenses? 
● How do we know if an attack/defense is important? 
● If we do choose to add a defense solution, what are collateral impacts on the system to be 

protected, and how do these impact our integrated defense posture. 

2   System-Aware Architectural Selection Framework  

A key objective in System-Aware Cybersecurity is to reverse the asymmetric advantage enjoyed by 
attackers by identifying areas where the defensive team can make minimal changes to the system that 
will cause a maximum increase in difficulty, uncertainty, or expense for the attacker.   A wide variety of 
design patterns for functional defense have been developed using concepts such as data provenance, 
moving targets diverse redundancy, voting schemes, and sentinels.  Prototype and simulation-based 
System-Aware Cybersecurity solutions have been evaluated for a number of cyber-physical systems 
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including shipboard control systems, power-generating wind turbines, and video reconnaissance 
systems on unmanned aerial vehicles (UAVs). 

 

The most basic decision problem in designing a Systems-aware Cybersecurity solution, which we term 
the architectural selection problem, is that of selecting which system functions to protect and, for each 
function, choosing a collection of defensive measures from among a rich library of design patterns.   To 
make such choices, the designers of defenses should have deep understanding of the system to be 
protected, including an understanding of the relative importance of each function in the estimation of 
the system owners and operators 

Finding the best solution is a complex multi-criteria decision analysis problem with several distinguishing 
characteristics: 

● Solutions must account for the actions and capabilities of the adversary, now and in the future. 
● Solutions must satisfy a large and diverse group of mission stakeholders.  
● A mission solution involves multiple systems, each needing to be secured.  
● Solutions for a mission area must account for the particulars of each of the systems being 

protected and their relationships to mission outcomes. 
 
The complexities associated with solution derivations that address this array of requirements calls for a 
decision making process with supporting tools that will help stakeholders select a satisfying solution for 
each mission area 

2.1.  Architectural Selection Methodology 
The System-Aware cyber assessment methodology described here was designed to be an iterative 
process that relies on inputs from a range of stakeholder communities. In order to ensure that the 
information being used is as accurate and certain as possible, we found that it is imperative to ask 
individuals a variety of pertinent questions that were appropriate to their backgrounds and areas of 
expertise. This can be accomplished by initially dividing the stakeholders into three distinct groups: 
 
Red Team - The red team is made up of individuals with knowledge of cyber-attacks and potential threat 
agent classes. Their work is focused on developing candidate attack vectors and assessing the 
effectiveness of the proposed design patterns. 
Blue Team - The blue team can consist of two sub teams, one consisting of security solution designers 
and the other system users for the system being protected. Their responsibilities include identifying and 
prioritizing the critical system functions to protect, as well as determining which security design patterns 
can be implemented on which system functions. 
Green Team - The green team, which is comprised of experts in system cost analysis and adversary 
capability, analyzes costs, to both the attacker and defender, for candidate architectural solutions.  
 
The steps of the architectural selection methodology are as follows: 
 
Step 1: Define the Variables and Relationships Within the System to be Protected 
The initial step of the methodology is focused on framing the problem to ensure that all participants in 
the process are on the same page regarding the system to be protected. The process begins by 
identifying the critical functions of the system and defining the variables and influence relationships 
within that portion. Step one is to be performed by the blue team and is intended to outline the 
expected functionality of the system with minimal defensive strategies implemented. At  this point, a 
system influence relational diagram is constructed using directed acyclic graph (DAG) notation. This 
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diagram is created for the system without the consideration of a cyber-attack to ensure that everyone 
involved in the process is in agreement on the system’s structure and components before addressing 
the additional complications related to an adversary. 
 
Step 2: Identify the Possible Paths an Attacker Could Take to Exploit the System  
Step two introduces one of the issues that make this specific problem very complex: an intelligent 
adversary. While the system influence relational diagram represents a system where success may be 
compromised by random failures, the cyber security architecture selection problem introduces concerns 
where the decisions made by an active player in the system can also compromise mission success. In 
step two, the red team is tasked with constructing an attack tree for the system functions identified in 
step one. By looking at the system from the perspective of an adversary, attack trees can be utilized to 
understand the possible paths an attacker could take to exploit a specific feature of the system.  
 
Step 3: Determine the Subset of Attack Actions Most Desirable to an Attacker  
Considerable analysis can be conducted after the construction of an attack tree. However, rather than 
focusing on quantitatively calculating the probability of success for a specific attack path, as is typically 
done in attack tree analysis, the analysis included in this framework considers a  more qualitative, 
abstract metric space. In step three, the green team develops a set of variables that can be used to 
assess the difficulty of a particular attack path. These variables are called behavioral indicators and can 
include, but are certainly not limited to, resources such as technical ability, time, manpower, money, 
equipment, facilities, presence of an insider, and access to system design information. These variables 
are used to make two separate types of judgments: leaf node assessments and adversary profile 
construction. 
 
Step 4: Identify Appropriate Defensive Actions and Their Impacts on the Attacker  
After the red and green teams have identified the actions that an adversary would need to take to 
successfully execute an attack and the subset of those that are most attractive to a particular adversary, 
the blue team can then determine which of their existing defensive actions may be appropriate. This 
assessment addresses both the criticality of disruption of the system function that is attacked and the 
complexity of the required defense mechanisms. The suggested relational methodology relies on the 
assumption that a portfolio of design patterns has already been developed—either by previous blue 
teams or by an external group no longer involved in the process. If the current blue team was not 
responsible for developing the set of design patterns, it is assumed that they have access to the portfolio 
and the have the necessary knowledge regarding the meaning of each design pattern.  
 
The goal of step four is to select design patterns from the existing portfolio that could be implemented 
to make the actions captured in the leaf nodes of the attack tree less desirable to the attacker. This can 
mean increasing the difficulty, cost, or probability of detection to the adversary or lessoning the 
consequences felt by the defense in the case of a successful attack.  
 
Step 5: Evaluate the Impacts of the Selected Potential Actions on the Defense  
While step four captures the design patterns’ impacts on the adversary, step five transitions to 
evaluating how those same choices impact on the performance of the system to be. The green team is 
able to apply their second class of intelligence information here: cost analysis estimates for the 
defensive solution choices. At this point, each of the design patterns selected in step four is evaluated in 
regards to implementation cost, lifecycle cost, and collateral system impacts. The green team is 
responsible for estimating the monetary cost of a solution, but the blue team also adds input on a 
solution’s collateral system impact here. The blue team performs the evaluation of the solution’s 
collateral impacts since they have knowledge regarding the system, how it will be used, and what 
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impacts are unacceptable. Any solutions that are deemed to be beyond the allocated budget for System-
Aware security or introduce unacceptable impacts on system performance can be eliminated from 
further analysis at this point. 
 
 
There is one deliverable for this step: a reduced list of possible defensive choices, filtered from the 
original existing design pattern portfolio, to only those that increase the difficulty for the considered 
attacker while still remaining at an acceptable impact to the defense.  
 
Step 6: Weigh the Security Trade-offs to Determine Which Architectural Solutions Best Reverse the 
Asymmetry of a Potential Attack 
The goal of the sixth and final step is for all three teams to participate in a collaborative discussion 
regarding the security trade-offs that exist with the potential choices determined in step five. While 
each defensive solution remaining after step five provides some potential security benefit, has an 
acceptable impact on the system being protected, and fits within the allocated budget , the exact 
mixture of security solutions to an integrated budget is determined in this step. 

2.2. Model-based Approach to Architectural Selection 

The Phase 2 activity in architectural selection focused on investigating the hypothesis is that a scalable 
and agile approach to the mission-focused architectural selection problem can be found by making use 
of two structured modeling approaches:  

System Models using model-based systems engineering tools and languages such as SysML, which 
provides a mechanism for detailed description of of system structure, functions, and information flows 
in a searchable data format.  The models allow one to capture the relat ionships between functional 
system entities and to recognize patterns (data, dependence, control) within the system.  They also 
facility representation of the system attack surface, to mitigate the danger of under modeling system 
attacks.  SysML models can be used represent the initial system “as-is” with minimal defense and again 
with possible security solutions implemented, perspective which can demonstrate the value of solutions 
in the context of the whole system and an understanding of the complexity added to an attack by 
particular defenses. 

Attack Trees to identify possible paths an attacker could take to exploit the system. These models use 
assessments of the attack actions and the attackers’ capabilities to determine the subset of most 
preferable actions. 

2.2.1.  SysML for System-Aware: Concept of Employment 
In System-aware Cybersecurity, the system of interest is the mission. Such a mission could be as large as 
Joint-level Global Persistent Attack (GPA) or as limited as a specific unit’s execution of Close Air Support 
(CAS). As such, the highest-level concept in the model is the SysML block Mission Context, representing 
the highest level of analysis at a given time, as the comparison of multiple missions is not captured. The 
high level components of the mission, such as platforms, operators, and sensor assets are modeled as 
parts of the Mission Context. When an attack or defense is introduced to the model, it is added via 
specialization of the original mission, with a number of custom modifications possible beyond the 
feature set provided by the SysML specification. 
 
To model this mission-centric perspective, we chose to first decompose the mission-of-interest’s 
system-of-systems in terms of requirements, structure, and a limited sense of behavior. Within those 
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broad categories, we predominantly employed the concepts of requirements, use cases, blocks, ports 
and flows, generalization/specialization, and activities. 
 
While a significant portion of the SysML language specification was exercised to model the mission-of-
interest, many features were beyond the scope of this effort, or would be unrealistic in a representative 
setting. Where SysML activities were employed, they were used in a limited manner: highly detailed 
activity diagrams can be used to represent entire security assessment frameworks1. SysML constraints 
were not employed for our analysis, but future work could include capturing the numeric artifacts of 
external modeling activities, such as attack tree values and component costs, via this mechanism. 
Similarly, with more advanced analysis SysML state machines would be very appropriate for 
representing the requirements as state of the system-of-interest, from the mission to subcomponent 
levels. 

2.2.2.  SysML4SystemAware 

 
Among the features of SysML most interesting for integration with other models is its extensibility 
through stereotypes. A stereotype can apply new features to nearly any part of the system model, and 
can reference information inside the model or external to it. For System-Aware, we have chosen to 
model the analysis process itself within the system model, explicitly capturing the evolution of the 

mission context. To achieve this, the stereotypes in Table 1 were created in the SysML4SystemAware 
profile: 
 

Stereotype Target Slots Description 

CaseRoot Block  The root structure of a system of 
systems evaluation: usually the 
mission (or a specialization) 

HasSystemAwareID Element systemAwareId A tool-independent identifier to 
allow for cross-model 
identification, a la CAPEC 

ReplacesPart Block part Replaces an existing part of a 
block within a mission context  

ModifiesInformationFlow Block toFlow 
addsGeneralization 

Replaces an existing flow between 
two blocks within a mission 
context 

Table 1 - Stereotypes in the SysML4SytemAware profile. 

2.2.3. Overview of Attack Trees 

 
Inspired by research in the reliability area, Weiss [1] in 1991 and Amoroso [2] in 1994 proposed to adopt 
a tree-based concept of visual system reliability engineering to security. Today, threat trees [2,3,4], 
threat logic trees [1], cyber threat trees [5], fault trees for attack modeling [6], and the attack 

                                                             
1
 Mohamed, Otmane Ait, and Samir Ouchani. "Probabilistic Verification of Security Properties in SysML Activity 

Diagrams." 
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specification language [7] can be subsumed under attack trees, which are AND-OR tree structures used 
in graphical security modeling. The name attack trees is often attributed to Schneier [10].  
 
In the attack tree formalism, an attacker’s main goal (or a main security threat) is specified and depicted 
as the root of a tree. The goal is then disjunctively (OR) or conjunctively (AND) refined into subgoals. The 
refinement is repeated recursively, until the reached sub-goals represent basic actions. Basic actions 
correspond to atomic components, which can easily be understood and quantified. Basic actions are 
called leaf nodes. Disjunctive refinements represent different alternative ways of how a goal can be 
achieved, whereas conjunctive refinements depict different steps an attacker needs to take in order to 
achieve a goal. 

 

Similarly to decision trees and fault trees, attack trees are represented by a diagram with a single root 
node at the top that represents the overall goal or objective of the adversary (i.e., a successful attack) 
[4, 8]. Attack trees are constructed from the perspective of the adversary. When building the tree, 
initially the modeler focus on what the attacker wants to achieve and the various ways to accomplish it, 
and not how to best defend the system [4].  

 

The root node is usually a broad goal of the attacker and as such, it does not provide much information 
as to how an adversary might execute an attack, so the tree continues to branch down, breaking the 
root node into smaller steps. This process of decomposing the intermediate goals continues until the 
leaf nodes (which cannot be further broken down) are reached. The leaf nodes in an attack tree 
represent specific, concrete actions that an adversary could take and that could lead to a successful 

attack if executed in combination with others in the tree. Figure 3 shows a very simple attack tree, with 
the purpose of demonstrating the notation and illustrating the different types of nodes.  
 

 

 

Figure 3 - Simple Example Attack Tree to Demonstrate Notation 

 

Since the root node in Figure 3 is an OR node, the attacker only needs to execute one of the input 

paths following level: executing the conjunctive actions on the AND node path or executing the 

disjunctive actions on the OR node path - either path will be sufficient to accomplish the overall goal. If 
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the attacker chooses to attempt the AND node path, they must complete all three of its associated leaf 

nodes (A, B and C) - no order is required in a simple AND. On the other hand, if they choose to take the 

right hand path of the tree, they only need to complete one action (either leaf node D or E), since they 

are joined by an OR node. This means that the attacker has three different paths to traverse the tree 

(known as attack scenarios): (1) nodes A, B and C, (2) node D, or (3) node E. The successful completion of 

any one of those sets will allows the adversary to reach the root node at the top of the tree and 

accomplish their overall goal. 

 

After the tree has been constructed and the set of leaf nodes has been identified, analysis can be carried 

out to identify a subset of the most likely attack scenarios. This includes making assessments for several 

different adversary profiles regarding their preferences and the capabilities they are expected to possess 

and assessing each attack action in regards to those same behavioral indicator variables. This 

information can then be used to prune the attack tree for a specific attacker to identify the subset of 

their most preferred attack actions.  

 

Quantification of attack scenarios with the help of attack trees is a very active topic of research, and the 

attack tree tool we are using (SecureITree)2 allows for various forms of quantification. A simple 

procedure for quantification of attack trees is based on a bottom-up algorithm. In this algorithm, values 

(enumeration of attacker attributes) are provided for all leaf nodes and the tree is traversed from the 

leaves towards the root in order to compute values of the refined nodes. Depending on the type of 

refinement, different functional operators are used to combine the values of the children. This 

procedure allows one to analyze simple aspects, such as the costs of an attack, ease of attack, 

propensity of attack, the necessary skill levels, resources, etc…  Whenever more complicated attributes, 

such as probability of occurrence, probability of success, risk or similarity measures are analyzed, 

additional assumptions, for example mutual independence of all leaf nodes, are necessary, or methods 

different from the bottom-up procedure have to be used.  The tool we have chosen for this exploratory 

effort is very flexible with regard to different quantification strategies and threat agent profiling.   

 

By incorporating factors/attributes that characterize the adversary into the attack tree analysis, 

judgments can be made about which attack actions may be more desirable to the adversary [11]. Attack 

scenarios, which are near or beyond the attacker’s perceived capabilities/resources, are less preferred 

than attacks that are perceived as simple and inexpensive. Additionally, the extent to which an attack 

satisfies the adversary's objectives also affects their choices: actions that are both within the adversary's 

capabilities, and which satisfy their goals (cost, ROI, etc…) are more likely to be perused than those that 

do not. This notion reflects the propensity of the attacker. 

 

In almost all attack tree model formulations, the direct interaction between the adversaries and the 

defender’s system occurs at the lower levels of the attack tree - the leaf nodes. Therefore,  it is useful to 

associate metrics with each leaf node operation describing the resources required of the adversary. The 

types of resources that characterize the adversary or influence them are for instance, the cost of the 

                                                             
2
 http://www.amenaza.com/SS-what_is.php 
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attack, technical ability, specific knowledge, time needed, and noticeability of an exploit are all potential 

influence factors. Almost always, values or information for these parameters are obtained from subject 

matter experts (SMEs) who provide estimates based on their expert understanding of the activities of 

the threat agent and the system to be defended. 

 

2.2.3.1. Prerequisites of an Attack 
Three conditions must be present in order for an attacker (also known as a threat agent) to carry-out an 
attack against a defender’s system. 

1. The defender must have vulnerabilities or weaknesses in their system. 
2. The threat agent must have sufficient resources available to exploit the defender’s 

vulnerabilities. This is known as capability. 
3. The threat agent must believe they will benefit by performing the attack. The expectation of 

benefit drives motivation. 
 
Condition 1 is completely dependent on the defender. 
 
Whether condition 2 is satisfied depends on both the defender and the threat agent. The defender has 
some influence over which vulnerabilities exist and what level of resources will be required to exploit 
them. Different threat agents have different capabilities.  
 
Condition 3 mostly involves the attacker. It represents the motivation to carry out the attack. The 
defender may have a role if their actions provoke a threat agent to carry out an attack.  
 
In short, the threat agent and the defender jointly contribute to the conditions that determine whether 
an attack can occur or is likely to occur. Proper attack analysis requires that we examine all three 
conditions above in order to predict the behavior of adversaries and the likelihood that an attack will 
occur. Understanding these factors also provides insight into effective ways of preventing attacks. 
 

2.2.3.2. Modeling Threat Actors 

A Threat Agent is a group of people, or outside individual, or insider likely to cause harm to a system. 
e.g., hackers, industrial spies, disgruntled employees, etc. [3, 12]. Various combinations of these 
individuals reflect a specific profile threat. Threat agents perform actions based on motivations, such as 
monetary gain, need for critical timely information, strategic advantages in the marketplace, etc… Thus 
we make the reasonable assumption, that attacker motivations are related to attacker benefits, that is, 
adversaries make decisions on the basis of cost-benefit-risk. For a given threat agent, the cost of 
obtaining vital information could be in the form of capital and human investment, benefit could be 
advantage in the marketplace or the acquisition of vital defense information, risk could be noticeability 
or attribution of the attack.   
 
Threat Agents are constrained by their capabilities and the resources available to them. If these 
limitations are known, we can characterize them in a way that allows us to approximate the threat. 
Since all of the direct interaction between the adversaries and the defender’s system occurs at the leaf 
nodes, it is useful to associate attributes with each leaf node operation describing the resources 
required of the adversary. The types of resources examined should be factors that influence the 
behavior of the adversary according to the cost-benefit-risk tenant.  
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In most Attack Tree tools and methods (including the tool we use), the composition of these threat 
agent attributes is realized by threat agent utility functions [4, 12]. A utility function can be as simple as 
likert scale(high to low attribution of threat agent trait) or something more complex such as curve that 
indicates, for example, attacker motivation as function of monetary benefit to the attacker.  Due to 
variances in human behavior within a threat agent class, no curve or function will ever be a perfectly 
accurate description of a specific threat agent’s decision-making process, however, utility functions 
allow the analyst to approximate threat agent behaviors against the system in ways that allow “what if” 
analysis, and “threat agent specific” analysis.  
 
Every attack requires the threat agent or adversary to expend a variety of resources. The analyst 
chooses specific types of resources to include in the threat agent model based on the degree to which 
they characterize and influence the adversary’s ability to perform the various attack scenarios within the 
attack tree. These resources can include money, raw materials, technical ability, time, knowledge of the 
system, and a willingness to be noticed. Even though everyone might be forced to spend the same 
amount of a resource to perform a specific attack that does not mean that they are equally willing or 
able to do so. The availability of resources varies from threat agent to threat agent. For instance, a 
relatively poor teenage computer hacker might consider $100 to be of considerable value and be 
strongly disinclined to part with it without a substantial benefit. On the other hand, a well-organized 
cyber-criminal threat agent might regard $100 as pocket change. However, the time-crunched cyber-
criminal adversary would be far less willing to part 400 hours of his or her precious time than the bored 
adolescent who is happy to pass the hours away trying to crack a computer system. So, the human value 
of resources  is important  with respect to characterizing  the agent behaviors.     
 
An example of utility functions would be describing the spending propensity of juvenile hacker threat 
agent. For example, suppose we created a profile of the juvenile hacker that specified a financial limit of 
$50. This simplistic profile asserts that the juvenile delinquent is completely and equally willing to spend 
any sum between$0 and $50, but that they would be unwilling to spend $51. This seems unrealistic in 
terms of human behavior, as thresholds for “willingness to something or not ” are more gradual, than 

hard.  Figure 4 below shows the simplistic profile on the left (which is used in most scoring approaches 
to security today). One the right is a more representative function of a juvenile hacker’s propensity to 
part with his money.   

 
Figure 4 - Utility Functions for Agent Profiles 
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2.2.3.3. Modeling Victim Impacts  
In addition to characterizing Threat Agents. It’s also possible with to characterize victim impact with 
Attack Trees [1,3]. From the victim’s perspective, there is also a concern about the consequences of an 
attack, and how much it will damage or cripple the mission– the perceived impact to the victim. The 
victim can be organization, a group, a person, or a service entity in a nation state. Attack trees model 
victim impacts by calculating the amounts and types of losses that a victim will incur as an attacker 
achieves particular states (nodes) in the attack tree. In most cases, the victim impacts are cumulative as 
the attacker traverses an attack path through the tree. The overall impact of an attack scenario is 
calculated by summing the damage associated with the leaf nodes specified in the scenario, and then 
moving upward through the intermediate nodes traversed by the attack scenarios steps until the root 
node is reached (full success).   
 
The attack tree tool we used for this effort (Amenaza SecureITree) has a well formed “actor definition 
utility” model that allows utility, affinity, and Likert functions to be used to describe threat actor and 
victim attributes [3].    
 

2.2.3.4. Issues with Static Attack Tree Methods   

Like most risk analysis methods, the reliance on Subject Matter Experts (SME) to convey opinions on 
threat agent capabilities/resources, and to simultaneously relate this knowledge with respect to the 
target system can impart uncertainty in the analysis process. Understanding or assessing vulnerability of 
target system requires detailed information from many perspectives. While using SME’s to help identify 
potential vulnerabilities is helpful, it is usually not sufficient. For example, a SME may know a good deal 
about threat actor capabilities, but they may not understand the target system well, which could lead to 
over or under estimating the defenses required to augment security.   

The final attack tree is often produced only through a process of review and consensus building between 
the SME and security engineers. Even after a consensus is reached, it is unlikely that the analysis results 
will be complete, consistent due in part to the informal processes used as the basis of the analysis. In 
fact, the lack of precise models of the system architecture at various levels of abstraction, often forces 
the security analysts to devote much of their effort to gathering knowledge about the system 
architecture and system behavior and embedding this information in document based artifacts.  

In fact our previous efforts conducting cyber-vulnerability assessment within the System Aware 
Architectural Selection Framework was a manual consensus building process between Subject Matter 
Experts which took many person-hours of time with significant amount of uncertainty in the 
characterization of some of the identified vulnerabilities and exploits.  It was by this process, that we 
realized that a more promising way forward is through system level modeling.     

Another issue with most attack tree formalisms (but not all) is they are largely static. Meaning they can 
not take into account dynamic behaviors such as; (1) threat actor actions based on state of the system, 
(2) phased attacks over time, or (3) sequence dependencies with respect to steps in a attack. Dynamic 
fault tree tools have solved many these issues, such as Galileo, but there are few mature dynamic attack 
tree tools in the literature. Dynamic modeling of system behaviors can be effectively handled in a 
functional system level-modeling environment, such as UML or SysML or AADL.           

Therefore for this effort, we established a hypothesis that the issues discussed above could be 
significantly improved by basing cyber vulnerability analysis and mitigation on system level models.  We 
call this approach Model Based Cyber Vulnerability Assessment, which is a derivative of Model Based 
Systems Engineering paradigm [13].  Part of this effort focused on what aspects of model based 
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engineering can inform attack-tree security models to improve consistency of models, realism of attack 
patterns and discovery of vulnerabilities.  The other aspect of this effort was to develop a basis for 
integrating attack tree disciplines and system modeling processes in an effort to explore a more holistic 
view of the system - to capture greater insight into vulnerabilities, unforeseen relationships between 
system functions, navigating the multi-criteria decision space, and how to craft defenses that are cost 
effective.     

 

To facilitate model based cyber vulnerability assessment, we chose the modeling language SysML to 
provide the framework for capturing system aspects such structure, platforms, component behaviors, 
mission context. Models realized in this framework allow subtle, but important relations and 
connections between mission, architecture, functions, and users (misusers) to be explored in systematic 
way.  

2.2.4. Overview of the Systems Modeling Language 

 
As we noted above, enhancement of the architecture selection approach from previous System-Aware 
activities is the move toward a system model for the system of interest. While not necessarily a 
simulation of the system of interest, it should capture the key terms, interrelationships, data types, 
requirements, and other knowledge of the system that may be outside a single engineer’s purview.   
 
The Object Management Group (OMG) Systems Modeling Language (SysML) provides a data model and 
a visual syntax for defining a system model, the “primary artifact of model-based systems engineering”3. 
In a generic sense, a SysML model sits at the middle of a complex engineering effort, providing a central 
point of integration for the perspectives of many domains of engineering. Such a model describes the 
“requirements, structure, behavior, allocations, and constraints”4 of a system of any level of complexity. 
This facility to work at multiple scales of complexity comes from SysML’s heritage as a descendent of the 
OMG’s Unified Modeling Language (UML), the primary means of modeling object -oriented (OO) 
software. 
 
SysML’s key departure from UML is in the core vocabulary, the block, vs UML’s class. A block represents 
a nameable part of a system, and may have properties, which may be other blocks, constraints, atomic 
values, etc. 
 

2.3. Integration Principles 
To bring together the system- and attack tree-modeling disciplines, a number of technology selections 
were required. In each case, a balance needed to be struck between performance, ease of use, 
openness, supportability, isolability, quality of collaboration, and cost.  

2.3.1. Authoring tools 
Model authoring tools were chosen primarily for their productivity and support of underlying model 
concepts. While an initial emphasis was put on creating an open source tool chain, this proved too 
difficult to rectify with productivity. Because of this, the next most important feature was openness of 

                                                             
3 Friedenthal, Sanford, and Alan Moore. A Practical Guide to SysML the Systems Modeling Language. 
[2nd ed. Amsterdam: Morgan Kaufmann, 2011. Print. pp. 528 
4 "OMG Systems Modeling Language (OMG SysML) Version 1.3." Object Management Group. 1 Apr. 
2012. Web. 5 Jan. 2015. <http://www.omg.org/spec/SysML/1.3/>. 
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data import/export, such that another tool could be adopted at a later date without sacrificing historical 
data. 

2.3.2. Attack Tree Authoring 
While many tools exist for attack tree modeling in the academic world, only a few exist in sufficient 
maturity and stability in the commercial world, notably Amenaza SecureITree and Isograph Atacktree+.  
In this effort we choose to utilize commercial tools as they are mature and supportable.  The Attack Tree 
authoring tool we used for this effort was Amenaza SecureITree.  SecureITree is a widely used 
commercial, mature risk based attack tree tool.  Among the features that we liked in Secure ITree were 
the underlying models for quantitative analysis. The underlying quantitative model is roughly based on 
four aspects:  
 

● The ability to characterize the threat agent profile in several ways that are complementary to 
open source intelligence data or information,  

● The ability to instantiate leaf nodes with system level exploit details (low level) and at the same 
time instantiate mission level data (the effect of the attack) at higher level nodes in the tree 

● Risk based models, the ability to capture impact of an attack on a system 
● Employs mature and stable fault tree solution methods to prune the attack tree and calculate 

metrics such as ease of attack, propensity of attack, desirability of attack, etc...  
● The ability to write java plug-ins, export the Attack Tree model in ATML (Attack Tree Modeling 

Language), and export of data to other tools and models.  
 
We found these features to be useful in our preliminary development efforts, and for our future 
development efforts as well. 
 

2.3.3. SysML Authoring 
Initially, we had a strong desire to make use of the current best-of-breed free/libre open source 
authoring tools for SysML. The strongest FOSS contender, Polarsys Papyrus5, was initially attempted and 
found to be too cumbersome for the types and rapidity of modeling desired for the System Aware work. 
The other FOSS tool inspected, Modelio SysML Architect6 did not contain some of the required features, 
namely SysML requirement. With the FOSS tools exhausted, the team was left with those tools most 
widely employed in DoD-related work by the team in the past, namely NoMagic MagicDraw with SysML 
Plugin7.  

2.3.4. Data Types 
At the heart of the model-driven System-Aware approach is the model data itself. Generally, a format 
should be stable, standards-based and accessible in different analysis environments. 

2.3.5. Attack Tree Modeling Language 

Due to the relative size and niche nature of the attack tree modeling community, no data standard exists 
for interchange of attack tree data between tools. The nearest we could find was the Attack Tree 
Markup Language, an XML-based export format of SecurITree. This format is sufficient for basic 
transmission of knowledge, but a richer format would be required for serious integration into a 

                                                             
5
 Papyrus. Polarsys. Web. http://polarsys.org/solutions/papyrus 

6
 Modelio SysML Architect. Modeliosoft. Web. http://www.modeliosoft.com/en/modelio-

store.html?sobi2Task=sobi2Details&catid=12&sobi2Id=37 
7
 SysML Plugin. No Magic. Web. http://www.nomagic.com/products/magicdraw-addons/sysml-plugin.html 
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knowledge management environment. Linking the Attack tree and SysML model world is not 
straightforward – very different SW structures. However, Amenaza is working an external database 
update solution for future versions of the SecureITree Attack Tree tool. Basically, the external database 
solution would enforce consistency between SysML models and Attack tree models whenever a node in 
the Attack tree is changed (created, modified, deleted) in SecurITree, you will be able to have an entry 
written to a logfile for parsing at your convenience (like updating a model data base, for instance). You 
will also be able to ask SecurITree to invoke a user defined Java function that will perform these 
database operations. These additional features would facilitate tighter integration between SysML 
models and Attack Tree models; however, at present we do not know when these features will be 
released. Ultimately, extracting records from the database will enable support for the workbench 
decision-maker tools. 
 

2.3.6. SysML XMI 

All SysML tools use a dialect of the XML Metadata Interchange (XMI)8 format. As of SysML 1.3, a 
canonical XMI specification exists for interchange of model data between SysML tools9. However, most 
authoring tools bundle their model and visual descriptions together, and a canonical diagram XMI 
format will not be available until broader adoption of SysML 1.410. The means the working system 
modeler cannot yet use the canonical format as their format of record. We were left with working with 
the specific XMI dialect of MagicDraw, but were careful to craft any parsing mechanism in a way that 
would lend itself to later adoption of the canonical spec. 

2.4. Data and Model Consistency 
To make use of data from different models, a semantic graph was selected as the integration model. 
This allows common features, such as the names of things, to be represented in a common format, 
while the specifics of each model could be robustly captured. The specific method adopted, named 
graphs as defined by the Resource Description Framework11, offers rich reuse of concepts, where each 
assertion can be described by a statement of the form, “According to <source>, the concept <subject> 
has been known to <predicate> the concept <object>.” 

2.5. Visualization 
Beyond the canonical model authoring views of attack trees and SysML provided by the chosen tools, 
the two models are of sufficient complexity to be treated as data, and have data visualization techniques 
brought to bear against them. In this case, we have chosen Data Driven Documents (d3)12, which 
provides an open source, standards-based data visualization suite. With the techniques available in d3, 
such as interactivity, animation and object constancy13, different facets of the union of the models can 
be represented in a form less tied to a specific datum’s model of origin, to provide a more approachable 
experience for the non-modeler or the modeler working outside their domain of expertise.  

                                                             
8
 “XML Metadata Interchange” Object Managment Group. Web. http://www.omg.org/spec/XMI/ 

9
 "Model Interchange." Model Interchange Wiki. Object Management Group. Web. 

http://www.omgwiki.org/model-interchange. 
10

 “SysML 1.4 Beta”. Object Management Group. Web. http://www.omg.org/spec/SysML/1.4/Beta 
11

 "RDF 1.1 Concepts and Abstract Syntax." W3C. Web. http://www.w3.org/TR/rdf11-concepts 
12

 “D3: Data-Driven Documents” Michael Bostock, Vadim Ogievetsky, Jeffrey Heer IEEE Trans. Visualization & 
Comp. Graphics (Proc. InfoVis), 2011 
13

 “Object Constancy”. Mike Bostock. Web. http://bost.ocks.org/mike/constancy 
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2.5.1. Configuration Management 
To enable the fluid interchange of data between multiple modelers at disparate sites, we used a system 
such as could be envisioned in a multi-level security environment: systems models would likely exist at a 
lower classification than the possible exploits discovered by red teams. Using an offline-capable 
distributed version control system, git14, our system modeler and attack tree modeler were able to 
confidently pass data from low to high levels. 

2.5.2. Integration Environment 

With the model data under configuration management, it was important to be able to load all analysis 
and data in a consistent, repeatable environment. For this purpose, Vagrant 15 was chosen, which can 
create an executable environment from a simple text description. Inside of this virtual environment, 
CentOS Linux16 was selected, as either it or its equivalent, RedHat Enterprise Linux, would be likely 
operating systems for deployment of integrated workflow system. For the actual analysis environment, 
we selected the IPython Notebook17, which combines the breadth and depth of the Python 
programming language, along with a rich, browser-based interactive execution and documentation 
environment. Because of the focus on ease of use, we call this total integration environment the 
dashboard, even though it may be comprised of multiple Notebooks. 
 
The current integration approach is limited in one sense by this architecture: the current knowledge 
graph can only scale to the scope of the memory (RAM) of the environment. A more robust system 
making use of a graph database would increase the potential size of the analyzed environment 
exponentially. 

3   Architectural Assessment Workbench Concept  
The execution of the architecture assessment process can be captured by a discrete number of activities 
executed within a tool. These steps may have data dependencies between them, but for the most part 
can be executed in any order, and in fact are improved through successive iteration. Figure 5 below is a 
conceptual view of the workbench concept (research still ongoing).  The composition and functionality 
of the workbench is designed to support the System-Aware Architectural selection methodology.  We 
discuss the ongoing capabilities of the workbench below.    
 

                                                             
14

 “Git”. Git community. Web. http://git-scm.com/ 
15

 “Vagrant”. Hashicorp. Web. https://www.vagrantup.com 
16

 “CentOS”. CentOS Project. Web. http://www.centos.org 
17

 Fernando Pérez, Brian E. Granger, IPython: A System for Interactive Scientific Computing, Computing in Science 

and Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007 
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Figure 5 - Architectural Assessment Workbench Concept 

3.1.  Initiate System Model 
Using the existing data, such as OEM documentation, military doctrine and subject matter expertise 
from operators, commanders and other decision makers, we construct a SysML model of the mission 
context. Canonically, first the uses cases of the model are defined, followed by requirements, behavior 
and finally structure and connectivity. We found that parallel, iterative definition of these aspects of the 
system, with feedback between different users and domains, rapidly provided a sufficiently rich 
definition of the system. 

3.2.  Visualize System Model 
With even the barest vocabulary of the system-of-interest in place, it is already possible to perform 
visual assessment of the model. We parse and load the SysML XMI into the knowledge graph, and 
interactively view different aspects of the data in the dashboard. As the information available improves, 
the graph of the model of interest can be filtered to only include those mission contexts that include 
specific attacks and defenses. 

3.3.  Identify Exploits 
With access to knowledge of the flows of information through the system, the attack tree modeler can 
identify system functionality an adversary would like to affect, and theorize about potential vectors of 
exploitation. 
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3.4.  Model Exploits 
Even prior to a full description of a vulnerability, e.g. attack tree, a specialization of the base mission 
context can be constructed which identifies the part of the system that would be changed, and the 
impact that would create on information flows, such as introducing misinformation. Loaded into the 
dashboard, this can show additional potential impacts of an exploit.  

3.5. Model Defenses 
With the assistance of additional subject matter experts, or the theoretical application of design 
patterns, the system modeler can construct specializations of the Mission Context where a part has 
been created which includes one or more System-Aware techniques, e.g. sentinels. This may also 
introduce modifications to the requirements of the system of interest, such as the naive “ information x 
shall always be true and accurate” to the more pragmatic “information x shall either be true and 
accurate or be known to be misinformation”. 

3.6.  Compare Exploits and Defenses  
Not yet integrated into the dashboard, the cost and mission impact analyses from the existing Excel 
assessment tool could be reproduced as near-real-time interactive visualizations, driven directly by the 
data products of the system and attack tree models. Further, through the greater robustness of the 
knowledge graph data model, findings from a specific analysis session could be more easily stored for 
later review. 

3.7.  Present to Stakeholders 
Because of the flexibility of the web-centric dashboard, its content can be recombined into several open 
standard formats, including paged, narrative documents, standalone interactive websites, and slide-
based presentations. This briefing-forward content approach keeps data fresh, and reduces copy-paste 
and omissions, extra rework and other sources of information decay.  

4   Overview of the Baseline System: UAV autopilot and Camera System 

The general architecture of the autopilot in shown Figure 6. From this figure we can see a natural 
grouping of relationships for the autopilot into four system types. The four major systems are:     
 

● The Controller (red circle): The onboard processor executes all of the control laws, flight director 
functions, management of INS, GPS, actuators, and the communication links. The controller as 

represented by the red circle in Figure 6.  The flight controller requires inputs from the sensory 
sub-system state estimator (e.g. INS, GPS, Altitude, speed) to regulate the air vehicle to a 
desired state, speed and position attitude.  The controller also takes input from the flight 
director, which contains the desired trajectory reference states for the air vehicle. The flight 
controller uses the stored flight director information as tracking inputs, thus the flight controller 
is progressively issuing actuation commands to the control surfaces to minimize the error 
between track references and current air vehicle state and position. As such, the autopilot 
continuously flies the vehicle to each geographical waypoint in succession. Attacks directed to 
the hardware and software of the flight controller can affect the behavior of the flight controller 
so that it does not perform its function as intended.  

 
● Sensory and measurement Subsystem (blue circle):  The Sensory subsystem (shown as the blue 

circle in Figure 6) provides all of the sensed vehicle state information needed by the controller 
to maintain stable flight. The functions in this system include INS which provides vehicle 3-axis 
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accelerations, angles, and velocities; GPS provides geo-reference position and velocities; 
Magnetometer is used to sense heading direction.  Thus the total vehicle state is (φ, θ, ψ ve, vn, 
vd, ax, ay, az, and heading)). The total sensor readings combined with the GPS information are 
sensed by the controller on regular time intervals (every 100ms). These classes of system attacks 
target the sub-systems or systems that provide data or information to the controller. In this 
case, the controller behaves as programmed, but some or all inputs to the controller system are 
corrupted. Some examples of this type of attacks include false data injection attacks to 
manipulate sensory data, vehicle/system component state data manipulation, and navigational 
waypoint data manipulation. 

 
● The Communication system (green circle): The communication system is responsible for (1) 

transmitting commands to the UAV to alter flight path and (2) to receive telemetry information 

about the UAV in flight (green circle in Figure 6).  The vehicle command signals are transmitted 
by the operator via a line of sight communication transceiver. The ground station 
communication link operating frequency is usually in one of the several designated bands 
(910MHZ or 2.4 MHZ are common), various signal modulation methods are used to encode the 
link channels.  Various channels are allocated for each command or telemetry class, that is pitch, 
roll, yaw, and throttle will be on a separate channel than say GPS. After the onboard receiver 
decodes the signals from the ground station transmitter, the signals are converted to digital 
commands, processed by the onboard main processor. Attacks that target the communication 
system could affect both the vehicle and the command/control station. Telemetry data can be 
spoofed from the UAV, command information can be intercepted an altered, disabling of the 
communication link. 

 
● Gimbal Pointing Camera system (purple circle): UAVs are predominantly used as Intelligence, 

Surveillance, and Reconnaissance (ISR) platforms carrying sensor payloads such as EO/IR 
cameras, synthetic aperture radar, signals intelligence systems, and others. Referring to Figure 
6, the purple circle encapsulates the onboard Gimbal mounted camera of the UAV; capable of 
target tracking, scene steering and electronic image stabilization.  The Gimbal system features 
onboard processor to control camera gimbals and stabilization effectors, a video processing 
system, and a communication link to send images to ground station and to the viewpoint 
operator station. The image operator station is capable of integrated moving map, real-time 
mosaicing, Path-Track, and video recording functions. 
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Figure 6 - General Architecture of the Autopilot 

5   Case Study: A Baseline System Model for a Notional Intelligence, Surveillance 

and Reconnaissance Mission 
 
The models in this section were created from a specification of the autopilot system described above.  
The level of effort to create the SysML models from the specification was accomplished over a 1 to 2 
month period by a SysML modeling expert.    
 
As a demonstration of the System-Aware model-based approach, we have selected a typical, yet 
simplified Intelligence, Surveillance and Reconnaissance (ISR) mission for the UAV system. This model 
was informed by previous System-Aware work, specification of the system, and subject matter 
expertise. Without fully qualifying all requirements of the system-of-interest, let us focus on a single, 
high-level requirement of the system that the platform carrying the sensor fly to the correct place, 

reflected in Figure 7.  
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Figure 7 - SysML Requirements Diagram of ISR Mission 

Throughout these diagrams, presented in a top-down fashion, we will show the use of many SysML 
concepts, as well as a few extensions provided by the SysML4SystemAware profile, as described in 

Figure 8. 
 

 
Figure 8 - SysML Profile Diagram of SysML4SystemAware Profile  

At the highest level, or Case Root, the mission consists of several high level components, as shown in 

Figure 9. From this diagram, we can immediately see the structural components of the system, setting  
the stage for more detailed modeling. Future modifications of the overall context evaluation will 
subclass this block, and have access to all its parts. 
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Figure 9 - SysML Block Definition Diagram of ISR Mission 

With this initial understanding of the system, it is reasonable to being describing the connectivity of the 

components, as shown in Figure 10. From this diagram, we can immediately see the interesting 
relationships between high-level components without dwelling on the specifics of conveyed 
information. 
 

 
Figure 10 - SysML Internal Block Diagram of the ISR Mission 

These high level components in turn are allocated the critical activities of the overall mission, as shown 

in Figure 11. 
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Figure 11 - SysML Package Diagram with Allocation of Mission Activities 

Additionally of immediate interest is the flow of information between mission components, which will 

become increasingly relevant throughout the modeling process. Figure 12 shows the taxonomy of 
information types which will be used to annotate Information Flows throughout the system model. 
 

 
Figure 12 - SysML Block Definition Diagram of Information Hierarchy 

Informed by prior System-Aware work, the platform, an unmanned aerial vehicle (UAV) is modeled at a 

greater level of detail. Figure 13 shows the subcomponent structure of the platform. 
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Figure 13 - SysML Block Definition of Platform Component 

While the structure of the UAV is relatively simple, the interconnectedness of this subcomponent begins 

to show the complexity of even an isolated system. Figure 14 shows the ports and information flows, 
both internally and exposed at the system boundaries, that defines the UAV. 
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Figure 14 - SysML Internal Block Diagram of Platform Subcomponent Connectivity 

At the deepest level of scale within this particular mission, the autopilot which provides the UAV’s 

namesake autonomous operation is detailed. In Figure 15, even the structure itself is becoming 
complicated, as multiple levels of the subcomponent must be understood in association with one 
another. 
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Figure 15 - SysML Block Definition Diagram of Platform's Autopilot Structure  

Conflating several levels together, in Figure 16 we see the flow of information between sensors and 
actuators, as well as the functioning of the actual algorithm design within the flight controller.  
 

 
Figure 16 - SysML Internal Block Diagram of Autopilot 

6   Case Study: Modeling the Effects of a GPS Attack 
 
The System-Aware approach posits that systems will be attacked, and that the properties of the 
emergent system-under-attack must be understood. To reflect this, we make use of a mix of both the 
SysML specification for describing specialization of a system-of-interest as well as our custom profile. 
 

In Figure 17, we show a notional attack of a the ISR mission through the Global Positioning System 
(GPS) receiver of the Autopilot (which is in turn a part of the Platform). Of interest here, each of the 
non-quoted terms is actually a strongly identified reference of another part of the system: part = gps 
means “the part gps of a usage of Autopilot can be replaced with this Compromised GPS Receiver” while 
addsGeneralization = Misinformation and toFlow = Information are references to specific parts of the 
model. 
 
While this diagram lacks the overall communication expressiveness of the baseline system, it succinctly 
captures the changes to the assumptions in evaluating the context.  
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Figure 17 - SysML Block Definition Diagram of an attacked ISR Mission 

Case Study: Modeling a Change of Understanding to a Mission  
In its role as a living artifact, tying the overall knowledge of a mission together, the system model will 
change over time. While changes to the underlying model of the system-of-interest may be desirable, 
certain changes may be better reflected as deltas to the system, specifically if knowledge of this change 

is not generally available, proposed or otherwise not yet implemented. Figure 18 shows such an 
evolution, where the specific Payload on the platform is extended to be a specific type of sensor.  
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Figure 18 - SysML Block Diagram of a More Detailed understanding of the ISR Mission  

7   Case Study: Modeling Defense of a Mission 
Composing both the attack and a changed understanding, it becomes possible to model a new state of 
the mission that can be evaluated to reflect a change to the systems performing the mission to yield a 

more resilient overall mission. In Figure 19, a System-Aware sentinel is introduced somewhere in the 
system.  

 

 
Figure 19 - SysML Block Definition Diagram of a System-Aware defended ISR Mission 

In order to reflect the new, less-naive failure mode of the system, Figure 20 shows a derived 
requirement of the system, along with its traceability to a known attack and a proposed system, which 
can satisfy this requirement. 
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Figure 20 - SysML Requirements Diagram of a System-Aware defended ISR Mission 

8   Case Study of SysML Informed Attack Tree: UAV Walk-off Attack 
 
As stated previously, a simplified Intelligence, Surveillance and Reconnaissance (ISR) mission is the case 
study example for  the UAV system.  One of the onboard UAV sensor systems that have far reaching 
implications with respect to UAV flight control, navigation, and mission operations is the Global Position 
System (GPS).  GPS is used systemically in UAV many operations, from flight path planning, waypoint 
navigations, blue force tracker, and vehicle control to mission-support systems like image and video 
acquisition. Because of its pervasive use in UAV operations and mission analysis activities we justify the 
need to access the impact of compromised GPS devices may have on downstream systems that depend 
on GPS information for their operations.   
 
All GPS receivers work on the same basic principles to calculate a navigation solution in 3D space and 
time. The navigation solution is calculated by trilateration where the receiver measures its distance from 
four (or more) satellites: one to resolve each dimension in space-time. Each satellite generates and 
broadcasts a unique, public pseudo-random number (PRN) stream called the coarse acquisition (C/A) 
code, which repeats every 1ms. The current time, as determined by an atomic clock on each satellite, 
week number, and other navigation information is modulated as a navigation message on top of the C/A 
code. GPS receivers generate their own local replica of each satellite’s C/A code and estimate the time 
delta required to align the local replica to the received copy. The time delta, along with the transmission 
times of each C/A code signal form the distance measurements called pseudo-ranges. The receiver also 
decodes the navigation data in order to calculate the satellites’ positions and clock offsets. All this 
information is used to accurately estimate the 3D position and time.  
 
Much of the research in the open literature has focused on two attacks against GPS: jamming and 
spoofing. Jamming simply transmits noise in the GPS frequency band, preventing a receiver from locking 
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onto the GPS signal. Spoofing attacks are a very specific type of attack that forges the information used 
to calculate pseudo-ranges. These attacks are not on the receiver itself per se, as the receiver operates 
properly just with bogus input data. At a high level, previous work was limited to showing that receivers 
when given bogus data will output a bogus navigation solution.  
 
Previous research in the literature has not examined in a detailed manner how actual receivers may be 
compromised in-situ by insider threats or propagated malware and how corrupted GPS information 
flows down to dependent systems to potentially affect many downstream UAV systems. Previous efforts 
in Phase 1 looked modestly at the potential attack surface of GPS with respect to UAV operations.  Our 
goal in this effort was to see how SysML models could better inform us on potential GPS attacks for 
selected UAV systems, how those attacks could be better understood in the context of SySML mission 
perspective, and finally how we could develop integrated design solutions for such attacks.  
 
 
To understand the attack surface associated with GPS functions, we refer to figure 20 to show how GPS 
is used in typical UAV operations. GPS sensory data in the autopilot is forwarded directly to two systems, 
thus it directly influences these systems. These systems are INS/State Estimator, and Flight Controller.  
The INS (gyros, and accelerometers) uses the GPS location fixes to correct residual errors in the Inertial 
Measurement Unit (IMU) of the INS.  This update occurs on regular interval of anywhere from 10 
seconds to a 10s of minutes.  The GPS main function in the autopilot is to forward lat/long coordinates 
to the three loops in the Fight controller; mission planning loop, heading and attitude loop, and altitude 
loop.  The mission-planning loop is part of the high-level autopilot functionality, it provides tracking 
capability with respect to stored waypoint information.  The GPS provides updates on vehicle geo-
reference position to the mission planner, which compares GPS geo-reference updates to the stored 
waypoints.  The mission planner then commands the controller to “fly” the UAV in the direction of the 
next waypoint.   
 

In Figure 21 below, the blocks circled in red are systems that are directly or indirectly influenced by GPS 

data.  We can see from Figure 21, that the extent of influence of a compromised GPS receiver reaches 
the terminal point of the flight control surfaces.  While we can see the high level relationships at this 
model level, we would to use the power of the model to see all potential relationships any function has 
with GPS.  The GPS attacks that we are interested in exploring with SysML assistance are attacks that 
are; (1) can be embedded into the autopilot system, (2) do not necessarily require an external trigger to 
active, and (3) are stealthy. We can do that by exploiting the querying capability of our SysML tool and 
models. 
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Figure 21 - SysML Model for the Autopilot 

It is worthwhile to talk briefly about the process of creating attack trees without any notational model 
based assistance. As we mentioned in previous section, attack tree’s creation relies on Subject Matter 
Experts to help create both the structure of the attack tree (logical steps in the attack) and the threat 
agent profile.  Of these two, the structure of the attack tree depends heavily on the details of the 
system-to-system relationships, interactions, and how they relate to users and missions.  Referring to 

Figure 22 below, we can distill the process of creating attack trees in 8 steps.  Step 1 is always present 
for both model assisted and non-model assisted creation processes.  Step 2 is defining the objectives on 
an attack or a class of attacks.  The real work of creating realistic and credible attack trees is step 3 
through 5.  This is the process of discovery, system exploration, and entry points into the system from 
an attacker's perspective. These steps are difficult to successfully and completely achieve without some 
means to see how all of the functions/components of the system interact in both nominal and off-
nominal uses.  When these steps are executed manually by engineers, analysts, and subject matter 
experts, approximately 80% of the overall effort to create attack trees is spent through consensus based 
engineering trying to “connect the dots”.    Furthermore, we have observed from our experiences and 
confirmed by others, that attack trees without model based assistance have a tendency to fall back to 
“text-book” vulnerabilities, instead of system specific vulnerabilities. By “text-book” we mean they were 
mostly technical and generic in nature, and did not account for different users of the system, mission or 
organizational policy vulnerabilities.       
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Figure 22 - Attack Tree Creation Process without SysML 

9   Attack Tree Modeling Process with SysML Models 
 
SysML models can be used to inform attack tree modeling, more specifically, the models can used to 
explore the attack surface to find vulnerabilities. We can define attack surface as a systems exposure, to 
a set of reachable and exploitable vulnerabilities that a system’s resources has to a class of adversarial 
threat actors. A surface vulnerability is a path to set of systems resources. The exploitation of those 
resources through the vulnerability by an attacker creates the opportunity to spread the effects of 
exploitation to other functions and users of the system. At the broadest stance, when trying to 
characterize an attack surface for a given system, we typically look at interrelated aspects that define 
how the system operates, is used and interacts with the world. These typically include things like: 

● Attack origins - development, local, remote, maintenance, etc..  

● Propagation - Software resources, insider, networks, social engineering, etc...  

● Surface Vulnerability Opportunities - modifiable configuration, unintended side channels, 

alleviated privilege, intercepting data, spoofing data or commands, etc.  

● System Service Effects - What effects are possible to degrade or alter system service.    

   
As expected the process of creating an “SysML driven” attack tree is different than the manual process 
of creating attack trees.  Figure XX below illustrates the SysML driven process. As before,  threat actor 
profiling is done entirely in the SecureITree Attack tree framework.  In SysML model based environment, 
knowledge acquisition produces specifications for creating models of the target system at various 
abstraction levels.  In the System Aware framework, mission context inherits models at the architecture, 
platform, and functional levels. This feature allows us to explore attack surfaces and vulnerabilities with 
respect to the mission scenarios.   At this stage in our work, our primary tool for exploring attack 
surfaces is relationships between functions, platforms, architectures and missions via path analysis.  By 
finding relational paths between functions, components we can identify places in the attack surface 
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where; (1) a vulnerability would cause concern, (2) paths are overlooked paths, and (3) potential 
backdoors. Once a relational map of paths is extracted and created from the models, we use this 
information to create different attack scenarios or paths in the attack tree. The paths extracted from 
SysML model are isomorphic to the paths in an attack tree. Once the attack trees are instantiated with 
the information collected from the path analysis, we can build the attack tree and perform quantitative 
analysis is on it to solve metrics like ease of attack or desirability for a given path. These metrics enable 
decision making/tradeoff analysis on type and placement of cyber defenses as constrained by costs and 
mission criticality. The SysML model/attack tree interaction is a process of refinement until architectural 
remediation is sufficient for the application and mission.  Cyber defense are evaluated in the Attack Tree 
as countermeasure trees, and the entire attack tree is solved again to see if the metrics ease of attack, 
desirability metrics have significantly changed in the favor of the defender.   
 

10   Querying Models to Explore Potential Vulnerability Space 
To promote broader use and portability among different SysML authoring tools, we chose to build a 
“Attack Tree Analyst DashBoard” in a open source iPython environment that allows the system modeler, 
attack tree analyst, and manager to work collaboratively toward vulnerability exploration of the system 
model.  At present our iPython dashboard has features for functional relationship exploration only.  We 
use the IPython dashboard to provide a visual representation of  “source to target” information flow. 
Source is where information originates from, and target is the “sink” – where the information is 

ultimately consumed. Figure 23 is a snapshot of the dashboard displaying a relationship graph of 
various functions in the autopilot.  
 

 
Figure 23 - Relationship Diagrams in the Autopilot 

11   Formulating Path Graphs from Attack Tree Dashboard 
Given the goal of finding potential vulnerabilities in the attack surface that could lead to a GPS walk-off 
attack, we use the iPython dashboard to search for paths that are sourced from GPS and terminate at 

other functions. Figure 24 below shows the results of one such query search.   
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Figure 24 - Query Seach Results 

The dashboard produces a list of paths from source to sink based on length of path 
 

● (2) GPS -->Flight controller 
● (3) GPS-->Payload-->Autopilot 
● (3) GPS-->Flight Controller-->Autopilot 
● (4) GPS-->GPS Sent-->Payload-->Autopilot 
● etc….. 

 
Based on path analysis alone we can sort paths according to length or unusual traversal or 
connectedness.  
 
Most Direct Paths (shortest path): 
•GPS--> Flight controller 
•GPS--> Payload-->Autopilot 
 
Intermediate Paths: 
•GPS-->Flight Controller-->Autopilot 
•GPS-->Payload-->Comm-->Autopilot 
 
•Some Unusual Paths: 
•Ground-Station -->Platform-->Engine Comm-->Autopilot 
•Platform-->Comm-->Autopilot 
These paths don’t directly have GPS as source, but GPS is connected to the autopilot.  
 
Focusing on the GPS walk-off attack paths we see that GPS directly affects 4 downstream systems and 
their internal functions. These systems are Autopilot, flight controller, payload, and actuation.  Shortest 
paths are often first choices in search for vulnerabilities, but not always productive because defenders 
may have anticipated this placed defenses there. Unusual paths are often “backdoors”, possibly not  
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defended well, but can be more complicated to exploit. Long paths are often multi-step which suggest 
several coordinated actions to achieve the attack.  
 

Let’s explore one of the paths in our list. GPS-->Flight Controller-->Autopilot. In Figure 25 below we 
have a block diagram of a typical adafruit GPS receiver. If we were modeling this in SysML as functional 
block we would only be interested in the functionality at the digital interfaces and components of the 

GPS receiver.  Referring to Figure 25, we can see there are several digital interfaces to the chip. These 
may places to intercept and modify information, inject malware, or upload different configuration 
profiles into the chip.   
 
Constructing a scenario around GPS-->Flight Controller-->Autopilot path yields the following plausible 
exploit.   
 
 
 

 
Figure 25 - Block Diagram of a Typical AdaFruit GPS Receiver 

So one scenario  is that GPS is compromised at the firmware level. By firmware we mean that the code 
that runs on the GPS co-processor is altered and reloaded on the GPS chip.   Is this plausible?  As it turns 
out, AdaFruit GPS Firmware (as binary) is open and available on company GIT site. Firmware upgrades 
occur from time to time, and vendors may want to upgrade new features. This still leaves the attacker 
with binary firmware, but reverse engineering tools like IDApro can assist in finding system calls relating 
to GPS sentences. we can then use the AdaFruit client data handler package to build a lightweight parser 
to parse out sentences in the background and watch for  zero day “position coordinates”. Once zero-day 
is reached, calculate GPS sentence off-sets or do a look up table. Merge real GPS plus zero-day Off-sets 
and send through the payload processor (it’s a pass-through) to the Autopilot… Were done for this 

scenario.  Below in Figure 26 is actual snippet of code for altering GPS sentences. 
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Figure 26 - GPS Code Snippet 

 
As we can see this seems plausible, but by whom? This was probably not a teen hacker, but certainly 
within the realm of possibilities for a nation state or cyber-criminal group.  Once the scenario is 
discussed in a consensus meeting with analysts, system engineers, and managers, decisions can be 
made as what to do to remedy the issue or what not to do.  To aid in decision-making we can insert the 

scenario into an existing attack tree of the system or build attack tree from scratch. Figure 27 is an 
attack tree where we inserted the new path.   
 

 
Figure 27 - Attack Tree with New Path Inserted 
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Now that we have inserted a new path in the attack tree, we have to run the threat agent profile against 
the tree to determine the ease of attack.  The agent profiles for this attack tree used utility functions 

based on Likert scales shown below in Figure 28. Each leaf node is defined by series of attributes, 
namely, design knowledge, attack specific capability, resources, manpower and insider presence.  
 

 
Figure 28 - Attack Tree with Attack Profiles 

The tree is now ready to calculate for ease of attack and other metrics. Table 2 shows the results of 
calculating all the scenarios through the attack tree.  Scenario 5 is the new attack path and the ease of 
attack is .431 and is ranked 2nd in desirability.  Given the low ease of attack and the desirability factor 
for a nation state actor, this would indicate further action be taken in the way of cyber defenses if the 
system were exposed to nation actors.  
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Table 2 - Results of Attack Pathway Calculations 

12   Findings and Lessons learned 
 
A final observation we note is the experience of using a systematic model driven process to conduct 
cyber-vulnerability analysis often yields more information than just quantifying the vulnerability aspects 
of the system. The process itself is a learning experience, providing a richer insight into how a system 
behaves in response to potential threats and attacks. The inclusion of this information into review 
processes and cyber procurement activities can only enlighten how we manage cyber defense 
capabilities from a mission perspective. Finally, the process of conducting studies on how to integrate 
SysML models into Attack Tree disciplines allows two very important pieces of information to come into 
direct connection with each other: What the system is supposed to do, and what it actually does. This 
information is essential for cyber-defense V&V activities and reviews. 
 

13   Planned Activities for 2015 
The Phase 2 activity led to substantial progress in conceptualizing the functions of model-based tools 
and techniques that could provide significant support to System-Aware Architectural Selection and 
Assessment.  The Naval Fleet Cyber Command workshop provided an independent assessment relate to 
the opportunity for using model-based tools in the cybersecurity domain. However the hypothesis that 
these tools yield a truly scalable approach remains largely untested.   Future efforts should focus on the 
following items: 

● Continued development of integration between systems and attack tree models.  This would 
include (1) the definition of SysML design patterns that show how a countermeasure is added 
and how the corresponding countermeasure tree is built in SecureITree and (2) continued 
definition of a notional workflow for the multiple teams engaging in the solution-selection  
collaborative environment, building on Workbench concepts. 

● Extension of the six-step methodology discussed in this report, to support application in 
hierarchical and systems-of-systems settings. 
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● Application of the methods in hierarchical and systems-of-systems case studies to assess the 
overall effort involved in the selection of the defensive architecture and the degree to which the 
concept can support an agile environment through the reuse or combination of architectures.   

The hypotheses of the proposed research effort are that 1) The Synergistic use of advanced tools can 
provide greater assurance that cyber-attack analysis and defensive solution selection will be 
comprehensive and, as a result,  greatly enhanced, and 2) that the tools can be embedded into decision-
processes in a practical manner to facilitate “what-if” analysis. These hypotheses will be addressed 
through experimentation in the following manner: 

 We will select an application system as a first example of a system to be considered for analysis, 
with considerations that the selected example system is sufficiently complex to serve as a useful 
first step, but not so complex that the time allotted for this initial phase is insufficient to conduct 
the needed experiments and analyses.  

 We will develop the needed tool Integration Principles and Information exchange requirements 
on top of the selected baseline tools—MagicDraw and SecureITree—to support multi-criteria 
decision-making that will be evaluated in the context of the selected application.  

 We will carry out a multi-criteria analysis using the tools, and we will provide expert assessment 
about the quality of analysis enabled by the tools and the related impact on implementation 
decisions.  

 We will conduct a workshop with interested potential users to expose the results of our effort 
and to identify the needed activities to bring the modeling support into actual use for decision 
support.  
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