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LONG-TERM GOALS 

 
Considering the crucial importance of nonlinear interaction Snl for the development of third generation 
wave models the long-term goal of this work is to improve accuracy of calculating nonlinear 
interaction Snl in wind wave models, and hence improving wave prediction in general.   
 
OBJECTIVES  

 
The objective of this work is to develop a computationally cheap yet accurate approximation for Snl.   
 
APPROACH  
 
The approach is based on the neural networks (NN) technique.  It is used to accelerate the calculations 
and improve the accuracy of the parameterization of nonlinear interaction Snl.  The nonlinear 
interaction source term can be considered as a nonlinear mapping between a source term Snl and a 
spectrum F 
 

Snl = T(F) ,                                              (1) 
 
where T in is the exact nonlinear operator given by the full Bolzmann interaction integral [1].  This 
algorithm is a factor 104 too expensive for use in operational wave models.  We intend to use the NN 
technique to produce a cheap and accurate alternative approach.    
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NNs are a generic tool for fast and accurate approximation of continuous mappings and, therefore, can 
be used to replace the exact algorithm.  In order to convert the mapping (1) to a continuous mapping of 
two finite vectors (independent of the actual spectral discretization), the spectrum F and source 
function Snl are expanded using systems of two-dimensional functions each of which (Φi and Ψq) 
creates a complete and orthogonal two-dimensional basis 
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where for xi and yq we have 
 

∫∫∫∫ Ψ=Φ= qnlqii SyFx ,  ,                                                      (3) 

 
where the double integral identifies integration over the spectral space.  Because both sets of basis 
functions {Φi }i=1,…,∞ and {Ψq}q=1,…,∞ are complete, increasing n and m in (2) improves the accuracy of 
approximation, and any spectrum F and source function Snl can be approximated by (2) with a required 
accuracy. Substituting (2) into Eq. ( 3) we can get 
 

Y = T (X),                                             (4) 
 
which represents a continuous mapping of the finite vectors X ∈ ℜn  and Y ∈ ℜm , and where T still 
represents the full nonlinear interaction operator.  As described in the previous section, this operator 
can be approximated with a NN with n inputs and m outputs and k neurons in the hidden layer 
 

Y ≈ TNN (X).                                         (5) 
 
The accuracy of this approximation (TNN) is determined by k, and can generally be improved by 
increasing k. 
 
To train the NN approximation TNN of T, a training set has to be created which consists of pairs of 
vectors X and Y. To create this training set, a representative set of spectra Fp has to be generated with 
corresponding (exact) interactions Snl,p.  For each pair (F, Snl)p, the corresponding  vectors (X,Y)p are 
determined using Eq. (3).  All pairs of vectors are then used to train the NN to obtain TNN. 
 
After TNN  has been obtained by training, the resulting NN Interaction Approximation (NNIA) 
algorithm consists of three steps : 

(1) Decompose F by applying Eq. (3) to calculate X. 

(2) Estimate Y from X using Eq. (5). 

(3) Compose Snl from Y using Eq. (2). 
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WORK COMPLETED  
 
This year we completed a study, which addressed the basic feasibility of the NNIA approach.  We (1) 
select basis functions Φi and Ψq and the number of each (n,m); (2) designed a NN topology (number of 
neurons k); (3) constructed a representative training set; and (4) selected training strategies.  The first 
three issues all have a significant impact on both accuracy and economy of a NNIA. Unfortunately, 
there is no pre-defined way to tackle these issues. It is therefore unavoidable that the development of a 
NNIA involves many iterations.  This year we completed the first iteration.  The major requirement of 
an NNIA to be potentially useful in operational wave modeling, is that the exact interactions Snl are 
closely reproduced for computational costs comparable to that of the DIA.  The feasibility study we 
have completed showed the potential of this approach with the design of a simple ad-hoc NNIA. 

 
RESULTS 
 
We have considered an NNIA to estimate the nonlinear interactions Snl(f,θ) as a function of frequency f 
and direction θ from the corresponding spectrum F(f,θ) in deep water only.  To train and test this 
NNIA, we used a set of about 20,000 simulated realistic spectra for F(f,θ), and the corresponding exact 
estimates of Snl(f,θ) [2].  Simulation has been performed using a generator that calculated a spectral 
function composed of several Pierson-Moskowitz spectra for different peak frequencies oriented 
randomly in [0,2π] interval.  Comparison of simulated spectra with spectra simulated by 
WAVEWATCH model [3, 4] shows that this approach allowed us to simulate reasonably realistic and 
complicated spectra describing a broad range of wave systems. Spectra with four peaks were used in 
calculations below. Separate data sets have been generated for training and validation. 
 
As is common in parametric spectral descriptions, we choose separable basis functions where 
frequency and angular dependence are separated. For Φi  this implies 
 

)()(),( ,, θφφθ θ jifiji ff =Φ⇒Φ                                                  (6) 
 
A similar separation is used for Ψq. Considering the strongly suppressed behavior of F and Snl for f → 
0, and the exponentially decreasing asymptotic for f → ∞, generalized Laguerre's polynomials are used 
to define φf and ψf.  Considering that no directional preferences exist in F and Snl, a Fourier 
decomposition is used for φθ and ψθ.   The number of base functions is chosen to be n = 51 and m = 64 
to keep the accuracy of approximation for F on average better than 2% and for Snl  - better than 5-6%.  
The number of hidden neurons was taken k = 30 which allows a satisfactory approximation (5) for the 
mapping (4). 
 

Table 1.  RMSE statistics for 10,000 Snl 
 

 Mean 
RMSE 

σRMSE Max RMSE 

DIA 0.0133 0.0111 0.104 
    
NNIA 0.0068 0.0063 0.065 
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Figure 1. RMSE as functions of frequency f and angle.  Dashed line – error of approximation 
(lower bound for all other errors).  Solid line – DIA, line with squares – NNIA (51:20:64), and line 

with triangles – NNIA (51:30:64) 
 
 
Table 1 compares three important statistics for source function RMS errors (with respect to exact 
solution) calculated using DIA and NNIA for 10,000 spectra (independent validation set).  NNIA 
improves accuracy about twice as compared with DIA. 
 
Figure 1 shows mean RMSE as function of the frequency f (left) and the angle θ (right). Numbers in 
Table 1 correspond to NNIA with NN with 30 neurons in the hidden layer (51:30:64). 
 
Figure 2 shows 3 pairs (one row in the figure corresponds to one pair) of one dimensional, integrated 
over θ, source functions Snl (f) (left column) and one dimensional, integrated over f, source functions 
Snl(θ) (right column) from the validation data set.  Thick solid curves correspond to the exact Snl. 
Dashed curves correspond to DIA of Snl.  Curves with triangles correspond to the NNIA estimate of 
Snl.  Numbers inside the panels show DIA and NNIA errors in percents with respect to exact solution. 
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Figure 2. See explanations in the text above. 
 
 
The results in Fig. 2 are fairly representative for the validation data set.  In general, the NNIA 
reproduces the exact Snl accurately.  Even if clear oscillations are present in the decomposed spectrum 
(e.g., line in middle panel on left), the NNIA shows no spurious oscillations, and gives reasonable 
results. Note that many DIA source functions exhibit complicated behavior and spurious oscillations.  
Major peaks in these functions coexist with more or less random small-scale fluctuations.  These 
fluctuations are probably an artifact produced by a simplified nature of DIA.  Exact interactions are the 
result of averaging over much lager number of resonant sets of wave numbers, and are therefore much 
smoother than the results of the DIA.   
 
IMPACT/APPLICATIONS 
 
The NNIA under development is intended for implementation in operational wave models such as 
WAVEWATCH.  
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TRANSITIONS 
 
The resulting NNIA algorithm will be transitioned to other members of the AWPP-SNL group upon 
completion. 
 
RELATED PROJECTS 
 
AWPP-SNL group  
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