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ABSTRACT

Search complexities for HTN planning

Report Title

Hierarchical Task Network (HTN) planning is the problem of decomposing

an initial task into a sequence of executable steps. Often viewed as just a way to

encode human knowledge to solve classical planning problems faster, HTN planning

is more expressive than classical planning, even to the point of being undecidable

in the general case. However, HTN planning is not just a way to solve planning

problems faster, but is itself a search problem that can bene�t from its own distinct search algorithms and heuristics.



The dissertation examines the complexities of various HTN planning problem

classes in order to motivate the development of heuristic search algorithms for HTN

planning which are guaranteed to terminate on a large class of syntactically identifiable 

problems, as well as domain independent heuristics for those algorithms to

use. This will allow HTN planning to be used in a number of areas where problems

may be unsolvable, including during the initial development of a domain and for use

in policy generation in non-deterministic planning environments.



In particular, this dissertation analyzes two commonly used algorithms for

HTN planning and describes the subsets of HTN problems that these algorithms

terminate on. This allows us to discuss the run-times of these algorithms and compare

the expressivity of the classes of problems they decide. We provide two new

HTN algorithms which terminate on a strictly broader and more expressive set of

HTN problems.



We also analyze the complexity of delete-free HTN planning, an analogue to

delete-free classical planning which is the base of many classical planning heuristics.

We show that delete-free HTN planning is NP-complete, putting the existence of

strict-semantics delete-relaxation-based HTN heuristics out of reach for practical

purposes.



Finally, we provide a translation of a large subset of HTN planning to classical

planning, which allows us to use a classical planner as a surrogate for a heuristic

HTN planner. Our experiments show that even small amounts and incomplete

amounts of HTN knowledge, when translated into PDDL using our algorithm, can

greatly improve a classical planner's performance.



ABSTRACT

Title of dissertation: SEARCH COMPLEXITIES
FOR HTN PLANNING

Ronald Alford, Doctor of Philosophy, 2013

Dissertation directed by: Professor Dana Nau
Department of Computer Science

Hierarchical Task Network (HTN) planning is the problem of decomposing

an initial task into a sequence of executable steps. Often viewed as just a way to

encode human knowledge to solve classical planning problems faster, HTN planning

is more expressive than classical planning, even to the point of being undecidable

in the general case. However, HTN planning is not just a way to solve planning

problems faster, but is itself a search problem that can benefit from its own distinct

search algorithms and heuristics.

The dissertation examines the complexities of various HTN planning problem

classes in order to motivate the development of heuristic search algorithms for HTN

planning which are guaranteed to terminate on a large class of syntactically iden-

tifiable problems, as well as domain independent heuristics for those algorithms to

use. This will allow HTN planning to be used in a number of areas where problems

may be unsolvable, including during the initial development of a domain and for use

in policy generation in non-deterministic planning environments.

In particular, this dissertation analyzes two commonly used algorithms for



HTN planning and describes the subsets of HTN problems that these algorithms

terminate on. This allows us to discuss the run-times of these algorithms and com-

pare the expressivity of the classes of problems they decide. We provide two new

HTN algorithms which terminate on a strictly broader and more expressive set of

HTN problems.

We also analyze the complexity of delete-free HTN planning, an analogue to

delete-free classical planning which is the base of many classical planning heuristics.

We show that delete-free HTN planning is NP-complete, putting the existence of

strict-semantics delete-relaxation-based HTN heuristics out of reach for practical

purposes.

Finally, we provide a translation of a large subset of HTN planning to classical

planning, which allows us to use a classical planner as a surrogate for a heuristic

HTN planner. Our experiments show that even small amounts and incomplete

amounts of HTN knowledge, when translated into PDDL using our algorithm, can

greatly improve a classical planner’s performance.
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Chapter 1: Introduction

Despite being more expressive than classical planning, Hierarchical Task Net-

work (HTN) planning is often viewed as just a way to encode human knowledge

to solve classical planning problems faster. The last decade has seen a number of

advancements in classical planning that reduce planning time, increase plan quality,

and generally broaden classical planning’s applicability. However, many of these

techniques to not directly transfer, since unlike classical planning, HTN planning

is in general undecidable, so no sound and complete algorithm will terminate on

all problems. The objective of this thesis is to study the underlying computational

complexities of using search techniques to solve HTN planning problems. The work

includes:

• Developing heuristic search algorithms that terminate on large subsets of HTN

problems, including the syntactically-identifiable sets of HTN problems which

are decidable [Erol et al., 1996]

• Classifying what subsets of HTN problems these algorithms terminate on,

describing the expressivity of those sets and providing run-time bounds of the

algorithms on those sets.
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• Establishing the complexity of delete-free HTN planning, which will have sig-

nificant impact on the development of domain independent heuristics for HTN

planning.

• Providing a proof of concept, showing that domain independent heuristics

and an understanding of the search space can lead to more effective search

techniques.

This work is organized into three chapters, described below.

Chapter 2 presents four algorithms for HTN planning. Two of these algo-

rithms can be directly adapted for efficient heuristic search. The other two rely

on an AND/OR search which is less amenable to many heuristic search techniques.

Each algorithm is associated with a class of problems, identifiable syntactically in

polynomial time, on which the algorithm is guaranteed to terminate. The chapter

provides upper and lower complexity bounds on these classes, including new results

for previously known decidable classes.

Chapter 3 examines the complexities of delete-free HTN planning. In classical

planning, the ability to find a plan in domains with positive preconditions and

no negative effects in polynomial time is fundamental to most classical planning

heuristics. I prove that almost all propositional delete-free HTN planning is NP-

complete. This means that, unless P = NP, that any polynomial time heuristic

based on solving delete-free HTN problems must also relax the semantics of HTN

planning.

2



Chapter 4 presents a technique for translating a subset of HTN problems into

classical planning problems (in specific, PDDL [Fox and Long, 2003]). This means

that, even without a dedicated HTN heuristic, any PDDL planner’s heuristic be-

comes an HTN planning heuristic when used on the translated problem. Moreover,

since most classical planners are guaranteed to terminate, they can be used to prove

whether any translatable problem is solvable or not. My experiments show that

for the subset of problems that are translatable, planning-via-translation can be an

effective way to find HTN plans.

1.1 Related Work

Kutluhan Erol’s seminal work on HTN planning theory [Erol et al., 1996]

formalized HTN planning, as well as provided several important complexity and

decidability results. The most significant result in Erol et al.’s work is that HTN

planning is in general undecidable by showing how to encode the intersection of any

two context-free grammars as an HTN problem. Erol shows a number of syntactic

restrictions of HTN planning are decidable. Chapter 2 discusses these decidable

fragments further.

Geier and Bercher [2011] show that you can regain decidability by relaxing

what it means to be a solution to an HTN problem. If one allows arbitrary op-

erators to be inserted into the final plan, then any solution to a problem can be

mimicked by an acyclic decomposition of the initial task network plus operator in-

sertion. This means that a Task-Insertion HTN (TIHTN) planner would only need

3



to explore acyclic decompositions of the initial task (which are finite) and if those

decompositions can be made executable through task insertion (which is decidable).

Chapter 3 discusses task-insertion HTN planning further, showing that finding a

plan in TIHTN problems with positive preconditions and effects can be done in

polynomial time.

SHOP2 [Nau et al., 2003] is the most well known HTN planning implementa-

tion, known for both efficiency and flexibility. SHOP2 plans for tasks in the order

they are to be executed, and can be configured to use either depth- or breadth-first

search. Normally run in depth-first search mode, SHOP2 requires that the author

order the methods such that every search path terminates or ends in a solution. HT-

NPBP [Sohrabi et al., 2009] is a preference-based HTN planner based on SHOP2,

which performs a best-first search over state-based preferences, and it has the same

method-ordering requirements that SHOP2 has.

Elkawkagy et al. [2012] developed the Landmark-Aware heuristic HTN plan-

ner. The landmark-aware heuristic analyzes what tasks must occur in any solution

to that plan, then orders the plans by which one has the fewest required tasks,

and thus requires the least effort to turn into a solution. The planner itself is a

refinement-based HTN planner which maintains a set of partially refined plans or-

dered by its heuristic. At each iteration the planner removes the most promising

plan it has found, produces a set of possible refinements of the plan.

Bercher and Biundo [2012] developed a heuristic for preference based planning

in a hybrid HTN and partially-ordered causal link framework. Given a task network,

they take the subset consisting of just the primitive operators, and translate that

4



into a classical planning problem. They then run a Relaxed Graphplan variant to

estimate the best quality solution to this problem.

1.2 HTN Planning

In this section, we present a propositional HTN planning formalism, using the

notation presented in [Geier and Bercher, 2011].

It will be important for us to have a notation for the restriction of a function

or relation to some subset of its domain. For this, we will use a bar notation that

is defined as follows. For a binary relation R ⊆ A × A, the restriction of R to any

X ⊆ A is

R|X = {(p1, p2) ∈ R | p1, p2 ∈ X}.

Similarly, for a function f : P → Q, the restriction of f to any X ⊆ P is

f |X = {f(p) = q | p ∈ X}.

Hierarchical Task Network (HTN) planning is the problem of decomposing

an initial task into a sequence of executable steps. A task is an activity to be

accomplished labeled with a task name, which is a proposition symbol, and will be

either primitive, corresponding to a concrete action, or compound, representing an

abstract activity.

Given a set of task names X, a task network is a tuple tn = (T,≺, α) such

that:

• T is a finite nonempty set of task symbols.
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• ≺ is a partial order over T .

• α : T → X is a mapping from the task symbols to a finite set of task names.

The task symbols function as place holders for task names, allowing multiple in-

stances of a task name to exist in a task network [Erol et al., 1996]. We say a

task network (T,≺, α) is equivalent to another task network (T ′,≺′, α′) if there is

an isomorphism φ : T → T ′ such that ∀t0, t1 ∈ T | (t0 ≺ t1) ⇔ (φ(t0) ≺′ φ(t1)) and

∀t ∈ T | α (t0) = α′ (φ (t0)). We refer to the set of all task networks over a set of

task names X as TNX .

An HTN domain is a tuple (L,C,O,M), where L is a function-free first order

language, C is a finite set of compound task names, O is a finite set of primitive task

names, and M ⊆ C × TNC∪O is a set of methods over C and O. The proposition

symbols in C, O and L are pairwise disjoint.

Each primitive task name o ∈ O is associated with a planning operator, which

is the triple (prec(o), add(o), del(o)) where prec(o) is a propositional formula over L

and add(o) and del(o) are disjoint subsets of literals from L. The combined set of

free variables of prec(o), add(o), and del(o) are the parameters of o.

Note that the semantic models for the operators in O forms an implicit state

transition function for the planning domain:

γ : 2L ×O → 2L,

where:

• A state is any subset of L. The finite set of states in a planning domain is

denoted as 2L in the above definition of γ;

6



• γ(s, o) is defined iff s |= prec(o); and

• γ(s, o) = (s \ del(o)) ∪ add(o).

We will refer to the particular γ defined by a domain D as γD, or just γ if it is clear

from the context.

We call a task network primitive if α(t) ∈ O for every t ∈ T . Otherwise, the

task network is non-primitive.

We can decompose a non-primitive task network tn1 = (T1,≺1, α1) if there is

a non-primitive task t ∈ T1 such that α(t) ∈ C and has a corresponding method

m = (α(t), (Tm,≺m, αm)) ∈ M . More formally, we define the notion of task decom-

position as follows. Assume without loss of generality that T1 ∩ Tm = ∅. Then the

decomposition of tn1 by m into a task network tn2 (written tn1
t,m−−→D tn2) is given

by:

T ′1 := T1 \ {t} ;

T2 := T ′1 ∪ Tm;

≺2 :=≺1 |T ′
1

∪ ≺m

∪ {(t1, t2) ∈ T ′1 × Tm | (t1, t) ∈≺1}

∪ {(t2, t1) ∈ Tm × T ′1 | (t, t1) ∈≺1} ;

α2 := α1|T ′
1
∪ αm;

tn2 := (T2,≺2, α2) .

If there is a finite sequence of task decompositions from tn1 −→D tn2 −→D . . . −→D tnn,

7



then we write tn1 −→∗D tnn.

An HTN planning problem is a tuple (D, s0, tn0), where D = (L,C,O,M) is

an HTN domain, s0 ∈ 2L is a state in D, and tn0 = ({t0}, ∅, {(t0, x0)}) is the initial

task network containing a single task x0.

A task network tn is executable in a state s0 for domain D if tn is primitive and

there exists some total ordering (consistent with ≺ in tn) over the tasks t1, . . . , tn

and the sequence of states s1, . . . , sn that arise from applying the primitive tasks

(i.e., actions) t1, . . . , tn in that order in the initial state s0: i.e.,

∀i=0...n−1γ(si, α(ti+1)) = si+1

We say that tn∗ is an HTN solution to a planning problem P = (D, s0, tn0) if

tn∗ is executable in s0 and tn −→∗D tn∗. In this paper, we are concerned with two

HTN decision problems: plan-existence, for whether a problem has any solution, and

k-length-plan-existence, for whether a problem has a solution of k or fewer operators.

1.3 Classical Planning

Classical planning is the problem of finding a sequence of operators that takes

one from the starting state to a goal state. Unlike HTN planning, there are no

tasks, and operators can be applied to the state whenever the state supports their

preconditions.

Formally, a classical planning problem is the tuple (L,O, s, g), where L is a set

of propositions, O is a set of planning operators defined as above, s ⊂ L is the initial

state, and g is the goal, specified as a propositional formula. L and O implicitly

8



form a state transition function γ defined identically to the γ in the previous section.

A planning problem is solvable if either s |= g or if there is some operator o

such that γ(s, o) = s′ and s′ is solvable. We refer to this specific formulation of

classical planning as STRIPS [Fikes and Nilsson, 1972]. This is an implicit graph

search problem. Bylander [1994] and Erol et al. [1995] show that STRIPS is PSPACE-

complete.

Both plan-existence and k-length-plan-existence are the same for both HTN

planning and STRIPS.

9



Chapter 2: HTN Problem Spaces

Unlike HTN planning, classical planning is decidable [Erol et al., 1995]. Thus

it is possible to guarantee the termination of many classical planners, through the

use of loop-checking tests to prevent the planner from generating infinite cyclic paths

through a finite search space.

In contrast, HTN planning is only semi-decidable [Erol et al., 1996], and ev-

ery sound and complete HTN planner has an infinite set of problems on which it

will never return. Although some syntactic restrictions of HTN planning are fully

decidable, efficient loop-detection tests have not yet been developed, and there is a

gulf between the classes of HTN problems that are known to be decidable, and the

classes of problems on which current HTN planners can guarantee termination.

Part of the reason for this gulf is that much less is understood about the search

spaces of HTN planners than those of classical planners. Different kinds of HTN

planners have different ways of combining plan generation with task decomposition—

and the structure of the problem space can vary greatly depending on how those

things are done.

The following sections show how to search for solutions to HTN problems while

retaining broad decidability guarantees:
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1. I characterize HTN planning as a search of a problem space in which each node

is an HTN planning problem. I present four different classifications of HTN

problem spaces:

• Decomposition Space (DS), which UMCP [Erol et al., 1994] and the

Landmark-Aware HTN Planner [Elkawkagy et al., 2012] search;

• Progression Space (PS), which SHOP and SHOP2 [Nau et al., 1999, 2003]

and HTNPBP [Sohrabi et al., 2009] search;

• Total Order Partition decomposition and progression spaces (TODS and

TOPS), two new kinds of problem spaces for which there are not yet any

existing planners.

2. Each section provides sufficient (and in one case, necessary) conditions to

guarantee that each kind of problem space will be finite. These conditions can

be evaluated up-front to see if an HTN planning problem has a finite problem

space. For each kind of problem space, I show that there are no broader

conditions for finiteness that look only at possible decomposition of tasks.

3. For each of the finiteness conditions, I provide upper and lower complexity

bounds, showing both the expressivity of problems in those classes, and refin-

ing current known complexities.

4. I describe simple loop-detection tests that can be added to HTN planners

that will guarantee termination when the problem space is finite.1 These tests

1State-space classical planners often use a loop-detection test of the form “have we seen this
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appear to be applicable to a wide variety of HTN planning problems, and

their use will allow HTN planners to terminate in cases where they would not

otherwise do so.

5. The HTN-to-PDDL translation algorithm described in Chapter 4 requires a

user-specified upper bound on the HTN recursion depth, and the translation

is correct only when this bound is sufficiently high. By characterizing the

translation as a mapping from HTN progression spaces into classical state

spaces, one can compute a correct bound automatically whenever the finiteness

conditions in Item 2 are satisfied.

6. I show that TODS and TOPS are finite for strictly broader classes of prob-

lems than DS and PS, and I provide new sound-and-complete HTN planning

algorithms for TODS and TOPS. The algorithms are guaranteed to terminate

whenever the problem space is finite.

2.1 Decomposition Problem Spaces

The definition of HTN solvability leads to a natural definition of a problem

space as a directed graph, where nodes are task networks, and edges are decompo-

sitions from one task network to another. The initial task network of a problem

forms the root of the graph, and it is solvable if and only if there is a path in the

graph from it to a primitive executable task network.

state before?” In contrast, the loop-detection tests here are basically “have we seen this problem

before?”
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Formally, for an HTN domain D = (L,C,O,M), the directed graph (V,E)

is the decomposition problem space of an HTN problem (D, s0, tn0) if and only if

(V,E) is the minimal graph containing tn0 such that tn ∈ V and tn −→D tn′ implies

that tn′ ∈ V and (tn, tn′) ∈ E.

Input: D = (L,C,O,M) - an HTN domain
Input: (s0, tn0) - an initial state and task network
V ← Fringe← {tn0};
while Fringe 6= ∅ do

Choose and remove some tn ∈ Fringe;
if tn is primitive and (D, s0, tn) is executable then

return tn;

children← {tn′|tn −→D tn′};
Fringe← Fringe ∪ (children \ V );
V ← V ∪ children;

return fail;

Figure 2.1: DHTN(D, s0, tn0) A simple decomposition based HTN planner.

Algorithm 2.1 (DHTN) shows a simple decomposition space HTN planner.

DHTN starts off with the initial task network tn, and maintains a set of known

decompositions V and a fringe of unexpanded decomposition.2 At every iteration,

it chooses some task network in its fringe. If tn is primitive and executable, DHTN

returns tn. Otherwise, it removes tn from the fringe and adds tn’s immediate

decompositions. If at any time the fringe is exhausted, DHTN returns failure.

The computation Fringe← Fringe ∪ (children \ V ) guarantees that DHTN

will never add a previously visited task network to the fringe. This is a simple

loop-detection test that can be added to other HTN planning algorithms.

Given an HTN problem P , DHTN is sound, complete, and terminating for

2Fringe and V functionally correspond to the open and closed sets of A*, respectively.
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any problem for which the decomposition problem space is finite. However, if the

problem space is infinite, DHTN’s completeness depends on how it picks elements

out of the fringe (with some acceptable choices being first-in-first-out or taking the

network with the fewest tasks). If the problem has no solution and the problem

space is infinite, then DHTN will not terminate no matter how elements are chosen

from the fringe.

Relation to other work.

The HTN decomposition problem space formalizes the spaces searched by

existing planners such as UMCP [Erol et al., 1994] and Elkawkagy’s landmark-aware

HTN planner. Unlike DHTN, neither UMCP nor Elkawkagy’s planner check to see

if they have already expanded a problem before, so a finite decomposition space is

not enough to ensure their termination.

2.1.1 Decidability under decomposition

For an HTN domain D = (L,C,O,M), a non-recursive task name is one which

has a finite k-level-mapping. k is a partial function from C ∪ O → Z+ defined via

induction:

• For all o ∈ O, k(o) = 0.

• For c ∈ C, if there is a finite number n ∈ Z+ such that n is the greatest k-level

of any subtask of c in M , then k(c) = n+ 1.
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If a task in a task network has a k-level, any decomposition of that task replaces

it with a set of tasks which have a lower k-level. Since we can only repeat this a

finite number of times, this leads to one of the first results of [Erol et al., 1996]:

Theorem 2.1 Let P = (D, s0, tn0) be an HTN planning problem with every task

in tn0 has a finite k-level mapping. Then the decomposition problem space for P is

finite.

So the decomposition problem space is finite for non-recursive problems, but

limited recursion is fine as long as it does not increase the size of the task network.

It turns out we can syntactically identify every problem for which the problem space

is finite. To this end, we say that a task network tn is ≤1-stratifiable if there exists

a total preorder ≤1 on the reachable task names of tn such that if c is a reachable

task name of tn and (c, (T,≺, α)) is a method, then either:

• If the task network contains only one task (T = {t}), then the task name must

not be on a higher stratum (α(t) ≤1 c)

• Otherwise, all task names must be on a lower stratum (∀t∈Tα(t) <1 c).

Example 2.2 Let P = (D, s0, tn0) where tn0 contains the single task r,

D = (L,C,O,M), C = {r, s}, O = {a, b}, and:

M =



(r, ({x1} , ∅, α(x1) = s))

(r, ({x1} , ∅, α(x1) = a))

(s, ({x1} , ∅, α(x1) = r))

(s, ({x1, x2} , ∅, {α(x1) = b, α(x2) = b}))
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Then there is a two level ≤1-stratification, where since r and s decompose to

one another they must be on the same level, and a and b can be on the lower level

together, since they are primitive.

Theorem 2.3 Let P (D, s0, tn0) be an HTN planning problem. Then the decompo-

sition problem space for P is finite if and only if tn0 is ≤1-stratifiable.

Proof. (⇐) If there exists a ≤1-stratification, then every decomposition either

produces a task network of the same size, or replaces a task with a set of tasks

whose task names are in a lower level. Since the stratification is finite, the number

of times repeated decomposition can increase the size of the task network is also

finite.

(⇒) If there is no ≤1-stratification, then the transitive ≤1 constraints are

inconsistent. This means there exists a task name c and method m = (c, tnm) with

more than one subtask such that c ≤1 . . . <1 c, and so c is a reachable subtask

of tnm. Since c is a reachable subtask of tn0, we can decompose tn0 into a task

network containing c, then repeatedly use the decomposition chain going through

m to create a task network of arbitrary size. Since any finite problem space has

a bound on the size of task networks appearing in it, the problem space for P is

infinite. 2

Given an HTN domain D, we can find a ≤1-stratification of a task network

tn = (T,≺, α) in time polynomial in D by performing a topological sort of the

task names given the constraints. If this procedure fails, the decomposition space is

infinite. If it succeeds, it returns a stratification. If the height of the stratification is
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h and the maximum number of tasks in a method is b, then the largest task network

in the decomposition space of an HTN problem (D, s, tn) is bounded by |T | · bh.

2.1.2 Complexity of ≤1-stratifiable problems

It is not immediately clear how expressive ≤1-stratifiable HTN planning is,

nor how long we can expect a decomposition based planner to take to solve those

problems. In this section, we provide upper and lower complexity bounds for ≤1-

stratifiable problems. In particular, ≤1-stratifiable HTN planning is at least as

expressive as STRIPS-style planning.

Theorem 2.4 Deciding plan-existence and k-length-plan-existence ≤1-stratifiable

problems is in NEXPTIME (non-deterministic exponential time).

Proof. First, show that we can compile any ≤1-stratifiable domain to a domain

with a k-level mapping in polynomial time. Let t be a task such that t ≤1 t1 ≤1

t2 ≤1 . . . ≤1 tn. Then by adding a method (t, tn) to the domain for every method

(ti, tn) and then removing every method (t, tn′) where tn′ contains one of the ti, we

transform the domain to one with the same set of solutions, but now t can exist on a

separate strata then t1, . . . , tn. If we repeat this process, we end up with a problem

that has the same set of solutions as the original, but is now has a k-level mapping

with no recursion.

With no recursion, we can only decompose the task network at most mk times,

where m is the size of the largest method and k is the minimum k-level mapping.

So searching for a solution to ≤1-stratifiable problems is in NEXPTIME. 2
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We can view the NEXPTIME result as the gap between a blind search of the

progression space and using a perfect heuristic to guide the search. If DHTN is given

oracle access to a perfect heuristic (one that estimates the exact size of the minimum

solution to any problem), then always selecting the problem from its fringe with the

minimum heuristic value will lead DHTN to terminate in exponential time on ≤1-

stratifiable problems. On the other hand, if it selects poorly and expands every node

in the decomposition space before terminating, it may take double-exponential time.

Erol et al. [1996] shows that HTN planning with k-level problems is decidable,

but does not give a lower complexity bound. By mapping STRIPS into a ≤1-

stratifiable problem, we can give a PSPACE lower bound:

Theorem 2.5 Deciding plan-existence and k-length-plan-existence for ≤1-stratifiable

problems is PSPACE-hard.

Proof. Let P = (L,O, s, g) be a STRIPS problem. Here we encode P as a ≤1-

stratifiable HTN problem with the same set of solutions. We will take advantage of

the fact the minimum length solution to any classical plan does not visit the same,

and so must be of length 2|L| − 1 or less.

Let O′ be a set of primitive tasks containing tasks for every operator in O,

plus:

• A no-op task, whose operator has no preconditions or effects

• A task og, whose operator has a precondition of g and no effects.

Let C contain the set of task names a1, . . . , a|L|, and M contain:
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• (a1, tnno−op), where tnno−op contains only the no-op task.

• A method (a1, tni) for each primitive task oi ∈ O′ \ {og}, where tni contains

the task oi.

• A method (aj, tnj) for 2 . . . |L|, where tnj contains aj−1 followed by itself.

Let the initial task network tn contain the tasks a|L| followed by g′. Then

the ≤1-stratifiable problem P ′ = ((L,C,O′,M) , s, tn) can be decomposed into any

sequence of 2|L| − 1 no-ops and operators from O, followed the operator og which

tests for the goal condition g. Thus any to P implies a solution to P ′, and vice-versa.

Since STRIPS is PSPACE-complete [Bylander, 1994], ≤1-stratifiable HTN plan-

ning is PSPACE-hard. 2

This gives a loose bound on the complexity of planning for le1-stratifiable

problems. The NEXPTIME upper bound is based on the exponential relationship

between the height of a ≤1-stratifiable problem’s minimum stratification and the

maximum size of a task network reachable under decomposition. However, many

HTN planning problems have a fixed small stratification height, and problem in-

stances only vary by the size of the state space and the number of tasks in the initial

task network. Tighter bounds can be found by parameterizing the class based on

the height of a problem’s smallest stratification. For a constant c, we say a problem

is ≤c
1-stratifiable if there exists a ≤1-stratification with a height of c or less. This

matches with common practice in HTN planning, since most domains have a fixed

(and small) stratification (see Section 2.4).
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Then the largest task network reachable under decomposition is bounded by

a polynomial of degree c+ 1. Later on, Section 3.3 shows that finding an executable

decomposition of a problem of a fixed size is in NP. Meanwhile, Erol et al. [1996]

shows that merely ordering the leaves of this tree is NP-hard, leading to a tight and

much reduced bound for ≤c
1-problems:

Theorem 2.6 For fixed c, then deciding plan-existence or k-length-plan-existence

for ≤c
1-stratifiable HTN problems is NP-complete.

2.2 Progression Problem Spaces

Decomposition spaces are not the only way to solve HTN planning problems.

Let P = (D, s, tn) be an HTN planning problem, where D = (L,C,O,M) and

tn = (T,≺, α). If there exists a task t ∈ T with no predecessors (one such that

∀t′∈T t′ ⊀ t) and its operator α(t) ∈ O is applicable in s, then we can progress the

problem from (D, s, tn) to the problem P ′ = (D, γD (s, α (t)) , tn \ {t}) (where the

notation tn \ {t} simply means removing any occurrence of t from T , ≺, and α). If

there exists an unconstrained task t ∈ T which is non-primitive (α(t) ∈ C), then

any decomposition tn
t,m−−→D tn′ is a valid progression of (D, s, tn) to (D, s, tn′). We

write progression as P
t−→P P

′.

Intuitively, a progression interleaves a decomposition with imposing an exe-

cutable total order over the primitive tasks. The following theorem establishes an

equivalence between these two paradigms:

Theorem 2.7 An HTN problem P is solvable if and only if P is executable or there
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exists a P ′ such that P −→P P
′ and P ′ is solvable.

Progression, then, also leads to a natural definition of the problem space as

a directed graph. The progression problem space of an HTN problem (D, s0, tn0)

is the minimal directed graph (V,E) containing (s0, tn0) such that (s, tn) ∈ V and

(s, tn) −→P (s′, tn′) implies that (s′, tn′) ∈ V and ((s, tn), (s′, tn′)) ∈ E.

Input: D = (L,C,O,M) - an HTN domain
Input: (s0, tn0) - an initial state and task network
V ← Fringe← {(s0, tn0)}; E ← ∅;
while Fringe 6= ∅ do

Choose some (s, tn) ∈ Fringe;
if tn is primitive and (D, s, tn) is executable then

return path in (V,E) from (s0, tn0) to (s, tn);

children← {(s′, tn′)|(s, tn) −→P (s′, tn′)};
Fringe← (Fringe \ {(s, tn)}) ∪ (children \ V );
V ← V ∪ children;
E ← E ∪ {((s, tn), (s′, tn′)) |(s′, tn′) ∈ children};

return fail;

Figure 2.2: PHTN(D, s0, tn0) A simple progression based HTN planner.

PHTN (Algorithm 2.2) is a simple progression-based HTN planner. PHTN

maintains a directed graph of HTN problems reachable from the initial problem and

expands problems from the leaves of this graph. When it encounters a primitive ex-

ecutable problem, it returns the entire sequence of progressions from initial problem

to its solution.

PHTN is sound, complete, and terminating for any HTN problem which has a

finite progression problem space. The computation Fringe← (Fringe \ {(s, tn)})∪

(children \ V ) guarantees that PHTN will not add previously visited task networks

to the fringe. This loop-detection test can be added to other HTN planning algo-

rithms. But as with DHTN, if the problem space is infinite and there is no solution,
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PHTN will never return.

Relation to other work. Progression problem spaces provide an implicit for-

malization of the problem space behind several existing HTN planning works such

as SHOP2 [Nau et al., 2003], HTNPBP [Sohrabi et al., 2009] and the HTN-PDDL

translation in the previous section. As with decomposition-based planners, finite-

ness does not guarantee termination; e.g., neither SHOP2 nor HTNPBP check if

they have already expanded a problem.

2.2.1 Decidability under progression

Given an HTN domain D, suppose that the task network for every method in

a domain consisted of a set of primitive tasks and at most one non-primitive task

which is constrained to come after them. Erol et al. [1996] call this a regular domain

and prove a decidability result for regular HTN domains. We adapt their result to

our progression problem spaces as follows:

Theorem 2.8 Given a regular HTN domain D, any HTN problem P = (D, s0, tn0)

has a finite progression problem space.

The proof follows Erol et al.’s results. Intuitively, given any problem P = (D, s0, tn0)

with a regular domain, no progression can increase the number of non-primitive tasks

in a task network. Furthermore, any primitive task introduced along with a non-

primitive task must be progressed out of a task network before the non-primitive

task can be decomposed. Thus, this bounds the size of the task networks in the

progression problem space of P .
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We can extend this class of decidable problems using the same stratification

technique we used for decomposition. A task network tn is ≤r-stratifiable if there

exists a total preorder ≤r on the reachable task names of tn such that for every

method (c, (T,≺, α)) with a reachable task name c:

• If there is a task tr ∈ T such that all other tasks are predecessors (∀t∈T,t6=trt ≺

tr), then α(tr) ≤r c. We call tr the last task of (T,≺, α).

• For all non-last tasks t ∈ T , α(t) <r c.

If an HTN planning problem P ’s task network is ≤r-stratifiable, then any

progression P replaces a task with at most one task of the same level, with the rest

occurring at a lower level. Since the lower level tasks are constrained to come before

this task, they must be progressed out of the task network before this task can be

decomposed. Since the stratification is finite, this gives us a bound on the maximum

size of the network, and produces our next finiteness result:

Theorem 2.9 Given an HTN problem P = (D, s0, tn0), if tn0 is ≤r-stratifiable,

then the progression problem space of P is finite.

What happens to the problem space if there is no stratification? Unlike with

decomposition, now both the structure of the transition function and the set of

methods can affect which problems are in the problem space. This limits our result

on when the problem space must be infinite:

Theorem 2.10 Given an HTN problem P = (D, s0, tn0) such that every problem

in the domain is solvable and there is no ≤r-stratification of the reachable subtasks

of tn0, then the progression problem space of P is infinite.
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Proof. Given that there is no ≤r-stratification, the ≤r-constraints must be incon-

sistent, meaning there must be two reachable task names (not necessarily distinct)

such that b <r c and c ≤r b. So there is a method m = (c, (T,≺, α)), and two

tasks t1, t2 ∈ T such that t1 ⊀ t2 and α(t2) = b. Since c is a reachable task from

tn0 and every problem in P is solvable, there is a series of progressions such that c

progresses to a task network containing itself. Since we did not need to progress t1

out of tn0 in order to expand t2, we can use this loop to create a task network of

arbitrary size. Thus the progression problem space of P is infinite. 2

Since ≤r-stratifiable is a strict broadening of the ≤1-stratifiability definition,

if a task network is ≤1-stratifiable, it is also ≤r-stratifiable. Like ≤1-stratifications,

we can find ≤r-stratifications with a topological sort of the reachable task names

of a task network. For an HTN problem P with the task network tn = (T,≺, α)

and a stratification of tn of height h and a largest method size of b, a task in a

stratum can contribute at most 1 plus b times the bound of the strata below it to

the maximum size of a task network reachable under progression. This gives a total

bound of |T | ·
∑h−1

i=0 b
i = |T | · 1−bh

1−b for the maximum size of a task network in the

progression problem space of P .3

Relation to other work.

The HTN to PDDL translation algorithm in Chapter 4 essentially maps the

progression problem space into a classical domain. The algorithm adds a fixed num-

3One can do much better than that by directly inspecting the stratification, but that is beyond

the scope of this thesis.
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ber of identifiers, specified by the user, to represent the structure of the task network.

In order for the translation to be correct, there must be more identifiers available

than there are tasks in the largest task network encountered under progression. If

the initial task network is ≤r-stratifiable, we can use the bound in the previous

paragraph instead of asking the user.

2.2.2 Identifiability of finite progression spaces

Since we could identify the exact set of problems which have a finite decom-

position space, there is a natural question about whether we can identify more

problems which have a finite progression space.

Theorem 2.10 says that if the initial task network is not ≤r-stratifiable, and

every problem in the domain is be solvable, then the progression space is infinite.

To say that every problem in the domain is solvable is equivalent to the following

two conditions:

• Every operator is applicable in every state (i.e., ∀s∈2L,o∈O, s |= pre(o)).

• Every task has a primitive decomposition (transitively, not necessarily an im-

mediate decomposition).

We can check the second condition recursively:

• Every primitive task has a primitive decomposition.

• Every task which has a method where all the tasks have a primitive decom-

position also has a primitive decomposition.
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Once all tasks with a primitive decomposition are marked, the rest have no

primitive decomposition, and so are trivially unsolvable. Since any task network

with a task that can’t be decomposed into primitive network is unsolvable, we can

preprocess the domain, removing any trivially unsolvable tasks and methods that

refer to them.

This lets us identify every problem with a finite progression space that can be

identified without looking at the preconditions and effects of the operators:

Theorem 2.11 Let P be an HTN planning problem and let P ′ be the HTN planning

problem where all of the trivially unsolvable tasks of P are removed. If P ′ is not

≤r-stratifiable, then the following holds:

There does not exist a function Q(P ) which, without examining P ’s operators,

returns true if and only if P has a finite progression space.

Proof. Let P = (D, s, tn) and P ′ = (D′, s, tn) be HTN problems, where D′ is D

without trivially unsolvable tasks, such that P has a finite progression space and P ′

has no ≤r-stratification.

Let PU and P ′U be P and P ′ where every operator’s precondition is set to true

and every effect is removed. Then by Theorem 2.10, P ′U has an infinite progression

space. Since adding methods and tasks cannot make a problem’s infinite progression

space finite, PU also has an infinite progression space.

So if Q(P ) returns true and Q(PU) returns false, then Q must inspect the

operators of P and PU , since that is their only difference. 2
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2.2.3 Complexity of ≤r-stratifiable problems

We can solve ≤r-stratifiable problems with a non-deterministic search of the

progression space that keeps track of only the current task network and state. Given

that the height of the stratification gives an exponential bound on the size of task

networks encountered under progression, this provides an upper bound on the com-

plexity of planning for ≤r-stratifiable problems.

Theorem 2.12 Deciding plan-existence and k-length-plan-existence ≤r-stratifiable

problems is in EXPSPACE.

As with≤1-stratifiable problems, we can parameterize the class of≤r-stratifiable

problems based on the stratification height. For a constant c, we say a problem is

≤c
r-stratifiable if there exists a ≤r-stratification with a height of c or less. The

class of regular HTN problems from Erol et al. [1996] is identical to the class of

≤1
r-stratifiable problems.

Theorem 2.13 For fixed c, deciding plan-existence and k-length-plan-existence ≤c
r-

stratifiable problems is PSPACE-complete.

Proof. Containment. For fixed c, task networks in the progression space of

≤c
r-stratifiable problems are bound in size by a polynomial of degree c. Non-

deterministic search then only takes polynomial space.

Hardness. Given that for c > 0, the class of ≤c
r-stratifiable problems includes

all regular HTN problems, for which plan-existence is PSPACE-complete [Erol et al.,

1996]. 2

27



2.3 Total Order Partition Problem Spaces

This section describes two new problem spaces, based on our formulation of

DS and PS. The new problem spaces will allow us to define new HTN planning

algorithms which terminate for a broader class of HTN problems, as described in

the subsequent section.

2.3.1 Total Order Partitions

Let P = (D, s0, tn) be an HTN planning problem where tn = (T,≺, α) is its

task network. Then the sequence of task networks 〈(T0,≺0, α0) , . . . , (Tk,≺k, αk)〉 is

a total order partition of tn if:

• Their union equals tn:

– T =
⋃k

i=0 Ti

– ≺=
⋃k

i=0 ≺i

– α =
⋃k

i=0 αi

• They are disjoint and tasks between networks are ordered, i.e. for any Ti and

Tj such that i < j:

– Ti ∩ Tj = ∅

– ∀ti∈Ti,tj∈Tj
ti ≺ tj

A total order partition is a serialization of the task network into smaller prob-

lems, which we can attempt to solve the smaller problems sequentially without
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interactions from other tasks:

Theorem 2.14 Let P = (D, s0, tn) and let 〈tn0, . . . , tnk〉 be a total order partition

of tn. Then P is solvable iff there exists a sequence of states s1, . . . , sk+1 such that

for all i ≤ k (D, si, tni) has a solution with an ending state of si+1.

Proof. (⇐) If the sequence of partitions is solvable, then each tni decompose into

some primitive task network tn′i. Applying these decompositions to the correspond-

ing tasks in tn gives you a primitive task network tn′ which will have an ending

state of si+1.

(⇒) Suppose P has a primitive executable decomposition tn′. Since it is

executable, there is a total order over the tasks of tn. Since decomposition preserves

ordering, we can split that sequence into a solution for the partition. 2

Given that ≺ is a consistent partial order, there will be a unique longest total

order partition from which none of the reduced problems can be further reduced. If

the longest total order partition contains only a single task newtork, we call that a

trivial partition.

TOD and TOP problem spaces.

Total order partitions give us two AND/OR problem spaces for HTN planning,

one defined over decomposition and one over progression.

Given an HTN domainD = (L,C,O,M), the total-order decomposition (TOD)

problem space for an HTN problem P = (D, s0, tn0) is the minimal directed labeled

graph (V,E) containing (s0, tn0) such that for every (s, tn) ∈ V :
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• If tn has only a trivial total order partition and tn −→D tn′, then (s, tn′) is also

in V with the edge ((s, tn), 0, (s, tn′)) ∈ E.

• Otherwise, let {tn1, . . . , tnk} be the longest total order partition of tn. Edges

will point to reduced problems, labeled with where in the sequence the reduce

problem lies. Then:

– (s, tn1) ∈ V with the edge ((s, tn), 1, (s, tn1)).

– For i < k, if there exists an edge ((s, tn), i, (s′, tni)) ∈ E and (s′, tni) has

a solution with an ending state of s′′, then there exists (s′′, tni+1) ∈ V

with the edge ((s, tn), i+ 1, (s′′, tni+1)).

For each problem P = (s, tn) in the TOD problem space with a non-trivial

total order partition tn1, . . . , tnk, we label P ’s outgoing edges with the integer cor-

responding to its reduced task networked (edges corresponding to decomposition

are given an arbitrary label of 0). If there is an edge ((s, tn), i, (si, tni)) ∈ E

for i > 1, then by the definition there must also be a state si−1 and an edge

((s, tn), i− 1, (si−1, tni−1)) ∈ E such that (si−1, tni−1) has a solution with an ending

state of si. So if there is an edge ((s, tn), k, (sk), tnk)) ∈ E such that (D, sk, tnk) has

a solution with an ending state of sk+1, then there must be a chain of states that

solves the partition, and so P has a solution with an ending state of sk+1.

The total-order progression (TOP) problem space is defined similarly to the

TOD problem space, replacing decomposition with progression.
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2.3.2 Search in TOD and TOP spaces

We now describe two new HTN-planning algorithms, called TODHTN and

TOPHTN, which perform an AND/OR search over the TOD and TOP problem

spaces, respectively.

Algorithm 2.3 shows a high-level description of the TODHTN procedure.

TODHTN maintains a set of variables as PHTN - a directed but now edge-labeled

graph (V,E) of HTN problems, a set of HTN problems (Fringe), and a new map X,

which maps HTN problems to a set of known possible end states. TODHTN then

begins a two phase iterative process of selecting a node from the fringe to expand,

then propagating the consequences through the graph.

Every iteration of TODHTN selects a problem (s, tn) from the fringe and

examines its task network. Nothing is added to the graph in this phase, but instead

TODHTN marks new edges and ending states to add later during the propagation

phase. If the task network has a non-trivial total order partition 〈tn1, . . .〉, TODHTN

marks the edge from (s, tn) to its first reduced child (s, tn1). If the network is non-

primitive, it marks the edges to all the immediate decompositions of tn. Otherwise

the network is primitive, TODHTN marks all the possible ending states (if any).

The propagation phase itself is split into two parts: adding edges, and propa-

gating ending states. When TODHTN adds an edge from one problem to its child,

it checks to see if the child problem is already in the graph. If not, it adds the

problem to the fringe. If the child is already in the current graph, TODHTN marks

all of the child’s known endings states for propagation to its parent (noting the edge
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Input: D = (L,C,O,M) - an HTN domain
Input: (s, tn) - an initial state and task network
V ← Fringe← {(s, tn)};
X(s, tn)← ∅;
while Fringe 6= ∅ & X(s, tn) = ∅ do

// Pick and expand a fringe node

Choose and remove some (s′, tn′) ∈ Fringe;
if there is a total order tn1 ≺ . . . ≺ tnn over tn′ then

Insert ((s′, tn′) , 1, (s′, tn1)) into NewE;
else if tn′ is nonprimitive then

Insert ((s′, tn′), 0, (s′, tn′′)) into NewE for every decomposition tn′ −→D tn′′;
else

(s′, tn′) is primitive, so add ((s′, tn′), 0, se) to NewX for every ending state
se of (s′, tn′);

while NewE 6= ∅ & NewX 6= ∅ do
// Add edges, collect end states

foreach (v1, k, v2) ∈ NewE do
if v2 /∈ V then

Insert v2 into Fringe and V ;
else

For each se ∈ X(v2), add (v1, k, se) to NewX;

Insert (v1, k, v2) into E;

NewE ← ∅;
// Propagate end states

while NewX 6= ∅ do
Choose and remove some ((sp, tnp), k, se) from NewX;
Let tn1, . . . , tnn be the longest total order partition over tnp;
if 0 < k < n then

Insert ((sp, tnp), k + 1, (se, tnk+1)) into NewE;
else if se /∈ X(sp, tnp) then

Insert se into X(sp, tnp);
foreach (v, j, (sp, tnp)) ∈ E do

Insert (v, j, se) into NewX;

if X(s, tn) 6= ∅ then
return the preorder traversal of a subgraph of (V,E) showing a solution;

else
return FAILURE ;

Figure 2.3: TODHTN(D, s, tn) A procedure to explore the TOD problem
space.
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label).

When processing a new ending state se to propagate, if se is a solution to the

interior part of a partition (0 < k < n), then that state is the start state for a next

child in the partition, (se, tnk+1), and TODHTN marks the edge to that problem for

later addition. Otherwise, sp is an end state for (sp, tnp), and if it is an ending state

that TODHTN didn’t already know about, it propagates it to the parents problems

of (sp, tnp).

Since TODHTN follows the definitions of the TOD problem space in expanding

nodes from the fringe, it is a sound HTN planner. If the TOD problem space is finite,

then TODHTN is complete and will eventually terminate when it runs out of nodes

from the fringe to expand and ending states to propagate. If the TOD problem

space is infinite, then TODHTN’s completeness depends upon how it chooses nodes

out of the fringe (such as FIFO). If the problem is unsolvable and the problem space

infinite, no matter how TODHTN chooses it will never return.

TOPHTN is defined nearly identically to TODHTN, substituting progression

for decomposition.

2.3.3 Decidability under problem partitioning

We note that, since total order partitions split task networks into smaller task

networks without introducing new tasks, the TOD and TOP problem spaces of a

problem are finite if the decomposition or progression problem spaces are finite,

respectively.
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TOD and TOP are also finite for a strictly broader class of problems.

Let tn1, . . . , tnk be the longest total-order partition of a task network tn for some

number k. We say tn is ≤1-ordered, if each tni, for i = 1, . . . , k, in the longest total-

order partition of tn is either a singleton or ≤1-stratifiable. An HTN method (c, tn)

is ≤1-ordered if the task network tn is ≤1-ordered. If every method in a domain

is ≤1-ordered, we call that domain ≤1-ordered, and if an HTN planning problem’s

domain and initial task network is ≤1-ordered, then so is the problem.

Theorem 2.15 If P is ≤1-ordered, it has a finite TOD problem space.

Proof. Let P = (D, s0, tn0) be a ≤1-ordered HTN planning problem. Since the

initial task network tn0 is ≤1-ordered by the condition of the theorem, it is either a

singleton, ≤1-stratifiable, or tn0 has a non-trivial total order partition.

The proof proceeds by showing that every problem in TOD problem space of

P has a task network tn, produced by decomposition over tn0 in s0, that satisfies

at least one of the following conditions:

• tn is a singleton. Consider a node with a singleton task network. Its task is

either primitive, i.e., the node has no children, or the node is non-primitive,

i.e., by decomposition, its children each correspond to some method in D.

• tn matches to the initial network (tn0) or some HTN method’s task network.

we have already shown the first case. For the second case, consider a non-

singleton node (s, tn) with a task network tn that corresponds to some method

in D, which means that tn can be produced by applying an HTN method to a
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nonprimitive task in a state. Then since that method is ≤1-ordered, tn either

has a non-trivial total order partition, or tn is ≤1-stratifiable. In the first case,

any children of (s, tn) have singleton task networks or are ≤1-stratifiable.

• tn is ≤1-stratifiable: Note that in this case, we already know there are only a

finite number of problems reachable from (s, tn) in the TOD problem space.

Thus, since the number of states in D is finite, the TOD problem space of P

is finite. 2

We define ≤r-ordered problems similarly, replacing ≤1-stratification with

≤r-stratification. The finiteness of the TOP problem space of ≤r-ordered problems

can be proved similarly.

We can prove an infiniteness theorem for TOD and TOP problem spaces which

is similar to the progression space theorem. Here we pick the TOP space, since it

provides a way to show the same for TOD as well:

Theorem 2.16 Let P = (D, s0, tn0) be an HTN problem where D has a method

(c, tn) where c is a reachable task name of tn0 and tn is not ≤r-ordered. If every

problem in D is solvable, then the TOP space of P is infinite.

Proof. Since c is a reachable task name from tn0 and every problem in D is solvable,

we can reach some problem p using the method (c, tn). tn is not ≤r-ordered, so its

longest total order partition 〈tn1, . . . , tnk〉 has some non-singleton task network tni

(possibly equal to tn) which is not ≤r-stratifiable.

From Theorem 2.10 we know that there is a chain of progressions that can

produce a task network of arbitrary size in the progression space of any problem
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(D, s, tni). Let t1 be the first progressed task in this chain. Since the partition of

tn was maximal, there is some other task t2 that is not constrained to come before

or after t1. Since the chain of progressions did not need to progress t2 out of the

task network, at no point in the sequence of progressions is there a non-trivial total

order partition of a problem.

This means that the chain of progressions behaves identically in the TOP space

as it does in the progression space, and so the TOP problem space of P is infinite.

2

The proof of infiniteness for TOD spaces proceeds similarly, since once a task

network has no non-trivial total order partition, no sequence of decompositions can

restore it. As with progression spaces, ≤1-ordered and ≤r-ordered are the broadest

class of finite problems identifiable without inspecting the state transition function.

2.3.4 Complexity of ≤1- and ≤r-ordered problems

Notice that by the proof of Theorem 2.15, every node in the TOD space is

either a singleton, matches a task network, or is ≤1-stratifiable. This lets us bound

complexity of planning on ≤1-stratifiable problems:

Theorem 2.17 plan-existence and k-length-plan-existence are in NEXPTIME for

≤1-ordered problems.

Proof. Let P = (D, s, tn) be a ≤1-ordered problem. Let TODHTN’ be TODHTN

modified so that in the main loop, if it picks a ≤1-stratifiable problem, it fully solves
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the problem for each possible end state. An exponential number of NEXPTIME

(Theorem 2.4) operations is still in NEXPTIME.

So TODHTN’ only adds non-≤1-stratifiable problems to the fringe, and by the

proof of Theorem 2.15, there are at most O
(
2|D|
)

of them. Given that a problem

is only added to the fringe once and we only propagate end states from a given

problem 2|L| times, there are at most an exponential number of iterations of the

main loop, each finishing in NEXPTIME. So ≤1-ordered planning is in NEXPTIME.

2

By similar reasoning, ≤r-ordered planning is in EXPSPACE.

The ≤1-ordered and ≤r-ordered problems both include what Erol et al. [1996]

calls totally ordered problems. A problem is totally ordered if there is a total order

over the initial task network and over every method’s task network. Where Erol

et al. prove that planning for totally ordered problem is decidable via a dynamic

programming argument, we can repurpose the proof of Theorem 2.15 again to pro-

vide a bound on the size of TOD and TOP spaces for totally ordered problems:

Theorem 2.18 If P , where D = (S,C,O,M, α), is totally ordered, then there are

at most 1+2|L| ·(|M |+ |C|+ |O|) vertices in both the TOD and TOP problem spaces

of P .

Given a bound B on the number of vertices, TOD- and TOPHTN maintain

O
(
B ·
(
B + 2|L|

))
space for the graph and map of vertices to ending states. Given

that a vertex is only added to the fringe once and we only propagate end states from a

given vertex 2|L| times, TOD- and TOPHTN run inO
(
B2 · 2|L|

)
time, which matches
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Erol et al. [1996]’s EXPTIME upper bound for totally-ordered HTN problems.

Now we move on to establishing an EXPTIME lower bound on the complexity

of totally-ordered problems. In games such as chess, checkers, and certain versions of

Go, deciding whether the first player can force a win is EXPTIME complete [Fraenkel

and Lichtenstein, 1981, Robson, 1983, 1984]. In the remainder of this section, we

show how to encode these games as totally-ordered HTN planning problems.

We restrict ourselves to two-player, perfect information, zero sum games who

have a polynomial number of different moves and whose mechanics are no harder

than PSPACE. Specifically, checking a move’s applicability, applying a move, and

checking win and lose conditions must all be in PSPACE. We additionally require

that, when these checks are translated into STRIPS, which is PSPACE-complete,

every action has an inverse, so that ∀s∈2Lγ (γ (s,m) ,m−1) = s.

With invertible moves, we can create HTN tasks which function as checks

which ensure some condition holds, and then returns to the state the task started

in. We do this via palindromes. Suppose P = (L,O, s, g) is a STRIPS problem

with invertible actions. To represent this as a check, we create an HTN domain

with the same operators as P plus an operator og which checks the goal g. We add

one compound task t to the domain with one method that contains only og, and a

method for each of the operators o ∈ O whose task networks contain oi followed by

t followed by o−1
i . Thus any expansion of t drives down to a state that satisfies g,

and then reverses all the changes it made along the way.

We will assume two players, labeled A and B, each with:
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• Invertible move operators a1, . . . , aj and b1, . . . , bk which can only be applied

if they are valid moves.

• Two checks for whose turn it is (turnA and turnB).

• Checks for winning, losing, and their negations (lostA, wonA, not lostA, etc.).

• A check for each of player B’s actions on whether they are inapplicable

(bi inapplicable, etc).

We can now move on to encoding game tree search as a totally-ordered HTN plan-

ning problem:

Theorem 2.19 For totally-ordered problems, plan-existence is EXPTIME-complete.

Proof. Let D = (L,C,O,M) be an HTN domain with the tasks described above

of an EXPTIME-complete game, and let s be the game state to evaluate. We will

show how to encode game tree search as a totally-ordered HTN problem, so that

the problem only has a solution if player A can force a win.

First, we add a new compound task to the domain, play, which will implement

the game tree evaluation. The methods for play will be recursive, with one termina-

tion condition: a method for play that contains the check ‘won A ’ as its only task.

A key property to note is that all the methods we introduce for ‘play’ will return to

the same state they start in, letting us evaluate multiple potential moves from the

same state.

For each of player A’s potential move ai, we add the method (play, tnai), where

tnai contains the sequence of tasks
〈
turnA, not lostA, ai, play, a

−
i 1
〉
. If it is player A’s
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turn and A has not lost, the HTN planner can pick any of the methods corresponding

to one of A’s moves, apply the move (if it is applicable), evaluate ‘play’ in the new

state, and revert the move. Successfully evaluating this move means that player A

can force a win in this state by picking the move ai.

We add one method (play, tnB) for evaluating all of player B’s moves, where

tnB contains the sequence of tasks 〈turnB, not wonB, try b1, . . . , try bk〉. For each

compound task ‘try bi,’ we add two methods: one with the check ‘bi inapplicable,’

and one with the sequence of tasks
〈
bi, play, b

−
i 1
〉
.

So if it is player B’s turn and B has not won, the above method for ‘play’ is

the only method which can be applied past its first two tasks. The method then

cycles through each of B’s valid moves using ‘try bi to skip the applicable ones. For

each applicable move, it applies the move, evaluates ‘play’ in the resulting state, and

reverts the move. This ensures that all of B’s potential moves have been evaluated,

and that player A can for a win for each of them.

Let tnplay be the task network containing just the task ‘play’. Then the exis-

tence of a play for the HTN problem P = (D, s, tnplay) implies that player A can force

a win from state s. Since the game was EXPTIME-complete, P was a totally-ordered

HTN problem, totally-ordered HTN planning is in EXPTIME, totally-ordered HTN

planning is EXPTIME-complete. 2

So totally-ordered HTN planning is EXPTIME complete, meaning that TOD-

HTN and TOPHTN are both asymptotically optimal for totally-ordered HTN plan-

ning.
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This also lends evidence that TODHTN and TOPHTN decide a larger set of

problems than DHTN and PHTN, even though we have not shown a strict separa-

tion. That is for a fixed constant c, any ≤c
1-stratifiable or ≤c

r-stratifiable problem

can be encoded as a totally-ordered planning problem (a strict subset of ≤c
1- and

≤c
r-ordered problems), but, unless PSPACE = EXPTIME, not vice versa.

2.4 Practical Considerations

As a result of the theoretical analyses presented in this chapter, a practical

question arises:

Do existing HTN planning domains satisfy the finiteness criteria of HTN

problem spaces?

The SHOP2 distribution is distributed with five different HTN domain models,

namely Logistics, Blocks-World, Depots, Towers of Hanoi and Robot-Navigation.4

All of these are both ≤r-stratifiable and ≤1-ordered, with Logistics also being ≤1-

stratifiable. This suggests that typical HTN domains models (even complicated ones

such as Blocks-World and Towers of Hanoi, which encode optimal problem-solving

strategies) will most likely satisfy our finiteness criteria.

Thus, our theoretical and empirical analyses over HTN problem spaces suggest

the polynomial-time computable conditions for the finiteness of the HTN problem

spaces, and the loop-detection tests based on those finiteness conditions, will be

practically useful in at least two ways:

4http://www.cs.umd.edu/projects/shop/
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• Authors of HTN domain descriptions will be able to use our theoretical finite-

ness conditions as guidelines so as to obtain guarantees on termination.

• HTN planning systems incorporating the search algorithms provided in this

chapter can determine whether conditions for finiteness are satisfied during

planning. If the conditions are satisfied, the planner can freely choose any

search procedure without worrying about termination, and therefore, com-

pleteness. Otherwise, the planner can choose to fall back onto a search strat-

egy like breadth-first search that guarantees completeness. This is useful for

systems such as SHOP2 where depth-first search is empirically much faster

than breadth-first search.

2.5 Discussion

This chapter provides a classification of HTN problem spaces, that provides a

better understanding of the conditions under which HTN planning algorithms can

safely terminate (see Figure 2.4 for a summary), as well as a number of complexity

results and relationships for these conditions (see Figure 2.5). Although this work

is primarily theoretical, it may potentially lead to several practical benefits.

First, there is reason to believe that loop-checking tests based on the finiteness

criteria will be widely applicable (see Section 2.4), and it should be straightforward

to incorporate them into several existing HTN planners, although the implementa-

tion is left future work. This will enable those planners to backtrack in cases where

they otherwise might never return, thereby enabling the planners to solve a larger

42



≤1-strat ≤r-strat≤1-ordered ≤r-ordered

Figure 2.4: Syntactic containment: Every ≤1-stratifiable problem is both ≤r-
stratifiable and ≤1-ordered; every ≤r-stratifiable problem is ≤r-ordered; and every
≤1-ordered problem problem is ≤r-ordered.

EXPSPACE

NEXP

EXP-complete

PSPACE-complete

NP-complete

STRIPS

Regular ≤c
r-strat

Totally Ordered

≤c
1-strat

≤1-strat

≤1-ordered ≤r-strat

≤r-ordered

Figure 2.5: Complexities of plan-existence for propositional STRIPS and HTN plan-
ning with various restrictions on method structures. Edges represent known poly-
nomial encodings. Completeness results for regular HTN problems and STRIPS are
provide by Erol et al. [1996] and Bylander [1994]
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class of problems. It might also make some planners less sensitive to the order in

which the HTN methods appear in the planner’s input, making it easier to write

HTN domain descriptions.

Second, this work provides a useful bound for the HTN-to-PDDL translation

algorithm in Chapter 4. That algorithm requires an upper bound on the size of the

largest task network in the HTN progression space, and if the user supplies too low a

bound, then the translation algorithm will produce a classical planning domain that

is not a correct translation of the original HTN planning domain. By computing

the correct bound automatically, it is easier to guarantee a correct translation.

Third, the chapter presents new HTN planning algorithms that will terminate

in cases where previous HTN planning algorithms would not terminate (not even

with the incorporation of the loop-checking tests described above). In our future

work, I hope to implement this algorithm and test its performance against exist-

ing HTN planners such as SHOP2 and Elkawkagy et al.’s Landmark-Aware HTN

planner.

This chapter examines the algorithms and search complexities of HTN plan-

ning. However, effective search requires an informed and efficient heuristic. The

next chapter sets a hard theoretical boundary on how informed a polynomial time

HTN heuristic can be.
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Chapter 3: Complexities for Delete-Free HTN Planning

Planning has been shown to be theoretically intractable in general. Bylan-

der [1994] showed that even the simplest interesting variant of classical planning is

PSPACE-complete. Hierarchical Task Network (HTN) planning is even harder: de-

pending on the particular variant, the complexity can be anywhere from EXPTIME

to undecidable [Erol et al., 1996].

To combat the complexity of classical planning, modern classical planners use

efficiently computable state-based heuristics that often work very well in practice

[Helmert, 2006, Hoffmann and Nebel, 2001, Bonet and Geffner, 2001, Nguyen and

Kambhampati, 2001]. The most influential among these is arguably the Relaxed

Planning Graph heuristic used in the FF planner [Hoffmann and Nebel, 2001], which

solves the propositional delete-free version of the given problem in polynomial time,

and computes a heuristic value based on that solution. Relaxed planning-graph

heuristics have since been developed for a variety of purposes, e.g., probabilistic

planning [Yoon et al., 2007, Teichteil-Königsbuch et al., 2010], propositional land-

mark generation [Richter and Westphal, 2012], metric planning [Hoffmann, 2003].

In this paper, for propositional delete-free HTN planning, we prove results

about the complexity of two well-known decision problems, plan-existence and k-
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NP-complete

Polynomial
STRIPS+pre

+eff

TIHTN+pre
+eff

STRIPS+eff

TIHTN+eff

HTN1+pre
1+eff

HTN+pre
+eff

HTN+eff

Figure 3.1: Complexity of plan-existence for propositional delete-free STRIPS and
HTN planning with various restrictions (k-length-plan-existence is NP-complete in
all cases). Arrows represent subclass relationships. The STRIPS results are from
Bylander [1994]; the other results are new.

length-plan-existence, under various conditions.

Fig. 3.1 summarizes the results, using the following notation. TIHTN is propo-

sitional HTN planning with task insertion (see Section 3.1 and [Geier and Bercher,

2011]); “+pre” (resp. “+eff”) means all preconditions (resp. effects) are positive;

“1+pre” (resp. “1+eff”) means at most one positive and no negative preconditions

(resp. effects). Here is how the results bear on the feasibility of relaxation-based

search heuristics for HTN planning:

• Even for very restricted cases, delete-free propositional HTN planning is NP-

complete. Thus unless P=NP, there is no direct analogy of Relaxed GraphPlan

for HTN problems.

• If the HTN planning semantics is modified to allow task insertion and all of

the preconditions and effects are positive, then plan-existence is polynomial-
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time computable. Thus, it may be possible to use this or other relaxations to

develop search heuristics for HTN planning.

In this chapter, we consider only propositional delete-free planning problems,

where operators contain only positive effects (i.e., ∀o∈Odel(o) = ∅). Deferring to By-

lander [1994], we refer to this restricted class of problems as members of HTN+eff.

When problems are further restricted to contain only operators with positive pre-

conditions, we say these problems belong to HTN+pre
+eff . In the highly restricted case

where both the preconditions and effects of operators contain at most a single pos-

itive literal, we say these problems belong to HTN1+pre
1+eff .

3.1 Delete-Free Task Insertion HTN Problems

Before we get to delete-free HTN problems, we shall first consider delete-

free versions of a variant of HTN planning: HTN Planning with Task Insertion

(TIHTN) [Geier and Bercher, 2011]. In TIHTNs, a problem is still modeled in terms

of an initial state and a task network that needs to be decomposed, but insertion of

tasks is now allowed without requiring them to be inserted by the decomposition of

a compound task that is present in the task network. As Geier and Bercher show,

this feature of TIHTNs relaxes HTN planning enough to regain decidability of plan

existence even in cases when the original HTN problem remains undecidable.

The following theorem shows that in TIHTN+pre
+eff , plan existence is polynomial-

time computable:

Theorem 3.1 If P = (D, s0, tn0) (where D = (L,C,O,M)) is a Task Insertion
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HTN planning problem with positive preconditions and effects (TIHTN+pre
+eff ), then

plan-existence for P is decidable in time O
(
|O|2 + |M |2

)
.

Proof. We iteratively apply operators from O to s0 until we reach a fixed point state

s where no more operators are applicable, much like Relaxed GraphPlan (taking

O
(
|O|2

)
time).

Then the following algorithm iterates through the list of methods at most |M |

times finding a solution for at least one non-primitive task in all but its last iteration,

starting from the non-primitive tasks.

1. For every primitive task o ∈ O where γ(s, o) = s, mark o as solvable.

2. Iterate through the methods in M . If m = (c, tn) is a method such that all

the tasks names in tn are marked as solvable, mark c as solvable.

3. Repeat line 2 if it marked any new task names as solvable.

4. Return TRUE if all task names in tn0 are solvable, return FALSE otherwise.

Since at least one method is marked in every pass, this takes O
(
|O|+ |M |2

)
time,

resulting in an overall time complexity of O
(
|O|2 + |M |2

)
. 2

We shall now establish lower bounds on complexities of both plan-existence

and k-length-plan-existence for the remaining delete-free TIHTN planning classes.

Firstly, we note that (delete-free) TIHTN problems can be encoded as (delete-

free) HTN problems as follows: given a TIHTN domain D = (L,C,O,M), we

add for every t ∈ C and o ∈ O a method to M that decomposes t into a pair of
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subtasks 〈o, t〉. Similarly, we can also show that (delete-free) STRIPS problems can

be encoded as (delete-free) TIHTN problems by simply adding a dummy operator o

with the goal as its precondition and no effects and letting the initial task network

consist of o.

Since we know that plan-existence for STRIPS+eff and k-length-plan-existence

for both STRIPS+pre
+eff and STRIPS+eff is NP-hard [Bylander, 1994], it follows im-

mediately from the encoding from STRIPS to TIHTN problems that plan-existence

for TIHTN+eff and k-length-plan-existence for both TIHTN+pre
+eff and TIHTN+eff are

also NP-hard.

Now using the encoding from TIHTN to HTN problems, we can similarly lower

bound the complexities for some HTN planning problem classes. In particular,

we can show that plan-existence for HTN+eff is NP-hard and that k-length-plan-

existence for both HTN+eff and HTN+pre
+eff are NP-hard.

Table 3.1: Summary of results from Section 3.

Problem plan-existence k-length-plan-existence

TIHTN+pre
+eff P NP-hard

TIHTN+eff NP-hard NP-hard

HTN+pre
+eff - NP-hard

HTN+eff NP-hard NP-hard

Table 3.1 summarizes the complexity results from this section. One thing

yet to be done is to estimate the complexity of solving HTN+pre
+eff problems. As we

shall see in the following section, while the task insertion variant of this problem

(TIHTN+pre
+eff ) is solvable in polynomial time, HTN+pre

+eff problems are much harder to
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solve.

3.2 Solving HTN1+pre
1+eff Problems is NP-hard

We begin our analysis on delete-free HTN planning problems by focusing on

a restricted case, where

• Every method is totally ordered

• Every method is regular, such that non-primitive tasks only occur as the last

task in the method.

• The methods are acyclic, meaning there are only a finite number of solutions

to the initial problem.

• Every operator has at most one (positive) literal in its precondition and at

most one (positive) proposition in its effect.

We call the class of such HTN planning problems as HTN1+pre
1+eff problems for

the rest of the paper. In the following theorem, we establish the NP-hardness of

plan-existence for HTN1+pre
1+eff (and thus, for HTN+pre

+eff ) by showing a reduction from

CNF-SAT:

Theorem 3.2 Plan existence for HTN1+pre
1+eff planning is NP-hard.

Proof. Let E = e1 ∧ e2 ∧ . . .∧ en be a CNF-SAT formula, where each conjunct is a

disjunction over a set of variables v1, . . . , vm and their negations.

To give an encoding, we need to present a delete-free HTN planning problem

where any solution implies a satisfying assignment for E, and no solution implies
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E is unsatisfiable. The encoding of E is the HTN domain D = (L,C,O,M) and

problem (D, ∅, tn0), all given below.

Let the set of propositions L consist of two symbols for each variable, vi-true

and vi-false representing a true and false assignment to vi, respectively.

Let the set of operators O consist of four operators for each variable vi, two

for setting the value of the variable and two for checking its truth or negation:

• An operator set-vi-true, with

prec(set-vi-true) = true,

add(set-vi-true) = {vi-true} ,

del(set-vi-true) = ∅.

• An operator set-vi-false, with

prec(set-vi-false) = true,

add(set-vi-false) = {vi-false} ,

del(set-vi-false) = ∅.

• An operator check-vi-true, with

prec(check-vi-true) = vi-true,

add(check-vi-true) = del(check-vi-true) = ∅.

• An operator check-vi-false, with

prec(check-vi-false) = vi-false,

add(check-vi-false) = del(check-vi-false) = ∅.
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C and M consist of a set of non-primitive tasks with methods that first choose

a variable assignment for each variable, and then checks that each conjunct of the

expression is satisfied.

For each variable vi, C contains the non-primitive task set-vi. For i < m, we

introduce two methods for set-vi: one which calls set-vi-true and then set-vi+1, and

another which calls set-vi-false and then set-vi+1. For set-vm, we introduce two

methods as above but which call check-e1 after setting the variable true or false

(instead of calling set-vi+1).

For each conjunct ei of E, C contains the task check-ei. Since ei is a disjunction

of literals, let l1, . . . , lk be the disjuncts of ei. For each literal lj, we encode a

method for check-ei: if lj is of the form ¬vl for some variable vl, then the method

calls check-vl-false followed by check-ei+1. Otherwise, lj is of the form vl, and the

method calls check-vl-true followed by check-ei+1. The methods for check-em omit

the call to check the next expression.

The initial task network tn0 contains a single task, set-v1. Any primitive

decomposition of the tn0 must first call set-vi-true or set-vi-false (but not both)

for each variable, and then check that one literal is true for each conjunct in E.

Thus there exists a solution to the HTN problem iff there is a satisfying assignment

for the variables in E.

Since the encoding is linear with respect to the length of E and CNF-SAT is

NP-hard, delete-free HTN planning is NP-hard. 2
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Any of the first three restrictions on method structure is enough to place

a regular HTN planning problem in a decidable fragment of the language [Erol

et al., 1996]. This leaves only two obvious syntactic restrictions that would make a

delete-free HTN problem solvable in polynomial time: either restrict the initial task

network to be primitive, or restrict all operators to have zero effects.

3.3 Showing HTN+eff Problems are in NP

Here we show that if there is a solution of length k to a delete-free HTN plan-

ning problem, then there exists a polynomial size witness, verifiable in polynomial

time, proving that there is exists a solution of size k or smaller. This places both

plan-existence and k-length-plan-existence in NP for delete-free HTN planning.

The outline of the proof is as follows: We present decomposition trees [Geier

and Bercher, 2011], which can be used as a witness that a task network is derivable

from the initial network, and these trees can be verified in time polynomial in the

size of the tree. We then digress to show that deciding whether a problem has a

solution when the primitive tasks that change the state are fixed in advance is in

NP. Since solutions in delete-free domains can only change the state a polynomial

number of times, this lets us use a decomposition tree of polynomial width as part

of the witness to the solvability of HTN+eff problems. Finally, we also provide a

polynomial bound on the height of a decomposition tree necessary to show that

problem is solvable.
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3.3.1 Decomposition Trees

Geier and Bercher [2011] introduced the idea of decomposition trees, which is

a representation of how the initial compound task cI can be transformed to a task

network tn via a sequence of decompositions.1 This section presents their definitions

below, modified slightly to suit our purposes.

Given a planning problem P , a decomposition tree g = (T,E,≺, α, β) is a

five-tuple satisfying the following properties:

• (T,E) is a tree with nodes T and directed edges E pointing towards the leaves;

• ≺ is a partial order defined over T ;

• α : T → C ∪ O is a labeling function that labels the nodes in T with task

names;

• β is a labeling function that labels each inner node with a method m = (c, tnm)

and an isomorphism from tnm to the children of that node.

Moreover, T (g) is defined to refer to the tasks of g and ch(g, t) to refer to the

direct children of t ∈ T (g) in g.

The following definition states the conditions under which a decomposition

tree encodes a decomposition of the initial task network. A decomposition tree

1Note that the restriction for having a single task for the initial task network of an HTN planning

problem is only for the sake of simplifying the exposure of our theoretical results; the definitions

and theorems in this section can be adapted to work without this restriction by generalizing the

notion of decomposition trees, described below, to decomposition forests.
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g = (T,E,≺, α, β) is valid with respect to a planning problem P = (D, s0, cI) if and

only if the root node of g is labeled with the initial task name cI and for any inner

node t, where β(t) = ((c, tnm), f), the following conditions hold:

1. α(t) = c,

2. f is a valid isomorphism of the task network induced in g by ch(g, t) and tnm;

i.e.

(ch(g, t),≺ |ch(g,t), α|ch(g,t)) ∼=
f
tnm,

3. ∀t′ ∈ T, c′ ∈ ch(g, t), it holds that

(a) if t ≺ t′ then c′ ≺ t′;

(b) if t′ ≺ t then t′ ≺ c′.

4. there are no other ordering constraints in ≺ other than those demanded by

conditions 2 and 3.

Informally, the above conditions capture the following checks for each inner

node t: condition 1 verifies the applicability of the method m = β(t) that t is labeled

with; condition 2 verifies that m’s task network is correctly represented in the tree;

condition 3 ensures that the ordering constraints are inherited correctly after the

application of m; and condition 4 ensures the minimality of ≺.

The definition of a decomposition tree and its validity to an HTN planning

problem is identical to Geier and Bercher’s definition, save for the addition of the

explicit isomorphism at each inner node t, mapping ch(g, t) to the subtask network

of the method applied at t. This modification is made so that the validity of a

55



decomposition tree can be checked in time polynomial in the size of the tree2. Note

that the theoretical results in Geier and Bercher [2011] still hold unchanged even

with these modifications. This is an important point as we shall be using their

theorems (which they proved under their definition) in our proofs.

Note that the leaves of a decomposition tree g form a task network, which is

called the yield of g. Formally, the yield of a decomposition tree g = (T,E,≺, α, β)

is a task network defined as follows. Let T ′ ⊆ T be the set of all leaf nodes in g.

Then, yield(g) = (T ′,≺ |T ′ , α|T ′).

Geier and Bercher [2011] use the above definitions to prove the following useful

property of valid decomposition trees:

Theorem 3.3 Given a planning problem P = (D, s0, cI), the following holds for

any task network tn ∈ TNC∪O. There exists a valid decomposition tree g with

yield(g) = tn if and only if cI −→∗D tn.

In other words, the reachability of tn from cI via a sequence of method de-

compositions can be proved by providing a valid decomposition tree for the problem

P whose yield is tn. This property, as we shall see later, will be instrumental in

proving that delete-free HTN planning is in NP.

Given a decomposition tree g = (T,E,≺, α, β) and a node t ∈ T , the subtree

of g induced by t, written as g[t], is

g[t] = (T ′, E ′,≺ |T ′ , α|T ′ , β|T ′),

2Since graph isomorphism is not known to be in P, this would not be possible without our

modification.
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where (T ′, E ′) is the subtree of (T,E) rooted at t.

Definition 3.4 Let g = (T,E,≺, α, β) be a decomposition tree and ti, tj ∈ T be

two nodes of g. The result of the subtree substitution of ti with tj on g, written as

g[ti ← tj], is given as follows:

• If ti is the root node of g, then g[ti ← tj] = g[tj].

• Otherwise, g[ti ← tj] = (T ′, E ′,≺ |T ′ , α|T ′ , β|T ′), with

– T ′ = (T \ T (g[ti])) ∪ T (g[tj]),

– E ′ = E|T ′ ∪ {(p, tj)}, where p is the parent node of ti in g.

Note that this operation in general will not lead to valid decomposition trees.

However, if applied under the right conditions, the result of the subtree substitution

can still describe valid decompositions as described by the following result [Geier

and Bercher, 2011]:

Theorem 3.5 Let g = (T,E,≺, α, β) be a valid decomposition tree for an HTN

planning problem P . If we are given two nodes ti ∈ T, tj ∈ T (g[ti]) such that

α(ti) = α(tj), then g[ti ← tj] is also a valid decomposition tree for P .

In other words, if ti and tj map to the same task names and tj is a descendant

of ti in g, then replacing ti (and its subtree) with tj (and its subtree) still results in

a valid decomposition tree. This technique can therefore be used to eliminate cyclic

decompositions from a tree while still retaining validity.
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3.3.2 Forming a witness to the solvability of an HTN problem

We are going to use decomposition trees to show that delete-free HTN planning

is in NP. Note that if a valid decomposition tree’s yield is primitive and executable,

then we can use the tree as a checkable proof that its problem is solvable. However,

even in the restricted case where none of the operators have an effect, the minimal

solution size (measured in the number of tasks) may still be exponential. So we

need to be able to present a witness that includes both a tree with a non-primitive

yield, and a polynomial size proof that some expansion of that yield is executable.

Definition 3.6 Let P = (D, s0, tn0) be an HTN planning problem, where D =

(L,C,O,M) and tn0 = (T0,≺0, α0). A state-transition preserving solution for P is

one in which the only state-changing actions are the ones that were already in tn0,

i.e., it is a primitive task network tn such that:

• tn0 −→∗D tn, where tn = (T,≺, α)

• tn has an executable ordering over its tasks (t1, . . . , tn, executing over the states

s0 to sn)

• If ti /∈ T0 then si−1 = γ (si−1, α(ti)) = si

Given a sequence of states, a solution table for finding a state-transition pre-

serving solution consists of a row for each combination of start state, end state, and

task name. Each row in a solution table has a value, defined as follows:

• For each row with a primitive task name, the value of that row is 1 if the ground

instance of the operator for that primitive task name is both applicable in any
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state between the start state and end state, inclusively, and the operator does

not change said state. Otherwise, the value of the row is ∞.

• For each row with a non-primitive task name, we associate a method used to

decompose the task, and a set of pointers back into the table supporting that

the method is executable (without changing the state) between the start and

end state for the row. The value for the row is then the sum of the values of

its supporting rows.

We can check the table by first checking the primitive entries of the table, and

then repeatedly scanning the table to find rows whose supports have already been

checked. This leads into the following lemma:

Lemma 3.7 Both the plan-existence and the k-length-plan-existence problems for

finding a state-transition preserving solution are in NP.

Proof. Let P = (D, s0, tn0) be an HTN planning problem where D = (L,C,O,M),

tn0 = (T0,≺0, α0) such that P has a state-transition preserving solution.

By definition, in any state-transition preserving solution, only the primitive

tasks already in tn0 may change the state. So given a fixed, executable ordering over

the primitive tasks of tn0 and the states associated with that ordering (s0, . . . , sn),

the decompositions of non-primitive tasks in tn0 interact with each other only in

what states they start and end on (constraining the end and start states, respectively,

of tasks required to come before or after). Start and end states for a task determine

what decompositions (if any) are executable over that sequence of states. This lets

us construct a solution table as described above.
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Once the solution table is constructed, a witness to the solvability of P (i.e., a

witness that there exists a state-preserving solution for P ) consists of a total order

over the primitive tasks of tn0, a solution table described above for the sequence

of states traversed by those primitive tasks, and a set of pointers into the table for

each non-primitive task in tn0. The value of the solution is the sum of the primitive

tasks in the row of the solution table that holds tn0, plus the sum of the values

sizes of the supporting table entries. Since the validity of the ordering and table

are verifiable in polynomial time, both plan-existence and k-length-plan-existence

for finding a state-transition preserving solution are both in NP. 2

We can now use a decomposition tree as a proof that an HTN problem is

solvable, even if the yield of that tree is non-primitive:

Definition 3.8 Let tn be a task network, g be valid decomposition tree of tn, and

stp be a witness that the yield of g has a state-transition preserving solution. Then,

a witness to the solvability of an HTN problem P = (D, s, tn) is the pair (g, stp) of

a valid decomposition tree g of tn with stp.

Since checking the validity of a tree is polynomial in the size of the tree, and

checking the witness that the yield of the tree has a state-transition preserving

solution is polynomial in the size of the yield and the number of task names, it

follows that the combined witness is also in P. Furthermore, note that every solvable

HTN planning problem has a witness, even non-delete-free problems. However, the

existence of a polynomial-sized witness is only likely in delete-free planning, where

a fix-point state is reachable in a polynomial number of actions. In the remaining
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sections, we show that delete-free HTN planning problems always have a witness of

polynomial size.

3.3.3 Bounding the breadth of the witness tree

Given a delete-free HTN problem and its witness, (g, stp), we know there are

at most |O| primitive tasks which change the state in any execution of the yield of

g, where O is the set of operators. We now show how to restrict a decomposition

tree to its minimal valid subtree that contains those operators.

Definition 3.9 (Saplings) Given a tree g = (T,E,≺, α, β) and a set of tree nodes

S ⊂ T , let T ′ be the set of nodes along any path from a node in S to the root of g

(inclusively) and the siblings of each and every node along the path. Formally, T ′ is

the smallest subset of T such that:

• S ⊆ T ′

• ∀t,t′∈T t′ ∈ T ′ ∧ (t, t′) ∈ E =⇒ t ∈ T ′

• ∀t,t1,t2∈T ′(t1 ∈ T ′) ∧ {(t, t1), (t, t2)} ⊆ E =⇒ t2 ∈ T ′

Let T ′′ contain the inner nodes of T ′. The the sibling-augmented path tree or

S-sapling of T is the decomposition tree given by the tuple:

(
T ′, E|T ′ ,≺|T ′ , α|T ′ , β|T ′′

)
Proposition 3.10 Given a tree g = (T,≺, α, β) and a set S ⊆ T , then the S-sapling

of g is a valid decomposition tree.
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Proof. Any subtree of g containing the root satisfies all but condition 3 of definition

a valid decomposition tree. Since the construction of a sapling either preserves all

children of node or none of them, condition 3 also holds. 2

Given a witness (g, stp) for a delete-free problem, we can create a sapling using

just the primitive tasks that change the state.

Lemma 3.11 Let (g, stp) be a witness that a delete-free HTN problem P = (D, s0, tn0)

with domain D = (L,C,O,M) is solvable. Let (T,≺, α) = yield(g), and let S ⊆ T

be the set of tasks that change the state in the order specified by stp. Then if g′ is the

S-sapling of g, there exists a witness stp′ such that the yield of g′ has state-transition

preserving solution of the same size or smaller than the yield of g.

Proof. Given that stp is the witness that g has a state-transition preserving solu-

tion, let (<,B,R) = stp, where:

• < is 〈t1, . . . , tn〉 which is the total ordering over the primitive tasks in the yield

of g. Let s1, . . . , sm be the distinct states that sequence produces (omitting

repeated states).

• B is the solution table for the sequence s1, . . . , sm. Assume WLOG that B is

optimal, giving the best possible cost for each entry in B.

• R is the set of pointers into B for non-primitive tasks in the yield of g.

Let S be the set of primitive tasks that change the state, or

S = {ti ∈ yield(g) | si−1 6= si}, and let g′ be the S-sapling of g.
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Now we provide a witness that g′ has a state-transition preserving solution.

Let <′ be the same ordering as < restricted to tasks in S. Since tasks in < but

not in <′ did not change the state, an execution of <′ produces the same sequence

s1, . . . , sm of distinct states that < did, and so we can reuse the same solution table

B.

For the set of supports, any task t in the yield of g′ which was not in the yield

of g must have children in the yield of g which, under the given ordering <, were

all either primitive tasks which did not change the state or were non-primitive with

state-transition preserving expansions with entries in R. So B, the solution table,

must have an entry for si, sj, t with finite value, where si and sj are the first state

and last in the sequence s0, . . . , sm where either primitive descendant was executed

or the first state used in R for a non-primitive descendant. So we can construct a

new set of supports R′ using the above method for any task in the yield of g′ but

not in R, and directly using the entry from R otherwise.

So stp′ = (<′, B,R′) is a witness that g′ has a state-transition preserving

solution. Moreover, since B remains the same and R′ was calculated from B and R,

stp′ must indicate that g′ has a solution in B with the same or lower value as g. 2

3.3.4 Bounding the height of the witness tree

The above lemma lets us take any witness (g, stp) to a problem’s solvability

and construct a new witness which is composed of a polynomial number of paths

to the root g (plus siblings). This is not quite enough to show that delete-free
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planning is in NP, since those paths may not be polynomial in length. However,

in those cases, we can use a variant of the pumping lemma [Comon et al., 2007] to

produce a new witness with polynomially-bounded length paths:

Theorem 3.12 Let P = (D, s0, tn0) (where D = (L,C,O,M)) be a solvable delete-

free HTN planning problem, with P having a minimal solution size of k . Then there

exists a witness (g, stp) that P has a solution size of ≤ k, with |T (g)| ≤ m · |C| · |O|2,

where m is the size of the largest task network in M .

Proof. If P is solvable, there exists a tree gp with an executable, primitive yield

of optimal cost k. Let (g, stp) be the S-sapling witness as constructed above in

lemma 3.11, where S is the set of tasks in the witness that change the state. Then

(g, stp) is a witness that P has a solution of size ≤ k.

Suppose g has a height that is greater than |C| · |O|. Since g is constructed

from a series of paths from nodes to the root, this means that there is some path

from a node in S to the root of that length.

Let t1, . . . , tn be the tasks along that path. Since that path is joined at most

|S| − 1 times by other paths from S to the root (|S| ≤ |O|) and since there are only

|C| task names to assign, there must be some segment ti, . . . , tj between joins such

that α(ti) = α(tj), and no descendants of ti not on the path to tj has a descendants

that is in S.

Since no descendants of ti that are not also a descendants of tj are in S, then

all of those descendants must have a state-transition preserving solution under stp′.

Let g′ = g [ti ← tj] be the tree obtained by substituting tj for ti. Since we only
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removed tasks which did not change the state, the yield of g′ is a strict subset of the

yield of g. So we can create a witness stp′ that g′ has a state-transition preserving

solution by restricting the set of supports in stp to the tasks remaining in the yield

of g′. That solution must have a cost strictly less than k. This would violate our

assumption k was the minimal solution size.

So g must have a height that is less than or equal to |C| · |O|. 2

Since we can always find a polynomial sized witness to the minimal-sized

solution, this means that finding k-size solution (or any solution) to a delete-free

HTN problem (HTN+eff) is in NP. Given that both plan-existence and k-length-

plan-existence are NP-hard for HTN+eff, the last of our results is trivial:

Theorem 3.13 For HTN+eff , both plan-existence and k-length-plan-existence are

NP-complete.

From this theorem and the subclass relationships shown in Figure 3.1, the other

classes considered in this paper fall in NP as well and are thus NP-complete (with

the exception of plan-existence for TIHTN+pre
+eff , of course). Table 3.2 summarizes

our final set of results for delete-free HTN planning.

3.4 Discussion

In classical planning, relaxing the planning problem by removing negative

preconditions and effects has been quite useful in the development of efficiently

computable search heuristics. This chapter shows that this relaxation will not—by

itself—produce efficiently computable HTN planning heuristics, because the relaxed
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Table 3.2: Summary of results after Section 3.3.

Problem plan-existence k-length-plan-existence

TIHTN+pre
+eff P NP-complete

TIHTN+eff NP-complete NP-complete

HTN+pre
+eff NP-complete NP-complete

HTN+eff NP-complete NP-complete

problems are NP-hard. Thus the development of search heuristics for HTN planning

will require a new kind of problem relaxation.

The solution tables that we used in the proof of Lemma 3.7 are a data structure

similar to planning graphs, and it might be possible to use them as a foundation

to develop new heuristics and search techniques for generating compact witnesses.

Such witnesses could be used to provide heuristic estimates of relaxed plan length.

Furthermore, a solution table also exhibit similarities to that of a chart in chart

parsing [Kay, 1986, Earley, 1986, Charniak et al., 1998, Ji, 1993], in both the way

the solution table is generated and structured. This suggests that it might be

possible to use the techniques to generate efficient parse-trees in chart parsing for

witness inference.

Another approach may be to combine relaxed planning graphs with a relax-

ation of the constraints that HTN planning formalisms impose on the search process.

For example, our results show that efficiently computable HTN planning problems

can be produced by removing negative preconditions and effects, and also allowing
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task insertion (i.e., allowing the application of any executable operator, regardless of

whether or not it is reachable by some decomposition). We suspect that this might

relax the problem too much for the heuristic values to be useful. But we think it

may be possible to develop more accurate yet efficiently computable heuristics by

developing a principled compromise, e.g., by restricting the inserted tasks to those

available in some decomposition of the current task. This would be an interesting

topic for future research.

Given that full-semantics delete-free HTN planning is out of reach for an HTN

heuristic, one might question whether less informed heuristics will provide effective

search guidance. The next chapter shows totally-ordered ≤r-stratifiable problems

can be translated into classical planning problems. This opens up the use of classical

planning heuristics for HTN planning.
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Chapter 4: HTN Planning via translation to PDDL

I show that HTN planning knowledge, if it satisfies some restrictions, can

automatically be translated into PDDL, and that even small amounts of such

knowledge can greatly improve a classical planner’s performance. In

particular:

• Section 4.2 describes how to translate a restricted class of HTN methods and

operators into PDDL. We provide theorems showing that our translation is

correct, that its time and space complexity are both linear, and that it can be

used even on partial HTN models of a domain (which can be much easier to

write than full HTN models).

• Experiments in Section 4.4 show that by translating partial HTN models into

PDDL, we can substantially improve a classical planner’s performance. In

experiments with the well-known Fast-Forward (FF) planner [Hoffmann and

Nebel, 2001] on more than 3500 planning problems, the translated knowledge

improved FF’s running time by several orders of magnitude, and enabled it to

solve much larger planning problems than it could otherwise solve.
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4.1 Basic Definitions and Notation

Chapter 1 introduced propositional HTN and classical planning formalisms

for ease of analysis. Most planning implementations, however, are set to work over

fragments of first-order logic. This section presents formalisms defined over function-

free first-order logic for classical planning and totally-ordered HTN planning that

closely match the PDDL planning language and SHOP HTN language, respectively

[Fox and Long, 2003, Nau et al., 2001].

4.1.1 Classical Planning

Our definitions for classical planning are based on the ones in Ghallab et al.

[2004].

Let L be the set of all literals in a function-free first-order language. A state is

any set of ground atoms of L. A classical planning problem is a triple P = (s0, g, O),

where s0 is the initial state, g is the goal (a set of ground literals of L), and O is a

set of operators. Each operator o ∈ O is a triple

o = (name(o), precond(o), effects(o)),

where name(o) is o’s name and argument list, and precond(o) and effects(o) are sets

of literals called o’s preconditions and effects. An action α is a ground instance of an

operator. If a state s satisfies precond(α), then α is executable in s, producing the

state γ(s, α) = (s− {all negated atoms in effects(α)}) ∪ {all non-negated atoms in

effects(α)}. A plan is a sequence π = 〈α1, . . . , αn〉 of actions. π is a solution for P
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if, starting in s0, the actions are executable in the order given and the final outcome

is a state sn that satisfies g.

4.1.2 TSTN Planning

Ghallab et al. [2004] describes a restricted case of HTN planning called Total-

order Simple Task Network planning, which we’ll abbreviate as TSTN Planning.

The definitions are as follows.

A task is a symbolic representation of an activity. Syntactically, it is an ex-

pression τ = t(x1, . . . , xq) where t is a symbol called τ ’s name, and each xi is either

a variable or a constant symbol. If t is also the name of an operator, then τ is

primitive; otherwise τ is nonprimitive. Intuitively, primitive tasks can be instanti-

ated into actions, and nonprimitive tasks need to be decomposed (see below) into

subtasks.

A method is a prescription for how to decompose a task into subtasks. Syn-

tactically, it is a four-tuple

m = (name(m), task(m), precond(m), subtasks(m)),

where name(m) ism’s name and argument list, task(m) is the taskm can decompose,

precond(m) is a set of preconditions, and subtasks(m) = 〈t1, . . . , tj〉 is the sequence

of subtasks.

A TSTN planning problem is a four-tuple P = (s0, T0, O,M), where s0 is an

initial state, O is a set of operators, T0 is a sequence of ground tasks called the

initial task list, and M is a set of methods.
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If T0 is empty, then P ’s only solution is the empty plan π = 〈〉, and π’s

derivation (the sequence of actions and method instances used to produce π) is

δ = 〈〉. If T0 is nonempty (i.e., T0 = 〈t1, . . . , tk〉 for some k > 0), then let T ′ =

〈t2, . . . , tk〉. If t1 is primitive and there is an executable action α with name(α) = t1,

then let s1 = γ(s0, α). If P ′ = (s1, T
′, O,M) has a solution π with derivation δ, then

the plan α•π is a solution to P (where • is concatenation) whose derivation is α•δ.

If t1 is nonprimitive and there is a method instance m such that task(m) = t1, and

if s0 satisfies precond(m), and if P ′ = (s1, subtasks(m) • T ′, O,M) has a solution π

with derivation δ, then π is a solution to P and its derivation is m • δ.

4.1.3 Using TSTN Planners for Classical Planning

To use a TSTN planner in a classical planning domain D (i.e., a set of classical

planning problems that all have the same operator set O), the usual approach is

augment D with a set M of methods and a way to translate each classical goal g

into a task list T g
0 . This maps each classical planning problem P = (s0, g, O) in D

into a TSTN planning problem P ′ = (s0, T
g
0 , O,M). The mapping is correct if P ′ is

solvable whenever P is, and if the solutions for P ′ are also solutions for P . Since

the objective is for P ′ to have a small search space, the set of solutions for P ′ may

be much smaller than the set of solutions for P .

In the above mapping, we will say that M is O-complete if every operator in

o ∈ O is mentioned in M , i.e., at least one method in M has a subtask that is an

instance of name(o).
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4.2 Translating TSTN to Classical

Let P = (s0, T, O,M) be a TSTN planning problem, and suppose T0 is a

correct translation (as defined above) of a classical goal g. We now describe how

to translate P (if a restriction holds) into a classical planning problem trans(P ) =

(s′0, g, O
′) that is equivalent to P in the following sense: as we’ll show in Section 4.3,

there is a one-to-one mapping from P ’s solution derivations to trans(P )’s solutions.

4.2.1 Preliminaries

We begin by introducing a restriction. For every solution π of P , let the non-

tail height of π be the number of levels of method decomposition used to produce

π, ignoring tail decomposition (i.e., decomposition of the last task in a task list).

Then either we need to extend the planning language to include function symbols,1

or else we must be given an upper bound H on the non-tail height of all solutions

of P . The non-tail height is equivalent to the height of the minimum stratification

in totally-ordered ≤r-stratifiable problems.

We need the above restriction in order to implement a symbolic representa-

tion of a numeric counter, to keep track of the current number of levels of task

decomposition. Here is how to implement the counter when H is given:2

1PDDL includes this extension, but traditional formulations of classical planning (e.g., [Ghallab

et al., 2004]) do not.
2If H is not given but the planning language contains function symbols, we can instead use an

unbounded number of ground terms 1, next(1), next(next(1)), . . . .
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• We’ll introduce new constant symbols d0, d1, . . . , dH to denote levels of task

decomposition, and a predicate symbol level so that the atom level(di) can

be used to mean that the current level of task decomposition is di. We give

a special meaning to the constant symbol d0: it marks the successful end of

method decomposition process.

• To specify a total ordering of the constant symbols, we will put new atoms

next(d1, d2), next(d2, d3), . . . , next(dH−1, dH) into the initial state.

In addition, for each method m(x1, . . . , xk) and task t(y1, . . . , yj) we will introduce

new atoms dom(x1, . . . , xk) and dot(y1, . . . , yj).

4.2.2 Translating Operators

Let o be any operator inO, and suppose name(o) = o(x1, . . . , xn), precond(o) =

{p1, . . . , pj} and effects(o) = {e1, . . . , ek}. If o is not mentioned in M (whence M is

not O-complete), then trans(o) = o. Otherwise trans(o) is the following operator

o′, which is like o except that it is applicable only when doo is true, and it decrements

the counter:

name(o′) = o′(x1, . . . , xn)

precond(o′) = {doo(x1, . . . , xn), p1, . . . , pj,

level(v), next(u, v)}

effects(o′) = {¬doo(x1, . . . , xn),¬level(v),

level(u), e1, . . . , ek}
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We define trans(O) = {trans(o) | o ∈ O}.

4.2.3 Translating Methods

Letm be any method inM , and suppose name(m) = m(x1, . . . , xn), task(m) =

t(y1, . . . , yjt), and precond(m) = {p1, . . . , pjm}. There are two cases:

Case 1: subtasks(m) = ∅ (i.e., m specifies no subtasks for t). Then trans(m)

is the operator m′ defined as follows:

name(m′) = m′(x1, . . . , xn)

precond(m′) = {dot(y1, . . . , yjt), p1, . . . , pj,

level(v), next(u, v)}

effects(m′) = {¬dot(y1, . . . , yjt),¬level(v), level(u)}

Case 2: subtasks(m) = {t1, . . . , tk} for k ≥ 1. Then trans(m) is the set of

planning operators {m′0, . . . ,m′k} defined below, where m′0 is an operator that checks

whether m is applicable, and m′1, . . . ,m
′
k are operators that correspond to calling

m’s subtasks. The definition of m′0 is

name(m′0) = m′0(x1, . . . , xn)

precond(m′0) = {dot(y1, . . . , yjt), p1, . . . , pjm , level(v)}

effects(m′0) = {¬dot(y1, . . . , yjt), dom1(x1, . . . , xn, v)}

Intuitively, m′0’s preconditions say that t is the current task and that m’s precon-

ditions hold; and m′0’s effect dom1 makes it possible to apply the planning operator

m′1 that corresponds to m’s first subtask.
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For i = 1, . . . , k − 1, if m’s ith subtask is ti(yi1, . . . , yiji) then m′i is defined as

follows:

name(m′i) = m′i(x1, . . . , xn)

precond(m′i) = {domi
(x1, . . . , xn, v), level(v), next(v, w)}

effects(m′i) = {¬domi
(x1, . . . , xn, v),¬level(v), level(w),

doti(yi1, . . . , yiji), domi+1
(x1, . . . , xn, v)}

The operator m′k, which corresponds to m’s last subtask tk, is like m′i but omits the

effects ¬level(v) and level(w).

We define trans(M) =
⋃

m∈M trans(m).

4.2.4 Translating Planning Problems

Finally, we define trans(P ) = (s′0, g, O
′), where

s′0 = s0 ∪ {next(d0, d1), . . . , next(dk−1, dk),

level(d1), dot0(c1, . . . , cn)};

O′ = trans(O) ∪ trans(M).

4.3 Properties

The theorems in this section establish the correctness and computational com-

plexity of our translation scheme.

Theorem 4.1 Let P = (s0, 〈t1, . . . , tk〉, O,M) (where k ≥ 0) be any TSTN planning

problem. Let ∆ = {all derivations of solutions for P}, and Π = {all solutions for
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trans(P )}. If M is O-complete, then there is a one-to-one correspondence that maps

∆ onto Π.

Sketch of proof. We need to define a mapping F : ∆ → Π and show that F is

one-to-one and onto. Below we define F ; the proof that it is one-to-one and onto

can be done straightforwardly by induction.

Let π be a solution for P with derivation δ. Recall that δ is the sequence of

the actions and method instances used to produce π, in the order that they were

applied. In particular, δ is a concatenation of subsequences δ1, . . . , δk corresponding

to t1, . . . , tk. We will let F (δ) = F (δ1) • . . . • F (δk), where • denotes concatenation,

and where each F (δi) is defined recursively as follows:

If δi is empty, then F (δi) also is empty. If δi is nonempty (i.e., δi = 〈αi1, . . . , αik〉),

then let δ′i = 〈αi2, . . . , αik〉. There are three cases:

1. If αi1 is an action, then F (δi) = trans(αi1) • F (δ′i).

2. If αi1 is a substitution instance mθ of a method m with substitution θ, and

subtasks(m) is empty, then F (δi) = m′θ • F (δ′i), where m′ is as in Case 1 of

Section 3.

3. If αi1 is a substitution instancemθ of a methodm and subtasks(m) is nonempty

(i.e., subtasks(m) = 〈t′1, . . . , t′j〉 for some j > 0), then δ′i is the concatenation

of subsequences δ′i1, . . . , δ
′
ij produced by decomposing t′1, . . . , t

′
j, respectively.

In this case,

F (δi) = m′0θ •m′1θ • F (δ′i1) • . . . •m′jθ • F (δ′ij),
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where m′1, . . . ,m
′
j are as in Case 2 of Section 3. 2

Corollary 4.2 In Theorem 4.1, if M is not O-complete, then the mapping F is

one-to-one but not necessarily onto.

Proof Sketch. If M is not O-complete, then there is at least one operator o ∈ O

that is not mentioned in M . Consequently, no instance of o will appear in any

solution for P , nor in ∆, hence no instance of trans(o) will appear in {F (δ) | δ ∈ ∆}.

But instances of trans(o) can appear in solutions to trans(P ), in which case F is

no longer onto. 2

Theorem 4.3 The time and space complexity of computing trans(P ) are both O(|P |+

H).

Proof Sketch. For each o ∈ O, trans(o) is a single operator that is computed by a

linear-time scan of o, and it can be seen by inspection that the size of that operator

is O(|o|). Suppose there are no non-tail recursive methods in M . This means that

H = 0 in this case. For each m ∈ M , trans(m) is a set of methods that can be

produced by a linear-time scan of m, and it can be seen by inspection that the set

of methods has size O(|m|). If there is a non-tail recursive method in M , then H is

given as input and it is a fixed number. Thus, the theorem follows. 2

4.4 Implementation and Experiments

We implemented an algorithm that uses our translation technique to translate

TSTN domain descriptions into PDDL, and did an experimental investigation of
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the following question:

In domains that are hard for a classical planner, how much can its per-

formance be improved by PDDL translations of partial HTN knowledge?

For the classical planner, we used FF [Hoffmann and Nebel, 2001]. FF is perhaps one

of the most influential classical planners available; many recent classical planning

algorithms either directly depends on generalizations of FF or they incorporate the

core ideas of FF in their systems.

For the planning domains, we chose three planning domains for which we

wrote simple HTN domain descriptions with varying amounts of incompleteness:

the Blocks World, the Towers of Hanoi problem, and a transportation domain called

the Office Delivery domain.

The source code for our translation technique and the HTN method descrip-

tions of the three planning domains described below are available at http://www.

cs.umd.edu/projects/planning/data/alford09translating/.

4.4.1 Towers of Hanoi

The Towers of Hanoi problem causes problems for many classical planners

because of its combinatorial nature. On the other hand, it is almost trivially easy

to write a set of HTN methods to solve the problem without any backtracking. The

methods say basically the following:

• Method to move a disk:

precond: the smallest disk wasn’t the last one moved
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subtask: move the smallest disk clockwise.

• Method to move a disk:

precond: the smallest disk was the last one moved

subtask: move the other disk.

Note that in a tower of a Towers of Hanoi problem, the largest disk is always at the

bottom of the tower and no disk can be place on a smaller disk – i.e., the disks in

a tower are in the increasing order by their sizes with the smallest is always at the

top. Thus, whether the smallest disk was the last one moved can be checked in the

above methods by examining the towers to the left or to the right of a tower.

The methods above provide an almost-complete solution to the Towers of

Hanoi problem, except that the second method doesn’t say where to move the disk.

To use the PDDL translation, FF must figure out for itself that there is only one

place the disk can be moved.

Below, “FF-Plain” refers to FF using the ordinary classical-planning defini-

tion of the Towers of Hanoi domain, and “FF-HTN” refers to FF using the PDDL

translations of the HTNs described above. We varied the number n of disks from 3

to 14. For each value of n, we ran FF-HTN and FF-Plain each 100 times, averaging

the running times. The reason for the multiple runs is because FF makes some

random choices during each run that make its running time vary from one run to

another. Fig. 4.1 shows the results.

For FF-Plain at 14 rings (the * in Fig. 4.1), two runs took longer than 2 hours

(our time limit per problem) to finish. We counted these runs as 2 hours each,
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Figure 4.1: FF’s CPU time in the Towers of Hanoi domain, with and without the
translated domain knowledge. Each data point is FF’s average CPU time on 100
runs. The asterisk is explained in the text.
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Figure 4.2: FF’s CPU time in the Blocks World, with and without the translated
domain knowledge. Each data point is FF’s average CPU time on 100 randomly
generated planning problems. The asterisks are explained in the text.
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and averaged them with the other 98 runs; hence the data point for 14 rings makes

FF-Plain’s performance look better than it actually was.

As shown in Fig. 4.1, FF-Plain’s running times grew much faster than FF-

HTN’s did. With 14 disks, FF-HTN was about 2 orders of magnitude faster than

FF-Plain.

4.4.2 Blocks World

The Blocks World has previously been shown to pose some difficulities for FF.

Complete HTN domain descriptions can work very efficiently [Ghallab et al., 2004],

but are somewhat complicated. To see how well FF could do with some simple and

partial HTN knowledge, we wrote HTN methods that said basically the following:

• Method to move a block:

precond: the block is not in its final position

subtasks: pick up the block; put it in its final position.

• Method to move a block:

precond: the block is not in its final position

subtasks: pick up the block; put it on the table.

At each point in the planning process, both of the methods are applicable. To use

the PDDL translation of them, FF must use its heuristics to choose which of them

to use.

Below, “FF-Plain” refers to FF using the ordinary classical-planning definition

of the Blocks World, and “FF-HTN” refers to FF with the PDDL translations of
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Figure 4.3: FF’s CPU time in the Office domain, with and without the translated
domain knowledge. In the graph at left, the number of packages is fixed at 40 and
the number of rooms varies. In the graph at right, the number of rooms is fixed at
40 and the number of packages varies. Each data point is FF’s average CPU time
on 100 randomly generated planning problems.

the methods described above. We ran both FF-HTN and FF-Plain on 100 randomly

generated n-block problems for each of n = 5, 10, 15, . . . , 90, giving a total of 1800

Blocks World problems. Fig. 4.2 shows the results.

As before, we gave FF a 2-hour time limit for each run. At data points where

all 100 runs took less than 2 hours each, the data point was the average time per

run. At data points where 3 or fewer of the 100 runs failed to finish within 2 hours,

we counted each failure as 2 hours when computing the average, and marked the

data point with an asterisk. In all of the other cases, a large number of the 100 runs

failed to finish with 2 hours, so we omitted those data points.

As shown in Fig. 4.2, FF-Plain could not solve problems larger than 25 blocks,

but FF-HTN could solve problems up to 85 blocks. At 25 blocks, FF-HTN was

about 4.2 orders of magnitude faster than FF-Plain.
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4.4.3 Office Delivery

This is a transportation domain in which a robot needs to pick up and deliver

packages in a building. It is similar to the well-known Robot Navigation Domain

[Kabanza et al., 1997], with the following differences: (1) the problem is determin-

istic, (2) there is a variable number of rooms, and (3) some of the rooms can be

quite far from the hallway (hence to get to a room r, the robot may need to go

through many other rooms). For this domain, we wrote a very incomplete set of

HTN methods:

• Method to move all remaining packages:

precond: there is a package that’s not at its destination

subtasks: pick up the package; put it in its final location;

move all remaining packages.

Above, we omitted (1) how to get to the package’s location in order to pick it up,

and (2) how to take the package to its destination. To use the PDDL translation of

the method, the planner must figure out those things for itself.

Fig. 4.3 shows the results of our Office Delivery experiments. For the graph

on the left, we fixed the number of packages at 40 and varied the number n of office

rooms from 10 to 90; and for the graph on the right we fixed the number of rooms

at 40 and varied the number k of packages from 10 to 90. For each combination

of n and k we ran FF on 100 randomly generated problems, giving a total of 1700

problems.
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As shown in Fig. 4.3, FF-Plain’s running time increased much faster than FF-

HTN’s. On the largest problems (90 rooms and 90 packages), FF-HTN was faster

than FF-Plain by about 2.8 and 1.9 orders of magnitude, respectively.

4.5 Discussion

This chapter shows that HTN planning knowledge, if it satisfies the restrictions

described in Section 2.2, can easily be translated into a form usable by domain-

independent PDDL planners.

In our experiments with FF, PDDL translations of small amounts of HTN

planning knowledge improved FF’s performance by several orders of magnitude.

This occurred even though the HTN knowledge was incomplete, i.e., it omitted some

of the knowledge that an HTN planner would need. In places where the knowledge

was missing, FF simply used its ordinary planning heuristics.

FF’s ability to augment the translated HTN knowledge with its own heuristics

show that even if a full-semantics delete-relaxation HTN heuristic is out of reach,

relaxed-semantics heuristics can effectively guide the search to quality plans. Delete

relaxation heuristics with semantics that more closely match that of regular HTN

planning should be more informed (and thus more effective). Since forward-search

planners such as FF and LAMA are guaranteed to terminate, running translated

HTN problems under FF and LAMA is a decision procedure for totally-ordered

≤r-stratifiable problems. Although the experiments are not enough to show out the

impact of the duplicate detection required to maintain termination, they at least
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show it is not an impediment to effective search.
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Chapter 5: Conclusions

This research contributes to the understanding of search in hierarchical plan-

ning systems, both in how best to organize the search space and the restrictions on

developing domain independent heuristics. Guaranteed termination also opens up

the possibility of adapting a number of techniques from classical planning to HTN

planning, such planning-as-verification [Albarghouthi et al., 2009], counter exam-

ple generation [Goldman et al., 2012], and policy generation for non-deterministic

problems [Kuter et al., 2008].

Specifically, this dissertation provides:

• Four algorithms for HTN planning (DHTN, PHTN, TODHTN, and TOPHTN)

and four corresponding classes of syntactically-identifiable HTN problems for

which those algorithms are proven to terminate (≤1-stratifiable, ≤r-stratifiable,

≤1-ordered, and ≤r-ordered, respectively).

• Upper and lower complexity bounds for each of these identifiable sets, includ-

ing new bounds on previously known decidable problem sets.

• An analysis of delete-free HTN planning, showing that almost all delete-free

HTN planning is NP-complete. This illuminates one of the barriers to provid-
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ing domain-independent HTN heuristics.

• A method for HTN planning via translation to PDDL for any totally-ordered

≤r-stratifiable problem.

A caveat to the above work is that all the algorithms were analyzed over

propositional HTN planning, while most planning implementations use function-free

fragments of first-order logic (though many planners create a ground propositional

domain as a pre-processing step). For the most part, this just provides an expo-

nential bump in the complexity bounds [Erol et al., 1995, 1996], but we have not

formally shown that.

Although this thesis provides no direct implementation of these algorithms

nor a specialized HTN heuristic, when used with a classical planner, the HTN-

to-PDDL translation does provide heuristic, terminating search for totally-ordered

≤r-stratifiable problems. Not only does this provide a practical benefit for those

who need heuristic HTN search, it provides a baseline from which to evaluate future

HTN-specific domain-independent heuristics.

This leaves a clear future work: the implementation and evaluation of TOPHTN

described in Section 2.3, and the development and evaluation of principled delete-

free based HTN heuristics.

Guaranteed termination paired with heuristic search will allow for search when

the solvability of the problem is in question, such as during debugging, or for policy

generation for non-deterministic problems. Even when the problem is known (or

assumed) to be solvable, current HTN planners such as SHOP2 Nau et al. [2003]

87



must default to depth-first search to effectively find plans. This requires the domain

author to know what paths the planner will take, and ensure that these paths

are all finite or end in a solution. Otherwise, if the path the planner chooses is

infinite, the planner will fail to return a solution even when one exists. In contrast,

if the problem ≤r-ordered (the broadest of the syntactic classes presented here), a

TOPHTN implementation is guaranteed to terminate regardless of how it orders its

search space.
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