
NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 

TOWARD A ROBUST METHOD OF PRESENTING A 
RICH, INTERCONNECTED DECEPTIVE NETWORK 

TOPOLOGY 

Thesis Advisor: 
Second Reader: 

by 

Austin West 

March 2015 

Robert Beverly 
Geoffrey Xie 

Approved for public release; distribution is unlimited 



THIS PAGE INTENTIONALLY LEFT BLANK



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

03-27-2015
3. REPORT TYPE AND DATES COVERED

Master’s Thesis 11-01-2013 to 03-15-2015
4. TITLE AND SUBTITLE

TOWARD A ROBUST METHOD OF PRESENTING A RICH, INTERCONNECTED
DECEPTIVE NETWORK TOPOLOGY

5. FUNDING NUMBERS

N66001-2250-58231

6. AUTHOR(S)

Austin West

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of Homeland Security
245 Murray Lane SW, Washington, DC 20528

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Every day, adversaries bombard Department of Defense computer networks with scanning traffic in order to gather information about
the target network. This reconnaissance is typically a precursor to attacks designed to access data, exfiltrate information, or plant
malware in order to gain a military advantage. One specific reconnaissance tool, traceroute, is used to map the network topology
of a target network. We implement an active network defense tool, dubbed DeTracer, that seeks to thwart network mapping attacks
through the use of deception. We deploy DeTracer in several environments, including the Internet, to demonstrate that an attacker
attempting to map a target network using traceroute probes can be presented with a false network topology of the defender’s choosing.
Our experiments show that a defender can present an adversary with a credible false network topology. We are able to deceive all
types of incoming traceroute probes, present a complex false network topology on a per source and destination basis, and deploy our
deception scheme without disrupting service to the real production infrastructure on our network.

14. SUBJECT TERMS

Topological deception, active defense, traceroute, network defense
15. NUMBER OF

PAGES 103
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i



THIS PAGE INTENTIONALLY LEFT BLANK

ii



Approved for public release; distribution is unlimited

TOWARD A ROBUST METHOD OF PRESENTING A RICH,
INTERCONNECTED DECEPTIVE NETWORK TOPOLOGY

Austin West
Civilian, Department of Defense

B.S., University of California at San Diego, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2015

Author: Austin West

Approved by: Robert Beverly
Thesis Advisor

Geoffrey Xie
Second Reader

Peter Denning
Chair, Department of Computer Science

iii



THIS PAGE INTENTIONALLY LEFT BLANK

iv



ABSTRACT

Every day, adversaries bombard Department of Defense computer networks with scanning
traffic in order to gather information about the target network. This reconnaissance is typi-
cally a precursor to attacks designed to access data, exfiltrate information, or plant malware
in order to gain a military advantage. One specific reconnaissance tool, traceroute, is used
to map the network topology of a target network. We implement an active network defense
tool, dubbed DeTracer, that seeks to thwart network mapping attacks through the use of
deception. We deploy DeTracer in several environments, including the Internet, to demon-
strate that an attacker attempting to map a target network using traceroute probes can be
presented with a false network topology of the defender’s choosing. Our experiments show
that a defender can present an adversary with a credible false network topology. We are
able to deceive all types of incoming traceroute probes, present a complex false network
topology on a per source and destination basis, and deploy our deception scheme without
disrupting service to the real production infrastructure on our network.

v



THIS PAGE INTENTIONALLY LEFT BLANK

vi



Table of Contents

1 INTRODUCTION 1
1.1 Computer Network Probing . . . . . . . . . . . . . . . . . . . . 1

1.2 Active Network Defense . . . . . . . . . . . . . . . . . . . . . 2

1.3 Network Topology Deception . . . . . . . . . . . . . . . . . . . 3

1.4 Application to the DOD. . . . . . . . . . . . . . . . . . . . . . 4

1.5 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 4

2 BACKGROUND 5
2.1 Topology Basics . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Networking and Traceroute Basics . . . . . . . . . . . . . . . . . 8

2.3 Traceroute and Firewalls . . . . . . . . . . . . . . . . . . . . . 10

2.4 Passive Network Mapping . . . . . . . . . . . . . . . . . . . . . 11

2.5 Uses of Topology Data . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Network Mapping Defense . . . . . . . . . . . . . . . . . . . . 15

2.7 DNS Deception . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Alias Resolution . . . . . . . . . . . . . . . . . . . . . . . . 18

3 METHODOLOGY 19
3.1 Methods of Traceroute Detection . . . . . . . . . . . . . . . . . . 23

3.2 Deception Program Details . . . . . . . . . . . . . . . . . . . . 25

4 FINDINGS 31
4.1 Experiment Overview . . . . . . . . . . . . . . . . . . . . . . 31

5 CONCLUSION 49
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Concluding Remark . . . . . . . . . . . . . . . . . . . . . . . 55

Appendix: Traceroute Experiment Results 57

vii



A.1 Long Path Traceroute Results . . . . . . . . . . . . . . . . . . . 57

A.2 Load-Balancing Path Traceroute Results . . . . . . . . . . . . . . . 71

List of References 81

Initial Distribution List 85

viii



List of Figures

Figure 2.1 An example of a logical network diagram. . . . . . . . . . . . . 6

Figure 2.2 An example traceroute command. . . . . . . . . . . . . . . . . . 9

Figure 2.3 An example of traceroute output. . . . . . . . . . . . . . . . . . 9

Figure 2.4 An example of an autonomous system (AS) topology map. The ar-
row direction represents the flow of money in exchange for trans-
porting Internet traffic. . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.5 An example of tricks with DNS resolution. . . . . . . . . . . . . 17

Figure 3.1 An example of a faked topology with a single path. . . . . . . . . 20

Figure 3.2 An example of faked topology with only linear paths. . . . . . . 21

Figure 3.3 An example of interconnected faked topology. . . . . . . . . . . 22

Figure 3.4 An example of a faked topology deployed by DeTracer. Note that
the Internet Protocol (IP) addresses correspond to responding inter-
face on each router. . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.5 DeTracer’s logical flow control. . . . . . . . . . . . . . . . . . . 27

Figure 3.6 A sample iptables rule for redirecting traceroute traffic to the
NFQUEUE chain. . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.7 Pseudo Code for the deception program’s packet crafting function. 29

Figure 4.1 The logical layout of the three virtual machines (VMs) in the virtual
network setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.2 An User Datagram Protocol (UDP) traceroute to a fake host in VM
scenario where DeTracer introduces unrealistic monotonically in-
creasing delay. Each probe’s Round Trip Time (RTT) increases by
approximately 70ms, even when the probes have the same time to
live (TTL) value. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



Figure 4.3 An nmap traceroute to a fake host in VM scenario where DeTracer
introduces unrealistic increasing delay. The RTT values decrease
as the hop values increase, which is the opposite of what an nmap
traceroute should return. . . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.4 The logical layout of the DeTracer host and the prober host in the
physical machine setup. . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.5 An UDP traceroute to a fake host in physical machine setup where
DeTracer does not introduce any artificial delay. Each probe’s RTT
is approximately 65ms, regardless of the TTL value of the probe. 37

Figure 4.6 An nmap traceroute to a fake host in physical machine setup where
DeTracer does not introduce any artificial delay. The RTT values
remain constant at approximately 65ms. . . . . . . . . . . . . . 37

Figure 4.7 Code snipped that implements delay in DeTracer. . . . . . . . . 38

Figure 4.8 A traceroute to a fake host behind DeTracer, while running on a
physical machine. . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.9 An nmap traceroute to a fake host behind DeTracer, while running
on a physical machine. . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.10 The logical layout of the DeTracer host in the Public IP setup. . . 40

Figure 4.11 A traceroute from an Ark node to DeTracer on the public Internet
depicting realistic RTT values. . . . . . . . . . . . . . . . . . . . 41

Figure 4.12 A traceroute from an Ark node to DeTracer on the public Internet
depicting unrealistic RTT values. . . . . . . . . . . . . . . . . . 43

Figure 4.13 A traceroute from an Ark node to DeTracer on the public Internet
with a single queue, no artificial delay added, and numerous simul-
taneous traceroutes being performed. . . . . . . . . . . . . . . . 44

Figure 4.14 An UDP traceroute to DeTracer on the public Internet portraying a
load-balancing network. . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.15 A sample traceroute to DeTracer on the public Internet portraying a
routing loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

x



Figure 4.16 A sample traceroute to DeTracer on the public Internet portraying
the Department of Homeland Security being AS adjacent to China
Unicom and STAR-KP in North Korea. . . . . . . . . . . . . . . 48

xi



THIS PAGE INTENTIONALLY LEFT BLANK

xii



List of Acronyms and Abbreviations

AS autonomous system

BGP Border Gateway Protocol

CIDR Classless Inter-Domain Routing

CJCS Chairmain, Joint Chiefs of Staff

DHS Department of Homeland Security

DNS Domain Name System

DOD Department of Defense

DOS Denial of Service

EW electronic warfare

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

iBGP internal Border Gateway Protocol

ICMP Internet Control Message Protocol

ISP Internet Service Provider

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

JP Joint Publication

KB kilobytes

xiii



MB megabytes

Mbps megabits per second

MILDEC military deception

ms milliseconds

NIC network interface card

NPS Naval Postgraduate School

NSS National Security Strategy

OS operating system

OSI Open Systems Interconnection

RFC Request For Comment

RIP Routing Information Protocol

RTT Round Trip Time

SDN Software-Defined Networking

SNOS Systemic Network Obfuscation System

SSH Secure Shell

TCP Transmission Control Protocol

TTL time to live

TTP tactics, techniques, and procedures

UDP User Datagram Protocol

VM virtual machine

VPN Virtual Private Network

VRF virtual routing and forwarding

xiv



Acknowledgments

I would like to thank Dr. Robert Beverly for his constant stream of support and wisdom.
I would also like to thank Dr. Geoffrey Xie for providing a secondary perspective on
this research and for starting me on the track towards a networking-themed thesis. Their
insights were invaluable to my research and writing efforts.

xv



THIS PAGE INTENTIONALLY LEFT BLANK

xvi



CHAPTER 1:

INTRODUCTION

This chapter discusses the prevalence of computer network probing, introduces the con-
cepts of network topology mapping and active network defense, and examines their appli-
cation to the Department of Defense (DOD).

1.1 Computer Network Probing
According to Internet Live Stats, approximately 360 million people worldwide were con-
nected to the Internet in the year 2000 [1]. Just fifteen years later, that number is almost
three billion, as around 40% of the world population has an Internet connection [1]. Not
only has the sheer number of Internet users grown exponentially, the importance of the
applications and data that we entrust to it, as well as our reliance upon it, has increased
dramatically. We now comport much of our daily lives in the cyber domain, from social
networking to managing bank accounts. Even the management of our critical infrastructure
such as energy, transportation, and finance is wholly dependent upon technologies built in
cyberspace.

While all of these technological advancements have vastly improved the daily lives of peo-
ple across the world, they have exposed many of the things we rely on to avenues of attack
that were inconceivable even ten or twenty years ago. Attackers are able to break into net-
works, break functionality, and exfiltrate information from anywhere in the world. Addi-
tionally, the cyber attack is becoming the weapon of choice for nation-states as the modern
battlefield evolves to include cyber space. U.S. public and private networks “are probed
millions of times every day,” and “an amount of intellectual property larger than that con-
tained in the Library of Congress is stolen from networks maintained by U.S. businesses,
universities, and government departments and agencies” [2].

Computer network scanning is a procedure in which an attacker identifies the active hosts
on a network. The goal of this intelligence-gathering activity is to discover open ports, vul-
nerable services, and the operating system (OS) of the computers on a network. Scanning
can be done either passively, (without sending packets to the target network but by eaves-

1



dropping traffic), or actively (an attacker sends probes to the target network and gleans
information from the responses). Scanning is generally a precursor to further attacks.

One specific type of computer network attack is a topology mapping attack, which is often
a part of an attacker’s intelligence-gathering phase and a precursor to further exploitation.
A network topology is its layout and illustrates how it is designed and interconnected. In
an active topology mapping attack, an attacker sends network probes to the target with the
hopes of eliciting responses that reveal information about the structure and characteristics
of the target network. The most common tool for this attack is traceroute, which sends
active probes to a network with the goal of mapping network topologies. Armed with
this information, an attacker may better direct his future attacks at poorly defended or
critical nodes in the network. For example, an attacker may cause a denial of service to an
entire network, partition a network to prevent connectivity between two subnetworks, and
generally wreak havoc upon the target network [3].

Well-defended networks deny these scanning probes as well as topology mapping probes
from entering their network in order to prevent any intrusions. However, it is difficult to
determine what traffic is legitimate and to implement an effective security posture without
adversely affecting the legitimate traffic that occurs normally on the network. Attackers
commonly disguise attack traffic to appear like normal traffic in order to avoid detection.
This means that denying some traffic that appears to be attack traffic could also block
legitimate traffic and frustrate end users of the network. Additionally, network defenders
can never know if they are successfully denying attackers access to their networks.

1.2 Active Network Defense
Another innovation in cyber security is the development of active network defenses. Since
traditional antivirus tools lag behind the cutting edge of computer attacks, and firewalls are
inherently unable to block all malicious traffic from entering a network, researchers have
attempted to take a more aggressive stance on network defense.

We can broadly define [active network defense] as any measures originated by
the defender against the attacker. Because the purpose of any computer net-
work defense is to protect information systems, these active measures must

2



at least thwart any attack in progress, and ideally make further attacks more
difficult. We can divide them into three broad categories: counterattack, pre-
emptive attack, and active deception. [4]

In this thesis, we will focus on the third category of active network defense, specifically
active deception as it relates to active network topology mapping. We will attempt to bolster
computer network defenses by presenting false network topologies to attackers performing
network mapping attacks.

1.3 Network Topology Deception
We posit that a network defense strategy rooted in deception can provide benefits to net-
work defenders on top of those gained by implementing secure, patched computer systems.
Trassare [3], demonstrates that it is possible to deploy a network defense tool that deceives
an attacker’s traceroute probes. While his implementation of a deceptive router is a simple
proof of concept, his work outlines the benefits of presenting a false network topology [3].
In this thesis, we expound upon the advantages of deploying topology deception and dras-
tically improve the implementation of the deceptive router in Trassare’s work [3]. Our
methodology does not necessarily add security for end hosts on the network; it does protect
the core infrastructure of our networks, like routers and links, by disguising their layout.
An attacker with a false view of a target network’s topology might be induced into direct-
ing his attack in a way that the defender chooses: either toward resilient nodes and links,
non-existent nodes and links, or low-value targets. We present the attacker with a faked
topology by manipulating the responses to network mapping probes in a manner that will
lead an attacker to draw incorrect conclusions about the layout of the network. This fake
topology is configurable and easy to change if necessary. We believe the topology decep-
tion can keep an attacker entrenched in the intelligence-gathering phase of his attack for
longer as well as redirect his attack in a way that is advantageous to the defender.

Our topology deception tool, hereafter referred to as DeTracer, is implemented on a smart
router by detecting traceroute probes and crafting fake responses to them. In this way, De-
Tracer can present a fake network that can be configured to appear essentially however the
defender chooses. In our experimentation, DeTracer was deployed on a production network
on the Internet but never tested for resiliency or against human subjects. Further work is

3



needed in this area to determine the effectiveness of the deception and the robustness of the
DeTracer program itself.

1.4 Application to the DOD
We believe that network topology deception research is highly applicable to the DOD’s
core mission. As of 2011, the DOD “operates over 15,000 networks and seven million
computing devices across hundreds of installations in dozens of countries around the globe”
[2]. With such a broad surface area for attack in cyber space, it is essential that we remain on
the cutting edge of network defense tactics and technology. This thesis discusses DeTracer,
an innovative tool that is a step toward applying deception in cyber space to defend against
network mapping attacks.

1.5 Summary of Contributions
This thesis:

• Introduces a novel methodology for detecting traceroute probes that is seamlessly
integrated into DeTracer.

• Implements the topology deception scheme outlined by Chapter 3 in a Python pro-
gram.

• Examines the problem of introducing artificial delay into traceroute probe responses
in order to maximize a deception scheme’s plausibility.

• Allows for the topology deception to be deployed at multiple ingress points to a
network and present a consistent, fake map of the network.

The remainder of this thesis is organized as follows. Chapter 2 delves into the background
of network topology mapping and how it applies to implementing a realistic deception tool.
Chapter 3 discusses the methodology behind building DeTracer. In Chapter 4, we lay out
the findings of our research, and Chapter 5 contains our conclusions.

4



CHAPTER 2:

BACKGROUND

The benefits of employing deception in the cyber domain have been explored in the past.
There are two main categories of deception strategies for cyber defense. The first tech-
nique is the use of obfuscation to hide vulnerable operating systems, services, or hosts
on a network. This method includes measures such as changing public banners that leak
information to something “non-committal,” removing content from web pages that might
reveal information about the operating system or web server, and “insulating the host from
probe packets via a firewall or packet ‘Scrubber”’ [5]. A packet Scrubber is a tool that
will rewrite packets in order to prevent characteristics of the packets a host generates from
revealing information about that host [5]. The second method of deception is the use of
honeypots. A honeypot is a system deployed by a defender that appears enticing, i.e., vul-
nerable, to a potential attacker [6]. However, it is simply a program running on a host that
is dedicated to redirect attackers away from a more fruitful avenue of attack, slow down
their progress attacking a network, or to investigate an attacker’s tactics, techniques, and
procedures (TTP) [6].

In this paper, we focus on one particular type of deception: fake network topology. While
there has been some work in developing a tool that will present a deceptive network topol-
ogy, the idea is still in its infancy and does not exist beyond a simple proof of concept
implementation [3]. In the work by Trassare [3], they demonstrated that it is possible to
deploy a smart router capable of deceiving incoming traceroute probes. However, their im-
plementation contained several shortcomings. They were only able to deceive User Data-
gram Protocol (UDP) traceroute probes, did not alter the false traceroute results based on
the source and destination of the traceroute probe, and did not return realistic Round Trip
Time (RTT) values to traceroute probes. In our deception scheme, we solve these weak-
nesses and make the contributions outlined in Section 1.5. We believe that presenting a fake
network topology to attackers allows us to intentionally mislead the attacker, keep them in
an intelligence-gathering phase, and potentially thwart future attacks with deception. If this
methodology does prove viable it will be a valuable addition to any network administra-
tor’s defense efforts. This chapter examines some of the tools employed by attackers and

5



defenders as well as investigate some of the benefits that deception can introduce.

2.1 Topology Basics
Network topology is the physical or logical layout of nodes in a computer network. There
are several levels of abstraction at which one can view a network’s topology. The first is
the physical topology, which shows the physical layout of the network, including how it is
constructed.

Another, more interesting way to view a network is logically. A logical network diagram is
essentially how the nodes in the network are connected and function [7]. Figure 2.1 depicts
an example.

.
Figure 2.1: An example of a logical network diagram.

It is important to note that there are two types of connectivity, which are referred to as
Layer 2 and Layer 3 connections, and correspond to the Data Link and Network Layer
of the Open Systems Interconnection (OSI) model. The OSI model is an abstraction that
partitions the roles of a communication system into layers. The Data Link Layer connects
two directly connected nodes, while the Network Layer connects two devices that are on
the same network, which are not necessarily directed. The Network Layer is responsible
for the next-hop routing of packets through a network that allows a packet to traverse a
network from the source to the destination [8]. Generally, switches operate as Layer 2

6



devices and routers are Layer 3 devices. Since traceroute probes are done using features
of the Layer 3 packet, only nodes that operate at Layer 3 or higher in the networking stack
appear in traceroute results. As such, the switches in Figure 2.1 would not appear in any
traceroute probe. While they allow for connectivity between machines, they do not have
Internet Protocol (IP) addresses.

Adding to the complexity of network topology is that many devices have multiple inter-
faces. This means that a single device (usually routers) are connected to multiple networks
(subnets) at the same time in order to act as gateways between them.

Network researchers and cyber attackers have a keen interest in mapping network traffic
and how devices on the Internet are connected. This is important for several reasons. For
example, a corporation might be interested in the path that a packet takes from a source to
a destination so that they may optimize the network performance for their customers. A
researcher might be interested in how the path adjusts in response to congestion in certain
parts of the network and how alternate paths could be optimized. An attacker might be in-
terested in the path a packet takes because they may be able to insert a tap somewhere along
that path in order to eavesdrop traffic. They also might be able to discover single points of
failure that would disrupt service for their targets if certain nodes were taken down. Further,
the topology of a particular organization’s network can be of value to attackers interested in
compromising one machine within the organization’s network in order to use that node as
a pivot point to attack other devices or to simply eavesdrop on the traffic that flows through
a network.

If we view the network from a broader perspective, we introduce the concept of an au-
tonomous system (AS). An AS is “a connected group of one or more IP prefixes run by
one or more network operators which has a single and clearly defined routing policy” [9].
These are typically Internet Service Providers (ISPs) or large enterprises with independent
connections to multiple networks. A unique Autonomous System Number is assigned to
each AS for use in Border Gateway Protocol (BGP) routing [9]. BGP is an inter-AS routing
protocol which interchanges network reachability information with other BGP systems by
“advertising a set of of destinations as an IP prefix” [10]. While BGP is also used within
an AS (called internal Border Gateway Protocol (iBGP) in this case), we focus on the case
of inter-AS connectivity. “Each BGP table is a list of AS paths that packets should traverse

7



from a given router to the prefix containing its destination IP address. The AS terminating
an AS path for a given prefix in a core routing table is administratively responsible for this
prefix and is called an origin AS” [11]. So we can also think of network topology in terms
of examining the ways in which ASes are interconnected. This level of network topology
examination is at a far higher level of abstraction than those discussed above but has many
important implications. These will be discussed more in depth later.

2.2 Networking and Traceroute Basics
Computers communicate over the Internet via the TCP/IP suite. IP is the principle method
of routing packets of data through a network in order to reach their destination [12]. Trans-
mission Control Protocol (TCP) is responsible for the end-to-end connections between the
two services that are running on separate computers [13]. Together, they form the TCP/IP
suite and allow for connectivity between two nodes on a network and the transfer of data
between them [14]. Under the IP, every packet sent over a network contains a time to
live (TTL) field, which specifies the maximum number of router hops the packet can tra-
verse enroute to its destination before it should be discarded. The TTL field was originally
designed to prevent infinite packet forwarding loops, and routers decrement the TTL of
each packet before being forwarded. If the TTL field of a packet reaches zero on its path
to a destination, an Internet Control Message Protocol (ICMP) Time Exceeded error is sent
back to the host that originated the packet. By explicitly setting the TTL field of packets,
each with an incrementing TTL field, an attacker can determine the full path to a node in a
network by keeping track of which IP addresses send ICMP Time Exceeded errors.

This process is the basis of the program traceroute, which maps the hops between the
source and a specified destination on the Internet. The traceroute program also returns the
RTT for each hop, which is the amount of time it takes for a response to a probe to return
to the probing machine. It is important to note that this method only reveals the forward
Layer 3 path, i.e. the IP addresses that the probes hit on the way from source to destination.
If a node has multiple Layer 3 interfaces, traceroute will only reveal the IP address of
the interface nearest to the attacker. By iterating through traceroutes to every node on a
network, an attacker can attempt to infer the network topology [15]. A typical traceroute
command can be seen in Figure 2.2.

8



# traceroute 192.168.1.80

Figure 2.2: An example traceroute command.

Suppose the client laptop at IP address 192.168.3.101 in Figure 2.1 ran a traceroute to the
web server at 192.168.1.80 with this command. The output would appear as in Figure 2.3.

traceroute to 192.168.1.80 (192.168.1.80), 30 hops max, 60 byte packets

1 192.168.3.100 (192.168.3.100) 2.859 ms 5.490 ms 7.707 ms

2 192.168.3.1 (192.168.3.1) 9.673 ms 11.539 ms 14.296 ms

3 192.168.1.80 (192.168.1.80) 16.250 ms 18.176 ms 20.255 ms

Figure 2.3: An example of traceroute output.

2.2.1 Types of Traceroute
The default traceroute program on Linux machines employs UDP to send probes. By de-
fault, this probe will send packets to a port that is unlikely to be in use so that the destination
host does not actually process the packet and simply responds with a ICMP port unreach-
able message. Specifically, the first probe (with TTL equal to 1) will be sent to port 33434,
then the port number is incremented by one for each probe packet thereafter [15]. For Win-
dows machines, the default is ICMP. Additionally, traceroute can be directed to use TCP
or to ports commonly used for other services, such as UDP port 53 or TCP port 80. This
practice is often employed to circumvent firewalls and is discussed in detail in Section 2.3.

Nmap, the common network scanning tool, has a slightly different traceroute implementa-
tion. Nmap’s traceroute uses results from its port-scanning probes in order to determine the
optimal port and protocol that it should use for its traceroute probe. For example, if nmap
detects that TCP port 80 is open on the destination host and allowed through the firewall,
it will send its probes to that port. The second interesting methodology that nmap employs
is that, instead of starting with low TTLs and incrementing by one with every packet, it
begins with a high TTL and works its way down. This allows it to “employ caching al-
gorithms” that “speed up traces over multiple hosts. On average Nmap sends 5-10 fewer
packets per host, depending on network conditions. If a single subnet is being scanned (i.e.
192.168.0.0/24) Nmap may only have to send two packets to most hosts” [16].

Traceroute improves its efficiency by sending out probe packets simultaneously. By default,
linux traceroute sends out 3 probe packets per hop and 16 probes simultaneously [15]. Hav-

9



ing numerous packets in flight simultaneously greatly improves the speed of performing a
traceroute but presents the problem of deciphering which ICMP responses correspond to
which probes. Essential to the solution of this problem is the concept of ICMP quotations.
According to protocol, an ICMP Destination Unreachable message contains the IP header
and the first 64 bits of the original IP packet that induced the error message [12]. If the
original IP packet contained a protocol that uses port numbers, like UDP, then the port
number will appear in those first 64 bits of the returned ICMP Destination Unreachable
message [12]. Thus, the traceroute program can parse the returned ICMP message to find
the destination port of the original packet and match the response with the probe that it sent.
This is the methodology used for the original UDP traceroute program [17]. ICMP tracer-
outes employs “a unique ICMP id/sequence pair in each outgoing (and thus responding
probe)” because there are no ports specified in an ICMP message [17]. If a prober wishes
to send their probes to a well-known port, such as UDP port 53 or TCP port 80, it sends
each probe with a unique IP-ID value so that it can match the responses [17].

2.3 Traceroute and Firewalls
A firewall is a device or piece of software that regulates what traffic is allowed into or out
of a network. Essentially, “a firewall builds a blockade between an internal network that is
assumed to be secure and trusted, and another network, usually an external (inter)network,
such as the Internet, that is not assumed to be secure and trusted” [18]. Common examples
of firewalls include Comodo Internet Security [19] and iptables [20]. Iptables is built into
the Linux kernel and allows users to build a customized firewall with user defined rule sets
and actions [20]. Iptables’ rules define a set of conditions and a set of actions for how
to deal with incoming traffic. If an incoming packet matches the conditions of a certain
iptables rule, the Linux system will take the action specified by that rule. For example, a
Linux web server often has a rule whose condition is to match TCP traffic destined for port
80 and whose action is to accept the packet.

Since the proliferation of firewalls on the Internet, the simple methods of traceroute are
often blocked. Packets sent to unknown ports are often summarily discarded when they
hit firewalls along with ICMP Echo Requests and error messages. However, there are
variations of traceroute that may still work through a firewall. Network administrators are
often required to allow traffic headed to certain ports such as UDP port 53 (associated with

10



Domain Name System (DNS) or TCP port 80 (Hypertext Transfer Protocol (HTTP)) in
order to allow for critical services to function. A traceroute user may specify that their
probes be sent to these well-known ports because they are usually left open [15]. So, even
if a firewall allows only port 80 TCP traffic and blocks everything else, an attacker can still
sneak a traceroute through. It is also common for a firewall or router to block all ICMP
messages, which results in a traceroute receiving no information about the hops on the path
behind that firewall.

Now, for a traceroute deception scheme to be ultimately effective, one must be able to detect
and deceive every possible variation of traceroute. Obviously, if the deception is unable to
fool a single method of traceroute probing, the whole deception becomes ineffective. Due
to the numerous variations of traceroute, many of which were designed for the purpose
of avoiding detection, it is difficult to identify whether an incoming packet is a traceroute
probe or legitimate traffic. Detection methods will be discussed in detail in Chapter 3.

2.4 Passive Network Mapping
There exist some methods of employing passive measurements to determine topology. The
advantage of passive mapping is that the researcher/attacker does not have to send out
probes in order to gather information. By its very nature, passive mapping is less likely to
cause network disruptions and reduces or eliminates the chance that their mapping activity
is detected by network defenses. On the other hand, since the mapper is not choosing the
responses that they want to illicit, they have less control over the information that they
gather and may obtain less useful information than they would with an active approach.

One example of this type of passive approach would be examining BGP routing tables.
BGP tables can be used to map IP addresses to their origin ASes [11]. These tables and
updates are easy to process and give an overarching view of how ASes are interconnected
and of the topology of the Internet at an AS level. Figure 2.4 depicts a simple set of AS
connections. There are three main types of AS connections: customer-to-provider, peer-
to-peer, and sibling-to-sibling. Customer-to-provider relationships occur when a smaller
AS or ISP agrees to pay another, usually larger, AS or ISP in order to transport traffic
that is destined to regions of the Internet that the smaller AS cannot reach. A peering
relationship occurs when two ASes, usually of similar size, agree to transport each other’s

11



traffic without charge. Peering allows an AS to have access to other parts of the Internet
without having to pay a provider AS to transfer its traffic. Sibling-to-sibling relationships
are connections between two ASes that are owned by the same company [21]. In Figure 2.4,
these relationships are illustrated by the lines drawn between the different ASes, with the
direction of the arrow representing the flow of money between ASes. Examining the BGP
tables for any of these ASes would reveal this network map. For example, examining AS
2’s BGP table would reveal that it is directly connected to AS 1, 3, and 4 and has paths to
AS 5, 6, and 7 through AS 3.

.
Figure 2.4: An example of an AS topology map. The arrow direction represents the flow
of money in exchange for transporting Internet traffic.

Some drawbacks specific to using BGP to examine topology are that “BGP data reflects
a control-plane signal rather than how traffic actually travels toward a destination net-
work...tend to capture much less peripheral (not core) connectivity (peering) among re-
gional networks...[and] does not reveal short-term AS path variations and load balanc-
ing” [11].

AS connections are essential to the daily operations of the Internet as a whole because
they allow for the connectivity between any two endpoints that are not contained within

12



the same AS. There are numerous examples of malicious or accidental misconfigura-
tions which caused whole blocks of the Internet to lose connectivity. For a short period
in April 2010, China Telecom advertised 37,000 prefixes, a large increase over its legiti-
mate 40 prefixes. This was likely due to a misconfiguration, but caused connectivity issues
for many customers [22]. An instance of a nation state intentionally hijacking prefixes
occurred in February 2008, when Pakistan Telecom began advertising part of YouTube’s
assigned network in an attempt to block Pakistani citizens from accessing YouTube [23].
This false route propagated outside of Pakistan and disrupted service for approximately two
hours [23]. These BGP tricks can be used to deny service, reroute traffic through an AS,
potentially allowing it to eavesdrop and/or inject traffic that it should never have access to.
These are all BGP tricks that are another form of network deception. In each of these cases,
someone abused (either intentionally or accidentally) the routing infrastructure in order to
deceive both network routers and people as to the true structure of the Internet.

AS connections also have large financial implications as peering relationships dictate the
cost of each byte that flows between two ASes. Along that same vein, net neutrality is a
concept that ISPs treat all types of data equally, instead of discriminating against content,
platforms, or users [24]. One particularly interesting application of our deception work
would be to spoof AS interconnections in a way that would represent a degenerate routing
situation, where a network probe would travel back and forth between two ASes in a routing
loop and see if researchers would notice this phenomena. Another scenario of interest
would be to spoof interconnections between the DOD and Star Joint Venture Co., which is
the only ISP in North Korea. The limitations that using BGP data for topology mapping,
discussed above, make it easier for us to present these deceptive behaviours that show
relationships that are not in the BGP tables because people would believe their BGP table
view was incomplete. Our deception occurs in the data plane, which is generally considered
definitive in terms of how traffic is actually being routed through the network.

Historically, BGP has been used to create deceptive traceroute behavior, most famously
when The Pirate Bay claimed they relocated their hosting service to North Korea [25].
When someone ran a traceroute to The Pirate Bay’s web server, it responded with a route
that ended at an IP address in North Korea. Additionally, The Pirate Bay spoofed an AS
path that ended with AS numbers 131279 and 51040. 51040 is The Pirate Bay’s AS num-

13



ber and 131279 belongs to STAR-KP Ryugyong-dong, a North Korean ISP [26]. Beyond
the fact that The Pirate Bay employed false BGP announcements to advertise a spoofed AS
path, we do not know anything about how their deception was implemented as The Pirate
Bay has maintained silence on the subject of their deception. Their deception was detected
rather easily because they still had to provide normal functionality for users accessing their
web page. If a user inspected the RTT of TCP packets sent to The Pirate Bay’s web server,
they saw the true delay between them and The Pirate Bay’s web server. Using these true
RTT values, users were able to able to triangulate the web server’s true location to some-
where in Germany [27]. In order to implement a truly plausible deception, The Pirate Bay
would have had to implement increased delay for connections to their web server. The rea-
son they elected not to do this is probably that it would have affected their user experience
negatively and deteriorated the service they provide.

Another weakness in their deception was that they did not provide feasible delay values for
certain hops in their deceptive path. While The Pirate Bay implemented some random delay
in their deception, there were glaring errors such as two adjacent hops being on opposite
sides of the Atlantic Ocean but having very similar RTTs. Additionally, their deceptive path
was not plausible in that it bounced back and forth between the United States and Europe
several times, traversing the Atlantic Ocean more than two or three times before arriving at
its destination. While this deception scheme is similar to what we hope to accomplish, there
are a few differences. First, we plan to build a well-documented tool that can be replicated
and tested in order to improve current topology measurement systems. Secondly, we do not
rely upon BGP shenanigans in order to achieve our deception, which is beneficial because
abusing BGP can lead to connectivity issues for large portions of the Internet. Third, we
hope to present realistic deceptive paths with realistic RTTs that are based upon source
and destination IP addresses so that we may our faked traceroute results appear plausible
regardless of the prober’s location.

2.5 Uses of Topology Data
Although network topology data is difficult to gather accurately (particularly at the Internet
scale), it has many uses and is essential for understanding the “technical, economic, and
regulatory aspects of the Internet” [28]. One application of this data is to study the growth
of the Internet over time and how the implementation of novel technologies (such as IPv6

14



or Classless Interdomain Routing) affects the way that the world is interconnected and how
information travels across the globe.

Another application of topology data is to study AS relationships in order to better under-
stand the economic underpinnings of the Internet. Understanding how ASes connect to
each other and the type of relationship they have (settlement-free, parent-child, peering)
can lend itself to understanding how our packets actually get routed through the Internet
and what that process entails. The fact that Internet traffic is constrained by these AS
peering relationships implies there are only certain paths over which information can flow
through our networks, which influences strongly how networks function and evolve over
time. A view of the network topology and performance is incomplete if we do not consider
the economics that influence how the Internet works.

2.6 Network Mapping Defense
A solution that many well-defended networks employ to prevent this mapping attack is to
simply drop any network probing packets that are detected [29]. While this is surely a
superior solution to allowing an attacker an accurate mapping of the network’s topology, it
does leak information to the attacker, namely that there is a network behind that router that
warrants protection. Additionally, sending no reply whatsoever robs the defender of the
opportunity to intentionally mislead the attacker, keep them in an intelligence-gathering
phase, and potentially thwart future attacks with deception. An alternative approach has
been proposed: present the attacker with a false network topology in reply to network
probes. While there has been some work in this area, the idea is still in its infancy and does
not exist beyond a simple proof of concept implementation [3]. If this methodology does
prove viable it will be a valuable addition to any network administrator’s defense efforts.

2.7 DNS Deception
Another source of topology deception is the abuse of DNS records. A DNS A record maps
a hostname to a 32 bit IPv4 address, which is what we commonly think of when we think
of DNS. However, DNS can has many additional capabilities and can store a wealth of
information. Another example of a DNS record is a PTR record. This record is used for
reverse DNS lookups, i.e., when a user has an IP address and wants to know the canonical
name associated with that address. The problem with DNS records is that they are not

15



authenticated or verified in any way. Anyone with access to a DNS server can rewrite the
DNS names for any IP address for which they are the authoritative DNS server. An attacker
could not spoof DNS records for any IP address on the Internet, only the records whose IP
addresses their server is responsible for. Essentially, given a set of IP addresses, an attacker
could make their domain names anything they desired. However, given a set of domain
names, an attacker could not choose random IP addresses for those domain names.

A fun, non-malicious example of this would be the system administrator who used an un-
used /24 network and Reverse DNS pointer records to write the introduction web crawl
from Star Wars Episode IV to the screen when someone runs a traceroute to his network.
The output of a traceroute to 216.81.59.173 is shown in Figure 2.5. This is a real-world
example of deception that is currently live on the Internet at the time of this writing. It was
deployed using virtual routing and forwarding (VRF) on two Cisco routers and spoofed
DNS records for an unused /24 subnetwork. VRF is a piece of software that allows for mul-
tiple routing tables to coexist on the same router. Let us label the two Cisco routers router
A and router B. Any time an incoming packet destined for the IP address 216.81.59.173
arrives at the border router (router A), it is forwarded to router B. Router B then has a VRF
that forwards the packet back to router A. The incoming probes are forwarded back and
forth between the two routers in order to lengthen the deceptive path. This is how the addi-
tional hops are introduced into the path. Since the person that implemented this deception
had access to the authoritative DNS server for this /24 network, they were able to update
the DNS PTR records to match the print the Star Wars opening crawl from the Star Wars
Episode IV movie [30].

16



traceroute to 216.81.59.173 (216.81.59.173), 30 hops max, 60 byte packets

...

12 145 ms Episode.IV [206.214.251.1]

13 160 ms A.NEW.HOPE [206.214.251.6]

14 174 ms It.is.a.period.of.civil.war [206.214.251.9]

15 172 ms Rebel.spaceships [206.214.251.14]

16 168 ms striking.from.a.hidden.base [206.214.251.17]

17 166 ms have.won.their.first.victory [206.214.251.22]

18 175 ms against.the.evil.Galactic.Empire [206.214.251.25]

19 158 ms During.the.battle [206.214.251.30]

20 167 ms Rebel.spies.managed [206.214.251.33]

21 164 ms to.steal.secret.plans [206.214.251.38]

22 161 ms to.the.Empires.ultimate.weapon [206.214.251.41]

23 161 ms the.DEATH.STAR [206.214.251.46]

24 159 ms an.armored.space.station [206.214.251.49]

25 157 ms with.enough.power.to [206.214.251.54]

26 137 ms destroy.an.entire.planet [206.214.251.57]

27 165 ms Pursued.by.the.Empires [206.214.251.62]

28 172 ms sinister.agents [206.214.251.65]

29 170 ms Princess.Leia.races.home [206.214.251.70]

30 168 ms aboard.her.starship [206.214.251.73]

31 161 ms custodian.of.the.stolen.plans [206.214.251.78]

32 176 ms that.can.save.her [206.214.251.81]

33 161 ms people.and.restore [206.214.251.86]

34 157 ms freedom.to.the.galaxy [206.214.251.89]

...

59 165 ms read.more.at.beaglenetworks.net [216.81.59.173]

Figure 2.5: An example of tricks with DNS resolution.

Our deception is different in that we create spoofed ICMP messages instead of using VRF
to induce routers to create the deception for us. Additionally, we do not deploy any DNS
spoofing, which was unnecessary for us because we are able to spoof paths that include IP
addresses for which we do not have access to the authoritative DNS server. Their deception
methodology only contained IP addresses within their assigned IP space. Our deception
methodology allows us to implement paths that contain any IP addresses, which increases
our flexibility in deploying deception. Another weakness in the Star Wars deception is the
constant RTT values of the traceroute probes. Because they do not introduce any artificial
delay into their responses, the RTT remains relatively constant for each hop in their decep-
tive path. This makes the deception easy to detect. However, their end goal was to create

17



an entertaining trick and not to actually deceive a prober [30]. Our end goal is to create a
plausible deception that will fool traceroute probers.

While this is a funny trick, it does show that there is no authentication of DNS records in
any way. So, we can create any name to IP address mapping, within our authoritative IP
space that we desire in order to create a more complete deceptive topology.

We can do certain things such as using domain names of known companies like Comcast
or AT&T and simulate peering relationships that do not exist. We could even introduce
delays in these apparent peering relationships that could damage the reputation of one or
more telecommunications companies.

It is also common for large ISPs to name routers and hosts in a way that conveys information
about the network topology or geographic locations. Sometimes, it is possible to tell the
cities that a traceroute probe travels through simply by doing reverse DNS lookups on all
the hosts that the probe hits on the way to its destination. It is possible for us to exploit these
naming conventions to make it look like the network path to a destination bounces around
several cities, when really each of these hops is contained within one wiring closet [31].

The lack of authentication and integrity of DNS records and messages means that we can
abuse it in order to create a more thorough and robust deceptive behaviour.

2.8 Alias Resolution
One key shortcoming of using traceroute to perform topology mapping is that traceroute
gives an interface-level view of the network. However, each router has at least two inter-
faces and are likely to have many more. While each interface will have its own IP address,
traceroute will only reveal a single IP per router. If we harbor any hope of drawing an ac-
curate topology map, we have to deconflict these IP addresses. The process of discovering
which IP addresses are actually separate interfaces on the same router or device is called
IP alias resolution [32]. There has been an abundance of work in this area, but it remains
a difficult problem with no sure solution in sight. Alias resolution difficulties actually con-
tribute to our deception abilities because mapping a network is already such a hard problem
that any deceptive results are likely to be believed out of hand.

18



CHAPTER 3:

METHODOLOGY

Our end goal is to create a tool that can be deployed at a network’s ingress routers that
responds to traceroute probes in a deceptive manner without affecting normal, legitimate
traffic destined to the network. We believe that this network topology deception would be
complementary to other defense techniques such as LaBrea Tarpit and IP Personality that
attempt to deceive attackers in order to bolster the security of the defended network [33],
[34]. LaBrea operates by taking over unused IP addresses and creating virtual hosts that
an attacker would consider an attractive target. Additionally, it uses TCP flow control to
limit the window size of incoming TCP connections in order to slow down attackers and
worms. This means that the attacker will waste time and effort attacking a host that does
not exist on the network, which reduces the efficacy and profitability of his attack [33]. IP
Personality modifies the packets being sent by an existing system in order to make it appear
as though the system is running a different operating system than it is. Since each operating
system has unique exploits to which it is vulnerable, IP Personality can aid in security by
causing an attacker to attempt attacks that are ineffective against the operating system the
system is actually using [34].

We imagine our network topology deception scheme to have similar benefits as these tech-
niques. Additionally, we conjecture that DeTracer could be used in tandem with these other
deceptive tools in order to create host and network honeypots and sinkholes that are more
realistic. When deployed together, we could create honeypots that have dedicated subnets
as well as their own routes leading to them with the end goal of creating a more realis-
tic deception in order to improve the security of our legitimate hosts and network links.
While none of these tools is a replacement for secure, patched systems and firewalls, they
increase the amount of work that an attacker must undertake in order to exploit a network
and potentially thwart attacks by directing the attacker down fruitless avenues.

Our goal with this research is to create a deceptive topology tool that has the following
properties:

19



• Robust traceroute probe detection
• Ability to create complex, interconnected topologies
• Simulate the appearance of load-balancing routers and multipathing
• Variable path lengths to real and faked end hosts
• Unique deceptive behaviors based on the source and destination IP prefix
• Create realistic RTT for traceroute probes
• Easily configurable false network topology

In order to advance the concept of presenting a false network topology to network probes,
we implement behavior on the basis of source and destination prefixes of incoming packets
with the end goal of presenting an interconnected faked network. Without implementing
per-destination network specific behavior, we cannot reveal multiple paths or additional
deceptive complexity within the network. If we do not base the path presented on the
destination of the probe, we are limited to presenting a single path as seen in Figure 3.1.
Note that from this point on, when we refer to a router as router X, we mean the interface
on that router that would respond to a traceroute probe. Clearly, this topology is far too
simplistic to accomplish our deceptive goals.

.
Figure 3.1: An example of a faked topology with a single path.

20



Additionally, we cannot simply generate a random path for each end host in our fake topol-
ogy. This behavior would result in a picture like the one in Figure 3.2, where each tracer-
oute probe is presented with a linear path to the end host that is completely disjoint from
the paths to other hosts on the network. Also, we would like the ability to present paths of
varying lengths to different subnets of our network.

.
Figure 3.2: An example of faked topology with only linear paths.

While this is a feasible network topology, we would like to be able to present more com-
plicated false topologies. Real-world networks are far more interconnected with redundant
paths and numerous links between routers on the path to an end host. However, it is also
possible that the real topology of our network is linear in nature, which makes it an attrac-
tive target to an attacker. A network without redundancy is far more vulnerable because the
failure of a single link results a complete loss in connectivity between end hosts. The capa-
bility to disguise this weakness by presenting an interconnected network topology would
be a key benefit of our deceptive model. If we modify the deceptive behavior on the basis
of the destination address of the mapping probe, we will be able to present a more inter-
connected network by grouping the hosts into subnetworks and allowing virtual routers that
are in a path to a certain subnet to appear in paths to other subnets. This will simulate the
existence of load-balancing and redundancy even in environments where the real topology

21



does not have such safeguards.

An example of a more interconnected network is seen in Figure 3.3. In this example,
the hosts are grouped into subnets based upon their IP address prefixes. The first 24 bits
of each host’s 32-bit IP address are all identical to identify that they belong to the same
subnet and the last 8 bits of their IP address identify individual hosts on the subnet. All
the hosts on the 13.37.100.0/24 subnet share the IP prefix 13.37.100.0 and all the hosts on
the 13.37.200.0/24 subnet share the prefix 13.37.200.0. The remaining 8 bits differentiate
hosts on that subnet from each other. This topology would appear more realistic and have
a greater chance of successfully deceiving an attacker. The network also appears more
resilient to certain attacks like Denial of Service because of the built in redundancy it has
in case of link failure. If Router A in Figure 3.3 goes down, there is still a path from the
end hosts out to the Internet. If Router A in Figure 3.2 is attacked, host 1 will no longer
be able to access the Internet. In summary, the complexity and design of our fake network
topology is essential to creating a deception that will successfully elude an attacker.

.
Figure 3.3: An example of interconnected faked topology.

Another important consideration when creating this deceptive behaviour is the RTT and
packet loss that the attacker sees when sending traceroute probes. Realistic packet de-
lay and loss are paramount to implementing a believable deceptive network. If there are

22



characteristics like a monotonically increasing delay for each hop with no randomness or
variance to the RTT values, a sophisticated attacker will detect that something is out of the
ordinary and our methodology becomes easier for a sophisticated attacker to detect.

Last, we need to develop a robust method of detecting network probes in order to enable
us to defend our networks against any method of mapping. Since traceroutes appear in
many forms, (TCP to port 80, UDP to port 53 or ICMP) we must be able to detect all of
them in order to deploy an effective deception. The one commonality that all the variants
of traceroute rely upon is the ICMP Time Exceeded messages returned by hops along the
path to the destination.

3.1 Methods of Traceroute Detection
In order to induce ICMP Time Exceeded messages, an attacker must send packets with
TTLs that will expire along the path to the destination. We have two viable options for
detecting traceroute probes at our border router. Our first option is to inspect outgoing
traffic for Time Exceeded Messages that originate from inside our network. This method
is advantageous because it is efficient and easy to implement. The only work the deception
program would have to do in this scenario is intercept ICMP Time Exceeded Messages and
overwrite the source IP address of the packet. This rewriting is trivial and would allow for
the creation of fake topologies.

There are three main drawbacks of this detection method. First, if there is no host at a cer-
tain IP address on our network, packets sent to that IP address will not generate any return
traffic. Because our router would be basing its deception on traffic leaving the defended
network, we could not create fake end hosts on our network without actually deploying
a real machine at that IP address. Additionally, our deceptive topology cannot present a
path to a host that is longer than the actual path to the host if we rely on rewriting probe
responses. Once a traceroute probe increments to a TTL that actually reaches the host, that
host will respond with a port unreachable or other message that will confirm its existence.
Since we have no certain method of detecting what outgoing traffic is actually a response
to a traceroute probe, we cannot intercept this traffic. Consequently, once the probes begin
to actually reach the destination host, we no longer can create spoofed ICMP Time Ex-
ceeded messages. Finally, this method allows for more traffic to be created on our internal

23



network instead of having it all be handled by the ingress router. While the amount of traf-
fic generated by traceroute probes is generally minimal and unlikely to cause any network
disturbance, it is another element to consider.

An alternative, superior method of detecting traceroute probes is to inspect incoming traffic
at our border router. We can use a TTL filter in order to detect packets that would potentially
expire inside our network. We accomplish this by implementing an iptables rule on our
ingress router that will forward all traffic with an TTL less than a certain value to the our
deceptive program. This value is based upon the network depth of the fake topology, where
network depth is defined as the maximum number of hops that a packet can take within our
network from the ingress router on which the deception is running.

The advantages of this approach are that we can respond to traceroutes destined to IP ad-
dresses that do not actually exist on our network. We can also create a path of any length,
so long as the number of hops in our fake path is less than the maximum TTL of packets
that we are intercepting. For example, if we are intercepting all packets with TTLs less than
30, we can create a fake path to a destination that is 30 hops from the border router. On the
downside, we are forced to intercept far more traffic than we were in the first method. Ad-
ditionally, we have a greater chance of intercepting legitimate traffic with this filter because
we are filtering everything with a low TTL, not just Time Exceeded messages. However,
almost all operating systems default to a TTL of 64 or greater [35]. Huffaker et al. found
that most end to end paths on the Internet are relatively short with virtually all the measured
IP path lengths containing less than 30 hops [11]. Thus, we expect it to be unlikely that
any legitimate traffic to be intercepted by our deception program. However, we would like
to see this claim investigated further in future work. Finally, this methodology results in
our deception program having to do far more processing. The deception program must not
only handle more packets than it does in the first method, it has to interpret the incoming
packets, determine whether they would expire within the fake network, and, if so, craft the
response packet from scratch while also incorporating a realistic amount of delay that is
proportional to the TTL of the incoming packet.

24



3.2 Deception Program Details
The deception program is written in Python and primarily makes use of the Scapy library
in order to read and write packets. Scapy is a “packet manipulation program” that can
capture and forge packets [36]. We use the nfqueue-bindings library to act as an inter-
mediary between the Linux kernel packet handler and the Scapy program running in user
space. nfqueue-bindings essentially transports packets from kernel space to user space and
back, allowing us to interact with the packets using a high level language like Python [37].
Nfqueue-bindings creates an iptables chain, called NFQUEUE, which will place packets
into a queue to be picked up by the Scapy program. Scapy must issue a drop or accept
verdict for each packet to clear it from the queue [38]. We elect to use Scapy to parse and
craft packets because it is easy to use and configure to our needs. It also allows us to use
the vast functionality native to the Python language that allows us to present more complex
topologies and implement behavior based upon the source and destination IP addresses of
probes. An example of a false network topology that DeTracer can present is depicted in
Figure 3.4.

25



.
Figure 3.4: An example of a faked topology deployed by DeTracer. Note that the IP
addresses correspond to responding interface on each router.

DeTracer’s logical flow can be seen in Figure 3.5 and is described as follows. Initially, the
deception program runs a configuration script that ingests the fake topology as a Python
graph object, sets up the proper iptables rules to forward expiring TTL traffic to the
NFQUEUE chain in order to be queued and dealt with by the Scapy program. In this graph
object, IP addresses are specified as strings (“192.168.1.1”) and subnets are specified as
strings in Classless Inter-Domain Routing (CIDR) format (“192.168.1.0/24”). The config-
uration script also generates two radix tree objects and passes them to the deception script.
One radix tree object contains the intermediate router in our fake topology and the path
a packet would take to each router. The routers are represented as IP addresses in string
format and the paths are represented as a list of IP address strings. The second radix tree

26



contains all the subnets in our fake network and the path through the intermediate routers
a packet must take to reach that subnet. The subnet is stored as a string in CIDR format
(“192.168.1.0/24”) and each of the paths is represented by a list of IP addresses in string
format.

.
Figure 3.5: DeTracer’s logical flow control.

Figure 3.6 shows an example iptables rule for redirecting incoming packets with a TTL less
than 30 to the NFQUEUE chain. DeTracer’s configuration script runs the equivalent of this
command.

# iptables -I FORWARD -m ttl --ttl-lt 30 -j NFQUEUE

Figure 3.6: A sample iptables rule for redirecting traceroute traffic to the NFQUEUE chain.

The minimum TTL allowed into the network by the ingress router is determined by the fake
topology, with the value being selected as the longest path in the fake topology graph. A
second approach to determining the cutoff value for TTL values of incoming packets would
be to investigate the traffic at our ingress router. If we can determine the minimum TTL for
non-traceroute traffic at our particular router, we can intercept all incoming packets with
a TTL less than that value and be sure we are not interfering with normal traffic on the
network.

27



In our deployments, we chose to intercept packets with TTL values less than or equal to
30 at our ingress router where DeTracer was deployed. We chose this value because it
was unlikely to interfere with non-traceroute network traffic while still intercepting the
vast majority of traceroute probes. By default, traceroute will stop probing after 30 hops,
meaning that the packet with the highest TTL sent by a default traceroute probe will have
a TTL of 30 [15].

Once a packet is picked up off the queue to be handled by Scapy, it is handed to the send-
SpoofedResponse() function which is seen in pseudo code in Figure 3.7. Essentially, the
destination IP address and TTL values are examined to determine where in the fake topol-
ogy that packet would expire, if at all. First, we check if the packet is destined for one of
the routers on our fake network by searching the radix tree of routers. If it is, we obtain the
TTL value of the incoming packet using Scapy’s built in packet parsing functionality and
compare it to the length of the path to that router.

28



1 def sendSpoofedResponse():

2 # get the data from the incoming packet

3 pkt = incoming_packet

4 drop(incoming_packet)

5

6 # Check if incoming packet was destined for an intermediate

7 # router or a fake host with an active IP address

8 if (md5(pkt.dstIP)[0] != 0 and \

9 routerTree.search_best(pkt.dstIP) == None):

10 return

11

12 # introduce some delay based on the incoming packet's TTL

13 time.sleep((pkt.ttl + random.random())/64)

14

15 # determine which path we should reply with

16 destinationSubnet = subnetTree.search_best(pkt.dstIP)

17 path = destinationSubnet.data['path']

18

19 # Assign the source of the response packet according

20 # to which hop along the path it would expire

21 if (0 < pkt.ttl <= len(path)):

22 fakeSrcIP = path[pkt.ttl-1]

23 fakeICMPType = 11 # ICMP Time Exceeded

24 fakeICMPCode = 0 # ICMP TTL Expired in Transit

25 # For the destination packet if incoming probe is ICMP,

26 # Craft an Echo Reply

27 else if pkt.proto == ICMP Echo Request:

28 fakseSrcIP = pkt.dstIP

29 fakeICMPType = 0 # ICMP Echo Reply

30 fakeICMPCode = 0 # ICMP Echo Reply

31 # For the destination packet, assign a port unreachable message

32 else:

33 fakeSrcIP = pkt.dstIP

34 fakeICMPType = 3 # ICMP Destination Unreachable

35 fakeICMPCode = 3 # ICMP Port Unreachable

36

37 # build the response packet

38 response = IP(dstIP = pkt.src, src= fakeSrcIP)/ \

39 ICMP(type = fakeICMPType, code = fakeICMPCode) / \

40 IPerror(str(pkt))

41 # send the response

42 send(resp)

Figure 3.7: Pseudo Code for the deception program’s packet crafting function.

29



If the TTL is less than the length of the path to the router, we create an ICMP Time Ex-
ceeded message with the source IP address equal to the hop along the path where the
incoming probe would have expired. If the TTL is greater than or equal to the length of the
path to the router, we create an ICMP Port Unreachable message with the source address
equal to the router that the probe was headed to. If the packet is not destined for one of
our routers, we search the radix tree of subnets in order to find which subnet the packet
is headed to. We then compare the TTL of the incoming packet to the length of the path
to the subnet that it is headed toward. If the TTL is less than the length of this path, then
we craft an ICMP Time Exceeded message from the hop at which the packet would expire
in our fake topology. If the TTL is greater than or equal to the length of the path to this
subnet, the deception will either return an ICMP port unreachable message (if we want that
IP address to appear active on the network) or send no response whatsoever (if we want no
host to appear at that IP address).

The deception program determines whether a host should be up by taking the MD5 hash of
the packet’s destination IP address. If the first bit or bits of this hash matches a certain set
of values, that destination IP will act as an active host and send a response. We use a hash
function because it allows us to have a fast, easily tunable parameter for determining how
many hosts on our network will respond to traceroute probes. A bit may take the value of
0 or 1. If we choose to send a response from all hosts whose IP addresses hashes to a value
with a first bit equal to 0, then exactly half of the IP addresses on our fake network will
appear to be active and responding to traceroute probes. If we only send responses from
IP addresses whose hash value begins with the bit sequence 00, then exactly one fourth of
the IP addresses on our network will appear to be up. Additionally, since the same inputs
hash to the same value every time, the IP addresses that are up are constant over time. This
creates a consistent set of active hosts on the network without having to save the state of
every single possible host on the network. This behavior simulates what happens when
an attacker runs a traceroute to a host that does not exist, it will receive no response and
eventually time out until the attacker stops sending probes to that address.

30



CHAPTER 4:

FINDINGS

This chapter will discuss the results of our experiments with DeTracer and our selected
topologies.

4.1 Experiment Overview
To test and characterize DeTracer, we conducted a series of three experiments. Initially, we
deployed DeTracer in a network of virtual machines (VMs) running on a single physical
host as a proof of concept and convenient testing platform. Next, we ran DeTracer directly
on a physical machine and probed it using separate physical machines directly connected
via the local subnetwork. Finally, we deployed DeTracer on a publicly reachable machine
on the Internet. In this instance, DeTracer was running on a virtual machine with a globally
routable IP address.

4.1.1 Virtual Machine Setup
The first setup we used was a single Windows 7 host running VMWare Workstation. The
goal of this experiment was to verify that the router running DeTracer was able to present a
deceptive network topology without impeding access to the web server’s web page. Within
Workstation, we ran three separate VMs: i) a prober; ii) a router running DeTracer; and iii)
a web server. The configuration is depicted in Figure 4.1.

.
Figure 4.1: The logical layout of the three VMs in the virtual network setup.

The router VM had two interfaces, each of which was on a separate network. The prober
VM was on one network and connected to one interface on the router VM. The web server

31



VM was on the second network and connected to the other interface on the router. Both
the web server and the prober VM had the router VM as their default gateway. The router
VM ran Fedora 19 (Linux kernel version 3.9.5 and iptables version 1.4.18) with DeTracer
running on it. The web server was a Ubuntu distribution running Apache while the prober
VM was another Fedora machine. We found that installing the perquisites for running
DeTracer was easiest on a Fedora machine. The choices for the other OSs was arbitrary.
Although we found DeTracer easiest to deploy on a Fedora machine, we expect DeTracer to
successfully work on any Linux-based installation, and that our results were not impacted
by the choice of Linux distribution.

In the experiment, the prober VM attempted to perform a network mapping attack on the
network behind the router VM on which the web server resides using traceroute and nmap.
The prober VM sent UDP, ICMP, and TCP traceroute probes and nmap probes to randomly
selected IP addresses that lay in the network behind the deceptive router.

In our experiments, the router VM was able to intercept and spoof responses to the tracer-
oute traffic while forwarding on legitimate HTTP traffic. The prober VM was presented
with a false topology when it attempted to map the network but was also able to access the
web page served by the web server on the target network. When an attacker performed a
traceroute to the web server, DeTracer returned the deceptive path to the web server’s IP
address. These results gave us hope that it was feasible to deploy DeTracer on a network
and maintain normal network function.

Additionally, we were able to achieve several key aspects of our deception methodology.
First, we were able to present different routes based upon the source and destination IP
address of the traceroute probes. We could also implement blacklist schemes where only
known attacker IP addresses were presented with the deceptive topology. Conversely, we
could deploy a whitelist scheme where known good source IP addresses were presented
with the true network topology instead of the false topology. In other words, we could
deploy DeTracer with an implicit deny policy (present the deceptive network topology by
default) or an implicit allow policy (present the true network topology by default). Another
key finding was that we were able to deceive every method of traceroute that we tested.
UDP, TCP, ICMP, paris-traceroute, scamper, and nmap traceroute probes all reported the
false network topology that DeTracer presented. Regardless of the port or protocol that the

32



traceroute probes employed, the results returned were the deceptive routes. This proved the
efficacy of our traceroute detection methodology and that the TTLs of the incoming packets
were enough to detect all traceroute probes. The fake topology presented by DeTracer in
this experiment can be seen in Figure 3.4.

This experimentation did reveal some weaknesses with our implementation of DeTracer.
We hoped to present realistic RTT values to a traceroute, where the RTT value increased as
the TTL of the traceroute probe increased. Additionally, for the RTT values to be realistic,
there must be some randomness added into the RTT values an attacker sees, instead of
monotonically increasing delay for each hop in the traceroute path. The RTT delays that we
saw in this experiment were not feasible for several reasons. We noticed that the RTTs that
traceroute was reporting were monotonically increasing for each probe sent. An example
output can be seen in Figure 4.2.

traceroute to 192.168.253.9 (192.168.253.9), 30 hops max, 60 byte packets

1 192.168.159.130 0.955 ms 0.330 ms 0.577 ms

2 192.168.1.1 61.735 ms 124.132 ms 195.002 ms

3 192.168.1.10 269.623 ms 339.986 ms 408.200 ms

4 192.168.1.15 494.400 ms 585.285 ms 675.153 ms

5 192.168.1.20 791.443 ms 907.907 ms 1020.170 ms

6 192.168.253.9 1161.114 ms 1304.953 ms 1447.516 ms

Figure 4.2: An UDP traceroute to a fake host in VM scenario where DeTracer introduces
unrealistic monotonically increasing delay. Each probe’s RTT increases by approximately
70ms, even when the probes have the same TTL value.

In this example, at attacker at IP address 192.168.159.131 performed a UDP traceroute to
the destination IP address 192.168.253.9. The first hop in the trace corresponds to the real
interface on the router VM that the prober VM was connected to. Each subsequent hop was
created by DeTracer and was fake. The key shortcoming that appeared in this trace was that
each probe’s RTT incremented by approximately 70ms. A traceroute sends 3 probes per
TTL and it is expected that each of these 3 probes have similar RTT values because they
traverse the same distance across a network. We saw inconsistencies between probes for
a given hop. For example, if we examined the RTT for hop number 3, we saw RTTs of
269ms, 339ms, and 408ms. In a true topology, we would expect these RTTs to be around
the same value for each probe with the same TTL instead of these monotonically increasing
results. While it would not be unusual in a real network for a given hop to have different

33



RTT values, it was clearly wrong for every single hop in a traceroute to exhibit the same
monotonically increasing behavior. We should have seen delays that were increasing as
the TTL increased, with some additional random variance between probes with the same
TTL value. It is important to note here that at this point of our experimentation, we did
not introduce any artificial delay intentionally. The increased delays for each probe was a
result of processing delay native to the DeTracer program. The fact that these RTTs were
increasing for each probe and not just as the TTLs increased, along with the fact that the
delay increase is almost constant, made the deception scheme easy to detect because the
traceroute results were infeasible. The unrealistic delay results were seen regardless of
the type of traceroute used, with the exception of nmap’s traceroute, which saw infeasible
RTTs values in a different way.

An nmap traceroute run against DeTracer revealed that the first hops with lower TTLs had
longer RTTs than the hops with higher TTLs. This is caused by the fact that nmap sends
probes with high TTLs first and decrements the TTL for each probe. Figure 4.3 depicts an
example of nmap’s traceroute results directed at DeTracer. Clearly, the RTTs of the first
hops should not have been consistently larger than the RTTs of hops that appeared later
in the trace. In a legitimate network, nmap traceroute results returned higher RTT values
for hops later in the path. These anomalous RTT results were caused by the way that the
incoming probe packets were queued and handled by DeTracer in the order that they arrived
at the DeTracer host.

TRACEROUTE (using proto 1/icmp)

HOP RTT ADDRESS

1 0.93 ms 192.168.159.130

2 925.11 ms 192.168.1.1

3 823.92 ms 192.168.1.10

4 142.65 ms 192.168.1.15

5 67.34 ms 192.168.1.20

6 1.27 ms 192.168.253.9

Figure 4.3: An nmap traceroute to a fake host in VM scenario where DeTracer introduces
unrealistic increasing delay. The RTT values decrease as the hop values increase, which is
the opposite of what an nmap traceroute should return.

Our theory was that these delay problems were caused by limits of the CPU of the VM run-
ning DeTracer and the delay caused by bringing the packets up to user space. Additionally,

34



Scapy had to issue a decision on each incoming traceroute packet, which introduced an
increasing queuing delay for each additional packet that arrived at the DeTracer host. We
noticed that the Python process associated with DeTracer was running with close to 100%
CPU usage.

In order to resolve these issues, we attempted to implement load-balancing by running
several separate DeTracer processes, each attached to a separate nfqueue queue of incoming
traceroute packets. However, this did not improve the performance of DeTracer and we saw
the same monotonically increasing RTTs results as without the multiple queues. Nfqueue
implements load-balancing on a per-flow basis, instead of a per-packet basis. This meant
that when we had several queues for nfqueue to place packets, it would end up placing a
batch of packets in the first queue while the others remained idle. Then, when the next batch
of packets arrived, they would be placed in the second queue while the others remained
idle. Since we were unable to deploy a more granular, per-packet, load-balancing, we
saw no performance gains from implementing load balancing in DeTracer when probing
from a single source IP address. In order to determine if the delay issues were caused by
limitations in computing resources, we installed DeTracer with a single queue on a physical
machine instead of a VM.

4.1.2 Physical Machine Setup
The next phase of our experimentation was to setup a physical machine running DeTracer
with more computing resources. The layout of this experiment is depicted in Figure 4.4.

35



.
Figure 4.4: The logical layout of the DeTracer host and the prober host in the physical
machine setup.

We installed DeTracer on a Dell desktop machine with 4 3.10GHz processors running
Fedora 20. This machine had one network interface, which we connected to a laptop using
a crossover Ethernet cable. Technically, the desktop running DeTracer was not actually
functioning as a router because it did not have at least two interfaces connected to two
separate networks. However, DeTracer was still able to present the appearance of a full
network topology behind the the desktop as if it were a router. A laptop was used to send
traceroute probes to the desktop and inspect the responses.

This phase of experimentation also produced heartening results. Increasing the computing
resources available for the DeTracer program solved the problem of monotonically increas-
ing RTT values for traceroute in its default operational mode(s). DeTracer was still able to
deceive every method of traceroute that we tested. Sample results for an UDP traceroute
and an nmap traceroute are seen in Figure 4.5 and 4.6. The RTT values for these probes
remained approximately constant regardless of the TTL value of the probe.

36



traceroute to 192.168.253.9 (192.168.253.9), 30 hops max, 60 byte packets

1 192.168.159.130 0.117 ms 0.688 ms 0.329 ms

2 192.168.1.1 61.903 ms 64.566 ms 55.946 ms

3 192.168.1.10 69.765 ms 69.563 ms 78.546 ms

4 192.168.1.15 64.996 ms 65.220 ms 65.167 ms

5 192.168.1.20 71.978 ms 67.472 ms 60.800 ms

6 192.168.253.9 61.190 ms 64.469 ms 57.560 ms

Figure 4.5: An UDP traceroute to a fake host in physical machine setup where DeTracer
does not introduce any artificial delay. Each probe’s RTT is approximately 65ms, regardless
of the TTL value of the probe.

TRACEROUTE (using proto 1/icmp)

HOP RTT ADDRESS

1 0.87 ms 192.168.159.130

2 55.87 ms 192.168.1.1

3 63.05 ms 192.168.1.10

4 62.82 ms 192.168.1.15

5 77.70 ms 192.168.1.20

6 71.11 ms 192.168.253.9

Figure 4.6: An nmap traceroute to a fake host in physical machine setup where DeTracer
does not introduce any artificial delay. The RTT values remain constant at approximately
65ms.

Additionally, the faster processing allowed us to introduce artificial delays based upon
the incoming probe’s TTL value. We implemented artificial delay by putting the Scapy
program to sleep for a random amount of time. Figure 4.7 shows the code snippet in
DeTracer that caused the random delay. The Scapy process added the TTL of the incoming
packet to a random number between 0 and 1, then divided that number by 64. The process
would then sleep for that many seconds. The time spent sleeping was specified by a floating
point number and therefore the process could sleep for a fractional number of seconds. The
number 64 was derived from experimentation to create feasible RTT values for each hop in
the traceroute path but did not represent a thoroughly researched value. This number was
also tunable to the environment in which DeTracer was running. The amount of variance
in the time spent sleeping increased for each hop in the traceroute path. The amount of
artificial delay induced in the first hop was between 0ms and 15ms, 0ms and 31 ms for the
second hop, and 0ms and 46ms for the third hop. As the TTLs of the traceroute probes
increased, the artificial delay increased because it was being drawn from a distribution that
included larger numbers.

37



time.sleep((pkt.ttl + random.random())/64)

Figure 4.7: Code snipped that implements delay in DeTracer.

An example result for a traceroute probe can be seen in Figure 4.8. The RTT values for
this traceroute were closer to what we would expect to see for a true topology. The RTT
for different probes returning from the same hop count had close to the same value with
some variance built in while the RTT was higher for hops further away in the trace. The
RTT values did not have to be strictly increasing as the hop count increases because it was
possible for probes sent with higher TTL values to have smaller RTT values than ones with
lower TTL values. However, the RTT values should have trended upwards as the hop count
increased, which was the exact behavior we saw in Figure 4.8.

traceroute to 192.168.253.9 (192.168.253.9), 30 hops max, 60 byte packets

1 192.168.159.130 0.982 ms 0.913 ms 0.441 ms

2 192.168.1.1 91.677 ms 91.053 ms 88.432 ms

3 192.168.1.10 174.400 ms 205.109 ms 186.951 ms

4 192.168.1.15 217.053 ms 204.755 ms 204.776 ms

5 192.168.1.20 228.868 ms 203.897 ms 217.606 ms

6 192.168.253.9 223.198 ms 307.111 ms 202.472 ms

Figure 4.8: A traceroute to a fake host behind DeTracer, while running on a physical ma-
chine.

The addition of artificial delay combined with the increased computing resources solved
the decreasing RTT problem that was encountered in the VM setup. Figure 4.9 shows the
RTT values of an nmap traceroute increased as the hop count increased. In Figure 4.8 and
4.9, the first hop had an RTT value of less than 1ms because that was the response time to
the host running DeTracer, which was not part of the actual deceptive topology. Every hop
after the first hop represented a faked host part of the false network topology.

38



TRACEROUTE (using proto 1/icmp)

HOP RTT ADDRESS

1 0.56 ms 192.168.159.130

2 102.14 ms 192.168.1.1

3 196.20 ms 192.168.1.10

4 299.11 ms 192.168.1.15

5 264.68 ms 192.168.1.20

6 315.41 ms 192.168.253.9

Figure 4.9: An nmap traceroute to a fake host behind DeTracer, while running on a physical
machine.

Having to add additional processing power in order to handle even one user running a
traceroute has some important implications for DeTracer and its deployment feasibility.
We posit that DeTracer’s intensive processing requirements leaves the deception highly
vulnerable to even modest Denial of Service (DOS) attacks. It is likely that an attacker
could reveal the deception simply by specifying that more probes be sent simultaneously
using the -N traceroute option [15]. An attacker could run a traceroute that only sent a
few probes simultaneously and see normal RTT values, then run a traceroute that sent large
numbers of probes simultaneously, perhaps from multiple machines at the same time.

From our experimentation, the traceroute with a small number of simultaneous probes
would display reasonable RTT values while the traceroute with a large number of simul-
taneous probes would return abnormal RTT values, where the delay became unreasonably
high as the number of packets being handled by DeTracer increased. This behavior was
identical to that depicted in Figure 4.2 but only appeared when the DeTracer host received
a large number of traceroute probes simultaneously. We leave the further investigation and
resolution of this DOS pitfall to future work.

4.1.3 Public IP Setup
The final phase of our experimentation was to deploy DeTracer on the public Internet.
To successfully deploy DeTracer, we required the upstream router and network to permit
spoofed-source IP addresses. In typical operation, DeTracer assumed that it was operating
at the network ingress, where it observed all packets destined to the entire network prefix.
However, in our deployment, DeTracer ran on a machine with a single globally routable
IP address where only packets to that single destination arrived at the host. We therefore
adjusted DeTracer to operate at a single IP address and present a deceptive path to any

39



traceroute probe directed at that single IP address. Modifying DeTracer for this use case
was a matter of simplification. Instead of having to check the destination IP address of
the incoming traceroute probe and determine whether that host should be active, DeTracer
simply had to inspect the TTL of the incoming packet. Then, DeTracer would respond
with a spoofed ICMP message using the source IP address corresponding to the hop at
which the incoming probe would have expired in the fake topology. If the TTL of the
incoming traceroute probe was high enough to reach barf.cmand.org (38.68.239.50) in the
false topology, DeTracer responded with an ICMP message with 38.68.239.50 as the source
IP address. We hope to deploy DeTracer at an ingress router to provide deception over a
larger network in the future.

In this setup, depicted in Figure 4.10, DeTracer ran on a Fedora 19 VM. The physical
machine the VM ran on had much more computing resources than the physical machine
in Section 4.1.1. In addition, the host was operating as a web server, which remained
accessible throughout our experimentation with DeTracer. We found that DeTracer was
able to deceive every method of traceroute that we tested it against. In our experimen-
tation, we noted that when DeTracer was overloaded with packets, it exhibited the same
unrealistic delay problems that we found in Section 4.1.1. It appeared that when more
than approximately 16 simultaneous probes were in flight, that the RTT values returned
by DeTracer began to grow exponentially and lose the realistic delay properties we saw in
Section 4.1.2. When we used the CAIDA Ark infrastructure to probe the deceptive host,
the deceptive topology was presented but the RTT values seen were unpredictable. Some
traces exhibited the increasing delay with some variance that we would expect to see in a
real trace but others had unrealistically large RTTs (higher than 5 seconds for example).
An example of a trace with realistic delay is depicted in Figure 4.11.

.
Figure 4.10: The logical layout of the DeTracer host in the Public IP setup.

40



traceroute from 46.20.241.26 to 38.68.239.50

1.1: 46.20.241.25 87.114 ms

2.1: 46.20.251.33 0.695 ms

...

10.1: 38.127.193.146 88.014 ms

11.1: 38.68.238.13 88.634 ms

12.1: 82.128.128.21 141.727 ms

13.1: 124.235.67.33 176.315 ms

14.2: 103.7.146.140 165.579 ms

15.1: 23.92.63.80 194.143 ms

16.2: 131.173.201.39 201.595 ms

17.1: 178.104.206.188 231.021 ms

18.1: 115.4.245.211 238.672 ms

19.1: 18.187.58.76 253.040 ms

20.1: *

21.2: 1.162.93.232 571.000 ms

22.2: 99.51.213.43 691.460 ms

23.1: 222.96.12.66 482.984 ms

24.1: 35.97.41.110 503.285 ms

25.1: 213.110.125.46 889.228 ms

26.1: 17.97.111.250 360.243 ms

27.1: 178.55.74.161 372.773 ms

28.1: 115.192.134.11 393.628 ms

29.1: *

30.1: 58.125.71.50 461.610 ms

31.1: 4.93.82.132 714.448 ms

32.1: 105.39.221.28 760.313 ms

33.2: 108.227.107.71 475.934 ms

34.2: 131.160.37.215 963.697 ms

35.2: 146.148.157.227 499.265 ms

36.1: 181.250.205.174 516.664 ms

37.2: 182.13.127.230 580.447 ms

38.1: 93.155.237.183 951.322 ms

39.1: 5.155.163.98 565.988 ms

40.1: 38.68.239.50 558.967 ms

Figure 4.11: A traceroute from an Ark node to DeTracer on the public Internet depicting
realistic RTT values.

An example of a traceroute from an Ark node to DeTracer that returned infeasible RTT
values is seen in Figure 4.12. As DeTracer was flooded with packets, the RTT in the probe
increased all the way up to 3105ms for hop 30 in the traceroute. As the rate of incoming

41



packets decreased toward the end of the traceroute in Figure 4.12, the delay values returned
to feasible values. Another interesting result of this phase of experimentation was that it
disproved our theory in Section 4.1.1 as to the cause of the unrealistic delay problem. We
originally postulated that the unrealistic delays were a result of the DeTracer host’s CPU
being overloaded. However, in this experiment, the DeTracer host’s CPU usage never went
above 10% even when it was overloaded with packets and returning poor RTT results.
Our use of the sleep function in DeTracer blocked the program from handling a traceroute
packet quickly and moving to the next packet in the queue. Without the time.sleep() func-
tion, DeTracer was able to handle up to 60 simultaneous traceroute probes while returning
constant RTT values. This is demonstrated by the traceroute results in Figure 4.13.

42



traceroute from 46.20.241.26 to 38.68.239.50

1.1: 46.20.241.25 0.581 ms

2.1: 46.20.251.33 5.303 ms

...

9.1: 154.54.28.109 88.529 ms

10.1: 38.127.193.146 87.937 ms

11.1: 38.68.238.13 88.689 ms

12.2: 174.122.170.68 217.962 ms

13.1: 193.129.47.125 495.234 ms

14.1: 203.155.133.64 578.824 ms

15.1: *

16.2: 122.195.214.177 1117.945 ms

17.1: *

18.1: 175.7.72.230 1561.162 ms

19.1: 39.144.111.154 1790.308 ms

20.3: 16.66.16.198 2088.839 ms

21.2: 121.215.26.151 2674.231 ms

22.1: 201.200.241.128 2951.338 ms

23.1: 86.46.194.229 2546.826 ms

24.3: 99.2.30.31 1796.244 ms

25.1: 106.19.154.35 3222.026 ms

26.1: 211.198.137.20 2856.547 ms

27.2: 72.22.243.91 1967.971 ms

28.1: 89.113.21.77 2401.777 ms

29.3: 85.188.150.218 2802.994 ms

30.1: 91.231.165.233 3405.960 ms

31.1: 96.21.210.229 2813.394 ms

32.2: 172.210.71.45 2514.100 ms

33.1: 199.211.68.190 3105.480 ms

34.2: 39.143.109.63 1792.432 ms

35.1: 37.193.101.203 2157.786 ms

36.1: 24.124.130.74 1521.912 ms

37.1: 71.228.6.187 1342.317 ms

38.2: 210.183.59.228 550.271 ms

39.1: 144.110.180.108 590.116 ms

40.1: 38.68.239.50 546.006 ms

Figure 4.12: A traceroute from an Ark node to DeTracer on the public Internet depicting
unrealistic RTT values.

43



traceroute from 196.216.3.6 to 38.68.239.50

1.1: 196.216.3.2 1.353 ms

2.1: 196.216.3.130 0.438 ms

...

11.1: 154.54.6.169 252.486 ms

12.1: 38.127.193.146 252.320 ms

13.1: 38.68.238.13 263.369 ms

14.1: 54.204.190.94 276.256 ms

15.1: 1.129.222.254 283.534 ms

16.3: 216.86.64.202 284.812 ms

17.1: 92.93.50.114 286.145 ms

18.2: 108.193.152.208 286.336 ms

19.1: 99.194.80.171 273.403 ms

20.1: 221.84.123.120 278.096 ms

21.1: 68.39.204.165 275.005 ms

22.1: 189.47.216.207 277.652 ms

23.1: 104.90.154.223 276.043 ms

24.1: 109.25.247.4 282.534 ms

25.2: 205.100.192.196 278.901 ms

26.1: 181.154.197.8 276.327 ms

27.2: 216.134.187.53 279.523 ms

28.3: 81.169.153.204 279.647 ms

29.3: 143.235.86.11 289.382 ms

30.2: 126.100.233.29 282.836 ms

31.2: 133.121.130.56 277.917 ms

32.1: 110.133.90.239 277.174 ms

33.1: 15.120.29.16 275.732 ms

34.2: 36.79.105.13 277.750 ms

35.2: 129.49.145.132 285.069 ms

36.1: 37.180.110.203 283.349 ms

37.3: 200.39.23.57 279.990 ms

38.2: 128.131.61.199 278.806 ms

39.1: 208.161.64.71 280.431 ms

40.1: 147.149.174.144 282.803 ms

41.1: 54.74.15.233 280.214 ms

42.1: 38.68.239.50 254.734 ms

Figure 4.13: A traceroute from an Ark node to DeTracer on the public Internet with a single
queue, no artificial delay added, and numerous simultaneous traceroutes being performed.

44



This led us to attempt to perform load balancing using multiple nfqueue queues and multi-
ple DeTracer instances. We created 32 nfqueue queues and 32 separate DeTracer instances,
each attached to its own queue of packets. While this approach was ineffective in our orig-
inal VM setup, it vastly improved DeTracer’s performance when running on a machine
with enough processing power to support numerous DeTracer instances. When running
32 instances of DeTracer, we were able to return realistic RTT values for as many as 100
simultaneous probes. We did not do further stress testing to determine the maximum load
that this iteration of DeTracer could handle.

In this phase of experimentation, we presented several false topologies to traceroute probes.
The first topology introduced 29 false nodes between the prober and the end of the tracer-
oute path, each of which was a randomly selected IP address. As a result, each time a
traceroute was performed to barf.cmand.org, DeTracer returned a completely different path
to the end host. Responding with a path of random IP addresses was not the only manner in
which DeTracer was deployed, but merely the first topology we tested in this experiment.
Figures 4.11 and 4.12 depict sample results of the topology presented. The deception began
at hop 12 in both Figure 4.11 and Figure 4.12. More traceroute results ran from various
Ark nodes are contained in the appendix.

The second false topology we presented emulated a network path performing load-
balancing between three separate paths to an end host. Figure 4.14 depicts the three pos-
sible paths to the end host. Load-balancing decisions were based upon the header values
of source IP address, destination IP address, packet protocol, source port, and destination
port. Packets for which those header values were the same were directed to the same path.
This was accomplished by computing the hash of the 5-tuple of header values, and choos-
ing the path presented based upon that hashed value. Real routers perform load-balancing
based on the hash value of the same 5-tuple of header values. As such, DeTracer mimicked
real-world router load-balancing.

45



traceroute to 38.68.239.50 (38.68.239.50), 30 hops max, 60 byte packets

1 216.66.30.101 (216.66.30.101) 11.194 ms 1.271 ms 0.335 ms

2 62.115.49.173 (62.115.49.173) 2.218 ms 0.217 ms 0.430 ms

3 213.248.85.106 (213.248.85.106) 0.841 ms 0.254 ms 26.671 ms

4 154.54.31.9 (154.54.31.9) 1.160 ms 0.415 ms 35.634 ms

5 154.54.80.162 (154.54.80.162) 7.415 ms 0.734 ms 47.750 ms

6 154.54.6.169 (154.54.6.169) 7.074 ms 9.660 ms 191.300 ms

7 38.127.193.146 (38.127.193.146) 6.926 ms 12.823 ms 190.396 ms

8 38.68.238.13 (38.68.238.13) 7.888 ms 19.142 ms 207.268 ms

9 38.68.213.2 (38.68.213.2) 65.649 ms

(38.68.213.1) 19.799 ms

(38.68.213.5) 227.760 ms

10 38.68.215.128 (38.68.215.128) 76.154 ms

(38.68.215.129) 20.692 ms

(38.68.215.130) 238.638 ms

11 38.68.215.5 (38.68.215.5) 101.808 ms

(38.68.215.1) 138.944 ms

(38.68.215.3 ) 255.797 ms

12 38.68.239.13 (38.68.239.13) 176.163 ms

(38.68.239.1) 201.011 ms

(38.68.239.1) 256.995 ms

13 38.68.239.1 (38.68.239.1) 278.909 ms 293.682 ms

(38.68.239.103) 543.203 ms

14 38.68.239.101 (38.68.239.101) 382.917 ms 392.524 ms

(38.68.239.117) 453.987 ms

15 38.68.239.50 (38.68.239.50) 444.500 ms 397.532 ms 358.433 ms

Figure 4.14: An UDP traceroute to DeTracer on the public Internet portraying a load-
balancing network.

The third topology we presented was a simple routing loop. In this topology, DeTracer
returned a traceroute path that traversed the same three IP addresses twice before finally
arriving at the end host. An example result from this experiment is shown in Figure 4.15.

46



Tracing route to barf.cmand.org [38.68.239.50]

over a maximum of 80 hops:

1 1 ms 1 ms 1 ms 192.168.1.1

2 8 ms 9 ms 9 ms 67.188.20.1

3 9 ms 10 ms 10 ms 68.87.198.33

4 14 ms 21 ms 13 ms 68.87.192.45

5 22 ms 18 ms 15 ms 68.86.86.102

6 15 ms 16 ms 16 ms 68.86.86.126

7 99 ms 30 ms 18 ms 50.248.118.238

8 20 ms 15 ms 16 ms 154.54.7.173

9 59 ms 59 ms 59 ms 154.54.30.54

10 70 ms 64 ms 65 ms 154.54.6.86

11 72 ms 76 ms 73 ms 154.54.44.86

12 93 ms 89 ms 94 ms 154.54.29.222

13 86 ms 93 ms 89 ms 154.54.41.53

14 86 ms 86 ms 86 ms 38.127.193.146

15 87 ms 95 ms 89 ms 38.68.238.13

16 160 ms 149 ms 146 ms 38.68.239.100

17 159 ms 170 ms 151 ms 38.68.239.110

18 167 ms 182 ms 169 ms 38.68.239.100

19 188 ms 200 ms 199 ms 38.68.239.110

20 212 ms 226 ms 205 ms 38.68.239.100

21 218 ms 230 ms 219 ms 38.68.239.110

22 205 ms 338 ms 204 ms 38.68.239.50

Figure 4.15: A sample traceroute to DeTracer on the public Internet portraying a routing
loop.

The final topology we presented was designed to demonstrate the possibility of spoofed
AS adjacencies and its importance. In this experiment, we chose the path depicted in
Figure 4.16. The false results began at hop 16 in the diagram. This false traceroute path
began at 64.69.48.1 and 64.69.59.3. These IP addresses belonged to a prefix advertised
by AS 15147, which was the U.S. Department of Homeland Security (DHS). The next IP
address, 101.16.13.1, was advertised by China Unicom. 175.45.176.55 belonged to a prefix
owned by Star Joint Venture Co., the only ISP in North Korea. 112.91.128.17 also belonged
to China Unicom. We selected this route because North Korea depended on China Unicom
as its main AS provider [26]. Additionally, we wanted to demonstrate that it was possible
for DeTracer to present false AS adjacencies that would be extremely alarming.

47



Tracing route to barf.cmand.org [38.68.239.50]

over a maximum of 80 hops:

1 1 ms 2 ms 2 ms 192.168.1.1

2 20 ms 10 ms 11 ms 67.188.20.1

3 20 ms 9 ms 10 ms 68.87.198.33

4 17 ms 15 ms 15 ms 68.86.143.10

5 17 ms 33 ms 14 ms 68.86.86.102

6 18 ms 16 ms 16 ms 68.86.86.126

7 24 ms 17 ms 15 ms 50.248.118.238

8 16 ms 23 ms 21 ms 154.54.7.173

9 61 ms 65 ms 60 ms 154.54.30.54

10 65 ms 65 ms 69 ms 154.54.6.86

11 80 ms 74 ms 73 ms 154.54.44.86

12 86 ms 92 ms 89 ms 154.54.29.222

13 87 ms 94 ms 87 ms 154.54.41.53

14 90 ms 87 ms 87 ms 38.127.193.146

15 88 ms 91 ms 87 ms 38.68.238.13

17 161 ms 168 ms 169 ms 64.69.48.1

18 198 ms 184 ms 188 ms 64.69.59.3

19 197 ms 183 ms 202 ms 101.16.13.1

20 213 ms 207 ms 196 ms 175.45.176.55

21 213 ms 213 ms 225 ms 112.91.128.17

22 229 ms 235 ms 234 ms 38.68.239.1

23 228 ms 227 ms 221 ms 38.68.239.50

Figure 4.16: A sample traceroute to DeTracer on the public Internet portraying the Depart-
ment of Homeland Security being AS adjacent to China Unicom and STAR-KP in North
Korea.

48



CHAPTER 5:

CONCLUSION

This thesis delved into an active defense strategy to combat network mapping attacks. We
demonstrated an effective method of presenting false network topologies to all variants of
traceroute probes without disrupting normal network operations such as serving web pages.
This deceptive technique, dubbed DeTracer, can be implemented on an ingress router to
protect an entire network or on a single node to emulate the existence of an arbitrarily large
fake topology. We next examine questions generated by our research that are left for future
research.

5.1 Future Work
While our implementation accomplishes the essentials of presenting a deceptive network
topology, there remain numerous points of interest that warrant further investigation and
improvement. Future work includes incorporating more realistic delay models into the
deception, adding support for Internet Protocol version 6 (IPv6), handling non-traceroute
inbound traffic, and measuring the success of the deception.

5.1.1 Investigate Realistic Delay Models
One key aspect of future work in DeTracer is pinpointing the underlying cause of instances
of unrealistic delay values presented to an attacker. These unrealistic delays are especially
acute when DeTracer is overwhelmed with packets. Some possible explanations for the
poor deceptive performance in these situations are the additional delay incurred by running
inside a VM instead of directly on hardware and simply the delay of bringing a packet to
user space before performing the packet parsing and crafting the spoofed response. Addi-
tionally, DeTracer’s use of the Python sleep function in order to inject artificial delay into
responses to traceroute probes may be detrimental to DeTracer’s performance. While this
problem seemed to be remedied by employing multiple queues and DeTracer processes,
it may be possible to inject delay in another manner that does not cause a bottleneck for
traceroute probe responses. It is possible that if we were able to shift some of the load to
kernel space, we would see better performance from DeTracer in high usage situations.

49



After fixing causes of excessive queuing in DeTracer, we can delve into creating more
realistic delay values for traceroute probes. In our implementation, we used the incoming
probe’s TTL value with some randomness added in order to present an increasing, non-
deterministic delay to the attacker. There are several possible methods of implementing a
more realistic delay model worth investigating:

• One possibility is to use empirical data of traceroute probes from the University of
California San Diego’s CAIDA research project to build a model for our network
[39].

• Another option is to have a separate node in our network with a real, physical link that
we can ping or probe in order to obtain a realistic round trip time for a packet inside
our network. The delay that our deception returns would be a function of this round
trip time and the number of hops the traceroute probe was expected to take before
timing out. One potential disadvantage with this method is that it is unlikely for there
to be much fluctuation in the delay times or in packet loss on a link that is reserved
specifically for this purpose. There is also the additional work of maintaining a server
simply in order to respond to pings. Additionally, this deployment scheme would
make DeTracer dependent upon a second machine, which could potentially fail.

• We could ping nodes within our network to get this information, but this comes with
the problem of generating unwanted and unnecessary traffic on our network. This
method keeps our deception entirely contained within our network and practices good
Internet citizenship.

• A fourth possible solution would be to ping a web server outside of our network and
take advantage of the inherent load and queuing of the greater Internet to give us the
realistic delay and loss that we need.

5.1.2 IPv6
Our implementation of DeTracer currently operates exclusively in Internet Protocol version
4 (IPv4). While this is a good starting point, the increasing adoption of IPv6 means that
we will have to implement support for IPv6 as well [40]. There is nothing fundamentally
different about the way traceroute functions in IPv6 versus IPv4. Thus, we believe the ad-
dition of IPv6 support to DeTracer would be accomplished simply by adding an IPv6 filter
to ingress traffic and changing the IP addresses in the Python graph object that DeTracer

50



ingests to IPv6 addresses.

One dynamic that IPv6 adds is the sheer vastness of the address space. The relative sparsity
of real hosts in such a large address space may make implementing a credible deception
scheme more straightforward than in the IPv4 space. In the IPv4 address space, it is feasible
for an attacker to perform traceroutes for every host on a particular target subnet. This same
exhaustive approach becomes impractical in the IPv6 space because of the large number
of possible IP addresses on each network. This might mean that it is less likely for an
attacker to send traceroute probes to a target network, making our deception scheme less
valuable. However, because host discovery is such a difficult task in IPv6, traceroutes to
known active hosts may prove to be an effective means of finding live hosts on a network.
This would make our deception scheme more valuable against attackers because it would
allow us to present fake nodes to an attacker and rendering them incapable of finding the
true hosts on our network.

5.1.3 Investigate Effect on Normal Network Traffic
Before DeTracer can be feasibly deployed in a production network, we must fully under-
stand its effect on the legitimate traffic on the network. If we cannot be sure that DeTracer
will not have a negative impact of the intended operations of the network (whether it be
web browsing, email, or any other application), we cannot hope to deploy it in a live envi-
ronment. We investigated this problem to a small extent by placing a web server behind the
DeTracer deception in our experiments. While the web server functionality was unaffected,
this small experiment is far from sufficient proof that DeTracer will not have a detrimental
effect on normal network operations. We would like to investigate whether DeTracer has
a significant effect on network bandwidth, latency for other applications running on the
network, and its impact on the workload for ingress routers where it is deployed.

5.1.4 Handling Non-traceroute Traffic
In order to present a truly convincing false topology, DeTracer will have to incorporate
responses to other types of network traffic besides traceroute probes. For example, if a
node appears in a traceroute presented by DeTracer but does not correspond to a real host
on the network, DeTracer should then respond to all traffic sent to that host. If an attacker
were to ping one of these faked hosts in DeTracer’s current implementation, they would

51



receive no response and likely suspect that there is something suspicious about the tracer-
oute results they have seen. There is likely no legitimate reason why a host would respond
to an ICMP traceroute probe but not respond to a direct ICMP Echo Request. Firewalls
that block ICMP messages or hosts that do not respond to ICMP messages typically filter
all ICMP messages, not just certain types. It is conceivable that a firewall could block
ICMP Echo Reply messages but not ICMP Time Exceeded messages, but this is extremely
unlikely. Hence, DeTracer must be able to detect traffic that is headed toward fake hosts
in its deceptive topology and send spoofed responses for all traffic, or at least ICMP Echo
Requests. Otherwise, an attacker can easily discover that there is no actual host at the re-
ported IP address. An alternative solution to this problem would be to combine DeTracer
with a tool such as LaBrea Tarpit that would respond to traffic on the network destined for
non-existent hosts.

We foresee two possible deployment strategies for DeTracer. One complication that De-
Tracer must deal with in order to present a believable deception is what to do in the case
that a real host in our network is running a publicly addressable service such as a web
server or mail server. Suppose for example that we have a real web server on our network
that is two hops away from the ingress router on which DeTracer is running. Suppose fur-
ther that in DeTracer’s presented fake topology, the web server is ten hops away from the
ingress router. When an attacker runs a traceroute to the web server, they will see RTT
values that correspond to the web server being ten hops away, specifically the delay will
be longer. These increasing RTT values are caused by DeTracer injecting artificial delay
into the traceroute responses as the TTL increases. This behavior makes the TTLs more
realistic. If they simply connect to the web page, however, the RTT of the TCP packets
coming from the web server will reflect that the web server is only two hops away from
the ingress router, and the RTT of these packets will be much lower than those seen in the
traceroute probes. These conflicting RTT values would be very suspicious to an attacker
and likely reveal that there is deception happening on the defended network. A convincing
fake topology in a setup like this would either have to delay types of traffic besides tracer-
oute traffic leaving the network, or present a fake topology that closely mirrored the true
topology in terms of the number of hops between the ingress router and the destination host
on the network.

52



The second and more simplistic use case is where DeTracer is deployed on a network where
there are no legitimate hosts and no services running on the network. In this scenario, the
deception presented by DeTracer would be more difficult to detect because there would
be less information leaked about the state of the network behind DeTracer. An attacker
would not be able to perform the attack outlined in the previous example in order to de-
cloak the deception because all traffic returned from the network would be originating from
DeTracer.

5.1.5 Hardware and Performance Requirements
All of our experiments involved simple setups where we used the equipment we had read-
ily available. Future work should investigate specific hardware requirements that DeTracer
needs for production deployment without impacting other network applications. If we de-
termine the amount of computing resources DeTracer needs in order to process packets at
a certain rate, we can deploy DeTracer in a manner that would prevent it from being inun-
dated with packets and performing poorly. This line of inquiry goes along with the future
work outlined in Section 5.1.1 in that it would allow us to determine how much traceroute
traffic DeTracer could feasibly handle without presenting unrealistic delay times. Although
employing load-balancing and multiple DeTracer instances greatly improved DeTracer’s
ability to handle an influx of traceroute probes, we would like to optimize DeTracer so that
it is not so susceptible to being overloaded with traceroute probes. We hope to address
this weakness by investigating what are the hardware requirements of DeTracer to keep
up with an influx of traceroute traffic, and by making DeTracer operate more efficiently.
Some possible methods of improving DeTracer’s efficiency include moving as much of the
deception work into kernel space as possible (instead of bringing the packets up to user
space) and implementing DeTracer using a programming language that allows for superior
performance, such as C.

In this research, we focused on deployed DeTracer on a Linux host that was functioning as
a router. In the future, we would like to deploy the same DeTracer functionality directly on
routers. One particularly interesting research area would be the use of Software-Defined
Networking (SDN) to present false responses to traceroute probes [41]. However, Open-
Flow currently does not support flow rules based on the TTL field of incoming packets,
which prevents us from being able to detect incoming traceroute probes. We believe that

53



once this TTL filtering is added, it will be possible to implement DeTracer functionality in
SDN switches and routers.

5.1.6 Multiple Ingress Points
Most production networks do not have only one ingress router to allow traffic in and out of
their network. As such, DeTracer needs to support the capability to be deployed at several
ingress points to a network and have each router present a false topology that is consistent
with the others. While we did not attempt to deploy DeTracer at multiple points in this
work, we believe that it would be a straightforward extension of the current functionality.
Because DeTracer simply ingests a Python graph object and which node it is running on in
that graph, we can create multiple DeTracer instances on different nodes simply by passing
in the same graph object to all of them and altering which node that DeTracer is configured
with on a per node basis.

5.1.7 Deceptive Topologies Presented
In this thesis, we presented two fake topologies on the public Internet. There are numerous
further tricks that we might play with our deceptive topologies. We discussed some of these
in depth in Section 2.4. We only began to delve into all the possible false topologies that
DeTracer has the capability of presenting. We leave to future work the deployment of false
topologies that are more interesting, tailored to a defender’s specific goal, or designed to
influence an adversary in a particular manner.

5.1.8 Success of Deception
Perhaps the most essential future work for this research is a study into the believability of
the presented deception. There are two levels of believability that we seek. The first level
involves deceiving an automated topology collection engine such as Ark. We believe that
this level of believability is easier to obtain and that DeTracer in its current form is fully
capable of deceiving an automated topology measurement tool.

The second level of believability involves deceiving a human operator who is probing the
defended network. This level of believability should prove more difficult to obtain. In our
work, we did not perform any experiments pitting DeTracer against a human adversary. In
order to examine DeTracer’s believability to a human adversary, we would like to perform a

54



Red Team analysis of our DeTracer tool. A useful experiment would be to have Red Team
members attempt to map several experimental networks. Some of these networks would be
real topologies and some would be false topologies presented by DeTracer. The Red Team,
armed with the knowledge that some of the presented networks were not real, would probe
all the networks in an attempt to determine which ones were real and which were faked.
This would give us an idea of how effective DeTracer is in practice. Additionally, it will
likely reveal shortcomings to our deception model not presently accounted for. A thorough
Red Team analysis would tell us what other information that DeTracer is leaking that indi-
cates a fake topology. For example, the Red Team might observe bandwidth limitations on
the target network, RTT values that are unrealistic, or some other weakness that we have
not foreseen. These clues might reveal to a potential attacker that there is deception on the
defended network. The revelation of these weaknesses and information leaks would allow
us to improve DeTracer.

5.2 Concluding Remark
Every day, we are bombarded with reminders of the importance of the cyber domain to our
lives and to the DOD. It is integral that we continually strive to create novel technologies
for securing our military and civilian networks. This thesis has presented a novel imple-
mentation of active network defense through topology deception. While DeTracer remains
a proof of concept in its infancy, we believe that it can complement other network defense
strategies.

55



THIS PAGE INTENTIONALLY LEFT BLANK

56



APPENDIX: Traceroute Experiment Results

A.1 Long Path Traceroute Results
A.1.1 Ark Commands Run
11 bre-de trace 38.68.239.50

12 sjc2-us trace 38.68.239.50

13 pry-za trace 38.68.239.50

14 jfk-us trace 38.68.239.50

15 gva-ch trace 38.68.239.50

16 dac-bd trace 38.68.239.50

17 cbg-uk trace 38.68.239.50

18 ams3-nl trace 38.68.239.50

19 bjc-us trace 38.68.239.50

20 yyz-ca trace 38.68.239.50

21 per-au trace 38.68.239.50

A.1.2 Ark Results
traceroute from 192.168.1.130 to 38.68.239.50

1.1: 192.168.1.1 0.582 ms

2.1: *

3.1: 83.169.158.102 8.571 ms

4.1: 88.134.193.137 9.369 ms

5.1: 88.134.238.165 15.524 ms

6.1: 88.134.202.19 17.748 ms

7.1: 62.115.9.9 13.162 ms

8.1: 213.155.135.92 16.131 ms

9.1: 62.115.142.15 21.940 ms

10.1: 130.117.14.89 17.083 ms

11.1: 130.117.48.114 23.747 ms

12.1: 154.54.62.77 28.558 ms

13.1: 154.54.28.109 107.783 ms

14.1: 38.127.193.146 110.316 ms

57



15.1: 38.68.238.13 116.908 ms

16.1: 27.97.169.70 158.175 ms

17.1: 116.185.154.172 180.054 ms

18.1: 132.151.96.66 195.040 ms

19.1: 17.44.248.173 205.984 ms

20.1: 120.14.251.208 308.950 ms

21.1: 63.157.7.107 355.214 ms

22.1: 166.107.142.229 555.238 ms

23.1: 21.223.246.128 598.470 ms

24.1: 108.133.166.116 396.015 ms

25.1: 168.230.9.28 413.122 ms

26.1: 59.180.28.180 559.295 ms

27.1: 111.171.169.106 423.691 ms

28.1: 71.146.122.233 435.879 ms

29.2: 163.231.59.187 430.234 ms

30.1: 44.236.209.213 501.057 ms

31.1: 67.122.52.80 542.323 ms

32.1: 91.207.199.59 541.049 ms

33.1: 37.122.213.33 828.111 ms

34.1: 123.3.17.130 625.317 ms

35.1: 20.155.146.152 1056.007 ms

36.1: 136.217.179.9 607.045 ms

37.2: 41.169.163.86 493.022 ms

38.1: 21.4.139.61 732.351 ms

39.1: 58.149.50.55 527.595 ms

40.1: 195.54.119.26 541.505 ms

41.1: 52.85.173.110 737.368 ms

42.1: 176.204.38.32 559.884 ms

43.2: 114.184.173.93 914.421 ms

44.1: 38.68.239.50 574.913 ms

traceroute from 196.216.3.6 to 38.68.239.50

1.1: 196.216.3.2 1.890 ms

2.1: 196.216.3.130 0.450 ms

58



3.1: 196.37.155.178 0.438 ms

4.1: 168.209.1.162 4.119 ms

5.1: 168.209.246.65 174.730 ms

6.1: 149.6.148.129 164.477 ms

7.1: 130.117.49.89 164.913 ms

8.1: 130.117.50.202 175.216 ms

9.1: 154.54.30.185 244.583 ms

10.1: 154.54.80.162 243.254 ms

11.1: 154.54.6.169 252.910 ms

12.1: 38.127.193.146 252.671 ms

13.1: 38.68.238.13 251.206 ms

14.1: 215.47.166.220 303.079 ms

15.2: 59.9.245.222 323.556 ms

16.1: 104.85.118.189 419.160 ms

17.1: 1.85.221.83 344.495 ms

18.2: 138.145.155.197 407.774 ms

19.2: 172.232.8.170 510.902 ms

20.1: 36.133.214.225 394.457 ms

21.1: 141.165.77.157 428.702 ms

22.2: 39.143.46.143 428.350 ms

23.1: 199.79.109.185 481.618 ms

24.1: 192.2.57.182 516.589 ms

25.1: 223.137.123.195 540.096 ms

26.1: 217.153.44.47 812.123 ms

27.1: 208.174.28.50 603.000 ms

28.2: 163.29.135.65 515.511 ms

29.1: 156.79.249.127 753.645 ms

30.1: 70.163.124.31 775.834 ms

31.1: *

32.1: 204.96.2.59 570.862 ms

33.1: 162.108.236.74 602.353 ms

34.1: 210.222.193.156 625.951 ms

35.1: 142.244.141.83 698.822 ms

36.1: 208.104.240.166 1099.121 ms

59



37.2: 126.86.97.46 1159.302 ms

38.1: 146.124.116.46 1221.549 ms

39.2: 203.192.253.161 788.855 ms

40.1: 122.239.196.100 899.257 ms

41.1: 27.44.225.69 931.592 ms

42.1: 38.68.239.50 1317.835 ms

traceroute from 216.66.30.102 to 38.68.239.50

1.1: 216.66.30.101 6.797 ms

2.1: 62.115.49.173 2.053 ms

3.1: 213.248.85.106 2.027 ms

4.1: 154.54.31.9 0.998 ms

5.1: 154.54.80.162 7.011 ms

6.1: 154.54.6.169 7.035 ms

7.1: 38.127.193.146 7.035 ms

8.1: 38.68.238.13 7.806 ms

9.2: 130.204.142.138 67.400 ms

10.1: 198.167.199.73 88.386 ms

11.1: 83.106.89.112 103.985 ms

12.1: 147.198.199.2 127.334 ms

13.1: 67.134.16.105 126.744 ms

14.1: 46.220.40.138 213.006 ms

15.1: 142.114.32.93 234.708 ms

16.2: 139.82.1.163 168.245 ms

17.2: 197.29.234.111 250.909 ms

18.1: 166.179.111.6 337.334 ms

19.1: 86.91.34.196 373.704 ms

20.1: *

21.1: 150.183.233.211 244.667 ms

22.1: 137.169.185.17 274.667 ms

23.3: 189.67.52.59 475.935 ms

24.1: 70.234.111.14 647.209 ms

25.1: 15.27.16.41 317.138 ms

26.2: 187.245.114.3 326.049 ms

60



27.2: 81.97.174.234 637.042 ms

28.2: 91.129.248.73 917.164 ms

29.2: 86.74.138.87 371.072 ms

30.1: 146.185.98.239 408.599 ms

31.1: 134.240.150.31 879.030 ms

32.1: 68.248.22.112 913.226 ms

33.1: 108.200.45.138 944.088 ms

34.1: 90.180.212.119 1306.285 ms

35.3: 132.251.95.5 604.637 ms

36.1: 94.118.243.82 945.297 ms

37.1: 38.68.239.50 953.701 ms

traceroute from 46.20.241.26 to 38.68.239.50

1.1: 46.20.241.25 87.114 ms

2.1: 46.20.251.33 0.695 ms

3.1: 46.20.254.82 0.664 ms

4.1: 46.20.252.34 0.601 ms

5.1: 213.242.73.29 89.288 ms

6.1: 4.69.168.8 27.612 ms

7.1: 130.117.14.93 12.044 ms

8.1: 154.54.73.241 11.185 ms

9.1: 154.54.28.109 88.113 ms

10.1: 38.127.193.146 88.014 ms

11.1: 38.68.238.13 88.634 ms

12.1: 82.128.128.21 141.727 ms

13.1: 124.235.67.33 176.315 ms

14.2: 103.7.146.140 165.579 ms

15.1: 23.92.63.80 194.143 ms

16.2: 131.173.201.39 201.595 ms

17.1: 178.104.206.188 231.021 ms

18.1: 115.4.245.211 238.672 ms

19.1: 18.187.58.76 253.040 ms

20.1: *

21.2: 1.162.93.232 571.000 ms

61



22.2: 99.51.213.43 691.460 ms

23.1: 222.96.12.66 482.984 ms

24.1: 35.97.41.110 503.285 ms

25.1: 213.110.125.46 889.228 ms

26.1: 17.97.111.250 360.243 ms

27.1: 178.55.74.161 372.773 ms

28.1: 115.192.134.11 393.628 ms

29.1: *

30.1: 58.125.71.50 461.610 ms

31.1: 4.93.82.132 714.448 ms

32.1: 105.39.221.28 760.313 ms

33.2: 108.227.107.71 475.934 ms

34.2: 131.160.37.215 963.697 ms

35.2: 146.148.157.227 499.265 ms

36.1: 181.250.205.174 516.664 ms

37.2: 182.13.127.230 580.447 ms

38.1: 93.155.237.183 951.322 ms

39.1: 5.155.163.98 565.988 ms

40.1: 38.68.239.50 558.967 ms

traceroute from 64.71.191.54 to 38.68.239.50

1.1: 64.71.191.53 0.239 ms

2.1: 213.248.67.105 0.202 ms

3.1: 62.115.143.122 0.842 ms

4.1: 62.115.34.74 1.451 ms

5.1: 154.54.7.173 3.082 ms

6.1: 154.54.30.54 50.186 ms

7.1: 154.54.6.86 73.678 ms

8.1: 154.54.44.86 73.824 ms

9.1: 154.54.29.222 74.396 ms

10.1: 154.54.41.53 74.694 ms

11.1: 38.127.193.146 74.241 ms

12.1: 38.68.238.13 75.137 ms

13.2: 40.190.42.222 226.476 ms

62



14.1: 201.91.84.182 229.968 ms

15.1: 97.194.104.247 248.457 ms

16.2: 160.83.168.225 188.072 ms

17.1: 131.166.75.249 321.496 ms

18.1: 1.184.191.118 207.762 ms

19.2: 134.3.93.151 473.877 ms

20.1: 94.242.81.93 594.608 ms

21.1: 108.213.232.106 371.232 ms

22.3: 177.47.2.186 702.256 ms

23.2: 84.96.194.16 409.038 ms

24.2: 78.128.148.173 703.569 ms

25.1: 17.43.196.228 494.395 ms

26.2: 106.248.93.78 322.492 ms

27.1: 39.10.157.108 616.318 ms

28.1: 99.232.225.20 353.290 ms

29.2: 177.37.1.243 695.695 ms

30.2: 49.175.154.114 392.766 ms

31.1: 203.85.165.178 708.203 ms

32.2: 8.75.124.167 421.154 ms

33.3: 122.121.1.122 437.394 ms

34.1: 39.179.162.122 452.205 ms

35.2: 132.190.93.39 474.284 ms

36.1: 191.143.111.91 487.436 ms

37.1: *

38.1: 88.28.25.162 516.072 ms

39.1: 161.159.88.76 535.279 ms

40.1: 112.90.54.136 546.031 ms

41.1: 38.68.239.50 542.862 ms

traceroute from 206.108.0.41 to 38.68.239.50

1.1: 206.108.0.33 2.745 ms

2.1: 206.108.0.10 0.266 ms

3.1: 206.108.0.15 0.249 ms

4.1: 204.232.76.73 0.408 ms

63



5.1: 38.88.240.65 0.744 ms

6.1: 66.28.4.197 9.663 ms

7.1: 154.54.3.93 12.726 ms

8.1: 154.54.40.73 19.092 ms

9.1: 154.54.5.233 19.939 ms

10.1: 38.127.193.146 20.316 ms

11.1: 38.68.238.13 20.897 ms

12.2: 182.27.39.116 74.018 ms

13.1: 101.43.102.200 86.889 ms

14.1: 49.184.233.82 102.293 ms

15.2: 163.8.224.148 125.072 ms

16.1: 109.26.163.31 136.622 ms

17.1: 143.220.84.171 150.215 ms

18.1: 115.52.158.217 170.531 ms

19.1: 185.8.175.241 176.878 ms

20.1: 54.153.210.99 190.841 ms

21.1: 135.165.160.228 206.473 ms

22.1: 119.7.224.204 385.356 ms

23.1: 138.138.61.41 400.560 ms

24.1: 29.181.93.37 447.273 ms

25.2: 69.97.26.151 284.028 ms

26.1: 135.70.187.252 562.744 ms

27.1: 105.3.112.169 622.559 ms

28.1: 110.118.132.95 660.158 ms

29.1: 122.9.179.130 826.970 ms

30.1: 118.184.4.193 867.782 ms

31.1: 223.163.86.87 1018.383 ms

32.1: 176.97.201.236 939.263 ms

33.1: 128.198.26.221 1048.570 ms

34.1: 121.253.127.66 729.834 ms

35.1: 129.218.101.65 786.639 ms

36.1: 34.234.214.55 563.634 ms

37.1: 110.254.68.71 745.586 ms

38.1: 140.164.204.229 796.142 ms

64



39.1: 81.73.31.165 943.929 ms

40.1: 38.68.239.50 986.518 ms

traceroute from 113.197.9.170 to 38.68.239.50

1.1: 113.197.9.169 0.221 ms

2.1: 202.158.198.62 0.428 ms

3.1: 202.158.194.8 26.594 ms

4.1: 202.158.194.18 35.630 ms

5.1: 202.158.194.242 47.623 ms

6.1: 113.197.15.56 47.738 ms

7.1: 202.158.194.121 191.296 ms

8.1: 207.231.240.8 190.665 ms

9.1: 198.71.45.24 207.773 ms

10.1: 198.71.45.18 227.385 ms

11.1: 198.71.45.14 238.502 ms

12.1: 198.71.45.57 256.244 ms

13.1: 192.122.175.14 256.895 ms

14.1: 38.68.238.1 256.383 ms

15.2: 50.101.34.13 309.619 ms

16.2: 1.162.252.213 322.462 ms

17.2: 177.172.172.59 669.165 ms

18.1: 143.36.218.138 761.829 ms

19.2: 61.207.127.182 1137.242 ms

20.1: 145.122.123.210 721.473 ms

21.1: 50.119.231.116 778.697 ms

22.1: 13.119.180.30 771.056 ms

23.1: 100.243.94.7 976.406 ms

24.1: 32.88.200.85 999.187 ms

25.2: 182.216.161.152 463.503 ms

26.3: 163.23.113.8 481.112 ms

27.1: 87.60.182.78 1024.297 ms

28.1: 66.228.106.56 604.913 ms

29.1: 118.75.79.124 699.239 ms

30.1: 78.185.233.121 690.978 ms

65



31.1: 90.160.70.156 1014.179 ms

32.1: 195.199.31.230 1034.665 ms

33.1: 103.246.89.99 1464.301 ms

34.1: 156.29.82.103 776.733 ms

35.1: 105.204.171.97 813.046 ms

36.1: 67.19.38.183 1115.123 ms

37.1: 49.79.31.182 1154.460 ms

38.1: 107.38.217.89 856.002 ms

39.1: 139.137.92.92 690.867 ms

40.1: 90.144.254.155 699.605 ms

41.1: 1.223.202.197 710.223 ms

42.1: 56.114.83.146 793.422 ms

43.1: 38.68.239.50 1245.049 ms

traceroute from 119.40.82.245 to 38.68.239.50

1.3: 119.40.82.241 0.308 ms

2.1: 210.4.78.5 0.562 ms

3.1: 210.4.78.225 1.317 ms

4.1: 114.130.21.65 37.478 ms

5.1: 114.130.1.5 38.930 ms

6.1: 125.22.195.133 40.380 ms

7.1: 182.79.245.81 244.631 ms

8.1: 38.122.147.121 245.186 ms

9.1: 154.54.0.238 246.565 ms

10.1: 154.54.7.53 283.614 ms

11.1: 154.54.29.117 284.523 ms

12.1: 154.54.31.98 312.057 ms

13.1: 154.54.41.205 317.192 ms

14.1: 38.127.193.146 317.667 ms

15.1: 38.68.238.13 317.529 ms

16.2: 74.34.102.233 599.666 ms

17.1: 58.118.73.117 807.790 ms

18.1: 219.70.97.240 1053.057 ms

19.1: 195.147.188.169 840.766 ms

66



20.1: 33.248.88.81 1121.435 ms

21.1: 220.137.226.44 902.882 ms

22.2: 27.56.252.76 833.945 ms

23.1: 56.242.109.105 968.768 ms

24.1: 179.78.101.236 1014.310 ms

25.2: 97.229.142.195 508.206 ms

26.1: 35.99.43.62 822.865 ms

27.1: 159.152.154.37 821.828 ms

28.1: 149.209.157.174 733.310 ms

29.1: 193.94.202.6 746.372 ms

30.1: 146.133.151.90 594.404 ms

31.1: 49.134.118.249 609.201 ms

32.2: 189.162.77.211 643.271 ms

33.1: 38.207.4.179 643.886 ms

34.1: 213.21.102.146 986.213 ms

35.1: 101.74.74.248 666.142 ms

36.1: 78.195.207.104 683.414 ms

37.1: 42.71.180.194 1001.907 ms

38.1: 205.31.118.234 1006.739 ms

39.3: 20.133.185.252 1374.153 ms

40.1: 33.19.120.195 764.167 ms

41.1: 159.44.29.14 794.256 ms

42.1: 87.88.1.198 781.036 ms

43.1: 211.149.105.143 1515.136 ms

44.1: 38.68.239.50 939.820 ms

traceroute from 128.232.97.9 to 38.68.239.50

1.1: 128.232.97.2 24.836 ms

2.1: 193.60.89.5 0.341 ms

3.1: 192.84.5.137 0.347 ms

4.1: 192.84.5.94 0.414 ms

5.1: 146.97.130.1 0.298 ms

6.1: 146.97.37.185 2.623 ms

7.1: 146.97.33.17 24.058 ms

67



8.1: 62.40.124.197 5.931 ms

9.1: 62.40.98.81 13.415 ms

10.1: 62.40.98.128 20.165 ms

11.1: 62.40.125.18 122.108 ms

12.1: 192.122.175.14 115.508 ms

13.1: 38.68.238.1 116.112 ms

14.1: 83.190.47.69 161.559 ms

15.2: 32.237.170.236 190.433 ms

16.1: 107.52.146.131 204.683 ms

17.1: 175.245.204.21 213.035 ms

18.1: 174.95.98.177 229.396 ms

19.2: 115.124.184.69 298.334 ms

20.1: 92.117.139.159 398.431 ms

21.1: 164.9.130.64 420.094 ms

22.2: 213.58.170.23 305.462 ms

23.1: 67.94.217.76 524.286 ms

24.1: 175.122.75.4 547.019 ms

25.1: 216.152.173.172 716.090 ms

26.1: 80.173.244.79 774.463 ms

27.1: 221.27.67.68 878.011 ms

28.1: 108.166.214.105 1009.787 ms

29.1: 187.122.160.239 915.597 ms

30.1: 41.214.136.66 1047.252 ms

31.1: 131.48.165.55 716.405 ms

32.2: 88.136.37.142 1116.349 ms

33.2: 217.135.162.75 516.134 ms

34.1: *

35.1: 128.87.98.160 1062.742 ms

36.1: 31.69.163.252 757.621 ms

37.1: 54.187.115.67 794.010 ms

38.1: 108.107.92.70 825.927 ms

39.3: 76.29.37.161 570.037 ms

40.1: 145.99.44.31 1277.338 ms

41.1: 76.3.183.55 954.612 ms

68



42.1: 38.68.239.50 581.911 ms

traceroute from 209.245.28.50 to 38.68.239.50

1.1: 209.245.28.1 0.297 ms

2.1: 209.245.29.209 213.777 ms

3.1: *

4.1: 4.68.111.102 16.335 ms

5.1: 154.54.6.53 16.538 ms

6.1: 154.54.25.241 21.323 ms

7.1: 154.54.29.117 35.718 ms

8.1: 154.54.31.110 44.277 ms

9.1: 154.54.5.233 44.382 ms

10.1: 38.127.193.146 43.352 ms

11.1: 38.68.238.13 44.228 ms

12.1: 18.18.144.87 95.406 ms

13.1: 82.56.215.53 112.773 ms

14.1: 211.168.250.108 123.515 ms

15.1: 189.192.74.67 199.977 ms

16.1: 64.76.134.124 210.513 ms

17.3: 214.74.61.225 725.089 ms

18.2: 110.56.227.42 522.737 ms

19.1: 70.95.225.170 368.393 ms

20.1: 91.224.195.65 219.504 ms

21.1: 69.138.196.219 231.022 ms

22.1: 70.194.231.79 256.240 ms

23.3: 208.16.126.169 268.154 ms

24.1: 216.224.69.209 278.745 ms

25.1: 73.77.177.234 301.560 ms

26.1: *

27.1: 17.165.55.120 795.254 ms

28.1: *

29.1: 134.79.187.184 364.811 ms

30.1: 192.186.114.74 379.832 ms

31.1: 74.150.253.153 401.617 ms

69



32.1: 128.89.86.107 418.605 ms

33.1: 73.47.203.79 422.792 ms

34.2: 66.214.218.161 447.704 ms

35.2: 221.191.119.55 463.524 ms

36.2: 46.31.105.116 471.756 ms

37.1: 8.248.49.93 499.201 ms

38.1: 205.85.69.178 509.705 ms

39.1: 210.211.101.58 528.034 ms

40.1: 38.68.239.50 508.012 ms

traceroute from 193.0.0.168 to 38.68.239.50

1.1: *

2.1: 193.0.3.4 1.502 ms

3.1: 62.115.12.201 1.489 ms

4.1: 213.155.136.252 1.657 ms

5.1: 80.91.253.171 1.993 ms

6.1: 80.239.160.14 4.419 ms

7.1: 154.54.74.93 4.434 ms

8.1: 154.54.58.69 85.291 ms

9.1: 154.54.44.165 85.531 ms

10.1: 154.54.30.41 85.440 ms

11.1: 154.54.40.73 90.394 ms

12.1: 154.54.5.233 91.705 ms

13.1: 38.127.193.146 91.136 ms

14.1: 38.68.238.13 96.465 ms

15.1: 151.188.56.36 156.292 ms

16.2: 144.200.130.126 912.120 ms

17.1: 96.106.233.11 1042.972 ms

18.2: 118.228.210.122 611.188 ms

19.1: 151.18.251.246 963.487 ms

20.1: 221.54.95.145 998.395 ms

21.1: 210.76.194.4 905.889 ms

22.1: 184.116.147.19 976.287 ms

23.2: 214.142.131.137 399.440 ms

70



24.1: 121.218.74.108 439.588 ms

25.1: 149.238.135.19 309.418 ms

26.1: 62.71.127.183 488.503 ms

27.1: 55.126.250.69 781.324 ms

28.2: 206.42.130.205 347.625 ms

29.2: 71.51.88.164 798.272 ms

30.3: 133.19.6.113 1349.853 ms

31.1: 88.230.67.236 753.894 ms

32.2: 45.20.72.119 839.857 ms

33.1: 180.179.231.46 423.735 ms

34.1: 178.169.59.197 454.456 ms

35.1: *

36.1: 182.219.75.103 474.033 ms

37.2: 126.27.117.23 509.846 ms

38.1: 8.173.67.52 510.275 ms

39.3: 15.172.160.115 528.064 ms

40.1: 168.54.213.237 540.069 ms

41.1: 36.232.27.248 566.347 ms

42.1: 18.148.209.138 564.637 ms

43.1: 38.68.239.50 560.039 ms

A.2 Load-Balancing Path Traceroute Results
A.2.1 Ark Commands Run
11 bre-de trace 38.68.239.50

12 sjc2-us trace 38.68.239.50

13 pry-za trace 38.68.239.50

14 jfk-us trace 38.68.239.50

15 gva-ch trace 38.68.239.50

16 dac-bd trace 38.68.239.50

17 cbg-uk trace 38.68.239.50

18 ams3-nl trace 38.68.239.50

19 bjc-us trace 38.68.239.50

71



20 yyz-ca trace 38.68.239.50

21 per-au trace 38.68.239.50

A.2.2 Ark Results
traceroute from 216.66.30.102 to 38.68.239.50

1.1: 216.66.30.101 11.194 ms

2.1: 62.115.49.173 2.218 ms

3.1: 213.248.85.106 0.841 ms

4.1: 154.54.31.9 1.160 ms

5.1: 154.54.80.162 7.415 ms

6.1: 154.54.6.169 7.074 ms

7.1: 38.127.193.146 6.926 ms

8.1: 38.68.238.13 7.888 ms

9.1: 38.68.213.2 65.649 ms

10.1: 38.68.215.128 76.154 ms

11.1: 38.68.215.5 101.808 ms

12.1: 38.68.239.13 176.163 ms

13.1: 38.68.239.1 278.909 ms

14.1: 38.68.239.101 382.917 ms

15.1: 38.68.239.50 444.500 ms

traceroute from 206.108.0.41 to 38.68.239.50

1.1: 206.108.0.33 1.271 ms

2.1: 206.108.0.10 0.217 ms

3.1: 206.108.0.15 0.254 ms

4.1: 204.232.76.73 0.415 ms

5.1: 38.88.240.65 0.734 ms

6.1: 66.28.4.197 9.660 ms

7.1: 154.54.3.93 12.823 ms

8.1: 154.54.40.73 19.142 ms

9.1: 154.54.5.233 19.842 ms

10.1: 38.127.193.146 19.799 ms

11.1: 38.68.238.13 20.692 ms

72



12.1: 38.68.213.1 138.944 ms

13.1: 38.68.215.129 201.011 ms

14.1: 38.68.215.1 293.682 ms

15.1: 38.68.239.1 392.524 ms

16.1: 38.68.239.19 442.860 ms

17.1: 38.68.239.110 348.238 ms

18.1: 38.68.239.50 397.532 ms

traceroute from 64.71.191.54 to 38.68.239.50

1.1: 64.71.191.53 0.229 ms

2.1: 213.248.67.105 0.200 ms

3.1: 62.115.143.122 0.828 ms

4.1: 62.115.34.74 1.383 ms

5.1: 154.54.7.173 2.422 ms

6.1: 154.54.30.54 50.131 ms

7.1: 154.54.6.86 72.883 ms

8.1: 154.54.30.197 73.715 ms

9.1: 154.54.6.169 73.890 ms

10.1: 38.127.193.146 74.760 ms

11.1: 38.68.238.13 75.550 ms

12.1: 38.68.213.1 288.600 ms

13.1: 38.68.215.129 365.540 ms

14.1: 38.68.215.1 430.721 ms

15.1: 38.68.239.1 466.943 ms

16.1: 38.68.239.19 397.358 ms

17.1: 38.68.239.110 543.799 ms

18.1: 38.68.239.50 463.674 ms

traceroute from 128.232.97.9 to 38.68.239.50

1.1: 128.232.97.2 1.902 ms

2.1: 193.60.89.5 0.436 ms

3.1: 192.84.5.137 0.365 ms

4.1: 192.84.5.94 0.449 ms

5.1: 146.97.130.1 0.288 ms

73



6.1: 146.97.37.185 2.656 ms

7.1: 146.97.33.17 5.982 ms

8.1: 62.40.124.197 5.947 ms

9.1: 62.40.98.81 13.456 ms

10.1: 62.40.98.128 20.190 ms

11.1: 62.40.125.18 121.992 ms

12.1: 192.122.175.14 115.480 ms

13.1: 38.68.238.1 116.286 ms

14.1: 38.68.213.2 429.693 ms

15.1: 38.68.215.128 406.886 ms

16.1: 38.68.215.5 454.594 ms

17.1: 38.68.239.13 376.591 ms

18.1: 38.68.239.1 527.622 ms

19.1: 38.68.239.101 365.041 ms

20.1: 38.68.239.50 465.528 ms

traceroute from 196.216.3.6 to 38.68.239.50

1.1: 196.216.3.2 2.518 ms

2.1: 196.216.3.130 0.495 ms

3.1: 196.37.155.178 0.510 ms

4.1: 168.209.1.162 2.718 ms

5.1: 168.209.246.1 173.924 ms

6.1: 149.6.148.129 164.583 ms

7.1: 130.117.49.89 165.344 ms

8.1: 130.117.50.202 174.463 ms

9.1: 154.54.30.185 244.561 ms

10.1: 154.54.80.162 244.990 ms

11.1: 154.54.6.169 250.874 ms

12.1: 38.127.193.146 252.487 ms

13.1: 38.68.238.13 252.492 ms

14.1: 38.68.213.1 592.185 ms

15.1: 38.68.215.129 423.067 ms

16.1: 38.68.215.1 460.109 ms

17.1: 38.68.239.1 350.938 ms

74



18.1: 38.68.239.19 366.278 ms

19.1: 38.68.239.110 378.406 ms

20.1: 38.68.239.50 386.945 ms

traceroute from 113.197.9.170 to 38.68.239.50

1.1: 113.197.9.169 0.335 ms

2.1: 202.158.198.62 0.430 ms

3.1: 202.158.194.8 26.671 ms

4.1: 202.158.194.18 35.634 ms

5.1: 202.158.194.242 47.750 ms

6.1: 113.197.15.56 47.746 ms

7.1: 202.158.194.121 191.300 ms

8.1: 207.231.240.8 190.396 ms

9.1: 198.71.45.24 207.268 ms

10.1: 198.71.45.18 227.760 ms

11.1: 198.71.45.14 238.638 ms

12.1: 198.71.45.57 255.797 ms

13.1: 192.122.175.14 256.995 ms

14.1: 38.68.238.1 256.367 ms

15.1: 38.68.213.5 543.203 ms

16.1: 38.68.215.130 581.553 ms

17.1: 38.68.215.3 453.987 ms

18.1: 38.68.239.103 358.433 ms

19.1: 38.68.239.117 378.042 ms

20.1: 38.68.239.199 388.167 ms

21.1: 38.68.239.50 391.898 ms

traceroute from 46.20.241.26 to 38.68.239.50

1.1: 46.20.241.25 0.862 ms

2.1: 46.20.251.33 0.526 ms

3.1: 46.20.254.82 0.894 ms

4.1: 46.20.252.34 0.668 ms

75



5.1: 213.242.73.29 0.868 ms

6.2: 4.69.168.8 9.783 ms

7.1: 130.117.14.93 10.537 ms

8.1: 154.54.73.241 11.213 ms

9.1: 154.54.28.109 88.475 ms

10.1: 38.127.193.146 87.904 ms

11.1: 38.68.238.13 89.649 ms

12.1: 38.68.213.5 138.099 ms

13.1: 38.68.215.130 162.051 ms

14.1: 38.68.215.3 168.115 ms

15.1: 38.68.239.103 193.852 ms

16.1: 38.68.239.117 203.228 ms

17.1: 38.68.239.199 216.219 ms

18.1: 38.68.239.50 221.912 ms

traceroute from 193.0.0.168 to 38.68.239.50

1.1: *

2.1: 193.0.3.4 1.416 ms

3.1: 62.115.12.201 1.413 ms

4.1: 213.155.136.252 1.736 ms

5.1: 80.91.253.171 1.764 ms

6.1: 80.239.160.14 4.305 ms

7.1: 154.54.74.93 4.750 ms

8.1: 154.54.39.110 82.441 ms

9.1: 154.54.42.85 84.273 ms

10.1: 154.54.40.73 89.193 ms

11.1: 154.54.5.233 89.969 ms

12.1: 38.127.193.146 89.547 ms

13.1: 38.68.238.13 94.970 ms

14.1: 38.68.213.1 152.239 ms

15.1: 38.68.215.129 160.393 ms

16.1: 38.68.215.1 181.663 ms

17.1: 38.68.239.1 193.793 ms

18.1: 38.68.239.19 210.008 ms

76



19.1: 38.68.239.110 230.746 ms

20.1: 38.68.239.50 228.402 ms

traceroute from 119.40.82.245 to 38.68.239.50

1.1: *

2.1: 210.4.78.5 0.560 ms

3.1: 210.4.78.225 1.067 ms

4.1: 210.4.78.217 19.543 ms

5.1: 103.7.248.61 1.552 ms

6.1: 103.7.251.89 24.076 ms

7.1: 180.87.37.57 68.241 ms

8.1: 180.87.37.10 333.831 ms

9.1: 80.231.130.5 324.446 ms

10.1: 66.198.70.25 328.827 ms

11.1: 216.6.57.2 323.126 ms

12.1: 66.198.111.126 323.002 ms

13.1: 154.54.12.17 322.807 ms

14.1: 154.54.3.69 336.916 ms

15.1: 154.54.31.125 329.646 ms

16.1: 154.54.41.205 335.685 ms

17.1: 38.127.193.146 329.426 ms

18.1: 38.68.238.13 331.417 ms

19.1: 38.68.213.5 400.419 ms

20.1: 38.68.215.130 396.913 ms

21.1: 38.68.215.3 438.247 ms

22.1: 38.68.239.103 431.203 ms

23.1: 38.68.239.117 518.172 ms

24.1: 38.68.239.199 466.547 ms

25.1: 38.68.239.50 516.260 ms

traceroute from 192.168.1.130 to 38.68.239.50

1.1: 192.168.1.1 0.667 ms

77



2.1: *

3.1: 83.169.158.102 7.879 ms

4.1: 88.134.193.137 7.967 ms

5.1: 88.134.238.165 13.139 ms

6.1: 88.134.202.19 13.077 ms

7.1: 62.115.9.9 22.554 ms

8.1: 213.155.135.92 16.258 ms

9.1: 62.115.142.15 18.958 ms

10.1: 130.117.14.89 22.646 ms

11.1: 130.117.48.114 21.741 ms

12.1: 154.54.62.77 30.473 ms

13.2: 154.54.28.109 107.404 ms

14.1: 38.127.193.146 107.678 ms

15.1: 38.68.238.13 112.403 ms

16.1: 38.68.213.5 169.166 ms

17.1: 38.68.215.130 371.587 ms

18.1: 38.68.215.3 198.931 ms

19.1: 38.68.239.103 302.206 ms

20.1: 38.68.239.117 228.958 ms

21.1: 38.68.239.199 306.732 ms

22.1: 38.68.239.50 233.829 ms

traceroute from 209.245.28.50 to 38.68.239.50

1.3: 209.245.28.1 0.194 ms

2.1: 209.245.29.209 0.871 ms

3.1: *

4.1: 4.68.111.102 16.028 ms

5.1: 154.54.6.53 15.939 ms

6.1: 154.54.25.241 21.691 ms

7.1: 154.54.29.117 35.532 ms

8.1: 154.54.31.110 44.292 ms

9.1: 154.54.5.233 44.633 ms

10.1: 38.127.193.146 43.707 ms

11.1: 38.68.238.13 45.172 ms

78



12.1: 38.68.213.2 232.358 ms

13.1: 38.68.215.128 117.665 ms

14.1: 38.68.215.5 149.487 ms

15.1: 38.68.239.13 144.206 ms

16.1: 38.68.239.1 161.914 ms

17.1: 38.68.239.101 180.582 ms

18.1: 38.68.239.50 185.742 ms

79



THIS PAGE INTENTIONALLY LEFT BLANK

80



List of References

[1] Internet users. (n.d.). World Wide Web Consortium. [Online]. Available: http://www.
internetlivestats.com/internet-users. Accessed Mar. 2, 2015.

[2] Department of Defense strategy for operating in cyberspace. (2011, Jul.). Department
of Defense. [Online]. Available: http://www.defense.gov/news/d20110714cyber.pdf

[3] S. T. Trassare, “A technique for presenting a deceptive dynamic network topology,”
M.S. thesis, Dept. Comput. Sci., Naval Postgraduate School, Monterey, CA, 2013.

[4] E. J. Holdaway, “Active computer network defense: An assessment,” DTIC, Maxwell
Air Force Base, AL, Tech. Rep., April 2001.

[5] C. Trowbridge, “An overview of remote operating system fingerprinting,”
SANS Institute, Bethesda, MD, Tech. Rep., July 2003. [Online]. Available:
http://www.sans.org/reading_room/whitepapers/testing/overview-remote-operating-
system-fingerprinting_1231

[6] L. Spitzner, Honeypots: Tracking Hackers. Boston, MA: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[7] E. Dulaney and M. Harwood, CompTIA Network+ N10-005 Authorized Exam Cram.
Indianapolis, IN: Que Publishing Co., December 2012.

[8] Information Technology–Open Systems Interconnection–Basic Reference Model:
The Basic Model, ISO Standard 7498-7, 1994.

[9] J. Hawkinson and T. Bates, “Guidelines for Creation, Selection, and Registration of an
Autonomous System (AS),” RFC 1930 (Best Current Practice), Internet Engineering
Task Force, Mar. 1996. [Online]. Available: http://www.ietf.org/rfc/rfc1930.txt

[10] Y. Rekhter et al., “Border Gateway Protocol 4,” RFC 4271, Internet Engineering
Task Force, Jan. 2006. [Online]. Available: https://tools.ietf.org/html/rfc4271

[11] B. Huffaker et al., “Macroscopic analyses of the infrastructure: Measurement
and visualization of Internet connectivity and performance,” in Passive and Active
Network Measurement Workshop (PAM), Amsterdam, The Netherlands, 2001.

[12] J. Postel, “Internet Protocol,” RFC 791, Internet Engineering Task Force, Sep. 1981.
[Online]. Available: https://www.ietf.org/rfc/rfc791.txt

81



[13] V. Cerf et al., “Specification of Internet Transmission Control Program,”
RFC 675, Internet Engineering Task Force, Dec. 1974. [Online]. Available:
https://tools.ietf.org/html/rfc675

[14] R. Braden, “Requirements for Internet Hosts,” RFC 1122, Internet Engineering Task
Force, Oct. 1989. [Online]. Available: https://tools.ietf.org/html/rfc1122

[15] V. Jacobsen, “traceroute (8) - Linux man page,” 2001. [Online]. Available:
http://linux.die.net/man/8/traceroute

[16] G. Lyon, “nmap reference guide (man page),” 2007. [Online]. Available:
http://nmap.org/book/man.html

[17] M. Luckie et al., “Traceroute probe method and forward IP path inference,” in Proc.
8th ACM SIGCOMM Conf. on Internet Measurement, Vouliagmeni, Greece, 2008,
pp. 311-324.

[18] R. Oppliger, “Internet security: Firewalls and beyond,” Commun. of the ACM, vol. 40,
no. 5, pp. 92–102, May 1997.

[19] Comodo Firewall. (n.d.). Comodo Group, Inc. [Online]. Available: http://www.
comodo.com. Accessed Mar. 3, 2015.

[20] iptables. (n.d.). The Netfilter.org Project. [Online]. Available: http://www.netfilter.
org. Accessed Mar. 3, 2015.

[21] D. Battista et al., “Computing the types of the relationships between autonomous
systems,” in INFOCOM 2003 Twenty-Second Annu. Joint Conf. of the IEEE Comput.
and Commun., 2003, vol. 1, pp. 156-165.

[22] A. Toonk. (2010, Apr.). Chinese ISP hijacks the Internet. [Online]. Available:
http://www.bgpmon.net/chinese-isp-hijacked-10-of-the-internet

[23] M. A. Brown. (2008, Feb.). Pakistan hijacks YouTube. [Online]. Available:
http://research.dyn.com/2008/02/pakistan-hijacks-youtube-1

[24] L. Lessig and R. W. McChesney. (2006, June). No tolls on the Internet.
[Online]. Available: http://www.washingtonpost.com/wp-dyn/content/article/2006/
06/07/AR2006060702108.html

[25] I. Paul. (2013, Mar.). The Pirate Bay admits to North Korean hosting hoax. [Online].
Available: http://www.pcworld.com/article/2030073/the-pirate-bay-admits-to-north-
korean-hosting-hoax.html

82



[26] The Pirate Bay – North Korean hosting? No, it’s fake. (P2). (2013, Mar. 5). [Online].
Available: https://rdns.im/the-pirate-bay-north-korean-hosting-no-its-fake-p2

[27] B. Munro. (2013, Mar.). North Korea hosting The Pirate Bay? Niet! [Online].
Available: http://beaglenetworks.net/post/44608108942/north-korea-hosting-the-
pirate-bay-niet

[28] P. Mahadevan et al., “The Internet AS-level topology: Three data sources and one
definitive metric,” ACM SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp.
17–26, 2006.

[29] K. Scarfone and P. Hoffman, “Guidelines on firewalls and firewall policy,” NIST
Special Publication, vol. 800, p. 41, 2009.

[30] B. Munro. (2013, Feb.). Star Wars traceroute. [Online]. Available: http:
//beaglenetworks.net/post/42707829171/star-wars-traceroute

[31] M. Zhang et al., “How DNS misnaming distorts Internet topology mapping,” in
USENIX Annu. Tech. Conf., General Track, 2006, pp. 369–374.

[32] K. Keys, “Internet-scale IP alias resolution techniques,” ACM SIGCOMM Comput.
Commun. Rev., vol. 40, no. 1, pp. 50–55, 2010.

[33] D. B. Berrueta. (2003). A practical approach for defeating nmap OS- Fingerprinting.
[Online]. Available: http://nmap.org/misc/defeat-nmap-osdetect.html

[34] T. Liston. (2009). LaBrea. [Online]. Available: http://labrea.sourceforge.net/.

[35] A. Sebastian. (2009). Default Time To Live (TTL) values. [Online]. Available:
http://www.binbert.com/blog/2009/12/default-time-to-live-ttl-values/

[36] P. Biondi. (2011). Scapy. [Online]. Available: http://www.secdev.org/projects/scapy

[37] P. Chifflier. (2012). Nfqueue-bindings. [Online]. Available: https://www.wzdftpd.
net/redmine/projects/nfqueue-bindings/wiki

[38] E. Leblond. (2013, Jan.). Using nfqueue and libnetfilter_queue. [Online]. Available:
https://home.regit.org/netfilter-en/using-nfqueue-and-libnetfilter_queue

[39] Center for Applied Internet Data Analysis. (n.d.). CAIDA. [Online]. Available:
http://www.caida.org/home. Accessed Mar. 2, 2015.

[40] L. Colitti et al., “Evaluating IPv6 adoption in the Internet,” in Passive
and Active Network Measurement Workshop (PAM), 2010. [Online]. Available:
http://www.pam2010.ethz.ch/papers/full-length/15.pdf

83



[41] J. J. Hughes, “Employing deceptive dynamic network topology through software-
defined networking,” M.S. thesis, Dept. Comput. Sci., Naval Postgraduate School,
Monterey, CA, 2014.

84



Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

85


