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1.0 Introduction

Although it is universally agreed upon that ordinary matter is made of atoms [1],
the notion of an atom in a molecule has been relegated to the status of an ob-
servationally unknowable construction, or “noumenon” [2]. Quantum-mechanical
calculations of the properties of individual atoms and bonds in molecules from
molecular wave functions are correspondingly thought to require introduction of
subjective auxiliary conditions to achieve specificity [3], giving rise to many individ-
ual preferences and alternative possibilities, rendering a unique theoretical defini-
tion of molecular structure and chemical bonding continuingly elusive [4–6]. These

Distribution A:  approved for public release; distribution unlimited.
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unresolved issues are arguably consequent of the absence of quantum-mechanical
operator or matrix representatives of the atomic constituents of molecules and
matter [7–9], such definition apparently not in simultaneous accordance with both
the Principles of Quantum Theory [10] and Pauli’s Exclusion Principle [11]. In this
absence, disparate subjective physical interpretations of calculated molecular wave
functions, and corresponding quantitative partitions of total electronic energies and
other properties into atomic and bonding contributions, continue to be a focus of
considerable attention, dating from early studies of Slater [12], Van Vleck [13], and
Coulson [14]. Subjective qualitative opinions offered in this regard are also plenti-
ful [15, 16], ranging from concurrence that atoms in molecules and bonds between
them are meaningless illusions [17, 18] to acceptance of the numerous perspectives
offered as profitably enriching the subject [19]. Of course, these circumstances have
not prevented a plethora of variational and other quantum-mechanical calculations
of total energies and other molecular properties employing familiar antisymmetric
orbital-product representations of basis states [20, 21], as well as charge-density-
related approaches [22, 23].
The ever-increasing abundance of ab initio and other molecular calculations has

provided both additional impetus and the opportunity to pursue physical inter-
pretations of atomic modifications and chemical bonding in molecules, in spite
of the elusive nature of these quantities. In addition to early introduction of so-
called equivalent molecular orbitals in interpretations of molecular charge densities
[13, 14], additional criteria, such as extreme values of overlap populations or of or-
bital repulsion energies [24], can be employed in defining localized orbitals through
ex-post-facto unitary transformations of the underlying molecular eigenfunctions.
So-called quasi-atomic molecular orbitals [25, 26] and natural bonding orbitals [27]
employed in diagnostic transformations of molecular eigenfunctions define plausi-
ble images of atoms and of the bonds between them in molecules. Partitioning of
total and partial charge densities can also be employed in assignments of spatial
regions in molecules to constituent atoms or chemical bonds, and to provide es-
timates of the degree to which individual atoms retain their electronic structural
integrity when incorporated in a molecule [28–32]. Many additional differing ap-
proaches to physical interpretation of electronic structure calculations have been
reported, including use of information-theory [33] and complexity concepts [34] in
charge-density partitioning, as well as so-called orbital entanglements in complex
electronic systems [35], to mention some representative examples.



Interest in electronic energy partitioning in molecules is already evident in
Slater’s early Virial-Theorem-based separation of total molecular electronic ener-
gies into kinetic and potential energy components [12] and in the quantitative com-
parisons of valence-bond and molecular-orbital methods of Van Vleck, who refers
specifically to the interplay between atomic promotion and net bonding energies in
the methane molecule [13]. Well-known Hellmann-Feynman considerations reveal
the forces on individual atomic nuclei in a molecule for vibrational analysis [36] and
also provide a basis for their chemical rationalizations [37]. Energy-decomposition
schemes more generally introduce intuitively sensible but ultimately arbitrary frag-
ment components or clusters to obtain quantitative energy expansions [38–45],
whereas partitions of molecular one- and two-electron reduced density matrices
[38], in conjunction with apportionment of spatial regions or functional spaces to
define individual atoms [28–32], can provide total electronic energies expressed as
sums of atomic and bonding contributions [46–52], to mention some representative
examples. Recent reviews describe only a small fraction of the many preferences
expressed for interpretations of calculated molecular wave functions, charge distri-
butions, and energy partitions reported in the literature [53, 54].

2
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Attempts to define meaningful self-adjoint operator representatives of atomic
fragments in a molecule, as required of dynamical variables by the Principles of
Quantum Mechanics [10], soon encounter restrictions consequent of electron in-
distinguishability [11], which seemingly preclude their unique fixed assignments

to particular nuclei in a molecule [7–9]. Such atomic fragment operators do not
commute with arbitrary aggregate electron permutations and so are apparently ill-
defined in a molecular context, with Coulomb interaction terms, for example,

changing from intra- to inter-atomic character upon electron permutations. As
a consequence, the absence of meaningful partitioning of molecular Hamiltonian
operators into sums of constituent atomic and interaction-energy component oper-
ators, and also of corresponding representations of atomic and interaction 
energies as Hermitian matrices evaluated with proper molecular wave functions
in the standard manner [55], has largely confounded previous ab-initio
quantum-mechanical atoms-in-molecules formulations [56–58].
The foregoing issues are addressed in the present report from the perspective of

representation theory employing (Eisenschitz-London) spectral products of atomic
eigenstates, familiar from early combined studies of covalent and van der Waals
forces in molecules [59], to support molecular electronic states for the present more
general purposes [60]. As described in earlier work [61], this representation trans-
forms under a subgroup of the full symmetric group of electron permutations in a
molecule [62–64], the absence of explicit inter-atomic electron permutations allow-ing
assignments of designated electrons to particular nuclei. Quantum-mechanical
operators for atoms in molecules are obtained in this representation with fixed unique
electron assignments made in accordance with those employed in the atomic spectral
functions. A formal basis for analysis in the closure limit is provided thereby, as is a
basis for practical calculations of totally antisymmetric molecu-lar eigenstates in
appropriately devised conventional finite subspaces [65].



Molecular (Born-Oppenheimer) Hamiltonian matrices take particularly simple
forms in the atomic spectral-product representation as sums over universal atomic
and pair-interaction Hamiltonian matrices which can be calculated once and for
all and retained for repeated applications [66, 67]. Total molecular energies ob-
tained by conventional Hamiltonian matrix diagonalization are seen to take the
form of sums over atomic and pairwise-interaction energies, expressed in terms of
products of the universal atomic and interaction Hamiltonian matrices and the cal-
culated molecular eigenvectors. Atomic energy distributions obtained in this way
describe the extent to which individual atoms are excited and their electrons ap-
portioned to atomic bonding partners over the entire molecular volume, whereas
the pairwise-atomic interaction energies provide corresponding chemical-bonding
energies between constituent atoms. Overall electron antisymmetry of molecular
eigenstates is formally achieved in the development by convergence in the limit of
closure, or by ex-post-facto enforcement in finite subspaces [66, 67].

The theoretical development employing the complete spectral-product represen-
tation in definitions of atomic and bonding energies for interacting atomic pairs is
reported in Section 2, and finite subspace methods for computational implemen-
tations and applications described and illustrative calculations reported in Section 3.
Concluding remarks made in Section 4 provide a summary interpretation of the
expressions derived and of the atomic promotion and bonding energies eval-
uated in molecular ground- and excited-state situations. Issues related to atomic
entanglements in coherent dissociation of excited molecular states are discussed,
and possible measurements of atomic energies in molecules on this basis are indi-
cated employing coherent three-body photodissociation of the triatomic hydrogen
molecule as an experimentally plausible representative example.

3
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2.0 Theoretical Development

The atomic spectral-product representation is described in Section 2.1. A parti-
tioning of the molecular Hamiltonian operator into atomic and atomic-interaction
terms, made with appropriate electron assignments in Sections 2.2, is employed in
evaluating its matrix representative in Section 2.3. The total electronic molecular
energy, expressed in terms of atomic and bond energies as obtained directly from
Hamiltonian matrix diagonalization, is reported in Section 2.4.

2.1 Spectral-Product Representation

Following Eisenschitz and London [59], the orthonormal atomic spectral-product
representation employed here can be written in the form [68]

Φ(r : R) ≡
{

Φ(1)(1 : R1)⊗Φ(2)(2 : R2)⊗ · · ·Φ(N)(n : RN )
}

o
, (1)

where the row vector Φ(α)(i : Rα) formally contains all the electronic states of the
atom α (= 1, 2, . . . N) located at position Rα, with all electrons (nα) on this atom
designated by the vector of space and spin coordinates i (= 1,2, . . .n). The vectors
r and R refer collectively to the coordinates of the entire set of molecular electrons
(nt) and of atomic positions (N), respectively, whereas the subscript o refers to
the choice of an “odometer” ordering of the sequence of the N -atom product states
obtained from the indicated tensor products (⊗) of atomic-state row vectors [60].



The molecular basis of Eq. (1) as written is complete in the limit of closure
for descriptions of totally antisymmetric solutions of the Schrödinger equation in
spite of the absence of explicit inter-atomic electron antisymmetry [59], and has

been shown to not only contain the totally antisymmetric representation of 
molecular elec-trons only once, but to also span other irreducible representations of
the symmetric group Snt [65]. Since the spectral-product basis transforms under an 
atomic-product subgroup (Sn1 ⊗ Sn2 ⊗ · · · SnN ) of Snt [61], the electron assignments 
of Eq.(1) are invariant to arbitrary permutations in this subgroup and can be
regarded as permanent assignments of electrons to individual atoms in this context.

2.2 Partitioning the Molecular Hamiltonian Operator
The many-electron Coulomb Hamiltonian operator is written in accordance with
the electron assignments of Eq. (1) in the partitioned form

Ĥ(r : R) =

N
∑

α=1

Ĥ(α)(i) +

N−1
∑

α=1

N
∑

β=α+1

V̂ (α,β)(i; j : Rαβ), (2)

where the atomic Hamiltonian operator for atom α

Ĥ(α)(i) =

nα
∑

i

{

−
~
2

2m
∇2

i −
Zαe

2

riα
+

nα
∑

i′=i+1

e2

rii′

}

(3)

is symmetric in electron coordinates i, and the interaction term

V̂ (α,β)(i; j : Rαβ) =
ZαZβe

2

Rαβ

−

nα
∑

i

Zβe
2

riβ
−

nβ
∑

j

Zαe
2

rjα
+

nα
∑

i

nβ
∑

j

e2

rij
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ˆ ˆ≡ H(α,β)(i, j : Rαβ)−H(α,β)(i, j : Rαβ → ∞) (4)

is written and evaluated in the form of the difference of atomic-pair operators

Ĥ ˆ ˆ(α,β)(i, j : Rαβ) = H(α)(i) +H(β)(j) + V̂ (α,β)(i; j : Rαβ), (5)

which are symmetric in electron coordinates i⊕ j, with Rαβ ≡ Rβ −Rα defining
atomic-position separation vectors. Since all electron coordinates (1,2, . . .n) are
assigned in accordance with the spectral-product representation of Eq. (1), the

atomic Ĥ(α)(i) and atomic-pair Ĥ(α,β)(i, j : Rαβ) fragment Hamiltonian operators
of Eqs. (3) to (5) commute with all permutations in the aforementioned atomic-
product subgroup of Snt

, and meaningful quantum-mechanical definitions of these
self-adjoint operators are obtained in this particular representation [69].

2.3 Evaluating the Molecular Hamiltonian Matrix
Employing Eqs. (1) to (5), the matrix representative of the molecular Hamiltonian

operator in the spectral-product basis is obtained in the form [60]

H(R) ≡ 〈Φ(r : R)|Ĥ(r : R)|Φ(r : R)〉

=
N
∑

α=1

H(α) +
N−1
∑

α=1

N
∑

β=α+1

V (α,β)(Rαβ), (6)



where the atomic energy matrices are

H(α) =
{

I(1) ⊗ I(2) ⊗ · · ·E(α) ⊗ · · · I(N)
}

o
(7)

and the interaction-energy matrices are

V (α,β)(Rαβ) =
{

I(1) ⊗ I(2) ⊗ · · ·V
(α,β)
p (Rαβ)⊗ · · · I(N)

}

o
. (8)

The unit matrices I(α) in Eqs. (7) and (8) arise from the orthonormality of
the atomic eigenstates that form the spectral-product representation of Eq. (1),
whereas the smaller-dimensioned atomic and atomic-pair matrices there,

E(α) ≡ 〈Φ(α)(i : Rα)|Ĥ
(α)(i)|Φ(α)(i : Rα)〉 (9)

V
(α,β)
p (Rαβ) ≡ 〈Φ(α,β)(i, j : Rαβ)|V̂

(α,β)(i, j : Rαβ)|Φ
(α,β)(i, j : Rαβ)〉, (10)

require for their evaluation only the atomic Φ(α)(i : Rα) and atomic-pair product

functions Φ(α,β)(i, j : Rαβ) = {Φ(α)(i : Rα) ⊗ Φ(α)(j : Rβ)}, with Eqs. (9)
and (10) employing the self-adjoint operators of Eqs. (3) to (5) in these smaller-
dimensioned representations. Faithful matrix representatives of the corresponding
atomic and interaction-energy operators of Section 2.2 are obtained in this way
which are universal computational invariants in the spectral-product basis, whereas
the ordering symbol in Eqs. (7) and (8) brings these atomic and interaction-energy
matrices into canonical forms prior to their summation in Eq. (6) [65].

5

Distribution A:  approved for public release; distribution unlimited.

2.4 Partitioned Molecular Energy Expression
The molecular energies and Schrödinger eigenstates corresponding to the Hamilto-

nian matrix of Eq. (6) are obtained from the diagonalization [70]

E(R) ≡ UH
†(R) ·H(R) ·UH(R), (11a)

where the columns of UH(R) contain the eigenvectors which provide the molecular
eigenstates in the spectral-product basis;Ψ(r : R) ≡ Φ(r : R)·UH(R). Employing
Eq. (6), an a priori partitioning of the total energy is obtained in the form

E(R) =

N
∑

α=1

E(α)(R) +

N−1
∑

α=1

N
∑

β=α+1

V (α,β)(R) (11b)

where

E(α)(R) ≡ UH
†(R) ·H(α) ·UH(R) (12)

is the atomic energy matrix for an atom α in a molecule, and

V (α,β)(R) ≡ UH
†(R) · V (α,β)(Rαβ) ·UH(R) (13)

is the interaction-energy matrix for a pair of atoms (α, β) in a molecule.
In the limit of closure [70],

Ĥ(r : R)Φ(r : R) → Φ(r : R) ·H(R), (14)



the molecular energies of Eqs. (11) converge to totally antisymmetric (physical)
or non-totally-antisymmetric (unphysical) Schrödinger eigenstates spanned by the
spectral-product representation of Eq. (1) [71]. In this limit, the molecular Hamil-
tonian matrix can be blocked into separate non-interacting physical and unphysical
contributions [65], as consequently are the individual atomic and atomic-pair en-
ergy matrices which sum to the total energy matrix of Eq. (11b).
Since the molecular energy matrix of Eq. (11) is diagonal by construction, the

sums of the diagonal terms of the atomic and atomic-pair interaction-energy
matrices of Eqs. (12) and (13) provide a partioning of the total energies of the
molecular states. The individual atomic and interaction energies on the diago-
nals of these matrices are weighted averages of the universal atomic H(α) and 
atomic-pair V (α,β)(Rαβ ) Hamiltonian matrices over distributions of atomic-state 
and atomic-pair-state virtual excitations, respectively, as determined by the eigen-
vector columns of the matrix UH(R). Accordingly, the diagonal elements of the
atomic- and interaction-energy matrices of Eqs. (12) and (13) are seen to provide
quantitative definitions of atomic- and atomic-pair interaction-energy surfaces in a
molecule over the range of molecular geometries (R) included in the calculations.
The off-diagonal terms of the matrices of Eqs. (12) and (13) refer to evaluations

of individual atomic and interaction-energy operators between different molecular
eigenstates. The sums of these off-diagonal terms vanish identically, in accordance
with Eqs. (11), although the individual off-diagonal atomic and interaction-energy
terms generally need not vanish at finite values of interactomic separation. These
terms do vanish in the limit of large atomic separations, however, in contrast to
the physically significant diagonal atomic terms of Eq. (12), consequent of the
orthogonality of the individual molecular eigenstates employed in their evaluations.

6
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3.0 Computational Implementation

Finite-subspace methods are described in Section 3.1 for calculating the atomic and
interaction energies of atoms in molecules defined in the foregoing section, adopting 
previously reported methodology particularly suitable for these purposes. The
approach is employed in calculations of the atomic and interaction energies of
ground and excited molecular electronic states as reported in Section 3.2.

3.1 Finite Spectral-Product Representations

Computational implementations of the foregoing formal development must over-
come the complicated nature of the spectrum of the Hamiltonian matrix in the
spectral-product representation and the requirements of spectral closure [65]. Al-
though elaborate methods have been developed for finite-subspace calculation in
atomic spectral-product representations [61, 65–67, 72–74], a factored version of
the general development is particularly suited to calculations of the molecular and
fragment energies of focus here [66, 67, 74]. The approach requires for its valid-
ity only the linear independence of the antisymmetrized form of the chosen finite
subspace [75], providing a Hamiltonian matrix identical in appearance to Eq. (6),
atomic energy matrices as in Eq. (7), and interaction-energy matrices that depend
only on the separation vectors of the individual atomic pairs, as in Eq. (8).

The finite-subspace molecular Hamiltonian matrix is [cf., Eqs. (6) to (10)]

H̃(R) ≡ 〈Φ̃(r : R)|Ĥ(r : R)|Φ̃(r : R)〉

=

N
∑

α=1

H̃
(α)

+

N−1
∑

α=1

N
∑

β=α+1

Ṽ
(α,β)

(Rαβ), (15)



in the chosen subspace Φ̃(r : R) of Eq. (1), the atomic and interaction-energy

matrices are finite-dimensioned versions of Eqs. (7) and (8), with V
(α,β)
p (Rαβ) in

Eq. (10) given by the finite-subspace expression [66],

Ṽ
(α,β)
p (Rαβ) ≡ Ũ

(α,β)
p (Rαβ) · Ṽ

(α,β)
Sp

(Rαβ) · Ũ
(α,β)
p (Rαβ)

†, (16)

where

Ṽ
(α,β)
Sp

(Rαβ) ≡ 〈Φ̃
(α,β)
S (i, j : Rαβ)|V̂

(α,β)(i, j : Rαβ)|Φ̃
(α,β)
S (i, j : Rαβ)〉. (17)

Equation (17) is evaluated employing an explicitly antisymmetrized orthonormal

finite-subspace pair representation Φ̃
(α,β)
S (i, j : Rαβ), with the unitary matrix

Ũ
(α,β)
p (Rαβ) in Eq. (16) employed to transform from this pair representation to the

corresponding finite subspace Φ̃(r : R) [66]. In more general variants of the devel-
opment [72–74], the form of Eq. (15) is retained but the atomic- and interaction-
energy matrices there become functions of the position coordinates (R) of all the
atoms in the molecule. Since the condition for validity of Eqs. (15) to (17) for cal-
culations of energies requires only the familiar linear independence of the totally
antisymmetrized form of the finite spectral-product representation employed [75],
the calculations reported here are indentical with those obtained from the more
general computational approach under these conditions [72–74].

7
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Energy expressions corresponding to those of Eqs. (11) to (13) are obtained
employing Eqs. (15) to (17) and the finite-subspace unitary matrix ŨH(R) that

i
(α)

diagonalizes the Hamiltonian matrix of Eq. (15). Individual energy terms Ẽ (R)
for atoms (α) in particular molecular eigenstates (i) are provided by the diagonal

entries of the atomic energy matrices Ẽ
(α)

(R) in the form [cf., Eq. (12)]

Ẽ
(α)
i (R) ≡ {Ẽ

(α)
(R)}ii =

Nsp
∑

k=1

{H̃
(α)

}kk |{ŨH(R)}ki|
2

=

Nα
∑

k=1

Ẽ
(α)
k |{Ũ

(α)

H (R)}ki|
2, (18)

where Eqs. (4), (8), and (16) have been employed in the last line, Ṽ ( α,β)(Rαβ) has
been replaced there by the indicated diatomic energy functions Ẽ

(α,pβ)
k (Rαβ) and

the atomic energies of Eq. (18), and ŨH
(α,β)

(R) is the “two-atom” reduced density

matrix for the atoms α and β derived from the product ŨH
(α,β)

(Rαβ)
† · ŨH(R).

Here, the matrix ŨH
(α,β)

(Rαβ)
† is obtained from diagonalization of the atomic-pair

matrix representative of Eq. (16) in the indicated finite subspace spectral-product
basis to accommodate this change of representation [66, 67, 74].
The total electronic energy obtained from the foregoing expressions for a particu-

lar molecular eigenstate (i) is seen to be a sum of atomic energies for the constituent
atoms and a sum of atomic-pair bonding energies of the form [cf., Eq.(11b)]



Ẽi(R) =

N
∑

α=1

Ẽ
(α)
i (R) +

N−1
∑

α=1

N
∑

β=α+1

Ṽ
(α,β)
i (R). (20)

The atomic and interaction terms given explicitly by Eqs. (18) and (19) are seen
to be averages of the undisturbed atomic energies and diatomic pair-interaction
energies, respectively, with the perturbing effects of the aggregate environment in-
cluded through the weightings provided by the individual columns of the indicated
one- and two-atom reduced density matrices.
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(a) Total electronic energy curves for H3 in symmetric
collinear arrangement (Ha-Hb-Hc) calculated in 1s, 2s 
atomic representations (solid lines) in comparison with 
valence-bond results (points), with E1s set to zero.

(b) Net chemical bonding energy curves between ad-
jacent atoms (a-b and b-c) in symmetric collinear H3 
(Ha-Hb-Hc), corresponding to the total electronic en-
ergy curves shown in Figure 1(a).

Figure 1. (a) Total Electronic Energy Curves and (b) Bonding Energies for Adjacent Atoms in the H3 Molecule
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3.2 Illustrative Calculations

Illustrative calculations are provided of the atomic- and bond-energies obtained 
from the spectral-product formalism, which provides an objective decomposition of 
total molecular electronic energies. In Figure 1(a) are shown potential energy curves 
for low-lying states of the H3 molecule in symmetric collinear arrangement (Ha-Hb-
Hc), calculated employing 1s and 2s atomic hydrogen spin-orbital eigenfunctions in 
four-term representations for each atom, in comparison with conventional valence-
bond values in this basis [76]. In this classic case of three hydrogen atoms, the 
orthonormal atomic-product representation is closely related to the non-orthogonal 
valence-bond representation, but does not include the explicit overall antisymmetry 
of the latter. Although larger atomic representations would provide more accurate 
results [77, 78], the purpose of the present calculations is to make clear in a simple 
manner the nature of the definitions of the energies of atoms and bonds in molecules 
provided by the present study, rather than to report highly accurate potential 
curves for the H3 molecule obtained in complicated representations.



The spectral-product results are evidently in good but not precise accord with the
conventional valence-bond values for the six total electronic energy curves depicted
in Figure 1(a). The lowest two of these curves at larger separation are 2Σ+

u and 2Σ+
g

states, whereas the third state is a 4Σ+
u state, all three curves dissociating to three

ground-state hydrogen atoms. The three higher-lying states of 2Σ+
g ,

2Σ+
u , and

4Σ+
u

symmetry dissociate to limits having the energy of a promoted 2s hydrogen atom.
There is evidently an avoided crossing between the A2Σ+

g and B 2Σ+
g states and a

weaker avoidance between the a4Σ+
u and b4Σ+

u states at smaller atomic separation.
In spite of the simplicity of this representation of the H3 molecule, the attributes
of the present formalism can be clearly illustrated employing this example.
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(a) Atomic energies for the outer atoms (a and c) in
symmetric collinear H3 (Ha-Hb-Hc) for the molecular
eigenstates and total energy curves in Figure 1(a).
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(b) Atomic energies for the central atom (b) in sym-
metric collinear H3 (Ha-Hb-Hc) for the molecular eigen-
states and total energy curves in Figure 1(a).

Figure 2. (a) Atomic Energies for the Two Equivalent Outer Atoms (a and c) in Symmetric Collinear H3 and for 
(b) the Central Atom (b) in the Molecular Eigenstates and Total Energy Curves in Figure 1(a), Setting E1s to Zero

In Figure 1(b) are shown the equivalent adjacent-atom (a-b and b-c) bond en-
ergies for the six states of Figure 1(a), whereas Figures 2(a) and 2(b) depict the 
atomic energies for the two equivalent outer (a and c) atoms and for the central (b) 
atom, respectively. The three atomic energies and three bonding energies for each 
molecular state sum to the corresponding total energy curves reported in Fig-ure 
1(a), in accordance with Eq. (20). The bonding potentials between the two outer 
atoms (a-c) are found to show monotonic repulsive or attractive behaviors at small 
R in each case, but are otherwise weak and not shown here. The bond-energy curves 
for the two pairs of nearest-neighbor atoms in Figure 1(b) are seen to be quite 
different for the different molecular states, but to approach zero largely in unison at 
larger R, whereas the atomic energies in Figures 2(a) and 2(b) also exhibit 
considerably different structures, but are seen to approach limiting val-ues more 
slowly than the bond energies as individual atomic-energy promotion or demotion 
diminishes at larger R values, described in further detail below.



The adjacent-atom (a-b and b-c) bond energy curves for the ground X2Σ+
u state

(black) in Figure 1(b) are evidently similar in form to the total energy curve of
Figure 1(a), with each of the two equivalent curves accounting for approximately
one-half of the full energy lowering at the minimum of the potential curve. By
contrast, adjacent-atom bond potentials for the A2Σ+

g and B 2Σ+
g states (gold and

magenta) in Figure 1(b) show significant changes in form as the avoided crossing is
traversed adiabatically. The interchanges of 1s and 2s compositions revealed by the
two curves are, of course, suggested by the avoided crossing apparent in the total
energy curves of Figure 1(a) but are further quantified by the results of Figure
1(b). From a diabatic perspective, the two bonding energy curves for these states
show repulsive and bound behaviors, respectively, the single pair of bond energy
curves shown consequently characterizing both adiabatic and diabatic possibilities.
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(a) Atomic energies for the outer atoms (a and c) in
symmetric collinear H3 (Ha-Hb-Hc) as in Figure 2(a), 
depicting an entangled dissociation limit.
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(b) Atomic energies for the central atom (b) in symmet-
ric collinear H3 (Ha-Hb-Hc) as in Figure 2(b), depicting 
classical non-entangled dissociation limits.

Figure 3. (a) Atomic Energies for the Two Equivalent Outer Atoms (a and c) in Symmetric Collinear H3 (Ha-Hb-
Hc) and (b) for the Central Atom (b) as in Figure 2, Depicted on a Wider Scale of Atomic Separation, 

Setting E1s to Zero

+ +The adjacent-atom bond-energy curves for the a4Σu (light green) and b4Σu (dark
green) states are seen to be largely repulsive, the former including a small barrier
not discernible in the total energy curve of Figure 1(a), consequent of the weak
avoidance with the latter, which is apparently less perturbed by the former. Finally,
the adjacent-atom bonding potential of the higher-lying C 2Σu

+ state (blue) is seen
to be weak, in accordance with the result of Figure 1(a).

+

Figures 2(a) and 2(b), with the same color scheme, show the atomic energies
of the outer (a and c) and central (b) atoms, respectively, which complement the
total and bond-energy curves of Figure 1(a) and 1(b), respectively. These energies
are also depicted on a wider range of atomic separations in Figures 3(a) and 3(b)
in order to show the asymptotic atomic energy values reached in the limit of large
separation. The promotion energies of all three 1s atoms in the ground X2Σu state
(black) are seen to be generally weak but not entirely negligible, with the central
atom energy showing a small but discernible maximum at R≈4.5 Bohr in Figure

+



2(b). The energies of the two outer atoms for the avoiding A2Σ+
g and B 2Σg states

(gold and magenta) show an abrupt interchange of atomic state occupancy as the
avoided crossing region is traversed adiabatically, whereas their diabatic behaviors
are less extreme, as in Figure 1(b) for the corresponding bond energy curves. The
B 2Σ+

g state (magenta) outer-atom energies approach unphysical values at larger R
which are averages of the 1s and 2s atomic energies, in accordance with a coherent
molecular state in which both outer atoms are symmetrically excited to entangled
1s and 2s atomic states [80, 81]. The atomic energies for the central atom in these
two states show the rapid interchange in atomic state occupancy as the avoided
crossing region is traversed adiabatically, with the large R limiting values in both
these cases approaching the ground atomic state 1s energy. The large changes
in atomic energy values with decreasing atomic separation in all three atoms for
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+ +

+
u

the a4Σu (light green) and b4Σu (dark green) states arises from the weak avoided
crossing between these two repulsive states of Figure 1(a), as does the small barrier
in the corresponding bond energy curve of Figure 1(b) for the former state, whereas
the outer-atom energies in the latter state both approach unphysical entangled
values at larger R. Finally, the central atom energy for the highest-lying C 2Σ
state (blue) in Figures 2(b) and 3(b) approaches the 2s atomic energy at large R,
whereas the two outer atoms in Figures 2(a) and 3(a) approach the ground-state
1s energy at large R, indicating a dissociative state in which only the central atom
is excited.
The atomic and bond energies reported in Figures 1 to 3 obtained employing the

present atomic spectral-product formalism provide a very detailed accounting of the
variation with atomic separations of these components of total electronic energy in
symmetric collinear H3. Larger representations in H3 calculations [77, 78] provide
values of atomic promotion and bonding energies which are found to converge with
basis set more slowly than total molecular energies, as reported in detail elsewhere
[79]. The present results nevertheless demonstrate that the atomic spectral-product
development can provide a quantitative molecular electronic energy decomposition
analysis free of arbitrary subjective conditions.

4.0 Discussion and Concluding Remarks

Conventional quantum-chemical calculations of the electronic structures and at-
tributes of molecules have evolved to a remarkable degree of sophistication and
abundance [20–23], enabled largely but not entirely by continuing improvements
in computational hardware and software for this purpose. Considerable attention
has also been directed at plausible but arguably subjective physical and chemical
interpretations of the many molecular electronic wave functions, charge density dis-
tributions, and total electronic energies calculated employing such methods [53, 54].
Conceptual advances in this connection have seemingly been much less in evidence,
with the continuing absence of satisfactory a priori quantum-mechanical definitions
of atoms in molecules and of the chemical bonds between them apparently resulting
in their relegation to the status of observationally unknowably constructions [2]. In
the present report, adoption of a universal atomic-eigenstate-based methodology
for calculating molecular energies, in an extension of early work of Eisenschitz and
London [59], appears to also provide a suitable atomic-based vehicle for addressing
these fundamental conceptual and interpretive issues [60].



Attention is focused in the present report specifically on quantum-mechanical
definitions of operator and matrix representatives of individual atoms and of the
bonds between them in molecules, and in the use thereof in obtaining a natural
partitioning of the total electronic energy of a molecule into atomic and interac-
tion energies from calculated wave functions in the absence of additional subjective
conditions or definitions [3]. The expression reported here for molecular electronic
energies as sums of well-defined atomic and bonding contributions provides a simple
but attractive partitioning into quantities long referred to qualitatively as promo-
tion and bond energies, with early quantitive estimates of these made in the absence
of specific quantum-mechanical prescriptions or definitions [13]. Incorporation of
measurable atomic and diatomic or pair-interaction energies in the formalism em-
ploys familiar universal physical fragment energies in the development, with cal-
culated molecular eigenstates providing distributions over these quantities in the
total molecular energy expression. Although these expressions might appear to ap-
ply strictly to the particular spectral-product representation employed [59, 60], it
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is easily seen that virtually any wave function can be transformed, with greater
or lesser effort, to spectral-product form, employing, for example, considerations
based on full molecular dissociation limits, in which limits atomic-product forms
emerge naturally upon suitable manipulations [69, 74].
The significant differences in behaviors of the atomic and bond energies reported

for the ground and excited electronic states of the collinear H3 molecule reveal a
somewhat more nuanced picture of chemical bonding than conventional electronic
energy surface calculations alone suggest. Atomic-state hybridization is accommo-
dated automatically, apportionment of electronic charge among atoms similarly
takes place over the molecular volume via virtual atomic excitations, net bonding
energies are balanced against positive or negative promotion energies, and entan-
gled atomic energies are predicted by the expectation values of individual atomic
Hamiltonian operators in the adiabatic dissociation limits of coherent molecular
eigenstates. Such latter results, even in the simple case of symmetric collinear tri-
atomic hydrogen reported here, are seen to be significantly more complex than
the better-known cases of the entangled limits of homo-nuclear diatomic molecules
[80, 81]. Since adiabatic dissociation of coherent molecular electronic states can
be achieved experimentally in various ways under appropriate conditions [82–89],
an ensemble of measurements of the entangled electronic energies of atomic frag-
ments produced by the dissociation of polyatomic molecules can potentially report
distributions of these for comparisons with theoretical predictions.

Although the concept of an atom in a molecule might presently be regarded as
an observationally unknowable “noumenon” [2], adoption of an atomic spectral-
product representation of molecular electronic structure evidently accommodates
quantum-mechanical definition of self-adjoint operators that facilitate expression
of molecular energies in terms of atoms and their interactions, in response to long-
standing open questions in this connection and to issues raised in early study of
atoms and bonds in molecules. The possibility of measuring atomic entanglements
of the electronic states of atoms produced upon coherent dissociation of triatomic
molecular hydrogen (H3 → H + H + H) [90–94], reported here in the symmet-
ric collinear case, can provide a first step in measuring a property of an atom in
a molecule as carried by Schrödinger entanglement into the asymptotically-large
separation limit. In view of the well-known hydrogenic Coulombic degeneracy, pre-
dictions of the 2s,2p, 3s,3p,3d,... compositions of such atomic states cannot be made
on basis of calculation in the large-separation limit alone and require an approach
which can predict compositions of degenerate atomic states as carried from the
interaction zone to asymptotic separation limits. Additional calculations of
entanglement effects on coherent polyatomic dissociation over a range of dissoci-
ation symmetries, of individual atomic and bonding energies in a range of chemical
situations, and of other physical properties of molecules, are in progress in further
exploration of the issues raised in the present report.
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