

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

06-08-2015 Publication

Floating Point Multiply-Add-Subtract

Makia Powell

Naval Under Warfare Center
Division, Newport
1176 Howell St., Code 00L, Bldg 102T
Newport, RI 02841

100035

Naval Under Warfare Center
Division, Newport
1176 Howell St., Code 00L, Bldg 102T
Newport, RI 02841

NUWC

100035

Distribution A

A floating point multiply and addition/subtraction implementation is provided. Two operands are received in a standard floating
point format with a code selecting a mathematic operation from addition, subtraction, and multiplication. Result mantissas and
exponents are calculated simultaneously for all operations. The implementation simplifies computation of a result mantissa by
dropping the least significant bits of the operands before computing the result. Underflow and overflow errors are shown by two
extra bits in the exponent portion of the result. The mantissa result and the exponent result are selected by providing the
operation code to a mantissa multiplexer and an exponent multiplexer. The selected mantissa and exponent are combined as
output.

Unclassified Unclassified Unclassified

SAR 22
Annette M. Campbell

401-832-4246

DEPARTMENT OF THE NAVY

OFFICE OF COUNSEL

NAVAL UNDERSEA WARFARE CENTER DIVISION

1176 HOWELL STREET NEWPORT Rl 02841-1708

 IN REPLY REFER TO

 Attorney Docket No. 100035

6 August 15

The below identified patent application is available for

licensing. Requests for information should be addressed

to:

TECHNOLOGY PARTNERSHIP ENTERPRISE OFFICE

 NAVAL UNDERSEA WARFARE CENTER

 1176 HOWELL ST.

CODE 00T2, BLDG. 102T

 NEWPORT, RI 02841

Serial Number 14/535,384

Filing Date 7 November 2014

Inventor Makia Powell

Address any questions concerning this matter to the

Office of Technology Transfer at (401) 832-1511.

DISTRIBUTION STATEMENT

Approved for Public Release

Distribution is unlimited

Attorney Docket No. 100035

1 of 18

FLOATING POINT MULTIPLY-ADD-SUBTRACT

IMPLEMENTATION

STATEMENT OF GOVERNMENT INTEREST

[0001] The invention described herein may be manufactured and

used by or for the Government of the United States of America

for governmental purposes without the payment of any royalties

thereon or therefor.

CROSS REFERENCE TO OTHER PATENT APPLICATIONS

[0002] None.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

[0003] The present invention is directed to an implementation

of a floating point multiply-add-subtract implementation for

digital circuitry.

(2) Description of the Prior Art

[0004] In digital computer processing, signed floating point

numbers can be utilized in a form having a mantissa multiplied

by a base having an exponent. Mathematical functions are

carried out on these numbers in semiconductor floating point

units or processors in binary format. The floating point unit

does addition, subtraction, multiplication, and division

operations on floating point numbers. In many implementations

the exponent is usually biased which means that a number called

Attorney Docket No. 100035

2 of 18

the bias is subtracted from the written exponent before

computation. This allows implementations to use a positive

representation of a negative exponent, since the written

exponent minus the bias is negative. The examples assume a

normalized format, which means that the first bit of the

mantissa is ‘1’.

[0005] The Institute of Electrical and Electronics Engineers

(IEEE) has standards for floating point representation of

numbers. The current standard used by most commercial

processors is IEEE-754-2008. The output of this format is a

binary floating point number that contains a sign, biased

exponent, and mantissa. A 16-bit IEEE-754 floating point number

is given by the following format:

seee eemm mmmm mmmm

where each letter represents a binary digit or bit; s is the

sign bit; each e is an exponent bit; and each m is a mantissa

bit. In this format the minimum exponent is -14, and the

maximum exponent is 15. The exponent bias is 15. This means

that 15 is subtracted from the exponent value to give the actual

value. An exponent value having all 1s is used to represent

infinity or “not a number” known as NaN. An exponent value

having all zeroes is used to represent a denormalized number.

Attorney Docket No. 100035

3 of 18

IEEE-754 32 bit, 64 bit, and 128 bit floating point formats are

similar.

[0006] Important resources for floating point unit

implementation are its size and its speed. The size of the

implementation is the number of gates that are required.

Typical commercial 32 bit multiply/accumulate floating point

units without division take approximately 12,800 gates. This

commercial implementation runs at 1MFlop/Mhz or 55Mhz.

[0007] When utilizing field programmable gate arrays and

other special purpose semiconductors, it is often desirable to

reduce the number of gates and chip resources required for

processing floating point numbers. It is further desirable to

process these numbers as quickly as possible.

SUMMARY OF THE INVENTION

[0008] The first object of the present invention is to

provide an implementation of a floating point unit utilizing

fewer gates.

[0009] Another object is to provide an implementation of a

floating point unit capable of operating at faster speeds than

existing units.

[0010] Accordingly, there is provided a floating point

multiply and addition/subtraction implementation. Two operands

are received in a standard floating point format with a code

Attorney Docket No. 100035

4 of 18

selecting a mathematic operation from addition, subtraction, and

multiplication. Result mantissas and exponents are calculated

simultaneously for all operations. The implementation simplifies

computation of a result mantissa by dropping the least

significant bits of the operands before computing the result.

Underflow and overflow errors are shown by two extra bits in the

exponent portion of the result. The mantissa result and the

exponent result are selected by providing the operation code to

a mantissa multiplexer and an exponent multiplexer. The

selected mantissa and exponent are combined as output.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Reference is made to the accompanying drawings in

which are shown an illustrative embodiment of the invention,

wherein corresponding reference characters indicate

corresponding parts, and wherein:

[0012] FIG. 1 is a diagram of an overview of the

implementation;

[0013] FIG. 2 is a detailed diagram of the add/subtract

section of the implementation; and

[0014] FIG. 3 is a detailed diagram of the multiply section

of the implementation.

Attorney Docket No. 100035

5 of 18

DETAILED DESCRIPTION OF THE INVENTION

[0015] The benefits of the floating point unit implementation

contained herein are accomplished via pipelining, simplification

of exception handling and other hardware techniques. The

current implementation calculates NaN, underflow, and overflow

exception conditions by calculating the exponent with two

additional bits of precision and using signed two’s complement

binary format. This eliminates complex error/exception

detection circuitry because in this format, either of the two

most significant bits of the exponent will only be 1 when an

exception occurs. Underflow occurs when the most significant

bit is 1 because the exponent is negative. Overflow occurs when

the two most significant bits are 01 because the exponent

portion has exceeded its range. NaN is indicated when the

exponent bits following the two most significant bits are all

1’s, and the mantissa is non-zero. In the current

implementation, post calculation detection of this condition is

unnecessary.

[0016] The floating point unit implementation receives two

floating point numbers Ain and Bin. The floating point number is

separated into component parts for processing. For this

purpose, in FIG. 2 the mantissa of Ain is identified as Aman, and

the mantissa of Bin is identified as Bman. The exponent of Ain is

identified as Aexp, and the exponent of Bin is identified as Bexp.

Attorney Docket No. 100035

6 of 18

The sign of each number is identified as Asgn and Bsgn. This can

be performed by segregating the appropriate bits.

[0017] FIG. 1 gives an overview of the floating point unit

implementation 10. The floating point unit implementation 10

receives Ain and Bin in a floating point format that can be broken

up into signs, mantissas, and exponents. These numbers are

provided to an initial error detection module 11, an

add/subtract section 12 and a multiply section 14. The user

also provides an opcode that selects the operation -

multiplication, addition, or subtraction – of the floating point

unit implementation 10.

[0018] Prior to computation, error detection module 11 checks

for NaNs at the inputs by checking if the exponent of either

operand, Ain or Bin, is all 1s, and its mantissa is non-zero.

(This can be performed by conducting an AND operation among all

of the exponent bits of the operand, conducting an OR operation

among all of the mantissa bits of the operand, and executing an

AND between the two results.) Error detection module 11 then

asserts signal ANaN if Ain is NaN, BNaN if Bin is NaN, and a signal

NaN if either Ain, Bin, or both is NaN. Next error detection

module 11 checks for zeroes at the inputs, and then asserts Azero

if both Aexp is negated and Aman is zero. Likewise, Bzero is

asserted if Bexp is negated and Bman is zero. Error detection

module 11 then checks for infinities at the inputs and asserts

Attorney Docket No. 100035

7 of 18

Ainf if Aexp is all asserted while Aman is all negated. Binf is

asserted if Bexp is all asserted, and Bman is all negated. Next,

error detection module 11 checks for signaling NaNs at the

inputs, and AsNaN is asserted when both ANaN is asserted and the

most significant bit of Aman is negated. Similarly, BsNaN is

asserted when BNaN is asserted and the most significant bit of

Bman is negated.

[0019] Next, error detection module 11 checks if invalid

operation exceptions/signaling NaNs exist at the inputs based

upon the opcode. If the opcode indicates addition an invalid

operations flag, InvOp, is asserted when AsNaN is asserted, or

BsNaN is asserted, or both Ainf and Binf are asserted and Asgn and

Bsgn differ. If the opcode indicates subtraction then InvOp is

asserted when AsNaN is asserted, or BsNaN is asserted, or both Ainf

and Binf are asserted and Asgn and Bsgn match. If the opcode

indicates multiplication then InvOp is asserted when AsNaN is

asserted, or BsNaN is asserted, or both Ainf and Bzero are asserted

and NaN is negated, or both Azero and Binf are asserted and NaN is

negated. Next error correction module 11 modifies the

diagnostic mantissa output, YNaN, to indicate invalid operations

and NaN error conditions. YNaN is set to Aman if A is a NaN, that

is if either ANaN or AsNaN is asserted. YNaN is set to Bman if B is

a NaN. If both A and B are NaNs, YNaN is set to Aman. The first

Attorney Docket No. 100035

8 of 18

bit of YNaN can be use to indicate a signaling NaN versus a quiet

NaN under the IEEE standard.

[0020] Further details of the add/subtract section 12 will be

given in reference to FIG. 2, and further details of the

multiply section 14 will be given in reference to FIG. 3. The

mantissa outputs of the add/subtract section 12, Ymadd and Ymmin,

and the multiply section 14, Ymmult, are provided to a mantissa

multiplexer 16. The opcode is further provided to the mantissa

multiplexer 16 to select the correct mantissa function input as

the mantissa output, Yman. The exponent outputs of the

add/subtract section 12, Ypexp, and the multiply section 14, Ymexp,

are provided to an exponent multiplexer 18. The opcode is

further provided to the exponent multiplexer 18 to select the

correct exponent function input as the exponent result output,

Yexp. An error check module 20 receives the exponent result

output Yexp, and Yman, the input operands Ain and Bin and NaN output

from error detection module 11. Error check module 20 both

computes the diagnostic error output and corrects the exponent

and mantissa result outputs for the output format as described

hereinafter. The mantissa output Yman and the exponent output

Yexp are combined in at an output 22 to give the preferred output

form. The diagnostic error output of error check module 20 can

be a bus which contains the InvOp, overflow, underflow, and

inexact error flag signals from error detection module 11 and

Attorney Docket No. 100035

9 of 18

error check module 20. A divide by zero flag can be included

for compatibility, but this flag will never be asserted. In an

alternative embodiment, error check module 20 can give a

diagnostic code that can be used to give these flags.

[0021] FIG. 2 provides a detailed view of add/subtract

section 12. Add/subtract section 12 includes an exponent

comparator 24 and an exponent subtractor 26. Exponent

comparator 24 receives the exponent component of the inputs, Aexp

and Bexp, and provides the larger of the two exponents as the

preliminary add/subtract result exponent, Ypexp. Exponent

subtractor 26 receives the exponent inputs, Aexp and Bexp, and

provides the difference between them, Cdexp, for use in scaling

the values. Register 28 receives exponent difference, Cdexp, and

the mantissa inputs, Aman and Bman, and scales these inputs

relative to one another. An adder/subtractor 30 receives the

scaled mantissa inputs and provides addition results Ymadd and

subtraction results Ymmin for these inputs.

[0022] FIG. 3 provides a detailed view of multiply section

14. A mantissa multiplier 32 receives mantissa inputs Aman and

Bman and provides a multiplied mantissa output Mout. The

multiplied mantissa output, Mout, is provided to a priority

encoder 34 which determines the maximum place value of the

mantissa output Mout. This maximum place value is provided to

shift logic 36 which provides a number of shifts Nshifts, for the

Attorney Docket No. 100035

10 of 18

mantissa to fit into the places allocated for the format. A

mantissa shift register 38 receives the mantissa output, Mout,

and the number of shifts, Nshifts. Shift register 38 shifts the

mantissa output by dropping the least significant bits of the

mantissa output until the mantissa is the same length in bits as

the mantissa portion of the format. Shift register 38 provides

an unsigned multiplication result Yimult. Shift register 38 also

provides an exponent correction that will be used as described

below.

[0023] In order to calculate the sign of the output, an XOR

gate receives the sign bits of the inputs, Asgn and Bsgn, and

provides the sign of the result Ysgn as the exclusive or of the

sign inputs. The sign of the result Ysgn is combined in a

combiner 42 with the unsigned mantissa multiplication result

Yimult to give Ymmult.

[0024] A preliminary multiplication exponent result, Ypmexp, is

calculated from the input exponents, Aexp and Bexp, in a

multiplication exponent adder 44. Exponent calculation logic 46

receives the preliminary multiplication exponent result, Ypmexp,

and combines this with the exponent correction from the mantissa

shift register 38 to give a multiplication exponent result, Ymexp.

[0025] Overall operation of the floating point unit

implementation is described in the following text.

Attorney Docket No. 100035

11 of 18

[0026] Mantissa multiplier 32 calculates the mantissa of

Aman*Bman and provides the product, Mout, with sufficient precision

to store the entire result. This could be the place number

precision of Aman added to the place number precision of Bman, or

double the precision of Aman or Bman if both have the same

precision. Of course a lower precision result may be acceptable

for some applications. This product, Mout, will be shifted in

operations in a later stage to drop the least significant

digits.

[0027] A preliminary result exponent, Ypmexp, is determined by

adding Aexp to Bexp in multiplication exponent adder 44.

Multiplication exponent adder 44 utilizes two extra bits in the

most significant places in these exponent calculations. For

example, in IEEE 764 16 bit, the exponents and results would

each be five bit values; however, in this implementation, the

result is a seven bit value. These extra, most significant bits

will only be asserted in cases of underflow and overflow. This

will be explained below.

[0028] The sign of the final output is determined by

executing an “exclusive or” or XOR operation on Asgn and Bsgn to

give Ysgn. This allows use of a simple XOR 40 gate to give the

sign for multiplication.

[0029] The priority encoder 34 is used to get the order of

the multiplication result Mout from the mantissa multiplier 32.

Attorney Docket No. 100035

12 of 18

The order is the position of the most significant bit of Mout.

(For example, if 0100 (4) * 0011 (3) = 1100 (12) the binary

order would be 4 because the most significant digit 1xxx is in

the fourth position.) This is used to determine the number of

right shifts of Mout that will be required for the product to fit

in the floating point format. (In 16 bit implementations, 10

bits are allowed. In 8 bit implementations, 4 bits are allowed.)

In a preferred embodiment the priority encoder 34 with shift

logic 36 determines the order of the bits beyond the number of

bits allowed. This can be used directly as the number of

shifts, Nshifts. In an alternate embodiment the order is the

absolute order of the product, and this order is converted into

a number of shifts, Nshifts. There are no shifts if the order is

less than number of bits allowed. If the order is greater than

the number of bits allowed, the number of shifts is an

adjustment calculated as the order minus the number of bits

allowed.

[0030] The product of Aman and Bman, Mout, is shifted by Nshifts

in mantissa shift register 38 so that it fits into the number of

bits allowed by dropping the least significant digits. This

gives Ymmult, the mantissa of the multiplication result. The

multiplication exponent Ymexp is calculated in an exponent

calculation component 46 by adding the preliminary result

Attorney Docket No. 100035

13 of 18

exponent Ypmexp to the number of shifts required for the mantissa

Nshifts.

[0031] The addition/subtraction process is more fully

described below. Aexp and Bexp are compared using exponent

comparator 24 to give the greater of the two exponents as a

preliminary addition/subtraction result exponent, Ypexp. The

difference between Aexp and Bexp is calculated by exponent

subractor 26, by for example, subtracting Bexp from Aexp as Cdexp

using two’s complement addition. Two’s complement addition uses

less complicated logic to manage the signs and give a

difference. Aman and Bman are scaled in register 28 by shifting

the mantissa of the operand having the lower exponent. This

shift uses the exponent difference Cdexp to shift the mantissa’s

bits to less significant places. The operand being shifted is

governed by the sign of the difference, Cdexp. (One of ordinary

skill in the art would understand this as “right shifting” the

mantissa.) For example if Cdexp is positive this means that Aexp

is greater than Bexp and Bman is shifted by Cdexp positions. If

Cdexp is negative Bexp is less than Aexp, and Aman is shifted by Cdexp

positions. This shift truncates the least significant digits of

the smaller operand if one operand is significantly smaller than

the other. The register 28 also aligns the mantissas prior to

addition so that when the operand and the shifted operand are

added the bits will be in the appropriate place value.

Attorney Docket No. 100035

14 of 18

[0032] The register 28 adds an extra bit of precision to Aman

and Bman which have been shifted as described above. A combined

adder/subtractor receives the shifted mantissa Aman and Bman

having the extra exponent bit. The adder/subtractor converts

these numbers to signed two’s complement format by taking the

complement of each number and adding one to the complement of

each number if the sign bit is 1. While two’s complement

addition requires the extra bit of precision, it greatly

simplifies addition and subtraction because the sign can be

ignored. The adder/subtractor 30 calculates an addition result

Aman+Bman to give the mantissa of the addition result, Ymadd, and a

subtraction result Aman-Bman to give the mantissa of the

subtraction result, Ymmin. Ymadd and Ymmin are then converted by

adder/subtractor 30 from two’s complement form to signed

magnitude form of the result mantissas.

[0033] Error check module 20 checks the two most significant

bits of Yexp to determine if an error condition such as an

underflow/overflow, inexact or NaN condition exists. If the

opcode indicates addition and Asgn and Bsgn differ or the second-

most most significant bit of Yexp is asserted and the Ainf OR Binf

inputs from error detection module 11 are asserted then Yexp is

all asserted. Else, if the opcode indicates addition and the Azero

or Bzero inputs from error detection module 11 are asserted, or

the most significant bit of Yexp is asserted, then Yexp changed to

Attorney Docket No. 100035

15 of 18

all negated. If the opcode indicates subtraction and Asgn and Bsgn

match and the Ainf OR Binf inputs from error detection module 11

are asserted, or the NaN or InvOp inputs from error detection

module 11 is asserted, or the second-most most significant bit

of Yexp is asserted then Yexp is all asserted. Else, if the opcode

indicates subtraction and the Azero or Bzero inputs from error

detection module 11 are asserted, or the most significant bit of

Yexp is asserted, or the NaN or InvOp inputs from error detection

module 11 is asserted, then Yexp changed to all negated. If the

opcode indicates multiplication and the NaN or InvOp inputs from

error detection module 11 are asserted, or the Ainf or Binf inputs

from error detection module 11 are asserted and the second most

significant bit of Yexp is negated, then Yexp is changed to all

asserted. Else, if the opcode indicates multiplication and the

Azero or Bzero inputs from error detection module 11 are asserted,

or the most significant bit of Yexp is asserted, then Yexp changed

to all negated the IEEE 754 convention for indicating these

conditions. If the InvOp or NaN inputs from error detection

module 11 are asserted, then Yman is set to the YNaN input from

error detection module 11. Else, if either of the first two most

significant bits of Yexp are all asserted, or the remaining bits

after the first two most significant bits of Yexp are all

asserted, or all bits of Yexp are negated, then Yman is set to all

negated, the IEEE 754 convention for indicating these

Attorney Docket No. 100035

16 of 18

conditions. If all remaining bits after the most significant bit

of Yexp are asserted, and both NaN and InvOp inputs from error

detection module 11 are negated then overflow is asserted.

Otherwise, if all remaining bits after the most significant bit

of Yexp are negated, and both NaN and InvOp inputs from error

detection module 11 are negated then underflow is asserted. If

the Azero input from error detection module 11 is asserted and Aman

is not all negated, or the Bzero input from error detection module

11 is asserted and Bman is not all negated, then the inexact

output is asserted, the IEEE 754 convention for indicating these

conditions. The diagnostic error output of error check module

20 is a bus which contains the InvOp, overflow, underflow, and

inexact output signals from error check module 20. Bus can

include a divide by zero line for compatibility, but this line

will never be asserted because this implementation lacks a

divide module.

[0034] A mantissa multiplexer selects among Ymmin, Ymadd, and

Ymmult based on the opcode to provide the result mantissa Yman.

Ymmin is selected if the opcode indicates subtraction, Ymadd is

selected if the opcode indicates addition, and Ymmult is selected

if the opcode indicates multiplication. In final processing,

Yout is composed from Yexp and Yman.

[0035] This apparatus can be implemented utilizing many

different technologies. These technologies include field

Attorney Docket No. 100035

17 of 18

programmable gate arrays, application specific integrated

circuits, portions of integrated circuits, programmable read

only memory, programmable logic arrays, hard-wired electrical

circuits, or the like.

[0036] It will be understood that many additional changes in

the details, materials, steps, and arrangement of parts, which

have been herein described and illustrated in order to explain

the nature of the invention, may be made by those skilled in the

art within the principle and scope of the invention as expressed

in the appended claims.

[0037] The foregoing description of the preferred embodiments

of the invention has been presented for purposes of illustration

and description only. It is not intended to be exhaustive, nor

to limit the invention to the precise form disclosed, and

obviously, many modification and variations are possible in

light of the above teaching. Such modifications and variations

that may be apparent to a person skilled in the art are intended

to be included within the scope of this invention as defined by

the accompanying claims.

Attorney Docket No. 100035

18 of 18

FLOATING POINT MULTIPLY-ADD-SUBTRACT

IMPLEMENTATION

ABSTRACT OF THE DISCLOSURE

A floating point multiply and addition/subtraction

implementation is provided. Two operands are received in a

standard floating point format with a code selecting a

mathematic operation from addition, subtraction, and

multiplication. Result mantissas and exponents are calculated

simultaneously for all operations. The implementation simplifies

computation of a result mantissa by dropping the least

significant bits of the operands before computing the result.

Underflow and overflow errors are shown by two extra bits in the

exponent portion of the result. The mantissa result and the

exponent result are selected by providing the operation code to

a mantissa multiplexer and an exponent multiplexer. The

selected mantissa and exponent are combined as output.

A in

Bin

OPCODE

10,
12

~ ADD/SUBTRACT
./ SECTION

14 ~

"'\ MULTIPLY ,/

SECTION

"'\ "'\
,/ ,/

- ERROR
DETECTION

11

' madd

Y mmin

Y pexp

Y mmu~

Y mexp

NaN,
ERROR
FLAGS

16

MANTISSA
Y man

MUX

18 LIIV
~

Y exp - ERROR EXPONENT OUTPUT -
"'\ MUX - CHECK

20)

FIG. 1

r--1
I

c;dexp I
ADD/SUB A REGISTER ADDER/ 1 y

B SUBTRA(;TOR B rna A SUBTRA(;TOR I ymadd
exp man sgn mmin

26 B sgn I
A •xpJ ADD/SUB I 30 I
B exp :COMPARATOR: I Ypexp

L--------------~24---------------------------J~12
FIG. 2

r--1

A rna

B rna

A exp

B exp

32 \ 34 \

- MANTISSA M out PRIORITY
_ MULTIPLIER EN(;ODER

MUL TIPLI(;ATION Ypmexp
EXPONENT

ADDER
~ 44

36 \

SHIFT
LOG I(;

42 I
n ~"=J)

.......
T sgn --

I Y mmult

B sgn
I
I

40 I

Nshifts Yimult v1
MANTISSA

/ 46 I
SHIFT I

REGISTER EXPONENT I Ymexp

4

38 / r--
(;AL(;ULATION

I
L--J

FIG. 3

