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Final Technical Report 

Optomechanical Light-Matter Interface 
 with Optical Wavelength Conversion 

Hailin Wang 
Department of Physics, University of Oregon, Eugene, OR 97403 

Lin Tian 
School of Natural Science, University of California, Merced, CA 95343 

Abstract 

  An optomechanical resonator features the unique property that an optically active 
mechanical mode can couple to any of the optical resonances in the resonator via radiation 
pressure.  The main objective of this program is to exploit this unique property to develop a light-
matter interface that can map quantum states between two different optical wavelengths.  Using 
silica microspheres as a model optomechanical system, these studies have led to the experimental 
realization of coherent inter-conversion between optical and mechanical excitations and to the 
demonstration of mechanically-mediated coherent conversion between two optical modes.  In 
addition, Bogoliubov mechanical mode, which is a precursor for entangled mechanical mode, has 
also been realized in a system, in which two mechanical modes couple a common optical mode 
via respective red and blue sideband coupling.   

A particular emphasis of this program is on overcoming the effects of the thermal 
mechanical motion in mechanically-mediated optical state transfer or optical entanglement. Two 
different approaches have been proposed and analyzed theoretically.  One approach exploits 
mechanically-dark optical super modes.  These dark modes can enable the optical mode 
conversion or optical entanglement generation without exciting the mechanical system, thus 
avoiding the effects of the thermal mechanical motion.  Detailed experimental studies show that 
optical mode conversion demonstrated indeed took place via the dark mode.  Another approach 
returns the mechanical system to its initial state after the completion of the relevant quantum 
operations.  This approach resembles the Sorensen-Molmer mechanism for entanglement of 
trapped ions in a thermal environment.  Both approaches aim to take advantage of mechanical 
degrees of freedom, while avoiding the detrimental effects of thermal mechanical motion.   
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1. OVERVIEW

In a quantum network, local quantum nodes consisting of matter qubits generate, process, 

and store quantum information.  An optical network couples together distant quantum nodes, 

transferring or distributing quantum information among these nodes via photons[1]. Such a 

network can play a major role in quantum communication and quantum computing and can also 

serve as a platform for exploring and understanding quantum manybody interactions.  A variety 

of quantum systems including both atomic and solid state systems, such as trapped ions, 

superconducting circuits, and spins in diamond or silicon, have emerged as promising candidates 

for matter qubits.  The unique properties of these quantum systems make them suitable for 

specific quantum operations.  For example, spins in diamond can serve as long-lived quantum 

memories, while superconducting circuits can enable rapid information processing.  A 

formidable challenge for developing a hybrid quantum network that can incorporate and take 

advantage of disparate quantum systems is to enable quantum communication between these 

systems.    

An effective approach for mediating interactions between different types of quantum 

systems emerged from a seemingly unrelated field, cavity optomechanics, which explores the 

interactions between the circulating optical fields and the mechanical motion in an 

optomechanical resonator[2-4].  The optomechanical interactions take place via either the 

radiation pressure force induced by the optical fields or processes such as Brillouin scattering. 

These interactions can lead to quantum state transfer between relevant optical and mechanical 

systems and can also generate quantum entanglement between the optical and mechanical 

systems.   

The main objective of this program has been to exploit the unique properties of an 

optomechanical system to develop light-matter interfaces that can map quantum states between 

two different optical wavelengths.  In this final technical report, we summarize the key 

experimental and theoretical results obtained in this program.  The experiment results include the 

demonstration of coherent inter-conversion between optical and mechanical excitations[5, 6], the 

realization of mechanically-mediated optical wavelength conversion via an optomechanical dark 

mode[7, 8], and the observation of Bogoliubov mechanical mode, a precursor for mechanical 

squeezing or entangled mechanical mode[9].  The theoretical results include the proposal and 

modeling of state swapping between optical and mechanical states and the development and 
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detailed analysis of a dark-mode-based approach for optical state transfer and also for the 

generation of optical entanglement[10-12].  In addition, we have also developed an approach that 

can return a mechanical system to its initial state after the completion of the relevant quantum 

operations[13].  This approach, which can be used for both optical state transfer and optical 

entanglement, resembles the Sorensen-Molmer mechanism for entanglement of trapped ions in a 

thermal environment[14, 15].  Overall, the advances achieved in this program laid the ground 

work for using optomechanical interfaces to enable quantum communication in a hybrid 

quantum network. 

In addition to the main theme discussed above, we have also investigated the generation 

of mechanical squeezing via light-matter interactions. Squeezing is an important element in a 

hybrid quantum network for continuous variable systems. We show that mechanical squeezing 

well above the so-called 3dB limit can be achieved in the presence of strong thermal noise[16]. 

Another aspect in the quantum applications of optomechanics is the behavior of such systems in 

the single-photon limit, with ultra-strong coupling between the optical and the mechanical 

degrees of freedom. We have developed an appropriate theoretical approach to study the 

stochastic behavior of an optomechanical system in this limit[17]. 

2. SUMMARY OF KEY RESULTS

a) Coherent inter-conversion between optical and mechanical excitations

Theory  By applying a strong, red-detuned pump pulse to an optomechanical system, we 

can linearize the radiation-pressure interaction between the optical and the mechanical mode and 

obtain an effective beam-splitter type of coupling in the form of  

.     (1) 

After a duration of  for i=1, this pulse swaps the quantum state in the first optical mode 

with that in the mechanical mode. A similar pulse applied to the second optical mode can send 

the quantum state from the mechanical mode to the second optical mode[10]. In the limit of large 

cavity bandwidth (κ>εi), a quantum state can be transferred from the input port of the first optical 

mode to the output port of the second optical mode. 

The thermal noise in the mechanical vibration presents a serious obstacle in achieving 

high-fidelity state transfer. To overcome this noise, we have designed a three-step scheme, in 
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Fig. 3  Left: mechanical dark mode ψ1 and  transfer fidelity for selected Gaussian states. Right: 
transmission matrix element for traveling photons from the input port of one cavity to the output 
port of the other.  
 

Experiment Mechanically-mediated optical wavelength conversion can take place via a dark 

mode that resembles the dark state in a Λ-type three-level system (see Fig. 4a).  Figure 4b shows 

a schematic of two optical modes coupling to a mechanical oscillator.  Two external driving 

fields, E1 and E2, which are ωm below the respective cavity resonances, ω1 and ω2 (see Fig. 4c), 

can drive the optomechanical system into a dark mode.  The formation of the dark mode, which 

is a special superposition of the two optical modes, necessitates the conversion of an input signal 

field, Ein, in one optical mode to an output field, Eout, in the other optical mode.  Figure 4d shows 

a simplified schematic of the experiment, for which 8 μs long optical pulses were used.  

Figure 4e shows transient, heterodyne-detected Eout.  With Ein resonant with mode 1 (or 

mode 2), Eout is correspondingly resonant with mode 2 (or mode 1).  The insets of Fig. 4e show 

that the heterodyne-detected signal features periodic oscillations with well-defined phase and 

with a frequency given by ωm, demonstrating the coherent nature of the conversion process.  

Figure 4f plots the photon-conversion efficiency obtained from these experiments.  The 

efficiency achieved (~10%) is limited by the modest optomechanical cooperativity (C1 and C2, 

for mode 1 and mode 2, respectively, are less than 5) and by the internal optical loss[7, 8].    

We have demonstrated the formation of the dark mode by comparing directly emissions 

from the two optical modes[8].  Specifically, there are the two signatures for the dark mode 

excitation:   i) the dark mode is decoupled from the mechanical system and thus features no 

optomechanically-induced transparency (OMIT).  ii) The dark mode is a superposition of the 

two optical modes. The excitation of the dark mode leads to the coherent conversion of 

excitations between the two optical modes.   
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c) Entanglement generation via Bogoliubov dark mode (Theory) 

  Continuous variable entanglement is an indispensible resource in a hybrid quantum 

network. Generating entanglement between two cavity modes or their outputs via an 

optomechanical quantum interface is subject to the influence of mechanical noise, just as in the 

case of optical wavelength conversion discussed above.  Using the idea of dark mode, we have 

developed a scheme to generate optical entanglement via the Bogoliubov dark mode, which is 

robust against the mechanical noise[12].  

  Applying red-detuned driving on cavity mode, a1, and blue-detuned driving on cavity 

mode, a2, we can write the resulting interaction Hamiltonian in the form 

   .   (3) 

This Hamiltonian includes parametric-down-conversion type of coupling due to the blue-detuned 

drive. It can be shown that the system features a dark mode 

which does not contain the mechanical component, while the two other eigenmodes are bright 

modes that include the mechanical component. In this system, entanglement can be produced 

between all three modes due to their couplings. It can be shown that at stroboscopic time 

windows, the quantum interference between the bright modes cancels the contribution of the 

mechanical noise to the cavity state (see Fig. 6).  

                    
Fig. 6  Entanglement between cavity states in the time domain under constant driving parameters. 
Left: entanglement reaches peak values at stroboscopic time windows. Right: entanglement at 
selected time (peak value) versus thermal phonon number nth.  
 
 

 Using the concept of Bogoliubov dark mode, high-fidelity entanglement can be generated 

between cavity outputs as well. In Fig.7, we plot the entanglement as a function of the output 

frequency relative to that of the cavity resonances. It can be seen that entanglement reaches peak 
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value at relative frequency ω=0, g0,-g0. However, as temperature increases, the entanglement at 

nonzero frequencies quickly decays as function of nth; whereas the entanglement at ω=0 remains 

significant even at high temperature. We explain this effect using the evolution of the dark mode.  

            
Fig. 7  Entanglement between cavity outputs in the frequency domain under constant driving 
parameters. Left: entanglement versus frequency. Right: entanglement at selected frequency 
(peak value) versus thermal phonon number nth.  

 

d) Experimental realization of Bogoliubov mechanical modes 

 To realize Bogoliubov mechanical modes, we have carried out experiments in a three 

mode optomechanical system, in which two radial breathing modes couple to an optical mode in 

a silica microsphere (see Figs. 8a-8c).  For the experiment, a beam-splitter like process was 

driven by a laser field at the red sideband and a parametric-down-conversion process was driven 

by a laser at the blue sideband.  The combined red and blue sideband coupling can lead to the 

generation of phonon pairs as well as the formation of Bogoliubov mechanical modes that have 

the mathematical form of two-mode squeezed states. 

The Bogoliubov mode features a characteristic optomechanical coupling rate given by 
2
2

2
1 GGG −=  (G1  and G2 are the respective red and blue sideband coupling rates), which can be 

directly probed with the technique of OMIT.  The experimental results shown in Figs. 8d and 8e 

show the expected competition between the red and blue sideband coupling[9].  The periodic 

modulations in these data are due to the relatively short pulse duration (7 μs) used in the 

experiments.  The solid lines show good agreement between the experiment and theory.  In the 

limit that G2 > G1, optomechanically induced gain is observed.  In this regime, the Bogoliubov 

mode can be driven above the threshold for parametric instability.  Additional experimental 

studies further show that the resulting self-induced mechanical oscillations reflect the underlying 

process of the phonon pair generation[9].     

10 
DISTRIBUTION A: Distribution approved for public release.









 The driving on the cavity is a red-detuned monochromatic source which generates strong 

optomechanical coupling between the cavity and the mechanical modes and greatly reduces the 

thermal fluctuations of the mechanical mode. This driving, when combined with the nonlinearity 

of the mechanical mode, also induces a parametric-amplification process which plays a key role 

in generating squeezing. We show that in the vicinity of the steady state, the system has an 

effective Hamiltonian 

(8)

which includes both a parametric amplification term and a cavity cooling term. Furthermore, we 

find that in a rotated frame, the physical process can be exactly mapped to a cooling equation 

where the mechanical noise is extracted away from the system. In the physical (original) frame, 

we then achieve strong squeezing that is robust against the thermal noise. Optimal squeezing 

occurs when the detuning of the cavity driving is equal to the mechanical frequency in the 

rotated frame (see Fig. 12).  

Fig. 12 The squeezing of X (in 
units of dB) versus detuning and 
coupling Λ. The white dashed line 
indicates the position of optimal 
squeezing. 

3. OUTLOOK

Mechanical degrees of freedom, which have often been overlooked in studies of quantum 

systems, have emerged as a promising platform for interfacing disparate quantum systems.  The 

ubiquitous nature of mechanical motion can enable a mechanical oscillator to couple to nearly 

any type of quantum systems, including charge, spin, atomic, and superconducting qubits, as 

well as to photons at nearly any wavelength.  Considerable experimental progresses have already 

been made in optomechanical and also electromechanical systems.  Mechanically-mediated 
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optical wavelength conversion, including that between optical and microwave fields, have been 

successfully demonstrated in a classical regime. With further advance in the design and 

engineering of optomechanical resonators, near unity conversion efficiency is achievable.   

A key technical challenge for using mechanical degrees of freedom in applications such 

as quantum information processing is to overcome the detrimental effects of thermal motion 

inherent in a mechanical system.  For the mechanically-mediated quantum state transfer between 

optical fields, a conceptually straightforward approach is a double swap, converting the field in 

the first optical mode to a mechanical excitation, followed by the conversion of the mechanical 

excitation to an field in the second optical mode.  The double swap process, however, is strongly 

affected by thermal phonons.  A brute force approach to avoid this complication is to cool the 

mechanical system to its motional ground state. Two different, but closely related, approaches 

can, however, enable mechanically-mediated quantum state transfer even in the presence of 

thermal phonons.  The dark mode approach is based on the adiabatic passage of a dark mode and 

is analogous to the Stimulated Raman adiabatic passage (STIRAP) of dark states in an atomic 

system. The Sorensen-Molmer approach returns the mechanical system to its initial state after the 

completion of the relevant quantum operation, which resembles the Sorensen-Molmer 

mechanism for entanglement of trapped ions in a thermal environment.  Both approaches aim to 

take advantage of mechanical degrees of freedom, while avoiding the detrimental effects of 

thermal environment during the state transfer process.  For the dark mode approach, the 

mechanical oscillator still needs to be precooled to its motional ground state, since perfect 

adiabatic limit can never be attained for realistic experimental parameters[18, 19].  Precooling to 

the ground state, however, is not required for the Sorensen-Molmer approach.  Thus far, neither 

adiabatic passage of the dark mode nor the Sorensen-Molmer mechanism has been realized 

experimentally in an optomechanical system.  

 Results from our as well as other groups in the DARPA ORCHID program show that 

optomechanical interfaces can generate or lead to all necessary elements in a hybrid quantum 

network for the purpose of quantum information transfer. Future experimental and theoretical 

efforts will likely focus on demonstrating quantum state transfer at the single-photon level, on 

overcoming thermal mechanical noise at elevated temperatures, and also on generating and 

characterizing optical as well as mechanical entanglement.  
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