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Period of Performance:  09/24/2012 ~ 09/23/2015 

Abstract: In this project, we developed and proposed brain-like neuronal models. Deep learning 
approaches such as deep convolutional neural networks (CNNs) and recurrent neural networks (RNNs) 
have recently outperformed in various research areas. Moreover, they inspired by computational 
mechanisms of human brains as a neural network model. Hence, we conducted experiments with 
different tasks to solve real-world problems, and proposed models in this work were based on the deep 
learning approach. As a result, we reached state-of-art performances in some of the visual tasks, and we 
found a meaningful relationship between a computational models and human developmental process. 

Introduction 
The main objective of this research project is to propose brain-like computational models to be able 

to recognize visual object robustly (invariant with rotation and transition) and generate goal-directed 
motor actions. Deep learning is a family of algorithms inspired by the human brain, and it recently 
shows the state-of-the-art performance in various fields of studies related to vision, speech, and 
language processing. We have studied and developed deep-learning-based models for extracting 
feasible feature for such tasks, which share the core concepts with predictive coding strategies. Unlike 
classical computer vision approaches, deep learning approach learns meaningful feature hierarchies in 
an autonomous manner just like the brain does. By utilizing these invariant features learned by deep 
architectures, we successfully developed neuronal models and obtained results with following tasks.  

 

Video scene understanding: A computational model for scene understanding was proposed based on 
deep convolutional neural networks to improve recognition accuracy. 

Facial expression recognition: A deep-learning-based model for facial expression recognition was 
formulated. It could recognize emotional status of people regardless of background conditions and 
classify seven different classes of expression. 

Robust real-time object tracking: A framework for robust real-time object tracking was proposed. In 
this framework, a deep CNN based object recognition algorithm was combined with a conventional 
visual tracker and detector. 

Human action recognition: A deep temporal CNN based model was proposed to recognize human 
actions based on time-series of pose features. 

Learning for goal-directed actions using RNNPB: A robotic experiment in the virtual workspace was 
conducted with a robotic agent equipped with RNNPB model which is a kind of recurrent neural 
network model to be able to recognize and generate multiple temporal dynamics. The robotic agent 
showed human-like developmental dynamics during training goal-directed motor actions with an 
imitation learning task. 
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Scene Understanding 

Introduction 
The goal of this research is to improve the video scene understanding rate. This could be used to help 

to improve performances of other research areas such as human action recognition by making use of the 
relationship between specific scenes and actions. For this purpose, we formulate our model for scene 
understanding based on deep convolutional neural networks. 

Experiments 
Datasets 

We reported results on the popular Place205(1) database and MIT indoor 67 dataset(2) which has 2.5 
million training images and 5,360 training images respectively. Place205 database has 205 scene 
categories, and MIT indoor 67 dataset has 67 indoor scene categories. 

Training Procedure 

We used Deep CNN model, especially Alexnet which consists of 5 convolution layers and three fully 
connected layers. Our experiment used training/fine-tuning splits. In training split, Deep CNN model 
except the classification layer was trained by using Place205 database and in fine-tuning split, only the 
last classification layer was trained by using MIT indoor 67 dataset. 

Figure 1. Our Alexnet model for scene understanding. 

Results and Discussion 
We report results on the Place205 database and MIT indoor dataset in Table1 and evaluate our 

experiment with the frequently used Top-1 and Top-5 results. We obtain best results compared to other 
methods with the model which is trained by Place205 database and is fine-tuned by MIT indoor dataset. 
From this research we demonstrate that our approach exceeds the current state-of-the-art methods.   

Table 1. Top-1 and Top-5 compared to other methods. This table 
shows our method outperforms other research results.(3,4) 
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Figure 2. Examples of scene prediction with Place205 database 

 

 
Figure 3. Examples of scene prediction with MIT indoor dataset  
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Facial Expression Recognition 
Introduction 

Humans emotional status mainly appears in their facial expression. If we know that information, we 
can react differently according to the target’s status. The specific aim of facial expression recognition 
is searching human face and classifying target’s emotional status by deep convolutional neural network 
model. Classification is performed with seven different classes of expression: Angry, disgust, fear, 
happy, sad, surprise and neutral.  

  
Experiments 

Facial expression recognition task consists of three-steps: a) face detection, b) face tracking, c) 
expression recognition. Face detection and tracking is performed with hand-crafted model, and 
expression recognition is performed with deep learning based classification technology.  
Experiment was performed with Kaggle facial expression recognition challenge dataset with following 
specification: 
 

• 48x48 grayscale images of faces 
• 7 classes 
• Training set: 28,709 
• Validation set: 3,589 
• Test set: 3,589 

 

 
 
 
 

We used Caffe CNN model for realizing our classification model. Specific model is described on 
following figure. 

 
Figure 5. CNN architecture used for classification 

 
We trained the model with training set and enhance the performance with several parameter tuning. 
 
  

Figure 4. Kaggle facial expression recognition challenge dataset 
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Results and Discussion 
The highest accuracy we get from parameter tuning was average 70.74%. Individual accuracy due to 

each class is shown on following table. This result is slightly lower than Kaggle challenge winner’s 
record (71%). 
 
 

Table 2. Confusion matrix of trained CNN model 
 angry disgust fear happy sad surprise neutral 

angry 61.1 1.0 6.3 3.5 15.3 1.6 11.2 
disgust 23.6 67.3 1.8 0.0 1.8 1.8 3.6 
fear 10.6 0.2 49.5 3.0 19.7 8.1 8.9 
happy 1.4 0.0 0.8 88.7 3.9 1.6 3.6 
sad 6.1 0.0 8.1 5.1 65.2 0.8 14.8 
surprise 2.2 0.0 5.8 3.6 2.9 83.2 2.4 
neutral 3.6 0.3 3.7 7.3 14.4 1.5 69.2 

 
 
References 
1. Tang, Yichuan. "Deep learning using support vector machines." CoRR, abs/1306.0239 (2013). 
2. Bergstra, James, and David D. Cox. "Hyperparameter Optimization and Boosting for Classifying 

Facial Expressions: How good can a" Null" Model be?." arXiv preprint arXiv:1306.3476 (2013). 
3. Kaggle Facial Expression Recognition challenge Database, 

https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-
challenge 

4. Jia, Y. (2013). Caffe: An open source convolutional architecture for fast feature embedding. 
 
 
 
  

DISTRIBUTION A: Distribution approved for public release.DISTRIBUTION A: Distribution approved for public release.

https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge


6 
 

Robust real-time object tracking 
Introduction 

This research showed the framework of robust long-term and real-time tracking of an object 
recognizing what it is. Here recognizing means classification for the object based on image database 
using the convolutional neural network (CNN). Tracked object a classifier corresponding to the object 
is trained on-line using positive and negative constraints inside a local region. A detector module is 
integrated into the framework to overcome the disappearing problem. Proposed framework selects the 
best result from several independent components and estimates the error at the same time. Kalman Filter 
and Particle Filter are used inside filtering component to predict possible positions of the object in the 
next frame. We also use the CNN trained using ImageNet dataset (1000-classes). After that CNN 
classify the object region at every frame moment. 
 
Experiments 

In case that traditional tracking object on the long-term video stream, it using just feature vector from 
object region and doesn’t concern what it is. It only focuses on the best feature for frame-to-frame 
bounding-box. In this study, we propose an advanced system that combines object tracking and 
recognition. It can autonomously track the target object without any supervision. 

Using optical flow tracker and multi-scale detector on the Tracking-Learning-Detection platform, it 
can tracking the initialized object frame-to-frame even if the object moves out of camera view and come 
back inside. It was using positive/negative precision and positive/negative recall value for making error 
cancelation matrix. So this is the bootstrapping of the semi-supervised learning and then can update 
detector. 

In this research also use CNN for classify the tracked object. We training the CNN based on ImageNet 
database which structure is Network in Network. 

Finally, this system can tracking the initialized object at every frame and pass it through CNN for 
classification. It can run dual system simultaneously in real-time. 
 

 
Figure 6. Tracking process and snapshots of result on ball-moving video 

 
 

Convolutional neural network structure 

- 4 convolution layers 
- 4 pooling layers 
- Using ReLu function 
- Affect NIN structure 

 1x1 convolution kernel between each 
convolution layer 

 Average max classifier 

DISTRIBUTION A: Distribution approved for public release.DISTRIBUTION A: Distribution approved for public release.



7 
 

 
Figure 7. Network in Network structure for ImageNet classification 

 

 
 
Results and Discussion 

As above pictures about mouse moving, this system can tracking not only the scale-variable object 
and also re-tracking object which moved out of camera and reappear inside of. In addition, it can 
recognize the object by classifier through CNN. 
Recognition accuracy is 83% for Top-5 classes, and tracking performance is composed of precision 
and recall (precision – 68~80%, recall – 69~85%). Tracking performance suggest average value of 
each parameter from TLD video dataset. 
 

Figure 8. Integrated system for object tracking and recognition in real-time 
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Figure 9. Result test about mouse moving video. 

Reference. 
1. Min Lin, Qiang Chen, Shuicheng Yan. “Network in Network”arXiv. Mar 2014 v3.
2. Z. Kalal, K. Mikolajczyk, and J. Matas. “Tracking-learning-detection.” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 34(7):1409 –1422, july 2012.
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Human Action Recognition with Deep Neural Network  
 
Introduction 

Recognizing human actions from video data is one of the main characteristics toward to develop 
brain-like algorithms. In this study, a deep neural network model is proposed to classify human actions 
when time-series of 3D human poses are given. As extracting spatiotemporal motion features of human 
action, a hierarchal network architecture shows brain-like information process. 
 
Experiments 
 
Dataset 

Recognizing human action is a wide and ambiguous definition of the problem because there are many 
possible applications (e.g. video surveillance, selecting sports highlights, hand gesture detection, and so 
on). MSR Kinect datasets are one of these variations. We choose Kinect datasets because they contain 
three-dimensional human pose data which could be easily obtained by using Kinect to test our model in 
the real world environment (see Figure 10). 

 
Figure 10. Skeleton and corresponding joint number of Kinect 

 

MSR Online Action Dataset (1) is one of MSR Kinect datasets. It contains seven indoor action classes 
(Drinking, Eating, Using Laptop, Reading cellphone, Making phone call, Reading book, and Using 
remote). As it contains several subsets with different subjects and environments, it could be used as 
two-fold validation and tested as cross-environment action recognition. 
 

Table 3 Subsets of the MSR Online Action Dataset 
 S1 S2 S3 

DIFFERENT 
ENVIRONMENT 

S4 
LONG 
VIDEO 

S0 
NEGATIVE 
ACTION 

ACTIONS 7 (0~6) 7 (0~6) 7 (0~6) 1 (8) 1 (10) 
SUBJECTS 8 (1~8) 8 (9~16) 8 (17~24) 12 (25~36) 3 (1, 5, 37) 
TRIAL 2 (0~1) 2 (0~1) 2 (0~1) 3 (11~14) 5 (20~24) 
TOTAL 112 112 112 36 14 
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Preprocessing 

In this dataset, pose data is a time-series of multi-dimensional vectors which consist of three-
dimensional position vectors of each joint as a real-world coordination. However, these are not invariant 
toward translation and rotation of human actors. Hence, we converted joint position vectors into the 
quaternion coordination. Time series of quaternion vectors were split with a sliding time window of 
which width was fixed. 
 
Network architecture 

A deep convolutional neural network (deep CNN) model was used as an elementary building block 
because it has showed an outstanding performance in the object classification task of the computer 
vision research area. In this works, temporal convolution units which extract temporal features were 
organized as a three layers accompanied with subsampling layers. Fully-connected layers with a 
softmax layer which are same with conventional neural network models finally classify actions based 
on extracted features from the temporal convolution units. As the inputs of the networks were time-
windowed, classification was conducted for each time-windows. 

 
Figure 11. Network architecture of proposed model. 
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Result and Discussion 
The proposed model was trained for 9,000 iterations with the subset S1 (see Table2). Recognition 

accuracies were measured by comparing with ground through in the subset S2. As a result, our model 
showed 50.89% of average recognition accuracy. According to a confusion matrix from the results (See 
Figure X), the class 'eating' was well whereas some classes such as 'using laptop' were not.  
 

 
Figure 12. Confusion matrix. 

 

The main reason of this variation between classes is that the proposed model used only short periods 
of time windows to determine actions. Hence, for next steps, we will adopt recurrent neural networks 
(RNNs) as combining with the deep CNN as a feature extractor. RNNs have been successfully 
implemented to model long-term time series. Moreover, a recent study about a language modeling with 
the RNN(2) showed that they could detect hierarchical temporal dynamic. 
 
References 
1. Gang Yu, Zicheng Liu, Junsong Yuan, “Discriminative Orderlet Mining For Real-time 

Recognition of Human-Object Interaction”, ACCV 2014. 
2. Hermans, M., & Schrauwen, B. (2013). Training and analysing deep recurrent neural networks. 

In Advances in Neural Information Processing Systems (pp. 190-198). 
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Learning for goal-directed actions using RNNPB 
 
Introduction 

Imitation learning is also an important feature to develop brain-like algorithms as humans learn new 
actions by mimicking others. Developmental studies have showed that infants develop goal-
directedness of sensory-motor actions. In the study of Carpenter et al.(1) young infants tend to ignore 
less salient properties as imitating only salient property of actions whereas older infants imitated both. 
In this study, we proposed a computational model to be able to learn multiple goal-directed motor 
behaviors in a robotic environment and investigated developmental dynamics of the proposed model 
while learning. 
 
 
Experiments 

Recurrent neural network with parametric bias (RNNPB) model(2) has an ability to memorize and 
regenerate multiple time-series. During error optimization process such as back-propagation through 
time (BPTT)(3), these multiple time-series are parameterized by a specialized neural units which name 
is parametric bias (PB) unit. Similar to the developmental study(1), we designed a robotic experiment in 
a simulation environment. In this experiment, a virtual robotic arm which consists of two joints moves 
in the two-dimensional workspace (See right parts of Figure 13). 
 
 
 

 
Figure 13. (left) Architecture of RNNPB model consisting of three layers: input layer, hidden 

layer, and output layer. (right) Robotic arm moving from initial position to two different goal 
positions. 
 
 
 

As described below, six different motor behaviors (two separated goal positions with three different 
styles of movements) were defined to be trained. Proposed actions have two goal properties. The first 
one is related to the goal position, and it is called as 'the goal.' The second one is related to ways to reach 
to the goal positons, and it is called as 'the means.' 
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Figure 14. Three different movements for two goal positions. (a)-(c) reaches goal A, and (d)-(f) 

reaches goal B. 
 
 
Results and Discussion 

To examine how an ability of a robotic agent about imitating goal-directed actions is developed, the 
robotic agent equipped with the RNNPB model had been analyzed for every snapshot during training. 
Three snapshots were choose based on separation of the PB units, and analysis were conducted. For 
each snapshot, the robotic agent experienced the desired action as changing its internal status with 
corresponding PB values, and then it generated its own actions.  

As a result, the agent showed staged development of its ability. When it is not trained yet, it did not 
produce the desired actions. It started to recognize and generated desired actions when the agented 
trained. PB unit values were also separated into the two parts. However, it was not followed styles of 
movements yet. When the agent was trained enough, it successfully recognized and generated for all of 
six desired behaviors. PB space was also separated for both of the goal and the means. The results that 
the primary goal learned first and the secondary goal learned later is similar to the findings of 
developmental studies that younger infants tended to imitate only primary goals of actions as ignoring 
secondary goals. 
 
 
 
References 
1. Carpenter, M., Akhtar, N., & Tomasello, M. (1998). Fourteen-through 18-month-old infants 

differentially imitate intentional and accidental actions. Infant Behavior and Development, 21(2), 
315-330. 

2. Tani, J., Ito, M., Sugita, Y.: Self-organization of distributedly represented multiple behavior 
schemata in a mirror system: reviews of robot experiments using RNNPB. Neural Networks 17, 
1273{1289 (2004). 

3. Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Proceedings 
of the IEEE, 78(10), 1550-1560. 
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Figure 15. Dynamics of PB space and results of action generation. The left side of the figure 
illustrates which reference actions (from 𝐀𝐀𝟎𝟎 to 𝐁𝐁𝟐𝟐) have a minimum error in the PB space. The 
direction and the color of the triangular markers indicate the goal and the style of movement, 
respectively. The size of the markers is inversely proportional to the amount of error 𝐄𝐄𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦: The 
larger a marker is, the smaller the error is. Recognized PB values 𝐱𝐱𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 are illustrated as circles 
with triangular markers inside. The right side of the figure represents the actions generated by 
the agent and its joint angles. The figures of joint angles represent 𝐘𝐘𝒓𝒓𝒓𝒓𝒓𝒓  (thin lines) for all 
reference actions 𝐘𝐘𝒈𝒈𝒈𝒈𝒈𝒈 (thick lines) in the time domain. The red and green lines are the first and 
second joint angles, respectively. 

(a) 

(b) 

(c) 
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