
INDUSTRY STRENGTH TOOL AND TECHNOLOGY FOR
AUTOMATED SYNTHESIS OF SAFETY-CRITICAL APPLICATIONS
FROM FORMAL SPECIFICATIONS

VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY
(VIRGINIA TECH)

NOVEMBER 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-250

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2015-250 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

/ S / / S /
WILMAR W. SIFRE MARK H. LINDERMAN
Work Unit Manager Technical Advisor, Computing

 & Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

NOV 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

FEB 2013 – JUN 2015
4. TITLE AND SUBTITLE

INDUSTRY STRENGTH TOOL AND TECHNOLOGY FOR
AUTOMATED SYNTHESIS OF SAFETY-CRITICAL APPLICATIONS
FROM FORMAL SPECIFICATIONS

5a. CONTRACT NUMBER
FA8750-13-C-0053

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
63781D

6. AUTHOR(S)

Sandeep K. Shukla, Mahesh Nanjundappa, Matthew Anderson, Avik
Dayal and Mattthew Kracht

5d. PROJECT NUMBER
ASET

5e. TASK NUMBER
12

5f. WORK UNIT NUMBER
VT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Virginia Polytechnic Institute & State University (Virginia Tech)
1880 Pratt Drive STE 2006
Blacksburg VA 24060-6750

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-250
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2015-5454
Date Cleared: 9 Nov 15
13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report discussed the fundamental theory, algorithms, and prototype tools for the synthesis of embedded safety-
critical software for multi-core embedded platforms as well as to initiate planned technology transfer to a Department of
Defense (DoD) vender company. The techniques and tools developed during project execution will enable the
production of embedded safety-critical software with improved quality and performance, decreases in cost and
development times, automation of labor-intensive and error-prone processes, increased reliability, and easier integration
and sustainment.

15. SUBJECT TERMS
Software Engineering, Software Producibility, Component-based software design, behavioral types, behavioral type
interference, Polychronous model of computation, Prime Implicates, Boolean Abstraction, real-time embedded software,
software synthesis, correct by construction software design, model-driven software design, high-assurance software.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
WILMAR W. SIFRE

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

155

i

Table of Contents
List of Figures ... v

List of Tables .. vii

Summary ... 1

1 Introduction .. 4

1.1Software Synthesis ... 4

1.2 Hardware Synthesis ... 7

1.3 Verification and Validation .. 8

1.3.1 Causality Analysis ... 9

1.3.2 Type Consistency Analysis ... 9

1.3.3 Value Range Analysis ... 10

1.4 Summary of contributions ... 10

1.5 Organization of the Report .. 12

1.6 Publications on the work reported in this report .. 14

2 Methods, Assumptions and Procedures ... 15

2.1 Synchronous and Polychronous Model of Computation .. 16

2.2Synchronous Languages ... 18

2.2.1 Esterel ... 18

2.2.2 Quartz ... 20

2.2.3 Lustre .. 20

2.2.4 Signal ... 22

2.2.5 Statecharts, SyncCharts, Argos, Reactive-C .. 23

2.3 Alternatives to Synchronous languages .. 25

2.3.1 Kahn Process Networks (KPN) ... 26

2.3.2 Synchronous Dataflow (SDF) and Multi-dimensional (MD-SDF) 27

2.3.3 Petri Nets ... 28

2.3.4 Input/Output Automata ... 29

2.3.5 Ptolemy Framework ... 29

3 Results and Discussion .. 31

3.1 Related Work ... 31

3.1.1 Concurrent Software Synthesis .. 31

3.1.2 ASIP Synthesis ... 32

ii

3.1.3 Verification and Validation ... 32

3.1.3.1 Causality Analysis ... 32

3.1.3.2 Type Checking .. 33

3.1.3.3 Value Range Analysis ... 34

3.2 MRICDF Polychronous Formalism and EmCodeSyn Synthesis Tool 35

3.2.1 Definitions and Overview of Concepts ... 35

3.2.2 MRICDF Actors .. 37

3.2.3 Master Trigger and Sequential Implementability .. 38

3.3 Synthesis of Multi-Threaded Code from Polychronous models .. 38

3.3.1 Constraints for Concurrent Implementability .. 44

3.3.2 Computing Partial Triggers ... 45

3.3.3 Constructing the forest of clock trees T .. 47

3.3.4 Check for Data Dependencies and Deadlock.. 48

3.3.5 Identification of Shared Epochs .. 49

3.3.6 Mapping and Multi-threaded Code Generation .. 49

3.3.7 Experimental Evaluation and Discussions .. 50

3.3.8 Summary ... 53

3.4 Synthesis of Improved Multi-threaded Code from Polychronous models based on Analysis
of Affine Relations ... 54

3.4.1 Avoidable Synchronizations .. 54

3.4.2 Affine Transformations and Affine Relations in Polychronous Languages 57

3.4.2.1 Affine Transformations and Relations ... 57

3.4.2.2 Constructs to express Affine Transformations and Relations 58

3.4.3 Analysis of Affine Relations for Improved Multi-threaded Code Synthesis 59

3.4.4 Summary ... 63

3.5 Synthesis of Application-Specific Instruction-set Processor(ASIP) from Polychronous
models ... 64

3.5.1 Conditional Partial Order Graphs ... 64

3.5.1.1 Definition: Conditional Partial Order Graph .. 64

3.5.2 MRICDF Actors and their CPOGs .. 66

3.5.2.1 Example MRICDF model and it’s CPOG .. 73

3.5.3 Transformations, Resource Estimation and Implementability 76

3.5.3.1 Resource Estimation .. 78

iii

3.5.3.2 Implementability ... 79

3.5.4 Summary ... 80

3.6 Polyhedral Model based Causality Detection in Polychronous models 81

3.6.1 Analysis of Polychronous Specifications ... 83

3.6.2 SMT extension to Polychrony ... 85

3.6.3 Polyhedral Model based Analysis ... 86

3.6.3.1 Constraint Extraction and Transformation .. 87

3.6.3.2 Polyhedral Analysis .. 87

3.6.3.3 Limitation of Polyhedral libraries .. 88

3.6.3.4 Safe code synthesis using Wrapper ... 88

3.6.3.5 Implementation and Design Flow.. 89

3.6.4 Summary ... 90

3.7 Type Inference and Type Consistency Verification of Polychronous models 91

3.7.1 Type System and Inference Rules ... 93

3.7.1.1 Type Set ... 94

3.7.1.2 Inference Algorithm ... 97

3.7.2 SMT based Type Consistency Checking .. 98

3.7.3 Summary ... 103

3.8 SMT based Value Range Analysis of Polychronous models .. 103

3.8.1 Range Inference Rules and Analysis ... 106

3.8.1.1 Definitions .. 107

3.8.1.2 Widening operation (∐) .. 107

3.8.1.3 Narrowing Operation ... 109

3.8.1.4 Value Range Inference Rules ... 109

3.8.2 SMT based Verification of properties related to Signal Value Ranges 112

3.8.2.1 SMT constraints for Constants .. 112

3.8.2.2 SMT constraints for Sampler actors .. 112

3.8.3 SMT constraints for Merge actors .. 113

3.8.4 SMT constraints for Function actors .. 113

3.8.5 SMT constraints for Buffer actors... 113

3.8.6 Case Study: Automated Bathtub System .. 114

3.8.3 Summary ... 118

4 Conclusions and Future Work ... 120

iv

4.1 Conclusions .. 120

4.1.1 Software Synthesis techniques .. 120

4.1.2 Hardware Synthesis techniques... 120

4.1.3 Verification and Validation techniques ... 121

4.2 Future Work ... 121

4.2.1 Software Synthesis techniques .. 121

4.2.2 Hardware Synthesis techniques... 122

4.2.3 Verification and Validation techniques ... 122

4.2.4 EmCodeSyn Tool development .. 122

5 References ... 124

Appendix ... 131

Example: Generated Multi-threaded Code .. 131

List of Symbols, Abbreviations and Acronyms .. 144

v

List of Figures
Figure 1: Deployed Volume of Software in Selected Embedded Systems Annually [23] 5
Figure 2: Amount of Software Used in Safety Critical Systems Over Years [23] 5
Figure 3: Flow of ASIP Design Methodology [38] 7
Figure 4: Report Organization 13
Figure 5: Block Diagram of a Mono-clocked System 17
Figure 6: Block Diagram of a Multi-clocked System 17
Figure 7: Statechart representing abstract execution model of an answering machine 24
Figure 8: Execution flow of the Reactive-C program shown in Listing 2.5 25
Figure 9: Example of KPN model 26
Figure 10: Example of Synchronous Dataflow Model 28
Figure 11: Example of Petri net representing water composition 29
Figure 12: (a) MRICDF model, (b) simplified clock tree 44
Figure 13: Pyramid structure of clock tree and forest of clock trees for sequential and
concurrent specifications 47
Figure 14: Plot of Time taken for analysis and code generation vs number of times model is
duplicated 53
Figure 15: Simple application to illustrate avoidable synchronizations 54
Figure 16: Pseudo-code for the application in Figure 15 55
Figure 17: Sample execution trace of the application in Figure 15 56
Figure 18: Optimized pseudo-code for the application in Figure 15 56
Figure 19: Clock K is (5; 4; 9) affine transformation of clock H 57
Figure 20: Hierarchical Clock Graph 59
Figure 21: Simple Process with 3 sub-processes 60
Figure 22: Example execution trace of the application in Figure 21 when 3== dn , 0=φ 60
Figure 23: Example execution trace of the application in Figure 21 when 3== dn , 2=φ 61
Figure 24: Example execution trace of the application in Figure 21 when 3== dn , 5=φ 61
Figure 25: Example execution trace of the application in Figure 21 when 7=3,= dn , 0=φ 62
Figure 26: Example execution trace of the application in Figure 21 when 7=3,= dn , 2=φ 63
Figure 27: Graphical representation of CPOG 66
Figure 28: CPOG for Function Actor 68
Figure 29: CPOG for Buffer Actor 69
Figure 30: CPOG for Sampler Actor 70
Figure 31: CPOG for Merge Actor 71
Figure 32: Sample MRICDF model 74

Figure 33: SIGNAL code (ADD, Comparator, GAIN &
GAIN

1 are predefined function actors) 74

Figure 34: CPOG for the MRICDF Model 75
Figure 35: Modified CPOG with Boolean vector and respectively ()

78
Figure 36: 3D-plot (multiple views) of Polyhedrons representing Input and Loop
Constraints. 3D plots of and 88

1101 1110 nbmb xx =,= 71

)(Top
)(Bottom LI ∩ LI −

vi

Figure 37: Execution flow of enhanced polychrony compiler 90
Figure 38: Example MRICDF model 92
Figure 39: Inference Algorithm 97
Figure 40: Flowchart for Type Inference and SMT Analysis 102
Figure 41: Example MRICDF model and SIGNAL program for Simple Automated Bathtub
Embedded System 105
Figure 42: Lattice Structure 108

vii

List of Tables
Table 1: Popular Modeling Languages used for designing Embedded Systems 15
Table 2: Basic Esterel Statements [12] ... 18
Table 3: Basic Lustre Operators .. 21
Table 4: Primitive Signal Operators .. 22
Table 5: Popular formalisms alternative to Synchronous languages ... 26
Table 6: Popular Commercial Tools used for Modeling Embedded Systems and Code Generation
... 30
Table 7: Benchmark Suite ... 51
Table 8: Experimental Results ... 52
Table 9: Formal representation of CPOG for model in Figure 32 ... 75
Table 10: Input and True Causal Loop constraints ... 87

Approved for Public Release; Distribution Unlimited
1

Summary
A large number of DOD (Department of Defense) software is safety-critical and reactive.

Reactive software continually reacts to environmental inputs, and it should always be
responsive to inputs. Thus reactive software must be able to decide when to expect new inputs,
and must react or compute responses at a faster time scale than the time scale of successive
inputs. For determinism and compositionality, it is required that the reading of inputs is
blocking. Thus, if the software is unable to determine when to read which inputs, it may get
blocked waiting to read one input while other inputs may come and get dropped. For
responsiveness, one could either design the software to sample all inputs synchronously at the
occurrence of a set of regular events (such as clock ticks in case of hardware), or it should have
enough internal information to determine when to wait for which inputs. Of course, one way
to simplify this problem is to use concurrent threads that read inputs from different input
streams. However, concurrency comes at a price – synchronizing these threads for correct
merging of data flows or sharing data among threads becomes challenging. Manually writing
such concurrent reactive programs is time consuming and error prone. A mistake in a
safety-critical application may cost human lives or fail critical missions.

In Europe, research on automated synthesis of safety-critical real-time systems have
been carried out over the last two decades [9] resulting in multiple distinct programming
models for capturing control algorithms and synthesizing their software implementations.
There have been two main programming paradigms – time driven and event driven. In the time
driven paradigm, it is assumed that the reactive system samples or reads inputs on a
periodic basis. Programs written in event driven paradigm only reacts when the environment
offers one or more input events. It is easier to build a programming model and synthesis
algorithms for time-driven control, because the program does not have to decide when to
expect the next inputs. Synchronous languages Esterel, Lustre etc., are based on this
paradigm. SCADE – a commercial tool -- based on Lustre -- with a visual programming
interface -- is used to model many avionics, automotive control software for automated code
generation. Air Bus claims that 35% of the code for Air Bus 380 was automatically synthesized.

However, the problems with the time driven paradigm are as follows: (i) due to
periodic reading of inputs, and computation of reaction based on presence or absence of
inputs, the program must be able to sense absence of values on input ports. This is only
possible in a time driven synchronous environment. In an asynchronous environment, a
perceived absence may be an arbitrary delay of arrival of input. Thus programs synthesized
from such modeling languages cannot be directly used in an asynchronous environment, nor
can they be arbitrarily composed. This lack of Composability disallows modular development of
the software or easy development of distributed software – which is a requisite these days for
embedded systems. Thus communicating components (which communicate over buses such
as CAN, Flexray, I2C etc.) must all have the same notion of a global time. Therefore, time
triggered buses such as CAN bus may be appropriate, but event triggered communication buses
will pose challenge. (ii) If the intermittent time between successive events is uneven, the time
driven approach requires continuous sampling of inputs at the lowest time scale, leading to
inefficiency. The event driven paradigm on the other hand allows components to work in
asynchronous environments as it never requires deciding absence. If absence is ever used – it

Approved for Public Release; Distribution Unlimited
2

must be derivable by computation. This allows the ability to compose with both
time-triggered and event-triggered buses, and also make them work easily in
asynchronous environment of interrupts and other intermittent inputs. The language SIGNAL
[9] and its enabling tool set Polychrony implements this programming model. The word
polychronous means that the notion of time is not globally unique and hence better suited for
distributed environments such as an avionics platform like ARINC 653. Moreover, Polychrony is
defined in a dataflow programming paradigm rather than imperative, thus allowing one to
write programs over streams or flows of events or data, by writing relational constraints
between the various asynchronous streams/flows, and thereby allowing a descriptive
programming style.

The SIMULINK or Ptolemy II also allow dataflow programming model. However,
models built with SIMULINK are used for simulation purpose only. In the recent years, real-time
workshop/codegen facility also generates code from SIMULINK models but the caveats are
enormous for them to be used in mission-critical applications. First, SIMULINK or Ptolemy II
models have no published formal semantics. Some attempts to provide semantics by academics
are based on the assumptions about the simulation semantics. Thus the generated code
cannot be formally verified against a formal model. One can try to match SIMULINK simulation
with the execution of generated code. However, any mistake in simulation (due to ambiguous
semantics) is likely to be replicated in the generated code as the same company wrote the
simulator and the code generator. Thus code generated this way is neither
correct-by-construction, nor can save much development effort because 70% of a project’s
effort is spent on Validation & Verification (V&V).

In order to provide the DOD with a tool and methodology for embedded safety-critical
software synthesis for multi-core embedded platforms, we have been working on a
programming model code named MRICDF (Multi-Rate Instantaneous Channel Connected Data
Flow Network), and the corresponding synthesis algorithms targeting multi-threaded C-code
which can be cross compiled into various platforms. As explained already, this programming
model is Polychronous, thus exploiting the advantages of asynchronous parallelism inherent in
most computational dataflow required in embedded systems such as signal processing, image
processing, automated target recognition, automated vision in drones, as well as control
applications such as avionics, automotive and weapons control. However, our interaction with
various DOD vendors led us to believe that while our programming model is amenable to code
synthesis (sequential and multi-threaded) and is supported by formal semantics, refinement
based synthesis methodology, and a science of programming that has been developed over two
decades in Europe, and further developed by us; the embedded system designers do not always
accept a new programming paradigm that they are not trained in. Therefore, we also provide a
SIMULINK front-end, so that the engineers can design their software specification with a
SIMULINK front-end with all the programming elements and libraries of SIMULINK. We will
define semantics of SIMULINK in our polychronous programming model, so that the model
designed by engineers has a formal semantics in the form of MRICDF networks. Therefore, we
can use our formal verification tools that work on MRICDF models to check for functional
correctness, and consistency, and also can synthesize multi-threaded C-code.

Approved for Public Release; Distribution Unlimited
3

Furthermore, our goal in this project has not only been to develop the fundamental
theory, and algorithms, and prototype tools, but to initiate planned technology transfer to a
DOD vendor company, which can then further develop the tools, and technology that can be
made DOD ready as requisitioned by DOD. We have thus partnered with L-3 Communications,
an experienced DOD vendor with CMM-3 level software process maturity. We transferred our
methodology, design, code, and provided sufficient training so that they could create a DOD
ready tool and methodology for multi-threaded C-code synthesis from SIMULINK models via
MRICDF intermediate model. This tool and methodology can then be used from DOD
embedded systems vendors for creating provably correct multi-threaded embedded software.
The advantages of this methodology are that (i) the verification burden will be greatly reduced
(currently it is 70% of a software design cycle but can be reduced to 30% or so because the
verification will now be done at the intermediate formal model in the form of MRICDF with
formal verification tool that will be produced as a part of another project); (ii) the code
generated is provably correct provided the synthesis tool is correctly implemented. Proving the
correctness of the synthesis tool formally is beyond the scope of this project but could be
undertaken as a different project.

Clearly, the budget and time span for this project has not permitted the completion of a
certifiable tool to be used right away, but the initial technology transfer to a DOD vendor
has been accomplished, which hopefully has established the base line implementation which
can then be customized as requirements arise in various DOD domains such as in F-35 follow-on
projects in Lockheed, and projects at other DOD vendors which require guaranteed correctness
of code along with real-time requirements, and wants to enhance productivity via formal
modeling and synthesis driven methodology and tool set.

SIMULINK to MRICDF –
AUTOMATED (this project)
MRICDF verification –
AUTOMATED – (related
project)
Feedback after Verification –
AUTOMATED -- (related
project)
C-Code Synthesis from
MRICDF – AUTOMATED (this
project)

Approved for Public Release; Distribution Unlimited
4

1 Introduction
 Embedded systems are omnipresent and have become an integral part of our

day-to-day lives. The car we drive, the plane we travel in, the entertainment center at home
and the smart-phones we use for communication – all have embedded systems in them. Some
of these embedded systems are complex and some of these complex embedded systems are
also safety-critical. Examples of safety critical embedded systems are found in automobiles,
avionics, nuclear plants, etc. Development of complex safety-critical embedded systems require
design methodologies that not only manage the complexity, but also provide guarantees about
correctness of the system. These methodologies cannot be extensions of traditional approaches
that are tailored for development of hardware or development of software alone. Also, by
following traditional methodologies, providing guarantees of correctness for the system usually
requires exhaustive testing, which might not be possible for complex systems. Formal
model-driven design approaches provide an alternate approach for developing such systems.
And further, by using various formal tools one can verify properties of the system being
modeled and can reason about it’s correctness. In this report, we have explored a
“correct-by-construction” methodology for developing safety-critical embedded systems. We
have adopted a formal modeling language MRICDF - (Multi-rate Instantaneous Channel
Connected Data-flow), and investigated model-driven techniques for design and development
of safety-critical embedded systems. Our investigations are spread across three areas, and are
explained in the following sections.

1.1Software Synthesis
 Over the past two decades, the embedded computing world has increasingly preferred

software over hardware for implementation of functionalities. One of the major advantages
that software offers over hardware is – higher flexibility for developers to rapidly adapt last
minute changes in user requirements, without paying the high re-development cost associated
with changing the hardware. As a result of this preference, the amount of software in the
modern embedded systems is staggering. Figure 1 shows the deployed volume of software in
selected embedded systems annually.

Approved for Public Release; Distribution Unlimited
5

Figure 1: Deployed Volume of Software in Selected Embedded Systems Annually [23]

The trend of “increasing use of software” can be even seen in safety-critical embedded
systems, especially the ones used in avionics, automotive and medical devices. Figure 2 shows
the amount of software used in selected safety critical embedded systems over the last few
decades. Developers of safety-critical embedded systems are not just adopting software to
implement non-critical system functions, but also to implement critical control system
functions. With the complexity of these safety critical systems increasing at an exponential rate,
the size and the complexity of software used to control them are also increasing.

Figure 2: Amount of Software Used in Safety Critical Systems Over Years [23]

Approved for Public Release; Distribution Unlimited
6

Developing error-free software for such complex systems and providing correctness
guarantees by following traditional software design approaches can be very difficult. Formal
correct-by-construction techniques provide alternative approaches to not only develop
safety-critical software, but also to reason about their correctness. These techniques usually
require the user to express the functionality of the required software as specifications using a
formal language. Some of the formal languages are graphical, while others are textual. Formal
tools then apply correctness preserving transformations and synthesize software from these
specifications. Further, these tools are also equipped with techniques to prove properties of the
specifications and reason about correctness. As the tools use correctness preserving
transformations, the properties proved on the specifications are also valid for the synthesized
software. Apart from formal languages and tools, one can also use non-formal modeling tools
such as Simulink [83] or semi-formal modeling tools such as Unified Modeling Language (UML)
[85] for synthesis purposes, though it can be difficult to provide correctness guarantees.

Formal modeling languages are endowed with mathematically well defined semantics
but the choice of a formal language for the purpose of software synthesis depends on various
factors. Some of the important ones are as follows:

• Model of Computation: Depending on the system to be modeled and the type of code
to be synthesized, one can choose a specific model of computation among various
available ones. Examples are as follows,

- Synchronous model of computation: Assumption of apriori external
synchronization.
- Polychronous model of computation: No global notion of time and hence no
apriori assumption of unnecessary synchronization - synchronization only as
needed.

• Ease of modeling: A perceived quality that indicates how easy or difficult it is to a model
complex system using the language.
• Tools and Techniques: Availability of tools that analyze models in a particular language
and their ability to do synthesis, verification and validation.
• Ease of learning: Harder the language to learn, less likely it is to be adopted in the
industry.

In the past, many research projects have tackled the problem of synthesis of sequential
code from formal specifications. We have targeted our research on synthesizing of concurrent
code from formal polychronous specifications. In particular, we have considered a formal
modeling language which is polychronous in nature - MRICDF (Multi-Rate Instantaneous
Channel-connected Data Flow). The reason for choosing MRICDF polychronous language is
explained in detail in Section 2. In Section 3.2, we explain the syntax, semantics and other
aspects of MRICDF programming language and elaborate more on the past work of sequential
code synthesis from polychronous MRICDF models. In Section 3.3, we explain a novel approach
for concurrent software synthesis from polychronous MRICDF models. Excessive
synchronizations between threads/tasks in concurrent software can adversely affect its
performance. Based on the analysis of affine-relations between clocks of signals, a novel

Approved for Public Release; Distribution Unlimited
7

technique explained in Section 3.4 identifies synchronizations that could be removed/avoided
without affecting the behavior of the system. When such avoidable synchronizations are
removed, the efficiency of the synthesized multi-threaded code improves.

1.2 Hardware Synthesis
 Despite all the advantages that software offers, for certain safety-critical applications

that are power and performance critical, application specific hardware platforms are still
preferred over software running on general purpose microprocessors. Also, developers of large
applications, often isolate performance and power critical parts of the large application and
offload it on to specific hardware. Application Specific Instruction-set Processors (ASIPs) are
ideally suited for such purposes. ASIPs are basically processors with customized instruction sets
that are designed to exploit special characteristics in a class of applications. Custom instruction
sets of ASIPs allow the designer to maintain a high level of design flexibility, yet offers better
performance and consumes smaller area. ASIPs will also allow better reuse of components by
doing resource sharing during the different modes of operation. Designing such ASIPs while
keeping the area minimum and not sacrificing latency or clock speed is a much researched
problem. Figure 3 shows the typical steps in any ASIP design methodology.

Analysis of the
constraints

Design
Space

Exploration

Custom
Instruction Set

Generation

Application and
Design

Constraints

Hardware
Synthesis

Software
Synthesis

Figure 3: Flow of ASIP Design Methodology [38]

Approved for Public Release; Distribution Unlimited
8

Typically, the design process starts with analysis of the application by the designer. After
analysis, the designer performs architectural design space exploration to determine a suitable
architecture that satisfies the power and performance requirements. To do this, a good
parametrized abstract model of the application is essential. The designer then, manually
decides on the structure of the hardware and expresses it in hardware description languages
(HDLs) such as Verilog or VHDL with behaviors attached to structures. Further, the designer
instructs the CAD tools about the frequently occurring patterns and directs them towards
synthesizing of instruction sets. Based on this instruction set, software for the application is
then developed.

As the complexity of the design increases, designer’s task becomes increasingly
complicated and optimality is much harder to achieve by using the traditional CAD (Computer
Aided Design) tools. An alternate approach is to formally model the application and apply
transformations on the model to determine optimal architectural solutions, for resource
estimation and identification of sharable resources. Conditional Partial Order Graphs (CPOGs), a
graph-based abstraction model provides a compact and efficient way to formally represent the
operation of an application. Further, the abstracted model can be subjected to transformations
to synthesize custom instruction sets. But, modeling the software part in some language and
the hardware in some other language will require tools that are capable of handling both the
languages and reason about the correctness of the entire system. It would be better, if the
same formal language that was adopted during synthesis of software, can also be adopted for
specifying hardware. This would enable co-specification and co-synthesis of hardware and
software. This would also allow reuse of the existing verification and validation tools.

In our research, we have explored the problem of synthesis of Application Specific
Instruction-Set Processors (ASIPs) from formal polychronous specifications by converting it to
CPOGs first and then using the CPOGs to synthesize ASIPs. This has been described in detail in
Section 3.5.

1.3 Verification and Validation
 Formal synthesis techniques usually employ correctness preserving transformations to

convert the initial specifications/models to target software and/or hardware. This means that, if
there are any errors or bugs in the initial specifications/models that weren’t fixed, then the
correctness preserving transformations will propagate these errors all the way to the end result
(synthesized software and/or hardware). Thus, it is important to validate the initial
specifications/models before applying the transformations. Formal verification tools such as
model checkers, theorem provers, SAT (Satisfiability) solvers, SMT (Satisfiability Modulo
Theories) solvers, Linear and Non-linear Polyhedral frameworks, etc., can be employed for such
validation purposes. For example, if model checking technique is adopted, then the model and
the desired properties of the model are formulated and a model checking tool can
automatically check if the given model satisfies the desired property or not. Selecting the model
checking tool depends on various factors such as – the type of constraints in the model, the
property to be verified, computational complexity of the algorithm implemented in the tool,
etc. If the model fails to satisfy the property, which happens more often than not, the designers

Approved for Public Release; Distribution Unlimited
9

will be interested either obtaining a single constraint under which the property fails or
obtaining a complete set of constraints on the model where the property always fails. SAT and
SMT solvers are highly efficient at providing single counter examples, while all-sat tools or
polyhedral analysis tools are better are providing set of constraints under which property fails.

For successful synthesis of software and/or hardware and consistent running of the
synthesized software and/or hardware, there are many properties that a model has to satisfy.
Among them, we consider three prominent properties and are listed below -

• Causality - the model under consideration should not contain any constructive causal
loops
• Dimensional Consistency - the units/dimensions of the signals at the interfaces should
be consistent
• Value Range Consistency - the range of values a signal can take does not violate any
pre-specified/assumed user constraints

1.3.1 Causality Analysis
 During modeling, designers might unknowingly introduce causal loops into the models.

These causal loops might be constructive or non-constructive. A simple graph-based
dependency analysis should be able to identify all the causal loops and some more. But, this
approach, though sound, might yield a lot of false positives, which will result in models with
apparent/non-constructive causal loops being mistakenly rejected. We show that, to reduce
false positives and improve the causality analysis, SAT and SMT solvers can be very effective.
These solvers differentiate between true and false causal loops by looking for any contradicting
dependency conditions along the loop. In the first part of Section 3.6, we explain in detail the
idea of using SAT/SMT solvers to improve causal analysis techniques.

As a designer, apart from knowing that a causal loop is constructive, it would be also
very helpful to know the physical input constraints under which the causal loop is constructive.
If the designer can ensure that, those combination of physical inputs will never occur in a
realistic system, then, despite the causal loop being constructive, it is never realizable – and
hence the model can be accepted. In the latter part of Section 3.6, we propose a novel
polyhedral model-based analysis technique which identifies constructive causal loops and also
provides the input constraints under which the causal loop is realizable. Further in the same
section, we propose a wrapper generation technique which prevents these unwanted inputs to
the system by filtering them and help operate the system in a safe operating region.

1.3.2 Type Consistency Analysis
 Embedded software often interacts with the physical world through signals that

represent physical quantities such as velocity, power, etc. These physical quantities are
characterized by dimensions and units. But seldom we embed any of these domain specific
information into the software. As a result of this, generic type checking done on the software
can only ensure identification of mismatched data types between the connected software
components. It does not check for dimensional and unit inconsistencies. Extending the
generated software with type and unit information for analysis, will not only require a change
in coding language and compiler, but also will result in additional runtime overhead.
Alternatively, if one is using model-based correct-by-construction approach for software

Approved for Public Release; Distribution Unlimited
10

development, then performing the type analysis statically at the model level and ensuring
correctness can not only enhance correctness of the final implementation but also save on
costs of fixing a bug found in field testing. In Section 3.7, we present a framework in which
users can specify domain specific information and perform type inference and clock
calculus-based type consistency analysis on the polychronous MRICDF models.

1.3.3 Value Range Analysis
 Safety-critical applications require software and/or hardware that always produces

deterministic and correct outputs. Ensuring that a software produces only expected outputs
can be done either by doing an exhaustive simulation (non-scalable) and or by static analysis
techniques. “Value range analysis” techniques refers to a genre of analysis techniques that
statically estimate the range of values a variable can assume during the program execution.
Often, such analysis techniques involves a difficult and hard to automate abstraction step. With
MRICDF model-based design approach, we can avoid the abstraction step completely and
perform range analysis directly on the MRICDF model. Given input range constraints, in Section
3.8, we present rules to derive the range constraints of the outputs. Further in the same
section, we propose an approach that exports the range constraints of a model as SMT
constraints and show how they can be used to verify various properties related to value ranges
of signals.

1.4 Summary of contributions
In this report, we have mainly explored formal model driven techniques for,

• Multi-threaded code synthesis from MRICDF models;
• Application Specific Instruction Set Processor (ASIP) synthesis from MRICDF models;
• Causality Analysis of MRICDF models;
• Units and Dimensional Analysis of MRICDF models;
• Value range analysis of MRICDF models.

 We have prototyped all these techniques in our open source tool - EmCodeSyn. We
now briefly summarize each of these contributions. For a detail explanation, we refer the
reader to further sections of the report.

1.4.1 Contributions towards Multi-threaded code synthesis from MRICDF Models :
(Sections 3.3 and 3.4)

 Previous attempts at code synthesis from MRICDF models ([43], [40]) were specifically
targeted at sequential code synthesis. We concentrated our research efforts towards synthesis
of multi-threaded code from MRICDF models. We proposed a novel Boolean theory-based
approach for determining if a given MRICDF model is concurrently implementable or not.
Furthermore, our Boolean theory involves generation of prime implicates using SMT solvers.
We proposed a notion of partial triggers and proposed a technique to infer partial triggers from
the prime implicates. Further, we proposed technique to identify the synchronization
constraints between the partial triggers. We then proposed a code generation technique by
mapping the partial triggers to threads. We performed scalability and performance analysis of
the proposed technique. For the considered benchmarks, we noticed that the performance of

Approved for Public Release; Distribution Unlimited
11

the synthesized multi-threaded code was about 18% slower than the performance of the
hand-written multi-threaded code. Performance analysis revealed a few bottle necks that was
causing the dip in the performance of the synthesized multi-threaded code. One of them was -
excessive synchronizations. We proposed a novel technique, based on analysis of affine clocks
that identifies all the avoidable synchronizations and removes them from the synthesized code,
which in-turn improves the performance of the multi-threaded code.

1.4.2 Contributions towards Application Specific Instruction Set Processor (ASIP)
synthesis from MRICDF Models : (Section 3.5)

 In [55], the authors explained how Conditional Partial Order Graphs (CPOGs) enable us
to compactly and efficiently describe and store instruction sets. Further, they explained how
they can be used to identify parallelisms and synthesize custom instruction sets. On the same
line of thought, we proposed a technique that accepts formal MRICDF/SIGNAL [43]
specifications and compiles them to Conditional Partial Order Graphs (CPOGs). These CPOGs
are further used to generate custom instruction sets for Application Specific Instruction set
Processors (ASIPs).

1.4.3 Contributions towards Causality Analysis of MRICDF Models : (Section 3.6)
 One of the pre-requisites for an MRICDF model to be sequentially or concurrently

implementable is that it should not contain any causal loops. In the past, numerous solutions
have been proposed for doing causality analysis. However, most of these approaches only work
on Boolean abstraction of the predicates. This may lead to sound but imprecise decisions being
made, which in-turn may lead to erroneously rejecting an MRICDF model to be
non-synthesizable. We proposed an SMT and Polyhedra-based approach for performing
causality analysis which considers both Boolean and Integer predicates. Our proposed approach
helps in making better decisions while performing causal analysis. Furthermore, we proposed
an approach to identify the constraints under which the causality behavior of the system is
exhibited. Then, we explained how these constraints can be used to generate a wrapper which
would always keep the system in safe operating region.

1.4.4 Contributions towards Units and Dimensional Analysis of MRICDF Models :
(Section 3.7)

 Units and dimensional inconsistencies between signals at the interfaces could result in
catastrophic failures. We proposed an novel SMT-based approach for performing unit and
dimensional analysis statically on the polychronous models. To the best of our knowledge, this
is the first ever approach for performing dimensional analysis on polychronous languages. The
main advantage of our approach is that it considers the clock constraints of the signals which
checking for dimensional consistencies. Our approach is scalable and adds minimum overhead.

1.4.5 Contributions towards Value Range Analysis of MRICDF Models : (Section 3.8)
 Software used in safety critical embedded system is required to produce expected

output values for every possible run. By conducting static value range analysis on the program,
one can check if the signals ever take any values out of some pre-defined bound. There are
approaches proposed in the past for doing value range analysis for synchronous programming

Approved for Public Release; Distribution Unlimited
12

languages such as C/C++/Java. The polychronous model of computation brings in additional
complexity which would require the value range analysis techniques to consider the clocks of
the signals along with their values. We proposed a novel SMT-based technique to perform
value range analysis in polychronous languages and explained it with a case study. Our
proposed approach considers the clocks of the signals too.

1.5 Organization of the Report
 This report is organized around three main topics, namely – (a) Software Synthesis, (b)

Hardware Synthesis, and (c) Verification & Validation, as shown in Figure 4.
Section 2 discusses various models of computation, abstractions of time, formalisms

associated with popular synchronous and polychronous languages such as Esterel [12], Quartz
[68], Lustre [34], Signal [32], etc.

Section 3.1 initially discusses our results related to multi-threaded code synthesis and
high level synthesis from formal languages. Further, it discusses one work related to property
verification – causality detection in particular and type system extension and type checking in
modeling languages.

Section 3.2 articulates the formalisms, syntax and semantics associated with the
MRICDF polychronous modeling language. Further in the section, the tool EmCodeSyn that
accepts and analyses MRICDF specifications is introduced. A short description of its
functionalities and the usage flows for various operations such as code generation, type
checking, etc. is provided. The last part of the section describes a Boolean theory-based
sequential software synthesis approach.

The first part of Section 3.3 describes a Boolean theory-based approach to identify
concurrent implementability of MRICDF models. The second part of the section describes the
algorithms and implementation details of the proposed approach along with experimental
results. The Appendix lists an example MRICDF model and the corresponding multi-threaded
code generated for this model using the EmCodeSyn tool.

In Section 3.4, we explore techniques to improve the efficiency of the synthesized
multi-threaded code by identifying avoidable synchronizations using affine relations between
the clocks of signals.

Section 3.5 outlines our proposed approach to convert MRICDF models to Conditional
Partial Order Graphs(CPOGs), which are further utilized to synthesize ASIPs.

Section 3.6 describes the use of polyhedral analysis for verifying properties of
polychronous specifications, with a focus on verifying the presence or absence of causal loops.
Explained further in the section is a wrapper generation technique, that utilizes the bounds of
safe operating area obtained by the polyhedral analysis and generates wrappers which filters
the unsafe inputs to the system.

Section 3.7 describes the first attempt at type inference for polychronous specifications
that includes the clocks of signals. It also explains a fully automated SMT-based type
consistency checking approach.

In Section 3.8, we propose another novel approach to derive the range constraints of
signals in polychronous models. Further, we show how to export the range constraints as SMT
constraints and explain how they can be used to verify properties related to value ranges in

Approved for Public Release; Distribution Unlimited
13

polychronous models.
Section 4 discusses the conclusions of the above research works and proposes ideas for

future work.

Figure 4: Report Organization

Section - 2
Methods, Assumptions

and Procedures

Section - 1
Introduction

Section - 3
Results and Discussions

Section – 3.1
Related Work

Section – 3.2
MRICDF Formalism and

EmCodeSyn Tool

Section – 3.5
ASIP Synthesis

Section – 3.3
Concurrent Code

Synthesis

Section – 3.4
Optimized Concurrent

Code Synthesis by
Analysis of Affine

Relations

Section – 3.6
Polyhedral Analysis

Section – 3.7
Type Inference and

Type checking

Section – 3.8
Value Range Analysis

of Polychronous
 Software

Synthesis

Hardware
Synthesis

Verification and
Validation

Approved for Public Release; Distribution Unlimited
14

1.6 Publications on the work reported in this report
 The following are the peer-reviewed publications on the work done in this report. All

the work in terms of the research contributions, implementation and experimentation for these
publications was done by the author under the guidance of Dr. Sandeep K. Shukla.

1. M Nanjundappa, M Kracht, J Ouy and SK Shukla, Synthesizing embedded
software with safety wrappers through polyhedral analysis in a polychronous framework – IEEE
Electronic System Level Synthesis Conference (ESLSyn), 2012

2. M Nanjundappa, MW Kracht, J Ouy and SK Shukla, A New Multi-threaded
Code Synthesis Methodology and Tool for Correct-by- Construction Synthesis from Polychronous
Specifications – ACM International Conference on Application of Concurrency to System Design
(ACSD), 2013

3. M Nanjundappa and SK Shukla, Compiling polychronous programs into
conditional partial orders for ASIP synthesis – ACM Formal Methods in Software Engineering
(FormaliSE), 2014

4. M Nanjundappa and SK Shukla, Verification of Unit and Dimensional
Consistencies in Polychronous Specifications – IEEE Forum on specification & Design Languages
(FDL), 2014

5. MW Kracht, M Nanjundappa and SK Shukla, Modeling and Scheduling of
Multi-Periodic Real-Time Tasks with Conditional Behaviors using Polychronous Specifications

6. M Nanjundappa and SK Shukla, SMT based value range analysis of
Polychronous Models

7. M Nanjundappa and SK Shukla, Sythesis of Improved Multi-threaded code
from Polychronous specifications using Affine clock relations

8. M Nanjundappa, BA Jose, HD Patel and SK Shukla, SCGPSim: A fast SystemC
simulator on GPUs – IEEE 15th Asia and South Pacific Design Automation Conference (ASP-DAC),
2010 – Best Paper Award

9. M Nanjundappa, A Kaushik, HD Patel and SK Shukla, Accelerating SystemC
simulations using GPUs – IEEE International High Level Design Validation and Test (HLDVT)
Workshop, 2012

Approved for Public Release; Distribution Unlimited
15

2 Methods, Assumptions and Procedures
 Past three decades have seen extensive research being done in the area of

automated synthesis of safety critical embedded control software. The common goal of all
these research efforts is – to automatically synthesize correct and efficient code from high-level
descriptions of the system. Initial research efforts were targeted towards synthesis of sequential
or single-threaded code, while most of the recent efforts are targeted towards multi-threaded
code synthesis – thanks to increasing computation demands and increasing popularity of
multi-core embedded processors. The high-level description of the desired system is usually
described using a modeling language. The semantics of these languages can be either formal,
semi-formal or non-formal. Depending on the properties of the system to be modeled, the
designer can choose a modeling language that offers the desired model of computation.
Further, these descriptions are analyzed and transformed into software (C/C++ code) or
hardware (Register-Transfer Level (RTL) implementations) by a tool. One class of modeling
languages that are often used for modeling reactive embedded systems are Synchronous
Languages. Table 1 lists some of the popular synchronous programming languages that are
used to describe embedded systems.

Table 1: Popular Modeling Languages used for designing Embedded Systems

No. Modeling
Language

Graphical/Tex
tual

Semantics Highlights

1 Argos Graphical Formal Synchronous, Imperative
2 Atom Textual Formal Synchronous Language
3 Esterel Textual Formal Synchronous, Imperative
4 Lucid Synchrone Textual Formal Synchronous, Declarative
5 Lustre Textual Formal Synchronous, Declarative
6 MRICDF Graphical Formal Polychronous, Declarative
7 Quartx Textual Formal Synchronous, Imperative
8 Reactive-C Textual Non-formal Imperative, Extension to C
9 Signal Textual Formal Polychronous, Declarative
10 Statecharts Graphical Formal Synchronous, Imperative
11 SyncCharts Graphical Formal Synchronous, Imperative

Synchronous languages were introduced as a means to enable deterministic and
correct-by-construction development of embedded systems that are safety critical. These
languages are equipped with formal semantics, which will allow the designers to
unambiguously describe the required behavior of the intended system. The mathematical
foundations of these languages allow for extensive and efficient analysis, verification &
validation and further provide a sound basis upon which we can reason about the correctness
of the system. Synchronous languages rely on synchrony hypothesis. The synchrony hypothesis
states that, the system is fast enough to respond to the previous set of input events before the
next set of input events occur. This indirectly implies that, the execution of a synchronous
process can be divided into a discrete set of computation steps (macro-steps). These steps are
usually called as logical instants. The synchrony hypothesis requires that within each of these

Approved for Public Release; Distribution Unlimited
16

logical instants, the computation is well ordered – in other words, there are no cyclic
dependencies between computations (micro-steps) inside each logical instant. The model of
computation implemented by synchronous languages is known as Synchronous model of
computation.

Polychronous languages are also synchronous languages. They also rely on synchrony
hypothesis, but extend it to process multiple clocks. This means that, there can be several
synchronous processes which are running asynchronously until some communication occurs;
within each synchronous process and between communicating synchronous processes,
synchrony hypothesis is assumed. The model of computation implemented by polychronous
languages is known as Polychronous model of computation. These languages are typically used
to model an important class of systems that exhibit globally asynchronous but locally
synchronous behavior.

Most of the formal languages listed in Table 1 are examples of Synchronous Languages.
MRICDF and Signal are examples of Polychronous Languages.

2.1 Synchronous and Polychronous Model of Computation
 The synchronous model of computation enables the designer to describe systems that

are driven by a single global clock – mono-clocked systems, while the polychronous model of
computation allows us to describe systems that are driven by a set of independent clocks –
multi-clocked systems. In mono-clocked systems, this global clock is also known as master clock.
Master clock or its derivatives initiates all the reactions of each subsystem in the mono-clocked
system. This implies that the set of reactions initiated by some derivative clock of master clock
is a subset of the set of reactions initiated by the master clock itself. Block diagram of a generic
mono-clocked system is shown in Figure 5. The rate at which Subsystem A has activations is ten
times less than that of rate at which Subsystem B has reactions, while the rate at which
Subsystem C has reactions is three times less than that of Subsystem B. Thus, the set of
execution instants when subsystem A and C has reactions is a subset of set of execution
instants when subsystem B has reactions. This is because as the global clock is same as that of
clock of subsystem B. If the behavior of clock of global clock is modified, then the behaviors of
clocks of other subsystems also will be modified. Thus, there exists a relation between clocks of
all the subsystems and the global clock.

Approved for Public Release; Distribution Unlimited
17

MONO-CLOCKED SYSTEM

SUBSYSTEM A

GLOBAL
CLOCK

SUBSYSTEM B

GLOBAL
CLOCK

SUBSYSTEM C

GLOBAL
CLOCK/3

GLOBAL
CLOCK/10

Figure 5: Block Diagram of a Mono-clocked System

MULTI-CLOCKED SYSTEM

SUBSYSTEM B

CLOCK 2

SUBSYSTEM C

CLOCK 3

Communications
between

subsystems

SUBSYSTEM A

CLOCK 1

Figure 6: Block Diagram of a Multi-clocked System

Figure 6 shows the block diagram of a generic multi-clocked system. It can be seen each
subsystem has its own clock and there is no global clock. Since, the clocks of each subsystem is
independent of other clocks, designing of a multi-clocked system can be done in a modular way
and composed at the end. When the subsystems need to communicate to each other to
sychronize or exchange data, they use shared resources. In future, even if a single subsystem is

Approved for Public Release; Distribution Unlimited
18

modified locally, it does not affect the behavior of other subsystems. This feature is highly
desired during development of complex embedded systems.

In Section 2.2, we discuss some of the popular synchronous and polychronous
languages.

2.2Synchronous Languages
 Based on the programming style, synchronous languages can be grouped as imperative

and declarative languages. While modeling in imperative languages, the user explicitly
describes the sequence of execution steps, where as while modeling in declarative languages,
the user expresses only functional or relational dependencies.

2.2.1 Esterel
 The Esterel language [12] is an imperative synchronous language, that can be used to

describe complex reactive systems and synthesize both C code and RTL implementations for the
same. Esterel language [12] has two basic types of objects – signals and variables. Signals are
the basic means of communications. They can be used to represent inputs and outputs of a
process or they can be used as local signals inside the process. A signal has two attributes
associated with it: status and value. The status attribute indicates whether a signal is present or
absent in the given logical instant and the value attribute indicates the data that the signal
contains. The value attribute is permanent, which means that, if a signal is absent in the current
logical instant, it will retain the value from the previous instant when the signal was last
present. The set of logical instants where the signal is present is termed as its logical clock. Each
Esterel program has a predefined signal usually referred to as tick. The clock of the signal tick, is
termed as global clock and is faster than all the other logical clocks. This implies that, the set of
logical instants where all other clocks are present is a subset of the set of logical instants where
tick is present.

An Esterel program is made up of modules, which is in turn made up of interface – that
represents input and output signals, and the body – that represents the behavior of the
module. The body consists of imperative and reactive statements that are made up from the
basic statements shown in Table 2. Whenever the activation signal corresponding to a module
is activated, then the body of the model is executed instanteneously. Listing 2.1 shows an
example Esterel program that keeps track of number of people in a room and notifies that
room is FULL when there are 3 people inside and EMPTY when there is no one inside the room.

Table 2: Basic Esterel Statements [12]

Statement Explanation
emit s Immediately signal s is made present

present s then T1 else T2 end If the signal s is present, do T1 else do T2
Pause Pauses the execution of the current thread until next

reaction occurs
T1; T2 First perform T1 and then perform T2

loop T1 end Keep repeating T1 forever

Approved for Public Release; Distribution Unlimited
19

loop T1 each s Keep repeating T1 whenever s occurs;
if s occurs while T1 is in progress, then stop T1

immediately and restart it again
await s Wait until s occurs

T1 || T2 Start T1 and T2 together
abort T1 when s Run T1

(i) until T1 is finished, or
(ii) until a reaction when s is present and T1 is not yet

complete
suspend T1 when s Perform T1 except when s is present

sustain s Keep emitting s; can also be written as
loop emit s; pause end

run M Start running code for module M

Esterel programs are compiled using one of the many available Esterel Compilers such
as Esterel INRIA compiler [37], Columbia Esterel Compiler [25], Esterel Studio [77] (commercial
tool), etc. We consider here the compiler distributed by INRIA [37]. This compiler initially
compiles the Esterel program into finite state automaton with the statements as data-paths
and conditions as guards. Further, this finite state machine is used as underlying formal model
and is subjected to correctness preserving transformations to synthesize C code or RTL
implementations. One can also analyze the inherent concurrency present in the Esterel
programs to generate concurrent code. In Section 3.1 we provide an overview of such efforts.

Listing 2.1 Example Esterel Program

module Counter:
input ADD, SUB;
output FULL, EMPTY;

var count := 0 : integer in
loop

present ADD then if count < 3 then
count := count + 1 end end;

present SUB then if count > 0 then
count := count - 1 end end;

if count = 0 then emit EMPTY end;
if count = 3 then emit FULL end;
pause

end
end

end module

Approved for Public Release; Distribution Unlimited
20

2.2.2 Quartz
 Quartz [68] is an imperative synchronous programming language that is based on

Esterel. It’s developed as a part of Averest project [5] and the Quartz compiler also has the
same name – Averest. Quartz extends the Esterel language with statements that can explicitly
express non-determinism. This allows Quartz to model distributed systems that do not exhibit
synchronous behavior during execution of threads, but instead exhibit asynchronous behavior.
Apart from this, Quartz also adds next() statement that allows delayed data assignments and
halt statement. The halt statement of Quartz can be written using Esterel statements as loop
pause end. Another important advantage that Quartz language has over Esterel language is, its
ability to handle analog data [69], which will allow it to be used in designing hybrid systems. A
sample example of Quartz program that computes square root of a number is shown in Listing
2.2. The Quartz program is very similar to an Esterel program except the additonal statement
next and the drivenby part which is used to provide simulation inputs to the Averest tool.

2.2.3 Lustre
 Lustre [34] is a declarative synchronous programming language developed by Verimag.

It is based on data-flow model and is highly suitable for modeling of reactive systems that
manipulate dataflows. The commercial version of Lustre and its compiler – SCADE (Safety
Critical Application Development Environment) developed by Esterel Technologies, has been
adopted by various industries in developing real world safety critical applications [77]. Lustre
language has two basic objects: variables and nodes. Variable represent an infinite flow of
values. Similar to the signal concept of Esterel, a flow in Lustre is characterized by two
attributes: clock and value. The set of logical instants where the a new value occurs on the
variable is called its clock. A clock, thus can be encoded as a Boolean signal where a true value
on the encoding signal indicates the presence of the associated flow, and false value indicates

Listing 2.2 Example Quartz Program

macro N = 200;

module SquareRoot(nat ?a,x,event !rdy) {
nat x_old;
x = a;
do {

next(x_old) = x;
next(x) = (x+(a/x))/2;
pause;

} while(x_old>x);
emit(rdy);

}
drivenby {

a = 2*exp(10,N);
await(rdy);

}

Approved for Public Release; Distribution Unlimited
21

an absense. Value attribute denotes the data contained in the flow. Each node represents a
programming unit and it is composed of an interface with input/output flows, and a body
defined as a set of equations. Lustre program is made up of data flow equations using four basic
temporal operators shown in Table 3. Apart from the equations, Lustre program might also
consist of assertions. They are used to specify properties of the design. An example Lustre
program for a simple timer with reset that outputs an alarm signal is shown in Listing 2.3.

Table 3: Basic Lustre Operators

Temporal Operators Explanation
y = f(nxx ,..,1) f is an instantaneous function on the flows nxx ,..,1

pre(x) Returns the previous value in the flow of variable x
-> (followed by) This operator defines the initial values

z = x when y This samples the flow x with y . The value of x is assigned
to z when y occurs and is true

current(x) This memorizes the last value of x whenever it is present
T1; T2 The nodes T1 and T2 have to be executed in parallel

The Lustre compiler analyzes the Lustre programs and performs an operation called
clock calculus to determine the clock hierarchy of the variables. After doing causality analysis,
using the clock hierarchy, a finite state automaton (similar to the one built by Esterel compiler)
is built which is then used to generate C code or RTL implementations. Some research efforts
have also focused on generating synthesizing concurrent code for distributed platforms from
Lustre programs. We give a brief overview of these in Section 3.1.

Listing 2.3 Example Lustre Program

node reset_timer (reset:bool) returns (alarm:bool);
var time: int;

let
time = 1 -> if reset then

1
else

if pre(time) = 10 then
1

else
pre(time) + 1;
alarm = (time = 10);

tel

Approved for Public Release; Distribution Unlimited
22

2.2.4 Signal
 Signal [33, 32] is a declarative, multi-rate synchronous (polychronous) language

developed by IRISA, France. The important difference between Signal and the previously listed
synchronous languages is that Signal considers a mathematical model of time, in terms of
partial order relations, to describe multi-clocked systems without the necessity of any abstract
global clock. This makes it easier to express behaviors of asynchronous systems. A Signal
program consists of processes that are made up of interface that defines inputs & outputs and
body. The body consists of statements expressing functional and temporal relationships. These
relations are expressed using one of the four primitive operators listed in Table 4. Each signal
s in a Signal program is associated with a Boolean signal called clock denoted by ŝ . The clock
of a signal defines the rate at which the signal is being updated. Column 2 of Table 4 shows the
default clock relations between the signals of the primitive actors. Along with clock
dependencies as indicated by the clock relations, there are also data dependencies between
the input and output signals of few primitive actors. When the computation of a signal y is
dependent on computation of signal x , then we say that y depends on x and is indicated
as yx → . Data dependencies between input and output signals of primitive actors is shown in
column 3 of Table 4. A sample Signal program that computes running average of input values is
shown in Listing 2.4.

Table 4: Primitive Signal Operators

Actor definition Clock Relations Data Dependency Relations
Function

bar * =
rba ˆ=ˆ=ˆ ra →

rb →
Delay

xy = $ initn nvv ..1

xy ˆ=ˆ No dependency

Sampler
xy = when z

][̂ˆ=ˆ zxy ∧ yx z→][

Merge
r = a default b

bar ˆˆ=ˆ ∨ ra →
rb ab→ − ˆˆ

Approved for Public Release; Distribution Unlimited
23

Signal programs are compiled using the Polychrony [81] compiler. Similar to Lustre
compiler, the Polychrony compiler also analyzes the clock relations, builds hierarchical clock
relation graph and does causality analysis. If the hierarchical clock relation graph turns out to be
a tree and there are no causal loops, then we say that that particular Signal code exhibits the
Endochrony property. Signal programs that are endochronous can be transformed into
deterministic sequential C code. There are times when the hierarchical clock relation graph is
not a tree, but it can be made a tree by defining and adding additional clocks to the clock
relation graph such that it doesn’t induce any causal loops. This process is known as
Endochronization, and is done when the target is to generate sequential C code. After
endochronizing the Signal program, the resultant clock tree can be used to synthesize
sequential C code. If the target is to generate multi-threaded code, then we check if the Signal
program exhibits weak endochrony [76] property. If yes, then we can synthesize multi-threaded
code for the model. An overview of the research efforts that do synthesis from Signal programs
is provided in Section 3.1.

2.2.5 Statecharts, SyncCharts, Argos, Reactive-C
 Statechart [35] is a visual formalism that is used to describe complex reactive systems.

Statecharts are basically extensions of the traditional state-machines with features to describe
communication, concurrency and hierarchy. The concurrency extensions allow the user to
describe parallel behaviors of system easily. States in Statecharts may be hierarchical and they
can be of two types – and-state&or-state. Hierarchical and-states consists of concurrent
sub-states that evolve concurrently, while hierarchical or-states contain substates that evolve
exclusively. Figure 7 shows a Statechart that represents the abstract execution model of an
answering machine.

Listing 2.4 Example Signal Program

function average =
(? integer input; ! real avg;)
(| sum := sum$ init 0 + input
| n := n$ init 0 + 1
| avg := real(sum)/real(n)
|)
where

integer sum, n;
end;

Approved for Public Release; Distribution Unlimited
24

Figure 7: Statechart representing abstract execution model of an answering machine

The unit of reaction in a Statechart is called – step. At any given point of time, the
current configuration of a Statechart is defined by the set of its active states. The transition
from current configuration to another configuration takes place when a step occurs. Tools that
interpret Statecharts have different semantics, and based on the semantics considered, the way
actions occur at each step differs. The tool Statemate interprets Statecharts in a way that the
actions that occur in current step will only become effective in the next step, indicating that the
outputs are produced after a temporal delay. Thus, Statemate’s interpretation of Statecharts
does not result in a strictly synchronous semantics and not necessarily deterministic either.

Argos [52, 53] is a synchronous variant of restricted Statecharts language. One of the
restrictions Argos enforces on Statecharts language is that, the actions performed within a step
has to become effective in the same step. Argos also eliminates the feature of Statecharts that
allows multi-level arrows. This results in a well-defined syntax of Argos programs on which a
structural semantics can be based. Based on this structural semantics, Argos also defines
compositionality. The synchronous viewpoint of Argos is similar to the one adopted in Esterel.

SyncCharts language [4, 3] is a graphical version of the Esterel language developed by
Esterel Technologies. SyncCharts was originally inspired by Statecharts, but it has the semantics
of Esterel language. SyncCharts being visual, offer better visual representation of the design,
which helps the designer during designing complex systems.

Reactive-C [14] is an extension to C programming language, where the concepts of
extensions borrowed from Esterel language. Reactive-C enables a C like programming language
to be used to design and develop reactive systems. Listing 2.5 shows an example of a simple
sequential Hello-Bye program. The keyword rproc indicates the start of definition of reactive
procedure. The stop statement is used to define the boundaries of the instants. During
execution, if a stop statement is encountered, then it indicates that end of execution for
current instant. The next statement after stop, will be executed in the next instant. Figure 8
shows the execution flow of the Reactive-C program listed in Listing 2.5.

Approved for Public Release; Distribution Unlimited
25

hello, world

I repeat: hello, world

Bye!Ex
ec

ut
io

n
di

re
ct

io
n

Figure 8: Execution flow of the Reactive-C program shown in Listing 2.5

2.3 Alternatives to Synchronous languages
 Apart from synchronous languages listed in Table 1, various other modeling

frameworks such as I/O Automata, Kahn Process Networks, Petri-nets, Multi-dimensional SDF,
etc. are also used for designing embedded systems. Table 5 lists them.

Listing 2.5 Example Reactive-C Program

rproc Seq(){
exec Hello();
exec Bye();

}
rproc Hello(){

printf("hello, world\n");
stop;
printf("I repeat: hello, world\n");

}
rproc Bye(){

stop ;
printf("Bye!\n");

}

Approved for Public Release; Distribution Unlimited
26

Table 5: Popular formalisms alternative to Synchronous languages

No. Modeling Language Graphical/Tex
tual

Semantics Highlights

1 Kahn Process Networks
(KPN)

Graphical Formal Ideally suited to model
distributed systems

2 Synchronous Dataflow
(SDF) &

Multi-dimensional SDF

Graphical Formal Ideally suited to model
DSP applications

3 Petri Nets Graphical Formal Used for modeling
distributed systems

4 I/O Automata Both Formal Used to model
asynchronous concurrent

systems
5 Ptolemy Framework Graphical Formal Used to model

heterogeneous systems,
supports variety of MoCs

2.3.1 Kahn Process Networks (KPN)
 Kahn Process Networks (KPN) [44, 1] is a specification language proposed by Gilles

Kahn for programming distributed systems. In the KPN model of computation, a group of
independent sequential processes execute concurrently and communicate with each other in a
point-to-point fashion via unbounded First In First Out (FIFO) channels, using a blocking read
synchronization primitive. A simple example of KPN is shown in Figure 9.

P3

P1 P4

P2

FIFO-1

FI
FO

-2
FI

FO
-3

FIFO-4 FIFO-7

Input Output

Figure 9: Example of KPN model

Approved for Public Release; Distribution Unlimited
27

Nodes P1, P2, P3 and P4 represent four independent sequential processes that are
running concurrently and communicating via channels represented by the unbounded FIFOs.
The channels have the property of blocking read and non-blocking write. Blocking read means
that when a FIFO is empty, the process reading that FIFO will be stalled until the FIFO contains
enough data tokens. A non-blocking write channel indicates that, a process is never stalled
during writing and it always succeeds. Some of the features of KPN are as follows,

• KPN model is deterministic - it means irrespective of the schedule, for the same set of
inputs, we get same set of outputs
• Simple synchronization primitive - blocking read, easy to implement
• Control is completely distributed, no global scheduler
• Communication is point-to-point and is distributed over FIFOs, no global memory
concept

 All the above features make KPN model of computation an ideal framework to model
distributed systems. KPN models can be subjected to various scheduling tools which can
estimate the buffer sizes. Further, these KPN models can be easily transformed into Globally
Asynchronous, Locally Synchronous (GALS) implementations [75] using correctness preserving
transformations, thus making it very attractive for developers who develop safety-critical
embedded systems.

2.3.2 Synchronous Dataflow (SDF) and Multi-dimensional (MD-SDF)
 Synchronous Dataflow (SDF) [48] models of computation have often been used by

developers to model Digital Signal Processing (DSP) systems, as they offer a natural abstraction
for block-diagram languages. An SDF model consists of interconnected nodes with arcs, where
each node represents an actor and the arcs represent the data paths. Data tokens, the units of
data in an SDF model, flow along the data paths in and out of actors. Actors implement the
computations dictated by the system being modeled. When input data is available for an actor,
it gets enabled and is fired. The actor then executes consuming a finite number of tokens and
producing a finite number of tokens. In an SDF model of computation, the computation and the
communication is scheduled statically. This implies that, the when a system is modeled as an
SDF graph, it can be converted into an implementation that is guaranteed to complete all the
tasks in finite-time and using finite memory. Also, once the required amount of resources are
made available, SDF graphs can be executed over and over again in a periodic fashion without
any additional resources. This makes SDF an ideal candidate to model DSP systems. Figure 10
shows an example SDF graph model with the actors annotated with number of input and
output tokens they consume and produce. Ex: Actor 1 consumes 1 token but produces 2 tokens.

Approved for Public Release; Distribution Unlimited
28

Figure 10: Example of Synchronous Dataflow Model

A system modeled using SDF graph uses FIFO for communication purposes and they are
ideally suited for expressing algorithms with one-dimensional (1-D) data. For describing
algorithms which involved multi-dimensional data, first the data was made one-dimensional
and then SDF graphs were used to describe the algorithms. To avoid this, multi-dimensional SDF
[58] was proposed. MD-SDFs used arrays in place of FIFOs and this eased the work of describing
algorithms that involve multi-dimensional data. The scheduling algorithms of SDF were further
generalized for MD-SDFs.

2.3.3 Petri Nets
 Petri Net [63, 57] is a specification language proposed by C.A.Petri and is used for

describing and studying distributed systems. A Petri Net consists of nodes and arcs. Nodes are
of two types - Places and Transitions. In a Petri Net model, places represent the conditions and
transitions represent events. Arcs are present from a Place to a Transition or from a Transition
to a Place. A Transition occurs when the pre-conditions and the post-conditions associated with
its input and output are satisfied. Unless an execution policy is defined, the execution of Petri
Net is non-deterministic. Petri Nets allow efficient discovering of concurrency and
synchronization points as compared to C/C++ programs. This will allow better task partitioning
and task scheduling in distributed systems. Graphically a Petri Net is represented as a directed
graph with a node marked as initial state. An example Petri Net representing water composition
is shown in Figure 11.

ACTOR 1 ACTOR 2

ACTOR 3

2 3

1

1

1

1

Approved for Public Release; Distribution Unlimited
29

Figure 11: Example of Petri net representing water composition

One of the major problem that arises with the use of Petri Nets is state explosion. Since

the Petri Net is very generic and simple, even a small system would require many states and
transitions, which will result in a huge number of states for a complex system and might render
the Petri Net unsolvable. Another problem with Petri Nets is the abstraction level at which the
nets describe the intended system. If its too close to the implementation model, then
discovering concurrency might be difficult. Petri Nets, as with any graphical formal specification
language, also faces the issue of managing large scale models.

2.3.4 Input/Output Automata
 Input/Output (I/O) Automata [30] is a formal model which is often used to describe

behavior of asynchronous concurrent systems. Having formal semantics, models described as
I/O automata could be subjected to formal analysis and one can reason about the system that
is modeled.

2.3.5 Ptolemy Framework
 Ptolemy framework [24, 28], developed at University of California Berkeley, is an

open-source framework that is used to model, simulate and design concurrent real-time
heterogeneous embedded systems. Ptolemy supports actor-oriented design. A Ptolemy model
is a hierarchical interconnection of actors. Actors are basically components that execute
concurrently and communicate using messages sent and received via ports. The semantics of
the ptolemy model is not determined by the Ptolemy framework, but it is determined by the
director component of the model. The director is a software component which implements a
model of computation. The directors in Ptolemy support various model of computations such as
KPN, Discrete-Event (DE), Continuous Time (CT), Synchronous Dataflow (SDF), etc. Each
hierarchical level in the Ptolemy model can have its own director, and each of these directors
can implement a different model of computation, and they can all be composed together.

Place

TransitionH2

O2

2

2
H2O

Place

Place

Approved for Public Release; Distribution Unlimited
30

These features make Ptolemy a very useful framework to model and simulate heterogeneous
embedded systems.

In Table 6 we list some of the popular commercial tools that used in embedded system
development.

Table 6: Popular Commercial Tools used for Modeling Embedded Systems and Code Generation

No. Tool Graphical/
Textual

Semantics

Highlights

1 LabView[79] Graphical Non-formal Predominantly used for generating
code that controls instruments

2 Simulink[83] Graphical Non-formal Modeling, Simulating and
Analyzing multi-domain dynamic

systems
3 Stateflow[84] Both Semi-formal Used to model control systems

within Simulink models
4 Modelica[80] Textual Non-formal Declarative, component-oriented,

modeling language
5 xcos[82] Graphical Non-formal Used to model and simualate the

dynamics of hybrid systems

Approved for Public Release; Distribution Unlimited
31

3 Results and Discussion

3.1 Related Work
In Section 3.1, we discuss some of the works which are closely related with our work.

This Section 3.1 is organized similar to the thesis organization. First, we explain the works
related to trusted software synthesis, specifically, sequential and concurrent software synthesis
works. Second, we discuss the works related to formal ASIP synthesis. Finally, we explain the
works related to causality analysis, type checking and value range analysis in modeling
languages.

3.1.1 Concurrent Software Synthesis
 Numerous efforts have been made in the past to synthesize code from synchronous

specifications. But most of these efforts were targeted towards generating sequential code
rather than multi-threaded code. Here, we list some of the multi-threaded code generation
efforts. The authors of [78] proposed an approach to generate multi-threaded code from
Esterel specifications. Their approach involved partitioning of concurrently executable Esterel
statements into communicating Finete State Machines (FSMs) and distributing the computation
of these FSMs based on the communication and synchronization techniques used in reactive
processors. In [7], the authors provide a way to translate synchronous guarded actions to
multi-threaded C code. They build an action dependency graph using the synchronous guarded
actions, extract concurrently runnable tasks from the graph and map them to threads. Both
these works are targeted at single clock systems while our work focuses on systems with
multiple clocks (polychronous). In [41], the authors provide a non-invasive methodology which
includes generating programming glue to generate multi-threaded code from polychronous
specifications. This approach requires that, no variables are shared between the concurrently
executable processes, in other words, the clock trees of sub-processes do not intersect. This a
big limitation and generating multi-threaded code for independent processes is very trivial. In
another similar work [64], the authors focus on generating multi-threaded code for mutually
independent tasks, which is trivial. In [76], the authors have explained the concept of
weak-hierarchy and composition of endochronous processes. Using these concepts one can
identify parts which can be concurrently executed without disabling one another. This work
also lists some of the rules for composing endochronous systems to a weakly endochronous
system. To the best of our knowledge, there is no implementation of this. The technique
explained in Section 3.3 considers and extends the theory presented in [76]. We propose a
novel efficient technique by which we can test concurrent implementability of a given MRICDF
model by decomposing it. Our technique also generates execution schedule and the
multi-threaded code that conforms to the schedule. We present all the algorithms involved and
investigate the feasibility and scalability of the proposed technique.

The authors of [73] first proposed the idea of affine transformations for Polychronous
language SIGNAL as an extension to allow specification and validation of real-time systems.
They further explored the domain of affine relations in the follow up work [72]. We have used
the concept of affine clocks to identify and remove avoidable synchronizations and improve the
efficiency of the synthesized multi-threaded code.

Approved for Public Release; Distribution Unlimited
32

3.1.2 ASIP Synthesis
 In the past, efforts such as [11], [71], [54] etc., have been made to generate hardware

from Simulink models, synchronous languages such as Esterel, Lustre, SIGNAL and others.
However, most of these efforts have concentrated on design exploration, verification of certain
properties of the system being designed and synthesizing register-transfer level VHDL/Verilog
logic. Synthesizing ASIPs with maximal concurrency and resource sharing among multiple
complex instructions is a more recent interest, as this allows one to co-design application
specific processors to speed up computations that are off-loaded from main processors. The
work presented in this paper closely resembles the works in [46] and [47]. In [46], the authors
have proposed a methodology based on preliminary experiments to generate efficient HDL
code from SIGNAL specifications. Their approach consists of applying multiple semantic
preserving transformations to original SIGNAL specifications. Efficiency of HDL code stems from
the fact that they use the SIGNAL clock exclusivity information to identify re-usable resources
during one of transformations. The authors of [47] have used Hierarchical Conditional
Dependency Graph(HCDG) as intermediate representation and proposed a unifying approach to
determine mutual exclusiveness and scheduling conditional behaviors. In [47], the authors also
list other works that have addressed the problem of efficiently scheduling conditional
behaviors. Our work differs from the above mentioned works in the sense that, we provide a
new compilation scheme for SIGNAL/MRICDF programming languages based on conditional
partial order graphs, which is a natural fit for control state optimization, and scheduling of
control states in the ASIP. The sequencing of control states is akin to micro-programming, but it
is automatically synthesized.

3.1.3 Verification and Validation

3.1.3.1 Causality Analysis
 Polyhedral domain as an abstract domain for abstract interpretation has been used by

many since the seminal paper on abstract interpretation by Cousot and Halbwachs [19]. In [6], a
survey on various applications of Polyhedral analysis in program verification can be found. In
the context of Polychronous model of computation, the only work we are aware of is [13],
where the authors showed a polyhedral abstraction domain for Signal programs to prove
formal properties. However, to the best of our knowledge, no implementation of Signal
verification based on this work exists. Detection of causal cycles in programs has been
extensively researched. In one of the early Polychrony related papers [51], the authors explored
the requirements for a Signal specification not to exhibit causal behavior. The important one is
checking that in any cyclical dependency in the dependency graph, the conditions that make
each dependency active, must not all evaluate to true during the same logical instant. Later in
[8] and [10], algorithms for checking whether the apparent cycles are causal have been
discussed. However, all these past work have a limitation that they work only on Boolean
abstraction of the predicates (conditions in conditional dependencies), and hence sound but
imprecise. Even such sound but imprecise detection problem is NP-complete, and hence only
heuristics can be used. However, making this analysis both sound and exact, is easily proven to

Approved for Public Release; Distribution Unlimited
33

be an undecidable problem. To the best of our knowledge, there is no synthesis tool for
polychronous specifications that can provide the safe operating range for inputs where causal
behavior is not exhibited by the system. In [40], the authors perform causality analysis of
MRICDF(Multi-rate Instantaneous Channel connected Data Flow) [43] specifications by using an
Yices SMT solver as a constraint solver. In another work [39], the authors identify reachable and
non-reachable causal loops by converting the MRICDF specifications to Quartz specifications
and in turn generating SMV files for model checkers. This technique does not consider input
constraints, is expensive and suffers from state explosion problem. In this paper, we go further
than any of the above works. If true causal loops exist, our technique also provides the range in
terms of inputs where the causal behavior is not exhibited, i.e., the bounds in terms of inputs
for safe operating region, albeit, it does not admit all possible input from the original input
space. If the user is given a choice to either reject the entire specification or to generate code
that operates safety, and the user chooses the latter, our compiler provides the solution. Finally
we also propose a wrapper extended code synthesis for the system so as the guarantee that
the synthesized code always executes in safe operating region.

3.1.3.2 Type Checking
 There has been a substantial amount of research done in the area of type checking in

software. But most of these works correspond to the analysis done either statically on the
written software or dynamically by the software itself. Recently, there has been a shift ([26]) in
focus towards model-based engineering to address type inconsistencies in critical software. In
this work, we propose to do the analysis on the formal MRICDF ([43],[42]) models rather than
the actual software. The authors of [45] explain about the polymorphic (union) dimension types
and their parametric nature. A related work is [2], where the authors type annotate certain
signals of the charon specifications with dimension & unit information and further try to infer
the same for other signals. Another closely related work is [50], in which the authors propose a
framework to create ontologies representing user-defined domains and check for dimensional
and unit consistencies. In another related work [67], the authors extend the type system of
Simulink modeling language with dimensional and unit information associated with ports and
signals. They capture invariants w.r.t the types and transform these invariants into formulas.
These formulas are used to check well-formedness of the Simulink blocks using yices ([86]) SMT
solver. In all these works, the authors assume that signals are not of union (polymorphic) type.
This could be a major limitation in most of the modern designs as multiplexing is very
commonly used. Verifying correctness becomes difficult when union typed signals are involved.
In [74], the authors explain the clocks in synchronous languages and how they can be used for
checking type soundness. The authors of [22] propose a type assignment scheme for union
types in call-by-value languages. In [15], the authors present a method to infer type qualifiers
by generating constraints in presence of user-defined rules. Even though the central idea of our
work resembles the ideas proposed in [2], [67] and [50], our work is very different from them.
We have addressed the shortcomings of the previous works by extending the type system of
MRICDF language to support both non-union and union types. We absorb ideas from [74], [22],
[15] etc. and propose inference rules for inferring the type information for MRICDF models. An
inference algorithm is provided to infer the type information for all signals. In case of union
types, we use the clock of signals to infer which individual type occur under what constraints.

Approved for Public Release; Distribution Unlimited
34

We then use these constraints and derive other invariants from the MRICDF models and check
for consistencies using yices - an SMT solver. Our approach is sound and addresses
shortcomings of the previous approaches.

3.1.3.3 Value Range Analysis
 Value range analysis techniques, especially, integer value range analysis techniques has

been well explored in the past for synchronous programming languages such as C , C ++,
Java , etc. The fundamentals for range analysis were first proposed by Cousot and Cousot in
their seminal paper [17]. This was further expanded by them in [18]. Based on their work,
various researchers proposed numerous other range analysis algorithms. Clark et al in [16], and
Flanagan et al in [27], developed theories that uses the fundamentals proposed in [17] to
statically identify the errors in programs. The authors of [70] proposed a way to detect buffer
overflow vulnerabilities in C programs by doing range analysis. In [66], the authors proposed a
range analysis technique for C programs that provides a balance between speed and accuracy.
The commercial Polyspace tool [36] allows data range specification and further, the tool finds
bugs related to out-of-array access, integer overflow, etc by conducting abstract range analysis.
All of these research efforts are targeted towards synchronous programming languages and not
for polychronous programming languages. The polychronous programming model introduces
additional complexities which would require extensions to the traditional analysis techniques.
This makes our proposed approach novel and thus, it completely differs from all of the previous
works.

There have also been attempts at type system extensions and abstraction-based
analysis to tackle similar problems. In [50], the authors propose a static analysis technique that
uses lattice-based ontologies to analyze Ptolemy models. In a closely related work [60], the
authors have proposed a similar polychronous type extensions to do specify units and
dimensional information and proposed techniques to verify the dimensional consistencies. In
another closely related work [29], the authors propose a Boolean abstraction to polychronous
models. They further use the abstraction along with clocks to do determine reaction absence
and generate efficient code. The authors of [59], used abstractions based on polyhedra to
abstract polychronous models and statically determine if a given causal loop is constructive or
not. We inherit the ideas from [29], [36], [60], [59], and extend them in this work. Our proposed
technique includes clock calculus as part of inference algorithm, which further improves the
accuracy of analysis. To the best of our knowledge, this is the first attempt at doing value range
analysis of polychoronous models. This combined with the SMT-based verification renders the
proposed approach to be extremely useful in proving properties related to signal value ranges
of signals in polychronous models.

Approved for Public Release; Distribution Unlimited
35

3.2 MRICDF Polychronous Formalism and
EmCodeSyn Synthesis Tool

3.2.1 Definitions and Overview of Concepts
 A Multi-Rate Instantaneous Channel-connected Data Flow (MRICDF) model is a data

flow network model that consists of several synchronous modules called actors, that are
interconnected using channels. An actor represents a computation with an input interface and
an output interface for input and output signals respectively. Actors communicate with each
other via channels using signals. Communication is instantaneous and channels can have
different communicating rates. In all, a MRICDF model represents a network of synchronous
modules with multiple clocks, which is the basic definition of a polychronous system.

In the polychronous model of computation, events form the primitive entities. An event
occurs whenever there is a change in the value at an input or output port, or change in value of
a variable etc.

Definition 1 [Event] Let Ξ , to denote the set of all events, and ≤ , denote a preorder
relation among events which indicates the precedence of one event over another. ≤ is a
preorder on Ξ : fe ≤ means that, event e occurs before or concurrently with event f . :
is the equivalence relation based on ≤ : fe : means that, events e and f occur
simultaneously, also called as synchronous events.

A logical instant is a maximal set of computations that occur in reaction to one or more

events. This set of computations is maximal in the sense that, any other activity would require
another value to arrive on those inputs which triggered the current set of computations. Events
within one logical instance are all synchronous with each other.

Definition 2 [Logical Instant or Instant] Let ϒ denote the quotient of :/Ξ , the set of

logical instants. Thus a logical instant is a maximal set of events that are synchronous.

The synchronous events within a logical instant may be constrained by data

dependencies and hence are also partially ordered by a data-dependence relation. All the
dependency relations are captured in the data dependency graph. An implementation of the
data-flow specification is only possible if the dependency relations do not form a cycle, since it
is used to schedule the order of computation within each logical instant during code generation
phase.

Definition 3 [Data Dependency] We use ⇀ to express data dependency between

events. The binary relation e ⇀ f means, e has to be computed after f , in other words,
f precedes e .

If the relation holds between some pairs of synchronous events of two signals, then the

data dependency relation is elevated between those signals. Note that a subset of events of
one signal may be data dependent on a subset of events in another signal. If there is a Boolean

Approved for Public Release; Distribution Unlimited
36

condition c , such that these data dependencies holds iff c is true, then we say that the
data dependence between the two signals hold under c . ∀ signals x , y and c , (ϒ∈∀t ,

yxtytxtc c→⇒↔)))(�)(()(.

Definition 4 [Signal] A signal is a stream of values that occur at specific instants.

Let T be the type representing set of values a signal can take, ⊥ be a special value

used to denote the absence of the signal, and }{= ⊥∪⊥ TT , then we can define a signal as a
function ⊥→ϒ T .

For a given signal x , there exists one maximal set of logical instants ϒ⊂γ , such that
γ is a total order in ϒ and the signal x takes a value from T in each of the instants of γ .
Such a set is called the epoch of the signal represented by)(xσ . The term epoch and the
term clock are interchangeable in the same way a set and its characteristic functions are
interchangeably used depending on the context.

Definition 5 [Clock] The clock of a signal is a characteristic function that tells if a signal

x is present or absent at any given instant t in ϒ .

 Clock is a function },{)(⊥→ϒ→→ϒ ⊥ trueT that for a signal x returns another signal

)ˆ(x defined by: Ttxtx ∈)(trueif=)(ˆ and ⊥⊥ =)(if=)(ˆ txtx .

Definition 6 [Epoch] The epoch of a signal is a set of all logical instants at which the

signal is computed or assigned new values.

 While the set of logical instants ϒ is partially ordered, the epoch of a signal is a

totally ordered set. The clock of a signal is a boolean signal that takes the value true at every
logical instant where the signal has a value, and is absent in all other instants. Not all signals at
the interface of a process are present and computed or assigned input values at every logical
instant. Thus signals may have different clocks – hence the model of computation is called
polychronous or “multi-clocked”.

Definition 7 [Clock tree] Using the clock relations, a hierarchy of clocks can be built and

the resulting hierarchical structure is a clock tree or a forest of clock trees depending on whether
the hierarchical structure is single rooted or multi-rooted.

Based on the above definition, signals can be classified into,

• signals x and y are synchronous to each other if their clocks are same: yx ˆ=ˆ .
• if signal x has events in a subset of instants where signal y has events, then x̂ is a
sub-clock of ŷ .
• if signal x and y do not have events that belong to same logical instant, then their clocks
can be either mutually exclusive or they are unrelated.

Approved for Public Release; Distribution Unlimited
37

The information regarding clocks of all signals is stored in clock tree. If a set of clocks {

1x̂ ⋅ ⋅ nx̂ } are related by a Boolean relation R , then in order to relate how an arbitrary logical

instant ϒ∈T may be shared between them, we can relate Boolean variables
nxx bb ,...,

1
,

where iix xTb ˆ∈↔ by a Boolean relation R′ where R and R′ are isomorphic. For

example, if zyx ˆˆ=ˆ ∪ , then we can write zyx bbb ∨= . Thus from a set of clock relations, we
obtain a set of Boolean relations.

3.2.2 MRICDF Actors
 Actors in MRICDF language can be classified into two groups – (a) Primitive actors (b)

Composite Actors. The four primitive actors are,
• Function Actor: This actor performs any user specified computation in any instant when
the inputs have an event. All the inputs and outputs are synchronized with each other.

Operation: bar *=
Clock relation: bar ˆ=ˆ=ˆ

Boolean relation: bar bbb ==
Dependency relation: ar → , br →

• Buffer Actor: This actor is used to temporarily store a value of a signal across instants, in
other words – it delays a signal. The signal must have events in both storing and retrieving
instants. Increasing the buffer size of the Buffer actor produces the same effect as a series
of unit sized Buffer actors cascaded. Both input and output are synchronized with each
other.

Operation: br = $ nvvinitn ..1

Boolean relation: br bb =
Clock relation: br ˆ=ˆ

• Sampler Actor: This actor is used to down-sample a signal based on a known Boolean
condition. This actor produces outputs in all instants where there is an input and the
Boolean condition evaluates to true . Hence the output clock is the intersection of input
clock and the clock when Boolean condition is true .

 Operation: bwhenar =
Clock relation:][*ˆ=ˆ bar , where bb =][is true

Boolean relation:][= bar bandbb ,][][= bbb borbb , falsebandb bb =][][
Dependency relation: ar →

• Merge Actor: This actor merges two signals (can have different clocks) with a higher
priority for one of the signal. The clock of the output signal is the union of the clocks of
the participating input signals.

Operation: bdefaultar =

Approved for Public Release; Distribution Unlimited
38

Clock relation: bar ˆˆ=ˆ +
Boolean relation: bar borbb =

Dependency relation: ar → , br →

Composite actors are hierarchical combination of several primitive actors.

3.2.3 Master Trigger and Sequential Implementability
 Given an MRICDF model, we need to translate it to an executable implementation

which is latency equivalent to the MRICDF model. However, before translation one has to
ensure if the given model is implementable as deterministic and equivalent software or not. It
might be sequentially implementable, or concurrently implementable, or not implementable as
deterministic equivalent software. To do so, we have to identify the mapping from the
abstracted MRICDF entities to actual software. Out of the many mappings, we discuss two
important ones here. First one is the mapping of the logical instants consisting of synchronous
but data-dependent events to a set of sequential computation steps. If the logical instants are
totally ordered, then each logical instant can be mapped to an iteration of a loop. If logical
instants are partially ordered, one has to check if multiple sequential ordered chains can be
mapped to multiple threads – but in that case, the synchronization on shared events must be
deterministically achievable. If the logical instants are totally ordered, then there exists one or
more signals that are present in event logical instant of the model. If there are multiple of
these, they must be synchronous to each other. Therefore, their data dependency partial order
must be analyzed to find the signal which forms the least element in the partial order. Such
signal is called as –Master Trigger [43]. To identify a signal which can be master trigger, we first
construct the Boolean formulae from the clock relations as explained before. In [43], we show
that computing the master trigger for the MRICDF model is equivalent to identifying unitary
positive prime implicate in the constructed Boolean formula. We use a SMT-based technique to
identify the prime implicates. If the model is not sequentially implementable, a unitary positive
prime implicate does not exist. An iterative computation of prime implicates allow us to
construct subclock relationships between clocks of all the signals. If this subclock relationship
forms a tree, then we go on to the scheduling phase.

The scheduling phase maps the events within each logical instant to computation within
an iteration. The order of computations is constrained by the data dependencies implied from
the specifications. If the dependency relation is not a partial order, and has a cycle, we cannot
find a schedule. This analysis is also done using SMT-based techniques as explained in [40],[59].
In the Section 3.3, we show a novel method to find out if an MRICDF model is concurrently
implementable or not.

3.3 Synthesis of Multi-Threaded Code from
Polychronous models

 Consider an automotive cruise controller system implemented based on a
proportional integral (PI) control, with vr as the target cruise speed, v as the actual sampled

Approved for Public Release; Distribution Unlimited
39

speed, T as the number of samples between the computation of two subsequent thrust
(actuation) outputs u and e as the difference between targeted speed and the actual speed.
The pseudo-C code for this system is shown in the Listing 3.3.1, where S is the local variable
accumulating the integral and ki are k are constants determined based on PI control. In this
pseudo-C code, Sample(v), and Output(u) are input/output actions. Now, consider the
control loop for the temperature (AC) control system in the same car. Assuming PI control
paradigm, the pseudo-C code for temperature control is shown in the Listing 3.3.2, where S is
integration summand and ci and c are constants.

In the AC controller system, p denotes the currently sampled temperature, pr

denotes the target temperature set by the thermostat, w is the signal whose value controls
the valve aperture to release hot air or cool air, and speed of air. Note that the AC control loop
and the cruise control loop might be working at different sampling rates, and their actuation
intervals (Thrust_Interval and AC_Interval) could also be different. If both these control loops
are run on the same processor, and scheduled using a real-time scheduling algorithm (with T
and T’ being the respective deadlines, and periods for the two tasks), one could easily
implement them as two real-time processes. As these two processes do not have any
interaction, there is no dependency or no need for any synchronization, and in that case the job
of the embedded software designer is simple. Now, consider the hypothetical possibility that –
whenever the sampled temperature goes below a certain threshold, the cruise control is to be
disengaged to manual control, because such low temperature might be indicative of icy
weather conditions. This is not necessarily an ideal automotive design example, but rather
concocted to make a point regarding multi-threaded control. If the temperature loop is tasked
to generate an interrupt and the interrupt is input to the cruise control loop to disengage it,
then we have two processes or threads which interact, and timely response to the interrupt
needs to be guaranteed. The pseudo-C code for both control systems with interrupts is shown

Listing 3.3.1 Cruise Control System

L : S = 0;
Thrust_Interval = T;
while(Thrust_Interval != 0){

Sample v;
e = vr - v;
S = S + e * ki;
Thrust_Interval = Thurst_Interval -

1;
}

Sample v;
u = k * (vr - v) + S;
Output(u);
GOTO L;

Listing 3.3.2. AC Control System

L : S = 0;
AC_Interval = T’;
while(AC_Interval != 0){

Sample p;
e = pr - p;
S = S + e * ci;
AC_Interval = AC_Interval - 1;

}
Sample p;
w = c * (pr - p) + S;
Output(w);
GOTO L;

Approved for Public Release; Distribution Unlimited
40

in Listing 3.3.3 and 3.3.4. In this code, we assume that the intrpt is the name of a single bit
buffer, whose value is set atomically to true or false , depending on if the temperature
control wants to send interrupt or not. Since this is shared buffer, a semaphore mechanism is
assumed to synchronize the read/write of this buffer. The semaphore effectively enforces a
barrier synchronization between the two control threads at their outer loops.

This is too simple an example, and hence, getting this synchronization correct is trivial
with the use of a single Boolean semaphore. However, multiple threads may need to
synchronize at various places of their execution with different threads. In order to be
predictable, and safe, the system’s behavior must be deterministic. Guaranteeing determinism
with multiple synchronizations among a group of threads, while also ensuring no deadlock, is
often hard and error prone. Anyone programming multi-threaded code of reasonable
complexity would have faced many bugs, and debugging cycles.

One way to guarantee determinism is to tightly synchronize all the threads with barrier
synchronization after every step. However, that is not recommended for obvious lack of
efficiency of such code. For reasonable performance, threads responsible for distinct control
functions must make progress asynchronous to each other except when they must interact.
In the above example, the synchronization is done at the outer loop of the control and not at
the sampling loop. Synchronization at every sampling loop iteration would have made the
sampling rates in the two threads dependent on each other and slow down progress. Also,

Listing 3.3.3 Cruise Control System with Interrupts

L : S = 0;
Thrust_Interval = T;
while(Thrust_Interval != 0){

Sample v;
e = vr - v;
S = S + e * ki;
Thrust_Interval = Thurst_Interval - 1;

}

Sample v;
Sample interrupt;
if (interrupt = true)
interrupted = true;
else interrupted = false;
if (interrupted == true)
u = k * (vr - v) + S;
Output(u);
GOTO L;

Listing 3.3.4 AC Control System with
Interrupts

L : S = 0;
AC_Interval = T’;
while(AC_Interval != 0){

Sample p;
e = pr - p;
S = S + e * ci;
AC_Interval = AC_Interval - 1;

}
Sample p;
w = c * (pr - p) + S;
interrupt = (p < P)? true: false;
Output(w);
GOTO L;

Approved for Public Release; Distribution Unlimited
41

depending on the nature of the physical signal being sampled, they may require different
sampling rates. We also want to make it easy for designers to decide which variables are to be
shared (in this case the intrpt), and ensure that when a new value is produced, it is eventually
read by the other thread, and that it does not read the same value twice. We also do not want
that the absence of an interrupt hold up the other thread too long, and hence absence is
encoded as false . Such decisions can be taken by the programmer while programming in C or
other programming languages, but then proving correctness (i.e. to prove that synchronization
indeed guarantees that every interrupt is responded to, and absence of interrupt does not
hamper progress, and that there is no deadlock) is much more involved – especially when the
number of threads and number of synchronization points are numerous. If we can capture
these requirements in a simple formal model, write appropriate constraints, and generate
multi-threaded C-code with appropriate synchronization code, and the code-generation is
provably correct, the validation overhead can be shifted to validating the formal model which
often is much easier and computationally less expensive.

In synchronous programming languages such as Esterel [12], Quartz [68], or Lustre [34],
these two loops will be modeled as two distinct processes since they do not need to move
forward by synchronizing at every macrostep. If the two threads were modeled in standard
Esterel, it has to be over designed by making two parallel synchronous threads that synchronize
quite tightly. To achieve the independence of the sampling rates and the thrust generation
intervals by the two loops, one has to model them as separate independent processes.
Therefore, the proof of determinacy of interaction for these have to be reasoned at a
meta-level. The interaction between the two processes will be external to the model of the
processes. Thus proving the correctness will also be done outside the code-synthesis step. Since
our goal is ‘correct-by-construction’ code synthesis, ideally, the code-synthesis step should
guarantee ‘correctness’ without external reasoning about the generated code. Therefore, we
have chosen polychronous modeling paradigms such as signal or MRICDF, and developed
techniques for multi-threaded code synthesis. Our synthesis approach produces correct
synchronization between two asynchronously progressing threads, with synchronization on a
need basis, and guarantees determinacy.

In order to model these two control loops in MRICDF or signal, we first create two
subprocesses, with the cruise control subprocess having an extra Boolean interrupt as a shared
variable intrpt. When there is a temperature constraint violation, the second subprocess will
set this shared interrupt variable to true , otherwise it will set the value to false . All we have
to specify is that the two subprocesses synchronize on reading and writing of this variable, and
rest is taken care of during the code generation. The code generation first needs to prove that
the synchronization can be done deterministically, and without possibility of deadlock. Only
then, it will progress to generate code, by adding synchronization primitives.

This entire process is done by a simple clock calculus on these processes. In the first
process, the clocks of v, S, e are the same, whereas the clock of intrpt is a subclock,
which is the same clock as that of the thrust output u. In the second process, p, S, e
have the same clock, which is possibly distinct from the main clock of the other process
because the temperature sampling may be less frequently done than speed sampling. However,
an additional constraint in the MRICDF or signal model will be provided in the model which says

Approved for Public Release; Distribution Unlimited
42

that the clock of intrpt must synchronize. This statement states that the AC control process
must rendezvous with the cruise-control process when it is time to read/write the interrupt.
Thus, the two processes can be implemented with two separate threads, which will only
synchronize on an interrupt. This multi-threaded process will be deterministic – that is, for the
same flow of input events on the sampled speed and temperatures, same flow of outputs will
occur. One could make other design decisions such as not reading or writing interrupt that
often, so they could consider creating further conditions for read/write of the interrupts.
However, for the correct synchronization synthesis to work, both the processes must
independently be able to compute such condition. For example, if they are supposed to
exchange interrupt information every n times thrust is generated, and every m times
temperature control actuation is generated, that is easy to express as well.

Novelty in Our Approach

 As we have argued, the polychronous (multi-clock) nature of signal/MRICDF, will allow
the system to be modeled as a single process and yet yield to ‘correct-by-construction’
multi-threaded code generation. Also, the reasoning about determinism can be done on the
whole system, without the need for making any meta-level assumptions on the occurrence of
interrupts, as the reasoning will be embedded in the polychronous clock calculus.

A graphical tool, EmCodeSyn[42] analyzes the MRICDF models and checks for
implementability before generating code. EmCodeSyn currently can only check for sequential
implementability by conducting, a static Epoch Analysis/Clock Calculus (explained later) on a set
of Boolean equations derived from the MRICDF model. This analysis is based on the Boolean
theory and prime implicates [43]. In Section 3.3, we address – how to automatically generate
deterministic multi-threaded code that is “correct-by-construction". We extend the capabilities
of EmCodeSyn tool, with a novel technique for checking the concurrent implementability of
MRICDF models. We particularly focus on efficiency of the generated code and the practicality
of the proposed approach. The proposed technique involves identification of systems that are
weakly-endochronous [62]. If found implementable, the technique further generates the
execution schedule and multi-threaded code with appropriate synchronization constraints that
conforms to the schedule. We have implemented these in EmCodeSyn tool and conducted
experiments to test performance and scalability issues. It should be noted that a similar idea
could be used for generating multi-threaded code for systems specified using signal language as
well. In fact, the theory of weakly hierarchical processes developed in [76] for signal forms the
basis of our work. However, other approaches to multi-threaded code generation from signal
are quite different. The approach in [62] approaches the problem with extreme fine granularity
by enumerating all possible reactions and computing dependence, and the resulting complexity
of the synthesis is very high. We focus on identifying threads that are rooted at distinct
incomparable clocks in the clock hierarchy. The difference between these two approaches can
be summarized as fine-grained concurrency vs. task level concurrency.

Contributions detailed in Section 3.3:

1. A novel technique for determining concurrent implementability of the MRICDF
models based on prime implicate theory
2. Technique for generating execution schedule and multi-threaded code with

Approved for Public Release; Distribution Unlimited
43

appropriate synchronization constraints for implementable models
3. Experimental results showing the scalability of the proposed technique and
comparing efficiency of the generated code as compared to hand written code

Consider a simple MRICDF model shown in Figure 12(a). For readability purposes, its
textual representation is shown in Listing 3.3.5. It has 2 input signals v and u and 1 output
signal w . Internal signal x ’s value is computed in instants where v has events. Similarly y
is computed in every instant where u has events, but w is computed in instants only when

10>=x , 20>=y and both u and v have events. Hence we can say that, vx : and uy :
as vx ˆ=ˆ and uy ˆ=ˆ . The subclock relationship for this model is shown in Figure 12(b), where
each node represents a unique clock. The labels on the arrows indicate the constraints on the
values of signals that gives rise to the subclocks. Nodes with multiple incoming edges, represent
a clock which is a subclock of multiple distinct clocks, and it actually contains only those instants
of the parent clock where the constraint on the incoming edges are satisfied. It must be noted
that this clock tree is not single rooted. This means that there is no single signal which could be
used as a master trigger. If our aim was to generate sequential code, then we can synthesize a
temporary signal that has events when either u or v or both have events, and then use this
temporary signal as master trigger. With the addition of this temporary signal to the clock tree,
it becomes single rooted. But such modification is a refinement of the original model, and only
represents a subset of the behaviors of the original model. But here, our aim is to synthesize
multi-threaded code which contains all the behaviors of the original model. For multi-threaded
code, instead of a single master trigger, we have a set of partial triggers. Each of these partial
triggers act as master trigger for an individual thread. There can be logical instants where some
of the partial triggers are present and some are absent but there cannot be any logical instant
which all the partial triggers are absent. Clock tree for such a system will have multiple roots as
shown in Figure 12(b).

Definition 8 [Partial Triggers] Let P be a MRICDF model representing a data flow
process and let y be any signal in the process. A set of signals },..,{= 1 nxxS is the set of
partial triggers for P if it is maximal such set with the following two properties :

• SxSy i ∈∃∈/∀ , , such that y is present ix is present, i.e,)()(ixy σσ ⊆ for some

Sxi ∈

• Sxx ji ∈∀ , ,)))()(())()()(((ijjiji xxxxxx σσσσ ÚÚ ∧≠

Approved for Public Release; Distribution Unlimited
44

x>=10?

y>=20?

Sam
plerYes/No

Sam
pler

+

+

+

Delay

Delay

v

u

y $

x $
x

y

x

y

w

(a)

(b)

Yes/No

y when(y>=20)

x when(x>=10)

ŵ
x>=10 y>=20

xv ˆ,ˆ yu ˆ,ˆ

Figure 12: (a) MRICDF model, (b) simplified clock tree

3.3.1 Constraints for Concurrent Implementability
 In [76], the authors define a class of processes for which concurrent deterministic

implementation is guaranteed. This class consists of processes composed of individual
sub-processes with their own triggers. A list of conditions that identify those processes was
identified. Let P , be a MRICDF model representing a data-flow process that consists of

Listing 3.3.5 Textual Representation for MRICDF model in Figure 12

process P = (? integer u,v; ! integer w)
(|x := x$ init 0 + v
| y := y$ init 0 + u
 | w ^= (x >= 10) ^= (y >= 20)
 | w := x + y when w
 |)

Approved for Public Release; Distribution Unlimited
45

numerous sub-processes. P can be scheduled concurrently if,
1. The process P can be partitioned into multiple sub-processes },..{ 1 nPP and

},..{ 1 nxx represent their respective master triggers.
2. The dependency graph of the process P does not have cycles.
3. P is well-clocked: the relations between epochs inside subprocesses are compatible
at the level of the process. In other words, scheduling of sub-processes does not result
in a deadlock.

Considering those rules, we define the criteria for concurrent implementability as

follows–
• For each signal Py∈ , there exists at least one partial trigger },..{ 1 nxxx∈ , such that
epoch of y is a subset of and can be derived from epoch of partial trigger x , i.e,

xPy ∃∈∀ , such that,)()(yx σσ ⊇ and f∃ – a Boolean function such that for each
)(xt σ∈ , whether)(ˆ ty is true can be determined by computing f on values of the

signal x and other signals that are read before y in instant t .
• Non-existence of any cyclic causal loops for any instant can be proved by constructing
SMT instances from the edges of clocked dependency relations between signals [59].
• If a process P has n sub-processes, then the subclock ordering relations of the
sub-processes intersect at most 1−n times.
 The intersections between subclock orderings may happen due to computation of

shared variables between the different subprocesses. The shared variables represent
interaction between subprocesses. Each such intersection results in spawning another
sub-process. We represent such sub-process of two sub-processes iP and jP as jiP , , such

that jjiiji PPPP ⊂⊂ ,, , and jiP , has a master trigger. For example: In Figure 12(a), the

computation of wyx ,, can be considered as 3 independent sub-processes wyx PPP ,, with

wyx ˆ,ˆ,ˆ as master triggers respectively for each sub-process. xP is the upper part of the

process that reads v and outputs the values of x when 10≥x . yP is the dual of xP for

u and y and wP is simply the process implementing the + actor on the right. The clock

tree (subclock relation) of wP is a result of intersection of clock trees for xP and yP .
Scheduling such processes requires synchronization constraints and we have to ensure that the
schedule does not result in a deadlock.

If the model satisfies all the above conditions, then the resulting },..{ 1 nxx is the set of
partial triggers for P . Using these partial triggers and the clock trees for the sub-processes, we
can generate multi-threaded code by the mapping technique explained in Section 3.4.

3.3.2 Computing Partial Triggers
 Let pB represent the system of Boolean equations derived from all the actors

present in P . Computing partial triggers for model P is effectively computing prime

Approved for Public Release; Distribution Unlimited
46

implicate (with positive literals only) for the CNF formula constructed using pB . But computing

prime implicate considering entire pB takes a substantial amount of time. We propose a
different approach that computes partial triggers almost two orders faster and is shown in
Algorithm 1.

Let K be set of all signals in model P , pS be the set of possible partial triggers and

S be the minimal set of partial triggers for P . A signal Ky∈ , cannot be a possible partial
trigger if Kz∈∃ , such that)()(yz σσ ⊃ . Let pSubS contain all nonempty subsets of pS .

We then select each element pSubSele∈ , in the increasing order of the number of signals it
contains, arbitrarily breaking ties. We set all signals in ele to be absent and check if this
implies that the rest of the signals in K are also absent. This is done by setting all the Boolean
variables xb corresponding to signal elex∈ to false in the Boolean formulae derived. If the
only satisfiable assignment for the Boolean formulae is that all variables of the form yb is
false, then we found a set of partial triggers. If no, repeat the procedure with another element
of pSubS . At the end of Algorithm 1, S contains the set of partial triggers or the model does
not have a concurrent implementation.

The complexity of Algorithm 1 depends on the complexity of the second for loop,

which is)(2nO , where n is the cardinality of pS . We use various techniques to keep the

cardinality of pS to be as small as possible and hence Algorithm 1 completes very quickly even

though its complexity is)(2nO . This can be witnessed from the experimental results in last

Approved for Public Release; Distribution Unlimited
47

part of this Section 3.3.

3.3.3 Constructing the forest of clock trees T
 In case of sequential code generation, the clock tree has a single root node which

corresponds to the master trigger. The child nodes of this clock tree correspond to the signals
whose epochs are subsets of the epochs of the signal above them. For the purpose of
understanding, this structure can be thought of as a pyramid, where the top of the pyramid
corresponds to master trigger of the process and each level below it corresponds to the signals
whose epochs can be directly computed if the epoch of master trigger is known. This
levelization is done by repeatedly computing prime implicates of the reduced Boolean formula
[43]. This reduced Boolean formula is obtained by setting the boolean variables corresponding
to the signals above the current level to true. For example, the signal/s at thn level are
obtained by computing prime implicates of the reduced Boolean formulae in which all the
boolean variables corresponding to the signals in first 1−n levels are true.

In case of multi-threaded code generation, the subclock relation has multiple root nodes
which correspond to the partial triggers. The child nodes of the multiple roots are derived by
recursive prime implicate generation considering one partial trigger at a time. Figure 13(a)
shows a pyramid representation of the clock tree in case of a single master trigger and 13(b)
shows the same for multiple partial triggers. Algorithms 2 and 3 build the clock tree. The
function)(xsetTrue produces a reduced Boolean formula that is further used for prime
implicate computation. The function)(xsetFalse does the opposite, it sets the variable
passed in parameter to false . We use it to indirectly select the Boolean formula
corresponding to a sub-process: first we set one partial trigger to false (0=xB), it marks absence

of the partial trigger and all its sub-process, then we complement it (0== xx BBB −) and get

back all sub signals of the partial trigger. The function ()_ SMTGenPI , takes a Boolean formula in
CNF form and outputs prime implicate. For a smaller Boolean formula, the function

()_ SMTGenPI is quite fast and hence we use it in building parts of clock tree. This function uses
[86] SMT solver to generate prime implicates as described in [40].

Figure 13: Pyramid structure of clock tree and forest of clock trees for sequential and concurrent

specifications

Approved for Public Release; Distribution Unlimited
48

3.3.4 Check for Data Dependencies and Deadlock
 After constructing the clock tree T for model P , we check for cyclic data

dependency issues in T . We also check if there are any deadlocks in P . This is done by
traversing each branch of the clock tree and analyzing the constraints. If all checks are
completed, we conclude that P is concurrent implementable and proceed for identification
of shared epochs.

Approved for Public Release; Distribution Unlimited
49

3.3.5 Identification of Shared Epochs
 Often signals with different epochs will be involved in some operation (For Ex: Line 5 of

Listing 3.3.5 where x and y have different epochs). In such cases, epochs of involved signals
will be subset of epochs of multiple partial triggers (Ex: In Listing 3.3.5, epoch of signal w is
subset of epoch of signals x and y). Such signals are said to have shared epochs.
Identification of such epochs is important because they correspond to shared variables in
software. To compute such shared variables, we need to use synchronization barriers. To
identify the signals with shared epochs we use a labeling scheme. Algorithm 3 labels each node
in the clock tree with a label that corresponds to the root node under which it is present. All the
nodes corresponding to signals that have shared epoch will have multiple labels because they
will be under multiple root nodes (For Ex: In Fig 12, node corresponding to epoch of w will
have 2 labels - u and v). Rest of the nodes will have single labels.

3.3.6 Mapping and Multi-threaded Code Generation
 After establishing concurrent implementability and building clock tree T , we need to

create a mapping that can be used for code generation. Algorithms 4&5 give an overview of the
code generation procedure.

Approved for Public Release; Distribution Unlimited
50

T has multiple root nodes with each root node corresponding to a partial trigger. Each

of the partial trigger acts as a master trigger for the corresponding sub-processes, which can be
handled by a single thread. So we create and associate a thread (

ixth) for each partial trigger.

Now we traverse T in a depth first manner. For each node we visit, we check the number of
labels (()numLabels) and the labels it has. The label indicates under which root node/s the
current node is present. If it has a single label, then it indicates that its under one root node
(not a shared computation). We export the code for this node and append it to the thread
corresponding to the thread pointed by the label (root). Since there are no cyclic data
dependencies, we only have to ensure that the input signals to this node are computed before
the start of code for the current node. If the node has multiple labels, then it indicates that its a
shared computation and we need to wait till the dependencies are computed by other
thread/s. We export the notifywait − constraints (()traintsNotifyConsexportWait) in the
current thread’s code and then we handle the shared computation in a different thread. To
generate code for the thread handling the shared computation, we start with a wait
constraint (()aintwaitConstr) for the synchronization condition, then we proceed traversing the
sub-tree in depth first manner, export code as earlier and finally add the notify constraint (

()traintnotifyCons). In this way we generate the code for the complete model.

3.3.7 Experimental Evaluation and Discussions
 We evaluated our proposed approach on the benchmarks listed in column 1 of Table

7: Benchmark Suite. These benchmarks exhibit either data parallelism or task parallelism or
sometimes both.

Approved for Public Release; Distribution Unlimited
51

Table 7: Benchmark Suite

No. Benchmark Summary of the benchmark
1. Array Addition Simple data parallel addition. Input is integer arrays of length 10K.
2. Box Filter Image processing filter which works by computing the average

of-surrounding-pixels. It exhibits both data and task parallelism. Size
of test input is 256x256 pixels (can be any size).

3. Energy Meter A model of the control system used in any common home energy
measurement instrument. It exhibits task parallelism. In our test suite,
we run the system for 3 iterations.

4. Sieve of Eratosthenes A prime number sieve for finding all prime numbers up to any given
limit (10 million in our example). It exhibits both task and data
parallelism.

5. Tennessee Eastman
(TE) Plant-wide
Industrial Process
[20]

TE process is a simplified model of a real-life industrial process
consisting of a reactor – separator – re-cycler arrangement. In our test
suite, we run the TE system for 1 iteration. Due to the complex nature
of the model, it is very hard to manually come up with a
multi-threaded implementation and to the best of our knowledge, no
multi-threaded implementation exists.

 In our evaluation approach, we first manually implemented an efficient C/C++

multi-threaded version of the benchmark using low-level threads. We then modeled the same
benchmark in MRICDF and used the tool EmCodeSyn (proposed approach) to generate
multi-threaded C++ code. We ensured that the outputs of both versions matched. Finally, we
measured the performance of both implementations on a workstation that has 4 Intel Xeon
E5405 CPUs with 4GB of memory running Ubuntu 10.10. Performance comparison results are
listed in Table 8. Column 4 of Table 8 shows the percentage performance difference between
the generated multi-threaded code and hand written multi-threaded code. A negative
percentage value indicates that the performance of the generated code is lower than the
performance of the hand written multi-threaded code by the corresponding percentage.
Experimental results show that the performance of the generated multi-threaded code is
almost comparable to the hand-written multi-threaded code. On an average, the generated
code for the benchmarks considered is 18.5% slower than the hand written code. On further
analysis, we noticed that this performance difference arises due to,

• Generated code uses a lot of templates as the code generator is implemented keeping a
generic application in mind.
• Generated code sometimes creates more threads than actually required. The work
done by the separate threads could have been merged and done by a single thread. This
additional thread creation and destruction overhead also slows down the performance.

Approved for Public Release; Distribution Unlimited
52

Table 8: Experimental Results

Model
Name

Manual
Multi-

 Threaded
Performance

Generated
Multi-

 Threaded
Performance

 % Performance Diff.
Generated vs Manual

Total
Code

Generation
Time

LOC (ms)

LOC

(ms)

(- means Gen. code slower) (ms)

Array
Addition

48 12 195 14 -16.6 428

Box Filter 96 67 212 74 -10.4 1274
Energy
Meter 215

17 575 18 -5.8 437

Sieve 56 4722 178 6103 -22.62 1022
TE Process

613
3.5

5947
4.8 -37.1 2350

*LOC stands for Lines of Code, multiT , genT denotes the execution time of the hand-written
multi-threaded and generated multi-threaded code respectively.

Theoretically, the scalability of the tool and the proposed approach can be accurately
determined when it is applied on a realistic model of a large embedded system (ex: A satellite
system). But, modeling such a large embedded system without knowing all the details of the
system is not easy. One can also create a large model by duplicating a smaller model. So, we
created larger benchmarks by duplicating (2, 4, 8, 16, 32 times) an existing benchmark. The
number of inputs, outputs and actors also got multiplied creating the effect of a large
embedded system for all practical purposes. Figure 14 shows the time taken for analysis and
code generation for these increasing large models. As the models get bigger, there is a linear
increase in the time taken for analysis and code generation.

Our experimental results show that there is a linear increase in the time taken to
construct the clock tree (epoch analysis) with a linear increase in the number of actors. There is
only a marginal increase in time taken for code generation for larger models as the code
generation. The time taken for epoch analysis is significantly larger than code generation time.
This is because the complexities of epoch analysis algorithms is much higher than that of code
generation algorithms. We also show that computing partial triggers using Algorithm 1 is more
than two orders faster than using prime implicate generator.

multiT genT

Approved for Public Release; Distribution Unlimited
53

Figure 14: Plot of Time taken for analysis and code generation vs number of times model is
duplicated

3.3.8 Summary
 Writing concurrent programs, especially for safety critical embedded systems, has

always been a error prone task. One of the main reasons for this is – immaturity of concurrent
programming models as compared to sequential programming models. In Section 3.3, we
explained a correct-by-construction approach for multi-threaded code generation from formal
MRICDF specifications. We presented sound techniques to analyze concurrent implementability
of MRICDF models and to generate accurate multi-threaded code. Experiments were conducted
to compare the performance of the generated multi-threaded code against hand written
multi-threaded code. We also conducted experiments to test the scalability of the proposed
approach and presented the results. In the current version of the tool, the clock tree
construction and the code generator implementation are done targeting accuracy and not
efficiency of the generated code. To improve efficiency of the generated code, one can apply
optimization transformations on the clock tree which can help in generating load-balanced
code. Mapping of partial triggers to threads might not be the most efficient, especially if the
amount of work done by the thread is not substantially large than thread creation and
destruction overhead. Thus, as another optimization step, one can create a thread pool and
map partial triggers to tasks – adopting the concept of Intel Threading Building Blocks (TBB).
Excessive and avoidable synchronizations in synthesized multi-threaded code affect its
performance drastically. In Section 3.4, we explain an optimization technique that identifies
such avoidable synchronizations and improve the efficiency of the synthesized multi-threaded
code.

Approved for Public Release; Distribution Unlimited
54

3.4 Synthesis of Improved Multi-threaded Code
from Polychronous models based on Analysis of Affine
Relations

One of the biggest issues that can effect the performance of multi-threaded code is

Synchronizations. Synchronization issues are hard to detect and can heavily impact the
throughput of the system executing multi-threaded code. While synchronizations are necessary
to guarantee the correctness of execution, more often than not, they can be avoided - if not
completely, at least partially, without actually affecting the correctness of execution. We name
such synchronizations that can be removed and yet not affect the correctness of execution as -
“avoidable synchronizations”. Identifying avoidable synchronizations manually during design
and development phase is very hard, laborious and error prone. Identifying them manually
post-development by analyzing the execution traces is hard too. Even if we manage to identify
and remove them, we still have to prove the correctness of execution. In a formal model-driven
development environment, we can identify such avoidable synchronizations in a more formal
way. Further, we can use formal analysis techniques to prove the correctness of execution.

In Section3.3, we proposed a technique to generate multi-threaded code, where the
independent threads synchronize by means of barriers. Analysis of this generated code, showed
us, that a large amount of execution time is spent in barrier synchronizations, where threads
are waiting for other threads to finish their work. This was impacting the performance of the
generated multi-threaded code. In Section 3.4, we propose a technique to automatically
identify avoidable synchronizations and remove them from the generated code. Our technique
is based on analysis of affine relations between the clocks of synchronizing threads. We further
conduct experiments to analyze the efficiency of our proposed approach.

3.4.1 Avoidable Synchronizations
 Consider a simple application that accepts two independent streaming inputs and

produces one streaming output. The application consists of 3 processes A, B & C. Processes A
and B transforms the inputs and outputs tokens A and B . Process C waits till it receives both
tokens and then computes the output. Data flow model of the application is shown in Figure 15.

Figure 15: Simple application to illustrate avoidable synchronizations

Approved for Public Release; Distribution Unlimited
55

One can easily implement the logic of this application using 3 threads - Threads AT , BT
& CT implementing the logic of Processes A, B & C respectively. Thread CT waits for threads

AT & BT to finish their work and then it computes the output. Since the inputs are not
synchronous, threads AT and BT have to also synchronize with each other. It means, the
once thread AT finishes transforming its current input, it has to wait for thread BT to finish
its work before proceeding to the next input. Pseudo-code for this implementation is shown in
Figure 16. If no more information regarding the temporal properties of inputs are provided,
then all of the synchronizations are essential. If we were provided with additional relations
between occurrences of inputs 1 & 2, then we can check to see if all of the synchronizations are
necessary or if some of them can be avoided.

Figure 16: Pseudo-code for the application in Figure 15

Assume that, we are given information that between every two successive occurrences
of Input 1, there is always an occurrence of Input 2. This also implies that, between every two
consecutive outputs of Thread AT , Thread BT produces an output too. An example execution
trace that is running code in Figure 16 and that satisfies these constraints is shown in Figure 17.
In this execution trace, we assume that the time taken by threads to complete their work is
almost negligible.

From the trace, we can see that Input 1 is available every 3 ticks of base clock (t)
starting from 1=t . Hence, thread AT produces “ TokenA ” at etct 1,4,7,= . On the other
hand, thread BT gets Input 2 every 3 ticks of base clock (t), but starting from 3=t . Hence,
thread BT produces “ TokenB ” at etct 3,6,9,= . After thread AT produces its token, it has to
wait till thread BT to release its token. This wait is to ensure that thread AT doesn’t produce
2 consecutive tokens until thread BT has produced one too. But, we are guaranteed that this
will never happen. Thus, in such cases, we can say that AT and BT need not synchronize and
the synchronizations between them could be avoided. Pseudo-code for the simple application
with reduced number of synchronizations is shown in Figure 18.

Approved for Public Release; Distribution Unlimited
56

Figure 17: Sample execution trace of the application in Figure 15

Figure 18: Optimized pseudo-code for the application in Figure 15

As seen from the above example, identifying such avoidable synchronizations manually
even for a trivial application is very laborious and error prone task. An automated way of doing
this would be very useful. This is the problem, which we have tried to address in Section 3.4.

Approved for Public Release; Distribution Unlimited
57

Contributions detailed in Section 3.4:
• Based on analysis of affine relations between clocks of synchronizing threads, a novel
technique to identify if the threads really need to synchronize or it can be avoided
• Synthesis of efficient multi-threaded code by reducing the number of synchronizations
and further improving the throughput

3.4.2 Affine Transformations and Affine Relations in
Polychronous Languages

 In general terms, an “affine transformation” is a transformation that maps variables
into new variables by applying a linear combination of translation, rotation, scaling and/or
shearing. The authors of [73], first proposed the concept of affine transformations of clocks in
Polychronous language - Signal. In their initial work, the authors explained how to formally
express a clock as affine transformation of another clock. These affine transformations induce
affine relations between the clocks, which help in deriving new set of synchronizablity rules.
The authors further extended their initial work of [73] to [72], where they proposed an
augmented clock calculus technique that accepts Signal specifications and affine clock relations,
analyzes it and synthesizes code for real-time systems.

3.4.2.1 Affine Transformations and Relations
 An affine transformation of a clock is expressed in terms of 3 parameters, namely - n ,

φ and d . An),,(dn φ affine transformation when applied on a clock H produces another
clock K by inserting 1)(−n instants between any two successive instants of H and

counting each thd instant, starting from thφ instant of H . An example is shown in Figure
20. A clock more frequent than H is derived from clock H by inserting 1)(5− instants
between any two successive instants of clock H . Clock K can then be derived from this
frequent clock, by counting every th9 instant, starting from th4 instant. In Figure 19, clock
H and K are represented using circles, while the frequent clock is indicated using the
vertical lines.

Figure 19: Clock K is (5; 4; 9) affine transformation of clock H

Approved for Public Release; Distribution Unlimited
58

),,(dn φ affine transformation defines an),,(dn φ -affine relation between the
corresponding clocks and is denoted as KH dn →),,(φ .

Given, a),,(dn φ -affine relation between H and K , there also exists a),,(nd φ−
-affine relation between K and H . In other words, KH dn →),,(φ implies HK nd → −),,(φ

. In [73] and [72], the authors have explored properties of affine relations such as equivalence,
composition, etc. Further, they show how the properties of affine relations can be used to
derive new synchronization constraints for the model.

3.4.2.2 Constructs to express Affine Transformations and Relations
 To express affine transformations in Polychronous language Signal, the authors of [73],

proposed 3 new operators - sample{ d,φ }(H), unsample{ φ,n }(K) and clk_affine{ dn ,,φ }(H, K).
We present here a brief description of these new operators. For a detailed overview, we direct
the readers to [73].

• Y = sample{ d,φ }(X), φ and d positive

The output of this operator Y , is a down-sample of X with a period d and phase φ .

• clk_affine{ dn ,,φ }(H, K)

This operator defines the an (dn ,,φ)-affine relation between H and K . This is
defined in terms of sample operator as,

Zdnwhere

YK
XH

IdmaxsampleK
InmaxsampleHYXdnaffineclk

∈

−

∧

∧

φ

φ
φφ

0,>,
|)

=|
=|

)}(),(0,{:=|
)}(),(0,{:=(|=),}(,,{_

• Y = unsample{ φ,n }(X, Z)

The output of this operator Y , is an affine over-sampling of X using Z . This is
defined as,

Znwhere

ZY
ZdefaultYwhenXY

YXnaffineclkZXnunsample

∈

∧

∧

φ

φφ

0,>
|)

=|
)(:=|

),,1}(,{_(|=),}(,{

Approved for Public Release; Distribution Unlimited
59

3.4.3 Analysis of Affine Relations for Improved Multi-threaded

Code Synthesis
 In Section 3.3, we proposed the concept of partial triggers and defined the constraints

a processes has to satisfy for it to be concurrently implementable. Recollecting from Section
3.3, a process that can be partitioned into multiple sub-processes is concurrently scheduled, if
we can identify a set of partial triggers, where each partial trigger acts as master trigger for
each of the sub-process. The synchronization between sub-processes is captured by the
intersection between the clocks of partial trigger signals. If we are given an affine relation
between the clocks of two partial trigger signals, then we can analyze the affine relation and
derive additional synchronization constraints between the clocks of the two partial trigger
signals. Furthermore, these additional synchronization constraints can help in determining if
the synchronization between the corresponding sub-processes is essential or it can be avoided.
This is the main contribution explained in Section 3.4. To illustrate the idea, let us consider a
simple process with three sub-processes as shown in Figure 21. Process 3 waits for completion
of Process 1 and 2 before executing and process 1 and 2 synchronize via a barrier. The
hierarchical clock graph is shown in Figure 20. H , K and W are the partial triggers for the
three processes 1, 2 and 3 respectively. With this background, an interesting question is - Do
Process 1 and 2 have to synchronize always? If no more information is provided with regards to
the relation between H , K and W , then Process 1 and 2 have to synchronize always.

Figure 20: Hierarchical Clock Graph

Approved for Public Release; Distribution Unlimited
60

Figure 21: Simple Process with 3 sub-processes

Let us say, there exists an affine relation between H and K , in other words
KH dn →),,(φ exists. Depending on values of n , φ and d , we now explore to see if

Process 1 and 2 need to synchronize or not.

Case 1: KH dn →),,(φ
, dn = , 0=φ

 This is a trivial case. When dn = and 0=φ , clock H and K are synchronous
with each other. They need not be synchronized. In fact, with this constraint, the process
becomes endochronous and it need not even be implemented using multiple threads. An
example execution trace with these constraints is shown in Figure 22.

Figure 22: Example execution trace of the application in Figure 21 when 3== dn , 0=φ

Case 2: KH dn →),,(φ , dn = , 0≠φ , n≤φ
Under this condition, we are guaranteed that between any two occurrences of H ,

Approved for Public Release; Distribution Unlimited
61

there is always an occurrence of K . Under such constraints, Processes 1 and 2 need not
synchronize. An example execution trace with these constraints is shown in Figure 23.

Figure 23: Example execution trace of the application in Figure 21 when 3== dn , 2=φ

Case 3: KH dn →),,(φ , dn = , 0≠φ , n>φ
For these constraints, we are guaranteed that between any two occurrences of H ,

there is always an occurrence of K , but not for the first φ instants. To avoid synchronization
between the two processes, we need to introduce a buffer to store the outputs produced from

Process 1 during first φ instants. The size of the buffer to be introduced is)(
n

ceil φ . An

example execution trace with these constraints is shown in Figure 24.

Figure 24: Example execution trace of the application in Figure 21 when 3== dn , 5=φ

Approved for Public Release; Distribution Unlimited
62

Case 4: KH dn →),,(φ
, dn ≠ , 0=φ

 When qn ≠ , the synchronization between Process 1 and 2 cannot be avoided
completely. One process is producing outputs at a higher rate as compared to other process. In
such cases, instead of synchronizing every instant, we could introduce buffers and then
synchronize only when the buffer is full. The size of the buffer depends on the value of n and

d . If dn < , then a buffer of)(
n
dciel is added to store output of the process 1 (process

whose partial trigger is H). If dn > , then a buffer of)(
d
nciel is added to store output of the

process 2 (process whose partial trigger is K). During execution, the threads for these
processes check if the buffer is full or not. If it is full, then synchronize with the other process by
waiting. If it is not full, then they don’t need to synchronize. An example execution trace with
these constraints is shown in Figure 25.

Figure 25: Example execution trace of the application in Figure 21 when 7=3,= dn , 0=φ

Case 5: KH dn →),,(φ
, dn ≠ , 0≠φ

This case is very similar to case 4 except that 0≠φ . We now have to increase the

buffer size computed in case 4, with)(
n

ciel φ if dn < or)(
d

ciel φ if dn > An example

execution trace with these constraints is shown in Figure 26.

Approved for Public Release; Distribution Unlimited
63

Figure 26: Example execution trace of the application in Figure 21 when 7=3,= dn , 2=φ

Thus, given an affine relation between two synchronizing clocks, by analyzing the n , φ

and d values we can automatically identify if synchronization is necessary or it can be
avoided.

3.4.4 Summary
 In Section 3.4, we proposed a fully automated approach to identify avoidable

synchronizations based on the analysis of affine relations between two synchronizing clocks.
Using an example, we showed how identification of avoidable synchronizations results in
synthesizing multi-threaded code with reduced number of ()wait statements (barrier
synchronizations). Proposed approach being based on formally sound techniques, proving the
correctness of execution can also be done formally. One of the major limitations of the
proposed approach is that, affine relations between clocks of interest do not always exist. Even
if they do exist, there is no automated way to infer from the given specifications/model. The
user would have to manually enter these relations before clock calculus step. Our proposed
approach is limited to handle affine relations between 2 synchronizing clocks. But, more often
than not, more than 2 signals will participate in barrier synchronizations. Analysis and deriving
implicit synchronization constraints considering affine relations between more than 2 clocks is
difficult.

Approved for Public Release; Distribution Unlimited
64

3.5 Synthesis of Application-Specific Instruction-set
Processor(ASIP) from Polychronous models

 Ever increasing performance requirements of hardware platforms have motivated the
designers to explore application specific processors with custom instruction sets. In [55], the
authors propose a formal graph model, called Conditional Partial Order Graphs (CPOG) as a
semantic model for describing the semantics of individual instructions, and use that to
synthesize control and data-path implementing the instruction set. CPOGs provide compact
representations of partially ordered sets where the orderings are often conditioned on
predicates and not fixed. The work explained in Section 3.5, assumes the fact that when a
designer wants to off-load a specific computation intensive function onto a co-processor,
he/she can actually describe the function in a high level language, and should be able to
synthesize the processor, and its instruction set. Also, describing custom instruction
functionalities in terms of partial orders may not be convenient for designers as they have to
first conceive the instruction set, and its semantics and then implement the computation in that
instruction set. Therefore, in Section 3.5 we explain how to extend the work in [55] and
propose an approach by which formal MRICDF/SIGNAL [43] specifications can be compiled to
CPOGs which can further be used to generate ASIPs1. The reason for choosing MRICDF/SIGNAL,
even though they were invented for synthesizing control software, is that they are data-flow
languages, but unlike other languages in the synchronous family, these are polychronous[33] in
nature. The polychronous model of computation allows data-flow to progress asynchronously
whenever possible unless they need to synchronize to share certain data processing. Thus,
concurrency is well captured and the control state machine that exploits the concurrency for
performance with component reuse can be easily synthesized as we show here.

3.5.1 Conditional Partial Order Graphs

3.5.1.1 Definition: Conditional Partial Order Graph
A CPOG [56] is a quintuple G = 〉〈 φρ ,,,, XEV where,

• V is a set of nodes which corresponds to events/atomic actions in a system that is
being modeled.
• VVE ×⊂ is a set of directed edges between the nodes. The direction of the edges
indicate the dependencies between the events/atomic actions. An edge from node n
to node m , indicates m depends on n .
• X is a set of Boolean variables. Each of these individual Boolean variables could be
assigned values {0,1} resulting in unique n2 possible codes with n bit words.
• ρ is a restriction function defined on the set of Boolean variables in X as

)(XF∈ρ , where)(XF is the set of all Boolean functions on the Boolean variables in
X . ρ basically defines the operational domain of the CPOG. Of the n2 possible

codes obtained by assigning {0,1} to each variable in X , only those which satisfy ρ
are valid.

1 Application Specific Instruction set Processor

Approved for Public Release; Distribution Unlimited
65

• φ is a function such that,)()(: XEV F→∪φ . It assigns a Boolean condition)(zφ
to every node and edge z in the graph G .
Diagrammatically, CPOGs can be represented as directed graphs.
Now we show how CPOGs can be used to encode semantics of instruction sets following

the idea described in [55]. Consider a simple adder/subtractor application which does add or
subtract depending on a select signal. Expressing the application in terms of atomic
instructions and assigning a unique name for each instruction, we get the following table.

Adder(A=A+B; select) Subtractor(A=A-B; select)

1I :Load A 1I :Load A

2I :Load B 2I :Load B

3I :Compute A+B 5I :Compute A-B

4I :Store A 4I :Store A

To represent these two instructions functionalities with CPOG, we first create a graph
H with 5 nodes and 6 edges. The nodes represent the atomic instructions and the edges
represents the dependencies between them. Dependency between atomic actions means data
produced by one action is used by another action. Conditional dependencies are represented
using annotations on the edges. Pictorially, this is shown in Figure 27(A). Nodes 421 ,, III , all
have 1=φ (unconditional), while node 3I has selectI =)(3φ and node 5I has

selectI =)(5φ , both conditional. All edges are conditionals. Figure 27(A) represents the above
mentioned adder/subtractor instruction set as a CPOG, the projections Figure 27(B) and 27(C)
represent the behavior of the modelled system under the constraints, operation variable

trueselect = and falseselect = respectively. The greyed nodes and edges in Figure 27(B) and
27(C) indicate that the corresponding nodes/edges do not contribute to that particular behavior
of the system.

Approved for Public Release; Distribution Unlimited
66

Figure 27: Graphical representation of CPOG

(A) Graphical representation of CPOG H , (B) selectH | , (C) selectH |

 One can notice from the Table and Figure 27, that atomic actions 1I and 2I can
be executed either concurrently or sequentially in any order as long as it is executed before the
instruction that is dependent on it. There exists a partial order on the set of atomic actions.
Further, the operational vector X contains set of Boolean variables for which values {0,1}
could be assigned. Thus, for each of the partial order, there exists a unique Boolean vector. In
this example, the cardinality of operational vector 1|=| X and the vector is X = 〉〈select . One
can use these Boolean vectors as opcodes for instructions and an instruction set with unique
opcodes could be constructed. Composition of two instruction sets which don’t share common
opcodes is defined as the union(∪) of them. If there are multiple instruction sets, then their
composition is done by doing pairwise composition. For further details on composition we refer
the readers to [56].

3.5.2 MRICDF Actors and their CPOGs
 Recall that the nodes in CPOG represent events/atomic actions and the edges

represent the dependencies between them. In MRICDF model of computation, during any
reaction, computation of signal values are atomic actions and hence can be represented using
nodes of a CPOG and the data dependency between signals can be indicated using the edges of
a CPOG. With this idea, we now explain how to derive CPOGs representing the control and
scheduling information for MRICDF actors.

Approved for Public Release; Distribution Unlimited
67

Function: A function actor performs any user specified state-less synchronous reaction.
The input and output signals of the function actor participate in the exact same set of reactions.
A state machine is not a function actor, because it has state. The generic definition of a
Function actor is as below,

 Operation:),...,,(= 21 nxxxfy
Clock relation: nxxxy ˆ=...=ˆ=ˆ=ˆ 21

 - In the above definition nxxxy ,...,,, 21 are signals. Thus we have,

},...,,,{= 21 nxxxyV

 - Output signal y depends on all of the input signals nxxx ,...,, 21 ;

)},...,,(|{= 21 nii xxxxyxE ∈→

- The Boolean variable set X consists of variables that represent the clocks of all the
signals. The Boolean variable is true, if the corresponding clock is present, else it is false.
Thus, for a Function actor we have,

)}},...,,(|{}{{= 21 niixy xxxxbbX ∈∪

- The restriction function ρ defines the values that Boolean variables in X can take.
For a Function actor, we know that clocks are all synchronous. Hence ρ is represented
by the set of clauses short handed as,

nxxxy bbbb =...=== 21

- Function φ , assigns Boolean condition for each of the signals and the dependencies.
Each of the signal is present only if its clock is present and the output is dependent on
each of the input signals.

 For nodes we have,
yby =)(φ

11 =)(xbxφ
...

nxn bx =)(φ

 and for edges we have,

Approved for Public Release; Distribution Unlimited
68

11 =)(xbyx →φ

22 =)(xbyx →φ
...

nxn byx =)(→φ

x3:bx3 y:by

bx1

x1:bx1

x5:bx5

x4:bx4

xn:bxn
x2:bx2

bx2 bxn

bx5

bx4

bx3

Figure 28: CPOG for Function Actor

Figure 28 shows the graphical representation of the CPOG for Function actor.

• Buffer: The Buffer actor temporarily stores the value of a signal arriving at its input port
for the next reaction. In other words – it delays the signal. The next reaction occurs when
a new value appears at its input. The value stored from the previous reaction is sent to
the output during the current reaction. Buffers are synchronous actors. Buffers can be
cascaded to store data across multiple subsequent reactions – creating multiple delay
lines.

Operation: xy = $ cinit1
Clock relation: xy ˆ=ˆ

- In a given reaction, xy, are the only two signals of a Buffer actor, c is just a
constant value. Hence,

},{= xyV

- There are no dependencies between signals in a Buffer actor. Hence {}=E

- There are 2 clocks for a Buffer actor and hence 2 Boolean variables. Thus we have,
},{= xy bbX

- Similar to Function actor, the clocks of both the signals of Buffer actor are
synchronous. Thus we have ρ as,

Approved for Public Release; Distribution Unlimited
69

xy bb =

- Both signals are present only if their clocks are also present and there are no
dependencies between signals in Buffer actor. Thus we have,

yby =)(φ

xbx =)(φ

Figure 29 shows the graphical representation of the CPOG for Buffer actor.

Figure 29: CPOG for Buffer Actor

• Sampler: A Sampler actor samples the input signal on the first input port based on a
Boolean condition that occurs on second input port. A sampler does not react unless it
has value on both its inputs, and the second input value must be true. The set of reactions
in which the output is written is the intersection of the set of reactions in which the first
input participates, and the set of reactions when the second input is true. Thus sampler
is a polychronous actor.

 Operation: cwhenxy =
Clock relation:][*ˆ=ˆ cxy

- In a sampler actor, along with the signals cxy &, , two other synthesized signals
][&][cc also exist. These signals in the physical world represent signal c when true

or false respectively.
},,{= cxyV

- The output of a sampler actor depends on both, input and the condition. Thus we have
2 dependencies which result in 2 edges as defined below,

},{= ycyxE →→

- Including the clocks for the synthesized signals, we have 5 different clocks and thus we
have 5 Boolean variables listed below,

},,,,{=][][cccxy bbbbbX

Approved for Public Release; Distribution Unlimited
70

- From the clock relation for Sampler actor and the definition of synthesized signals we
have

∧
∪∨
∪∧

}={
}={

}={
=

][][

][][

][

falsebb
bbb

bbb

cc

ccc

cxy

ρ

- The output signal clock is present only if the input signal is present and the condition is
true . Hence we have,

yby =)(φ

xbx =)(φ

cbc =)(φ

][=)(cx bbyx ∧→φ

][=)(cx bbyc ∧→φ

Figure 30 shows the graphical representation of the CPOG for Sampler actor.

x:bx

y:by

c:bc
bx ˄ b[c] bx ˄ b[c]

Figure 30: CPOG for Sampler Actor

• Merge: A merge actor merges two input signals with same/different clocks to produce
an output. During the merge, higher priority is given for the signal on the first input, i.e,
when input occurs on just the first input signal, or when both input signals have values,
the value on the first input is passed onto the output signal. The clock of the output signal
is the union of the clocks of the input signals. Merge is therefore another polychronous
actor.

Operation: zdefaultxy =
Clock relation: zxy ˆˆ=ˆ +

Approved for Public Release; Distribution Unlimited
71

- The merge actor has 3 signals and hence we have 3 nodes.
},,{= zxyV

- The output of merge actor y , depends on first input x , if it is present, else it
depends on second input y . Thus we have 2 dependencies which results in 2 edges as
defined below,

},{= yzyxE →→

- The merge actor has 3 signals and hence we have 3 Boolean variables.
},,{= zxy bbbX

- From the clock relation for merge actor we have,
}={= zxy bbb ∨ρ

- For a merge actor, the output signal clock if either of the inputs is present and is
absent when neither is present. Hence we have,

yby =)(φ

xbx =)(φ

zbz =)(φ

xbyx =)(→φ

xz bbyz ∧→ =)(φ

Figure 31 shows the graphical representation of the CPOG for Merge actor.

x:bx

y:by

z:bz
bx bz ^ bx ¯

Figure 31: CPOG for Merge Actor

Proposition 1 For each primitive actor A , if Ag represents the CPOG derived using the
steps described above, then Ag contains all the necessary information for control of
scheduling the execution of A .

Proof: By definition.

Approved for Public Release; Distribution Unlimited
72

Proposition 2 For primitive actors 1A and 2A , if
1Ag and

2Ag represents the

corresponding CPOGs then for composition 21 | AA , the corresponding CPOG is the union of

1Ag and
2Ag .

 Proof: Two actors can be composed if they are compatible, and the union(∪) of
CPOGs have the same compatibility test. The union(∪) of CPOGs is followed by a compatibility
test which tests for contradicting clock relations, and hence if the union exists, it provides the
control of scheduling of the individual actors during execution of the composition.

• Composite Actor: Composite actors are a combination of primitive actors that are
used to express modular and hierarchical behavior. In order to derive the CPOG of the
whole model, it is essential to first derive the CPOGs of composite actors and then
compose (∪) it with the CPOG of the rest of the model. One can define composite
actors using structural induction. Algorithm 62 lists the method used to derive a CPOG
for a composite actor.

2)(_ acpogprimitive returns CPOG of a primitive actor a ,),(21 ppcreateEdge creates a new edge from port 1p to

2p .

Approved for Public Release; Distribution Unlimited
73

Proposition 3),(_ Mcpogcomposite A (Algo. 6) outputs the CPOG representing the
schedule of execution of A .

Proof: By structural induction on the structure of the composite actor A .

3.5.2.1 Example MRICDF model and it’s CPOG

Consider the example MRICDF model, and its corresponding SIGNAL code as shown in
Figure 33. Despite this example being contrived, it is sufficient to communicate our idea. From
the previous section, we know how to derive the sets involved in the quintuple for each actor.
Composing all the actor quintuples we derive the CPOG of the whole model. The textual and
the graphical representation of the CPOG is shown in Table 9 and Figure 32.

Approved for Public Release; Distribution Unlimited
74

GAIN

1
GAIN

ADD

ADD

>=0

SAMPLER

SAMPLER

M
E
R
G
E

YES

NO

in1

in2

out

sig1
sig2

sig3

sig4

sig6

sig7

sig5
sel

Figure 32: Sample MRICDF model

Figure 33: SIGNAL code (ADD, Comparator, GAIN &
GAIN

1 are predefined function actors)

function process = (?int i1, i2, sel; !int out;)
(|sig1 = GAIN(in1)

|sig3 = 1/GAIN(in1)
|sig2 = ADD(sig1, in2)
|sig4 = ADD(sig2, in2)
|sig5 = (sel >= 0)
|sig6 = sig2 when sig5
|sig7 = sig2 when not sig5
|out = sig6 default sig7
|)

where
 integer sig1,sig2,sig3,sig4,sig5,sig6,sig7;
end;

Approved for Public Release; Distribution Unlimited
75

sig6:bx9

sig7:bx10

out:bx11

in2:bx2

bx1
in1:bx1 sig1:bx3

bx2

sig3:bx4

bx7

sel:bx7 sig5:bx8

bx5^b[x8]

bx9

bx6^b[x8]

bx10^bx9

sig2:bx5

sig4:bx6

bx3

Figure 34: CPOG for the MRICDF Model

Table 9: Formal representation of CPOG for model in Figure 32

Quintuple
Element

Set Elements

V 7}6,5,4,3,2,1,,,2,1,{ sigsigsigsigsigsigsigoutselinin
E 11{ sigin → , 31 sigin → , 22 sigin → , 42 sigin → , 43 sigsig → ,

21 sigsig → , 62 sigsig → , 74 sigsig → , 5sigsel → , 65 sigsig → ,
75 sigsig → , outsig →6 , }7 outsig →

X ,,,,,,{ 654321 xxxxxx bbbbbb ,,,,, 9]8[8][87 xxxxx bbbbb }, 1110 xx bb
ρ ,======{ 654321 mbbbbbb xxxxxx

,== 87 nbb xx

,=]8[8][8 xxx bbb ∨

,=]8[8][xx bbfalse ∧

,= 8][59 xxx bbb ∧

,=]8[610 xxx bbb ∧

}= 10911 xxx bbb ∨

Approved for Public Release; Distribution Unlimited
76

3.5.3 Transformations, Resource Estimation and

Implementability
 The CPOG obtained initially is first simplified before transformations are applied. The

simplification step is targeted to reduce the number of variables in depending on the
equivalence relations in . Also, the terms and expressions in and may be updated
and simplified. Algorithm 7, lists the simplification step.

Proposition 4 Algorithm 7 converges and reduces the number of control states of the

resulting system.

 Proof: Convergence is based on number of equivalence classes of control variables in

, and its reduction in each step.
However, note that if we enhance this algorithm to prove more Boolean equivalences

that involve numeric conditions, and values of signals based on function computation, using
appropriate SMT solvers, we can reduce the number of control states further, and discover

φ ,=1)(,=2)(,=1)({ 321 xxx bsigbinbin φφφ
,=4)(,=3)(,=2)(645 xxx bsigbsigbsig φφφ

,=6)(,=5)(,=)(987 xxx bsigbsigbsel φφφ ,=)(,=7)(1110 xx boutbsig φφ
,=3)1(,=1)1(11 xx bsiginbsigin →→ φφ
,=4)2(,=2)2(22 xx bsiginbsigin →→ φφ
,=4)3(,=2)1(43 xx bsigsigbsigsig →→ φφ

,=6)2(8][5 xx bbsigsig ∧→φ

,=7)4(]8[6 xx bbsigsig ∧→φ

,=6)5(,=5)(8][57 xxx bbsigsigbsigsel ∧→→ φφ

,=7)5(]8[6 xx bbsigsig ∧→φ

}=)7(,=)6(9109 xxx bboutsigboutsig ∧→→ φφ

X
ρ ρ φ

X

Approved for Public Release; Distribution Unlimited
77

more mutually exclusive paths. So as presented, the algorithm does not necessarily reduce the
number of variables in X (instruction opcodes) to the minimal possible. In general, the minimum

can be easily shown to be undecidable. However, with powerful SMT solvers of today, we
can do better than just using standard variable replacement and simplifications.

In our example, has the relations = = = = = and = . Thus,

the set of Boolean equalities, ={(=), (=), (=),, (=)}. After

simplification, the set of Boolean variables reduces to . For readability

purposes, we have used and . Thus = . Expressions such as

get reduced to after propagating the changes and
simplifying. By assigning values to each of the variables in , one can capture all the
behaviors of the system. Theoretically there can be 16 different combinations. But practically,
the values assigned should not conflict with any of the functions. Thus, not all combinations
of values are possible to be assigned and also of the possible assignments, some of the
behaviors may be equivalent and some of them might not result in a feasible system behavior.
Using a solver such as all solution SAT solver[31], one can find all possible assignments to the
Boolean variables. Also, one has to note that if the or contains constraints which
involve numerical expressions, then establishing equivalence or obtaining all solutions will
require advanced solvers such as SMT solvers or solvers based on Polyhedral grids, etc. We also
understand that, theoretically, it might seem like there are exponentially many solutions, but
for most practical applications the number of feasible solutions is much lower. We can further
reduce the number of feasible behaviors, by eliminating equivalent behaviors. In our example,
the assignments of the form or or (being a don’t care) to Boolean
variables, is either not possible or leads to an impossible behavior. Only feasible behaviors of
the system are obtained when the vector is of the form or .

sig6:m^b[x8]

sig7:m^b[x8]

out:m^n

in2:m

min1:m sig1:m

m

sig3:m

n

sel:n sig5:n

m^b[x8]

m^b[x8]

sig2:m

sig4:m

m

m^b[x8]^m^b[x8]

X

ρ 1xb 2xb 3xb 4xb 5xb 6xb 7xb 8xb
E 1xb 2xb 1xb 3xb 1xb 4xb 7xb 8xb

X 〉〈]8[8][71 ,,, xxxx bbbb

mbx =1 nbx =7 X 〉〈]8[8][,,, xx bbnm

10911 = xxx bbb ∨ nmbbb xxx ∧∧ == 8511

{0,1} X

φ

ρ φ

xxx0 xxx0 1111 x

1110 1101

Approved for Public Release; Distribution Unlimited
78

sig6:m^b[x8]

sig7:m^b[x8]

out:m^n

in2:m

min1:m sig1:m

m

sig3:m

n

sel:n sig5:n

m^b[x8]

m^b[x8]

sig2:m

sig4:m

m

m^b[x8]^m^b[x8]

Figure 35: Modified CPOG with Boolean vector and respectively ()

3.5.3.1 Resource Estimation
 After determining the assignments of for feasible behaviors, we propagate these

values on to the CPOG. During this transformation of the CPOG we follow these rules,
• If the Boolean variable/expression corresponding to a node/edge has as its value,
then that particular node/edge is excluded from the CPOG representing current behavior
as it does not contribute to it.
• If all the incoming edges to a node are excluded, then the node is also excluded.
• If all the outgoing edges of a node are excluded, then the node is also excluded.
• All edges originating from an excluded node are also excluded.
• All edges terminating on an excluded node are also excluded.
• All other nodes and edges are left as such.

1101 1110 nbmb xx =,= 71

X

0

Approved for Public Release; Distribution Unlimited
79

 Algorithm 8 presents one way to implement the rules listed above. The output of Algo.
8, is a set of the CPOGs, where each CPOG represents a feasible behavior of the system. To
estimate the resources, one can simply count the number of resources needed in each CPOG
and consider the maximum. The nodes and edges of the example CPOG that are active during

and behaviors are shown in Figure 35 respectively. From the figure, it is clear that
in any behavior of this system, at most one adder, one sampler and one GAIN block are used. If
the developer had decided to implement this model/logic as hardware without this knowledge,
he/she might have created two adders, gain blocks, samplers. But in actuality, the developer
just needs to implement one adder, one gain block and one sampler.

3.5.3.2 Implementability
 After propagating the feasible behaviors assignment values to the CPOG, if the

directed graph remains weakly connected, in other words, replacing all of the directed edges
with undirected edges must produce a connected (undirected) graph, then an implementation
may be possible if there are no causal loops. Algorithm 9 lists a simple method to test for
implementability.

1110 1101

Approved for Public Release; Distribution Unlimited
80

3.5.4 Summary
 In Section 3.5, we explained a new compilation scheme for the signal/MRICDF

polychronous specifications based on CPOGs. We provided algorithms to derive CPOGs for
given signal/MRICDF specifications. A future direction for this work could involve modifying
Algorithm 3.1 using a compaction technique, that considers the equivalency between feasible
behaviors. Another future work could be to explore further the aspect of sequential and
concurrent implementability by applying transformations on the CPOGs.

Approved for Public Release; Distribution Unlimited
81

3.6 Polyhedral Model based Causality Detection in
Polychronous models

 Formal software synthesis tools apply static analysis techniques to check
schedulability, and actual scheduling – during which, they often resort to sound but imprecise
abstractions (Ex: Boolean abstraction) which may result in a specification been rejected as
non-synthesizable when it is actually synthesizable. We therefore propose to integrate recently
developed decision procedures (SMT solvers) into the synthesis engine. Assuming that we
successfully integrate such decision procedures inside the synthesis engine and lower the
abstraction level by refinement – thus enhance the precision of the analysis – we can make
more precise decisions and thereby accept a larger class of specifications for synthesizability.
We can even go further as follows. Suppose a specification is rejected because it violates an
invariant property, or because of cyclic dependency; and suppose that such violation is
confined in a very limited area of its reachable state space. For such specifications, instead of
rejecting the specification outright, the synthesis tool should guide the user by showing the
exact ranges of the input values (or equational relationships between the inputs as appropriate)
that could direct the resulting program to such violating area of the state space. The user may
then choose an option to synthesize the program with an automatically generated wrapper.
Such a wrapper will monitor the input values and when the conditions on inputs satisfy the
violating condition, it could filter the inputs. Such filtering mechanism must of course be
meaningful in the context of the application.

In Section 3.6, we focus particularly on a formal specification and code synthesis
framework – Polychrony. It accepts polychronous dataflow specifications (Signal specifications),
and compiles them to sequential C-code. During compilation, Polychrony compiler has to make
various decisions regarding the specifications which are currently taken using Binary Decision
Diagrams(BDDs)-based analysis. The abstraction at which the decision problems are supplied to
BDDs is coarse and often leads to overcautious decisions. We can refine the abstraction and
improve the decision making approach. We first show how SMT solvers with axiomatic theories
could be helpful in making more accurate decisions and expand the set of acceptable
specifications. We then proceed further to show how polyhedral analysis integrated into the
Polychrony synthesis engine can still enhance the set of specifications that can be synthesized.

Polychrony compiler analyzes Signal specifications through a clock abstraction to check
schedulability. To do this, first for each operation on signals expressed in the Signal program, a
conditional data dependency relation is derived. For example, in case of the
operation, we derive , when has an event, and , whenever has no event
but does. We can thus draw a graph where each signal is a node, and a directed edge from
a signal to corresponds to the above relation. However, the directed edge is valid only
under certain conditions such as ‘ has event’ or ‘ does not have event but does’ etc.
This graph is called a Dependency graph. This graph is actually an abstraction of such a graph
one could construct with by drawing the directed edges between events based on ,
after all the based partition is done on . If there is a cycle in such a graph, then one must
check if the conjunction of all the conditions marking the edges in such a cycle is satisfiable. If
so, there may be a cyclic dependency. If one abstracts these conditions as uninterpreted

→ default
xy → y xz → y

z
x y

y y z

E →
: E

Approved for Public Release; Distribution Unlimited
82

Booleans, without modeling how they are computed, then one has a Boolean abstraction. Thus
if the conjunction is found to be satisfiable, one might consider that as an indicator for
existence of causal loop. However, if the computation of the conditions is traced back to the
functions and predicates, then one might find that a conjunction of these conditions can never
be true. In other words, the inferred over only based on the clock calculus may be too
coarse, and in reality, one may be able to refine such that events that seemed to be
synchronous with respect to Boolean abstraction can now be partitioned into finer equivalence
classes. Even reachability analysis, and invariants checks on such Boolean abstractions are
necessarily incomplete, thus might lead to rejection of correct specifications.

Consider the example shown in Listing 3.6.1. The process ac_display has three integer
input streams and . It also has three integer output streams ,

 and . The dataflow relations constitute the body of the process
description. They are separated by to indicate concurrent evaluation. During each reaction
the dataflow relations are evaluated concurrently with a data dependency ordering constraint.
Some of the relations are called clock relations which encode restrictions on relative
occurrence of events on the various streams. For example, the first relation states (line 3) that
the input streams are synchronous, thus all three streams would have events on them to start a
reaction. This is an example of a ‘clock’ constraint. The second relation states that during each
reaction, the value placed on stream is when , otherwise it is

’s value. The output stream similarly gets either of the two values
 and based on whether . The output stream

 gets either or depending on whether . This is
a contrived example of a thermostat’s display process, but it is conveniently small enough to
explain the various ideas described in Section 3.6.

A Boolean abstraction-based analysis would replace each predicate appearing in the

relations by a Boolean variable taking arbitrary truth values, and will not consider the
relationship between the predicates in the numerical domain of the variables in the predicate.
As a result, a causal dependency loop will be detected by such analysis because of the
interdependency between and . However, if our abstraction is
cognizant of a theory of integers with ordering relations, then it would lower the Boolean
abstraction to a model that considers intervals with ordering. On this model, one could prove

: E
:

maxTminT , curT coldTdisp_
hotTdisp_ normTdisp_

|

coldTdisp_ minT 70<curT
curT normTdisp_

5_ +coldTdisp 5_ −hotTdisp 70=curT
hotTdisp_ 5_ +normTdisp maxT 80>curT

normTdisp_ hotTdisp_

Listing 3.6.1 Causal Loop Example

process AC_DISPLAY = (? integer minT, curT, maxT;
 ! integer disp_coldT, disp_hotT, disp_normT)
(| minT ^= curT ^= maxT
 | disp_coldT := minT when curT<70 default curT
 | disp_normT := (disp_coldT+5) when curT=70 default(disp_hotT-5)
 | disp_hotT := (disp_normT+5) when curT>80 default maxT
 |);

Approved for Public Release; Distribution Unlimited
83

that when , only then such a causal dependency loop will exist. Obviously, if this
happens, the system will behave non-deterministically or will deadlock. If this information is
explicitly presented to the user upon completion of the analysis, and the user can guarantee an
additional input constraint, , then generating code from this specification is
legitimate – as the program will not display any deadlock behavior. In addition, if one wants to
ensure safety, one could produce a wrapper that would intercept all inputs and check
against this constraint, and filter out any occurrence of input value that violates the user
guaranteed constraints. However, if the user can guarantee only – the system
will exhibit causal behavior when . But the system has a safe operating area,

. One could still apply a wrapper to prevent the system from moving outside its
safe operating area – if it makes sense for the application. Our proposed solution approach is
described below.

Solution approach
 Given a polychronous specification, if a Boolean abstraction-based analysis finds the

specification to violate certain safety properties, automatically refine the abstraction level to
1. consider a theory of integers or rationals with additions and multiplications by
constants
2. verify(either using SMT method or Polyhedra method) if such abstraction lowering
still finds the same violation
3. if not apply the synthesis step
4. if violation is still present – it may be due to our inability to handle theories beyond
what we considered – and hence transform the unsafe operational range in the form of
input range or relationships; and provide the user with an option to generate a
wrapper-based implementation that filters out certain inputs to keep the program in safe
operational trajectories.

 This will enhance the set of polychronous specifications that can be gainfully used to
generate useful implementations.

3.6.1 Analysis of Polychronous Specifications
 As explained in Section 3.2, in the Polychronous model, the primitive notion is that of

events, which are infinite and partially ordered. These events are modeled as synchronous
when they happen within one logical instant. So 𝜏𝜏 = 𝜀𝜀/~is the set of all logical instants, and
with slight abuse of notation, we use ≤ as the partial order on the set of logical instants as well.
If denotes a logical instant, and , denote the events in , the data
dependency implied by the operators defines a causal order among the events. Note that no
two events in can belong to the same signal because events belonging to the same signal
are strictly ordered. Thus at any instant , the causal order among events is also the causal
order between signals the events belong to. Of course, this causal order may change from one
logical instant to another as the data dependencies are conditional as explained in the previous
section.

80>curT

8070 ≤≤ curT

curT

9070 ≤≤ curT
90<80 ≤curT

8070 ≤≤ curT

Tt∈ teee ittt ∈,......, 21 t

t
t

Approved for Public Release; Distribution Unlimited
84

In a polychronous specification (Signal program) intended for sequential
implementation, we should be able to prove that ≤ over is actually a total order [43].
Furthermore, we should be able to establish a relationship between all signals in terms of
causal dependence, which is acyclic and tree structured, for schedulability. If the specification is
meant for multi-threaded implementation, then ≤ over can still be a partial order with
certain properties (e.g. weak hierarchic [76]). Therefore, given a polychronous specification,
one wants to statically analyze the following kinds of questions:

(i) Is the ≤ over a total order?
(ii) Is ≤ over a partial order but with weak hierarchic property (a la [76])?
(iii) Is there any logical instant where the causal dependence is cyclic? (i.e., is there a

causal loop or causality problem in the specification?) (i.e existence of causality
cycle)?

(iv) Is there any logical instant which is unreachable given a condition on inputs?
(v) Is there any logical instant where an invariance between signals is violated?

Methods for answering questions (i), and (ii) have been considered elsewhere (c.f. [43],
[76]). In [40], one method for answering question (iii) for polychronous specifications using SMT
solvers has been addressed. In Section 3.6, methods for addressing (iv) and (v) with an aim to
salvage the specification to be useful on certain input ranges are considered. Usually, these
questions can be answered by using abstract interpretation of the Signal program in a Boolean
domain with the possibility of imprecision. For instance, cyclic dependence may be dependent
on predicates on signals assuming a particular value or a set of values – such as “
". In a Boolean abstraction satisfiability of these where and are independent
propositions is guaranteed, but, if we consider the computation of and and use a
theory of integers to model that, we might conclude that this condition can never be true. SMT
solvers are apt in answering such questions [40], provided the theory we require are decidable
or at least semi-decidable.

Consider the Signal program shown in Listing 3.6.2, which is an extension of the
program shown in Listing 3.6.1. When a Boolean abstraction is analyzed, it identifies the
possibility of causal loop because of the interdependency between and

 as shown in Listing 3.6.3.

T

T

T
T

5<10> yx ∧
10>x 5<y

x y

hotTdisp_
normalTdisp_

Approved for Public Release; Distribution Unlimited
85

One can invoke an SMT solver to check for nullity of clock constraints (

) on the path of the apparent loop. This SMT extension to Polychrony
is explained in next section.

3.6.2 SMT extension to Polychrony
 In the earlier section it was shown that the decisions taken by abstracting SIGNAL

specifications to Boolean logic can be overcautious leading to rejection of correct specifications.
We lowered the abstraction and augmented the Polychrony tool-set by adding YICES SMT
solver extension to make more precise decisions. The execution flow of the augmented
polychrony compiler is shown in Figure 37. The compiler first parses the SIGNAL specifications

_23__31_ CLKCCLKC ∧

Listing 3.6.2 True Causal Loop

process AC_DISPLAY = (?integer minT, curT, maxT, curP, curK;
 !integer disp_coldT, disp_hotT, disp_normalT)
(| minT ^= curT ^= maxT ^= curP ^= curK
% Conditions %
 | cond_1 := ((curT >= 2) and (curT <= 18))
 | cond_2 := ((curP >= 3) and (curP <= 21))
 | cond_3 := ((curK >= 25) and (curK <= 35))
 | cond_4 := (curT-curP >= -10)
 | cond_5 := ((curT+curP >= 11) and (curT+curP <= 33))
% Output Computation %
 | disp_coldT := minT when (curT<minT) default curT
 | disp_normalT:= (disp_coldT+10) when
 (not(cond_1 and cond_2 and cond_3))
 default (disp_hotT-10)
 | disp_hotT := (disp_normalT+10) when(cond_4 and cond_5)
 default maxT
 |)
where
 boolean cond_1, cond_2, cond_3, cond_4, cond_5;
end;

Listing 3.6.3 Possible Causal Loop

(| {disp_hotT --> disp_normalT} when C_CLK_31
 | {disp_normalT --> disp_hotT} when C_CLK_23
 |)

 where, C_CLK_31 = cond_4 and cond_5
 C_CLK_23 = cond_1 and cond_2 and cond_3

Approved for Public Release; Distribution Unlimited
86

and constructs an abstract syntax tree(AST). From the AST, it extracts information regarding
computations and creates implicit dependency subgraphs and user defined dependency
subgraphs. Using these subgraphs it constructs a dependency graph. This may contain
dependency loops. Causality analysis is performed as graph transformations. If there exists no
causal loops, the code generation step is performed. But if the compiler reports existence of a
causal loop (Listing 3.6.2), we extract the clock dependencies of the probable cycle and
transform them to SMT equations. This is done by extracting the clock constraints and
generating the predicates for Yices SMT solver as shown in Listing 3.6.4. Invoking Yices solver
will decide this condition as (which indicates the existence of true causal loops)
and it outputs just one counter example to show a case where causal loop may create a
deadlock. However, there might exist a range of input values where this deadlock could happen
which SMT solver will not provide directly. Similarly, SMT solver will not provide range of input
values where the causal behavior is not exhibited, in other words the bounds for safe operating
region. In the next section, we present a polyhedra model-based analysis approach
implemented in the Polychrony compiler to eliminate this limitation of SMT solvers.

 Based on the output of SMT solver, we conclude if it is a true or false causal loop. If it is
a false causal loop, it is possible to generate code by adding assertions and doing modular code
generation. If it is a true causal loop, we raise an error and based on SMT output, we also
provide valuable feedback on when the dependency loop was triggered. This approach expands
the subset of the acceptable SIGNAL programs by the polychrony compiler with a negligible
increase in total compilation time.

3.6.3 Polyhedral Model based Analysis
 The polyhedral model provides a powerful abstraction domain for various static

analysis techniques. A polyhedron is basically, a locus of the solutions of a system of affine
inequalities and equations. Various algebraic, arithmetic and set operations can be done on
these polyhedra. In the previous section we showed with an example, the limitations of SMT
solver-based causality analysis technique. If the clock constrains (Listing 3.6.3) are linear
expressions with arithmetic, logical and relational operators they can be translated into a
system of affine inequalities and equations, which can then be analyzed using polyhedral
libraries.

esatisfiabl

Listing 3.6.4 Assertion in SMT solver and Solution

(define curT::int)
(define curP::int)
(define curK::int)

(assert (and (<= curT 18) (<= curP 21) (<= curK 35)
(>= curT 2) (>= curP 3) (>= curK 25) (<= (+ curT curP) 33)
(>= (- curT curP) -10) (>= (+ curT curP) 11)))
(check)

Approved for Public Release; Distribution Unlimited
87

3.6.3.1 Constraint Extraction and Transformation

Consider the input constraints shown in column 1 of Table 10 for the Signal program
shown in Listing 3.6.2. The clock constraints for possible causal loop (shown in Listing 3.6.3) are
first obtained from Polychrony compiler. These constraints are parsed and automatically
transformed to a system of affine inequalities and equations as shown in column 2 of Table 10.
There exists an implicit logical intersection among all the constraints within each column of
Table 10. The constraints in Table 10 need to be transformed into affine forms to use the

 library [65]. This system is further abstracted to matrices before using Polylib APIs.
Figure 36 shows the plot of polyhedrons representing both input constraints and true causal
loop constraints. From multiple views we see that there exists a region of intersection between
the two polyhedrons, which indicates the existence of true causal loops with the current input
constraints.

Table 10: Input and True Causal Loop constraints

Input Constraints Loop Constraints
10 curT 40
10 curP 40
10 curK 40

2 curT 18
3 curP 21
25 curK 35
curT - curP -10
11 curT + curP 33

3.6.3.2 Polyhedral Analysis
To obtain the bounds of safe operating region and the region where true causal loop

exists, we apply two polyhedral operations from the library. Let be the
polyhedron constructed considering input constraints and be the polyhedron for the
domain of the potential causal loop.

1. : This operation returns the intersection of two polyhedral
domains. This is used to compute .
2. : This operation returns a new polyhedral domain which is
the difference, .

Figure 36 also shows the plots for both and respectively. gives
the input space domain in which causal behavior is exhibited. If is empty, then the
potential causal loop is not a true causal loop. gives the domain of safe operating area.

PolyLib

≤ ≤
≤ ≤
≤ ≤

≤ ≤
≤ ≤
≤ ≤

≥
≤ ≤

PolyLib I
L

),(LIrsectionDomainInte
LI ∩

),(LIerenceDomainDiff
LI −

LI ∩ LI − LI ∩
LI ∩

LI −

Approved for Public Release; Distribution Unlimited
88

Figure 36: 3D-plot (multiple views) of Polyhedrons representing Input and Loop

Constraints. 3D plots of and

3.6.3.3 Limitation of Polyhedral libraries
 Almost all of the existing polyhedral libraries including the one we are using, ,

have restrictions that they can only accept integer constraints. In our technique, all rational
constraints are multiplied by least common multiple to obtain integers, and floating point
numbers are truncated based on precision specified by the user. Then we multiply the
truncated floating point constraint by a suitable number such that it becomes an integer. The
truncations preserve the soundness of the technique by over-approximating the polyhedron.

3.6.3.4 Safe code synthesis using Wrapper
 From the result of polyhedral analysis, we obtain the bounds on inputs, such that for

any input within the bounds the system will be in safe operating region. To ensure safe
operation always, we first assign the current value of the input signals to temporary variables.
Then we check if the input values are within the bounds. If yes, we use the current input values
stored in temporary variables. If no, we reassign the temporary variables with default values

)(Top
)(Bottom LI ∩ LI −

PolyLib

Approved for Public Release; Distribution Unlimited
89

that are known to keep the system within safe operating region. The assignment of default
values to temporary variables is done keeping in the mind input clocks. This wrapper code
prevents any inputs violating the conditions of safety from being passed. The user of the
synthesis tool is given an option to choose if such implementation makes sense in the
application domain. In Listing 3.6.53 we show the wrapped code for the SIGNAL program
shown in Listing 3.6.1.

3.6.3.5 Implementation and Design Flow
 We have enhanced the open source Polychrony compiler obtained from [81] by

integrating the Yices SMT solver [86] and . In particular, as of current implementation,
we apply only causal loop detection, and provide the corresponding wrapper generation. The
execution flow of the enhanced polychrony compiler is shown in Figure 37. The input Signal
specifications are parsed by the compiler and an abstract syntax tree (AST) is created.
Transformations are applied on AST to get a directed graph. Causality analysis is done on the
graph and possible causal loops are listed by the compiler. There are two different approaches
to identify the true or false causal loops. If no input constraints or no safe operating bounds are
requested, we can use the SMT-based technique to identify the true or false causal loops. If
bounds on safe operating region are requested, then we parse the input and loop constraints,
generate polyhedra models and invoke for the analysis. Based on the SMT output or
result of polyhedral analysis, we conclude if it is a true or false causal loop. We proceed
synthesizing the code for safe operating region using the technique described earlier.

3 DEFAULT_VALUE is a value that when assigned to input signals, is known to keep the system in safe operating area.

Polylib

PolyLib

Listing 3.6.5 Signal program of Listing 3.6.1 with wrappers

process AC_DISPLAY = (? integer minT, curT, maxT;
 ! integer disp_coldT, disp_hotT, disp_normT)
(|curT ^= cond_1 ^= tempCurT
 |cond_1 := ((curT >= 70) and (curT <= 80))
 |tempCurT := curT when cond_1 default DEFAULT_VALUE

 |disp_coldT:= minT when tempCurT<70 default tempCurT
 |disp_normT:= (disp_coldT+5) when tempCurT=70 default
 (disp_hotT-5)
 |disp_hotT := (disp_normT+5) when tempCurT>80 default
 maxT
 |)
 where
 bool cond_1;
 integer tempCurT;
 end;

Approved for Public Release; Distribution Unlimited
90

Start Polychrony

Signal Parser

Signal Tree to
Graph

Any causal
Loops?

Graph
Transformations

Code Generation

Stop

No

Yes

Abstract
Syntax Tree

Directed
Acyclic Graph

Signal
Specifications

Yes

Extract clock relation
information

Transform to SMT
equations

True
Causal
Loops?

Report error with
SMT output

No

Yes

SMT based technique

Extract clock relation
information

Get range constraints
and transform to Polylib

affine relations

True
Causal
Loops?

Generate wrappers for
safe operating region and
output range constraints

No

Yes

Polylib based technique

Figure 37: Execution flow of enhanced polychrony compiler

3.6.4 Summary
 In Section 3.6, we showed how to augment the Polychrony compiler with YICES SMT

solver for making better decisions and illustrated it with a SMT-based causality analysis
technique. The proposed SMT based solution adds minimal overhead to the compilation time,
and it can be easily proven to be sound. We also presented an integration of polyhedral analysis
to existing static analysis techniques for polychronous specifications to obtain safe operating
ranges for all inputs. By doing so we enhanced the existing static analysis techniques and
expanded the subset of Signal specifications that the Polychrony compiler can accept, with
minimal overhead addition to the compilation time. The proposed technique does not account
for dynamic behavior of variables. The current polyhedral library we use, [65], is
restricted to integer and approximate floating point constraints expressed as linear system of
inequalities and equations. This is a restriction on the library and not on the technique we
proposed. In future we plan to use a different library which can handle floating point
constraints. We also want to expand the analysis beyond polyhedra into non-linear system of
inequalities and equations. We also plan in future to enhance the compiler to do static analysis
for checking other properties beyond causality.

Polylib

Approved for Public Release; Distribution Unlimited
91

3.7 Type Inference and Type Consistency
Verification of Polychronous models

 Among the leading causes for failure of embedded software, a prominent one is
mismatched assumptions about signals at the interfaces of various components. In a
model-driven design methodology, such mistakes happen at the modeling time. In [61], a
number of cases have been cited, many of which show that when two software components
are integrated, inconsistencies in the assumptions with respect to dimensions and units of
signals at the interfaces, could lead to failure of the entire system. Traditional type checking
done by compilers after the software is synthesized or coded from the model can only ensure
consistency between the traditional data types (float, int, bool, double etc.,) of the signals at
the interface. But, this analysis totally ignores the dimensional and unit inconsistencies. As a
result of this, signals with different dimensions (e.g., velocity and acceleration) or signals with
same dimensions but with different units (e.g.,velocity in m/sec and km/hr) could mistakenly be
connected. In [49] and [50], this problem has been formulated as an ontology issue, and
ontology aware extensions of the Ptolemy signal types and corresponding checks have been
implemented. In [67], a similar extension has been proposed for Simulink models. In both of
these, the model of time was not polychronous, making it less complex to extend the type
system.

To find the bugs attributed to the mismatch in dimensions and units at the interfaces of
composed components, there could be two approaches:

(i) extend the type system of the modeling language; or
(ii) extend the type system of the target software language.

However, the second approach requires a change in a standard language such as C/C++/Java
etc., and a change in their compilers, which requires considerable effort and compatibility with
standards. On the other hand, if a run-time dynamic checking is implemented, then it results in
increased run-time overhead. Therefore, if a formal model-driven correct-by-construction
approach is followed, it is more logical to embed the type information in the models and
statically check for type consistency at the interfaces by extended type checking algorithms.
Since in the model-driven approach, the source of such errors are in the model itself, early
detection of such errors can improve the quality of models – hence the quality of the
synthesized software.

Many modeling languages including Simulink have a synchronous model of time, in the
sense that, signals at interfaces can all be read if present, and sensed if absent (usually absence
is coded in terms of default or unchanged values). Thus for such languages, the extension of a
type system with dimensions and units poses less of a problem than in polychronous modeling
languages such as Signal[9]/MRICDF[43]. The polychronous timing model poses a few additional
challenges:

(i) the interface signals are not all synchronous – thus, a signal may be absent or
present during a particular reaction;

(ii) a modeling construct to merge multiple signals creates union data types; and
(iii) the same signal may carry data of different dimensions and units during different

reactions due to the merge construct – hence a clock calculus must be part of
the type checking extension to handle such polychronous or union types.

Approved for Public Release; Distribution Unlimited
92

Sam
pler

+

X

Y C

M
e
r
g
e

[LT-1]

Bool

Z

U

V

W

[LT-2]

Buffer

dw = ?

function SignalProgram =
(? real X, U; ? boolean C;
 ! real V;)
(|Z := X default Y
 |W := Z when C
 |V := W+ U
 |Y := V $ init 0.0
 |)
 where
 real Z, Y, U, W;
 end;

dv = ?

dz = ?

dy = ?

Figure 38: Example MRICDF model

Consider the MRICDF model shown in Figure 38. Despite the model being small and

contrived, it suffices to illustrate the problem. The model has three inputs - , , one
output , which is delayed and fed back as input . Signal is resultant of priority
merging of signals and , with priority given to first input (). Further, signal is
sampled using signal to yield signal . All the signals are of data-type. Signal

 has dimensions4 of , while is an adimensional signal and has as
dimensions. The dimensions of rest of the signals are unknown and denoted by . For
this model to be type consistent, the following constraints have to be satisfied.

• As signals have to be of the same dimension to be added: = = =

• By definition of sampler actor(explained in Section 1): = (when (=))
• For consistency: Signal is absent when =
• Further inference: = (when (=))

If we know that, signal is present when , then = = ,

which results in inconsistent typed signals and being added together, breaking the
type consistency of the model. If we do not consider the clocks of signals, then the type of
signal is of type or , i.e, a union data type. Thus, signals in such systems may have
tagged union types, tagged with clock information associated with signals. To ensure type
correctness of such systems, we need to match the dimensions and units of the signals along
with their data types by considering the clocks of the signals.

4 We are assuming the reader is familiar with the way units and dimensions are expressed as per SI Standard.

X C & U
V Y Z

X Y X Z
C W double

X][1−LT C U][2−LT

>_< namesigd

vd wd yd][2−LT

wd zd C true
X C true

yd zd C true

X trueC = zd][1−LT wd
W U

Z X Y

Approved for Public Release; Distribution Unlimited
93

We therefore propose a polychronous type system extension for the MRICDF language
and extend the EmCodeSyn tool with a framework that allows users to specify unit and
dimensional information for some/all signals. We also define type inference rules, which an
algorithm uses to infer unit & dimensional information for the rest of the signals by considering
the clocks of the signals. After the inference algorithm assigns types for all signals, a correctness
checking algorithm verifies type consistency of the model with the help of an SMT solver and if
it can verify completely, it provides a set of clock constraints associated with the unit &
dimensional information under which the model is guaranteed to be type consistent. If it can’t
verify, it provides a set of constraints that causes type inconsistency in the model.

Our major contributions described in Section 3.7 are:
• For polychronous languages, for the first time, we proposed a polychronous type
system with tagged union types containing clock information and implement this type
system in EmCodeSyn framework. Our framework also allows users to specify application
specific type information to store dimensional and unit information of signals during
modeling.
• We proposed type inference rules and an inference algorithm that folds in clock calculus
– for polychronous modeling languages. Even though the implementation is done in the
context of MRICDF, it applies to Signal language as well.
• Further, we proposed a fully automated SMT-based verification approach that checks
for type consistency and enables the framework for early detection of modeling bugs
associated with dimensions/units/clocks for interface signals.

Even though, for Simulink and Ptolemy, type extensions have been implemented, we
believe that the polychronous model of time added additional complexity to make our type
system novel and the type inference & consistency checking approach completely distinct –
especially with the necessity of clock calculus in the type checking process.

3.7.1 Type System and Inference Rules
 As mentioned in Section 3.2, an MRICDF model is a composition of primitive and

composite actors, where actors are connected using channels. These channels represent the
physical signals that carry values corresponding to one or multiple physical quantities out of the
infinitely many physical quantities. Keeping practicality in mind, we have considered an
exhaustive set of physical quantities, which enables us to model most of the physical systems.
We classify the dimensions of physical quantities into three categories (a) Fundamental
dimensions - Ex: Mass, Length, Time etc, (b) Derived dimensions - Ex: Momentum, Velocity etc,
and (c) Union dimensions - Ex: Momentum/Velocity, Pressure/Force etc. Fundamental
dimensions represent dimensions for a set of physical quantities from which we can derive
dimensions for other physical quantities. Derived dimensions represent the dimensions of
physical quantities which are derived from fundamental dimensions. Union dimensions are the
dimensions that represent merged signals that have a combination of either non-union
dimensions or union dimensions or a combination of both. They represent the dimensions of
signals that are of the union data type. In real life, union typed signals arise when data
representing multiple physical quantities are time multiplexed and sent over same physical
signal. At any given instant, the union typed signal can only take one of the multiple dimensions

Approved for Public Release; Distribution Unlimited
94

possible. Our type system contains units and dimensions corresponding to each of the physical
quantity in the exhaustive set of physical quantities. Along with the types representing physical
quantities, we also have special types denoted by , and ,
which represent an unknown data type, an inconsistent data type and absent type respectively.
Along with each dimension, we also store the corresponding unit information in SI, CGS, MKS
and/or user defined format including the multiplication factor.

3.7.1.1 Type Set
 Let be any MRICDF specification and be the set of all signals in . Let

be the set of all possible dimensions which can be assigned to signals in and let be the
set of all possible units for each of the dimensions in . Also, let be the set of all the
clocks of . We represent a non-union type of any signal as a tuple and a union
type of any signal as a tuple , where , and

. Let be the set of all such possible tuples.

 represents the Type set.

When we say a signal is of non-union type , it means the dimension and
unit of the physical quantity whose value flows through signal is and respectively,
at clock . Similarly if signal is of union type , then we say that
the dimension and unit of signal is and respectively at clock and it’s dimension
and unit at clock is and respectively. An example of a tuple for a non-union typed
signal is and an example tuple for a union typed signal is

.
In the union type , is actually , where is a

union operator for the data types. We also define a tagged union variant where @
refers to the union type manifested at clock by the union type. If after the clock calculus, it
turns out that would manifest at clock as non-union type then @ = . If
the clock calculus indicates that at clock , the union type will manifest as , then @
= , else we don’t have enough information to resolve @ . Based on these definitions,
we now describe the inference rules that can be used to infer the types of each signal. Inferring
types for the model is done by repeatedly applying the rules until all the signals are
assigned with some type or we reach a conflicting assignment.

Let , and be any three signals, , , and be any four types and let

 be the type environment containing the type assignments such as .

(?)Bottom)(ΤTop)(⊥Absent

M S M D
S U

D C
M 〉〈 cud ˆ,,

〉〈 /..ˆ/ˆ/..,//..,/ 212121 ccuudd Dddd ∈21,, Uuuu ∈21,,
Cccc ∈21 ˆ,ˆ,ˆ B

,..}ˆ/ˆ,/,/,...,ˆ,,{= 212121 〉〈〉〈 ccuuddcudB

CcccUuuuDddd ∈∈∈∀ 212121 ,,ˆ,,,,,,
B

s 〉〈 cud ˆ,,=τ
s d u

ĉ s }ˆ/ˆ,/,/{=/ 21212121 〉〈 ccuuddtt
s 1d 1u 1̂c

2ĉ 2d 2u

1sig 〉〈 xsectime ˆ,, 2sig
〉−〈)ˆˆ/(ˆ,/,/ xyxKelvinsecetemperaturtime

}ˆ/ˆ,/,/{=/ 212121 〉〈 yxuuddtt 21/dd 21 dd ò ò

21/tt x̂
x

21/tt x 1t 21/tt x̂ 1t
x 2t 21/tt x̂

2t 21/tt x̂

M

x y z τ τ ′ 1t 2t
Γ τ:x

Approved for Public Release; Distribution Unlimited
95

3.7.1.1.1 Buffer Actor
 Operation: y = buffer(x)

The type inference rule states that, if “ is present and is of type ” is in the type

environment , then we can infer that “ is also present and is of type ” in the same type
environment and vice versa. In other words, if either the type of input or output signal of
the buffer actor is known and the type of other one is not known, then the data type of the
unknown signal is same as that of the known signal. For readability purposes, we are not
showing the trivial clock details of the signals (Ex: , , etc.) in the rules.

3.7.1.1.2 Sampler Actor
 Operation: y = sampler(x, z)

If the type of the first input of the sampler actor is known, then the type of output of
sampler actor is same as that of the first input – when it is present and the second input has a

 value. The type of output signal can be further refined by analyzing the clocks of both the
input signals. A few examples of refinement are provided below.

• From the clock relation graph, if we know that , i.e, whenever , signal

 is present, then we can say that
• If we know that , i.e, the intersection of the set of instants when
and when signal is present is the null set(), then we can say that
• If is a union type such as and if we know that at clock , the union type
manifests as , then we can say that
• Similarly, if the union type manifests as , then we can say that

τ
τ

τ
τ

:
:

:
:

x
y

y
x

�� Γ
Γ∈

Γ
Γ∈

x τ
Γ y τ
Γ

truex =ˆ yx ˆ=ˆ

]@[:
:,:

zy
Booleanzx
τ

τ
�Γ

Γ∈Γ∈

true

xz ˆ]ˆ[⊆ truez =
x τ:y�Γ

φ=ˆ]ˆ[xz ∧ truez =
x φ ⊥Γ :y�

τ 21/= ttτ]ˆ[z

121 =]ˆ@[/ tztt 1: ty�Γ

221 =]ˆ@[/ tztt 2: ty�Γ

Approved for Public Release; Distribution Unlimited
96

3.7.1.1.3 Merge Actor
Operation: y = merge(x, z)

The rules for merge actor state that, if both the input signals are of the same type, then
the output signal is also of the same type. If the input signals are of different types, then the
output signal is of union data type. Similar to the case of sampler actor, we can refine the type
of the output signal of merge actor, by analyzing the clocks of input signals.

An example of the refinement is shown below. If the set of instants where the second
input of merge is present is a subset of the set of instants where first input of merge is present,
in other words, if clock of signal is a subset of clock of signal (), then we can say
that the whenever signal is absent, signal is also absent. Hence, we can say that type of
output signal is the same as that of the type of first input .

3.7.1.1.4 Function Actor
Operation: y = f(x, z) =

The type of the output signal of a function actor depends upon the operation performed
inside function actor. For most of the generic operations such as multiplication, integration,
etc., the tool can infer the types automatically. If the function actor is doing an user defined
operation, to infer its output type, we require the modelers to provide the equivalent SMT
formula for the generic operation. A provision for this is made in the tool. Here we illustrate
type inference for output of a function actor doing simple multiplication operation.

3.7.1.1.5 Composite Actor
 A Composite actor is a hierarchical composition of the primitive actors and other

composite actors. We recursively explore inside the composite actor in a depth first manner,
until we reach a point where there are only primitive actors, and use the rules described above
to infer their types. We then propagate the types at interface hierarchically and finally infer the
input and output signals of the composite actor.

)@(/@:
:,:

:
:,:

xzxy
zx

y
zx

−′Γ
Γ∈′Γ∈

Γ
Γ∈Γ∈

ττ
ττ

τ
ττ

�

�

z x xz ˆˆ ⊆
x z

y x

τ
ττ

:
:,:

y
xzandzx

�Γ
⊆Γ∈′Γ∈

zx×

τ
τ

:
::,: 2121

y
ttfandtztx

�Γ
→×Γ∈Γ∈

Approved for Public Release; Distribution Unlimited
97

3.7.1.2 Inference Algorithm
 Figure 39 shows the flowchart for Inference algorithm. The algorithm basically applies

inference rules to each actor in the model until all the signals are assigned with some type or a
conflict in type assignment occurs.

Type Inference
Rules

S = S – s;
Apply corresponding actor

rule to infer type of s

Start

Pick a signal s ∈ S which
is un-typed, and which

can be typed

Conflict?

End

Yes

No Is S
empty?

No

Yes

Error: Type Inconsistency
for signal s

S = List of un-typed signals in the model
Annotate signals with initial type assignments

Figure 39: Inference Algorithm

 Initially, we set the types of all signals which are to be determined as .

Then user has to initialize types for some/all of the input signals and optionally other signals
(Ex: output signals of function actor, etc). After inputting the initial types, the user can ask the
tool to infer the types of the rest of the signals. The tool then starts inferring based on the
inference rules for each actor described earlier until all the signals are assigned or a conflict
occurs.

Unknown

Approved for Public Release; Distribution Unlimited
98

After the types for all the signals have been identified, one has to verify that the model

is type consistent or not. Verifying type consistency is trivial when the model does not contain
any signals that are of union type. In such models, we just have to verify that the connected
ports have the same dimensions and units. In fact, for such models, the inference algorithm
itself serves as consistency check too. But, if there are signals that are assigned with an union
type, then, we also need to know if the type consistency is still upheld, when the union type
manifest to non-union type under various clock constraints. This consistency check is done
using SMT solver as explained in the next section.

3.7.2 SMT based Type Consistency Checking
 A model is said to be always type consistent when we can ensure type consistency in

all possible instants. At any given instant, any union typed signal in the model has to be
resolved to a unique non-union type, which is one of the constituent types. To do so, we have
to resolve the union typed signals under various clock constraints and see to what non-union
type do they manifest to under those constraints. This can be done by using the clock relations
in the hierarchical clock relation graph. After resolving we check if the type consistency is still
upheld in that particular instant. Similarly, this has to be performed for all instants. In our case
we use an SMT solver to do this, in particular we are using Yices[86] SMT solver. We export the
clock relations, any user defined clock constraints, initial type assignments and the inferred
types as an SMT formula. This serves as the preamble for the objective defined later on. An
objective in our case is the goal of the user expressed as SMT formula. Some of the examples of
goals are as follows,

1. For the given type assignments, under what constraints the model is type consistent?
2. Under what constraints, the model is always type consistent?
3. Are there any constraints which will break the type consistency of the model?

 For each of these goals, the SMT formula differs. We append the objective to the
preamble and ask the SMT solver to check if the objective is satisfiable under the constraints
expressed in the preamble. The SMT solver answers with sat or unsat result indicating
satisfiable or unsatisfiable. For both these solutions, the SMT solver also gives a counter
example, which can be easily translated into invariants or constraints. Next we illustrate how
we can achieve goals 1 and 2 for the model shown in Figure 38.

(i) The clock relations obtained from the hierarchical clock relation graph for the model

are as below.

(ii) The initial type assignments provided by the user are given below.

yvwu clkclkclkclk ===

yxz clkclkclk ∨=

cclkclkclk czw ∧∧=

1=,,= 11 TclkmsecLTd xx 〉〈 −−

2=,,= 22 TclkmsecLTd uu 〉〈 −−

Approved for Public Release; Distribution Unlimited
99

(iii) The type assignments obtained from the inference algorithm are as below.

 Initially we declare the variables and the function prototypes to be used later on in the
SMT formula as shown in the declaration section of Listing 3.7.1. We then export the
constraints from (i), (ii) and (iii) as the SMT formula as shown in Listing 3.7.1’s preamble section.

2=== Tddd yvw

))2@((/1@= yxxz clkclknotTclkTd ∧

])ˆ2@([1/= cTTdw

Approved for Public Release; Distribution Unlimited
100

Listing 3.7.1 SMT formula to check Type Consistency

 ;; DECLARATIONS : Data types
(define-type DATATYPE (scalar T1 T2))

;; DECLARATIONS : Data type variable names
(define-type VARNAME (scalar d_x d_y d_z d_w d_v d_u))

;; DECLARATIONS : Function that maps VARNAME to DATATYPE
(define typeof::(-> VARNAME DATATYPE))

;; DECLARATIONS : Clock variables
(define clk_x::bool)
(define clk_y::bool)
(define clk_z::bool)
(define clk_c::bool)
(define clk_w::bool)
(define clk_u::bool)
(define clk_v::bool)
(define c::bool)

;; PREAMBLE : Relations from hierarchial clock relation graph
(assert (ite (or clk_x clk_y) clk_z (not clk_z)))
(assert (= clk_y clk_v))
(assert (ite (and clk_z clk_c (= c true)) clk_w (not clk_w)))
(assert (= clk_w clk_u))
(assert (= clk_w clk_v))
(assert (or clk_x clk_y clk_z clk_w clk_u clk_v))

;; PREAMBLE : Initial type assignments
(assert (= (typeof d_x) T1))
(assert (= (typeof d_u) T2))

;; PREAMBLE : Inferred types
(assert (= (typeof d_v) T2))
(assert (= (typeof d_w) T2))
(assert (= (typeof d_y) T2))
(assert (ite (and clk_z clk_c (= c true)) (= (typeof d_w) T2)
 (= 0 0)))
(assert (ite clk_x (= (typeof d_z) T1) (= 0 0)))
(assert (ite (and (not clk_x) clk_y) (= (typeof d_z) T2) (= 0 0)))

;; OBJECTIVE : Constraints from type inference rules
(assert (ite clk_v (= (typeof d_v) (typeof d_u)) (= 0 0)))
(assert (ite clk_w (= (typeof d_w) (typeof d_u)) (= 0 0)))
(assert (ite clk_v (= (typeof d_v) (typeof d_w)) (= 0 0)))
(assert (ite clk_y (= (typeof d_y) (typeof d_v)) (= 0 0)))
(assert (ite (and clk_z clk_c c) (= (typeof d_w) (typeof d_z))
 (= 0 0)))
(assert (ite clk_x (= (typeof d_z) (typeof d_x)) (= 0 0)))
(assert (ite (and (not clk_x) clk_y) (= (typeof d_z) (typeof d_y))
 (= 0 0)))

(check)
;; Show constraints that satisfies the objective
(show-model)

Approved for Public Release; Distribution Unlimited
101

Now let us consider the goal 1. The objective is to obtain the constraints such that the

model is type consistent with the current preamble. For the model to be type consistent, it has
to satisfy all the type inference rules. We export the rules for each of the actor as the objective
function. This is shown in the objective section of Listing 3.7.1. This formula is then given to
Yices SMT solver and Listing 3.7.2 shows the output of the solver.

The output of SMT solver indicates that the objective can be satisfied when signals

, , , , , are all , , and the dimensions of

all other signals except is , while signal has the dimension .
Interpreting this result, we can say that, the model is type consistent with the current type
assignments, signals , , , , , are all present, signal is absent and the signal

 carries value. Under these conditions, the types of all other signals except signal
is , while the type of is . Note that, this is not the only possible constraint under
which the model is type consistent. This is one of the possible constraints.

zclk

uclk wclk vclk cclk yclk true falseclkx = truec =

x][=2 2−LTT x 1−LT

z u c w v y x
c true x

2T x 1T

Listing 3.7.2 Output of Yices Solver

sat
(= clk_z true)
(= clk_u true)
(= c true)
(= clk_w true)
(= clk_v true)
(= clk_c true)
(= clk_x false)
(= clk_y true)
(function typeof
 (type (-> VARNAME DATATYPE))
 (= (typeof d_x) T1)
 (default T2))

Approved for Public Release; Distribution Unlimited
102

Type Inference
Rules

S = S – s;
Apply corresponding actor

rule to infer type of s

Start

Pick a signal s Î S which is
un-typed, and which can be

typed

Conflict?

End

Yes No
Is S empty?

No

Yes

Error: Type Inconsistency for
signal s

S = List of un-typed signals in the model
Annotate signals with initial type assignments

Union Typed Signals
present?

No

Yes
Export Clock relations from

Hierarchial Clock Relation Graph as
SMT Formula

Export Initial Type Assignments as
SMT Formula

Export Inferred Type Assignments as
SMT Formula

Export the constraints for the desired
objective

SAT?

Call SMT Solver

Error: Type
Inconsistency

No

Consistent under
the constraints

Hierarchical Clock
Relations obtained

from Clock
Calculus

Initial Type
Assignments

from User

Store
Inferred

Types

PREAMBLE

OBJECTIVE

Yes

Figure 40: Flowchart for Type Inference and SMT Analysis

Approved for Public Release; Distribution Unlimited
103

Now let us consider the goal 2. To ensure that the model is always type consistent, we

have to obtain all possible constraints under which type consistency is preserved. To do so, we
can add the obtained constraint back as a preamble and ask the SMT solver to provide newer
constraints. Once the SMT solver returns an solution, it indicates that there are no
more newer constraints. Then we can say that as long as any of those constraints are satisfied
individually, the model remains type consistent (goal 2).

Figure 40 shows the complete flowchart for the type inference and SMT analysis.

3.7.3 Summary
 Dimensional and unit inconsistencies in critical embedded software could result in a

failure of the entire system. Often it is hard to ensure consistency by verification as the
software is not annotated with the units and dimensions information. On the contrary,
software design approaches based on models provide easy annotation options and could be
formally verified. Our framework allows the user to specify the type information for some
signals in the model and further infer the type information for all signals. Most model-based
designs allow signals of union types, which makes, checking for correctness difficult. Our work
has addressed this problem by using the concept of clocks of the corresponding signals. Our
proposed approach is generic enough to be employed in most of the model-based design tools.
Since our analysis is statically done on the models, the generated software need not do any
dynamic checks and hence its run-time efficiency will not suffer. Also, our proposed approach is
sound but not complete. The analysis for union types depends on the clock relations of the
signals. Clock relations that are derived from other clocks based on certain conditions, could be
complicated expressions and might not always be possible to be evaluated. As a result of this,
we resort to abstraction and over-approximation which might lead to the incorrect rejection of
accurate specifications.

3.8 SMT based Value Range Analysis of
Polychronous models

With the increasing amount of software used in safety critical systems, it is absolutely
essential to ensure that programs produce expected output values for every possible run. These
expected values are the values that satisfies pre-specified constraints on the outputs and they
guarantee that system is behaving as expected. For smaller systems, this can be achieved by
doing exhaustive simulation and verifying the outputs. As systems become complex, exhaustive
simulation is very difficult and may not be possible. Traditionally, verifying such complex
system’s software is done using static analysis techniques. Complex systems are first abstracted
and a simpler model is derived with just enough information needed to do the analysis. Some
of the prominent disadvantages of this approach are,

(i) difficulties involved in automating the abstraction procedure and
(ii) establishing the behavioral equivalence between abstracted model and the

original system. Alternatively, it is much easier to build the model of a complex

unsat

Approved for Public Release; Distribution Unlimited
104

system ground-up, perform analysis on the model and then use the same model
for generating code for the complex system. In Section 3.8, we propose range
inference rules for the polychronous modeling language - MRICDF, which are
further used to derive range constraints on the signals. Further, we also propose
a technique that converts these range constraints to SMT constraints and verifies
signal value range related properties on the model.

Figure 41 shows an MRICDF model for a simple automated bathtub system. For
readability purposes, it’s corresponding SIGNAL code is also provided. Despite being small, this
example is sufficient to illustrate the problem statement.

This model implements a bathtub system where the level of water is automatically
controlled. This model has no inputs and 1 output -- level. Output ‘level’ indicates the level of
water in the bathtub at any given instant of time. ‘level’ is computed based on two other signals
– ‘faucet’ and ‘pump’, which are used to increase and decrease the amount of water in the tub
respectively. The objective of this system is to ensure that bathtub is never empty and it never
overflows. In other words, value of level is always in safe range: 0 < level < 9.

To confirm that the system satisfies the objective, we need to know –
(i) Will level <=0 ever?
(ii) Will level >=9 ever?

SIGNAL program for Simple Automated Bathtub Embedded System

process BathTub =
(?
 ! integer level;)
(| level := zlevel + faucet - pump
 | zlevel := level init $1
 | faucet := zfaucet + (1 when zlevel<=4)
 | zfaucet := faucet init $0
 | pump := zpump + (1 when zlevel>=7)
 | zpump := pump init $0
 |)
 where
 integer zLevel, zfaucet, zpump, faucet, pump;
 end

Approved for Public Release; Distribution Unlimited
105

-

+

+
Buffer
(init 0)

Buffer
(init 0)

zlevel
<=4

Sam
plerzlevel

>=7

1

pump

faucet

1 Sam
pler

zpump

zfaucet

1 when (zlevel <=4)

1 when (zlevel >=7)
level

zlevel

x

y

a

b

Buffer
(init 1)

+
z

Figure 41: Example MRICDF model and SIGNAL program for Simple Automated Bathtub

Embedded System

To answer these questions, one has to perform value range analysis on the model. Let P be the
program that implements the model in Figure 41. Let the set P(level) = {l1, l2, ..., ln} represent all
the values ‘level’ can take during all possible executions of P. We simply represent the set of all
such possible values using a closed interval as below.

P(level) = [llevel, hlevel]
where, and are the lowest and the highest values that can take. In

other words,

 where .
Note that, need not take all the values present in the interval. It might only take

few, but it can’t take any value outside the interval. Value range analysis techniques help us
determine the range , which can further be used to verify properties of the system.

Numerous research works such as [66], [70], [36], etc., have explored solutions to the
problem of signal value range analysis in modeling languages that have synchronous model of
time. However, we cannot adopt these solutions to modeling languages with polychronous
model of time, at-least not directly as polychronous languages pose additional complications.
The complications arise due to the fact that,

(i) the signals are polychronous in nature – this means, a signal may or may not be
present during any particular reaction;

(ii) Priority merge construct merges two signals with priority to first one. If the
ranges for the two input signals are not same, it will result in split intervals for

levell levelh level

,)(levellevel hlevelvaluel ≤≤

},...,,{)(21 nllllevelvalue ∈
level

],[levellevel hl

Approved for Public Release; Distribution Unlimited
106

outputs, which will require a “widening” operation to be performed on the
intervals;

(iii) Interval widening operations in case of polychronous signals should consider
clocks of the signals too. This implies that clock calculus must be an integral
part of this approach;

(iv) Also, interval widening operations can easily result in trivial intervals (such as
). Thus, it is also important to narrow the intervals during analysis by

proposing sound interval narrowing operations.

Our major contributions described in Section 3.8 are,
• We propose range inference rules for the actors of polychronous language -MRICDF.
Given value range constraints for the input signals, the range inference rules help us to
statically infer the value range constraints for the rest of the signals in the model.
• During inferring range constraints for priority merge actor, the range of the output of
the merge actor might be a union of multiple ranges. We propose a variant of the interval
“widening” operation that approximates and merges the split ranges into a single range
while considering the clocks of the input signals. We also propose a variant of interval
“narrowing” operation that uses the clock constraints from the model and tries to restrict
the widened ranges.
• Further, we propose a technique to convert all the value range constraints into SMT
constraints and allow the user to verify signal value range related properties.

In the past, there have been other similar approaches proposed for C, C++, Java and
other synchronous languages. We believe that the polychronous model of time adds additional
complications and makes our extensions and the inference rules novel. Also, the SMT-based
verification technique – especially considering the clock calculus constraints makes it unique.

The rest of Section 3.8 is structured as follows. Section 3.8.1 describes inference rules
for MRICDF actors and the algorithm which uses the rules and infers range constraints of the
signals. We also describe the interval “widening” and “narrowing” operations. In Section 3.8.2,
we explain with an example on how we can use the inferred range constraints and an SMT
solver to verify properties related to value ranges.

3.8.1 Range Inference Rules and Analysis
 Modeling languages such as MRICDF, SIGNAL, etc are typically used to model control

systems. As explained in Section 3.2, an MRICDF model is an interconnected network of both
primitive and composite actors. Each of the connections represent a physical signal in the
control system. Each of these physical signals carry values corresponding to some physical
quantity and has additional attributes such as dimensions, units etc. In this work, we focus on
the “value” attribute of the signal. Our proposed extension to EmCodeSyn, allows the users to
specify the values a signal can take in terms of intervals (a.k.a range). Further, the inference
algorithm can infer ranges for the rest of the signals using the range inference rules. In this
research effort, we restrict ourselves to Integer and Boolean value range analysis. However, the
same analysis can be extended to floating point too.

],[−∞∞

Approved for Public Release; Distribution Unlimited
107

3.8.1.1 Definitions
 Let denote the set of all integers. We denote the range of a signal as (x)

and is defined as

If the range of a signal is unknown, we denote it using and is defined as,

If we are unable to infer the range constraints of a signal, we say that its range is the
maximum range . It is defined as,

In theory, refers to an unknown range, while refers to the full range. Initially, all

the signals except the input signals will have their ranges set to unknown range. If we cannot
determine the range constraints of any signal, we say its range is full range and proceed.

Based on these definitions, we now define the lattice of ranges as

This lattice is partially ordered by the⊑ such that,

⊥⊑ 𝑟𝑟, ∀𝑟𝑟 ∈ 𝐿𝐿

[𝑙𝑙1,ℎ1] ⊑ [𝑙𝑙2,ℎ2], 𝑖𝑖𝑖𝑖𝑙𝑙2 ≤ 𝑙𝑙1 ≤ ℎ1 ≤ ℎ2

[𝑙𝑙,ℎ] ⊑ 𝛵𝛵, ∀ 𝑙𝑙, ℎ ∈ 𝑍𝑍

Structurally, the lattice can be represented as shown in Figure 42. The arrows in Figure
42 represent the⊑relation that was defined earlier.

3.8.1.2 Widening operation (∐)
 Widening operator (∐) takes two input ranges and soundly approximates into a single

output range using the principle of convex approximation.

3.8.1.2.1 Case 1: Boolean Sets
Boolean signals can have only or as their value. Hence the widening

operation on Boolean signals is defined on the set of values rather than intervals,

{𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡}∐{𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡} = {𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡}
{𝑖𝑖𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡}∐{𝑖𝑖𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡} = {𝑖𝑖𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡}
{𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡,𝑖𝑖𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡}∐{𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡} = {𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡, 𝑖𝑖𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡}
{𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡,𝑖𝑖𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡}∐{𝑖𝑖𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡} = {𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡, 𝑖𝑖𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡}
{𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡}∐{𝑖𝑖𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡} = {𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡, 𝑖𝑖𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡}

Z x R

Zhlandhlwhere
hlxR

xxxx

xx

∈≤ ,
],,[=)(

⊥
?][?,=⊥

Τ
],[= ∞−∞Τ

⊥ Τ

Zhlandhlwhere
hlL

∈≤
Τ∪∪⊥

,
},{]},{[}{=

true false

Approved for Public Release; Distribution Unlimited
108

[l21,h21] [l23,h23] [l29,h29] [l2m,h2m]

[l11,h11] [l12,h12] [l1m,h1m]

T

T

[ln1,hn1] [ln3,hn3] [ln9,hn9] [lnm,hnm]

Figure 42: Lattice Structure

3.8.1.2.2 Case 2: Integer Intervals
For integer intervals, the widening operation is defined as,

Function depends on the actual operation performed on the input signals. For
arithmetic operations the definition of would be as below,

),,,(=],[
],[=],[],[

212133

332211

hhllWhlwhere
hlhlhl ò

W
W

],[0

),,,(=

),,,(=

],,[=),,,(:
),,,(=
),,,(=

],,[=),,,(:
],[=],[=),,,(:
],[=],[=),,,(:

22

2

1

2

1

2

1

2

1
3

2

1

2

1

2

1

2

1
3

332121

212121213

212121213

332121

3312212121

3321212121

hland
h
h

l
h

h
l

l
lmaxh

h
h

l
h

h
l

l
lminl

wherehlhhllWOp
hhlhhlllmaxh
hhlhhlllminl

wherehlhhllWOp
hlhlhlhhllWOp
hlhhllhhllWOp

∈

÷

×
−−−
+++

Approved for Public Release; Distribution Unlimited
109

Other intelligent widening operations require more complex lattice structures such as
anti-interval lattice, congruence lattice, polyhedras, etc, or a combination of them. In this work,
we restrict ourselves to interval lattices. Unrestricted widening in interval lattices could easily
result in signal ranges becoming trivial (). Thus, whenever we are doing a widening operation,
we check if we can restrict the widening by using the constraints on the clocks. This is explained
in the next section.

3.8.1.3 Narrowing Operation
 During clock calculus step, a lot of sub-clocks are defined. Often these sub-clocks are

derived by constraining other known clocks and those constraints could be based on the values
of signals. If such constraints are predicated on the values of the input signals of the actor, then
we could use such constraints while inferring range constraints of its output. An example of
how such narrowing operation could be done while inferring range constraints for output of
Sampler actor is shown below. Consider a sampler actor whose definition is,

Let us assume that,

Let us also assume that is same as , in other words, whenever signal is
present signal is also present, but its value can be or . If we employ Equation
11 for inferring the range of output, we get,

But, theoretically the output can never take a value beyond the range ,
because whenever is beyond , the sampling signal has the value . We
can improve the accuracy of range analysis by intersecting the previously inferred range
with the range constraints obtained from clock calculus . This will result in,

Similarly, we could potentially use other such constraints obtained from clock calculus
to further restrict the range of output signals. Of course, this type of opportunistic narrowing
operations cannot be done always, but when possible, they can be done very easily.

3.8.1.4 Value Range Inference Rules
 MRICDF language has two polychronous actors – merge and sampler. The output of

these actors not only depends on the values of its inputs, but it also depends on their clocks.
Thus, it is essential that we consider the clocks of signals during inferring value ranges. For this,
we introduce the concept of “tagged range” of a signal. It is defined as the range of a signal
at some clock and is denoted as . If the clock is , in other words, the
signal is absent, it means is . Based on the this and the definitions in the
previous section, we now introduce the range inference rules for the primitive actors of
MRICDF.

Τ

);,(= jiSamplero

200)200(,=
},{=)(

],[=)(

≤≤−

∞−∞

iwhentruej
falsetruejR

iR

î ĵ i
j true false

],[=],[=)(∞−∞oo hloR
200,200][−

i 200,200][− j false
)(oR

200,200][−
200,200][=200,200][)(=)(−−∩oRoR new

x
ĉ cxR ˆ)@(c false

c cxR ˆ)@(φ@⊥

Approved for Public Release; Distribution Unlimited
110

Let , and be any three signals whose clocks are , and respectively.
Let , and be the ranges of signals , and respectively. Then, we
can define the tagged ranges as below,

3.8.1.4.1 i. Buffer Actor
Operation: o = Buffer(i) init iv

If the initial value of the Buffer actor is subsumed in the range of the input, then, the
range of the output of Buffer actor is same as its input range. Else the output range has to be
widened to include the initial value.

𝑣𝑣𝑓𝑓𝑙𝑙𝑡𝑡𝑡𝑡(𝑖𝑖) ∈ 𝑅𝑅(𝑖𝑖)@𝚤𝚤,̂ 𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑙𝑙𝐼𝐼𝑓𝑓𝑙𝑙𝑡𝑡𝑡𝑡 ∈ [𝑖𝑖𝑣𝑣, 𝑖𝑖𝑣𝑣]
𝑅𝑅(𝑜𝑜) = [𝑙𝑙𝑜𝑜,ℎ𝑜𝑜] = 𝑅𝑅(𝑖𝑖) ∐ [𝑖𝑖𝑣𝑣, 𝑖𝑖𝑣𝑣] = [𝑙𝑙𝑖𝑖,ℎ𝑖𝑖] ∐ [𝑖𝑖𝑣𝑣, 𝑖𝑖𝑣𝑣]

The inference rule states that, if is present, if is its range and the initial value
is ‘ ’, the range of output at clock denoted by is defined as below,

𝑅𝑅(𝑜𝑜)@𝑜𝑜� = ([𝑙𝑙𝑖𝑖,ℎ𝑖𝑖]∐ [𝑖𝑖𝑣𝑣, 𝑖𝑖𝑣𝑣])@𝚤𝚤̂

3.8.1.4.2 ii. Sampler Actor
 Operation: o = Sampler(i,j)

The output of Sampler actor is same as its first input () when both the inputs are
present and the second input (also known as sampling input) is . To derive the

inference rules for sampler actor, we define a clock , which is always , when the
sampling input is present and its value is . Based on this, we derive the inference rules
for sampler actor as below,

 The inference rule states that if input is present and its range is denoted by , and
the sampling input is present and , then we can say that the range of output is
same as . Thus, we can say that -

i j o î ĵ ô
)(iR)(jR)(oR i j o

ohlooR
jhljjR

ihliiR

oo

jj

ii

ˆ]@,[=ˆ)@(

ˆ]@,[=ˆ)@(

ˆ]@,[=ˆ)@(

i)(iR
iv o ô ooR ˆ)@(

i
j true

]ˆ[j true
j true

trueisjiwheniRhloR
jfalsetruejvalueiiRivalue

oo])ˆ[ˆ()(=],[=)(

ˆ}@,{)(,ˆ)@()(
∧

∈∈

i)(iR
j true o

)(iR

])ˆ[ˆ]@(,[=ˆ)@(jihlooR ii ∧

Approved for Public Release; Distribution Unlimited
111

Note that, if we know from clock calculus that , in other words, is always
present whenever is present and it has a value , we can simplify the above equation
as

Also, if we know that , in other words, is never present when is
present and it has value or never has a value when is present, then we can
simply equation 10 as below,

3.8.1.4.3 iii. Merge Actor
 Operation: o = Merge(i,j)

The output of the merge actor is first input (when it is present) or second input (when

the first input is absent and second input is present). The merge actor does not produce any
output when both its inputs are absent. Inference rule for merge actor is as below,

𝑣𝑣𝑓𝑓𝑙𝑙𝑡𝑡𝑡𝑡(𝑖𝑖) ∈ 𝑅𝑅(𝑖𝑖)@𝚤𝚤̂, 𝑣𝑣𝑓𝑓𝑙𝑙𝑡𝑡𝑡𝑡(𝑗𝑗) ∈ 𝑅𝑅(𝑗𝑗)@𝚥𝚥̂
𝑅𝑅(𝑜𝑜) = [𝑙𝑙𝑜𝑜,ℎ𝑜𝑜] = 𝑅𝑅(𝑖𝑖)@𝚤𝚤̂∐𝑅𝑅(𝑗𝑗)@(𝚥𝚥̂ ∧ ! 𝚤𝚤̂)

If , we can simplify the inference rule for merge actor as,

From the clock calculus, if we also know that , then we can simplify the inference

rule for merge actor further to,

One can further extend the simplification procedure based on additional clock

constraints.

3.8.1.4.4 iv. Function Actor
 Operation: o = Function(i,j) = i j
The output of function actor depends on not just its inputs but also on the operation (

) implemented by the function actor. Thus, to derive the inference rules for function actor, a

ij ˆ]ˆ[⊆ i
j true

ijifihlooR ii
ˆ]ˆ[,ˆ]@,[=ˆ)@(⊆

φ=ˆ]ˆ[ij ∧ i j
true j true i

φφ =ˆ]ˆ[,@=ˆ)@(ijifooR ∧⊥

)()(jRiR ô

)ˆ!ˆˆ)@((=],[=)(

ˆ)@()(,ˆ)@()(
ijiiRhloR

jjRjvalueiiRivalue

oo ∧∨
∈∈

ij ˆˆ ⊆

iiRhloR oo
ˆ)@(=],[=)(

⊕

⊕

Approved for Public Release; Distribution Unlimited
112

formal description of the operation () implemented is essential. Using the formal
description, we can then infer the range of the output. For simpler operations such as

, it is easier to derive the ranges using the widening operation rules (Eq 7)
as below,

𝑣𝑣𝑓𝑓𝑙𝑙𝑡𝑡𝑡𝑡(𝑖𝑖) ∈ 𝑅𝑅(𝑖𝑖)@𝚤𝚤̂, 𝑣𝑣𝑓𝑓𝑙𝑙𝑡𝑡𝑡𝑡(𝑗𝑗) ∈ 𝑅𝑅(𝑗𝑗)@𝚥𝚥̂
𝑅𝑅(𝑜𝑜) = [𝑙𝑙𝑜𝑜,ℎ𝑜𝑜] = (𝑅𝑅(𝑖𝑖) ∐ 𝑅𝑅(𝑗𝑗))@𝚤𝚤̂

But for more complex operations, the user would need to provide a formal description

of the operation or the user can directly enter the range of outputs.
For composite actors, we recursively dive inside each of them and use the above rules to

infer the ranges and propagate them to the upper level.
In the next section, we explain how to use these inferred range constraints to verify

properties related to signal value ranges.

3.8.2 SMT based Verification of properties related to Signal

Value Ranges
 In Section 3.8.2, we propose a technique to convert the range constraints obtained by

applying the inference rules to SMT constraints. Further, we can use the SMT constraints for
various analysis including property verification. We use the example model in Figure 41 as a
running example to explain this section. We assume that the reader is familiar with Yices [86]
SMT language constructs.

3.8.2.1 SMT constraints for Constants
 The output of a constant actor is always a single value. For example, in our running

example we have 2 constant actors (,) always outputting as the value. Thus, we can
say that -

 This can be rewritten in SMT language as shown below,

(assert (= l_c1 h_c1))

3.8.2.2 SMT constraints for Sampler actors
 From Equation 10, we know that the range of output of function actor is same as its

input when both clocks are present and the sampling input is . For illustration purposes,
let us consider the sampler actor that computes the value in our example model.

 Using Equation 10 and knowing that always, we can say that

⊕

||,&&},,.,{ ÷×−+∈⊕

1c 2c 1

[1,1]=][=1)(11 cc hlcR

true
x

)1,(= acSamplerx
truecc =1̂1,=1

trueatruewhenxR =])ˆ[([1,1]=)(∧

Approved for Public Release; Distribution Unlimited
113

 This can be expressed in SMT language as

(assert (ite (= clk_a true) (and (= l_x l_c1) (= h_x h_c1)) (= 0 0)))

3.8.3 SMT constraints for Merge actors
 Using the inference rule for merge actor (), we can say that,

 𝑅𝑅(𝑜𝑜) = 𝑅𝑅(𝑖𝑖)@𝚤𝚤̂ ∐ 𝑅𝑅(𝑗𝑗)@(𝚥𝚥̂ ∧ ! 𝚤𝚤̂)

 We can convert this to SMT constraint as below,

(assert (ite (= clk_i true) (and (= l_o l_i) (= h_o h_i)) (= 0 0)))
(assert (ite (= (and (not clk_i) clk_j) true) (and (= l_o l_j) (= h_o h_j)) (= 0 0)))

In our example model, we do not have any Merge actors.

3.8.4 SMT constraints for Function actors
 We know from Equation 14, that the output ranges of function actor depends on the

operation performed. In our example model, we have have a total of 6 function actors out of
which 4 are performing ‘ ’ operation and the other 2 are comparators. To illustrate the steps
to derive SMT constraints for function actors, we choose one of the function actor that
performs the following operation -

Using Equation 14 and 7 we can say that the output range of the above function actor is
the sub of the input ranges.

 This can be expressed in Yices SMT language as shown below,

(assert (and (= (+ l_faucet l_zlevel) l_z) (= (+ h_faucet h_zlevel) h_z)))
(assert (= (+ faucet zlevel) z))

3.8.5 SMT constraints for Buffer actors
 As explained in the earlier section, Buffer actor may introduce recursive constraints

while deriving range inference constraints. This will be handled implicitly by the inference
algorithm. Thus, while deriving the SMT constraints for Buffer actor, we do not express the
dependency of the range of output on its input. We now consider the Buffer actor that
produces . We know that,

),(= jiMergeo

+

zlevelfaucetzlevelfaucet llllFunctionz +=),(=

)()(=)(faucetRzlevelRzR +

zlevel

1=
]),[],([=

][=)(
1,)(=

ivwhere
ivivhl

hlzlevelR
andinitlevelBufferzlevel

levellevel

zlevelzlevel

ò

Approved for Public Release; Distribution Unlimited
114

 This means the value of is either initial value() or . Also the value of is
either initial value() or falls within range . We can express these constraints using
the SMT formula shown below.

(assert (or (= zlevel 1) (= zlevel level)))
(assert (or (= zlevel 1) (and (<= l_zlevel zlevel) (<= zlevel h_zlevel))))

3.8.6 Case Study: Automated Bathtub System
 We now show how to employ the steps described above and convert the range

constraints of the MRICDF model in Figure 41. Initially, we declare all the clock and range
variables that will be used later on. In the next part of the SMT formula, we append the
constraints obtained from clock calculus and the trivial clock relation that ensures that there is
at-least one signal active in each valid reaction. We then append the constraint for basic
definition of ranges - the value of a signal always reside between its minimum and maximum
bounds. Finally, we convert the range constraints between input and output ranges of each
actor to SMT constraints and append them. Listing 3.8.1 shows the constructed SMT formula
for the Automated Bathtub example shown in the MRICDF model in Figure 41.

zlevel 1 level zlevel
1][zlevelzlevel hl

Approved for Public Release; Distribution Unlimited
115

Listing 3.8.1: SMT formula for MRICDF model in Figure 41

;; DECLARATIONS : Clock variables
(define clk_level::bool)
(define clk_zlevel::bool)
(define clk_faucet::bool)
(define clk_zfaucet::bool)
(define clk_pump::bool)
(define clk_zpump::bool)
(define clk_a::bool)
(define clk_b::bool)
(define clk_x::bool)
(define clk_y::bool) (define clk_z::bool)

;; DECLARATIONS : Range variables
(define level::int)
(define l_level::int)
(define h_level::int)
(define zlevel::int)
(define l_zlevel::int)
(define h_zlevel::int)
(define faucet::int)
(define l_faucet::int)
(define h_faucet::int)
(define zfaucet::int)
(define l_zfaucet::int)
(define h_zfaucet::int)
(define pump::int)
(define l_pump::int)
(define h_pump::int)
(define zpump::int)
(define l_zpump::int)
(define h_zpump::int)
(define z::int)
(define l_z::int)

Approved for Public Release; Distribution Unlimited
116

(define h_z::int)
(define a::bool)
(define b::bool)
(define x::int)
(define l_x::int)
(define h_x::int)
(define y::int)
(define l_y::int)
(define h_y::int)

;; Constraints from clock calculus
(assert (= clk_level clk_zlevel)) (assert (= clk_faucet clk_zfaucet))
(assert (= clk_a clk_zlevel)) (assert (= clk_b clk_zlevel))
(assert (= clk_x clk_zfaucet)) (assert (= clk_x clk_faucet))
(assert (= clk_faucet clk_zlevel)) (assert (= clk_faucet clk_z))
(assert (= clk_y clk_zpump)) (assert (= clk_y clk_pump))
(assert (= clk_pump clk_level)) (assert (= clk_pump clk_z))
(assert (= clk_pump clk_zpump)) (assert (= clk_z clk_level))
(assert (ite (>= zlevel 7) (= b true) (= 0 0)))
(assert (ite (= b true) (= clk_b true) (= 0 0)))
(assert (ite (= clk_b true) (= clk_y true) (= 0 0)))
(assert (ite (<= zlevel 4) (= a true) (= 0 0)))
(assert (ite (= a true) (= clk_a true) (= 0 0)))
(assert (ite (= clk_a true) (= clk_x true) (= 0 0)))

;;Trivial Clock Relation
(assert (or clk_level clk_zlevel clk_faucet clk_zfaucet clk_pump clk_zpump clk_a
clk_b clk_x clk_y clk_z))

;; Basic relations from definition of ranges
(assert (and (<= l_level level) (<= level h_level)))
(assert (and (<= l_faucet faucet) (<= faucet h_faucet)))
(assert (and (<= l_pump pump) (<= pump h_pump)))
(assert (and (<= l_x x) (<= x h_x)))
(assert (and (<= l_y y) (<= y h_y)))
(assert (and (<= l_z z) (<= z h_z)))

;; SMT Constraints for constants
(assert (= l_c1 h_c1)) (assert (= l_c2 h_c2))

;; SMT Sampler actor constrains
(assert (ite (= clk_a true) (and (= l_x 1) (= h_x 1) (= 0 0)))
(assert (ite (= clk_b true) (and (= l_y 1) (= h_y 1)) (= 0 0)))

Approved for Public Release; Distribution Unlimited
117

At the start of Section 3.8, we wanted to know if,

• Can ever?
• Can ever?

We now show how to answer these questions. First, we rewrite these properties as SMT
constraints as shown in Listing 3.8.2. We then append the new SMT constraints to the
previously derived SMT formula for the model shown in Listing 3.8.1 and run Yices [86] SMT
solver on the appended SMT formula. We get the result as for both the properties. This
indicates that these properties can never be satified for the MRICDF model in Figure 41.

0<=level
9>=level

unsat

;; SMT Function (+) actor constraints
(assert (and (= (+ l_faucet l_zlevel) l_z) (= (+ h_faucet h_zlevel) h_z)))
(assert (= (+ faucet zlevel) z))
(assert (and (= (+ l_y l_zpump) l_pump) (+ h_y h_zpump) h_pump)))
(assert (= (+ y zpump) pump))
(assert (and (= (+ l_x l_zfaucet) l_faucet) (= (+ h_x h_zfaucet) h_faucet)))
(assert (= (+ x zfaucet) faucet))
(assert (and (= (+ l_z l_pump) l_level) (= (+ h_z h_pump) h_level)))
(assert (= (+ pump z) level))

;; SMT Buffer actor
(assert (or (= zlevel 1) (= zlevel level)))
(assert (or (= zfaucet 0) (= zfaucet faucet)))
(assert (or (= zpump 0) (= zpump pump)))
(assert (or (= zlevel 1) (and (<= l_zlevel zlevel) (<= zlevel h_zlevel))))
(assert (or (= zfaucet 0) (and (<= l_zfaucet zfaucet) (<= zfaucet h_zfaucet))))
(assert (or (= zpump 0) (and (<= l_zpump zpump) (<= zpump h_zpump))))
(push)

Approved for Public Release; Distribution Unlimited
118

As a sanity check, we wanted to see if the property – “ ” is satisfied by MRICDF

model in Figure 41. We checked it by appending the SMT constraints shown in Listing 3.8.3 to
the SMT formula shown in Listing 3.8.1 and calling Yices SMT solver on the appended formula.
The solver returned for this SMT formula indicating that the property is indeed
satisfied by the MRICDF model of Figure 41.

3.8.3 Summary
 Software that produces unexpected outputs in safety critical applications could be

catastrophic (Ariane 5 crash [21]). Ensuring that the software only produces expected outputs
by means of exhaustive simulation is not scalable and sometimes it may not even be possible.
In case of model-based design approaches, one way to ensure this is by doing value range
analysis on the models. In Section 3.8, we proposed sound techniques to perform value range
analysis of MRICDF models. Our techniques are generic enough, that they can be employed in
other polychronous languages too. We also showed how to export the constraints obtained
during range analysis as SMT constraints and prove properties related to signal value ranges.

0>level

sat 0>level

Listing 3.8.2: Properties to verify on the MRICDF model in Figure 41

;; Property to verify: Can level<=0
(assert (<= level 0))
;; Check for satisfiability
(check)

;; ANS
unsat

;; Property to verify: Can level>9
(pop)
(assert (> level 9))
;; Check for satisfiability
(check)

;; ANS
unsat

Listing 3.8.3: Verifying property “level > 0” for the MRICDF model in Figure 41

;; Property to verify: Can level>0
(assert (> level 0))
;; Check for satisfiability
(check)

;; ANS
sat

Approved for Public Release; Distribution Unlimited
119

In this research effort, to keep the analysis less complicated, we restricted ourselves to
Integer and Boolean intervals for the signal values. In future, we would like to explore floating
point intervals. We only considered widening operations with respect to simple interval lattice.
In future, we plan to explore other complex lattices such as congruence, anti-interval,
polyhedras, etc. This will also lead to more intelligent widening operations.

Approved for Public Release; Distribution Unlimited
120

4 Conclusions and Future Work
 Over the past few decades, the size and complexity of the safety critical embedded

systems have increased tremendously. This has presented unique challenges for the design
approaches that used to design and develop such complex systems. The nature of these
systems being complex and safety critical, would require the design approaches to not just
scale , but also provide guarantees regarding the correctness. Traditional design approaches are
not easily scalable and they generally require extensive testing to provide correctness
guarantees. Numerous alternatives to traditional design approaches have been proposed that
can tackle these challenges. One such approach is Formal Model Driven Design (MBD) and
Development. MBD design approaches are being increasingly adopted in the industry due to
various advantages they offer over the traditional design approaches. In our research work, we
have explored MBD based software synthesis techniques, hardware synthesis techniques and
verification and validation techniques. These techniques are scalable, sound and generic
enough that they can be adopted in other MBD approaches.

4.1 Conclusions

4.1.1 Software Synthesis techniques
 Automated, error free, deterministic software synthesis is one of the key advantages

that formal model-based design approaches offer over the traditional approaches. There are
numerous MBD tools being developed by academic researchers and industries that provides
the ability to synthesize sequential code from synchronous specifications, but not many tools to
synthesize code from polychronous specifications. Previous attempts at code synthesis from
polychronous specifications (MRICDF models) ([43], [40]) were also specifically targeted at
sequential code synthesis. We concentrated our research efforts towards synthesis of
multi-threaded code from MRICDF models. We proposed a novel Boolean theory based
approach for determining if a given MRICDF model is concurrently implementable or not. Our
Boolean theory involves generation of prime implicates using SMT solvers. We proposed a
notion of partial triggers and proposed a technique to infer partial triggers from the prime
implicates. Further, we proposed technique to identify the synchronization constraints between
the partial triggers. We then proposed a code generation technique by mapping the partial
triggers to threads. We performed scalability and performance analysis of the proposed
technique. For the considered benchmarks, we noticed that the performance of the synthesized
multi-threaded code was about 18% slower than the performance of the hand-written
multi-threaded code. Performance analysis revealed a few bottle necks that was causing the dip
in the performance of the synthesized multi-threaded code. One of them was - excessive
synchronizations. We proposed a novel technique based on analysis of affine clocks that
identifies all the avoidable synchronizations and removes them from the synthesized code,
which in-turn improves the performance of the multi-threaded code.

4.1.2 Hardware Synthesis techniques
 In [55], the authors explained how Conditional Partial Order Graphs (CPOGs) enable us

to compactly and efficiently describe and store instruction sets. Further, they explained how
they can be used to identify parallelisms and synthesize custom instruction sets. On the same

Approved for Public Release; Distribution Unlimited
121

line of thought, we proposed a technique that accepts formal MRICDF/SIGNAL [43]
specifications and compiles them to Conditional Partial Order Graphs (CPOGs). These CPOGs
are further used to generate custom instruction sets for Application Specific Instruction set
Processors (ASIPs).

4.1.3 Verification and Validation techniques
 One of the pre-requisites for an MRICDF model to be sequentially or concurrently

implementable is that, it should not contain any causal loops. In the past, numerous solutions
have been proposed for doing causality analysis. However, most of these approaches only work
on Boolean abstraction of the predicates. This may lead to sound, but imprecise decisions being
made, which in-turn may lead to erroneously rejecting an MRICDF model to be
non-synthesizable. We proposed an SMT and Polyhedra based approach for performing
causality analysis which considers both Boolean and Integer predicates. Our proposed approach
helps in making better decisions while performing causal analysis. Further, we also proposed an
approach to identify the constraints under which the causality behavior of the system is
exhibited. Then, we explained how these constraints can be used to generate a wrapper which
would always keep the system in safe operating region.

Case studies in [61] showed us that units and dimensional inconsistencies between
signals at the interfaces could result in catastrophic failures. In Section 3.7, we explained why
performing dimensional analysis on the code is much harder and why it makes sense to
perform the analysis on the models itself. We proposed an novel SMT based approach for
performing unit and dimensional analysis statically on the polychronous models. To the best of
our knowledge, this is the first ever approach for performing dimensional analysis on
polychronous languages. The main advantage of our approach is that it considers the clock
constraints of the signals which checking for dimensional consistencies. Our approach is
scalable and adds minimum overhead.

Software used in safety critical embedded system is required to produce expected
output values for every possible run. By conducting static value range analysis on the program,
one can check if the signals ever take any values out of some pre-defined bound. There are
approaches proposed in the past for doing value range analysis for synchronous programming
languages such as C/C++/Java. But, the polychronous model of computation brings in additional
complications which would require the value range analysis techniques to consider the clocks of
the signals along with their values. We proposed a novel SMT based technique to perform value
range analysis in polychronous languages and explained it with a case study. Our proposed
approach considers the clocks of the signals too.

4.2 Future Work

4.2.1 Software Synthesis techniques
 In our initial proposed approach for multi-threaded code synthesis, the clock tree

construction and the code generator implementation are done targeting accuracy and not
efficiency of the generated code. To improve efficiency of the generated code, one can apply
optimization transformations on the clock tree which can help in generating a better

Approved for Public Release; Distribution Unlimited
122

load-balanced code. Also, our proposed technique for mapping of partial triggers to threads
might not be efficient, especially if the amount of work done by the thread is not substantially
large than thread creation and destruction overhead. Thus, as another optimization step, one
can create a thread pool and map partial triggers to tasks – adopting the concept of Intel
Threading Building Blocks (TBB). One can also improve the code generator to synthesize a more
cache friendly multi-threaded code. Our second approach for multi-threaded code synthesis
based on analysis for affine relations between clocks could be easily extended to synthesize
code for GPUs (Graphical Processing Units) or similar hardware accelerators.

4.2.2 Hardware Synthesis techniques
 In this report, we explored how ASIPs could be synthesized from MRICDF models by

compiling them to CPOGs. An interesting future work could be to explore techniques for
co-synthesis of hardware and software. Exploring the aspect of sequential and concurrent
implementability by applying transformations on the CPOGs could be useful.

4.2.3 Verification and Validation techniques
 The proposed causality analysis technique does not account for dynamic behavior of

variables. The current polyhedral library we use, Polylib, is restricted to integer and
approximate floating point constraints expressed as linear system of inequalities and equations.
This is a restriction on the library and not on the technique we proposed. In future we plan to
use a different library which can handle floating point constraints. We also want to expand the
analysis beyond polyhedra into non-linear system of inequalities and equations.

Our proposed dimensional analysis technique is sound but not complete. The analysis
for union types depends on the clock relations of the signals. Clock relations that are derived
from other clocks based on certain conditions, could be complicated expressions and might not
always be possible to be evaluated. As a result of this, we resort to abstraction and
over-approximation which might lead to the incorrect rejection of accurate specifications. An
interesting future work would be improve this.

In our value range analysis technique, to keep the analysis less complicated, we
restricted ourselves to Integer and Boolean intervals for the signal values. A future work, could
be to explore floating point intervals. Also, we only considered widening operations with
respect to simple interval lattice. As future work, one can explore complex lattices such as
congruence, anti-interval, polyhedras, etc. This will also lead to more intelligent widening
operations.

A more ambitious future work is extending the type system of the Polychronous
language - MRICDF. This can help in generating invariants for a system, detecting overflow in
signals, refining the causal analysis by considering ranges, etc.

4.2.4 EmCodeSyn Tool development
 The usability of a software tool plays as much a crucial role as the functionality of the

tool in its promotion and adoption among new users. We have made deep strides to improve
the usability of the EmCodeSyn tool by separating front-end with back-end. We plan to
constantly add new functionalities and improve the EmCodeSyn tool. Going forward, we would

Approved for Public Release; Distribution Unlimited
123

like to provide better support for navigating, composing MRICDF models. The earlier versions of
EmCodeSyn were cross platform compatible, but the latest one isn’t. In future, we would like to
explore the options of making it cross platform compatible.

Approved for Public Release; Distribution Unlimited
124

5 References
[1] X. Amatriain. An object-oriented metamodel for digital signal processing with a

focus on audio and music: A brief catalogue of graphical moc’s,
http://xavier.amatriain.net/thesis/html/node37.html, 2004.

[2] M. Anand, I. Lee, G. Pappas, and O. Sokolsky. Unit and dynamic typing in hybrid
systems modeling with charon. In 2006 IEEE Conf on Computer Aided Control System
Design, pages 56 –61, oct. 2006.

[3] C. Andre. Representation and analysis of reactive behaviors: A synchronous
approach. 1996.

[4] C. Andre. Synccharts: A visual representation of reactive behavior, technical
report rr-95-52, 13s, 1995.

[5] E. S. G. at the Technical University of Kaiserslautern. Averest framework,
http://www.averest.org/, 2014.

[6] R. Bagnara, P. M. Hill, and E. Zaffanella. Applications of polyhedral computations
to the analysis and verification of hardware and software systems. Theoretical Computer
Science, 410(46), 2009.

[7] D. Baudisch, J. Brandt, and K. Schneider. Multithreaded code from synchronous
programs: Extracting independent threads for OpenMP. In Design, Automation and Test in
Europe, Dresden, Germany, 2010.

[8] A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in dataflow
synchronous languages: specification and distributed code generation 1,2,3. Inf. Comput.,
163:125–171, November 2000.

[9] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone.
The synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64 – 83, January
2003.

[10] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming with
events and relations: the signal language and its semantics. Sci. Comput. Program., 16:103–
149, Sept. 1991.

[11] G. Berry, M. Kishinevsky, and S. Singh. System level design and verification using
a synchronous language. In Computer Aided Design, 2003. ICCAD-2003. International
Conference on, pages 433–439, Nov 2003.

[12] G. Berry. The esterel v5 language primer - version 5.21, 1999.

Approved for Public Release; Distribution Unlimited
125

[13] F. Besson, T. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous
languages. In Static Analysis: Proc. of the 6th Int. Sym, vol 1694 of Lecture Notes in
Computer Science, pages 51–68. Springer-Verlag, 1999.

[14] F. Boussinot. Reactive c: An extension of c to program reactive systems, 1991.

[15] B. Chin, S. Markstrum, T. Millstein, and J. Palsberg. Inference of user-defined
type qualifiers and qualifier rules. 15th European Symposium on Programming, ESOP 2006,
pages 264–278, 2006.

[16] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
ACM Trans. Program. Lang. Syst., 16(5):1512–1542, Sept. 1994.

[17] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252, 1977.

[18] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL ’78, pages 84–96, New York, NY, USA, 1978. ACM.

[19] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proc. of the 5th Symposium on Principles of programming
languages, New York, NY, USA, 78. ACM.

[20] J. J. Downs and E. F. Vogel. A plant-wide industrial process control problem.
Computers & Chemical Engineering, 17(3):245–255, Mar. 1993.

 [21] M. Dowson. The ariane 5 software failure. SIGSOFT Softw. Eng. Notes,
22(2):84–, Mar. 1997.

[22] J. Dunfield and F. Pfenning. Type assignment for intersections and unions in
call-by-value languages. FOSSACS’03/ETAPS’03, pages 250–266, Berlin, Heidelberg, 2003.
Springer-Verlag.

[23] C. Ebert and C. Jones. Embedded software: Facts, figures, and future.
Computer, 42(4):42–52, 2009.

[24] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y.
Xiong. Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE, 91(1):127–
144, Jan 2003.

 [25] S. A. E. et. al. Cec: The columbia esterel compiler - version 0.4,
www.cs.columbia.edu/ sedwards/cec/, 2012.

Approved for Public Release; Distribution Unlimited
126

 [26] P. Feiler and D. de Niz. Assip study of real-time safety-critical embedded
software-intensive system engineering practices,, 2008.

 [27] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for java. In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, PLDI ’02, pages 234–245, New York, NY,
USA, 2002. ACM.

 [28] C. for Hybrid and B. Embedded Software Systems (CHESS), University of
California. Ptolemy project - heterogeneous modeling and design,
http://ptolemy.eecs.berkeley.edu/ptolemyii/, 2002.

 [29] A. Gamatie and L. Gonnord. Static analysis of synchronous programs in signal
for efficient design of multi-clocked embedded systems. In Proc. of the 2011
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems, LCTES
’11, pages 71–80, New York, NY, USA, 2011. ACM.

 [30] S. J. Garland and N. Lynch. Foundations of component-based systems. pages
285–312, 2000.

 [31] O. Grumberg, A. Schuster, and A. Yadgar. Memory efficient all-solutions sat
solver and its application for reachability analysis. In Formal Methods in Computer-Aided
Design, volume 3312, pages 275–289. Springer Berlin Heidelberg, 2004.

 [32] P. L. Guernic, T. Gautier, M. L. Borgne, and C. L. Maire. Programming real-time
applications with SIGNAL. Proc. of The IEEE, 79:1321–1336, 1991.

 [33] P. L. Guernic, P. L. Guernic, J.-P. Talpin, J. pierre Talpin, J.-C. L. Lann, J. christophe
Le Lann, and P. Espresso. Polychrony for system design. Journal for Circuits, Systems and
Computers, 12:261–304, 2002.

[34] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language lustre. Proceedings of the IEEE, 79(9):1305 –1320, September 1991.

 [35] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Program., 8(3):231–274, June 1987.

 [36] T. M. Inc. Polyspace bug finder, http://www.mathworks.com/
products/polyspace-bug-finder/, 2014.

[37] INRIA. The esterel language - inria,
http://www-sop.inria.fr/meije/esterel/esterel-eng.html, 2014.

Approved for Public Release; Distribution Unlimited
127

[38] M. Jain, M. Balakrishnan, and A. Kumar. Asip design methodologies: survey and
issues. In VLSI Design, 2001. Fourteenth International Conference on, pages 76–81, 2001.

[39] B. A. Jose, A. Gamatie, M. Kracht, and S. K. Shukla. Improved false causal loop
detection in polychronous specification of embedded software, fermat technical report
2011-08.

[40] B. A. Jose, A. Gamatie, J. Ouy, and S. Shukla. Smt based false causal loop
detection during code synthesis from polychronous specifications. In MEMOCODE
Conference Proceedings, July 2011.

[41] B. A. Jose, H. D. Patel, S. K. Shukla, and J.-P. Talpin. Generating multi-threaded
code from polychronous specifications. Electron. Notes Theor. Comput. Sci., 238, June 2009.

[42] B. Jose, J. Pribble, L. Stewart, and S. Shukla. Emcodesyn: A visual framework for
multi-rate data flow specifications and code synthesis for embedded applications. In Forum
on Specification Design Languages, pages 1–6, sept. 2009.

[43] B. Jose and S. Shukla. An alternative polychronous model and synthesis
methodology for model-driven embedded software. In 15th ASPDAC,, Jan. 2010.

[44] G. Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information processing, pages 471–475, Stockholm, Sweden, Aug 1974.
North Holland, Amsterdam.

[45] A. J. Kennedy and A. J. Kennedy. Relational parametricity and units of measure.
In In 24th ACM Symp. on Principles of Programming Languages, pages 442–455. ACM Press,
1997.

[46] A. Kountouris and C. Wolinski. A method for the generation of hdl code at the
rtl level from a high-level formal specification language. In Circuits and Systems,.
Proceedings of the 40th Midwest Symposium on, volume 2, pages 1095–1098, Aug 1997.

[47] A. Kountouris and C. Wolinski. Hierarchical conditional dependency graphs as a
unifying design representation in the codesis high-level synthesis system. In The 13th
International Symposium on System Synthesis, pages 66–71, 2000.

[48] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Trans. Comput., 36(1):24–35, Jan. 1987.

[49] M.-K. Leung, T. M. 0002, E. A. Lee, E. Latronico, C. P. Shelton, S. Tripakis, and B.
Lickly. Scalable semantic annotation using lattice-based ontologies. In A. SchÃ¼rr and B.

Approved for Public Release; Distribution Unlimited
128

Selic, editors, MoDELS, volume 5795 of Lecture Notes in Computer Science, pages 393–407.
Springer, 2009.

[50] B. Lickly, C. Shelton, E. Latronico, and E. A. Lee. A practical ontology framework
for static model analysis. In Proceedings of the ninth ACM international conference on
Embedded software, EMSOFT ’11, pages 23–32, New York, NY, USA, 2011. ACM.

[51] O. Maffes and P. L. Guernic. Distributed implementation of signal: Scheduling &
graph clustering. In Proc. of the Int. Sym. on Formal Techniques in Real-Time and
Fault-Tolerant Systems, London, UK, 94.

[52] F. Maraninchi and Y. Remond. Argos: an automaton-based synchronous
language, 2001.

[53] F. Maraninchi. The argos language: Graphical representation of automata and
description of reactive systems. In In IEEE Workshop on Visual Languages, 1991.

[54] Mathworks. Hdl coder : Generate verilog and vhdl code for fpga and asic
designs, http://www.mathworks.com/products/hdl-coder.

[55] A. Mokhov, D. Sokolov, M. Rykunov, and A. Yakovlev. Formal modelling and
transformations of processor instruction sets. In Formal Methods and Models for Codesign
(MEMOCODE), 2011 9th IEEE/ACM International Conference on, pages 51–60, 2011.

[56] A. Mokhov and A. A. Yakovlev. Conditional partial order graphs: Model,
synthesis, and application. IEEE Transactions on Computers, 59(11):1480–1493, 2010.

[57] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, Apr 1989.

[58] P. K. Murthy and E. A. Lee. Multidimensional synchronous dataflow. IEEE
Transactions on Signal Processing, 50:3306–3309, 2002.

[59] M. Nanjundappa, M. Kracht, J. Ouy, and S. K. Shukla. Synthesizing embedded
software with safety wrappers through polyhedral analysis in a polychronous framework. In
ESLsyn’12, pages 24 –29, june 2012.

[60] M. Nanjundappa and S. Shukla. Verification of unit and dimensional
consistencies in polychronous specifications. In Specification Design Languages, 2014. FDL
2014. Forum on, pages 1 –6, October. 2014.

[61] T. R. of the University of California Davis. Case studies: Metric/english
conversion errors, 2011.

rd3

Approved for Public Release; Distribution Unlimited
129

[62] V. Papailiopoulou, D. Potop-Butucaru, Y. Sorel, de Simone R., L. Besnard, and J.
Talpin. From design-time concurrency to effective implementation parallelism: The
multi-clock reactive case. In ESLsyn’11, june 2011.

[63] C. A. Petri. Phd thesis - kommunikation mit automaten, 1962.

[64] D. Potop-Butucaru, Y. Sorel, R. de Simone, and J.-P. Talpin. From concurrent
multi-clock programs to deterministic asynchronous implementations. Fundam. Inf.,
108(1-2):91–118, Jan. 2011.

[65] F. Remondino and N. Borlin. Polylib - a library of polyhedral functions. In
Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIV,
H.-G. Maas and D. Schneider (Eds), 2004.

[66] R. E. Rodrigues. Scalable and precise range analysis on the interval lattice,
http://homepages.dcc.ufmg.br/ ernando/ publications/books/raphael_msc.pdf, 2014.

[67] P. Roy and N. Shankar. SimCheck: An expressive type system for Simulink. In
C. Muñoz, editor, Proc of the 2nd NASA Formal Methods Symposium, pages 149–160, Langley
Research Center, Hampton VA 23681-2199, USA, April 2010. NASA.

[68] K. Schneider, J. Brandt, and E. Vecchie. Efficient code generation from
synchronous programs. ACM International Conf on Formal Methods and Models for
Co-Design, pages 165–174, 2006.

[69] K. Schneider. The synchronous programming language quartz v2.0,
http://es.cs.uni-kl.de/publications/datarsg/schn09.pdf, 2010.

[70] A. Simon. Value-Range Analysis of C Programs: Towards Proving the Absence
of Buffer Overflow Vulnerabilities. Springer Publishing Company, Incorporated, 1 edition,
2008.

 [71] S. Singh. Hardware/software synthesis and verification using esterel. In A. A.
McEwan, S. A. Schneider, W. Ifill, and P. H. Welch, editors, CPA, volume 65 of Concurrent
Systems Engineering Series, pages 371–378. IOS Press, 2007.

 [72] I. Smarandache, T. Gautier, and P. Le Guernic. Validation of mixed signal-alpha
real-time systems through affine calculus on clock synchronisation constraints. In FMâ€™99
â€” Formal Methods, volume 1709, pages 1364–1383, 1999.

[73] I. Smarandache and P. Le Guernic. Affine transformations in signal and their
application in the specification and validation of real-time systems. In

f~

Approved for Public Release; Distribution Unlimited
130

Transformation-Based Reactive Systems Development, volume 1231, pages 233–247, 1997.

[74] M. Strecker. Clock type soundness in synchronous languages, technical report,
2009.

 [75] S. Suhaib, B. Jose, S. Shukla, and D. Mathaikutty. Formal transformation of a
kpn specification to a gals implementation. In Specification, Verification and Design
Languages, 2008. FDL 2008. Forum on, pages 84–89, Sept 2008.

 [76] J.-P. Talpin, J. Ouy, L. Besnard, and P. L. Guernic. Compositional design of
isochronous systems. Design, Automation and Test Conference, 0:928–933, 2008.

 [77] E. Technologies. Scade suite by esterel technologies,
http://www.esterel-technologies.com/, 2014.

 [78] S. Yuan, L. H. Yoong, and P. S. Roop. Compiling esterel for multi-core
execution. In DSD, pages 727–735, 2011.

 [79] Labview - laboratory virtual instrument engineering workbench - national
instruments, www.ni.com/support/labview/.

 [80] Modelica and the modelica association - modelica association,
https://www.modelica.org/.

[81] Polychrony: A toolset for signal, http://www.irisa.fr/espresso/polychrony.

[82] Scilab - xcos, https://www.scilab.org/scilab/gallery/xcos.

[83] Simulink - simulation and model-based design - the mathworks inc,
http://www.mathworks.com/products/simulink/.

 [84] Stateflow - model and simulate decision logic using state machines and flow
charts - the mathworks inc, http://www.mathworks.com/products/stateflow/.

[85] Unified modeling language (uml), http://www.uml.org/.

[86] The yices smt solver - b. dutertre and l. de moura, http://yices.csl.sri.com/.

Approved for Public Release; Distribution Unlimited
131

Appendix
Example: Generated Multi-threaded Code

Consider the MRICDF model as shown in Figure 43.

Figure 43: Energy Meter Model

The multi-threaded code generated for the model shown in Figure 43 is shown below.

/***/
/* * energyMeter_mt_main.cpp */
/***/
#include <iostream>
#include <fstream>
#include <pthread.h>
#include "MRICDFlib.cpp"
#include "energyMeter_lib.h"

#define MAXINSTANCES -1

ofstream F_S1o6;
ofstream F_S4o14;
ofstream F_S5o15;

SigQueue<int> SQ_S2i8;
SigQueue<bool> SQ_S2i9;

Approved for Public Release; Distribution Unlimited
132

SigQueue<int> SQ_S3i10;
SigQueue<bool> SQ_S3i11;
SigQueue<int> SQ_M1i18;
SigQueue<int> SQ_M1i19;
SigQueue<int> SQ_S5i23;
SigQueue<bool> SQ_S5i24;
SigQueue<int> SQ_S4i21;
SigQueue<bool> SQ_S4i22;
SigQueue<int> SQ_S1i6;
SigQueue<bool> SQ_S1i7;

void* block1(void *arg){

int instance = 0;
ifstream F_vaIp;
Sig<int> vaIp;
Sig<int> F1o1;

F_vaIp.open("vaIp.txt", ifstream::in);
if(!F_vaIp.is_open()){

cout <<"Error: File vaIp.txt does not exist"<< endl;
pthread_exit(NULL);

}

while(instance != MAXINSTANCES){

readLine(vaIp,F_vaIp);
vaIp.setInstance(instance);

if(F_vaIp.eof()){
F_vaIp.close();
SQ_S1i6.write_finish();
SQ_S2i8.write_finish();
SQ_S3i10.write_finish();
pthread_exit(NULL);

}

F1(vaIp,F1o1);

if(F1o1.clk()){
SQ_S1i6.write(F1o1);

}
if(F1o1.clk()){

SQ_S2i8.write(F1o1);
}
if(F1o1.clk()){

SQ_S3i10.write(F1o1);
}
instance++;

}
}

void* block2(void *arg){

Approved for Public Release; Distribution Unlimited
133

int instance = 0;
ifstream F_a1;
Sig<int> a1;
Sig<int> a;
Sig<bool> F9o13;
Sig<bool> F8o11;
Sig<bool> F4o4;
Sig<bool> F5o5;
Sig<bool> F3o3;

F_a1.open("a1.txt", ifstream::in);
if(!F_a1.is_open()){

cout <<"Error: File a1.txt does not exist"<< endl;
pthread_exit(NULL);

}

while(instance != MAXINSTANCES){

readLine(a1,F_a1);
a1.setInstance(instance);

if(F_a1.eof()){
F_a1.close();
SQ_S5i24.write_finish();
SQ_S4i22.write_finish();
SQ_S2i9.write_finish();
SQ_S3i11.write_finish();
SQ_S1i7.write_finish();
pthread_exit(NULL);

}

F2(a1,a);
F9(a,F9o13);
F8(a,F8o11);
F4(a,F4o4);
F5(a,F5o5);
F3(a,F3o3);

if(F9o13.clk()){
SQ_S5i24.write(F9o13);

}
if(F8o11.clk()){

SQ_S4i22.write(F8o11);
}
if(F4o4.clk()){

SQ_S2i9.write(F4o4);
}
if(F5o5.clk()){

SQ_S3i11.write(F5o5);
}
if(F3o3.clk()){

SQ_S1i7.write(F3o3);

Approved for Public Release; Distribution Unlimited
134

}
instance++;

}
}

void* block3(void *arg){

int instance = 0;
Sig<int> S2i8;
Sig<bool> S2i9;
Sig<int> S2o7;
ifstream F_mass1;
Sig<int> mass1;
Sig<int> F6o9;

F_mass1.open("mass1.txt", ifstream::in);
if(!F_mass1.is_open()){

cout <<"Error: File mass1.txt does not exist"<< endl;
pthread_exit(NULL);

}

while(instance != MAXINSTANCES){
S2i8 = SQ_S2i8.read();
S2i9 = SQ_S2i9.read();

if(S2i8.is_finished() || S2i9.is_finished()){
SQ_M1i18.write_finish();
pthread_exit(NULL);

}

Sampler(S2i8,S2i9,S2o7);

readLine(mass1,F_mass1);
mass1.setInstance(instance);

if(F_mass1.eof()){
F_mass1.close();
SQ_M1i18.write_finish();
pthread_exit(NULL);

}

F6(mass1,S2o7,F6o9);

SQ_M1i18.write(F6o9);
instance++;

}
}

void* block4(void *arg){

int instance = 0;
Sig<int> S3i10;
Sig<bool> S3i11;

Approved for Public Release; Distribution Unlimited
135

Sig<int> S3o8;
ifstream F_mass2;
Sig<int> mass2;
ifstream F_dist;
Sig<int> dist;
Sig<int> F7o10;

F_mass2.open("mass2.txt", ifstream::in);
if(!F_mass2.is_open()){

cout <<"Error: File mass2.txt does not exist"<< endl;
pthread_exit(NULL);

}
F_dist.open("dist.txt", ifstream::in);
if(!F_dist.is_open()){

cout <<"Error: File dist.txt does not exist"<< endl;
pthread_exit(NULL);

}

while(instance != MAXINSTANCES){
S3i10 = SQ_S3i10.read();
S3i11 = SQ_S3i11.read();

if(S3i10.is_finished() || S3i11.is_finished()){
SQ_M1i19.write_finish();
pthread_exit(NULL);

}

Sampler(S3i10,S3i11,S3o8);

readLine(mass2,F_mass2);
mass2.setInstance(instance);

if(F_mass2.eof()){
F_mass2.close();
F_dist.close();
SQ_M1i19.write_finish();
pthread_exit(NULL);

}

readLine(dist,F_dist);
dist.setInstance(instance);

if(F_dist.eof()){
F_mass2.close();
F_dist.close();
SQ_M1i19.write_finish();
pthread_exit(NULL);

}

F7(mass2,S3o8,dist,F7o10);

SQ_M1i19.write(F7o10);
instance++;

Approved for Public Release; Distribution Unlimited
136

}
}

void* block5(void *arg){

int instance = 0;
Sig<int> M1i18;
Sig<int> M1i19;
Sig<int> M1o12;

while(instance != MAXINSTANCES){
M1i18 = SQ_M1i18.read();
M1i19 = SQ_M1i19.read();

if(M1i18.is_finished() || M1i19.is_finished()){
SQ_S4i21.write_finish();
SQ_S5i23.write_finish();
pthread_exit(NULL);

}

Merge(M1i18,M1i19,M1o12);

if(M1o12.clk()){
SQ_S4i21.write(M1o12);

}
if(M1o12.clk()){

SQ_S5i23.write(M1o12);
}
instance++;

}
}

void* block6(void *arg){

int instance = 0;
Sig<int> S5i23;
Sig<bool> S5i24;
Sig<int> S5o15;

while(instance != MAXINSTANCES){
S5i23 = SQ_S5i23.read();
S5i24 = SQ_S5i24.read();

if(S5i23.is_finished() || S5i24.is_finished()){
pthread_exit(NULL);

}

Sampler(S5i23,S5i24,S5o15);

if(F_S5o15.is_open()){
if(S5o15.clk()){

F_S5o15 << S5o15 << endl;
}

Approved for Public Release; Distribution Unlimited
137

} else {
 cerr <<"Error: Output File S5o15.txt is not open."<< endl;

pthread_exit(NULL);
}
instance++;

}
}

void* block7(void *arg){

int instance = 0;
Sig<int> S4i21;
Sig<bool> S4i22;
Sig<int> S4o14;

while(instance != MAXINSTANCES){
S4i21 = SQ_S4i21.read();
S4i22 = SQ_S4i22.read();

if(S4i21.is_finished() || S4i22.is_finished()){
pthread_exit(NULL);

}

Sampler(S4i21,S4i22,S4o14);

if(F_S4o14.is_open()){
if(S4o14.clk()){

F_S4o14 << S4o14 << endl;
}

} else {
 cerr <<"Error: Output File S4o14.txt is not open."<< endl;

pthread_exit(NULL);
}
instance++;

}
}

void* block8(void *arg){

int instance = 0;
Sig<int> S1i6;
Sig<bool> S1i7;
Sig<int> S1o6;

while(instance != MAXINSTANCES){
S1i6 = SQ_S1i6.read();
S1i7 = SQ_S1i7.read();

if(S1i6.is_finished() || S1i7.is_finished()){
pthread_exit(NULL);

}

Approved for Public Release; Distribution Unlimited
138

Sampler(S1i6,S1i7,S1o6);

if(F_S1o6.is_open()){
if(S1o6.clk()){

F_S1o6 << S1o6 << endl;
}

} else {
 cerr <<"Error: Output File S1o6.txt is not open."<< endl;

pthread_exit(NULL);
}
instance++;

}
}

intmain(int argc, char *argv[]){

//Open Output Files
F_S1o6.open("S1o6.txt");
F_S4o14.open("S4o14.txt");
F_S5o15.open("S5o15.txt");

pthread_t *threads;
pthread_attr_t attr;

threads = (pthread_t *)malloc(8*sizeof(pthread_t));
pthread_attr_init(&attr);

pthread_create(&threads[0], &attr, block1, (void *)0);
pthread_create(&threads[1], &attr, block2, (void *)0);
pthread_create(&threads[2], &attr, block3, (void *)0);
pthread_create(&threads[3], &attr, block4, (void *)0);
pthread_create(&threads[4], &attr, block5, (void *)0);
pthread_create(&threads[5], &attr, block6, (void *)0);
pthread_create(&threads[6], &attr, block7, (void *)0);
pthread_create(&threads[7], &attr, block8, (void *)0);

for(int i=0;i<8;i++){
pthread_join(threads[i], NULL);

}

//Close Output Files
F_S1o6.close();
F_S4o14.close();
F_S5o15.close();

return0;
}
/**
***********/

Approved for Public Release; Distribution Unlimited
139

/**
***********/
/* energyMeter_lib.cpp
/**
***********/

#include "energyMeter_lib.h"

voidF1(const Sig<int>& F1i1, Sig<int>& F1o1){

 F1o1.setInstance(F1i1.getInstance());
 if(F1i1.clk()){

 F1o1.setClk();

 F1o1.funcVal(vaInput_F1(F1i1.val()));

 } else {
 F1o1.clearClk();
 }
}

intvaInput_F1(int vaIp){
return vaIp;
}

voidF3(const Sig<int>& F3i3, Sig<bool>& F3o3){

 F3o3.setInstance(F3i3.getInstance());
 if(F3i3.clk()){

 F3o3.setClk();

 F3o3.funcVal(Sig3_F3(F3i3.val()));

 } else {
 F3o3.clearClk();
 }
}

boolSig3_F3(int a){
 int x = 7*a+28;
 int y = 27*a-17;

 if((x >= 42) || (y <37))
 returntrue;
 else
 returnfalse;
}

voidF4(const Sig<int>& F4i4, Sig<bool>& F4o4){

Approved for Public Release; Distribution Unlimited
140

F4o4.setInstance(F4i4.getInstance());
if(F4i4.clk()){

F4o4.setClk();

F4o4.funcVal(Sig2_F4(F4i4.val()));

} else {
 F4o4.clearClk();
}

}

boolSig2_F4(int a){
if(a >= 2)

returntrue;
else

returnfalse;
}

voidF5(const Sig<int>& F5i5, Sig<bool>& F5o5){

F5o5.setInstance(F5i5.getInstance());
if(F5i5.clk()){

F5o5.setClk();

F5o5.funcVal(Sig1_F5(F5i5.val()));

} else {
 F5o5.clearClk();
}

}

boolSig1_F5(int a){
if(-a > -2)

returntrue;
else

returnfalse;
}

voidF6(const Sig<int>& F6i12, const Sig<int>& F6i13, Sig<int>& F6o9){

F6o9.setInstance(F6i12.getInstance());
if(F6i12.clk() && F6i13.clk()){

F6o9.setClk();

F6o9.funcVal(computeMomemtum_F6(F6i12.val(),F6i13.val()));

} else {
 F6o9.clearClk();
}

}

Approved for Public Release; Distribution Unlimited
141

intcomputeMomemtum_F6(int mass1, int velo1){
 return mass1*velo1;
}

voidF7(const Sig<int>& F7i14, const Sig<int>& F7i15, const Sig<int>& F7i16,
Sig<int>& F7o10){

 F7o10.setInstance(F7i14.getInstance());
 if(F7i14.clk() && F7i15.clk() && F7i16.clk()){

 F7o10.setClk();

 F7o10.funcVal(computeEnergy_F7(F7i14.val(),F7i15.val(),F7i16.val()));

 } else {
 F7o10.clearClk();
 }
}

intcomputeEnergy_F7(int mass2, int velo2, int dist){
 return mass2*velo2*dist;
}

voidF9(const Sig<int>& F9i20, Sig<bool>& F9o13){

 F9o13.setInstance(F9i20.getInstance());
 if(F9i20.clk()){

 F9o13.setClk();

 F9o13.funcVal(Sig5_F9(F9i20.val()));

 } else {
 F9o13.clearClk();
 }
}

boolSig5_F9(int a){
int x = 27*a - 17;

if(x<37)
returntrue;
else
returnfalse;
}

voidF8(const Sig<int>& F8i17, Sig<bool>& F8o11){

 F8o11.setInstance(F8i17.getInstance());
 if(F8i17.clk()){

Approved for Public Release; Distribution Unlimited
142

F8o11.setClk();

F8o11.funcVal(Sig4_F8(F8i17.val()));

} else {
 F8o11.clearClk();
}

}

boolSig4_F8(int a){
int x = 7*a + 28;

if(x>=42)
returntrue;
else
returnfalse;
}

voidF2(const Sig<int>& F2i2, Sig<int>& F2o2){
F2o2.setInstance(F2i2.getInstance());

if(F2i2.clk()){
F2o2.setClk();
F2o2.funcVal(inputA_F2(F2i2.val()));

} else {
 F2o2.clearClk();
}

}

intinputA_F2(int a1){
return a1;
}

/**
/

/**
/
/* energyMeter_lib.cpp */
/**
/

#ifndef ENERGYMETER_LIB_H
#define ENERGYMETER_LIB_H

#include "MRICDFlib.cpp"
#include <omp.h>

#define NUMTHREADS omp_get_num_procs()

usingnamespace std;

Approved for Public Release; Distribution Unlimited
143

voidF1(const Sig<int>& F1i1, Sig<int>& F1o1);
intvaInput_F1(int vaIp);

voidF3(const Sig<int>& F3i3, Sig<bool>& F3o3);
boolSig3_F3(int a);

voidF4(const Sig<int>& F4i4, Sig<bool>& F4o4);
boolSig2_F4(int a);

voidF5(const Sig<int>& F5i5, Sig<bool>& F5o5);
boolSig1_F5(int a);

voidF6(const Sig<int>& F6i12, const Sig<int>& F6i13, Sig<int>& F6o9);
intcomputeMomemtum_F6(int mass1, int velo1);

voidF7(const Sig<int>& F7i14, const Sig<int>& F7i15, const Sig<int>& F7i16,
Sig<int>& F7o10);
intcomputeEnergy_F7(int mass2, int velo2, int dist);

voidF9(const Sig<int>& F9i20, Sig<bool>& F9o13);
boolSig5_F9(int a);

voidF8(const Sig<int>& F8i17, Sig<bool>& F8o11);
boolSig4_F8(int a);

voidF2(const Sig<int>& F2i2, Sig<int>& F2o2);
intinputA_F2(int a1);

#endif

/**
/

Approved for Public Release; Distribution Unlimited
144

List of Symbols, Abbreviations and Acronyms

ASIP:Application Specific Instruction Set Processor

BDD:Binary Decision Diagram

CAD:Computer Aided Design

CGS:Centimetre Gram Second

CNF:Conjunctive Normal Form

CPOG:Conditional Partial Order Graph

CT: Continuous Time

DE: Discrete-Event

DSP:Digital Signal Processing

FIFO:First-In First-Out

FSM:Finite State Machine

GALS: Globally Asynchronous, Locally Synchronous

HCDG:Hierarchical Conditional Dependency Graph

HDL:Hardware Description Language

KPN:Kahn Process Networks

MBD:Model-Based Design

MD-SDF: Multi-Dimensional Synchronous Data-Flow

MKS:Metre Kilogram Second

MoC: Model of Computation

MRICDF:Multi-Rate Instantaneous Channel-connected Data Flow

RTL:Register-Transfer Level

SAT:Satisfiablity

SCADE:Safety Critical Application Development Environment

SDF:Synchronous Data-Flow

SI:System International

SMT:Satisfiablity Modulo Theory

TBB:Threading Building Blocks

UML:Unified Modeling Language

Approved for Public Release; Distribution Unlimited
145

VHDL:VHSIC Hardware Description Language

VHSIC:Very High Speed Integrated Circuit

V&V: Verification & Validation

	List of Figures
	List of Tables
	Summary
	1 Introduction
	1.1Software Synthesis
	1.2 Hardware Synthesis
	1.3 Verification and Validation
	1.3.1 Causality Analysis
	1.3.2 Type Consistency Analysis
	1.3.3 Value Range Analysis

	1.4 Summary of contributions
	1.4.1 Contributions towards Multi-threaded code synthesis from MRICDF Models : (Sections 3.3 and 3.4)
	1.4.2 Contributions towards Application Specific Instruction Set Processor (ASIP) synthesis from MRICDF Models : (Section 3.5)
	1.4.3 Contributions towards Causality Analysis of MRICDF Models : (Section 3.6)
	1.4.4 Contributions towards Units and Dimensional Analysis of MRICDF Models : (Section 3.7)
	1.4.5 Contributions towards Value Range Analysis of MRICDF Models : (Section 3.8)

	1.5 Organization of the Report
	1.6 Publications on the work reported in this report

	2 Methods, Assumptions and Procedures
	2.1 Synchronous and Polychronous Model of Computation
	2.2Synchronous Languages
	2.2.1 Esterel
	2.2.2 Quartz
	2.2.3 Lustre
	2.2.4 Signal
	2.2.5 Statecharts, SyncCharts, Argos, Reactive-C

	2.3 Alternatives to Synchronous languages
	2.3.1 Kahn Process Networks (KPN)
	2.3.2 Synchronous Dataflow (SDF) and Multi-dimensional (MD-SDF)
	2.3.3 Petri Nets
	2.3.4 Input/Output Automata
	2.3.5 Ptolemy Framework

	3 Results and Discussion
	3.1 Related Work
	3.1.1 Concurrent Software Synthesis

	3.1.2 ASIP Synthesis
	3.1.3 Verification and Validation
	3.1.3.1 Causality Analysis
	3.1.3.2 Type Checking
	3.1.3.3 Value Range Analysis

	3.2 MRICDF Polychronous Formalism and EmCodeSyn Synthesis Tool
	3.2.1 Definitions and Overview of Concepts
	3.2.2 MRICDF Actors
	3.2.3 Master Trigger and Sequential Implementability

	3.3 Synthesis of Multi-Threaded Code from Polychronous models
	3.3.1 Constraints for Concurrent Implementability
	3.3.2 Computing Partial Triggers
	3.3.3 Constructing the forest of clock trees
	3.3.4 Check for Data Dependencies and Deadlock
	3.3.5 Identification of Shared Epochs
	3.3.6 Mapping and Multi-threaded Code Generation
	3.3.7 Experimental Evaluation and Discussions
	3.3.8 Summary

	3.4 Synthesis of Improved Multi-threaded Code from Polychronous models based on Analysis of Affine Relations
	3.4.1 Avoidable Synchronizations
	3.4.2 Affine Transformations and Affine Relations in Polychronous Languages
	3.4.2.1 Affine Transformations and Relations
	3.4.2.2 Constructs to express Affine Transformations and Relations

	3.4.3 Analysis of Affine Relations for Improved Multi-threaded Code Synthesis
	Case 1: , ,
	Case 2: , , ,
	Case 3: , , ,
	Case 4: , ,
	Case 5: , ,

	3.4.4 Summary

	3.5 Synthesis of Application-Specific Instruction-set Processor(ASIP) from Polychronous models
	3.5.1 Conditional Partial Order Graphs
	3.5.1.1 Definition: Conditional Partial Order Graph

	3.5.2 MRICDF Actors and their CPOGs
	3.5.2.1 Example MRICDF model and it’s CPOG

	3.5.3 Transformations, Resource Estimation and Implementability
	3.5.3.1 Resource Estimation
	3.5.3.2 Implementability

	3.5.4 Summary

	3.6 Polyhedral Model based Causality Detection in Polychronous models
	3.6.1 Analysis of Polychronous Specifications
	3.6.2 SMT extension to Polychrony
	3.6.3 Polyhedral Model based Analysis
	3.6.3.1 Constraint Extraction and Transformation
	3.6.3.2 Polyhedral Analysis
	3.6.3.3 Limitation of Polyhedral libraries
	3.6.3.4 Safe code synthesis using Wrapper
	3.6.3.5 Implementation and Design Flow

	3.6.4 Summary

	3.7 Type Inference and Type Consistency Verification of Polychronous models
	3.7.1 Type System and Inference Rules
	3.7.1.1 Type Set
	3.7.1.1.1 Buffer Actor
	3.7.1.1.2 Sampler Actor
	3.7.1.1.3 Merge Actor
	3.7.1.1.4 Function Actor
	3.7.1.1.5 Composite Actor

	3.7.1.2 Inference Algorithm

	3.7.2 SMT based Type Consistency Checking
	3.7.3 Summary

	3.8 SMT based Value Range Analysis of Polychronous models
	3.8.1 Range Inference Rules and Analysis
	3.8.1.1 Definitions
	3.8.1.2 Widening operation (∐)
	3.8.1.2.1 Case 1: Boolean Sets
	3.8.1.2.2 Case 2: Integer Intervals

	3.8.1.3 Narrowing Operation
	3.8.1.4 Value Range Inference Rules
	3.8.1.4.1 i. Buffer Actor
	3.8.1.4.2 ii. Sampler Actor
	3.8.1.4.3 iii. Merge Actor
	3.8.1.4.4 iv. Function Actor

	3.8.2 SMT based Verification of properties related to Signal Value Ranges
	3.8.2.1 SMT constraints for Constants
	3.8.2.2 SMT constraints for Sampler actors
	3.8.3 SMT constraints for Merge actors
	3.8.4 SMT constraints for Function actors
	3.8.5 SMT constraints for Buffer actors
	3.8.6 Case Study: Automated Bathtub System

	3.8.3 Summary

	4 Conclusions and Future Work
	4.1 Conclusions
	4.1.1 Software Synthesis techniques
	4.1.2 Hardware Synthesis techniques
	4.1.3 Verification and Validation techniques

	4.2 Future Work
	4.2.1 Software Synthesis techniques
	4.2.2 Hardware Synthesis techniques
	4.2.3 Verification and Validation techniques
	4.2.4 EmCodeSyn Tool development

	5 References
	Appendix
	Example: Generated Multi-threaded Code

	List of Symbols, Abbreviations and Acronyms

