

 ARL-CR-0780 ● SEP 2015

 US Army Research Laboratory

High-Bandwidth Tactical-Network Data
Analysis in a High-Performance-Computing
(HPC) Environment: Device Status Data

prepared by Brian Panneton
Technical and Project Engineering, LLC
Alexandria, VA

Brendan Tauras, Christopher Wancowicz, and Sean Coyne
US Army Aberdeen Test Center
Aberdeen Proving Ground, MD

under contract W91CRB-11-D-0007

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-CR-0780 ● SEP 2015

 US Army Research Laboratory

High-Bandwidth Tactical-Network Data
Analysis in a High-Performance-Computing
(HPC) Environment: Device Status Data

prepared by Brian Panneton
Technical and Project Engineering, LLC
Alexandria, VA

Brendan Tauras, Christopher Wancowicz, and Sean Coyne
US Army Aberdeen Test Center
Aberdeen Proving Ground, MD

under contract W91CRB-11-D-0007

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

July 2012–December 2014
4. TITLE AND SUBTITLE

High-Bandwidth Tactical-Network Data Analysis in a High-Performance-
Computing (HPC) Environment: Device Status Data

5a. CONTRACT NUMBER

W91CRB-11-D-0007
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Brian Panneton, Brendan Tauras, Christopher Wancowicz, and Sean Coyne
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Technical and Project Engineering, LLC US Army Aberdeen Test Center
Alexandria, VA Aberdeen, MD

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIH-C
Aberdeen Proving Ground, MD 21005

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

ARL-CR-0780

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Well-designed network traffic collection provides a wealth of information regarding what a network-centric system is doing.
Analysis tools examine the data and readily help answer “what,” but “why” and “how” may not be attainable, even with
advanced analytics. Collecting device status information can augment network traffic information to help answer “why” and
“how.” To answer these questions, the Aberdeen Test Center developed an active device status collector and collaborated
with the US Army Research Laboratory to develop a high-performance-computing solution for correlating device status data
with network traffic data.

15. SUBJECT TERMS

tactical networks, data reduction, high-performance computing, data analysis, big data

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

22

19a. NAME OF RESPONSIBLE PERSON

Kenneth Renard
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-4678
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Device Status Data 1

2.1 SNMP 1

2.2 NMS 1

2.3 ICMP Ping 2

3. Data Collection 2

4. Hydra Configuration 3

4.1 Status Codes 4

4.2 Request Time 5

4.3 Hydra BLOb Metadata 6

5. Data Processing 6

5.1 Hydra Data Processing Framework 6

5.1.1 Basic Components 6

5.1.2 Map Component 7

5.1.3 Postmap Methods 8

5.1.4 Data Flow 9

5.1.5 Distributed Processing Considerations 9

5.2 Specific Hydra Data Processing 10

5.2.1 SNMP Data Processing 10

5.2.2 NMS Data Processing 11

6. Conclusion 12

7. References and Notes 13

List of Symbols, Abbreviations, and Acronyms 14

Distribution List 15

iv

List of Figures

Fig. 1 Hydra program flow ...2

Fig. 2 Snippet of Hydra SNMP configuration file ...3

Fig. 3 Hydra MySQL section snippet...4

Fig. 4 Hydra data framework components. Incoming data are handled by the
specific module instance for a Hydra data type, being passed to its
proper table group, table, and then table row. ..6

Fig. 5 Hydra data framework, including map components. The postmap
methods can be called from any level to apply transformations across
columns in a row, rows in a table, or tables in a group..........................8

List of Tables

Table 1 MySQL status codes ..5

Table 2 SNMP status codes ..5

1

1. Introduction

Device status collection configuration is usually more involved than network traffic
collection configuration because it is usually active collection. Active means the
collector device is a host on the network under test, and it usually requires
configuration of the system under test to allow the collector to interact with it over
network protocols. The load incurred by directly polling devices must be carefully
considered to ensure the active collection does not affect the system under test.
While trap-type paradigms1 would help reduce the load on devices, hardware
vendors may not support and typically do not allow trap-type paradigms. Therefore,
polling methods are employed for maximum compatibility. The US Army
Aberdeen Test Center (ATC) developed a software package called Hydra to provide
this capability.

Device status data processing mainly involves grouping related data and applying
transformations, such as interpreting or cross-referencing poll results with test plan
information and/or expected values. ATC collaborated with the US Army Research
Laboratory (ARL) to develop a distributed computing software framework that
provides a basis for processing device status data collected by Hydra.

2. Device Status Data

Hydra collects several different sources of device status data. Each different type
of data is typically associated with the network protocol employed to collect it.

2.1 SNMP

SNMP (Simple Network Management Protocol) is a set of standards for inspecting
and altering devices on networks.2 SNMP specifies an architecture that includes an
application layer protocol for communication, a Structure of Management
Information (SMI) for defining objects, and a Management Information Base for
containing objects. SNMP is often used to monitor or alter system configuration
data on devices, such as routers, switches, and servers. SNMP data are typically
collected by Hydra to show the direct status of individual devices that comprise a
system.

2.2 NMS

NMS (Network Management System) stores statuses and statistics of devices
connected to a network into a relational database. The database can be queried using
Structured Query Language (SQL) to find out a status of a particular device or find

2

out how a device is operating. NMS data are typically collected by Hydra to show
a system’s perspective of how its devices and other components are functioning.

2.3 ICMP Ping

ICMP (Internet Control Message Protocol) ping is a standard of providing
diagnostic and error messages across a network.3 ICMP ping uses ICMP message
types 8 (echo request) and 0 (echo reply) to determine whether a host is reachable
on a network. ICMP ping also provides sequence numbers and round-trip times for
echo request and reply pairs. ICMP ping data are typically collected by Hydra to
determine whether devices that comprise a system are reachable to help diagnose
issues if system services are down.

3. Data Collection

Hydra is an ATC-developed Linux software package used to collect SNMP and
NMS data (Fig. 1). Hydra is an active collection system in the sense that it polls
network devices at a user-specified interval and they respond with an answer.

Fig. 1 Hydra program flow

Using the Net-SNMP1 library Hydra can poll SNMP agents using version 2c or
version 3 requests. It can perform SNMP Walk’s and Get’s with any valid SNMP
Object Identifier (OID).

3

The second part of Hydra collection, MySQL database querying, can be performed
on any MySQL database.4 Hydra can use custom select statements on any database
table or select the entire table at a user-specified interval.

Hydra records its data in binary large object (BLOb) files.5 The data are organized
into cuts inside the BLOb files. Typically each cut represents one poll on the
network.

4. Hydra Configuration

Hydra uses a JavaScript Object Notation (JSON) file to hold its configuration
information.6 This file holds information on what targets are to be polled. An SNMP
target consists of the name of the device to be polled (this will be used in the name
of the BLOb file created), the IP address of the device to poll, and the SNMP
credentials needed to access the SNMP agent. In the configuration file (Fig. 2) each
target device will typically have several queries associated with it. Queries are made
up of a query name, interval at which to poll the device in seconds, the type of
SNMP request, and SNMP OIDs to send to the device’s SNMP agent. Hydra can
perform 2 types of SNMP requests: Get’s and Walk’s. A Get request is a one-to-
one poll. One OID gets sent to the SNMP agent and one response is received. A
Walk is used to get the contents of a table from the SNMP agent. One OID is sent
and many responses are received.
{

"DEVICE NAME": "XT2S”,
"VERSION”: "3”,
“TARGET_IP”: “9.9.9.9”
"AUTHPASS": “PASSL”,
"AUTHPROTO": "SHA:”,
"PRIVPASS": “PASS2”,
"PRIVACY": "DES”,
"SECURITYLEVEL": "AUTHPRIV”,
'USER_ COMUNITY'': "USERL'',
"QUERIES": [
 {
 "QUERY_NAME'': "WANINTERFACES",
 "INTERVAL": 120,
 "OIDS': [

"IF-MIB:: IFTABLE''
],
 "TYPE": "WALK"
 }

}
Fig. 2 Snippet of Hydra SNMP configuration file

4

The configuration section for a MySQL database target (Fig. 3) follows the same
paradigm as the SNMP section. A MySQL target consists of a server that contains
the IP address of the database, the credentials needed to access the database, and
queries to be executed on the target. These queries consist of a query name,
database table to poll, and the interval at which to poll the table.

“NMS”:{
 “SERVERS”:[
 {
 “SERVER_NAME”:”XOEM”,
 “PASSWORD”:”XXXX”,
 “TARGET_IP”:”9.9.9.9”,
 “TYPE”:”MYSQL”,
 “USER”:”UUSER123”,
 “QUERIES”:[
 {
 “QUERY_NAME”:”QUERYNAME1”,
 “DATABASE”:”DATA12”,
 “INTERVAL”:60,
 “TABLE”:”TABLE1”
 }
 {
 “QUERY_NAME”:”QUERYNAME2”,
 “DATABASE”:”DATA12”,
 “INTERVAL”:60,
 “TABLE”:”TABLE2”
 }
]
 }
]
}

Fig. 3 Hydra MySQL section snippet

A BLOb file will be created for each query in the configuration file. When the
polling interval is up, Hydra will poll the network device and write whatever data
it receives back into a data cut. A cut is made up of a cut header, which contains
metadata about the cut and the data returned from the poll.

4.1 Status Codes

Each cut contains a field with the cut status code (Tables 1 and 2). This code is used
to determine if a poll was successful or if an error occurred. There are several errors
that can occur, and these are reflected by several status codes.

5

Table 1 MySQL status codes

Code Explanation
0 Success
E Library error
C Connection error

F MySQL database
Permissions needed

Table 2 SNMP status codes

Code Explanation
0 Success.

M Timeout. SNMP agent could not be
reached.

4 Empty table.

P Wrong authentication username or
password.

U Unknown SNMP username.
D Incorrect encryption protocol.
S Incorrect security level.

Each cut contains a sequence number. This number is incremented each time a data
cut is written to the BLOb. This sequence number is used to ensure that each poll
that was sent is recorded in the BLOb file. It also helps to ensure all data cuts have
been accounted for when the BLOb files are being processed post-collection. Hydra
BLObs use the naming paradigm of “<devicename>_<queryname>
_fileopentime.msb”. Therefore, all BLObs with this device and query name can be
thought of as one file stream. The number that the active file stream Hydra is writing
to depends on the number of queries defined in the configuration file. During data
collection, Hydra will close a BLOb file and open a new one when either 1,800 s
have passed since the file has been opened or the file has reached 500 MB in size.
When Hydra closes a file and opens another one, the sequence number in the new
file does not start back at zero but continues incrementing from where it left off in
the previous file.

4.2 Request Time

Each cut header also contains a poll request time. This is the time in Coordinated
Universal Time (UTC) when the poll was sent out. Associating a request time with
each poll allows the opportunity to create a “time window” an analyst could focus
on during postprocessing.

6

4.3 Hydra BLOb Metadata

When a new BLOb file is created, a section of XML-formatted metadata is written
to the file. This metadata contains all the information necessary for successful
postprocessing of the BLOb file.

5. Data Processing

5.1 Hydra Data Processing Framework

All device status data collected by Hydra can be processed in a similar way that
involves grouping related data and applying transformations. The Hydra data
processing framework provides common functionality for processing Hydra data,
and it enables developers to quickly implement modules for specific types of Hydra
data.

The Hydra data processing framework is used when defining cut modules to
process Hydra data for the broader-scope high-performance-computing (HPC)
framework, discussed in Panneton and Adametz’s framework report.7 Processing
for specific data simply extends and overrides the Hydra data framework as needed.
As with other HPC cut modules, the new specific Hydra data processing cut
modules are automatically detected and used at runtime.

5.1.1 Basic Components

The Hydra data processing framework provides an object-oriented hierarchy for
organizing data processing within an HPC framework cut module. The
components, from highest to lowest level, are the Hydra data type, table group,
table, and table row components (Fig. 4).

Fig. 4 Hydra data framework components. Incoming data are handled by the specific
module instance for a Hydra data type, being passed to its proper table group, table, and then
table row.

Cut Module: Hydra Data Type Instance

Table Group
Table

Table Row
Column

IDs

IDs

...
IDs

IDs

...

IDs

IDs

...

IDs

IDs

... Values List

7

The Hydra data type framework component is a framework cut module for Hydra
data cuts with a specific type of Hydra data. The component provides base
definitions for configuration-based options, detecting and loading all its table group
components, loading information about files it is reading, filtering incoming Hydra
data cuts based on Hydra data types, processing data, communicating for distributed
processing, and writing data outputs. Configuration-based options are passed down
to the lower-level components. Specific modules must define what type of Hydra
data they accept, must define how to partition data into table groups, may provide
specific code for processing its type of data, and may override other methods or
fields as necessary.

The table group framework component contains several related tables of Hydra
data. The component provides base definitions for detecting and loading all its table
components, processing data, and writing data outputs. Specific modules must
define how to partition data into tables and may override other methods or fields as
necessary.

The table framework component provides base definitions for finding and creating
table rows and writing data outputs. Specific modules must define how to partition
data into rows and process data.

The table row framework component provides base definitions for processing data,
setting column values, determining whether all columns have a value, and writing
data outputs. Specific modules should override how to determine whether data are
applicable to the row and whether data are valid, and they may override how data
points are mapped to columns.

At all levels, the Hydra data processing framework has common methods for
outputting data to HDF (Hierarchical Data Format) or CSV (Comma-Separated
Values) format files. The default is HDF, but output formats for each Hydra module
can be selected independently.

5.1.2 Map Component

The Hydra data processing framework provides a map component for applying
transformations, such as look-up, translation, and calculation functionality (Fig. 5).
The map component is a member of the table framework component because all
table rows share a map component with its defined transformations. The map
component inherits common methods from the Hydra data processing framework
and can override and extend the definition for the specific table. The map methods
are easy to reuse as they are referenced by name and can be chained together.

8

Fig. 5 Hydra data framework, including map components. The postmap methods can be
called from any level to apply transformations across columns in a row, rows in a table, or
tables in a group.

If one or more map methods are specified for a column in a table row, then a chain
of map methods is executed when assigning a value. The chain includes one input
method that gathers the appropriate data to start the chain and one or more
transformation methods that comprise the chain. The output of the final
transformation in the chain is used as the final column value for data outputs.

The map framework also supports several features. Map input methods can be
provided as default values to start the chain in case it cannot gather the appropriate
data. The map methods also can reference framework configuration entries to
change behavior or reference default values. Values along each step of the chain
are saved to support methods that also require previous values, such as minimum
and maximum functions.

5.1.3 Postmap Methods

The Hydra data processing framework provides postmap methods to support
column values that depend on other data. Each framework level has a postmap
method to allow resolving data dependencies that span multiple columns in a row,
rows in a table, or tables in a table group. The most common case is a derived
column that depends on the values of one or more other columns.

Postmap methods must be overridden by the specific modules. Postmap methods
are executed after all data have been assigned to values such that any derived values
that can be determined are assigned.

9

5.1.4 Data Flow

During the HPC framework’s registration process in a specific Hydra data cut
module, Hydra table instances report which identifiers they process to their
corresponding table groups. The table group instances accumulate all the identifiers
from their table instances and report the aggregate to the top-level instance for the
Hydra data type. The Hydra data type instance will report the cut identifier for
Hydra data up to the HPC framework.

The Hydra data processing framework’s highest-level component, a specific Hydra
data type instance, first receives a Hydra data cut from the HPC framework. The
specific module will only continue processing if the Hydra cut data type is the type
it accepts. It may optionally include specific data processing definitions before
selecting a table group to continue processing the data cut.

A table group framework instance may further parse the data cut identifier to
determine which of its tables (one or more) should continue processing the data cut.
A table instance performs a function similar to the table group, except that it also
finds or creates a new table row instance to continue processing the data.

A table row instance will determine which column the data should be used for and
whether the data is valid. The row will assign a value to the column, optionally
sending the data through the table’s map instance to invoke any map methods that
were specified for that column. The map process, as described in the previous
section, will use a map inputs method and then a chain of one or more map methods.
The final output of the map chain will be the output value for the column.

On the way back up the hierarchy, postmap methods are invoked at each level. The
table row instance will invoke any postmap methods to fill any columns that depend
on one or more other columns in that row. The table will invoke any postmap
methods to fill in any columns that depend on values in columns from other rows
in the table. Lastly, the table group will invoke any postmap methods to fill in any
columns that depend on values in other columns from other tables.

5.1.5 Distributed Processing Considerations

Since the HPC framework distributes processing on a per-file basis, the Hydra data
processing framework behaves as described in the previous section for each cut on
a per-file basis. Hydra data are typically structured such that all related data cuts
are in a single file. The top-level Hydra data–type modules can be configured to
handle the case where related data cuts are split across files.

10

A worker by default writes all outputs, whether the rows are complete or
incomplete, after it has accumulated all the data from a single input file. Complete
means there is a value for each column in the row. Alternately, the Hydra data
processing framework can be configured such that workers output complete rows
and send the incomplete rows to the receiver. In this case, the receiver will merge
the data from corresponding incomplete rows, then run the postmap methods to
assign values for any derived columns. If there is a collision when merging data,
then a warning is logged, and the value with the latest timestamp is selected.
Finally, the receiver will output all rows it received.

5.2 Specific Hydra Data Processing

Specific Hydra data processing modules inherit functionality from the Hydra data
processing framework described previously and add specific functionality to
process a specific type of data.

5.2.1 SNMP Data Processing

5.2.1.1 Data Description

Section 2 introduced SNMP device status data. Hydra SNMP data cuts, introduced
in Section 4, contain the common metadata, SNMP-specific metadata, and a list of
one or more SNMP data variables.

The common cut metadata includes poll request and response times, a status code,
and a sequence number as described in Section 4. SNMP-specific metadata includes
a query identifier string to match each cut with the Hydra configuration and a
subsequent number that distinguishes cuts that are part of a single SNMP walk
iteration for a sequence number.

SNMP data variables are name-value pairs defined by the SNMP SMI, interpreted
and output by the Net-SNMP library running on Hydra. Names are SNMP OIDs.
Values may be data entries optionally labeled with a data type, hints, and units; or
values may be error or warning messages.

5.2.1.2 Processing Components

The SNMP processing has its own base library that inherits from the common
Hydra data processing framework and provides the basis for all its table groups,
tables, table rows, and table maps. The top-level specific module adds functionality
to request Hydra SNMP cuts and uses the query identifier strings to pass cuts to
their appropriate table groups.

11

The SNMP table group base also uses the query identifier strings to pass cuts to their
appropriate tables. The specific table groups define their table group names and may
also implement postmap methods for handling data dependencies across tables.

The SNMP table base defines how to split up most SNMP OIDs into components
that identify the table row and table column. It also updates a map that tracks the
minimum response time for a given sequence number from a specific Hydra
collector, power cycle, and device with applicable data. This minimum response
time is the closest single time value to when the data were last updated on the
device; this value is used for the response timestamp in SNMP outputs.

The specific SNMP tables request which query identifier strings to use and their
table names. They may override how to split SNMP OIDs into row and column
components or implement postmap methods for handling data dependencies across
table rows.

The SNMP table row base defines the methods to determine whether SNMP
variables are valid and applicable. Note that error and warning messages and other
data anomalies in well-formed SNMP response variables must be detected in these
methods. The timestamp column is overridden to use a map to get the minimum
response time for that row.

The specific SNMP table rows define all their specific columns, along with their
column identifiers, output names, data types, overwrite behaviors, and maps. They
may also define postmap methods for handling data dependencies across columns.

The SNMP map base defines maps that are specific to interpreting and converting
SNMP datatypes to desired column output values. Specific SNMP map instances
may add additional maps that are specific to data for their associated tables.

5.2.2 NMS Data Processing

5.2.2.1 Data Description

Section 2 introduced NMS device status data. Hydra SQL data cuts, used for NMS
data processing, contain the common metadata, SQL-specific metadata, and a list
of the SQL response entries.

Each time an SQL database table is polled, a “snapshot” of the database table is
returned. Each new poll will have the previous data in the table (if it was not
removed by the database) in addition to any new rows in the table.

A Hydra NMS file is broken into 3 sections. The beginning of each Hydra NMS
file has a config section that contains the name of the SQL database table that was

12

queried. The data section in the middle of the file comprises data cuts that hold the
queried output from the NMS polls. The output contains any rows from the database
table query, written in CSV format. The end of each Hydra NMS file may have an
EXT_CONFIG metadata tag that describes each column name and the database
data type of its value.

5.2.2.2 Processing Components

The NMS process uses the previously discussed Hydra framework and is further
broken down into table groupings. Each table grouping defines one or more
associated tables, which are python modules that are each responsible for reducing
data from a single database table. Each python module specifies its outputs by
selecting values from the data cuts.

Hydra NMS data cuts are sent to python modules responsible for processing that
database table’s data, determined by table name in the file EXT_CONFIG
metadata. If the table name is not defined for processing, a warning message is
issued and that data are not processed.

Every NMS python module has a set of default column headers and value type pairs
given in the order the values are written in the Hydra NMS data cut CSV. These
default column and value types are loaded from a JSON file. The default column
headers are used to identify the values in the cut data in the event that the column
headers are not defined in the EXT_CONFIG. Column headers typically do not
change during a test; using a set of default columns allows processing of the data
even if the columns are not explicitly in the EXT_CONFIG metadata.

Once the column headers and data types are established from the JSON defaults or
the EXT_CONFIG, data values are mapped to column names and data types. The
column names are in respective order to the values in the Hydra NMS data cut.
Each value is paired with its column header and converted to the defined data type.

The python table module can apply a postmap function on the value if additional
processing is required before writing to the outputs.

6. Conclusion

ATC developed an active device status collector and collaborated with ARL to
develop an HPC solution for correlating device status data with network traffic data.
Correlating device status and network status data enables analysts to see both
network traffic data (what happened) and related device status data (why it
happened) to provide more insights into network performance and reliability.

13

7. References and Notes

1. These are event-driven reporting methods. When a specific type of event
occurs (trap), a message is generated that can be recorded. Refer to RFC-1215
(Rose M, editor. A convention for defining traps for use with the SNMP.
Fremont (CA): Internet Engineering Task Force (IETF); 1991 Mar [accessed
2015 Jan 15]. http://www.ietf.org/rfc/rfc1215.txt?number=1215.) and Net-
SNMP (2013 Feb 26 [accessed 2015 Jan 15]. http://www.net-snmp.org/) for
more details.

2. Case J, Fedor M, Schoffstall M, Davin J. A simple network management
protocol (SNMP). Fremont (CA): Internet Engineering Task Force; 1990 May
[accessed 2015 Jan 15]. http://www.ietf.org/rfc/rfc1157.txt?number=1157.

3. Postel J. Internet control message protocol. Fremont (CA): Internet
Engineering Task Force; 1981 Sep [accessed 2015 Jan 29].
http://tools.ietf.org/html/rfc792.

4. Oracle Corp. MySQL documentation: MySQL reference manuals. Reston
(VA): Oracle Corp; 2015 [accessed 15 Jan 2015]. http://dev.mysql.com/doc/.

5. Army Aberdeen Test Center (US). VISION BLOb description. Aberdeen
Proving Ground (MD): Army Aberdeen Test Center (US); 2014.

6. JSON.org. Introducing JSON; n.d. [accessed 2015 Jan 15].
http://www.json.org/.

7. Panneton B, Adametz J. High-bandwidth tactical-network data analysis in a
high-performance-computing (HPC) environment: data reduction framework.
Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2015 Sep.
Report No.: ARL-CR-0777.

14

List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

ATC US Army Aberdeen Test Center

BLOb binary large object

CSV Comma-Separated Value

HDF Hierarchical Data Format

HPC High-Performance Computing

IP Internet Protocol

JSON JavaScript Object Notation

NMS Network Management System

OID Object Identifier

SMI Structure of Management Information

SNMP Simple Network Management Protocol

SQL Structured Query Language

15

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

1 TECH AND PROJ ENGR LLC
 (PDF) B PANNETON

2 USATC
 (PDF) B TAURAS
 S COYNE

 1 DIR USARL
 (PDF) RDRL CIH C
 K RENARD

16

INTENTIONALLY LEFT BLANK.

	List of Figures
	List of Tables
	1. Introduction
	2. Device Status Data
	2.1 SNMP
	2.2 NMS
	2.3 ICMP Ping

	3. Data Collection
	4. Hydra Configuration
	4.1 Status Codes
	4.2 Request Time
	4.3 Hydra BLOb Metadata

	5. Data Processing
	5.1 Hydra Data Processing Framework
	5.1.1 Basic Components
	5.1.2 Map Component
	5.1.3 Postmap Methods
	5.1.4 Data Flow
	5.1.5 Distributed Processing Considerations

	5.2 Specific Hydra Data Processing
	5.2.1 SNMP Data Processing
	5.2.1.1 Data Description
	5.2.1.2 Processing Components

	5.2.2 NMS Data Processing
	5.2.2.1 Data Description
	5.2.2.2 Processing Components

	6. Conclusion
	7. References and Notes
	List of Symbols, Abbreviations, and Acronyms

