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Abstract. Ising models, and the physical systems described by them, play a

central role in generating entangled states for use in quantum metrology and

quantum information. In particular, ultracold atomic gases, trapped ion systems,

and Rydberg atoms realize long-ranged Ising models, which even in the absence

of a transverse field can give rise to highly non-classical dynamics and long-range

quantum correlations. In the first part of this paper, we present a detailed theoretical

framework for studying the dynamics of such systems driven (at time t = 0) into

arbitrary unentangled non-equilibrium states, thus greatly extending and unifying

the work of Ref. [1]. Specifically, we derive exact expressions for closed-time-

path ordered correlation functions, and use these to study experimentally relevant

observables, e.g. Bloch vector and spin-squeezing dynamics. In the second part, these

correlation functions are then used to derive closed-form expressions for the dynamics

of arbitrary spin-spin correlation functions in the presence of both T1 (spontaneous

spin relaxation/excitation) and T2 (dephasing) type decoherence processes. Even

though the decoherence is local, our solution reveals that the competition between

Ising dynamics and T1 decoherence gives rise to an emergent non-local dephasing effect,

thereby drastically amplifying the degradation of quantum correlations. In addition

to identifying the mechanism of this deleterious effect, our solution points toward a

scheme to eliminate it via measurement-based coherent feedback.
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1. Introduction

Interacting spin models provide a remarkably accurate description of a diverse set of

physical systems, ranging from quantum magnetic materials [2, 3, 4] to quantum dots [5],

nitrogen vacancy centers [6], superconducting qubit arrays [7], ultracold atomic gases [8],

and trapped ions [9, 10]. Despite being relatively simple, and often admitting accurate

theoretical descriptions, they support a variety of complex equilibrium properties found

in real materials, e.g. emergent spatial ordering [2], quantum criticality [11], and

nontrivial topological phases [12, 13]. While the equilibrium physics of the simplest

quantum spin models is, with many notable exceptions, fairly well understood, the study

of driven, dissipative, and otherwise non-equilibrium behavior is comparatively full of

open questions: Under what circumstances can equilibrium correlations survive coupling

to a noisy environment [14, 15, 16]? To what extent do the concepts of criticality and

universality extend to dynamics and non-equilibrium steady-states [17, 18, 19, 20]?

Can interesting quantum-correlated states be stabilized by (rather than degraded by)

decoherence [21, 22, 23, 24, 25, 26, 27, 28, 29]? In recent years, it has become increasingly

apparent that non-equilibrium dynamics is ideally suited to investigation by quantum
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simulation [30], making such questions especially timely and important. Moreover, there

are many examples where interesting non-equilibrium states of matter are more readily

achievable than low temperature equilibrium states in ultracold neutral gases [31], polar

molecules [32], and trapped ions [33].

With these motivations in mind, in this manuscript we develop a general formalism

for calculating unequal-time correlation functions of arbitrary-range Ising models driven

far out of equilibrium at time t = 0, thus establishing a comprehensive toolbox for the

description of non-equilibrium dynamics in a simple context. In addition to providing

a tractable example of quantum many-body spin dynamics, the Ising model is realized

to a good approximation in a variety of experimentally relevant systems. And, despite

its simplicity, Ising spin dynamics is known to be useful for the production of entangled

states with applications in quantum information and precision metrology [34]. Our

results constitute a unified approach to describing experiments aimed at producing

such states [35, 36, 37, 38, 39, 33], and facilitate a quantitative treatment of a variety

of unavoidable experimental complications, e.g. long-range (but not infinite-range)

interactions and initial-state imperfections.

Ultracold atomic systems are also well suited to the controlled inclusion of

dissipation, prompting a number of theoretical proposals to exploit dissipation for the

creation of interesting quantum states [40, 19, 21, 22]—remarkably, such ideas are

already coming to experimental fruition [24, 41]. Verifying that these experimental

systems behave in the expected manner in the presence of dissipation, however, is

extremely challenging, in large part due to the numerical complexity of simulating

dynamics in open quantum systems and the scarcity of exact solutions. The Ising

model, especially as implemented in trapped ion experiments [39, 42, 33], poses a unique

opportunity to study the effects of dissipation in a controlled and, as we will show,

theoretically tractable setting. In the absence of dissipation, an important issue in the

Ising model is whether ground state correlations survive the application of an equilibrium

coherent drive that does not commute with the interactions—i.e. a transverse field. In

the dissipative Ising model an analogous question can be posed: How does the system

respond to being driven incoherently by processes that do not commute with the Ising

interaction? Our formalism for the calculation of unequal-time correlation functions

allows us to definitively answer this question.

Quite surprisingly, non-equilibrium dynamics in the Ising model remains solvable

in the presence of non-commuting dissipation [1], even for completely arbitrary spatial

dependence of the Ising couplings (and therefore in any dimension). This manuscript

substantially extends the groundwork laid in Ref. [1], where the quantum trajectories

technique was used to obtain a closed-form solution of non-equilibrium dynamics for a

special class of initial states. The present work not only provides a more direct, unified,

and comprehensive exposition of the relevant theory, but also generalizes those results

to include a broader class of initial conditions and observables, and applies the solutions

to a number of experimentally relevant problems (most of which had previously been

explored only by numerical or approximate techniques, if at all). We also develop a
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clear physical picture of the interplay between coherent interactions and spontaneous

spin flips, which reveals that T1 decoherence is much more detrimental to entanglement

generation than might be naively expected. However, our solution also points toward a

measurement-based feedback scheme that can mitigate its detrimental effects.

The organization of the manuscript is as follows. In Sec. 2 we consider the coherent

(Hamiltonian) far-from-equilibrium dynamics of an Ising model with arbitrary spin-

spin couplings. Our results comprise a unified framework for calculating unequal-time

correlation functions starting from arbitrary unentangled pure states. As special cases,

these results will be applied to calculating Bloch-vector dynamics, arbitrary equal time

spin-spin correlation functions, and two-time dynamical correlation functions. These

results are substantially more general than any already available in the literature

[43, 44, 34, 45, 1], and will help quantify the quantum-enhanced precision in metrology

experiments using trapped ions and ultracold neutral atomic gases. In Sec. 3

we consider the effect of Markovian decoherence on this dynamics, incorporating

dephasing, spontaneous excitation, and spontaneous relaxation. Because the excitation

and relaxation processes do not commute with the Ising dynamics, including them is

especially nontrivial: we work in the interaction picture of the Ising Hamiltonian and

incorporate them as time-dependent perturbations. Terms in the perturbative expansion

are evaluated using the tools laid out in Sec. 2, and by summing the perturbation theory

to all orders we obtain an exact (closed-form) description of the dissipative dynamics

of arbitrary two-point correlation functions. This is in stark contrast to the behavior

of a coherently driven Ising model, where such a perturbative expansion cannot in

general be resummed. An interesting feature revealed by our exact solution is that the

spin dynamics undergoes an oscillatory-to-damped transition at a critical dissipation

strength, which—in the absence of a coherent drive—cannot occur at the single-particle

or mean-field level. This feature, along with the more general structure of our solution,

is demonstrated by solving for spin dynamics in a nearest-neighbor Ising model. We

conclude this section by casting our solution in terms of a clear physical picture, in

which T1 decoherence (spontaneous excitation/relaxation), through its interplay with

the Ising dynamics, gives rise to an emergent non-local dephasing process. Section 4

applies the solution to calculating experimentally relevant observables in a dissipative

version of the one-axis twisting model. We show that the emergent dephasing discussed

in Sec. 3 severely diminishes the precision enhancement achievable compared to that

obtained in the absence of decoherence. However, we also show that, in special cases,

this degradation can be prevented by a measurement-based feedback mechanism. In Sec.

5 we summarize our results and pose a number of unanswered questions that would be

interesting to address in future work.

2. Coherent dynamics in Ising models

Our goal is to develop a unified strategy for describing the dynamics of a collection of

spin-1/2 particles interacting via Ising couplings and initially (at time t = 0) driven far
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out of equilibrium. In the absence of a magnetic field, the most general form for an

Ising model is‡
H =

∑

j<k

Jjkσ̂
z
j σ̂

z
k, (1)

where σ̂zj are z Pauli matrices and the indices j, k label lattice sites located at spatial

positions rj. The coupling constants Jjk are left completely arbitrary, and hence there

is not necessarily any notion of dimensionality. In many physical realizations of this

Hamiltonian, such as trapped ions, neutral atoms, or Rydberg atoms, the couplings

exhibit a roughly power-law spatial dependence, Jjk = J |rj − rk|−ζ .
Because there is no transverse field (a term ∝ h

∑
j σ̂

x
j ), the eigenstates of H can

always be chosen to be simultaneous eigenstates of all the σ̂zj (with eigenvalues σzj = ±1).

As a result, the partition function Z(β) = tr
[
e−βH

]
(with β the inverse temperature)

is identical to that of a classical Ising model, and the equivalence of all equilibrium

properties follows. This is the sense in which the Ising model without a transverse

field is often said to be “classical” (even though it is a quantum Hamiltonian acting

on vectors in a Hilbert space). In passing we note that classical Ising models can, of

course, be highly nontrivial: for example, disordered or frustrated couplings give rise to

classical glassiness [46, 47, 48]. Out of equilibrium, however, this notion of classicality

is inapplicable. While a thermal density matrix ρ(β) = Z−1e−βH commutes with H,

the density matrix describing some non-equilibrium initial conditions will not in general

commute with the Hamiltonian, and nontrivial dynamics will ensue. This dynamics—

which has no direct analogue in the classical Ising model—is generically characterized by

the growth of entanglement, leading in some special cases to spin-states with applications

in quantum information and precision metrology[34].

Everywhere in this manuscript, we assume the system starts in a pure state that

is a direct product between the various spins [Fig. 1(a)].§ The most general such state

can be specified by choosing spherical angles θj and φj describing the orientation of the

spin at each site j [Fig. 1(b)]. Defining

fj(1) = e−iφj/2 cos
θj
2
, fj(−1) = eiφj/2 sin

θj
2
, (2)

and states |σj〉 that are eigenstates of σ̂zj with eigenvalues σj = ±1, such a state can be

written

|Ψ(t = 0)〉 =
⊗

j

|ψj〉 (3)

=
⊗

j

∑

σj

fj(σj)|σj〉. (4)

For uniform θj = θ and φj = φ, the state |Ψ(0)〉 is frequently encountered in experiments

‡ Note that many references studying long-ranged Ising models—i.e. those for which
∑
j Jij is an

extensive quantity—often normalize the interaction by dividing by the number of spins N . We drop

this constant here to avoid cluttering the notation.
§ Unentangled but mixed initial density matrices can be easily accounted for by suitable averaging of

the expressions given over the initial ensemble.
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F igure 1. The only restriction on the initial state is that it be unentangled (i.e. 
a product state over the various sites in the spin model). For example, one can 
imagine (a) an initial state with some slow spatial variations in the spin angles due 
to inhomogeneities in the pulse strength of a Ramsey-type e..xperiment. The notation 
used to characterize the state of any one spin is shown on the Bloch sphere in (b). 

implementing Ramsey spectroscopy [49, 33, 32], and spatially varying angles could be 
used, for example, to describe the effects of defects or excitation inhomogeneities in such 
e>..'Periments [50, 51, 52]. 

Essentially all properties of the non-equilibrium dynamics are contained in unequal­
time correlation functions of the spin operators of and Q-j (these subsume, of course, 
the time evolution of all equal-time correlation functions). We focus first on the case 
where only operators o-f occur 

g = (Tc ( Q-j;; (t~) ·. ·a-;: (ti)Q-t (tm) · · · cl~~ (tl)) J · (5) 

Here a, b = ±, and the time dependence of the operators is given in the Heisenberg 
pictme of 1l 

(6) 

The time-ordering operator Tc orders aU operators along a closed-time-path C shown 
in Fig. 2, with times t occurring on the forward path and times t* occurring along the 
backwards path. This closed-time path ordering occurs naturally, for instance, in any 
perturbative treatment of additional non-commuting terms in the Hamiltonian. In Sec. 
3 we encounter this situation when treating a dissipative coupling to an environment, 
but the same. structure occurs for coherent couplings, e.g. a transverse field h l:i aj. 
Our goal in what follows is to obtain analytic expressions for such correlation functions 
in full generality, and then apply them to calculating a variety of experimentally relevant 
quantities. In order to describe g concisely, it is useful to define a variable ai on each 
site such that CXj = 1 if there. are no occurrences of the operators aj in g, and CXj = 0 
otherwise. Now we recognize that if an operator a-;=± occurs in g one or more times, 
the operator Q-j (appearing in the time evolution operator) is forced to take on a well 
defined value aj(t) at all points in time (see Fig. 2). As a result , we can rewrite the 
correlation function g as 

g = \ exp ( - i l dt JC(t))) IT [pi + a.iJ, (7) 
J 



CONTENTS 

where 

7 

:.: 
8-j(tl ) 8-J; (t2) 

) • t 

8-j (t;) 

'UJ(t) 'I ak(t) 
It; 10* It, 10* 

t2 tj 0 
tl 

0 
tl 

- 1 - 1 

F igu re 2. Graphical representation of a sample correlation function g = 
(Tc (aj(t3)&;(t2)af(ti))). Here aj = ak = 0, al"#j,k = 1, and the time-dependent 
functions oJ(t) and ak(t) are shown in the bottom two panels. 

Pi = (1 - ai)h (O"j(O)] fJ (O"j(O*)] , (8) 

(t = 0* marking the end of the backwards trajectory, Fig. 2), J is the complex conjugate 
off, fc is a t ime integral that runs along the closed-time path, and 

K(t) = ~ L Jik [(1 - ai)(1 - a~c)O"j(t)O"~(t) + 2(1 - ai)a~cO"j(t)&~ + aja~c&j&~] . (9) 
j,k 

The first thing to notice is that, since fc dt = 0, the final time-independent term in K 
vanishes. Since this is the only non separable term inK, the remaining time evolution is 
straightforward to compute. It is helpful to define the following parameters that depend 
on the functions O"j ( t) 

<p~c - L lj~c(1 - ai)a~c 1 dt O"j(t) (10) 
j,k c 

fJ - ~ L Jj~c(1 - ai)(1 - a~c) 1 dt o-j(t)O"~(t), (11) 
j,k c 

in terms of which 

1 dt K(t) = fJ + L <pk&~ . (12) 
c k 

The time-ordered correlation functions of Eq. (7) can now be compactly written 

g = e-it'J II (1h l e-i'PiOJ l'!f;i) II (Pi+ ai) (13) 
j j 

= e-it'J II [Pj + gj(rpi)], (14) 
j 

with 

(15) 

(gj will be useful momentarily). The equivalence between Eqs. (13) and (14) can 
be understood by explicitly comparing the expressions inside the product for the two 
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possible situations αj = 0, 1: If αj = 0, then ϕj = 0 and the expectation value is unity,

whereas when αj = 1 we find pj = 0 and the expectation value gives g+(ϕj).

The insertion of an operator σ̂zj (t) inside a correlation function G, which we denote

by writing G → Gzj , is relatively straightforward. If αj = 0, then clearly the substitution

σ̂zj → σzj (t) does the trick. If αj = 1, σ̂zj can be inserted by recognizing that the variable

ϕj couples to σ̂zj as a source term, and thus the insertion of σ̂zj (t) is equivalent to applying

i ∂
∂ϕj

to G. Both possibilities are captured by writing

Gzj =

(
(1− αj)σzj (t) + αji

∂

∂ϕj

)
G, (16)

which, using ∂g+(ϕ)/∂ϕ = −ig−(ϕ), can be simplified as

Gzj = e−iϑ
[
pjσ

z
j (t) + g−j (ϕj)

]∏

k 6=j

[
pk + g+

k (ϕk)
]
. (17)

Notice that if all operators occur at the same time t, e.g. when calculating equal-

time correlation functions, then ϑ = 0 and ϕj =
∑

k Jjk(1 − αk)αj (±2t) (with the ±
depending on whether σ̂±k is applied to the spin on site k).

2.1. Bloch vector dynamics

It is now straightforward to calculate the dynamics of the Bloch vectors

Sj(t) =
1

2
{〈σxj (t)〉, 〈σyj (t)〉, 〈σ̂zj (t)〉}. (18)

Because σ̂zj commutes with the Ising interaction the z component of spin is time

independent, and given by Szj = 1
2
g−j (0) = 1

2
cos θj. The transverse spin components

Sxj (t) and Syj (t) can be obtained from the real and imaginary parts, respectively, of

〈σ̂+
j (t)〉. A straightforward application of Eq. (13) gives

〈σ̂+
j (t)〉 = f̄j(1)fj (−1)

∏

k 6=j

g+
k (2Jjkt) (19)

=
1

2
eiφj sin θj

∏

k 6=j

(cos 2Jjkt− i sin 2Jjkt cos θk) .

For the special case where all spins point along θ = π/2 at t = 0 there is pure decay of

the Bloch vector without any rotation. In Fig. (3) we show the projection into the xy

plane of the Bloch vector S0(t) (where j = 0 labels the central site of a 55-site triangular

lattice) for an initial state in which all spins point in a single direction lying outside

of the xy plane (θ = π/4, φ = 0). The Bloch vector spirals inwards: The precession

can be understood as a mean-field effect [33], with the spin rotating due to the average

magnetization of the other spins, while the decay is due to the development of quantum

correlations. Note that, in a finite system, the length S(t) = |S(t)| of the total Bloch

vector S(t) =
∑

j Sj(t) decays even at the mean-field level for any ζ 6= 0. This decay,

however, is due to the existence of a spatially inhomogeneous mean-field, and cannot be

associated with the development of correlations.
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Figu re 3. Trajectories of the Bloch vector So projected into the xy plane, for all­
to-all (left) and dipolar (right ) couplings. Here j = 0 labels the central site (green 
dot in left pannel) of a 55-site triangular lattice, and all spins are initialized at 
{8;,4>j} = {7r/4,0}. In both cases we choose a nearest neighbor coupling J , and scale 
the time by Jtot = Lj-:po Jj(1·; - ro)( This rescaling of time is used so that different 
range interactions give rise to comparable precession rates. Note that at mean-field 
level the trajectory would close on itself. T he inward spiral indicates the growth of 
quantum correlations and resultant decay of the spin length, and- in these rescaled 
time units-is more significant for shorter-range interactions. 

2.2. Equal time correlation functions 

Spin-spin correlation functions can be calculated just as easily from Eqs. (13) and (16). 
All two-point correlation functions can be calculated from the four quantities 

CJ:(t) - (&j(t)&k(t)) 

cjkz(t) - (&t(t)&~(t)) 

cfk+(t) - (&t(t)&t(t)) 

cjk-(t) - (&t(t)&J:(t)) 

(20) 

(21) 

(22) 

(23) 

and their complex conjugates. Since the Hamiltonian commutes with all &j, the first one 
is given trivially by Cjk = gj(O)gJ;(O) = cosei cosek. The second one can be obtained 
from Eqs. (16) and (19) as 

ctz = fJ(l)fi( - 1)gJ:(2Jjkt) IT gt (2ljtt) 
l=fj,k 

= ~i<l>i sinOigJ:(2Jjkt) IT gi(2ljtt) , 
l=fj,k 

and the third and fourth are 

Ctf/ = }ei(</>i+<l>k) sin ej sin ek IT gt (2Jjlt + 21ktt) 
l#,j 

cfk- = ~ei(<l>;-<l>k ) sin ej sin ek IT gt (2Jjl - 21klt) 
lf'k,j 

(24) 

These correlation functions can be used, for example, to calculate the time 
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Figure 4. Optimal spin squeezing ξ (obtained be minimizing ξ(t) over time) for a

variety of power-law couplings Jij = J/|ri − rj |ζ . The different curves correspond to:

infinite ranged (ζ = 0, black solid line), coulombic (ζ = 1, blue dashed line), dipolar

(ζ = 3, red dotted line), and nearest neighbor (ζ =∞, green dot-dashed line). For this

calculation we take the spins to all point along the x-axis at t = 0, and use 55 sites of

a triangular lattice (the same as shown in Fig. 2).

dependence of the spin squeezing parameter

ξ(t) =
√
N ∆Smin(t)

S(t)
. (25)

Here ∆Smin(t) is defined to be the minimum uncertainty along a direction perpendicular

to S(t)‖. The squeezing parameter determines the phase sensitivity in a suitably

performed Ramsey experiment, which is enhanced over the standard quantum limit

whenever ξ < 1 [34]. For ζ = 0 (infinite-range interactions) the calculation was first

performed in [34]. However, in many experimentally relevant situations the interactions

have some finite range and the maximum achievable squeezing is diminished (Fig. 4).

2.3. Unequal-time correlation functions

It is also possible to calculate correlation functions involving the application of spin

operators at different times, which describe the propagation in time of a perturbation

to the system. As an example, we can easily calculate dynamical response functions of

the form

Sabij (t1, t2) =
1

4

〈
σ̂ai (t1)σ̂bj(t2)

〉

=
1

4
sin θi sin θje

−2iabJij(t2−t1)
∏

k 6=i,j

g+ (2at1Jik + 2bt2Jjk) . (26)

These can be combined to calculate dynamical response functions involving arbitrary

Pauli matrices, some examples of which are shown in Fig. 5.

As we will see in Sec. 3, such dynamical correlation functions allow us to calculate

the effect of spontaneous relaxation and excitation on the dynamics of the system.

‖ If we choose our x-axis to be in the direction of S(t), and define Ŝψ = 1
2

∑
j

(
cos(ψ)σ̂zj + sin(ψ)σ̂yj

)
,

then ∆Smin(t) is obtained by minimizing (〈Ŝ2
ψ〉 − 〈Ŝψ〉2)1/2 over ψ.
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Figure 5. Connected dynamical correlation function Syyij (t1, t2) = Syyij (t1, t2) −
Syi (t1)Syj (t2) for a 100 site 1D chain with ζ = 1 and nearest-neighbor coupling J .

In (a) we plot Syyi,i+r(0, t) for i = 50 and r = {2, 3, 4, 5} (from top to bottom). In (b)

we plot Syyi,i+1(t, t+ δt) (again for i = 50) as a function of t and δt. In both plots the

initial state consists of all spins pointing in the +x direction (θ = π/2 and φ = 0).

For instance, for all spins initially polarized along the x axis, the effect of the sudden

relaxation of a spin on site k at time ts on the time dependence of σ̂xj (for j 6= k) is

given by

〈
σ̂+
k (t∗s )σ̂xj (t)σ̂−k (ts)

〉
= Re

[
e2iJjk(t−2ts)

∏

l 6=j,k

cos(2Jjlt)

]

= cos(2Jjkt[1− 2ts/t])
〈
σ̂xj (t)

〉
. (27)

Note that this is the same time evolution we would obtain if no spontaneous relaxation

had occurred, the k’th spin were simply absent, and the j’th spin were coupled to a

longitudinal magnetic field of strength 2Jjk(2ts/t − 1). The reason for this behavior is

straightforward when considering the time evolution in the Schrödinger picture. The

application of σ̂−k to the wave function at time ts not only forces the k’th spin to point

down between times ts and t, but also destroys the piece of the initial wave function

having weight into states with σk = −1. Hence it is as if the k’th spin pointed up for a

time tup = ts, and down for a time tdown = t − ts, thus contributing an inhomogeneous

longitudinal magnetic field of strength 2Jjk(tup − tdown)/t = 2Jjk(2ts/t− 1) (the factor

of 2 arises because the Jjk couple to Pauli matrices rather than the spin-1
2

matrices).

3. Inclusion of dissipation

In the previous sections we have treated our Ising spins as a closed system. That is,

we neglected any coupling that might exist between our system and the outside world,

and thus initially pure states remained pure throughout the dynamics. In any physical

realization of the Ising model, this is clearly an idealization; decoherence occurs and often

must be accounted for. For example, Rydberg atoms suffer from spontaneous emission

[53], while ions couple strongly to fluctuating classical (electric and magnetic) fields
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and can decohere through off-resonant light scattering from the spin-dependent optical

dipole forces used to engineer the Ising interactions (this off-resonant light scattering can

produce spontaneous excitation/relaxation and dephasing) [54]. One way to envision

dynamics in an open system is by considering the probabilistic occurrence of sudden

perturbations of the system—quantum jumps—due to the system-environment coupling

[55]. As suggested in Sec. 2.3, and as will be explained in detail below, the strategy

we have developed for computing unequal-time correlation functions is well suited to

describing such effects.

3.1. Description of the problem

Given a density matrix % describing a system coupled to a reservoir, it is always possible

to express the expectation value of a system operator Â in terms of the system reduced

density matrix ρ = trR [%] as 〈Â〉 = trS[ρÂ]. Here trR(S) denotes a trace over the reservoir

(system) degrees of freedom—we will drop these subscripts from now on, since all future

instances of tr refer to a trace over system degrees of freedom only. In this language,

the effect of a finite system-reservoir coupling is that an initially pure system density

matrix ρ(0) ≡ |Ψ(0)〉〈Ψ(0)| will evolve into a mixed state (reflecting entanglement

between the system and reservoir degrees of freedom). When the system-environment

coupling is weak (i.e. small compared to the inverse of relevant system time scales) and

the reservoir correlation time is small, the Born-Markov approximation is justified and

the reduced system density matrix obeys a Markovian master equation of Lindblad form

[56]. We choose a very general master equation appropriate for describing the various

types of decoherence relevant to trapped ions [54], Rydberg atoms [53], and condensed

matter systems such as quantum dots [5] and nitrogen vacancy centers [6]:

ρ̇ = −iH (ρ)−Lud(ρ)−Ldu(ρ)−Lel(ρ), (28)

where

H (ρ) = [H, ρ] (29)

Lud(ρ) =
Γud

2

∑

j

(
σ̂+
j σ̂
−
j ρ+ ρσ̂+

j σ̂
−
j − 2σ̂−j ρσ̂

+
j

)
(30)

Ldu(ρ) =
Γdu

2

∑

j

(
σ̂−j σ̂

+
j ρ+ ρσ̂−j σ̂

+
j − 2σ̂+

j ρσ̂
−
j

)
(31)

Lel(ρ) =
Γel

8

∑

j

(
2ρ− 2σ̂zjρσ̂

z
j

)
. (32)

The first term involving a commutator describes coherent evolution due to the Ising

interaction, and the various terms having subscripts “ud”, “du”, and “el” correspond

respectively to spontaneous relaxation, spontaneous excitation, and dephasing¶.

¶ The “ud” and “du” subscripts remind us that the corresponding decoherence processes change a spin

state from “up” to “down” (or vice versa) along the z axis, while the “el” subscript reminds us that

dephasing is “elastic” in the sense that it does not change the spin projection along the z axis.
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Equation (28) has the formal solution ρ(t) = U (t)ρ(0), with

U (t) = exp [−t (iH + Lud + Ldu + Lel)] . (33)

The exponential of super-operators is meant to be understood via its series expansion,

in which the multiplication of two Lindblad super-operators implies composition

(L1×L2) (ρ) = L1 (L2 (ρ)). Our goal in what follows is to compute the time dependence

of an arbitrary operator Â at time t, given in the Schrödinger picture by

A(t) = tr
[
Âρ(t)

]
. (34)

3.2. Dephasing (T2 decoherence)

An immediate simplification follows from the observation that

[Lel,H ] = [Lel,Ldu] = [Lel,Lud] = 0. (35)

That the last two commutators vanish is less obvious than the first, but physically it

has a very clear meaning: Spontaneous relaxation/excitation on a site j causes the j’th

spin to have a well defined value of σzj , and thus to be unentangled with the rest of the

system. Since the dephasing jump operator σ̂zj changes the relative phase between the

states |σzj = ±1〉, whether spontaneous relaxation/excitation occurs before or after a

dephasing event only affects the sign of the overall wave function, which is irrelevant.

As a result, we can write

U (t) = e−tLele−t(iH +Lud+Ldu), (36)

and the time dependence of an arbitrary observable A(t) = Tr
[
ρ(t)Â

]
can be written+

A(t) = Tr
[
e−t(iH +Lud+Ldu)ρ(0)e−tLelÂ

]
. (37)

Note that application of a superoperator does not commute with operator products

(L (O1)O2 6= L (O1O2)), and we use the convention that a superoperator should act on

the operator immediately to its right. The effect of the time evolution due to Lel can

be understood by considering its effect on the Pauli operators:

e−tLelσ̂x,yj = e−Γelt/2σ̂x,yj , e−tLelσ̂zj = σ̂zj . (38)

In light of equations (37) and (38), we are free to ignore the dephasing terms in the

master equation at the expense of attaching a factor of e−Γelt/2 to every operator σx,yj
occurring inside an expectation value:

Tr
[
ρ(t)Â(σ̂xj , σ̂

y
j )
]
→ Tr

[
ρ(t)Â(e−Γelt/2σ̂xj , e

−Γelt/2σ̂yj )
]
, (39)

where ρ(t) on the right-hand side evolves under the master equation without the

dephasing term.

+ Note that we apply the operator e−tLel to Â rather than ρ(0). This is justified by the identity

tr
[
Lel(Ô1)Ô2

]
= tr

[
Ô1Lel(Ô2)

]
, true for arbitrary operators Ô1 and Ô2, which holds because the

jump operators σ̂zj are hermitian.
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3.3. Spontaneous relaxation and excitation (T1 decoherence)

Because the effects of dephasing are fully included by Eq. (39), the remaining problem

is to compute the time dependence of operators whose expectation values are taken in

a density matrix evolving simultaneously under H , Lud, and Ldu:

A(t) = Tr
[
e−t(iH +Lud+Ldu)ρ(0)Â

]
. (40)

Formally the challenge of including the effects of spontaneous relaxation and excitation

is related to the nontrivial commutation relation
[
H ,Lud(du)

]
6= 0. (41)

Physically, the obstacle is that spontaneous relaxation and excitation change the value

of σz for the spin which they affect, and this change feeds back on the system through

the Ising couplings. From the results on coherent dynamics presented in Sec. 2, we

know that time evolution under H alone is tractable. This suggests that we attempt

to solve Eq. (40) by rewriting

iH + Lud + Ldu = iHeff −R, (42)

where R contains all and only terms that do not commute with H , and then doing

perturbation theory in R. The above separation is accomplished by defining an effective

(non-Hermitian) Hamiltonian and its corresponding superoperator

Heff = H− iγ
∑

j

σ̂zj − iN
Γr

4
and Heff(ρ) = Heffρ− ρH†eff , (43)

and the recycling term

R(ρ) = Γud

∑

j

σ̂−j ρσ̂
+
j + Γdu

∑

j

σ̂+
j ρσ̂

−
j , (44)

in terms of which the time evolution operator is U (t) = e−t(iHeff−R). In Eq. (43) we

have defined γ = 1
4
(Γud − Γdu) and Γr = Γud + Γdu. Defining U0(t) = e−itHeff , we can

now expand the time evolution operator as a power series in R in order to obtain the

time-dependent expectation value A(t):

A(t) =
∑

n

∫ t

0

dtn . . .

∫ t2

0

dt1 tr
[
ÂU0(t− tn)RU0(tn − tn−1) . . .U0(t2 − t1)RU0(t1)ρ(0)

]
. (45)

This expansion is the underlying object being evaluated when Monte Carlo wave function

methods [55] (quantum trajectories) are used to approximate the density matrix. In

Appendix A, we show in detail how the series in Eq. (45) leads to an expression for

A(t) in terms of the closed-time path ordered correlation functions obtained in Sec. 2,

and the summation of that series is carried out in Appendix B. Here we will simply

summarize the calculation, and explain in physical terms the essential structure of the

Hamiltonian and decoherence that allows the result to be cast in closed form.

We begin by noting that when writing A(t) as a sum over closed-time path ordered

correlation functions, each operator inserted along the forward leg of the time-contour is
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accompanied by its hermitian conjugate appearing at the same t ime along the backward 
part of the t ime contour. If we had explicit ly included an environment and attempted 

to t race over it (rather than starting with a Markovian master equation), this feature 
of the problem would emerge as a direct consequence of the Markov approximation. 

As a result , it suffices to describe any term in the series expansion by specifying the 
occurrence of operators on the forward time contour. To facilitate this description, we 
introduce not at ion describing the occurrence of operators belonging to a part icular site 
j (see Fig. 6 for a summary). We take nt to be the number of t imes the operator 8-f 
occurs along the forward t ime path, { t{ , . .. , fn } to be the set of t imes at which jump 

J 

operators are applied to site j, n j = Rj + Rj, ""j = ±1 depending on whether the 
operator at the latest time along the forward path is 8-f , and 

Tj = (1 - aj) 1t aj(t) . (46) 

We will also use bold symbols R , ,.,, and T to specify t he complete set of t hese variables 

on all lattice sites. Note that specifying nj and ""j determines bot h R j and Rj , 
since two consecutive (in t he closed-time-path-ordering) applications of an operator 8-f 
gives zero. Therefore, we will only include the nj and ""j as explicit arguments in the 
correlation functions below. T hese variables are sufficient to determine the value of any 
term in the series expansion of A (t), so we do not need to keep t rack of the individual 
times at which each jump operator is applied. 
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Tj = - 2t{ + 2~ - t 

Figu re 6. A few examples of how spin-raising and spin-lowering operators belonging 
to the j'th site may occur along the forward time evolution, and the notation used to 
characterize t hese occurrences. 

All nonzero terms in Eq. (45) are captured by summing over the n j and ""j, and 
integrat ing over the t imes t{ , .. . , t~i, denoted 

(47) 
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If Â can be written as a product of operators σ̂
bj
j (bj = ±) on sites j contained in a set

η, then A(t) can be compactly expressed (see Appendix A) as

A(t) =
∑∫

P(R,κ, τ )G(s,R, τ ). (48)

The prefactor

P(R,κ, τ ) =
∏

j

Pj(Rj, κj, τj) =
∏

j

(
e−Γrt/2 (Γud)R

−
j (Γdu)R

+
j e−2γτj

)
, (49)

is closely related to the probability that a series of jumps described by the variables R,

κ, and τ has occurred. Defining the symbol s as the vector of quantities sj = ϕj/t−2iγ,

the correlation functions

G(s,R, τ ) =
∏

j

Gj(sj,Rj, τj) =
∏

j

(
e−iϑj(τj)

[
pj + g+

j (sjt)
])
, (50)

are of the general form presented in Sec. 2. Careful bookkeeping reveals that the

variables ϕ and ϑ defined in Sec. 2 are given by

ϕj = 2t
∑

k∈η

bkJjk, (51)

ϑ(τ ) =
∑

j

ϑj(τj) (52)

ϑj(τj) =

{
0 if j ∈ η;

−2τj
∑

k∈η bkJjk if j /∈ η. (53)

Note that the Rj dependence in Gj is hidden in the implicit dependence of pj and g+
j on

αj (which for j /∈ η satisfies αj = δRj ,0). When evaluating the sums and integrals in Eq.

(48), one must keep in mind that, whenever j ∈ η, terms with Rj 6= 0 vanish because

they contain the consecutive application of either σ+
j or σ−j . Physically, the vanishing of

such terms reflects the lack of coherence for any spin that has undergone even a single

spontaneous spin flip.

The factorization of P into functions Pj of local site variables {Rj, κj, τj} is a direct

consequence of the single particle nature of the anti-Hermitian part of Heff . Physically,

this factorization occurs because the dissipation we are considering is uncorrelated from

site to site (in contrast to the collective relaxation processes that arise, e.g., in the

context of Dicke superradience [57]). The factorization of the correlation function

G into functions Gj of local site variables {Rj, τj} is a more surprising result, and

depends crucially on the occurrence of jump operators at the same times on the forward

and backward time evolution (Appendix A). The γ appearing in the argument of

g+
j (sjt = ϕj−2iγt) affects the value of any term in Eq. (48) in which no jump operators

are applied to site j (such that αj = 1 and therefore g+
j (sjt) 6= 0). It arises from the

term −iγσ̂z in Heff [Eq. (43)], and decreases the expectation value of σ̂zj for γ > 0 (when

spontaneous relaxation outweighs spontaneous excitation). This effect is often referred

to as null measurement state reduction: Gaining knowledge that the spin on site j has

not spontaneously flipped affects the expected value when measuring σ̂zj .
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Because G and P both factorize, we need only to evaluate the quantities

Φj(sj, t) =
∑∫

j

Pj(Rj, κj, τj)Gj(sj,Rj, τj) (54)

in terms of which

A(t) =
∏

j

Φj(sj, t). (55)

The explicit dependence on sj is included to remind the reader that, after the sums and

integrals (over Rj, κj, and tj1 . . . t
j
Rl

) have been carried out, sj is the only site-dependent

quantity on which Φj(sj, t) depends. We evaluate these sums and integrals in Appendix

B, obtaining

Φj(sj, t)=




e−Γrt/2pj if j ∈ η;

e−Γr/2
[
cos
(
t
√
s2
j − r

)
+
(

Γr

2
+ iϕj cos θj

)
t sinc

(
t
√
s2
j − r

)]
if j /∈ η,

(56)

where r = ΓudΓdu.

If Â also contains an operator σ̂zl (t) (with l /∈ η), we denote its expectation value

by Azl (t). The insertion of σ̂zl must be dealt with at the point of Eq. (54). Keeping in

mind the discussion surrounding Eq. (16), and remembering that sl = ϕl/t − 2iγ, we

must replace Φl(sl, t) with

Ψl(sl, t) =
∑∫

l

Pl(Rl, κl, τl)

(
(1− αl)κl + αl

i

t

∂

∂sl

)
Gl(sl,Rl, τl) (57)

Therefore we have

Azl (t) = Ψl(sl, t)
∏

j 6=l

Φj(sj, t), (58)

and in Appendix B we find

Ψl(sl, t) = e−Γr/2

[
cos
(
t
√
s2
j − r

)
+

(
isl + 2γ − Γr

2
cos θl

)
t sinc

(
t
√
s2
j − r

)]
. (59)

3.4. A simple application: under-damped to over-damped transitions

These equations reveal that correlation functions will generally undergo a qualitative

transition in dynamics—from over-damped to oscillatory—whenever the condition s2
l =

r is satisfied. This behavior is the most clearly manifest when the couplings Jij have

a simple structure, such as nearest neighbor or all-to-all. For instance, for nearest-

neighbor coupling in 1D, assuming {Γel,Γud,Γdu} = {0,Γ,Γ}, and choosing the initial

state to point along the x−axis, we find (ignoring boundary effects)

Sx(t) =
N
2
e−3Γt

[
cos
(
t
√

4J2 − Γ2
)

+ Γt sinc
(
t
√

4J2 − Γ2
)]2

, (60)

which becomes critically damped at Γc = 2J (see Fig. 7). It is interesting to note that

this solution is similar in structure to the damping of a classical harmonic oscillator

or a coherently driven two-level system (c.f. the weak-coupling limit of the spin boson

problem [58, 14]). It is important to contrast this behavior with that of a single spin
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Figure 7. Dynamics of the transverse spin length Sx in a 1D nearest neighbor Ising

model, with {Γel,Γud,Γdu} = {0,Γ,Γ}, for several different values of Γ between 0

(undamped) and Γc (critically damped): Γ = 0 (black solid line), Γ = Γc/8 (blue

dashed line), Γ = Γc/4 (red dotted line), and Γ = Γc (green dot-dashed line).

coupled to a Markovian bath, where the decoherence we consider only causes a damped-

to-oscillatory transition in the presence of a transverse magnetic field; the Hamiltonian

dynamics must be able to restore coherence in the basis for which the environment

induces a measurement. In the present case, there is no transverse field, and it is not a

priori obvious that such behavior should emerge. In fact, a simple mean-field estimate

of the dynamics fails to capture the oscillatory-to-damped transition. Using a site-

factorized ansatz for the density matrix, ρ =
⊗

j ρj, it is straightforward to see that

[33]

SxMF(t) =
N
2
e−Γt cos(4J cos(θ)t). (61)

Thus mean-field theory, which assumes an unentangled density matrix, always predicts

under-damped dynamics; the transition to over-damped behavior captured by the exact

solution depends crucially on the competition between decoherence and entanglement.

3.5. Qualitative insights into decoherence in interacting many-body systems

In addition to providing an efficient way to compute arbitrary observables for an open

many-body system, the above calculation provides significant insight into the interplay

beween decoherence and interactions. To keep the notation as simple as possible, we will

focus on the case of nearest-neighbor coupling on a lattice with coordination number

z, and calculate the time dependence of the transverse spin length of a single spin

sx(z, t) = 〈σxj 〉 (for an infinite system it is independent of j) for a state in which all

spins are initially polarized along the x-axis. In the absence of decoherence but in the

presence of a longitudinal magnetic field of strength h, application of results in Sec. 2

gives

sxh(z, t) =
1

2
Re
[
e−2iht cosz(2Jt)

]
. (62)
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In the absence of a longitudinal field but including equal rates of spontaneous

relaxation/excitation (Γud,du ≡ Γ, γ = 0), we find instead [from Eqs. (55) and (56)]

sx(z, t) = e−(z+1)Γrt/2
[
cos
(
t
√

4J2 − Γ2
)

+ Γt sinc
(
t
√

4J2 − Γ2
)]z

. (63)

However, it is instructive to temporarily hold off evaluating the sums and integrals

implicit in the Φj, and work directly with Eqs. (54) and (55):

sx(z, t) = Φj(sj, t)
NN∏

k

Φk(sk, t)
D∏

l

Φl(sl, t). (64)

In Eq. 64 we have divided the product over lattice sites into three parts: the j’th site,

the nearest neighbor sites (product labeled by NN) and the rest of the lattice (product

labeled by D, reminding us that these sites are Disconnected from site j). First, we

observe that Φj(sj, t) = 1
2
e−Γrt/2. Next we evaluate

∏D
l Φ(sl = 0, t) = 1 [the sl = 0

because these sites are disconnected from the j’th site, and hence Jjl = 0, see Eq.

(51)], which follows from a sum rule
∑∫

l
Pl(Rl, κl, τl)Gl(0,Rl, τl) = 1 (derivable from

tr [ρ(t)] = 1). It remains only to evaluate

NN∑∫ (NN∏

j

Pj(Rj, κjτj)Gj(sj = 2J,Rj, τj)

)
, (65)

where we’ve adopted an abbreviated notation
∑NN∫ =

∏NN
j

∑∫
j

for the sums and

integrals over the nearest-neighbor sites. Utilizing∗
NN∏

j

Gj(2J,Rj, τj) = 2−Re−2iht cos(2Jt)z−R =
2

2R
sxh(z −R, t), (66)

where R =
∑NN

j Rj, τ =
∑NN

j τj, and h = Jτ/t, and noting that sxh(z − R, t) only

depends on τ and R (and not any other combinations of the local site variables), we

can then write

sx(z, t) = e−Γrt/2

z∑

R=0

∫
dh P (R, h)sxh(z −R, t). (67)

Here

P (R′, h′) =
t

J

NN∑∫ (NN∏

j

Pj(Rj, κj, τj)

2Rj

)
δ(τ − τ ′)δR,R′ (68)

is obtained by carrying out the sums and integrals while holding R and τ fixed (the

factor of t/J arises when changing variables from τ to h in the remaining integral).

Equation (67) has a very suggestive form. The factor of e−Γrt/2 out front is the

single-particle contribution of T1 decoherence, and would be present in the absence

of interactions; it reflects the probability that the j’th spin has not spontaneously

flipped before the time t (a prerequisite for having any coherence along x). As the

∗ Note that in the final equality of Eq. (66), we have assumed that the left-hand side is real. While

this is not strictly true, the imaginary part of the left-hand side will vanish after the integral over h is

carried out below, so we make no mistake by ignoring it.
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(a) (b) 
t 

Figu re 8. The interplay between Ising interactions and spontaneous spin flips induces 
a source of decoherence beyond the direct action of the spin flips themselves. In (a), the 
j 'th (central) spin evolves due to t he Ising couplings with its neighbors. Spontaneous 
relaxation/ excitation by its neighbors couples back (via the Ising interact ions) as a 
temporally fluctuating longitudinal field (b), inducing a non-local dephasing process. 

z nearest neighbors evolve in time, they can undergo spin flips which cause them to 
fluctuate in time between pointing along +z and - z [Fig. 8(a)]. Even once flipped, 
they influence (via the Ising couplings) the j'th spin in a manner formally equivalent 
to a longitudinal magnetic field of strength h = J(r j t) [Fig. 8(b)]. The quantity 
P(R, h) describes the probability that n nearest neighbors have spontaneously flipped, 
collectively contributing an effective magnetic field of strengt h h to the time evolution of 
the j 'th spin. The sum over nand integTal over h then average the resulting dynamics 
for the j 'th spin, sh,(z - n, t), over the possible behaviors of its neighbors. For a given 
n, the integral over h reduces the Bloch vector length by an amount depending on 
the width in h of the dist ribution P (R , h). Physically, this integral captures the phase 
diffusion of the j 'th spin due to the stochastic temporal fluctuat ion of its immediate 
environment (neighboring spins, as shown in Fig. 8). Thus we see very clearly that the 
interplay between spontaneous spin flips and coherent int eract ions leads to an emergent 
source of dephasing: Flipping spins act as fluctuating magnetic fields (mediated by 
the Ising interactions) on other spins, even if these latter spins have not been directly 
affected by decoherence. 

4. One-axis twisting in a n op en system 

The expressions in Eqs. (56) and (59) furnish a complete description of correlation 
functions, and in special cases afford descriptions of common experimental observables 
and entanglement wit nesses. As a concrete example, we will use these expressions to 
study the development and loss of entanglement in an open-system version of the one­
axis twisting (OAT) model. It is important to keep in mind, however, that most of 
the following results can be generalized to take into account arbit rary Ising couplings. 
Defining the collective spin operator §z = ~ l:i aj, the OAT Hamiltonian is given by 

1-l = 2J(sz? , (69) 
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Figure 9. Spin squeezing (dB) of N = 103 spins with no decoherence (black solid

line), pure dephasing ({Γel,Γud,Γdu} = {Γ, 0, 0}, blue dashed line), and equal amounts

of spontaneous relaxation/excitation ({Γel,Γud,Γdu} = {0,Γ/2,Γ/2}, red dotted line).

In (a) we show the optimal squeezing (optimized over angle ψ) as a function of time.

In (b) we plot the normalized variance, evaluated at time ts, as a function of the

squeezing angle ψ. Note that at the angle of maximal squeezing (ψ ≈ 0), dephasing

is much less detrimental than spontaneous relaxation/excitation, whereas both have

a similar effect at the angle of maximal antisqueezing (ψ ≈ π/2). In all plots, we

choose Γ = 1/ts, with ts = ~N−2/3(31/6/2J) being the time of optimal squeezing in

the absence of decoherence.

which is the ζ = 0 limit of our more general Ising model [Eq. (1)]. For an initial

state polarized along the x-axis (θ = π/2, φ = 0), it is well known [34] that the OAT

Hamiltonian generates spin squeezed states at short times [the squeezing is optimal

at ts = ~N−2/3(31/6/2J)], a fact that has been exploited in a number of beautiful

experiments [35, 36]. In principle (i.e. in the absence of any decoherence or other

imperfections), these spin squeezed states allow for precision metrology with a phase

sensitivity that scales as N−5/6, thus beating the N−1/2 scaling of the standard quantum

limit. At time t∗ = ~π/4J , the OAT Hamiltonian gives rise to a GHZ (or Schrödinger

cat) state [59], which in principle affords Heisenberg limited (∼ N−1) sensitivity in phase

estimation. In the following subsections, we use the results of Sec. 3 to extend calculate

spin squeezing and characterize the metrological utility of (and GHZ-type entanglement

of) the state at t*, which would be the GHZ state in the absence of decoherence.

4.1. Spin Squeezing

Given the results in Sec. 3, analytic calculation of the squeezing parameter in the

presence of arbitrary decoherence rates Γel, Γud, and Γdu is now straightforward. As

can be seen in Fig. 9(a), the effect of T2 decoherence is much less severe than that

of T1 decoherence. One reason for this behavior is that the minimum variance ∆S2
min

occurs at an angle ψ (in the yz plane) only slightly deviating from the z axis. Therefore

dephasing, which can be thought of as random rotations of the individual spins around

the z-axis, does not introduce much noise in the squeezed quadrature (see Fig. 9b). To

the contrary, spontaneous relaxation/excitation processes introduce noise directly into
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Figure 10. Coherence of a GHZ state created in the presence of various types

of decoherence: {Γel,Γud,Γdu} = {Γ, 0, 0} (dephasing, dashed blue line) and

{Γel,Γud,Γdu} = {0,Γ, 0} (spontaneous relaxation, dotted red line). The region above

the solid black line is guaranteed to have N -particle GHZ type entanglement.

the squeezed quadrature.

4.2. Macroscopic superposition states

In the absence of decoherence, the OAT Hamiltonian is known to give rise to N -spin

GHZ states]

|GHZ〉 =
| ⇑x〉+ iN+1| ⇓x〉√

2
, (70)

at a time t∗ = ~π/4J , where | ⇑x〉 (| ⇓x〉) denotes the state where all spins point along

the positive (negative) x-axis [59]. These entangled states afford Heisenberg-limited

phase sensitivity [60], and are a resource for certain types of fault-tolerant quantum

computation ([37] and references therein). However, they are also a canonical example

of a fragile quantum state, and their usefulness is easily destroyed by decoherence [61].

The effect of dephasing on the production of GHZ state via one-axis twisting is well

understood [61, 62]. With the results of Sec. 3, however, we can easily calculate

the effects of dephasing and spontaneous relaxation/excitation on the production of

a GHZ state by one-axis twisting in a unified way. In this section we explicitly compare

the effects of dephasing to the those of pure spontaneous relaxation ({Γel,Γud,Γdu} =

{0,Γ, 0}).
We first characterize the GHZ state by its phase coherence, obtained from the

expectation value C = tr
[
ρ(t)Ĉ

]
of the operator

Ĉ = | ⇑x〉〈⇓x |
=

1

2N

∏

j

(σ̂zj + σ̂+
j − σ̂−j ). (71)

] Strictly speaking the form given only applies when the particle number N is even. For odd N the

GHZ state created looks similar, but is composed of states polarized along the ±y direction.
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The quantity C characterizes the extent to which the superposition between the

macroscopically distinct states | ⇑x〉 and | ⇓x〉 is quantum mechanical (rather than

a classical mixture). Formally, C serves as a witness to N -particle entanglement of

the GHZ type, with entanglement guarantied whenever |C| > 1/4 is satisfied [63, 37].

Application of the results in Sec. 3 yields

C(t) =
1

2N

N∑

m=1

m∑

n=0

(N
m

)(
m

n

)
e−mΓtΨ (2J [2n−m]− 2iγ, t)N−m , (72)

and in the absence of decoherence one finds |C(t∗)| = 1/2. As can be seen in Fig. 10, the

effect of spontaneous relaxation on the coherence C is comparable to (but worse than)

the effect of dephasing. Both types of decoherence cause a loss of phase coherence when

Γ ∼ J/N , with the factor of N responsible for the fragility of a GHZ state composed

of a large number of spins.

We can also directly calculate the metrological usefulness of a GHZ state prepared in

the presence of spontaneous relaxation. The favorable sensitivity of the state ρ∗ ≡ ρ(t∗)

to rotations by angle Ω around the x-axis can be understood as the strong dependence

of the expectation value of the parity operator π̂ =
∏

j σ̂
z
j ,

P (Ω) = tr [ρ∗(Ω)π̂] (73)

= tr

[
ρ∗
∏

j

(
σ̂zj cos Ω− σ̂yj sin Ω

)
]

(74)

on the angle Ω (where ρ∗(Ω) results from rotating ρ∗ about the x-axis by angle Ω) [60].

The phase sensitivity of a GHZ state, denoted M , is given (see Ref. [62]) by

M =
|∂P (Ω)/∂Ω|

∆P (Ω)

∣∣∣∣
Ω=0

≈
∑

j

| tr[ρ∗σ̂yj
∏

k 6=j

σ̂zk]|, (75)

where ∆P (Ω) = 1 − P (Ω)2 (taking into consideration that π̂2 = 1) is the uncertainty

of the operator π̂ calculated in the state ρ∗. The approximation in Eq. (75) is simply

that P (0) ≈ 0 and therefore ∆P (0) ≈ 1. This can be checked explicitly by looking at

the large N limit of

P (0) = tr [ρ∗π̂] =

(
2γ
(
e−Γrt − 1

)

Γr

)N
. (76)

In the absence of decoherence, M = N and the Heisenberg limit of phase sensitivity

is obtained. By generalizing Eq. (58) to the case where σ̂zj is inserted on N − 1 of the

sites, we find that in the presence of decoherence

M = N e−Γt/2 Im
[
Ψ(2J − 2iγ, t∗)N−1

]
. (77)

This result is plotted in Fig. 11 for different types of decoherence. The enhancement

in M survives T1 decoherence only if NΓrt
∗ . 1 is satisfied (the scaling by N is

shown in the inset). This result should be contrasted with the effect of T2 decoherence

({Γel,Γud,Γdu} = {Γ, 0, 0}). In this case Ψ(2J, t∗) = 1, yielding

M = N e−Γt/2, (78)
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Figure 11. Metrological gain over the standard quantum limit (M /
√
N ) of N = 100

spins evolved under the OAT Hamiltonian to a time t∗ (where a GHZ state exists in

the absence of decoherence). We plot M as a function of decoherence rates for pure

dephasing ({Γel,Γud,Γdu} = {Γ, 0, 0}, red dotted line) and for spontaneous relaxation

({Γel,Γud,Γdu} = {0,Γ, 0}, blue dashed line). Note the two curves are produced by

rescaling the decoherence rates in different ways (in order to show them in the same

plot); if the scaling were the same for both plots, M would decay much more quickly

for spontaneous relaxation than for dephasing. Inset: Log-log plot of Γ∗, defined to

be the decoherence rate for which M has decreased to N/e, as a function of N (blue

circles). The green dot-dashed line represents (up to a multiplicative constant) 1/N
scaling.

and hence the precision enhancement decays on a timescale that is independent of N
(consistent with results in Ref. [62]). In contrast, the entanglement witness C decays at

an N -enhanced rate for either type of decoherence.

4.3. Removing the effects of decoherence via measurement-base feedback

In Sec. 4.2, we showed that spontaneous relaxation significantly degrades the precision

enhancement of a GHZ state unless Γ . J/N is satisfied. In this section, we will

show that a time-resolved record of spontaneous relaxation events provides sufficient

information to restore the phase enhancement under the much less stringent constraint

Γ . J . In particular, we are imagining a situation where spontaneous spin flips are

accompanied by the real spontaneous emission of a photon, such that they can be

measured by photodetection.

For reasons that will become clear in what follows, we take our initial state to have

all spins pointing at an arbitrary angle θ (rather than θ = π/2, as assumed in Sec. 4.2).

Our goal is to evaluate the expectation value of the operator
∑

j σ̂
y
j

∏
l 6=j σ̂

z
l at time t∗,

which was accomplished above by appealing directly to Eqs. (59) and (56). Pursuing

a strategy similar to that employed in Sec. 3.5, we first observe that n spins initialized

at θ = π/2, evolving in the absence of decoherence but in the presence of a longitudinal
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field of strength h, would yield the phase-sensitivity enhancement††
M (n, h) = n

∣∣Im
[
e−2iht∗(i sin 2Jt∗)n−1

]∣∣ (79)

= |sin(2ht∗ + π(n− 1)/2)| . (80)

Now we calculate M in the presence of decoherence, but we hold off evaluating the

multiple sums and integrals that yield the functions Ψl(sl, t) in closed form, and instead

obtain M by working directly with Eq. (48)

M =
∑∫

P(R,κ, τ )G(s,R, τ ). (81)

First, we evaluate G(s,R, τ ), obtaining

G(s,R, τ )=(N −R) cos2R
(
θ

2

)
Im
[
e−2iJτg−(s = 2Jt− 2iγt)N−R−1

]
, (82)

which only depends on the Rj and τj only through their sums R =
∑

jRj and

h = (J/t)
∑

j τj. With the judicious choice θ = π − 2 tan−1
(
e2γt∗

)
, we can rewrite

g−(2Jt− 2iγt) =
i sin(2Jt)

cosh 2γt
, (83)

and thus we obtain

M =
∑∫

P
(

cos2R(θ/2)

coshN−1(2γt)

)
M (N −R, Jτ/t). (84)

The initial value of θ, which places the initial spins slightly above the xy plane, was

carefully chosen so that g−(2Jt− 2iγ) ∝ sin(2Jt). This finite tipping angle is required

to precisely cancel the null measurement effect, which causes the z-projection of each

spin to change in time due to the lack of emission of a photon, and thus ensures that at

time t∗ the unflipped spins are brought down into the xy plane. Finally, we can write

M =
∑

R

∫
dh P (R, h)M (N −R, h = Jτ/t), (85)

where P (R, h) is obtained by carrying out
∑∫

in Eq. (84) with R and τ = ht/J held

fixed. As in section 3.5, we can interpret P (R, h) as the probability to have R flipped

spins contributing an effective magnetic field h to the dynamics of the remaining spins.

For each particular value of R and h, the function M (n, h) (where n = N −R) yields

the precision enhancement of a GHZ state produced from n spins in a longitudinal field

of strength h.

If an experiment can record the times (t1, . . . , tR) at which photons are emitted,

thus gaining access to both R and

h =
J

t

R∑

j=1

(2tj − t), (86)

then that experiment produces the conditional density matrix ρ(n, h), corresponding to

a GHZ state of n spins produced by one-axis twisting in the presence of the longitudinal

††Note that, for h = 0 and n odd, M (n, h) = 0. This is because the GHZ state created when n is odd

is rotated from the GHZ states we consider by an angle of π/2 in the xy plane.
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field h. The effect of this field is simply to rotate the system around the z-axis by a

(shot-to-shot random) angle δ = (ht∗+π(n−1)/2). However, rotation by a random angle

only causes decoherence if the value of that angle is not known. Because the experiment

measures δ indirectly via the photon emission record, it is possible to remove the effect

of h in any experimental shot by applying the rotation operator R(δ) = exp (−iSzδ) to

the conditional density matrix ρ(n, h). In this way we create

ρ(n, 0) = R(δ)ρ(n, h)R†(δ), (87)

which is GHZ state of the form in Eq. (70) containing n spins, and thus obtain a precision

enhancement of n. Because the expected value of n will decay only at the bare rate Γ,

there is no longer an enhancement by N in the decay of precision. This measurement-

based coherent feedback can also be applied in the context of spin-squeezing, where once

again it can vastly improve the metrological usefulness of a state generated by one-axis

twisting in the presence of spontaneous relaxation.

Before concluding, we note that this feedback strategy could, in principle, be applied

to situations where both spontaneous relaxation and spontaneous excitation are present,

and even when the coupling constants Jij are not uniform. However, in the former case

it is necessary to independently record the photon emission record corresponding to

excitation and relaxation processes, and in both cases it is necessary to obtain site-

resolved (in addition to time-resolved) information about the photon emissions.

5. Conclusions and future directions

In this paper we have presented a comprehensive theoretical toolbox for understanding

far-from equilibrium dynamics in Ising models both with and without decoherence. The

underlying objects of interest are unequal-time correlation functions, which are then

used to compute spin squeezing, dynamical response functions, entanglement witnesses,

and the effects of dephasing, spontaneous excitation, and spontaneous relaxation on

the system dynamics. We believe these tools will be of fundamental importance in

understanding and optimizing a diverse array of systems in which entanglement is

engineered by Ising interactions. In particular, these tools enable the quantification

of detrimental effects due to system-environment coupling, even when the coupling does

not commute with the Ising interactions.

The ability to compute dynamics in any dimension and in the presence of non-

commuting noise is a particularly surprising result; it is well known that the inclusion of

non-commuting but coherent linear couplings admits solutions only in highly specialized

geometries, such as 1D nearest neighbor chains. The key structures that allow

our solution for the open system to proceed are (1) the statistical independence of

decoherence processes on different sites and (2) a symmetry between the forward and

backward time evolution along a closed-time path, i.e. the Markov approximation. It

would be interesting to understand to what extent this simplification generalizes to

other models where the incorporation of decoherence would—at first sight—appear to

be intractable.
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Appendix A.

The main goal in this Appendix is to explicitly cast the series expansion for arbitrary

observables in terms of the time-ordered correlation functions encountered in Sec. 2 of

the text, thus bridging the gap between Eqs. (45) and (48) of the text. The summation

of the series is carried out later in Appendix B.

Our starting point is the series expansion for the time-evolution superoperator

U (t) =
∑

n

∫
dtn . . .

∫
dt1U0(t− tn)RU0(tn − tn−1) . . .U0(t2 − t1)RU0(t1). (A.1)

This leads immediately to the expression for A(t) given in the manuscript [Eq. (45),

reproduced here for convenience]:

A(t) =
∑

n

∫ t

0

dtn . . .

∫ t2

0

dt1 tr
[
ÂU0(t− tn)RU0(tn − tn−1) . . .U0(t2 − t1)RU0(t1)ρ(0)

]
. (A.2)

In order to simplify notation in the following equations, we define time dependent jump

operators in the Heisenberg picture of the effective Hamiltonian

J̃ (j, a, t) =
√
γaeitHeff σ̂aj e

−itHeff , (A.3)

where γ+(−) = Γdu(ud). Defining

∑∫
≡

∞∑

n=0

∑

j1,...,jn

∑

a1,...,an

∫ t

0

dtn . . .

∫ t2

0

dt1, (A.4)

we can now express A(t) as

A(t) =
∑∫

tr
[
Âe−itHeff J̃ (jn, an, tn) . . . J̃ (j1, a1, t1)ρ(0)J̃ †(j1, a1, t1) . . . J̃ †(jn, an, tn)eitH

†
eff

]

=
∑∫ 〈

J̃ †(j1, a1, t1) . . . J̃ †(jn, an, tn)Ã(t)J̃ (jn, an, tn) . . . J̃ (j1, a1, t1)
〉
. (A.5)

In the above expression, the time dependence of the operator Ã is defined as

Ã(t) = eitH
†
eff Âe−itHeff (A.6)

which is distinct from the time dependence assigned to the operators σ̂aj in defining

the J̃ (j, a, t) (of course this distinction vanishes when considering time evolution

under a Hermitian Hamiltonian). In the final line the trace has been removed (upon
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rearrangement, it becomes a completeness identity), and the expectation value is in the

initial pure state |ψ(0)〉.
The correlation functions in Eq. (A.5) are explicitly closed-time path ordered, with

the time ordering enforced in the limits of integration. The remaining task is to explicitly

separate all time-dependence of the correlation functions in Eq. (A.5) due to the anti-

Hermitian part of Heff , so that we can directly employ the results from Sec. 2. Because

the anti-Hermitian part of the effective Hamiltonian commutes with H, this is relatively

straightforward. As in the manuscript, we restrict ourselves at this point to considering

operators Â that can be written as products of spin-lowering and spin-raising operators

σ̂
bj
j (bj = ±1) on sites j ∈ η. We can then write

Ã(t) = exp

[
−NΓrt

2

]
exp


−2γt

∑

j /∈η

σ̂zj


 Â(t), (A.7)

with Â(t) evolving in the Heisenberg picture of H alone

Â(t) = eitHÂe−itH. (A.8)

Similarly, we can rewrite

J̃ (j, a, t) = e2aγt√γaσ̂aj (t), (A.9)

with

σ̂aj (t) = eiHtσ̂aj e
−iHt (A.10)

evolving in the Heisenberg picture of H.

Replacing the operators in Eqs. (A.7) and (A.9) back into Eq. (A.5), we are

essentially ready to read off the results of a given term from the expressions for

correlation functions in Sec. 2. However, anticipating that the terms in the series will

be site-factorizable, we pause here to introduce some notation describing the occurrence

of jump operators belonging to a particular site. Because jump operators always occur

at the same time along the forward and backward evolution (and each operator on the

backward path is the complex conjugate of a corresponding operator on the forward

path), we only need to describe the jump operators applied during the forward time

evolution. First, we define R±j to be the total number of jump operators of type σ̂±j
applied to site j along the forward time evolution, and Rj = R+

j +R−j . We also define

{tj1, . . . , tjRj
} to be the set of times at which those jump operators are applied to the site

j, and

τj = (1− αj)
∫ t

0

σzj (t) (A.11)

= (1− αj)κj


t− 2

Rj∑

n−1

tjn(−1)Rj−n


 (A.12)

to be the total amount of time the j’th spin has spent pointing up minus the time

it has spend pointing down, again during the forward evolution only (note that
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∫
C σ

z
j (t) = 0 ∀j 6= η). Finally we use the bold symbols R,κ, τ to represent vectors

of the quantities Rj, κj, and τj, respectively.

Now we can write A(t) as

A(t) =

∑∫
P(R,κ, τ )

〈
σ̂−a1
j1

(t1) . . . σ̂−anjn
(tn)Â(t)σ̂anjn (tn) . . . σ̂a1

j1
(t1) exp


2γt

∑

j /∈η

αjσ̂
z
j



〉
, (A.13)

where

P(R,κ, τ ) =
∏

j

Pj(Rj, κj, τj) (A.14)

=
∏

j

(
e−Γrt/2 (Γud)R

−
j (Γdu)R

+
j e−2γτj

)
. (A.15)

The exponential of operators σ̂zj Eq. (A.13) leads to the so-called null measurement

state reduction: it causes the jth spin to drift out of the xy plane in the event that it

has not spontaneously relaxed (αj = 1).

The expectation value in Eq. (A.13) is now precisely of the form given in Eq. (14),

with the exception that we must map ϕj → sjt ≡ ϕj − 2iγt in order to account for the

term in square brackets. Thus we obtain

G(s,R, τ ) ≡
〈
σ̂−a1
j1

(t1) . . . σ̂−anjn
(tn)Â(t)σ̂anjn (tn) . . . σ̂a1

j1
(t1) exp


2γt

∑

j /∈η

αjσ̂
z
j



〉

(A.16)

= e−iϑ(τ )
∏

j

[
pj + g+

j (sjt)
]
, (A.17)

where s is a vector of quantities sj = ϕj/t− 2iγ. Careful bookkeeping reveals that

ϕj = 2t
∑

k∈η

bkJjk, (A.18)

ϑ(τ ) =
∑

j

ϑj(τj) (A.19)

ϑj(τj) =

{
0 if j ∈ η;

−2τj
∑

k∈η bkJjk if j /∈ η, (A.20)

which allows us to factorize

G(s,R, τ ) =
∏

j

Gj(sj,Rj, τj) (A.21)

=
∏

j

(
e−iϑj(τj)

[
pj + g+

j (sjt)
])
, (A.22)

thus completing the derivation of Eqs. (48-50) in the manuscript.
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Appendix B.

In Sec. 3 we encountered the functions

Φj(sj, t) =
∑∫

j

Pj(Rj, κj, τj)Gj(sj,Rj, τj) (B.1)

Ψj(sj, t) =
∑∫

j

Pj(Rj, κj, τj)

(
(1− αj)κj + αj

i

t

∂

∂sj

)
Gj(sj,Rj, τj), (B.2)

which we now show how to evaluate. When j ∈ η, only the Rj = 0 term in
∑∫

j

survives, and we obtain

Φj(sj, t) = e−Γrt/2pj. (B.3)

The function Ψj(sj, t) is only defined for j /∈ η, so this case does not apply to it. We

next consider the case j /∈ η, and drop the site index j (the derivation does not depend

on the specific site j, though the answer will depend on s, which can be reindexed at

the end). We begin with Φ(s, t), which can be simplified as

Φ(s, t) =

(
δR,0 +

∑

κ=±1

∞∑

R=1

∫ t

0

dtR . . .

∫ t2

0

dt1

)
P(R, κ, τ)G(s,R, τ) (B.4)

= e−Γrt/2g+(st) +
∑

κ

∑

R

∫ t

0

dtR . . .

∫ t2

0

dt1P(R, κ, τ)pe−iϑ(τ) (B.5)

= e−Γrt/2g+(st) + e−Γrt/2
∑

κ

∑

R

(Γud)R
−

(Γdu)R
+

p

∫ t

0

dtR . . .

∫ t2

0

dt1 e
isτ (B.6)

≡ e−Γrt/2g+(st) + e−Γrt/2
∑

κ

X (κ) (B.7)

We will carry out the integrals first, for which it is convenient to treat the cases R even

and R odd separately. Remembering that

τ = (1− α)

∫ t

0

σz(t)

= κ
[
t− 2tR + 2tR−1 . . .+ (−1)R2t1

]
, (B.8)

and defining a new index µ satisfying

µ =





R−1
2

if R is odd

R−2
2

if R is even,

(B.9)

we obtain

X (κ) =
t (1− κ cos θ)

4

∞∑

µ=0

(
Γr − 4κγ + r

t− κi∂z
µ+ 1

)(
rt

2z

)µ
jµ(zt)

µ!

∣∣∣∣∣
z=s

. (B.10)

Here the jµ are spherical Bessel functions, and the integral has been carried out by

changing variables to allow evaluation of all but one integral while τ is held fixed,

and then evaluating the remaining integral over τ (this is where the Bessel functions
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arise). The remaining sum can be evaluated using relations obtained from the generating

function for spherical Bessel functions

S1(x, y) ≡
∞∑

µ=0

xµ
jµ(y)

(µ+ 1)!
(B.11)

= sinc
√
y2 − 2xy (B.12)

and

S2(x, y) ≡
∞∑

µ=0

xµ
jµ(y)

(µ)!
(B.13)

=
1

xy
cos
√
y2 − 2xy − cos y

xy
. (B.14)

In terms of these, we finally obtain

X (κ) =
t (1− κ cos θ)

4

[
(Γr − 4κγ)S1

(
rt

2s
, st

)
+ r (t− iκ∂z)S2

(
rt

2z
, zt

)∣∣∣∣
z=s

]
. (B.15)

Tedious but straightforward algebra leads to Eq. (56) of Sec. 3. Notice that we can

just as easily evaluate the similar expression

Ψ(s, t) =

(
δR,0 +

∑

κ=±1

∞∑

R=1

∫ t

0

dtR . . .

∫ t2

0

dt1

)
P(R, κ, τ)

(
(1− α)κ+ α

i

t

∂

∂s

)
G(s,R, τ)

= e−Γrt/2g−(st) +
∑

κ

∑

R

∫ t

0

dtR . . .

∫ t2

0

dt1P(R, κ, τ)κpe−iϑ(τ) (B.16)

= e−Γrt/2g−(st) + e−Γrt/2
∑

κ

X (κ)κ (B.17)

giving rise to Eq. (59) of Sec. 3.
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[36] Gross C, Zibold T, Nicklas E, Estéve J, and Oberthaler M K. Nonlinear atom interferometer



CONTENTS 33

surpasses classical precision limit. Nature, 464:1165, 2010.

[37] Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M,

Jost J D, Langer C, Ozeri R, Reichle R, and Wineland D J. Creation of a six-atom ‘schrödinger

cat’ state. Nature, 438:639–642, 2005.

[38] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hänsel W,

Hennrich M, and Blatt R. 14-qubit entanglement: Creation and coherence. Phys. Rev. Lett.,

106:130506, 2011.

[39] Kim K, Chang M-S, Korenblit S, Islam R, Edwards E E, Freericks J K, Lin G-D, Duan L-M, and

Monroe C. Quantum simulation of frustrated ising spins with trapped ions. Nature, 465:590–

593, 2010.

[40] Diehl S, Rico E, Baranov M A, and Zoller P. Topology by dissipation in atomic quantum wires.

Nat. Phys., 7:971, 2011.

[41] Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, and Polzik E

S. Entanglement generated by dissipation and steady state entanglement of two macroscopic

objects. Phys. Rev. Lett., 107:080503, 2011.

[42] Islam R, Edwards E E, Kim K, Korenblit S, Noh C, Carmichael H, Lin G-D, Duan L-M, Wang J

C-C, Freericks J K, and Monroe C. Onset of a quantum phase transition with a trapped ion

quantum simulator. Nature Comm., 2:377, 2011.

[43] Emch G G. Non-markovian model for the approach to equilibrium. J. Math Phys., 7:1198, 1966.

[44] Radin C. Approach to equilibrium in a simple model. J. Math Phys., 11:2945, 1970.

[45] Van Den Worm M, Sawyer B C, Bollinger J J, and Kastner M. Relaxation timescales and decay

of correlations in a long-range interacting quantum simulator. arXiv, 1209.3697:[quant–phys],

2012.

[46] Sherrington D and Kirkpatrick S. Solvable model of a spin-glass. Phys. Rev. Lett., 35:1792–1796,

1975.

[47] Griffiths R B. Nonanalytic behavior above the critical point in a random ising ferromagnet. Phys.

Rev. Lett., 23:17–19, 1969.

[48] Randeria M, Sethna J P, and Palmer R G. Low-frequency relaxation in ising spin-glasses. Phys.

Rev. Lett., 54:1321–1324, 1985.

[49] Wineland D J, Bollinger J J, Itano W M, Moore F L, and Heinzen D J. Spin squeezing and

reduced quantum noise in spectroscopy. Phys. Rev. A, 46:R6797–R6800, 1992.

[50] Campbell G K, Boyd M M, Thomsen J W, Martin M J, Blatt S, Swallows M D, Nicholson T L,

Fortier T, Oates C W, Diddams S A, Lemke N D, Naidon P, Julienne P, Ye J, and Ludlow A

D. Probing interactions between ultracold fermions. Science, 324(5925):360–363, 2009.

[51] A. M. Rey, A. V. Gorshkov, and C. Rubbo. Many-body treatment of the collisional frequency

shift in fermionic atoms. Phys. Rev. Lett., 103:260402, Dec 2009.

[52] Swallows M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M, and Ye J. Suppression of

collisional shifts in a strongly interacting lattice clock. 331(6020):1043–1046, 2011.

[53] Gallagher T. Rydberg atoms. Cambridge University Press, Cambridge, 1994.

[54] Uys H, Biercuk M J, VanDevender A P, Ospelkaus C, Meiser D, Ozeri R, and Bollinger J J.

Decoherence due to elastic rayleigh scattering. Phys. Rev. Lett., 105:200401, 2010.

[55] Plenio M B and Knight P L. The quantum-jump approach to dissipative dynamics in quantum

optics. Rev. Mod. Phys., 70:101–144, 1998.

[56] Gardiner C and Zoller P. Quantum noise. 1991.

[57] Dicke R H. Coherence in spontaneous radiation processes. Phys. Rev., 93:99–110, 1954.

[58] Caldeira A O and Leggett A J. Annals of Physics, 149:374–456, 1983.

[59] Mølmer K and Sørensen A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett.,

82:1835–1838, 1999.

[60] Bollinger J J, Itano W M, Wineland D J, and Heinzen D J. Optimal frequency measurements

with maximally correlated states. Phys. Rev. A, 54:R4649–R4652, 1996.

[61] Huelga S F, Macchiavello C, Pellizzari T, Ekert A K, Plenio M B, and Cirac J I. Improvement of



CONTENTS 34

frequency standards with quantum entanglement. Phys. Rev. Lett., 79:3865–3868, 1997.

[62] Rey A M, Jiang L, Fleischhauer M, Demler E, and Lukin M D. Many-body protected entanglement

generation in interacting spin systems. Phys. Rev. A, 77:052305, 2008.

[63] Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q

A, Itano W M, Wineland D J, and Monroe C. Experimental entanglement of four particles.

Nature, 404:256–259, 2000.




