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Picard Path Approximation Methods for Orbit Propagation 
John L. Junkins 

Texas A&M University 
October 6, 2014 

This report covers the third year of the contract AFOSR Contract FA9550-11-1-0279 which has involved 
the effort of the principal investigator, John L. Junkins, and 5 PhD students.  One of these students 
completed his dissertation (Dong Hoon Kim) and another (Brent Macomber) is nearing completion.  The 
other three will complete their work near the end of calendar year 2015.   

The project addresses a problem near the heart of space situational awareness (SSA), namely efficient and 
accurate propagation of orbits.  This is a classical problem whose importance has been dramatically 
elevated by the growth of orbital debris population, and by several events involving deliberate and 
accidental collisions of spacecraft in low earth orbit, see Figure 1. There are numerous challenges: 

 Space object catalog updates, requiring precision propagation of ~ 20,000 objects orbits,   
 Conjunction analysis, probability of collision, and collision avoidance. 
 Processing of nightly observables to identify and characterize existing and new objects, requires 

testing of ~106 orbit propagation hypothesis and hours of high performance CPU time for per day. 

It is remarkable that this classical problem can be accelerated by over an order of magnitude in serial 
algorithms and over three orders of magnitude in parallel computation using methods we have developed. 

Starting with my former PhD student Xiaoli Bai’s dissertation, we have very significantly built on 
classical developments due to Picard by fusing approximation theory and a family of other advances to 
optimize the resulting algorithms for both serial and parallel computing environments. In contrast to 
classical step-by-step differential equation solvers in most common usage, the methods we are 
researching are path iteration methods where paths over time intervals spanning up to several orbits are 
approximated. In the course of this work, we have developed novel algorithms and compared them with 
the state of the art algorithms, and also other methods that have recently emerged in the research 
literature.  We have also transitioned the results of this project to the GEO-Odyssey SSA project (a joint 
effort of AFRL, NRL and NRO, involving 30 investigators); in the course of this project we have 
confirmed that the accuracy and efficiency results of our research codes are realized when implementing 
the results in the production SSA codes at AFRL, NRL and NRO (POCs Alok Das, Paul Schumacher, and 
Shannon Coffey).  We have organized this progress report in a “friendly” overview fashion, with 
discussion of fifteen figures from a recent briefing, and we have attached journal and conference papers 
as appendices in order to document the details. 
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The figures below introduce the basic orthogonal approximation approach that is fused with Picard 
iteration to represent the most fundamental step en route to developing the Modified Chebyshev Picard 
Iteration (MCPI) algorithms.  Notice in Figs, 3, 4 that orthogonal approximation requires consistency 
among three coupled decisions:  

(1)   Choice of basis function (we choose the first N Chebyshev polynomials).  
(2)  Choice of the cosine distribution of nodes (which correspond to the interior extrema of the  
        Chebyshev polynomials plus the end points).  
(3)   Choice of the a unit weight on each interior node and 0.5 weight on the two end points (this  
        choice, together with the 1st 2choices, ensure the orthogonality  conditions are satisfied, & 
and  
        thereby ensure that the normal equations of least square approximation are diagonal; as a  
        consequence, no matrix inversion is needed for arbitrary degree least square approximation). 

 

Figure 1                                                                    Figure 2 

Figure 3 

Figure 4 
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It is easy to verify the important properties that an arbitrary continuous function can be approximated with 
spectral precision.  Also, in Figure 4, compared to the usual power series approximation, notice the 
orthogonal Chebyshev approximation avoids the large error oscillations near the end of the interval 
(Runge phenomena), and also permits spectral accuracy (Figure 5) to be approached.  The interval length 
and degree required to achieve spectral accuracy, essentially machine precision, depends on the spectral 
content of the function.  Notice that any method that requires numerical inversion of a matrix can never 
approach spectral accuracy due to arithmetic errors and ultimately poorly conditioned matrices for large 
N.  Furthermore, for ordinary power series and 64 bit arithmetic, it is not possible to solve the normal 
equations accurately for N>15.  Finally, note in Figure 5 that integration of the approximation leads to 
slightly smaller approximation errors of the function’s integral, whereas differentiation of the 
approximation results in ~ one order of magnitude loss of accuracy in approximating the derivative of the 
function. 

 

The conventional approach to collocation-based implicit integrators is to approximate the unknown 
trajectory as a linear combination of basis functions, then linearize the right hand side of the differential 
equations about trial values of the basis function coefficients … then use collocation at N+1 nodes to 

Figure 5 

Figure 4 
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establish N+1 nonlinear algebraic functions to iterate for the unknown coefficients.  We do not pursue this 
path, but rather use the Picard iteration without local linearization.  We directly approximate the integrand 
of the Picard integral, and the path integral requires only term-by-term integration of the Chebyshev 
polynomials.  The result is that linear combination of the coefficients of the integrand approximation, 
along with imposition of the boundary conditions permits direct update of the path approximation 
coefficients without a local linearization.  The process to establish the integrand coefficient vectors along 
the (i-1)th path approximation is indicated in Figure 6.   

 

Given the integrand approximation coefficients, using the standard formula for integration of Chebyshev 
polynomials and imposing the intial boundary conditions, the vector coeffients for the ith path 
approximation can be directly computed as shown in Figure 7. 

 

The above developments represent the basic MCPI algorithm for first order state space dynamical 
systems’ initial value problem.  However, for natural systems that are fundamentally represented in a 
second order state space, we find that MCPI should be written in cascade form in order to realize 
maximum efficiency.  The cascade form of MCPI reduces the dimension of the approximation space by 2 
and, remarkably, we have shown that the cascade version of MCPI typically reduces the number of Picard 
iterations by 50% in comparison to the classical first order version of Picard iteration.   The qualitative 
reason for the 50% reduction in the number of iterations is evident in Figure 8.  Notice that when the 

Figure 7 

Figure 6 
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second order system of n differential equations is re-arranged as 2n first order equations, the first n 
differential equations are simply an identity (velocity is the derivative of position).  When the Picard 
iteration is applied to this first order system, notice that the ith position vector is the integral of the (i-1)th 
velocity approximation.  Conversely, when the Picard iteration is applied in cascade fashion, the (i-1)th 
acceleration approximation vector is integrated to establish the ith velocity approximation.  Notice the 
result of this step is a Chebyshev series approximation of the ith velocity, which can be integrated term by 
term to establish the ith position.  Thus, the 2nd order cascade approach allows the ith position 
approximation to be based on the ith velocity approximation instead of the (i-1)th velocity approximation 
when using the classical state space version of the Picard iteration.  This simple truth has important 
consequences. 

 

 

The classical developments above can be re-arranged in vector-matrix form where several matrices can be 
pre-computed to accelerate subsequent iterations’ computations; the vector-matrix form is given in Fig 9. 

 

For the case of a linear system, the relationship between the Chebyshev coefficients and the system states 
at the nodes are linearly related.  This truth allows the Picard iteration to be re-arranged to recursively 
update nodal states on each iteration with a constant matrix operator CxC.  The eigenvalues of this linear 
operator must lie in the unit circle to guarantee convergence.  The matrix operator CxC turns out to be 
scaled by c = Euclidian norm of the differential equation coefficient matrix, and the time interval (tf – t0).  

Figure 9 

Figure 10 

Figure 8 
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The maximum time interval to guarantee convergence is found to be 0 max max( ) (2 / )(1/ ( )).f xt t c C C    As 

a consequence, we see that the maximum eigenvalue of CxC dictates “everything” about convergence for 
the case of a linear system. The matrix CxC  is completely establish by the choice of basis functions, 
degree N of approximation, and the nodal locations.  Thus we can investigate CxC  eigenvalues “once 
and for all” to determine the conditions for convergence.  Figure 10 shows the remarkable behavior of the 

maximum eigenvalue of CxC.We se for N<~45, max( )xC C decreases roughly linearly on a log plot, and 

thereafter, max( )xC C the maximum eigenvalue asymptotically approaches a constant for increasing N.  

Thus the rate of convergence, remarkably, does not increase as N increases (however, increasing N 
increases accuracy, allowing spectral approximation without encountering a reduction in the rate of 
convergence.  
  

 

 

The remarkable behavior of the maximum eigenvalue of  ( )xC C  in figure 10 can be further illuminated 

by looking at the locus of all of the eigenvalues as a function of increasing N.  The locus is shown in 

Figure 11.  The vertical axis is the imaginary value of the eigenvalues ( )xC C , the horizontal axis is the 

real value of the eigenvalues of  ( )xC C .  The eigenvalues occur in complex conjugate pairs.  The right 

most pair have the same norm, and this norm is ( )xC C .  Remarkably, as N increases, the eigenvalues 

are attracted to fixed positions on a unit circle of diameter 0.054 that “kisses” the origin.  The right-most 
eigenvalues being attracted to fixed positions on the circular locus explains the asymptotic behavior of 

max( )xC C  in Figure 10. While this eigenvalue analysis holds only for linear constant coefficient systems, 

the results provide qualitative insight for nonlinear systems Picard iteration, especially in terminal 
iterations where Picard iteration provides a near-identity mapping. 

 

Figure 10 
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While the Picard iteration can be guaranteed to be a contraction mapping for a large class of nonlinear 
systems, and the contraction mapping can be completely analyzed for the case of linear systems, 
guaranteeing efficiency requires further insights and care in implementation.  Specifically, Picard iteration 
is known to converge geometrically, as compared to terminal quadratic convergence for most Newton-
like algorithms based on local linearizations.  Thus, for very good starting approximations, we can expect 
the number of Picard iterations to be greater than, for example a co-location algorithm based on local 
linearizations.  However, the fixed point nature of Picard iterations allows several additional methods to 
be introduced that dramatically accelerate convergence.  It should be noted that Picard path iterations are 
inherently parallelizable, so if the Picard iteration can be accelerated so that is “wins” with regard to 
computational time for a given accuracy in a serial implementation, then it is virtually certain to be 
superior in a parallel implementation. 

The enhancements of the MCPI algorithm can be described with the following captions: 

 Segmentation and order selection (take advantage of physics knowledge, if possible) 
 Warm and hot starting approximate solutions 
 Radially adaptive gravity (for the case of orbit solutions) 
 Terminal Convergence Force Approximations for MCPI 

The first issue is discussed briefly with reference to Figure 12.  For the case of orbit problems, it is well 
known (Kepler’s Laws) that the nonlinearities are strongest at perigee where the gravitational 
perturbations and drag perturbations are largest and change more nonlinearly with positon and velocity, 
whereas the slower motion and weaker nonlinearities are near apogee.  Thus, we expect optimal accuracy 
(for a given number of nodes) will result with high nodal density near perigee and sparse nodes near 
apogee.  These qualitative expectations, supported by numerical studies, result in an optimal pattern that  
has an odd number of segments {1,3,5,…} with the optimum starting point being at perigee, and the 
center of a segment being at Apogee.  The optimal segment break point on the orbit has been found to be 
a function of three variables (perigee radius, eccentricity, and desired accuracy), for a given gravity field 

Figure 11 
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model and atmospheric density model. Obviously perigee radius dictates how deeply the orbit dips into 
the more nonlinear part of the gravity field and the extent to which atmospheric drag affects the orbit.  
Eccentricity dictates the variability of the angular displacement with time, and the increasing apogee 
radius that decreases the strength and frequency content of acceleration perturbations.  Figure 12 shows 
one such optimal pattern for the case of three segments.   It is important to note that a particular  pattern 
that characterizes the optimal solution must also show that the estimated accuracy of the converged 
solution be approximately uniform over the orbit.  We also highlight  useful methods that we have 
developed for estimating the solution accuracy. 

There are essentially two sets of issues:  (1) How to establish an initial conservative choice for the 
segmentation pattern and number N of nodes.  (2) How to adapt the segmentation pattern and number of 
nodes to ensure both accuracy and efficiency.   The first issue can be addressed fully by an a priori 
parametric study (Figure 13).  If this process results in the ability to quickly establish conservative 
segment break times, along with a choice ofchoose N that ensure accuracy with reasonable sub-optimal 
efficiency, the second issue (adaptation) is a desirable luxury, but may not be required for many 
applications.  

   

Shown below in Figure 14 is a response surface revealing the required number of approximation nodes, 
for a 3 segments, as a function of perigee radius and eccentricity.  For near earth orbits in a gravity field 
with degree and order set to (40,40), this surface is optimized for nine digits accuracy (corresponding to 
centimeter level of position accuracy, which is more accurate than the physical accuracy of the gravity 
model if perigee is smaller than 1.5 earth radii).  The tuning is designed to be conservative, and we have 
found that even without adaption, this tuning guarantees accuracy with good efficiency.  The tuning of the 
algorithm (number of segments and number of nodes) as a function of cost (measured by the number of 
local force (gravity) evaluations) and the resulting accuracy achieved is shown in Figure 15.  This 
optimization could be done a number of ways, for convenience, we used a generic algorithm and achieved 
good results.  This is repeated over a family of neighboring orbits to establish the parametric relationship 
between {accuracy, efficiency, number of segments, number of nodes} for optimal approximation. This 
data base can be accessed to launch the solution process with conservative sub-optimal tuning. 

 

Figure 12                                                                     Figure 13 

Figure 14                                                                Figure 15 
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Given a good choice on the tuning parameters, a very important issue that governs efficient convergence 
is the closeness of the starting approximation.  This issue is relatively easy to address for problems in 
celestial mechanics because the two-body problem is often accurate to a few significant figures over one 
orbit.  However, over longer time intervals, this solution breaks down.  In addition, for the computation of 
multiple orbits, successive orbits experience highly correlated non-two-body perturbations, if reference to 
the previously completed orbit’s osculating perigee state.  Figure 16 illustrates qualitatively the warm 
start (two body analytical approximation), typically, although we can also include the first few zonal 
harmonic perturbations, and a hot start correction, based upon the displacement of the final converged 
orbit from the warm start orbit at the nodes on the previous nodes.  We have found that the warm start 
typically gives 3 correct digits, and the hot start correction typically has errors in the 5th significant figure, 
therefore very significantly accelerating the process by eliminating the early iterations to get into the 
terminal convergence regime.  The consequences are dramatic.  Figure 17 shows the convergence that 
ensues with a “cold start” (linear extrapolation of initial state), a “warm start” (two body approximation 
based on initial conditions), and a “hot start”, an Encke-like correction where the displacement from the 
previous warm start to the final converged solution is added to the current warm start to initiate the next 
orbit’s approximation.  As is evident, better than one order of magnitude improvement at each iteration is 
made by using a warm start, and another order of magnitude by using a hot start. 

      

Certain forces exhibit a particular behavior that allows an additional state-dependent acceleration.  An 
excellent and frequently occurring example is the earth’s gravity field which decays in strength and 
spatial granularity as the distance from the center of the earth increases.  There are several ways to think 

Figure 16                                                                Figure 17 

Figure 14 Figure 15 
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about this truth.  Among the simplest is to ask the question:  For a prescribed gravity model, how many 
terms in that model {specified by choosing the degree and order} are required as a function of the earth’s 
radius and the desired number of significant figures in the gravity model.  The right graph of Figure 18 
shows the surface giving N as a function of radius and accuracy.  The radius is in units of the Earth’s 
radius.  As is evident, except inside 2.5 earth radii, it is virtually never required to have a degree and order 
greater than (20,20) and at the GEO orbit, (6.623 Earth radii), we never require a degree and order above 
(6,6). Only for lower altitudes inside about 1.75 Earth radii do we need to consider models with degree 
and order above (100,100).  The nature of this surface is known a priori, so any call to compute 
gravitational acceleration should be accompanied by a prescribed accuracy, in addition to the maximum 
degree, order.  As is evident in the left curve of Figure 18, the computational cost to compute the higher 
order gravity is significant in a serial processor, although this cost can be negated to a significant degree 
in a parallel computing implementation.       

                 

Figure 19 briefly addresses another issue.  The fact that convergent MCPI process is a contraction 
algorithm means that the nodes are attracted to fixed points in the gravity field.  We have developed 
metrics that enable the algorithm to approximately determine the number of significant digits in the 
solution associated with the current Picard iterations, as well as the final desired accuracy.  This means 
that we can utilize a variable fidelity gravity model, whereby an occasional accurate force computation is 
followed by local approximations consistent with the progress toward final convergence.  We have found 
one way to do this is to utilize a zonal gravity approximation to capture the generic shape of the gravity 
field in the vicinity of a node.  The departure (offset) from this local inexpensive gravity model can be 
added based on an occasional update from the full force model.  Remarkably, as is evident in Figure 20, 
we can use this approach, following warm/hot starts and most often only two full force models 
evaluations in order to achieve final precision tolerances of 9 digit accuracy, and 14 digit accuracy with 
only two full fidelity force model evaluations. The initial evaluations (green symbol) of this figure began 
with a warm start and the first six zonal harmonics.   

The consequence of these several insights (warm/hot starts, radially adaptive gravity, and local force 
approximation) is a substantial speedup of MCPI, and in fact, based on the extensive studies to date, we 
can claim it represents the present state of the art for efficient/accurate orbit propagation (as evidenced 
below) for serial implementations.  Moreover, since almost all of the competing algorithms, in particular 
the Gauss-Jackson industry standard, are known to be very difficult to parallelize and the MCPI is 
inherently parallelizable, we conclude that MCPI provides dramatic advantages (especially as we move to 
exploit the emerging massively parallel architectures) 

Figure 18                                                                Figure 19 
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In order to illustrate the implications of the above developments, we present a study involving six orbits 
over a range of orbit elements (see the table in Figure 21). These orbits include low eccentricity low earth 
orbits, highly eccentric orbits, near circular orbits near GEO, and intermediate orbits. This variety of 
orbits is sufficient to exercise the current implementation of MCPI and compare to five competing 
algorithms that represent both the state of the art and the state of the practice.  All of the solution 
algorithms make use of the same intermediate degree and order gravity model (40, 40) and included no 
other perturbation effects.  This force model has an exact integral (the Hamiltonian) that is theoretically 
constant, and this allows one immediate metric to be computed as a necessary condition measure of the 
accuracy of the solution obtained for any of the orbits by any of the competing methods.  Two other 
methods provide stronger validation of closure between the approximate solutions and the true solutions, 
these are detailed in the appendices (the method of manufactured solutions (MMS) and the round trip 
closure (RTC) method).  These two methods are only employed selectively due to the higher cost, the 
preservation of the Hamiltonian is demonstrated to behave consistently with MMS and RTC for 
conservative systems, however, both MMS and RTC are applicable to general non-conservative systems. 

 

For each of these orbits, we summarize the five competing algorithms accuracy metrics and relative 
efficiency in the figures below; we used the unperturbed orbit period to establish the final time.  It is 
clearly evident that MCPI produces the most efficient solution for the prescribed accuracy for all six 
orbits.  These are all serial results on a conventional personal computer (specifications in the appendix), 
and we are presently implementing the same algorithms on a representative parallel computing 
environment.  For the present discussion, Figs 22-25 show results from each of the six integrators.  The 
lower right sub-figure in each of Figs 22-25 shows the relative error in preserving the Hamiltonian.  In 
each case the MCPI algorithm was tuned to give a slightly better solution (smaller error) than the 5 
competing algorithms, and for each of the competing algorithms, the tuning was optimized for a common 

Figure 21 
 
 

Figure 20 
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accuracy tolerance.  For each case, as is evident, the speedup relative to the best competing algorithms 
varies from ~2x to ~10x.  The use of parallel computation will result in an additional two orders of 
magnitude speedup. 

 

 

 

 

Figure 22 
 
 

Figure 23 
 
 

Figure 24 
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Figure 25 
 
 

Figure 26 
 
 

Figure 24 
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Appendices 

The following attached publications containing details from this research project are appended to this 
report: 

1. Macomber, B., Woollands, R., Probe, A., Bani Younes, A., Junkins, J., “Modified Chebyshev 
Picard Itetation for Efficient Numerical Integration of Ordinary Differential Equations”, 
Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, Sep 2013. 
 

2. Kim, D., Junkins, J., Turner, J., Bani Younes, A., “Multi-Segment Adaptive Modified Chebyshev 
Picard Iteration Method”, 24th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, MN, Jan 
2014. 
 

3. Kim, D., Junkins, J., Turner, J., “Multisegment Scheme Application to Modified Chebyshev 
Picard Iteration Method for Highly Elliptical Orbits”, Mathematical Problems in Engineering, 
2014. 
 

4. Woollands, R., Junkins, J., Bani Younes, A., “A New Solution for the Generalized Lambert’s 
Problem”, 37th Annual AAS Guidance & Control Conference, Breckenridge, Feb 2014. 
 

5. Woollands, R., Bani Younes, A., Junkins, J., “New Solutions for Lambert’s Problem Utilizing 
Regularization and Picard Iteration”, Journal of Guidance Dynamics and Controls, Richard H. 
Battin Special Edition, submitted Sep, 2014. 
 

6. Woollands, R., Bani Younes, A., Macomber B., Probe, A., Kim, D., Junkins, J., “Validation of 
Accuracy and Efficiency of Long-Arc Orbit Propagation using the Method of Manufactured 
Solutions and the Round-Trip-Closure Method”, Advanced Maui Optical and Space Surveillance 
Technologies Conference, Maui, Sep, 2014. 
 

7. Probe, A., Macomber, B., Kim, D., Woollands, R., Junkins, J., “Terminal Convergence 
Approximation Modified Chebyshev Picard Iteration for Efficient Numerical Integration of 
Orbital Trajectories”, Advanced Maui Optical and Space Surveillance Technologies Conference, 
Maui, Sep, 2014. 
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ABSTRACT 
 

Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating solutions of linear 
or non-linear Ordinary Differential Equations (ODEs) to obtain time histories of system state trajectories.  Unlike 
other step-by-step differential equation solvers, like the Runge-Kutta family of numerical integrators, MCPI 
approximates long arcs of the state trajectory with an iterative path approximation approach, and is ideally suited to 
parallel computation.  Orthogonal Chebyshev Polynomials are used as basis functions during each path iteration, 
and the integrations of the Picard iteration are then done analytically.  The orthogonality of the Chebyshev basis 
functions mean that the least square approximations can be computed without a matrix inversion; the coefficients are 
conveniently computed robustly from discrete inner products.  As a consequence of discrete sampling and weighting 
adopted for the inner product definition, the Runge phenomena errors that usually occur near the ends of the 
approximation intervals are significantly minimized.  The MCPI algorithm utilizes a vector-matrix framework for 
computational efficiency.  Additionally, all Chebyshev coefficients and integrand function evaluations are 
independent, meaning they can be simultaneously computed in parallel for further decreased computational cost.  
Over an order of magnitude speedup from traditional methods is achieved in serial processing, and an additional 
order of magnitude is achievable in parallel architectures. 
 
This paper presents a new MCPI library, a modular toolset designed to allow MCPI to be easily applied to a wide 
variety of ODE systems.  Library users will not have to concern themselves with the underlying mathematics behind 
the MCPI method.  Inputs are the boundary conditions of the dynamical system, the integrand function governing 
system behavior, and the desired time interval of integration, and the output is a time history of the system states 
over the interval of interest.   
 
Examples from the field of astrodynamics are presented to compare the output from the MCPI library to current 
state-of-practice numerical integration methods.  It is shown that MCPI is capable of out-performing the state-of-
practice in terms of computational cost and accuracy.   
!
 

1. INTRODUCTION 
 

Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for solving linear or non-linear 
ordinary differential equations. It combines the discoveries of two great mathematicians: Émile Picard (Picard 
Iteration) and Rafnuty Chebyshev (Chebyshev Polynomials). The decision to make use of these techniques in a 
simultaneous manner was first proposed by Clenshaw and Norton in 1963 [1].  
 
Picard stated that any first order differential equation 
 

€ 

˙ x (t) = f (t,x(t)), x(t0),              (1.1) 
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with an initial condition x(t0) = x0, may be rearranged without approximation to obtain the integral equation shown 
in Eq. (1.2). 
 

€ 

x(t) = x(t0) + f (τ,x(τ))dτ .
t0

t

∫        (1.2) 

 
A sequence of approximate solutions, xi(t), (i = 1, 2, 3, …, ∞), to this differential equation may be obtained through 
Picard iteration using the following formula: 
 

€ 

x i(t) = x(t0) + f (τ,x i−1(τ))dτ,
t0

t

∫ i =1,2,...     (1.3) 

 
In the MCPI method, orthogonal Chebyshev polynomials are used as basis functions to approximate the integrand in 
the Picard integral. Chebyshev polynomials reside in the domain τ = [-1,1], and can be defined recursively as: 
 

€ 

T0(τ) =1,     (1.4) 
 

€ 

T1(τ) = τ,  (1.5) 
 

€ 

Tk+1(τ) = 2τTk (τ) −Tk−1(τ ).   (1.6) 
 
Unlike traditional step-by-step integrators, for example the Runge-Kutta methods, MCPI is unique in that long state 
trajectory arcs are approximated during the Picard iteration.  The system dynamics are normalized such that the 
timespan of integration is projected onto the domain of the Chebyshev polynomials, thus the system states can be 
approximated using the Chebyshev polynomial basis functions.  The orthogonal nature of the basis functions means 
that the coefficients that linearly scale the basis functions can be computed independently as simple ratios of inner 
products with no matrix inversion.  
 
As a consequence of the independence of the basis functions, the coefficients multiplying the Chebyshev basis 
functions may be computed in parallel by separate processor threads.  This is the first of two available layers of 
parallelization in the MCPI method.  The second layer of parallelization is enabled by the fact that the entire state 
trajectory over the time interval of interest is estimated at once.  Thus the calculation of the integrand function 
(which is a function of the system states) can be performed all at once on parallel processor threads.  Using MCPI, 
over an order of magnitude speedup from traditional methods is achieved in serial processing, and an additional 
order of magnitude is achieved in parallel architectures. 
 
A key feature of MCPI is a non-uniform cosine density sampling of the domain of the Chebyshev basis functions 
called Chebyshev-Gauss-Lobatto (CGL) nodes, defined in Eq. (1.7). 
 

τ j = cos( jπ / N ), j = 0,1, 2...,N      (1.7) 
 
This sampling scheme has much higher density towards the edges, which enables a higher accuracy solution near the 
boundaries of the state trajectory.  This scheme eliminates the Runge phenomena, a common issue in function 
approximation whereby noisy estimates are returned near the edges due to lack of knowledge of the states on the 
other sides of the boundaries.  The coefficients multiplying the Chebyshev basis functions are approximated by the 
method of least squares, which generally requires a matrix inversion.  A wonderful side effect of the cosine 
sampling scheme is that the matrix required to be inverted in the Normal Equations of least squares is diagonal, thus 
the inverse is trivial. 
  
In 2010, Bai’s dissertation [2] laid the groundwork of MCPI and proved the capability of the method to outperform 
the state of the practice for numerical integration of ODEs.  Bai and Junkins applied MCPI to non-linear IVPs and 
orbit propagation in [3], and showed that MCPI can outperform other higher order integrators such as Runge-Kutta-
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Nystrom 12(10).  In [4] Bai and Junkins applied MCPI to efficiently solving Lambert’s transfer problem, and to 
solving an optimal control trajectory design problem more accurately and efficiently than the Chebyshev 
pseudospectral method.  In [5] Bai and Junkins use MCPI in a complex three-body station-keeping control problem 
formulated as a BVP.  Subsequent publications by Junkins et al. [6], [7], and [8] further clarify the concept and 
derivation of MPCI and orthogonal approximation in general, and apply the method to problems in the field of 
astrodynamics.   
 
A full derivation of MCPI is beyond the scope of this short paper.  Instead we present a flow chart in Fig. 1 briefly 
summarizing the mathematics underlying the MCPI method for solution of an Initial Value Problem (IVP).  Fig. 2 is 
the same mathematics represented in the more elegant vector/matrix formulation, which is computationally the most 
efficient way to implement the method.  Any of the above references provide more detailed derivations, as well as 
examples and results that demonstrate the power of the MCPI algorithm with regard to speed and accuracy.  
Additionally, those references contain comparisons to other well-known integrators including high-order Runge-
Kutta methods and the Gauss-Jackson method. 
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Fig. 1. Flow diagram of MCPI Initial Value Problem implementation. 
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Fig. 2. Flow diagram of MCPI algorithm in vector-matrix form.
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2. TAMU MCPI LIBRARY 
 

This paper introduces the Texas A&M University MCPI libraries (TAMU MCPI), which have been created to 
encourage widespread use of the MCPI method for solution of Ordinary Differential Equations.  The goal of the 
project is to create an easy to use toolset that effectively eliminates the learning curve of using MCPI methods, but at 
the same time is versatile and powerful enough for application to a variety of projects.  The user is not required to 
have a thorough understanding of the inner-workings of MCPI in order to implement it in their own projects.  
TAMU MCPI is a set of efficient and lightweight classes for solution of Initial Value Problems (IVPs) and 
Boundary Value Problems (BVPs).  Solvable ODEs can be linear or non-linear, autonomous or non-autonomous, 
and first-order or second-order.  Higher order systems are solvable by decomposition to a first-order or second-order 
system by the inclusion of additional states that are the time derivatives of lower order states.  
 
Fig. 3 shows a high-level overview of the TAMU MCPI structure from an implementation point of view. The user 
provides a handle to an integrand function for the problem at hand, that is, the update function that describes how 
the time derivatives of the system states behave.  Additionally, the user provides the relevant boundary conditions 
for the system states, defined at the initial time, the final time, or both, depending upon the problem to be solved.  If 
the system has time-varying parameters, or other numerical data is required in the integrand function, these may be 
inputted as well.  Given these inputs, TAMU MCPI will iteratively attempt to numerically solve the state-space 
trajectories of the system over the desired time interval.  If a solution is found, the time history of the system states 
over the interval of interest is returned.   

MCPI%Library%
IVPs%
BVPs%

Lambert%

Integrand%Func8on%

Boundary%
Condi8ons%

(Op8onal)%
Parameters%

Time%History%of%
System%States%

User%
Inputs%

TAMU%
MCPI%Class%
Library%

Outputs%

 
Fig. 3. High-level overview of TAMU MCPI library. 

 
The TAMU MCPI library is available in Matlab, C++, and as Matlab wrapper functions to the CUDA parallel 
computation environment.  CUDA stands for Compute Unified Device Architecture, and is a parallel computing 
language developed by NVIDIA for use upon their Graphics Processing Units (GPUs); effectively it allows 
lightweight parallel computation at a desktop workstation.  TAMU MCPI is fully cross-platform, and has been 
tested on Windows, Linux, and Apple computers.  The structure of the libraries is hierarchical, with an abstract 
parent class and derived child classes tailored to the solution of various problem types.  This modular approach is to 
allow for future expansion, or application-specific customization and optimization.  Control parameters can be set 
from a configuration file or interactively by the user. 

 
The C++ libraries can be distributed as source code with minimal external dependencies (the only dependencies are 
headers from the Boost cross-platform library1), or as pre-compiled binaries and header files for many widely used 
operating systems.  Compiling the libraries from source is possible with any reasonable C++ compiler, and include 

                                                             
1 Boost is a set of cross-platform C++ tools to accomplish common tasks.  TAMU MCPI uses header-only Boost 
libraries to avoid inclusion of large binary files.  See http://www.boost.org/ for more information. 

20



files and linking are managed with CMake2.  The CUDA libraries utilize the Matlab Parallel Computation Toolbox, 
and require Matlab 2010 or newer (2011 or newer recommended), and an NVIDIA GPU with compute capability of 
1.3 or greater.   
 

3. EXAMPLE: ORBITAL PROPAGATION OF DEBRIS CLOUD 
 
In this example, we forward propagate the orbital motion of a cloud of 1000 simulated debris objects in Low Earth 
Orbit.  Initially the cloud is a three-dimensional Gaussian distribution with mean initial position and velocity and 
distribution parameters as shown in Table 1.  The mean particle orbital eccentricity is e = 0.0099, and the mean 
orbital period is P = 5.3905 x 103 seconds.  The motion of each object is propagated forward by one (mean) orbital 
period using a simple inverse square gravity model.  The initial and final distributions are shown in Fig. 4 (note that 
the Earth is shown solely to provide scale, the coordinate system is arbitrary).   
 
This numerical integration is performed using the TAMU MCPI Initial Value Problem library running in Matlab 
2013, and benchmarked against the native Matlab Runge-Kutta 4(5) variable step size numerical solver ODE45.  
The comparison is carried out on a laptop computer with an Intel Core i7 2.3GHz processor, and16GB of RAM.  
The accuracy of the numerical solution is verified against the analytic F and G solution, and both algorithms are 
tuned to have similar accuracy as shown in Fig. 5, in which the motion of a single particle is propagated forward by 
several orbits.  In this arrangement, the Matlab implementation of TAMU MCPI forward propagates the particle 
cloud motion five times faster than ODE45, and with comparable accuracy. 
 

Table 1: Parameters required for the IVP solution. 
Orbit Parameters 

Propagation Time (s) 5.3905 x 103 
Mean Particle Initial Position Vector (km) [-464.856, 6667.880, 574.231] 

Mean Particle Initial Velocity Vector (km/s) [-2.8381,-0.7872,7.0830] 
Standard Deviation Particle Position (km) 0.1 

Standard Deviation Particle Velocity (km/s) 0.1 
 

 
Fig. 4: Simulated debris cloud, initial Gaussian distribution and final distribution after forward propagation by one 

mean orbital period. 
                                                             
2 Cmake is a cross-platform build tool that creates projects such that the native compiler can build applications from 
source code.  See http://www.cmake.org/ for details. 
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Fig. 5. Position errors of the MCPI algorithm (top panel) and the ODE45 (bottom panel) compared with the analytic 

F and G solution. 
 
 

4. EXAMPLE: LAMBERT’S TRANSFER PROBLEM 
 
We solve the orbital motion for a section of a Low Earth Orbit given boundary conditions on the initial and terminal 
position as well as the time taken for the motion, a formulation called Lambert’s Problem.  These input parameters 
are shown in Table 2.  The period of the chosen orbit is P = 5.3905 x 103 seconds, and the eccentricity is e = 0.0099.   
 
This problem is solved with the TAMU MCPI Second Order Boundary Value (Lambert-Style) library running in 
Matlab 2013, and benchmarked against the Shooting Method using fsolve and ODE45.  The comparison is carried 
out on a laptop computer with an Intel Core i7 2.3GHz processor, and16GB of RAM.   The output from the two 
solvers are verified against the analytic F and G solution, and the parameters of both algorithms are tuned until the 
accuracy is comparable, as shown in Fig. 7.  Depending upon the desired arc-length of solution, the Matlab 
implementation of TAMU MCPI is able to solve the Lambert Problem 20-60 times faster than the shooting method 
with fsolve and ODE45, and with comparable accuracy. 
 
For this given orbit, the MCPI BVP algorithm maximum arc length over which convergences occurs is 38% of an 
orbital period. We are currently investigated promising new methods to increase this arc length, and these will 
appear in subsequent publications. 
 
 

Table 2: Parameters required for the BVP solution. 
Orbit Parameters 

Propagation Time (s) 0.38 * 5.3905 x 103 
Initial Position Vector (km) [-464.856, 6667.880, 574.231] 
Final Position Vector (km) [-1386.506,-5174.986,3873.216] 
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Fig. 6: The reference orbit generated from an F and G solution (blue), and the 38% time period arc (red) propagated 

with the BVP algorithm. 
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Fig. 7. Position errors of the MCPI algorithm (top panel) and the shooting method (bottom panel) compared with the 
analytic F and G solution. 

 
 

5. CONCLUSION 
 

Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating solutions of linear 
or non-linear Ordinary Differential Equations (ODEs).  Unlike other step-by-step differential equation solvers, like 
the Runge-Kutta family, MCPI approximates long arcs of the state trajectory with an iterative path approximation 
approach, and is ideally suited to parallel computation.  Orthogonal Chebyshev Polynomials are used as basis 
functions during each path iteration, and the integrations of the Picard iteration are then carried out analytically.  The 
orthogonality of the Chebyshev basis functions allows the least square approximations to be computed without 
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matrix inversion. Instead the coefficients are computed robustly from discrete inner products. The discrete sampling 
and weighting that is adopted to satisfy the inner product definition creates that added benefit that the approximation 
errors are minimized near the ends of the interval.   
!
The MCPI algorithm utilizes a vector-matrix framework for computational efficiency.  All Chebyshev coefficients 
and integrand function evaluations are independent, meaning they can be simultaneously computed in parallel for 
further decreased computational cost.  Over an order of magnitude speedup from traditional methods is achieved in 
serial processing, and an additional order of magnitude is achievable in parallel architectures. 
 
In this paper we have presented the new TAMU MCPI library that allows the user to easily apply the MCPI method 
to their own ODE systems.  The TAMU MCPI library is available in Matlab, C++, and as Matlab wrappers for 
CUDA parallel computation.  It is fully cross-platform for Windows, Linux, and Apple, and can be compiled from 
source by the user, or distributed as a binary library for many common operating systems.  The idea is that the user 
does not need to concern themselves with the underlying mathematics behind the MCPI algorithm, but simply inputs 
the boundary conditions of the dynamical system, the integrand function governing system behavior, and the desired 
time interval of integration. The algorithm outputs the time history of the system states over the interval of interest.   
 
Two astrodynamic examples are presented to demonstrate the capability of the algorithm for the initial value and 
boundary value problems respectively. For the first example (IVP) we forward propagate a simulated cloud of debris 
particles in a low earth orbit.  Compared to a native Matlab ODE45 integrator, we are able to forward propagate the 
motion five times faster with the same accuracy.  For the second example (BVP) we consider Lambert’s problem 
and present a convergence arc length of 38% of the orbit.  Depending upon the arc-length of the orbit in the 
Lambert’s problem, MCPI is able to obtain a solution 20-60 times faster than the shooting method.  We have 
demonstrated the power of our MCPI algorithm in numerous publications, and we are excited at the prospect of 
sharing this new library to afford other researchers the opportunity to benefit from these tools. 
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ITERATION METHOD
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A modified Cheyshev Picard iteration method is proposed for solving orbit prop-
agation initial value problems. Cosine sampling, known as Chebyshev-Gauss-
Labatto (CGL) node, is used to reduce the Runge’s phenomenon that plagues many
series approximations. The key benefit of using the CGL data sampling is that the
nodal points are distributed non-uniformly, with dense sampling at the beginning
and end times. This problem can be addressed by a nonlinear time transformation
and/or by utilizing multiple time segments over an orbit. This paper suggests a
method, called a multi-segment method, to obtain accurate solutions overall re-
gardless of initial positions and eccentricity by dividing the given orbit into two or
more segments.

INTRODUCTION

Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating
solutions of linear or nonlinear ordinary differential equations to obtain time histories of system
state trajectories. In contrast to many step-by-step integrators, the MCPI algorithm approximates
long arcs of the state trajectory with an iterative path approximation approach and is ideally suited
to parallel computation.1 It is well known that Picard iteration has theoretical guarantees for con-
verging to the desired solution. The rate of convergence of Picard iteration is geometric rather than
quadratic for Jacobian based methods, however, the case for parallelization provides a significant
advantage.2

Orthogonal Chebyshev Polynomials are used as basis functions during each path iteration in our
approach, and the integrations of Picard iteration are then performed analytically. The orthogonality
of the Chebyshev basis functions implies that the least square approximations can be computed to
arbitrary precision without a matrix inversion; the coefficients are conveniently and robustly com-
puted from discrete inner products.3 Similar approximation approaches that use Legendre polyno-
mials are not successful because the starting and ending points of the fits are not sampled as densely
as the MCPI algorithm. The MCPI algorithm utilizes a vector-matrix framework for computation
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efficiency. Additionally, all Chebyshev coefficients and integrand function evaluations are indepen-
dent, meaning they can be simultaneously computed in parallel for further decreased computational
cost.1

For the MCPI algorithm, the cosine sampling, which is known as Chebyshev-Gauss-Lobatto
(CGL) node, is utilized to reduce the Runge’s phenomenon. The Runge’s phenomenon is a prob-
lem of oscillation at the edges of an interval that occurs when using polynomial interpolation with
polynomials of high degree. Since dense sample points are distributed at the beginning and ending
locations, less accurate solutions can be obtained where sparse points are distributed.

For example, let us consider an unperturbed two-body problem where the initial position is not
located near the periapsis (See Fig. 1). Obviously, large errors can be observed near the periapsis
where dense points are required but sparse points are distributed.

Figure 1. Sparse Point Distribution Description at Perigee

This problem is overcome by introducing a multi-segment method. Two and three segmented
orbits are considered and compared with the general MCPI algorithm. The performance of the
proposed approach is described by the numerical examples through a solution of the two-body
problem.

MODIFIED CHEBYSHEV PICARD ITERATION

The MCPI algorithm combines the discoveries of two great mathematicians: Émile Picard (Picard
iteration) and Rafnuty Chebyshev (Chebyshev polynomials). Combing these techniques was first
proposed by Clenshaw and Norton in 1963.4

Picard stated that any first order differential equation

dx

dt
= f(t,x) (1)

with an initial condition x (t0) = x0 can be rearranged without approximation to obtain the follow-
ing:

x(t) = x0 +

∫ t

t0

f (τ,x(τ)) dτ (2)

2
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In the MCPI algorithm, orthogonal Chebyshev polynomials are used as basis functions to approx-
imate the integrand in the Picard integral. Chebyshev polynomials reside in the domain τ = [−1, 1],
and are defined recursively as:

xi(t) = x0 +

∫ t

t0

f
(
τ,xi−1(τ)

)
dτ (3)

The system dynamics are normalized such that the time span of integration is projected onto the
domain of the Chebyshev polynomials, thus the system states are approximated using the Chebyshev
polynomial basis functions. The orthogonal nature of the basis functions means that the coefficients
that linearly scale the basis functions are computed independently as simple ratios of inner products
with no matrix inversion.

A key feature of the MCPI algorithm is a nonuniform cosine density sampling of the domain of
the Chebyshev basis functions called CGL nodes defined as follows:

T0(τ) = 1, T1(τ) = τ, Tk+1(τ) = 2τTk(τ)− Tk−1(τ) (4)

Figure 2. Uniform and Cosine Sampling Description in τ -Domain

As shown in Fig. 2, this sampling scheme has much higher density towards the edges, which en-
ables a higher accuracy solution near the boundaries of the state trajectory. This scheme eliminates
the Runge’s phenomenon, a common issue in function approximation whereby noisy estimates are
returned near the edges due to lack of knowledge of the states on the other sides of the boundaries.
The coefficients multiplying the Chebyshev basis functions are approximated by the method of least
squares, which generally requires a matrix inversion but the inverse is trivial.

A full derivation of the MCPI algorithm is not included in this work (Refer to Bai and Junkins1).
Instead, the authors present a flowchart in Fig. 3 briefly summarizing the mathematics underlying
the MCPI algorithm for solution of initial value problems.

MULTI-SEGMENT APPROACH FOR MCPI ALGORITHM

For the MCPI algorithm, the CGL node is utilized to reduce the Runge’s phenomenon, which is
a problem of oscillation at the edges of an interval that occurs when using polynomial interpolation
with polynomials of high degree. Since dense sample points are distributed at the beginning and
ending locations, less accurate solutions are obtained where sparse points are distributed.

3
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Figure 3. Flowchart for MCPI Algorithms for Solution of Initial Value Problems
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For example, let us consider an unperturbed two-body problem where the initial position is not
located near the periapsis. Obviously, large errors are observed near the periapsis where dense
points are required but sparse points are distributed. Additionally, even though the initial position
is located near the periapsis, accurate solutions can’t be obtained for highly elliptical orbits. To
obtain accurate solutions for the above cases using the MCPI algorithm, a multi-segment approach
is proposed.

Given the initial true anomaly (f0), two and three segmented orbits are considered as shown in
Fig. 4. These two cases requires patch times to link the divided segments. To distribute dense points
near the periapsis, the following strategies are suggested.

(a) One Segment (b) Two Segments

(c) Three Segments

Figure 4. Segmented Orbit Descriptions

For two segmented orbits, the time for the patch point is selected at the time at the perigee, where
the true anomaly (f) is 0 degree. For three segmented orbits, the time for the first patch point is
selected where f = −f0 degree for symmetry and the time for the second patch point is selected
where f = 0 degree. To find propagation time for each segment, the following calculation needs to
be performed. First, given the initial position and velocity vectors, calculate the initial true anomaly
and one orbit period time (TP ) as follows:

TP = 2π

√
a3

µ
(5)

5
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where a is the semi-major and µ is the Earth gravitational constant.

Second, calculate the initial mean anomaly (M0) as follows:

M0 = E0 − e sinE0 (6)

where e is the eccentricity and E0 is the initial eccentric anomaly described as

E0 = 2 tan−1

[√
1− e
1 + e

tan

(
f0
2

)]
(7)

Finally, calculate the propagation time for each segment as follows:

TP1 = TP − (S − 1)TP2 , TP2 = M0

√
a3

µ
(8)

where S is the number of segment for one orbit propagation.

For the considered cases, two sets of propagation time are determined as follows:{
Two Segments: TP = [TP1 , TP2 ]
Three Segments: TP = [TP1 , TP2 , TP2 ]

(9)

NUMERICAL EXAMPLES

A satellite motion integration problem, where only the gravitational force from the Earth, is
considered. The three-dimensional dynamical equations are

ẍ = − µ
r3
x, ÿ = − µ

r3
y, z̈ = − µ

r3
z (10)

where x, y, and z are the three coordinates in Earth-centered inertial reference frame; r is the dis-
tance of the satellite from the Earth; and the Earth gravitational constant µ is chosen as 3.98600433×
1014 m3/s2.

To verify the results, the following normalized energy error check is utilized:

Eerror =
|E − E0|
|E0|

(11)

where E0 is the initial energy and the energy is calculated as follows:

E =
1

2

(
ẋ2 + ẏ2 + ż2

)
− µ

r
(12)

Note that the goal is to obtain solutions where Eerr < 10−13.

Two sets of initial position and velocity vectors{
r (t0) = [−0.9085, − 0.0652, 1.0328]T × 107m

v (t0) = [−4.8283, − 4.4242, 0.4949]T × 103m/s
(13)

{
r (t0) = [−1.9994, − 3.6222, − 1.9875]T × 107m

v (t0) = [1.0649, 0.0765, − 1.2106]T × 103m/s
(14)

6
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Table 1. Classical Orbital Elements

Parameter Symbol Value Unit

Semi-major axis a 2.7× 107 m
Eccentricity e 0.7 -
Inclination i 60 degree

Right ascension of the ascending node Ω 45 degree
Argument of periapsis w 30 degree

Orbit period TP 4.4153× 104 s

which lead to initial true anomalies f0 = 90 and 180 degrees, respectively, and the classical orbital
elements listed in Table 1.

For the MCPI algorithm implementation to solve this problem, various factors need to be deter-
mined in prior calculation: 1) maximum iteration number (IM ), 2) error tolerance (TE), 3) degree
of polynomial (N), and 4) number of sample points (M). In this work, the authors focus on finding
a methodology to improve MCPI accuracy and reduce computational burden given the factors listed
in Table 2 and the initial conditions.

Table 2. Tuning Parameters

Parameter Symbol Value Unit

Maximum iteration number IM 200 -
Error tolerance TE 10−13 -

Degree of polynomial N 200 -
Number of sample points (One segment) M 200 -
Number of sample points (Two segments) M1, M2 100, 100 -

Number of sample points (Three segments) M1, M2, M3 68, 66, 66 -

Numerical simulations are performed and the normalized energy error results are shown in Figs.
5-8. Figure 5 shows that the normalized energy errors are much larger than the requirement (Eerr <
10−13). Obviously, largest error is observed at periapsis when f0 = 180 degree because of sparse
point distribution at the periapsis.

Figure 6 shows that the solution satisfies the requirement when f0 = 180 degree. Same number
of sample points are distributed for each segment and the total number of the sample points are
equal to the number of sample points for the basic (one segment) MCPI algorithm. Note that only
two segmented orbit approach is applicable when the initial position is not located at periapsis.

Figure 7 shows that the solution satisfies the requirement when f0 = 90 degree. Same number of
sample points are distributed for the second and third segments and the total number of the sample
points are equal to the number of sample point for the basic MCPI algorithm.

For the case where f0 = 90 degree, both approaches, two and three segmented orbits, are ap-
plicable. As shown in Fig. 8, both approaches satisfy the requirement but the three segmented
orbit approach outperforms most other method. The number of distributions for each approach
is determined by try and error and a methodology to select best number of distribution is under
development.

7
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Figure 5. Energy Error (One Segment)

Figure 6. Energy Error (Two Segments, f0 = 180 degree)
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Figure 7. Energy Error (Three Segments, f0 = 90 degree)

Figure 8. Energy Error Comparison between Two and Three Segments (f0 = 90 degree)
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CONCLUSION

The modified Chebyshev Picard iteration (MCPI) algorithm uses Chebyshev-Gauss-Lobatto (CGL)
node to reduce the Runge’s phenomenon. However, by using the CGL node, less accurate solutions
are obtained where sparse points are distributed. For the unperturbed two-body problem, the multi-
segment approach is utilized to obtain accurate solution. As a result, the multi-segment approach
provides much more accurate solutions comparing to the basic MCPI solution. Moreover, the au-
thors show that the three segmented approach outperforms other method in terms of computational
burdens. This approach will be very useful when the initial position is not located near the periapsis
for the MCPI algorithm.
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A modified Chebyshev Picard iteration method is proposed for solving orbit propagation initial/boundary value problems. Cosine
sampling techniques, known as Chebyshev-Gauss-Lobatto (CGL) nodes, are used to reduce Runge’s phenomenon that plagues
many series approximations.The key benefit of using the CGL data sampling is that the nodal points are distributed nonuniformly,
with dense sampling at the beginning and ending times.This problem can be addressed by a nonlinear time transformation and/or
by utilizing multiple time segments over an orbit. This paper suggests a method, called a multisegment method, to obtain accurate
solutions overall regardless of initial states and albeit eccentricity by dividing the given orbit into two or more segments based on
the true anomaly.

1. Introduction
1

Amodified Chebyshev Picard iteration (MCPI) is an iterative
numerical method for approximating solutions of linear
or nonlinear ordinary differential equations to obtain time
histories of system state trajectories [1, 2]. In contrast tomany
step-by-step integrators, the MCPI algorithm approximates
long arcs of the state trajectory with an iterative path approx-
imation approach and is ideally suited to parallel computation
[3]. It is well known that Picard iteration has theoretical
guarantees for converging to the solution assuming the forces
are continuous, once differentiable, and the solution of the
differential equation is unique [4]. The rate of convergence
of Picard iteration is geometric rather than quadratic for
Jacobian based methods. However, given a good starting
approximation, excellent efficiency is possible, and the case
for parallelization provides a significant advantage [5, 6].

Orthogonal Chebyshev polynomials are used as basis
functions during each path iteration, and the integrations
of Picard iteration are then performed analytically. The
orthogonality of the Chebyshev basis functions implies that
the least-square approximations can be computed to arbitrary
precision without a matrix inversion; the coefficients are

conveniently and robustly computed from discrete inner
products [7]. Similar approximation approaches that use
Legendre polynomials can be utilized, but the authors obtain
slightly better results because the starting and ending points
of the fits are not sampled as densely as the MCPI algorithm,
and importantly the location of the nodes for the Chebyshev
basis functions is computed exactly without iterations. The
MCPI algorithm utilizes a vector-matrix framework for com-
putational efficiency. Additionally, all Chebyshev coefficients
and integrand function evaluations are independent, mean-
ing that they can be simultaneously computed in parallel for
further decreased computational costs [3].

For theMCPI algorithm, the cosine sampling techniques,
known as Chebyshev-Gauss-Lobatto (CGL) nodes [8], are
utilized to reduce Runge’s phenomenon. The Runge phe-
nomenon is a problem of oscillation at the edges of an
interval that occurs when using polynomial interpolation
with polynomials of high degree [9]. Since dense sample
points are distributed at the beginning and ending locations,
less accurate solutions are usually obtained where sample
points are more uniformly distributed [10].

For the most extreme counterexample, let us consider an
unperturbed two-body problem, where the initial position is
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Apoapsis
Nearly linear

Very nonlinear
Periapsis

Figure 1: Sparse sample point distribution description at periapsis.

Uniform sampling

Cosine sampling

0 1−1

Figure 2: Uniform and cosine sampling descriptions.

Table 1: Classical orbital elements.

Parameter Symbol Value Unit
Semimajor axis 𝑎 2.7 × 107 m
Eccentricity 𝑒 0.7 —
Inclination 𝑖 60 Degree
Right ascension of the
ascending node Ω 45 Degree

Argument of periapsis 𝑤 30 Degree
Orbit period 𝑇𝑃 4.4153 × 104 s

not located near the periapsis. Obviously, large errors can2
be observed near the periapsis due to sparse sample points
where the dynamics are most nonlinear, yet we waste the
dense sample points at apoapsis when the problem is most
linear as shown in Figure 1.

This problem is overcome by introducing a multisegment
method and the results are compared with the basic MCPI
algorithm.This paper only considers two and three segments
per one orbit. The performance of the proposed approach is
established by numerical examples of the two-body problem.

2. Modified Chebyshev Picard Iteration

The MCPI algorithm combines the discoveries of two great
mathematicians: Émile Picard (Picard iteration) and Rafnuty
Chebyshev (Chebyshev polynomials). Combing these tech-
niques was first proposed by Clenshaw and Norton in 1963
[11].

Table 2: Tuning parameters.

Parameter Symbol Value Unit
Maximum iteration
number 𝐼𝑀 50 —

Error tolerance 𝑇𝐸 10−13 —
Degree of polynomial 𝑁 200 —
Number of sample points
(one segment) 𝑀 200 —

Number of sample points
(two segments) 𝑀1,𝑀2 100, 100 —

Number of sample points
(three segments) 𝑀1,𝑀2,𝑀3 68, 66, 66 —

Picard stated that any first-order differential equation

𝑑x𝑑𝑡 = f (𝑡, x (𝑡)) (1)

with an initial condition x(𝑡0) = x0 can be rearrangedwithout
approximation as follows:

x (𝑡) = x (𝑡0) + ∫𝑡
𝑡0

f (𝜏, x (𝜏)) 𝑑𝜏. (2)

In the MCPI algorithm, orthogonal Chebyshev polyno-
mials are used as basis functions to approximate the integrand
in the Picard integral. Chebyshev polynomials reside in the
domain 𝜏 = [−1, 1] and are defined recursively as

x𝑖 (𝑡) = x (𝑡0) + ∫𝑡
𝑡0

f (𝜏, x𝑖−1 (𝜏)) 𝑑𝜏, 𝑖 = 1, 2, . . . . (3)

The system dynamics are normalized such that the time
span of integration is projected onto the domain of the
Chebyshev polynomials. Thus, the system states are approxi-
mated using the Chebyshev polynomial basis functions. The
orthogonal nature of the basis functions means the coeffi-
cients that linearly scale the basis functions are computed
independently as simple ratios of inner products without
requiring matrix inversions.

A key feature of the MCPI algorithm is a nonuniform
cosine density sampling of the domain of the Chebyshev basis
functions, called CGL nodes, defined as follows:

𝑇0 (𝜏) = 1,
𝑇1 (𝜏) = 𝜏,

𝑇𝑘+1 (𝜏) = 2𝜏𝑇𝑘 (𝜏) − 𝑇𝑘−1 (𝜏) .
(4)

This sampling scheme provides much higher density
towards the edges (beginning and ending points), which
enables high accuracy solutions near the boundaries of the
state trajectory. This scheme eliminates the Runge phe-
nomenon, a common issue in function approximations,
whereby noisy estimates are returned near the edges due to
lack of knowledge of the states on the other sides of the
boundaries (see Figure 2). The coefficients multiplying the
Chebyshev basis functions are approximated by the method
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Known 𝒙(t0) ≡ 𝒙0, the 1st order ODE: d𝒙
dt

= 𝒇(t, 𝒙(t)) , t = [t0, tf]

Variable change from t domain to 𝜏 domain: t = a + b𝜏,
𝜏 = [−1, 1] where a = (tf + t0 )/2, b = (tf − t0 )/2

Transformed-domain 1st order ODE: d𝒙
d𝜏

= b𝒇(a + b𝜏, 𝒙(a +b𝜏)) ≡ 𝒈(𝜏, 𝒙)

Starting guess:
i = 1, 𝒙0(𝜏)

Picard iteration:

𝒙i(𝜏) = 𝒙0 + ∫t
−1
𝒈 (s, 𝒙i−1(s)) ds, i = 1, 2

Discrete orthogonal approximation along the (i − 1)th trajectory:

where

𝑭 i−1
k =

1

ck

N

∑
j=0

wj 𝒈(𝜏j, x
i−1(𝜏j)) Tk(𝜏j)

𝒈(𝜏, 𝒙i−1(𝜏))

≅
N−1

∑
k=0

𝑭 i−1
k Tk(𝜏)

𝜏j = −cos(j𝜋/N)
c0 = N; ck = N/2 for k = 1, 2 N

w0 = wN = 1/2; wj = 1 for j = 1, 2 N − 1

Enables the (i − 1)th Picard integrals to be analytically approximated:
N−1

∑
r=0

𝑭 i−1
r

𝒙i(𝜏) = 𝒙0 + ∫𝜏
−

∫𝜏
−1 1

𝒈(s , 𝒙i−1(s))ds ≅ 𝒙0 + Tr(s)ds ≡
N

∑
k=0

β ikTk(𝜏)

𝒙i(𝜏)
N

∑
k=0

β ikTk(𝜏)=

Trajectory approximation update: i = i + 1

where

β i0 = 𝒙0 +
N

∑
k=0

( 1)k+1β ik−

β iN−1 =
𝑭 i−1

N−2

2(N − 1)
, β iN =

𝑭 i−1
N−1

2N

β ir =
1

2r
 (𝑭 i−1

r−1 −𝑭
i−1
r+1), r = 1, 2 N − 2

, . . . ,

, . . . ,

, . . . ,

, . . .

Figure 3: Flowchart for the MCPI algorithm for solution of initial value problems.

of least squares, which generally requires a matrix inversion.
A wonderful side effect of the cosine sampling scheme is that
the matrix required to be inverted in the normal equations of
least squares is diagonal; thus the inverse is trivial.

A full derivation of the MCPI algorithm is not included
in this work (refer to Bai [3]). Instead, the authors present
a flowchart in Figure 3 briefly summarizing the mathematics
underlying the MCPI algorithm for solution of initial value
problems.3

3. Multisegment Approach for MCPI
Algorithm

This work considers an unperturbed two-body problem,
where the initial position is not located near the periapsis. As

expected, large errors are observed near the periapsis where
dense sample points are required, but sparse sample points
are distributed. In addition, even though initial positions
are located near the periapsis, accurate solutions cannot
be obtained for highly elliptical orbits. To obtain accurate
solutions for the above cases using the MCPI algorithm, the
multisegment approach is proposed.

Given the initial true anomaly (𝑓0), two and three
segmented orbits are considered as shown in Figure 4. These
two cases require patch times to link the divided segments.
To distribute dense sample points near the periapsis, several
strategies are presented.

For two segmented orbits, the time for the patch point is
selected as the time at the perigee, where the true anomaly (𝑓)
is 0 degrees. For three segmented orbits, the time for the first
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(a) One segment (b) Two segments

(c) Three segments

Figure 4: Segmented orbit descriptions.
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f0 = 90∘
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Figure 5: Time trajectories of the energy error; one segment.

patch point is selected where 𝑓 = −𝑓0 degree for symmetry,
and the time for the second patch point is selected where 𝑓 =0 degrees. To find propagation times for each segment, the4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−16

10−15

10−14

10−13

Integration time (t/Tp)

|E
−
E
0
|/|
E
0
|

Figure 6: Time trajectories of the energy error and its comparison;
two segments (𝑓0 = 180 degrees).

following calculation needs to be performed. First, given the
initial position and velocity vectors, prescribe the break point𝑓0 and one orbit period time (𝑇𝑃) as follows [12]:
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Figure 7: Time trajectories of the energy error and its comparison;
three segments (𝑓0 = 90 degrees).
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Figure 8: Time trajectories of the energy error and its comparison;
two and three segments (𝑓0 = 90 degrees).

𝑇𝑃 = 2𝜋√𝑎3𝜇 . (5)

Second, calculate the initial mean anomaly (𝑀0) as
follows [13]:

𝑀0 = 𝐸0 − 𝑒 sin𝐸0, (6)

where 𝑒 is the eccentricity and the eccentric anomaly (𝐸0) is
defined as [13]

𝐸0 = 2tan−1 [√1 − 𝑒1 + 𝑒 tan(𝑓02 )] . (7)

Finally, the propagation times for each segment are
calculated as follows:

𝑇𝑃1 = 𝑇𝑃 − (𝑆 − 1) 𝑇𝑃2 ,
𝑇𝑃2 = 𝑀0√𝑎3𝜇 , (8)

where 𝑆 > 1 is the number of segments for the orbit.
The sets of propagation times are determined as follows:

two segments : TP = [𝑇𝑃1 , 𝑇𝑃2] ,
three segments : TP = [𝑇𝑃1 , 𝑇𝑃2 , 𝑇𝑃2] .

(9)

For more than three segments and the associated break
points, the above logic is readily extended. The optimization
of the break points to achieve efficiency and accuracy is not
addressed in this paper but is an easy-to-pose optimization
problem research for a future study.

4. Numerical Examples

A satellite motion integration problem, idealized for the
case with only the inverse square gravitational force from
the Earth, is considered. The three-dimensional dynamical
equations are given by [12]

𝑥̈ = − 𝜇𝑟3 𝑥,
̈𝑦 = − 𝜇𝑟3𝑦,

𝑧̈ = − 𝜇𝑟3 𝑧,
(10)

where 𝑥, 𝑦, and 𝑧 are the three coordinates in Earth-centered
inertial reference frame; 𝑟 is the distance of the satellite from
the Earth; 𝜇 is the Earth gravitational constant and is chosen
as 3.98600433 × 1014m3/s2.

To verify the results, the following normalized energy
error check is utilized:

Eerror =
󵄨󵄨󵄨󵄨E −E0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨E0󵄨󵄨󵄨󵄨 , (11)

where E0 is the initial energy and the energy is calculated as
follows:

E = 12 (𝑥̇2 + ̇𝑦2 + 𝑧̇2) − 𝜇𝑟 . (12)

Note that the goal for the demonstration example in this paper
is to obtain solutions where Eerr < 10−13. Moreover, for the
unperturbed two-body problem, the analytical solution [12] for
the 𝐹&𝐺 function can also be used to confirm the accuracy of
the solution.
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Two sets of initial position and velocity vectors are given
as follows:

r (𝑡0) = [−0.9085, −0.0652, 1.0328] T × 107m,
k (𝑡0) = [−4.8283, −4.4242, 0.4949]T × 103m/s,
r (𝑡0) = [−1.9994, −3.6222, −1.9875]T × 107m,
k (𝑡0) = [1.0649, 0.0765, −1.2106]T × 103m/s.

(13)

The given initial states lead to 𝑓0 = 90 and 180 degrees,
respectively, and the classical orbital elements are listed in
Table 1.5

For the MCPI algorithm implementation to solve this
problem, various tuning parameters are determined in a
prior calculation: (1) maximum iteration number (𝐼𝑀), (2)
error tolerance (𝑇𝐸), (3) degree of polynomial (𝑁), and(4) number of sample points (𝑀). This work focuses on
finding a methodology to improve MCPI accuracy and
reduce computational burden given the described factors in
Table 2 and initial conditions listed in Table 1.

Numerical simulations are performed, and the normal-
ized energy error results are shown in Figures 5–8. Figure 5
shows that the normalized energy errors aremuch larger than
the requirement (Eerr < 10−13). Obviously, the largest error is
observed at the periapsis when 𝑓0 = 180 degrees because of
sparse sample point distributions at the periapsis.

Figure 6 shows that the solution satisfies the requirement
when 𝑓0 = 180 degrees using the two-segment scheme.
The same number of sample points is distributed for each
segment, and the total number of the sample points is
equal to the number of sample points for the basic (one-
segment) MCPI algorithm. Note that only the two-segment
orbit approach is used when the initial position is located at
apoapsis for symmetry.

Figure 7 shows that the solution satisfies the requirement
when 𝑓0 = 90 degrees using the three-segmentation scheme.
The same number of sample points is distributed for the
second and third segments, and the total number of the
sample points is equal to the number of sample points for the
basic MCPI algorithm.

For the case where 𝑓0 = 90 degrees, both approaches
such as the two- and three-segment schemes are applicable.
As shown in Figure 8, both approaches satisfy the require-
ment, but the three-segment orbit approach outperforms the
other methods. The number of nodes for each approach is
determined by a heuristic method for this paper (and tuned
numerically); and a methodology to select optimal number
of nodes is under development.

5. Conclusion

The modified Chebyshev Picard iteration (MCPI) algorithm
uses Chebyshev-Gauss-Lobatto (CGL) nodes to reduce the
Runge phenomenon. By using the CGL nodes, however, less
accurate solutions may be obtained where sparse sample
points are distributed. Physical insights indicate that the

dense nodes should be located where the orbit is most non-
linear. However, the stating epoch state can be at a random 6
point in the orbit. For the unperturbed two-body problem,
where the initial state is not located near the periapsis and
the eccentricity is high, themultisegment approach is utilized
to obtain an accurate solution. The final perigee passage can
be used to make all subsequent segment breaks symmetrical
about the major axis. As a result, the multisegment approach
provides much more accurate solutions when compared to
the solution from the basic MCPI algorithm with random
user-specified segmentation logic. Moreover, it is shown that
the three-segment orbit approach outperforms others in 7
terms of computational efficiency. To improve the perfor-
mance of the MCPI algorithm, this approach will be very
useful, especially when the initial position is not located near
the periapsis and high eccentric orbits are given.
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A NEW SOLUTION FOR THE GENERALIZED LAMBERT’S 
PROBLEM 

Robyn M. Woollands,* John L. Junkins,† and Ahmad Bani Younes‡ 

A method is presented for solving boundary and initial value problems in celes-
tial mechanics. In particular we consider the well-known Lambert TPBVP.  The 
approach is quite general, however certain details in the transformed space 
boundary conditions pose challenges.  We have been able to resolve these diffi-
culties fully for the planar classical two-body problem, and we are engaged in a 
study to extend our numerical algorithm to the generally perturbed case. This 
method fuses three sets of ideas: (i) Picard Iteration, (ii) Orthogonal approxima-
tion, and notably, regularizing transformation of the equations of motion.  Curi-
ously, we find that a local-linearization-based shooting is not required, and we 
also illustrate that the method is not highly sensitive to the starting approxima-
tion.  Two variants of the approach are considered, with the first model utilizing 
a Picard Iteration operating on the general differential equations in rectangular 
coordinates, which are approximated by Chebyshev polynomials. The second 
variant makes use of the KS transformation to render the unperturbed motion 
rigorously linear. These techniques combined improve the time interval over 
which the Picard Iteration converges, and increases the speed of convergence 
over all time intervals. A numerical study demonstrates excellent execution time 
efficiency, and shows that these algorithms are also attractive for parallelization 
if needed for further computational speedup. These new algorithms address im-
provements in the solutions of a fundamental problem in astrodynamics and 
should find widespread use in contemporary and future applications.  

INTRODUCTION AND MOTIVATION 

Lambert’s problem is the classical two-point boundary value problem in celestial mechanics, 
which was first developed and solved by Johann Heinrich Lambert in 1761. Solving the problem 
requires determining the orbital arc between a prescribed initial and final position in a specified 
flight time. In the modern literature, Battin [1] developed the most widely used and general algo-
rithm for solving the unperturbed Lambert’s Problem, for the case of Keplerian motion.  For gen-
eral perturbations, the most common approach is to utilize the state transition matrix sensitivity of 
the final state with respect to the initial velocity, and iterate via Newton’s method on the three 
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components of initial velocity to “hit” the final desired position at the prescribed final time.  The 
unperturbed solution (e.g., Battin’s algorithm) can be used to start the perturbed case iterations. 

There are various challenges in space situational awareness with a difficult “data association” 
problem, wherein short tracks of many newly observed objects must be processed to determine 
orbits and correlate the tracked objects, if possible, with existing space object data bases.  In the 
current state of the practice, hundreds of thousands of hypotheses must frequently be tested to 
find feasible preliminary orbits connecting time-displaced short tracks of unknown space objects, 
and these preliminary orbits and the underlying data associations are taken as the starting esti-
mates for further correlation and final hypotheses and orbit determination.  Solutions of Lam-
bert’s problem are presently used extensively to address this challenge and the computational cost 
can exceed many CPU days per month on high performance computers.  So the issue of accuracy 
and efficiency of the solution of two-point boundary value problems in orbital mechanics lie near 
the heart of a critically important computational grand challenge of vital national interest.  These 
considerations provided the motivation for the current paper. 

KS REGULARIZING TRANSFORMATION 

The Kustaanheimo-Stiefel (KS) transformation [2] is a method for linearizing, without ap-
proximation, the two-body problem through a judicious coordinate transformation.  

We begin by writing the classical differential equations of orbital motion in the most familiar 
rectangular coordinates: 

 , (1) 

where . The KS transformation involves transforming both the position 
coordinates and the time variable.  The position transformation can be written compactly in ma-
trix form as 

 . (2) 

The operator  has many interesting properties including 

 . (3) 

Also, the u vector has the nice property that .  Obviously, quadratic combinations of 
the elements of u produce the rectangular coordinates and the radial distance.  The mapping from 

is unique for all .  The inverse from to  (the right most of Eqs (2)) is not 
unique, the given inverse transformation is the most popular of the finite set of inverse mappings 
(more on this point below); and any of these will establish valid initial conditions in u and permit 
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valid motion computation from specified initial conditions. We mention that the finite set of fea-
sible initial conditions in the generally complex (u) space generate a finite set of geodesic curves 
on the surface of the variable radius four dimensional sphere, and each of the ensuing u-
trajectories corresponds to exactly the same true physical motion in Cartesian space 

. It is well known that any new time coordinate that is linearly proportional to r, 
together with Eqs (2) maps the nonlinear differential equations (1) into 4 oscillators in u-space 
where the nonlinearities vanish identically as  For a particular choice of time coordinate 
(change in eccentric anomaly, implicitly, we restrict attention in the present discussion to the case 
of perturbed elliptic orbits for which the instantaneous Keplerian energy  is positive): 

  (4) 

Then the resulting rigorously linear differential equations can be shown to have the form 

 . (5) 

And the time is a function of the change in eccentric anomaly from Eq. (4)  

 . (6) 

And finally, for  case,  satisfies the variation of parameters differential equation 

  (7) 

The second expression for   is the KS transformed Keplerian energy equation which holds 
instantaneously due to the osculation constraint in the variation of parameters.  Therefore in 
equation (5) does not have to be solved by a differential equation, it is a known function of the 
KS state variables. 

For the  case, of course the integral in (6) can be done analytically, and also it is evi-
dent that solving the four uncoupled harmonic oscillators of Eq. (5) is simply 

  (8) 

Or, in state transition matrix form: 

  (9) 

45



 4 

More generally, for an arbitrary force, the differential equations (5)-(7) must be solved nu-
merically, however for small forces, they represent weak perturbations of the Keplerian motion 
and these equations are attractive from several points of view.   

From the work of Bai and Junkins we know that the convergence of the Picard method is a 
function of the “strength” of the dominant terms of the differential equation.  Therefore, we can 
anticipate the ¼ coefficient of Eq (5) suggests a basis for optimism that significant advantages 
will be achieved in these transformed equations, compared to Eqs (1), for reducing the number of 
Picard iterations and also increasing the maximum time interval over which the Picard contrac-
tion mapping iterations will converge.  We anticipate these advantages for both the initial value 
problem and for the two point boundary value problem.  As will be evident below, these heuristic 
expectations are consistent with numerical reality and represent a significant computational ad-
vantage for both initial and boundary value problems. 

Before looking at the general three dimensional Lambert problem in detail, it is useful to con-
sider the planar, Keplerian special case.  The upper 2x2 of  is all that is needed of the posi-
tion transformation and the resulting equations turn out to be the classical Levi-Civita transforma-
tion [3] discovered in 1920, some forty years prior to the more general KS result. 

Restricting the motion to the plane , then the general KS transformation simplifies 
as follows: 

     , (10)            

As mentioned above, the mapping from u-space to Cartesian space is not unique. In fact for 
the planar case , each point in u-space has eight possible corresponding positions in 
Cartesian space. Four of these are imaginary and can be immediately eliminated, but of the re-
maining four, if the wrong u-position can easily be specified (i.e., on the opposite side of the u-
sphere for a fractional physical orbit transfer desired) is selected, the solution may be mathemati-
cally feasible, but be physically impossible for the prescribe tf. Careful attention is required to 
avoid such circumstances. 

Based on studying the analytical solution (notice two “revolutions” in u-space correspond to 
one “revolution” in Cartesian coordinates), we find that after selecting the sign on the real bound-
ary condition in u space at initial time, there are only two real boundary conditions possible at 
any subsequent time, and these differ only in sign and along a u trajectory sign switches occur 
when the change E in eccentric anomaly passes through odd multiples of π.   

MODIFIED CHEBYSHEV PICARD ITERATION 

Modified Chebyshev Picard Iteration (MCPI) is an attractive numerical method for solving 
linear or non-linear differential equations. It combines the discoveries of two great mathemati-
cians: Emile Picard (Picard Iteration) and Rafnuty Chebyshev (Chebyshev Polynomials). The 
original fusion of orthogonal approximation and Picard iteration was apparently first proposed by 
Clenshaw and Norton in 1963 [4]. 

Picard observed that any first order differential equation  

   (11) 
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with an initial condition and an integrable right hand side may be rearranged, without 
approximation, to obtain the following integral equation: 

   (12) 

This re-arrangement, at first glance, does not appear to have made any progress, since the 
unknown trajectory x(t) is contained in the integrand on the right hand side. A sequence of 
approximate solutions  for the path x(t) that satisfies this differential 
equation may be obtained through Picard iteration using the following formula: 

   (13) 

In first step toward the MCPI method, orthogonal Chebyshev polynomials are used as basis 
functions to approximate the integrand in the Picard integral. Chebyshev polynomials reside in 
the domain  and can be defined recursively as: 

   (14) 

Unlike traditional step-by-step integrators, for example the Runge-Kutta methods, MCPI is 
unique in that long state trajectory arcs are approximated during the Picard iteration, and under 
known theoretical circumstances, we can show [4] that the Picard sequence is a contraction map-
ping guaranteed to converge to the solution of Eq. (11). The system dynamics are normalized 
such that the timespan of integration is projected onto the domain  of the Cheby-
shev polynomials, thus the system states can be approximated using the Chebyshev polynomial 
basis functions. The orthogonal nature of the basis function means that the coefficients that line-
arly scale the basis functions can be computed independently as simple ratios of inner products 
with no matrix inversion.   

As a consequence of the independence and orthogonality of the basis functions, the coeffi-
cients multiplying the Chebyshev basis functions may be computed, as an inner product of the 
basis functions with the integrand, in parallel by separate processor threads with no matrix inver-
sion required.  Since the orthogonal polynomials, for large N constitute a complete set, and no 
matrix inversion is required, a smooth integrand can be approximated to machine precision.  This 
independently computable integrand approximation coefficients is the first of two available layers 
of parallelization in the MCPI method. The second layer of parallelization is more important and 
is enabled by the fact that the entire state trajectory over the time interval of interest is estimated 
at once. Thus the calculation of the integrand functions (which must be computed as a function of 
the system states along the current approximate trajectory, at the nodes, as required for the dis-
crete inner products leading to the approximation coefficients) can be performed at all nodes si-
multaneously in parallel processor threads. Using MCPI, over an order of magnitude speedup 
from traditional methods is achieved in serial processing, and an additional order of magnitude, or 
more, is achieved in parallel architectures, depending on the specifics of the parallel implementa-
tion. 

A key feature of MCPI is a non-uniform cosine sampling domain of the Chebyshev basis 
functions called Chebyshev-Gauss-Lobatto (CGL) nodes, defined in the following equation. 

   (31) 
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This sampling scheme has much higher nodal density towards the edges, which enables a 
higher accuracy solution near the boundaries of the state trajectory to compensate for the Runge 
phenomena (a common concern in function approximation whereby larger oscillatory 
approximation errors are returned near the edges of the domain due to lack of support for the 
approximation outside the boundaries of the approximation domain). The coefficients multiplying 
the Chebyshev basis functions are approximated by the method of least squares, which generally 
requires a matrix inversion. As a consequence of a consistent choice of choice of basis functions, 
weights, and discrete node locations is that the matrix required to be inverted in the Normal 
Equations of least squares is rigorously diagonal, thus the inverse is trivial and the coefficient 
computation is independent. 

In 2010, Bai’s dissertation [5] extending the classical work of Clenshaw and Norton [4], and 
the more recent and related works of Feagin [14] Fukushima [15] and Shaver [16].  She estab-
lished new convergence insights and optimized the solution of initial value problems utilizing 
vector-matrix formulations.  She also proved the capability of the method to outperform the most 
commonly used methods representing the state of the practice for numerical integration of ODEs 
on several representative benchmark problems.  Bai and Junkins applied MCPI to non-linear IVPs 
and orbit propagation in [6], and then showed that MCPI can outperform other higher order inte-
grators such as Runge-Kutta-Nystrom 12(10). In [7] Bai and Junkins applied MCPI to efficiently 
solve Lambert’s transfer problem, and to solving an optimal control trajectory design problem 
more accurately and efficiently than the Chebyshev pseudospectral method. Notably, over inter-
vals where the Picard iteration converges, there is no need to use a shooting method to solve 
Lambert problems and similar two point boundary value problems (TPBVPs).  In [8] Bai and 
Junkins use MCPI in a complex three-body station-keeping control problem formulated as a se-
quence of TPBVPs. Subsequent publications by Junkins et al. [9], [10], and [11] further clarify 
the concept and derivation of MCPI and orthogonal approximation in general, and apply the 
method to problems in the field of astrodynamics. The most recent publication [12] discusses how 
the MCPI algorithm for the IVP has been made into an easily accessible library. 

A full derivation of MCPI is beyond the scope of this short paper. Instead we present flow 
charts in Figure 1 that briefly summarize the mathematics represented in the more elegant vec-
tor/matrix formulation, which is computationally the most efficient way to implement the method. 
Any of the above references provide more detailed derivations, as well as examples and results 
that demonstrate the power of the MCPI algorithm with regard to speed and accuracy. Addition-
ally, those references contain comparisons to other well-known integrators including high-order 
Runge-Kutta methods and the Gauss-Jackson method.  

We digress briefly to discuss metrics for accuracy of the numerical solutions presented.  We 
note that it is relatively straightforward to enforce symplectic constraints on the above develop-
ments, however, we are attracted to the theoretically stronger fact the classical Picard iteration of 
Eq. (28) is a contraction mapping converging to the solution of Eq (26); this rigorous theoretical 
guarantee can be lost in the process of trying to enforce a constraint that is already theoretically 
satisfied.  In enforcing underdetermined symplectic constraints in any step-by-step numerical 
method to solve a differential equation, there is no guarantee that the true solution is obtained 
(because an infinity of neighboring trajectories have the same energy and removing small residu-
als can result small iso-energy errors by such ad hoc imposition of a scalar constraint).  On the 
other hand, the use of exact integrals to check the integrity of the solution process is the preferred 
approach and the one taken in this paper.  We mention, as a matter of course, we also examine the 
acceleration errors (how well the trajectory and its derivatives satisfy the differential equations) at 
mid-points between the inner product nodes as an additional numerical check to confirm the fidel-
ity and accuracy of the solutions we discuss below.   
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RESULTS AND DISCUSSION 

In the KS transformed u-space the time variable has been transformed to a form of eccentric 
anomaly, and the final eccentric anomaly is now unknown. To determine this the Lambert 
TPBVP problem is solved analytically in the KS u-space (using Eqn (8)) for an iterative ap-
proximation of eccentric anomaly, and is transformed back to . The Lambert/Kepler time 
– eccentric anomaly relationship is iterated by a Newton/Secant method to converge on the cor-
rect eccentric anomaly. A crude circular orbit guess was used in all cases. Typically 6 iterations 
are required to achieve an accuracy of . See Figures 2a – 2d. 

 

Figure 1.  

A flow diagram 
outlining the 
MCPI Initial 
Value Problem 
algorithm in Vec-
tor-Matrix form.  

The procedure is 
very similar for 
the Boundary 
Value Problem, 
with the minor 
differences being a 
few elements in 
the S matrix and 
the inclusion of 
the final boundary 
condition. 

As a consequence, 
only the S matrix 
and manner in 
which constants 
are determined 
changes; Two-
point boundary 
problems and inti-
tial value problems 
are solved by al-
most identical 
codes. 
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(a)                                                                          (c) 

  
(b)                                                                          (d) 

Figure 2: Lambert’s Problem is solved analytical using Eqn (8). Increasing orbital arc lengths are 
shown in (a) – (c), with a typical iteration convergence pattern shown in (d).  

    Solving Lambert’s Problem analytically provides the final eccentric anomaly (corresponding to 
the final time), and also a warm start solution approximation for solving the perturbed problem. 
The EGM2008 gravity model [13] is implemented for solving the perturbed problem. More on 
this later. 

     The two-body TPBVP is solved using MCPI with the known final eccentric anomaly that was 
calculated analytically. Previous MCPI results [5] for solution of the TPBVP have been limited to 
convergence over a maximum of 38% of an orbit. Implementing this KS transformation has en-
abled the interval of convergence to be vastly improved. The maximum convergence attainable is 
now 96% of an orbit! 
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Figure 3: Lambert’s Problem is solved for the two-body problem over an interval of 96% (467 itera-

tions, 600 nodes) of an orbit. This is significantly further than previous MCPI results (38% of an orbit) [5]. 

 
Figure 4: The Hamiltonian for the above orbit is constant. 

The KS transformation can also be applied to the Initial Value Problem. Similarly, the final ec-
centric anomaly is determined analytically using the well-known F & G solution. As expect the 
domain of convergence achievable for the IVP is greatly increased compared with previous MCPI 
results [6]. Figures 5, 6 and 7 show the superiority of the KS transform with regard to number of 
iterations, constancy of the Hamiltonian , and number of nodes required to achieve the de-
sired propagation orbital arc length. Table 1 shows the four orbits that were used for testing our 
algorithm. 
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Table 1: Semi-major axis and eccentricity for the orbits that were used for testing our algo-
rithm. In this paper all orbits start at perigee. 

Orbit Type Semimajor axis (a) Eccentricity (e) 

LEO 8000 km 0.125 

MEO 10963 km 0.4 

GEO 26352 km 0.6 

HEO 32890 km 0.8 

 

 
Figure 5: Comparative performance of MCPI and MCPI-KS for four different orbits (LEO, MEO, GEO, HEO). 

The figure shows that the KS version achieves a convergence domain of about 8.5 orbits with much fewer iterations 
required than the standard method. 

 
Figure 6: Each point represents the maximum relative change in energy over the specified orbital 

arc length. An accuracy of is generally maintained. 
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Figure 7: Comparative performance of MCPI and MCPI-KS for four different orbits (LEO, 
MEO, GEO, HEO). The figure shows that the KS version requires less nodes for propagating the 

same orbital arc length. 

 

 
Figure 8: An example of an IVP solved over 5.5 LEO orbits reveals a constant Hamiltonian. 
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The EGM2008 gravity model [13] is implemented for solving perturbed orbits. As expected, 
the inclusion of perturbations decreases the interval of convergence. Note, as the degree increases 
the domain of convergence decreases (Figure 9). A constant Hamiltonian is maintained (Figure 
11). 

 
Figure 9: Domain of convergence for the IVP decreases as the degree of gravity spherical 

harmonic increases.  

 
Figure 10: Typical iteration pattern of “inner” (MCPI) and “outer” (Newton) loop convergence. 
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Figure 10: The Hamiltonian is constant for almost 1.5 LEO orbits when the EGM2008 pertur-

bations are included (Degree = 10). 

 

CONCLUSION  

A method is presented for solving boundary and initial value problems in celestial mechanics. 
In particular we consider the well-known Lambert TPBVP. The approach is quite general, how-
ever certain details in the transformation space pose challenges. We have been able to resolve 
these difficulties fully for the planar classical two-body case, and we are engaged in a study to 
extend out numerical algorithm to the generally perturbed case. This method fuses three sets of 
ideas: (i) Picard Iteration, (ii) Orthogonal approximation, and regularizing transformation of the 
equations of motion.  Two variants of the approach are considered, with the first model utilizing a 
Picard Iteration operating on the general differential equations in rectangular coordinates, which 
are approximated by Chebyshev polynomials. The second variant makes use of the KS transfor-
mation. 

A numerical study demonstrates the superiority of the KS transformation with regard to accu-
racy and efficiency, and it shows a vastly increased domain of convergence for Lambert’s Prob-
lem. In this paper, we have focused mainly on establishing greatly expanded time intervals over 
which initial value problems and boundary value problems can be solved for the KS-transformed 
orbit mechanics problem.  Computational efficiency optimization will be addressed in future 
studies. These new algorithms and exciting new results address improvements in the solutions of 
a fundamental problem in astrodynamics and should find widespread use in contemporary and 
future applications. 
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      NEW SOLUTIONS FOR LAMBERT’S PROBLEM       
UTILIZING REGULARIZATION AND PICARD ITERATION 

Robyn M. Woollands,* Ahmad Bani Younes,† and John L. Junkins‡  

This paper presents three sets of related new developments with regard to solving the 

fundamental two-point-boundary-value problem of astrodynamics:  (1) A solution of 

the Keplerian Lambert Problem based on the KS regularized transformation of the 

equations of motion. (2) A shooting technique to solve the KS transformed differen-

tial equations for the perturbed Lambert Problem starting with the Keplerian solu-

tion.  (3) A Picard iteration approach to solving the perturbed Lambert Problem 

which does not require a shooting technique.  The last two methods are validated us-

ing moderate degree and order (40,40) spherical harmonic expansion to represent 

near-earth gravity field. The solution of the Keplerian Lambert problem in KS varia-

bles is elegantly simple and solves both the fractional order and multi-revolution 

cases.  The second development is general in that it is applicable to general multi-

revolution case and general perturbations.  The third contribution is vary attractive, 

but is only applicable for orbit transfers with a time interval within the domain of 

convergence of Picard iteration.  Significantly, we show that the time interval for Pi-

card iteration convergence is increased from about 0.38 of an orbital period for LEO 

orbits represented in traditional Cartesian coordinates to about 0.98 of an orbital pe-

riod for the same case represented in the KS variables.   

INTRODUCTION AND MOTIVATION 

Lambert’s problem is the classical two-point boundary value problem in celestial mechanics, 

which was first developed and solved by Johann Heinrich Lambert in 1761. Solving the problem 

requires determining the orbital arc between a prescribed initial and final position corresponding 

to a specified flight time. In the modern literature, Battin [1] developed the most widely used and 

general algorithm for solving the unperturbed Lambert’s Problem, for the case of Keplerian mo-

tion.  For general perturbations, the most common approach is to utilize the state transition matrix 

sensitivity of the final state with respect to the initial velocity, and iterate via Newton’s method 

on the three components of initial velocity to “hit” the final desired position at the prescribed final 

time. The unperturbed Lambert solution (e.g., Battin’s Lambert algorithm, the p-iteration method, 
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or the alternative KS Keplerian Lambert solution presented herein) can be used to start the per-

turbed case iterations. 

One motivation for our paper are the are various challenges in space situational awareness 

with a difficult “data association” problem, wherein short tracks of many newly observed objects 

must be processed to determine orbits and correlate the tracked objects, if possible, with existing 

space object data bases.  In the current state of the practice, hundreds of thousands of hypotheses 

must frequently be tested to find feasible preliminary orbits connecting time-displaced short 

tracks of unknown space objects, and these preliminary orbits and the underlying data associa-

tions are taken as the starting estimates for further correlation and final hypotheses and orbit de-

termination.  “Short” tracks may be up to several orbits, so the effects of perturbations, if ignored, 

will typically introduce residual errors much larger than the measurement errors themselves. In 

the current state of practice, data association hypotheses are tested for preliminary orbit estima-

tion using the Keplerian Lambert solutions for sufficiently short arcs, but higher precision is 

needed to accommodate multi-orbit hypothesis testing.  When hundreds of thousands of hypothe-

ses are tested daily and perturbations are included, the computational cost can exceed many CPU 

days per month.  So the issue of finding an optimal solutions [2] to a two-point boundary value 

problems lie near the heart of critically important computational challenges of vital interest in 

SSA. The inclusion of perturbations in Lambert’s problem and the development of efficient and 

robust methods is therefore of strong interest. 

KS REGULARIZING TRANSFORMATION 

The Kustaanheimo-Stiefel (KS) transformation [3] is a method for rigorously linearizing, 

without local approximation, the two-body problem through a judicious coordinate transfor-

mation.  

We begin by writing the classical differential equations of orbital motion in the most familiar 

rectangular coordinates: 

 

2

2 3

d

dt r


  

r
r F , (1) 

where [ ] , | |Tx y z r r r . The KS transformation involves transforming both the position 

coordinates and the time variable.  The position transformation can be written compactly in ma-

trix form as 

 

 

 

1/2

1 2 3 4

1/2
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      
               
    
         

 
  

u u u u .(2) 

The operator ( )L u  has many interesting properties [3, 4, 5] including 

 
1 1
( ) ( ),  and  ( ) ( )TL L L L

r

  u u u v v u . (3) 
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Also, the u vector has the nice property: 
Tr  u u .  Obviously, quadratic combinations of the 

elements of u produce the rectangular coordinates and the radial distance.  The mapping from 

 to ( , , )x y zu  is unique, for all u .  However, the inverse from ( , , )x y z to u  (the right most of 

Eqs (2)) is not unique, the given inverse transformation is the most popular of the finite set of in-

verse mappings (more on this point below).  Any member of a feasible set of inverse points can 

be used to compute the initial state in u - space to establish valid initial condition for a u trajecto-

ry and permit valid trajectory computation. We mention that the finite set of feasible initial condi-

tions in the generally complex (u) space generates a corresponding finite set of geodesic curves 

on the surface of the 4 dimensional sphere whose time varying radius is ( )( ) ( )tE tru , and 

each of the ensuing u-trajectories corresponds to exactly the same true physical motion in Car-

tesian space { ( ), ( ), ( )}x t y t z t .  

It is well known that any new time coordinate that is linearly proportional to r, together with 

Eqs (2) maps the nonlinear differential equations (1) into 4 oscillators in u-space where the non-

linearities vanish identically as 0.F  We restrict attention in the present discussion to the case 

of perturbed elliptic orbits for which the instantaneous Keplerian energy ( 1/ )a  is positive, 

where ( )ta a  and we adopt the following implicit time transformation .E t : 

 
1 2

( ) ,   
Tdt

r
dE r




  
r r

 (4) 

Then the resulting rigorously linear differential equations can be shown to have the form 

 

2

2

1 4
[ ] ( )

4 2

T
Td r d d

I L
dE r dE dE

  
u u u

u u F , (5) 

and time is related to the change in eccentric anomaly from Eq. (4) through the integral:  

 0
0

( )
( )

( )

E r
t t d




 
   . (6) 

Finally, for 0F  case, it can be shown that [5]  satisfies the variation-of-parameters differen-

tial equation 

14 2 4
( )   and also, due to osculation:   = [1 ]

T T
Td d d d

L
dE dE r r dE dE






  
u u u

u F . (7) 

The second expression for is the KS transformed Keplerian energy equation which holds in 

the presence of perturbations for ( )t due as an osculation constraint in the variation of parame-

ters. Therefore in Eq. (5) does not have to be solved by a differential equation as is frequently 

done, rather it is a known function of the instantaneous KS state variables, given in Eq. (7). 

Substitution of the equation from Eq. (7) into Eq. (5) gives the new and elegant form for the 

generally perturbed differential equation of motion in the KS variables: 

    

2 2

2

1 4 4
[1 ][ ] ( )

4 4

T T
Td r d d d d

I L
dE r dE dE r dE dE

   
u u u u u

u u F          (8) 
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Notice, since the spherical harmonic series first term 
21/ r and all higher 

thn order terms con-

tain 1/ nr , the multiplication by 
2r  on the RHS of Eq. (8), simply reduces by 2 the power of r in 

all the gravitational perturbations. 

THE KEPLERIAN LAMBERT PROBLEM IN KS VARIABLES 

For the 0F  case, of course the integral in (6) can be done analytically, and also it is evi-

dent that solving the four uncoupled harmonic oscillators of Eq. (5) or (8) is simply 

 0 0

0 0

1
cos 2 sin , sin cos

2 2 2 2 2

E d E d E d E

dE dE dE
    

u u u
u u u  (9) 

Or, in state transition matrix form: 

 

0

11 12

21 22

0

11 12 12 12

,  where the 4 4 submatrices are simply 

1
cos ,     2sin ,     sin ,     cos

2 2 2 2 2

dd

dEdE

E E E E
I I I I

  
     

    
     

   

        

uu

= uu

 (10) 

The integral of Eq. (6) can be carried out analytically for the 0F  case to obtain [4]  

      3/2 1/2

0 0 0 0 0 0(2 ) 1 sin 1 cos ,    Tt t N E r E E              r r . (11) 

In all cases above E denotes the change in eccentric anomaly from initial conditions to the cur-

rent state, i.e., E is not referenced to perigee. N is the specified integer number of completed or-

bits before reaching the desired final position. If N is set to an infeasible value, no roots exist. A 

maximum of 2N+1 roots exist in general (for N=0, there is a single unique orbit for the fractional 

orbit transfer case, except for the co-linear position case in which the orbit plane is not unique). 

The singularity structure for the Keplerian special case has been found to carry over to the gravi-

tational perturbed generalization of this two-point boundary value problem. 

More generally, for an arbitrary force, the differential equations (5)-(8) must be solved numer-

ically, however for small forces, they represent a weakly-coupled, weakly-nonlinear oscillator 

description of orbital motion and these equations are attractive from several points of view.   

From the work of Bai and Junkins [8-10] and the classical Picard literature, we know that the 

convergence of the Picard method is a function of the “strength” of the dominant terms of the dif-

ferential equation.  Therefore, we can anticipate the ¼ coefficient of Eqs. (5), (8) suggests a basis 

for optimism that significant advantages will be achieved in these transformed differential equa-

tions, compared to Eqs. (1), for reducing the number of Picard iterations and also increasing the 

maximum interval over which the Picard contraction mapping iterations will converge.  We antic-

ipate these advantages for both the initial value problem and for the two point boundary value 
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problem.  As will be evident below, these heuristic expectations are consistent with numerical 

reality and represent a significant computational advantage for both initial and boundary value 

problems. 

Before looking at the general three dimensional Lambert problem in detail, it is useful to con-

sider the planar, Keplerian special case.  The upper left 2x2 sub-matrix of ( )L u  is the needed 

subset of the position transformation and the resulting equations turn out to be the classical Levi-

Civita transformation [6] discovered in 1920, some forty years prior to the more general KS re-

sult. 

Restricting the motion to the plane ( ( ) 0)z t  , then the general KS transformation simplifies 

as follows: 

 
1 2

2 1

( ) ,  ( ) .
u ux

L L
u uy

  
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The inverse mapping is 
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u u    (13) 

As evident above in Eqs. (2) and the planar special case of Eq. (11), the mapping from u-space 

to Cartesian space is unique. In fact for the planar case ( ( ) 0)z t  , only four real points in u-space 

exist, given in Eq. (12).  For initial value problems, so long as we avoid the potential division by 

zero at  x r   (by following the sign of x rules evident in Eq. (12)), the solution of these equa-

tions is very well behaved.  For initial value problems, we only need to use these equations once 

at initial time, and the inverse mapping in Eq. (11) (or more generally Eq. (2)) is not branched.  

For two-point boundary value problems, however, we have to resolve the sign ambiguities care-

fully, otherwise we may accidently “tell” the algorithm to look for a one-and-a-fraction orbit 

transfer instead of a fractional orbit transfer.  Note that two revolutions occur in Cartesian space 

for each revolution in u-space, quite analogous to quaternion representation of rotational motion.  

We find, that after selecting the sign on the real boundary condition in u-space at initial time, 

while there are only two real boundary conditions possible at any subsequent time, we visit both 

of these in the Keplerian problem, separated by an orbital period (these differ only in sign and 

along a particular Keplerian u trajectory, these sign switches occur when the change E in eccen-

tric anomaly passes through multiples of 2).  

From Eq. (9), we can eliminate initial veclocity in u space as a function of the final boundary 

conditions 

                                              0

1
cos .

2
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2

f

f
f

Ed

EdE

 
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 

u
= u - u                                           (14) 

We now outline the completion of the solution of the Keplerian Lambert’s problem in KS var-

iables. Using the energy equation 
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d d d d

r dt dt r r dE dE
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r r u u
 and also Eq. 
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(14), we can eliminate 0 and    in Eq. (11) as a function of 0( , , )f fEu u  , leaving only fE  as 

an unknown.  Then the modified Eq. (11) with all unknowns on the RHS eliminated ex-

cept fE can be iterated (for a given ft ) to determine fE .  This method is well-behaved and con-

vergence is reliable, including all fractional and multi-revolution cases, somewhat analogous to 

Battin’s classical Lambert solution, but in new variables. 

 

MODIFIED CHEBYSHEV PICARD ITERATION 

Modified Chebyshev Picard Iteration (MCPI) is an attractive numerical method for solving 

linear or non-linear differential and integral equations. MCPI combines the discoveries of two 

great mathematicians: Emile Picard (Picard Iteration) and Rafnuty Chebyshev (Chebyshev Poly-

nomials), and recent developments in the associated linear algebra by Bai, Junkins, Feagin, et al. 

The original fusion of orthogonal approximation theory and Picard iteration was apparently intro-

duced by Clenshaw and Norton in 1963 [7]. 

Picard observed that any first order differential equation  

  ( ) ( , ( )),x t f t x t  (15) 

with an initial condition 0 0( ) ,x t x and any integrable right hand side may be rearranged, with-

out approximation, to obtain the following integral equation: 

  

0

0( ) ( ) ( , ( )) .

t

t

x t x t f x d      (16) 

This re-arrangement, at first glance, does not appear to have made any progress, since the un-

known trajectory x(t) is contained in the integrand on the right hand side. A sequence of approxi-

mate solutions ( ), ( 1,2,3,..., ),ix t i    of the true solution x(t) that satisfies this differential 

equation may be obtained through Picard iteration using the following Picard sequence of approx-

imate paths
0 1 1{ ( ), ( ),..., ( ), ( ),...}i ix t x t x t x t

: 

  

0

1

0( ) ( ) ( , ( )) , 1,2,...

t

i i

t

x t x t f x d i      . (17) 

In first step toward the MCPI method, orthogonal Chebyshev polynomials are used as basis 

functions to approximate the integrand in Eq. (17) along the previous approximate trajecto-

ry
1( )ix t

.  Chebyshev polynomials are defined over the domain { 1 1},    and can be gener-

ated from the two term recursion as: 

  0 1 1 1( ) 1,   ( ) ,   ( ) 2 ( ) ( ).k k kT T T T T            (18) 

Unlike traditional step-by-step integrators, for example the Runge-Kutta methods, MCPI is a 

path iteration method in which long state trajectory arcs are approximated and updated at all time 

instances on each iteration.  Under usually satisfied and known theoretical circumstances, we can 

show [7] that the Picard sequence is a contraction mapping guaranteed to converge to the solution 

of Eq. (14). The system dynamics are normalized such that the timespan of integration is project-

ed onto the domain { 1 1}     of the Chebyshev polynomials, thus the system states can be 
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approximated using the Chebyshev polynomial basis functions. The orthogonal nature of the ba-

sis function means that the coefficients that linearly scale the basis functions can be computed 

independently as simple ratios of inner products with no matrix inversion.  Since The Chebyshev 

polynomials are a complete set and due no orthogonality, no loss of precision matrix inversions 

are required, we can achieve machine precision (if desired) approximation of the integrand in Eq. 

(17) on each iteration and the resulting converged trajectory can approach machine precision so-

lution of the differential equation over large time spans.  In Bai’s dissertation [8], she found that 

the actual time interval over which convergence is obtained for problems in celestial mechanics is 

over 3 orbits (for the case of an initial value problem and the usual Cartesian coordinate formula-

tion of the equations of motion).  For the two-point boundary value problem in Cartesian coordi-

nates, however, she found that the time interval for which Picard iteration converges is reduced to 

about 0.38 of an orbit period. 

As a consequence of the independence and orthogonality of the basis functions, the coeffi-

cients multiplying the Chebyshev basis functions may be computed, as an inner product of the 

basis functions with the integrand, in parallel by separate independent threads with no matrix in-

version required.  This independently computable integrand approximation coefficients is the first 

of two available layers of parallelization in the MCPI method. The second layer of parallelization 

is much more important and is enabled by the fact that acceleration over the entire state trajectory 
1( )ix t

 permits us to compute independently and simultaneously. Thus the calculation of the in-

tegrand functions (which must be computed as a function of the system states along the current 

approximate trajectory, at the nodes, as required for the discrete inner products leading to the ap-

proximation coefficients) can be performed at all nodes simultaneously in parallel processor 

threads. Using MCPI, over an order of magnitude speedup from traditional methods is achieved 

in serial processing, and an additional one-to-two orders of magnitude, are achieved in parallel 

architectures, depending on the specifics of the parallel implementation. 

A key feature of MCPI is a non-uniform cosine sampling of the{ 1 1}    domain of the 

called Chebyshev-Gauss-Lobatto (CGL) nodes: 

  cos( / ), 0,1,2...,j j N j N    (17) 

This set of samples has higher nodal density near the 1  domain boundaries, which enables a 

higher accuracy solution near the boundaries to compensate for the Runge phenomena (a com-

mon concern whereby larger oscillatory errors may occur near the edges of the domain due to 

lack of support for the approximation outside the boundaries of the domain). The coefficients that 

linearly combine the Chebyshev basis functions are approximated by the method of least squares, 

which generally requires a matrix inversion. A consistent choice of basis functions, weights, and 

node locations to ensure orthogonality means that the matrix required to be inverted in the Nor-

mal Equations of least squares is diagonal, thus the inverse is trivial and the coefficient computa-

tion is independent.   

Bai’s dissertation [8] extended the classical work of Clenshaw and Norton [7], and the more 

recent and related works of Feagin [17] Fukushima [18] and Shaver [19].  Bai established new 

convergence insights and optimized the solution of initial value problems utilizing vector-matrix 

formulations.  Bai and Junkins applied MCPI to non-linear IVPs and orbit propagation in [9], and 

then showed promising results comparing MCPI to other higher order integrators such as Runge-

Kutta-Nystrom 12(10). In [10] Bai and Junkins applied MCPI to efficiently solve Lambert’s 

transfer problem in the usual Cartesian coordinates, and to solving an optimal control trajectory 

design problem more accurately and efficiently than the Chebyshev pseudospectral method. No-

tably, over intervals where the Picard iteration converges, there is no need to use a shooting 
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method to solve Lambert problems and similar two point boundary value problems (TPBVPs).  In 

[11] Bai and Junkins use MCPI in three-body station-keeping control problem for halo orbits, 

formulated as a sequence of TPBVPs. Subsequent publications by Junkins et al. [12], [13], and 

[14] further clarify the concept and derivation of MCPI and orthogonal approximation in general, 

and apply the method to various problems in astrodynamics. The most recent publication [15] 

discusses how the MCPI algorithm for the IVP has been made into an easily accessible library, 

mainly focused on the case of Cartesian coordinates. 

A full derivation of MCPI is outside the scope of this paper. Instead we present flow charts in 

Figure 1 that briefly summarize the algorithms represented in the compact vector/matrix formula-

tion, which is computationally the most efficient way to implement the method. The above refer-

ences provide detailed derivations, as well as examples and results that demonstrate the power of 

the MCPI algorithms with regard to efficiency and accuracy. Additionally, those references con-

tain comparisons to other well-known integrators including high-order Runge-Kutta methods and 

the Gauss-Jackson method.  

 

 

Figure 1: Vector matrix form for the Initial Value Problem. The procedure is very similar for the 

Boundary Value Problem, with the minor differences being a few elements in the S matrix and 

the inclusion of the final boundary condition. 

KS TRANSFORMED KEPLERIAN LAMBERT PROBLEM 

In the KS transformed u-space the time variable has been transformed to a form of eccentric 

anomaly, and the final eccentric anomaly is now unknown. To determine this the Lambert 

TPBVP problem is solved analytically in the KS u-space (using Eqn (9)) for an iterative approx-
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imation of eccentric anomaly, and is transformed back to  , ,x y z . The Lambert/Kepler time – 

eccentric anomaly relationship is iterated by a Newton/Secant method to converge on the correct 

eccentric anomaly. An initial guess for the eccentric anomaly is computed from the dot product of 

the initial and final position vectors. Typically 6 iterations are required to achieve an accuracy of 
1010

or more precise.  Engineering precision of course, typically requires fewer digits for appli-

cations.  See Figures 2a – 2d. 
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(b)                                                                          (d) 

Figure 2: Lambert’s Problem is solved analytical using Eqn (8). Increasing orbital arc lengths are 

shown in (a) – (c), with a typical iteration convergence pattern shown in (d).  

 

Determining the correct sign on the final boundary condition for the TPBVP is important to 

ensure that the desired trajectory is actually the one that is being integrated. For a given set of 

boundary conditions, there are two possible solutions that depend on the sign of the final position 

in u-space. If the angle between the initial and final boundary conditions is less than 180 degrees, 

and the number of revolutions is odd (during the first orbit it is considered odd and during the 

second orbit it is even), then there is no sign change on the final position. Still in the odd orbit, if 

there is more than a 180 angle between the initial and final position then there is a sign change on 
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the final boundary condition. The opposite sign convention occurs for an even orbit. If a retro-

grade orbit is required then the sign convention is again reversed. 

Solving Lambert’s Problem analytically provides the final eccentric anomaly (corresponding 

to the final time), and also a warm start solution approximation for solving the perturbed prob-

lem. The two-body TPBVP is solved using MCPI with the known final eccentric anomaly com-

puted analytically. Previous MCPI results [8] for solution of a LEO TPBVP have been limited to 

convergence over a maximum of 38% of an orbit. Implementing this KS transformation has ena-

bled the interval of convergence to be vastly improved, without resorting a local linearization-

based shooting method; the maximum convergence attainable is now ~96% of an orbit for the 

LEO case. Similar results are achievable for the MEO, GTO and HEO cases, and are shown in 

Figure 3. 

    The following four test case orbits (Table 1) were used for studying the performanceMCPI 

Cartesian and KS algorithms. All the results presented in this paper are machine precision accura-

cy, maintaining 15 digits of precision in the Hamiltonian. 

Table 1: Test Case Orbits 

Orbit Type Semimajor axis (a) Eccentricity (e) 

LEO 8000 km 0.125 

MEO 10963 km 0.4 

GTO 26352 km 0.6 

HEO 32890 km 0.8 
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Figure 3: The Keplerian KS implementation has a far greater domain of convergence than the 

Cartesian implementation, for all four test cases. 
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(a)                                                                     (b) 

Figure 4: Comparison of the number of iterations (a) and number of nodes (b) required by MCPI 

Cartesian and MCPI KS for converging with 15 digits of accuracy over the same arc length (max 

attainable by MCPI Cartesian). 

 

PERTURBED LAMBERT PROBLEM IN KS VARIABLES:    

A PICARD ITERATION METHOD 

 

The perturbed TPBVP is solved in the same way as the unperturbed problem described in the 

previous section. The EGM2008 gravity model [16] is implemented with spherical harmonic de-

gree and order (40,40). 
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Figure 5: The MCPI KS implementation showing the domain of convergence for the per-

turbed orbit (40,40) with respect to the domain of convergence for the KS unperturbed orbit.  
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Figure 6: The MCPI Cartesian implementation showing the domain of convergence for the 

perturbed orbit (40,40) with respect to the domain of convergence for the Cartesian unperturbed 

orbit. 

 

In both the KS and Cartesian cases the domain of convergence is reduced in the presence of 

perturbations. This is expected as the algorithms are now require to approximate more rapidly 

varying changes in the trajectory. The Cartesian seems to perform better than the KS in this per-

turbed environment.  

We can also solve the perturbed TPBVP for single and multi-revolutions in KS space. It re-

quires a shooting method. The Method of Particular Solutions [20] is employed to solve this prob-

lem and requires solving the Initial Value Problem using MCPI. 

 

INITIAL VALUE PROBLEM IN KS VARIABLES:    

A PICARD ITERATION METHOD 

 

The KS transformation can also be applied to the Initial Value Problem (IVP). Similarly, the 

final eccentric anomaly is determined analytically using the classical Kepler equation for the 

change in eccentric anomaly given the time. As expected, we find that the domain of convergence 

achievable for the IVP is greatly increased compared with previous MCPI results [9] in Cartesian 

coordinates with time as the independent variable. Figures 7 and 8 show the superiority of the KS 

transform with regard to number of iterations, and number of nodes required to achieve the de-

sired propagation orbital arc length, for the two-body problem.  
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Figure 7: Comparative performance of MCPI and MCPI-KS for the four different test cases 

(LEO, MEO, GTO, HEO). The KS algorithm achieves a convergence domain of about 8.5 orbits 

with much fewer iterations required than the standard method. 
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Figure 8: Comparative performance of MCPI and MCPI-KS for the four different test cases 

(LEO, MEO, GTO, HEO). The KS algorithm requires less nodes for propagating the same orbital 

arc length. 

 

 

The EGM2008 gravity model [16] is implemented for solving perturbed orbits. A two-body 

plus J2 warm start and a two-body final eccentric anomaly are used to start the iterations. The 
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perturbed KS IVP is solved with a final two-body eccentric anomaly value as the initial guess 

plus 2%. This ensures that the converged solution overshoots the desired final eccentric anomaly 

value. This slightly longer than desired solution is fit with MATLAB’s interp and spline com-

mands to generate the states at the desired times, thus allowing the ``shorter’’ solution to be ex-

tracted over the desired time interval. 

Figures X and Y show the superiority of the KS solution to the Cartesian solution for the per-

turbed cases (40,40). The interpolation procedure does reduce the accuracy of the results signifi-

cantly, showing millimeter precision between the MCPI KS solution and the MCPI Cartesian so-

lution. We are currently investigating new methods of interpolating the data to allow MCPI’s ma-

chine convergence precision to be maintained. 
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Figure 9: Comparative performance of Cartesian and KS for the four different perturbed 

(40,40) test cases (LEO, MEO, GTO, HEO). The KS algorithm requires less iterations for propa-

gating the same orbital arc length. 
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Figure 10: Comparative performance of Cartesian and KS for the four different perturbed 

(40,40) test cases (LEO, MEO, GTO, HEO). The KS algorithm requires less nodes for propagat-

ing the same orbital arc length. 

 

PERTURBED LAMBERT PROBLEM IN KS VARIABLES:    

A SHOOTING TECHNIQUE 

 

The multi-revolution TPBVP can be solved using a shooting technique via the Method of Par-

ticular Solutions. A guess for the initial velocity is found by solving the analytical TPBVP. We 

then propagate the orbit using the IVP approach in KS variables. More on the Method of Particu-

lar Solutions can be found in [20]. 

The increased convergence demonstrated by KS over Cartesian for the IVP allows the TPBVP 

to be solved up to 2.5 LEO perturbed orbits. This is a fantastic new result for MCPI and it means 

that this larger domain of transfer orbit possibilities can be explored for finding the optimal trans-

fer trajectory. Figure 11 shows two orbits (A and B) and a transfer trajectory linking the two. 
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        (a) 3-D Optimal Orbit Transfer                                 (b) Orbit Transfer Notation 

Figure 11: Optimal Orbit Transfer from Orbit A to Orbit B 

 

Exploring the domain for the optimal trajectory requires generating a pork chop that shows the 

 v required to transfer between two orbits at any location around the orbit and at any time. Fig-

ure 12 shows this for two LEO orbits. The respective orbital elements are shown in Table 2. The 

pork chop was created using the Method of Particular Solutions, and each orbit was propagated 

using the analytical F&G solution. Since we have seen such promising results with the increase of 

the domain of converged for the perturbed IVP, we anticipate that integrating the KS transformed 

equations of motion will produce a similar pork chop. The range would be about 2.5 LEO orbits. 

 

 

 

 

 

 

  

Table 2:  Orbit Elements for Example Optimal Orbit Transfer Problem 

                                

semi-major axis     8000 9000

eccentricity     0.125 0.050

inclination     0 5deg

longitude of the ascending node     0 0

argument of perigee     0 0

initial true anom

a km km

e

i





osculating elements symbol Orbit A Orbit B

0 0aly @ 0     0 117degt f

 

Performance Index J [km/sec]2 
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Figure 12: Minimum Velocity Orbit Transfer Maneuvers From Orbit A to Orbit B. The max-

imum allowable delta v is 2 km/s. 

 

 

CONCLUSION  

Novel methods are presented that are designed to efficiently solve the Lambert Problem for a 

state-of-the-art gravity field model. Two methods are the focus of the paper.  In the first method, 

we consider the two-point-boundary value version of the Modified Chebyshev Picard Iteration 

approach, mapped into KS variables.  This formulation in theory solves the Keplerian and per-

turbed Lambert problems without requiring a shooting method.  Numerical results show that Pi-

card iterations for this method converges reliably for about 98% of one LEO unperturbed orbit. 

The second method utilizes the MCPI initial value solver which can be solved over arbitrary time 

intervals, and establishes a shooting method suitable for multiple revolution solutions of the per-

turbed Lambert problem in KS variables.  Both methods are illustrated with a family of numerical 

demonstrations that show that the formulations are valid and offer some advantages relative to 

conventional algorithms in Cartesian coordinates.  In particular, we believe that we have estab-

lished the first method that solves the perturbed Lambert problem without the necessity of a state 

transition matrix, albeit for the fractional orbit case.  The second method is introduced for com-

pleteness for solving the multi-revolution case in KS variables, but at this point, it is qualitatively 

analogous to other well-known shooting methods in Cartesian coordinates.  Computational effi-

ciency optimization will be also be addressed in future studies. These new algorithms and excit-

ing new results address improvements in the solutions of a fundamental problem in astrodynam-

ics and should find widespread use in contemporary and future applications. 
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ABSTRACT 

For conservative systems, a common method for validating accuracy is that the Hamiltonian or a similar energy 

integral of a converged solution maintains constancy to a desired tolerance. While a Hamiltonian metric is a very 

useful for conservative systems, for non-conservative systems a Hamiltonian check is not applicable and other 

methods for validating solution accuracy must be employed.   While we can utilize various ad-hoc methods for 

comparing the state history from a new integrator with some other well-tested code, or compare solutions using 

various accuracy tunings for a given method, there always remains uncertainty since rigorous convergence 

conclusions are difficult when comparing approximate solutions.   

 

Two independent measures of solution accuracy are considered in this paper, based on the Method of Manufactured 

Solutions (MMS) and the Round-Trip-Closure Method (RTC). These metrics have the attractive property that they 

are both theoretically exactly zero if the integrator introduces zero error. For RTC, the convergence test is applied 

directly to the original differential equations and boundary conditions, whereas for MMS, a close neighbor of the 

unknown exact solution is established, with a known small perturbing force.  The neighboring solution is the exact 

solution of the original differential equations with the known small perturbing force. Application of the solution 

methodology to this slightly perturbed problem permits strong conclusions on the algorithm’s accuracy of 

convergence. 

 

MMS and RTC metrics are useful for virtually any numerical process for solving differential equations.  MMS and 

RTC are useful in evaluating the relative merits of competing algorithms; the utility of these ideas are demonstrated 

in an accuracy study for three numerical integrators: Modified Chebyshev Picard Iteration (MCPI), an 8th order 

Gauss Jackson (GJ8) algorithm and Runge-Kutta-Nystrom (RKN12(10)). We utilize an intermediate order spherical-

harmonic gravity (40,40) model.  Since this problem is conservative, we check the Hamiltonian constancy with 

MMS and RTC.  Results demonstrate the consistency of the two metrics and high efficiency vs accuracy of MCPI 

relative to the other integrators, for long-arc orbit propagation. MMS is readily applied to MCPI, since the solution 

process produces automatically an interpolating polynomial for the state variables. However, for most methods, one 

must introduce an auxiliary interpolation process, as discussed herein. We show MMS and RTC errors for these 

state of the art algorithms. 

1. INTRODUCTION 

 

A common method for validating the accuracy of numerical integrators is confirming that the Hamiltonian of an 

apparently converged solution maintains constancy to a desired tolerance for the time interval over which the 

computation was performed. This Hamiltonian metric is a useful test for conservative systems.  For non-

conservative systems, for example a Low Earth Orbit (LEO) that is under the influence of aerodynamic drag, the 

Hamiltonian check is not applicable and other methods for validating the accuracy of the solution must be 

employed.   While we can utilize various ad hoc methods of comparing the state history (ephemeris) from a new 

integrator with some other well-tested integrator, or compare solutions using a given method with itself, there 

always remains uncertainty since neither solution is exact.   

 

Two independent measures of solution accuracy are introduced, based on the Method of Manufactured Solutions 

(MMS) and the Round-Trip-Closure Method (RTC). These metrics have the attractive property that they are both 

zero if the integrator introduces zero error. Healy and Berry [1] used a number of different tests to study the 

accuracy of two numerical integrators, Runge-Kutta 45 and an 8th order Gauss-Jackson. Both MMS, or Zadunaisky’s 

test as they refer to it, and RTC, or Reverse Test, are mentioned in their work. 
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An additional benefit for using MMS and RTC metrics over the Hamiltonian metrics when determining the accuracy 

of numerical solutions is specifically important for symplectic integrators. Symplectic integrators, such as the 

Implicit Runge-Kutta methods, enforce the accuracy of the Hamiltonian at each iteration and thus reduce the 

``purity’’ of the Hamiltonian when it is used as a final independent check of accuracy of the converged solution.  We 

utilize a recently developed path approximation method: the Modified Chebyshev Picard Iteration (MCPI).  MCPI 

differs from the symplectic methods in that the constancy of the Hamiltonian is not explicitly enforced during the 

numerical integration process, but MCPI relies instead on the property that the Picard iteration process is 

theoretically a contraction mapping attracted to the exact solution under the conditions of the Picard convergence 

theorem.  The conditions under which Picard is proven to be a contraction to the solution is that the acceleration 

function be smooth and at least once differentiable, and that the time interval over which the solution is sought 

belongs to a bounded interval (typically, less than three orbit periods) and finally, that the starting orbit 

approximation must have a bounded error relative to the unknown true solution.  Typically, convergence is achieved 

over large time intervals, even with a straight line starting approximation, however a “warm start” closer to the 

solution is needed for efficient convergence. MMS and RTC lead to “exact” metrics for performing accuracy checks 

and comparisons between different numerical integrators. In the case of RTC, the convergence test is directly on the 

original differential equations and boundary conditions.  In the case of MMS, a close neighbor of the sought solution 

is established with a small perturbing force for which a given smooth approximate solution exactly satisfies the 

slightly perturbed differential equations.  The metrics associated with MMS and RTC are easily computed.  These 

“external” validation/accuracy checks are not to be confused with adaptive tuning of the solution segments and the 

number of nodes when orthogonal function approximations are fused with Picard iteration to maintain accuracy of 

acceleration approximation and numerical quadratures that are a part of the implementation of MCPI.  Furthermore, 

the MSS and RTC metrics are useful for virtually any method for numerical solution of differential equations and 

therefore has utility in evaluating the relative merits of competing algorithms. 

 

 

2. METHOD OF MANUFACTURED SOLUTIONS 

 

The Method of Manufactured Solutions [2, 3, 4] computes an analytical function near to the actual problem of 

interest. A new system of differential equations, that is slightly different from the original problem, is constructed 

and solved. The solution to this problem has an analytical solution, which if compared to the numerical solution will 

allow the numerical accuracy of the integrator to be tested. 

 

Consider the nonlinear differential equation, with specified initial conditions: 

   (1) 

Suppose that the differential equation of Eq. (1) does not have an analytical solution.  Further suppose that an 

approximate solution ( )r tx  is available that does not satisfy Eq. (1) exactly but is believed to satisfy it with “small” 

but unknown errors.  Suppose that ( )r tx is smooth and at least once differentiable.  On substituting ( )r tx into Eq. 

(1), we can obtain an explicit algebraic solution for the error as 

   (2) 

or 

   (3) 

We can compute the norm ( )r td  to see if it is sufficiently small to consider ( )r tx a good starting approximation. 

Comparing Eqs (3) and (1) and reflecting for a moment, it is clear that ( )r tx is the exact analytical solution of the 

slightly disturbed differential equation  

   (4) 

Since we have a candidate solution with a small ( )r td , Eq (4) can be considered a very close neighboring 

problem to the original one of Eq. (1), but with the important advantage that we know the exact analytical solution 
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( )r tx .  One can argue that whatever numerical method is under evaluation for solving Eq. (1), can be evaluated on 

the perturbed system of Eq. (4), which should prove slightly more difficult for the numerical solver than solving the 

original unforced system of Eq. (1).  Whatever numerical solution process under study can be used to solve the 

perturbed system of Eq. (4) and obtain an approximate solution , however we know the exact solution of Eq. 

(4) is ( )r tx , so we can compute the exact solution error at any/all times.  If the numerical method we 

are studying to solve Eq. (1) gives, for example, a 15 digit solution of the more difficult perturbed problem of Eq. 

(4), then we can be justifiably optimistic that it will solve Eq. (1) with similar precision.  In particular, if 

14
( )

, say (10 )
( , ( ))

r

r

t

t t
 

d

f x
, then it is virtually certain that the numerical method used to generate , 

when applied to Eq. (1), will produce a solution with 14 or more significant figures.  

The main weakness with the MMS test is that that acceleration, , must be obtained by differentiating an 

approximation to the converged velocity solution. The quality of the approximation limits the ability of MMS to test 

the quality of the integrator. This is a drawback for the step integrators, but for MCPI the coefficients of the 

acceleration fit are already available due to the path approximation nature of the algorithm. No differentiation of the 

state trajectory approximation of the velocity is necessary, thus allowing MMS to honestly test the accuracy of the 

integrator, without the necessity of introducing other approximations. 

 

  

3. ROUND-TRIP-CLOSURE 

 

Round Trip Closure (RTC) is a test that measures the accumulative error that results during numerical integration.  

Consider the nonlinear differential equation, with specified initial conditions: 

 0 0 0( ) ( , ( )),    ( ) ,    ft t t t t t t   x f x x x
  (5) 

Suppose that the differential equation of Eq. (5) does not have an analytical solution. An approximate solution may 

be obtained through numerical integration. As a specific example, consider propagating the trajectory of a spacecraft 

about the Earth, with specified initial conditions and final time. The gravitational acceleration experienced by the 

spacecraft varies as a function of position along the trajectory. 

Having computed the trajectory, the final position is used as the new initial position, and the final time as the new 

initial time, as shown in Eq. (6). 

 0 0( ) ( , ( )),    ( ) ,    f ft t t t t t t   x f x x x   (6) 

The new initial conditions are propagated backwards in time along the trajectory in order to recover the initial 

conditions used for the forward integration. The error metric is evaluated as follows: 

                                                   0 0

0 0

0.5
f f

J
     
     
    
    

r r v v

r v
                                                 (7) 

For MCPI, which is a path approximation integrator, slightly varying the node locations along the reverse trajectory 

allows the solution to be computed using a slightly different gravity field, thus eliminating possible bias and/or 

aliasing issues that may arise due to performing the reverse calculations at the exact same node locations as the 

forward solution. Healy and Berry [1] mention this as being a disadvantage when testing step integrators in a 

perturbed environment. They comment that it does not measure any reversible integration error as it will be 

cancelled on the reverse trip when the sign of the step changes. However, the RTC method has been used 

extensively for performing numerical integration accuracy checks [5]. A high fidelity numerical integrator should 

recover the initial conditions with an accuracy of 14 significant figures, however, this will begin to decrease with 

long-term propagation and is a good measure of the achievable long-term propagation range of a numerical 

integrator. 
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4. MODIFIED CHEBYSHEV PICARD ITERATION 

 

Modified Chebyshev Picard Iteration (MCPI) is an attractive numerical method for solving linear or non-linear 

differential and integral equations. MCPI combines the discoveries of two great mathematicians: Emile Picard 

(Picard Iteration) and Rafnuty Chebyshev (Chebyshev Polynomials), and recent developments in the associated 

linear algebra by Bai, Junkins, Feagin, et al. [6-15]. The original fusion of orthogonal approximation theory and 

Picard iteration was apparently introduced by Clenshaw and Norton in 1963 [16]. 

 

Picard observed that any first order differential equation  

  ( ) ( , ( )),x t f t x t  (8) 

with an initial condition 0 0( ) ,x t x and any integrable right hand side may be rearranged, without approximation, 

to obtain the following integral equation: 

  

0

0( ) ( ) ( , ( )) .

t

t

x t x t f x d      (9) 

This re-arrangement, at first glance, does not appear to have made any progress, since the unknown trajectory x(t) is 

contained in the integrand on the right hand side. A sequence of approximate solutions ( ), ( 1,2,3,..., ),ix t i    

of the true solution x(t) that satisfies this differential equation may be obtained through Picard iteration using the 

following Picard sequence of approximate paths
0 1 1{ ( ), ( ),..., ( ), ( ),...}i ix t x t x t x t

: 

  

0

1

0( ) ( ) ( , ( )) , 1,2,...

t

i i

t

x t x t f x d i      . (10) 

Picard proved an important convergence theorem that essentially states that for smooth, differentiable, single-valued 

nonlinear functions ( , ( ))f t x t , there is a time interval 
0ft t    and a starting trajectory 

0 ( )x t satisfying 

0 ( ) ( )x t x t


   , for suitable finite bounds ( , )  , the Picard sequence of trajectories represents a contraction 

operator that converges to the unique solution of the initial value problem.  What was not apparently appreciated 

until the work of Bai et al. [6-8], is that these bounds are surprisingly large for the main initial value problem in 

celestial mechanics ( exceeds an orbit period, and the starting approximation for the trajectory can be a straight 

line osculating initial position and velocity). 

 

In the first step toward the MCPI method, orthogonal Chebyshev polynomials are used as basis functions to 

approximate the integrand in Eq. (10) along the previous approximate trajectory
1( )ix t

. Unlike traditional step-by-

step integrators, for example the Runge-Kutta methods, MCPI is a path iteration method in which long state 

trajectory arcs are approximated and updated at all time instances on each iteration.  Under usually satisfied and 

known theoretical circumstances, we can show [6] that the Picard sequence is a contraction mapping guaranteed to 

converge to the solution of Eq. (8). The system dynamics are normalized such that the timespan of integration is 

projected onto the domain { 1 1}     of the Chebyshev polynomials, so the system states can be conveniently 

approximated using the Chebyshev basis functions. The orthogonal nature of the basis function means that the 

coefficients that linearly scale the basis functions can be computed independently as simple ratios of inner products 

with no matrix inversion.  Since the Chebyshev polynomials are a complete set, we can achieve machine precision 

(if desired) approximation of any smooth integrand in Eq. (10) on each iteration and the resulting converged 

trajectory can approach a machine precision solution of the differential equation over large time spans.  In Bai’s 

dissertation [6], she found that the actual time interval over which convergence is obtained for problems in celestial 

mechanics is over 3 orbits (for the case of an initial value problem and the usual Cartesian coordinate formulation of 

the equations of motion).  For the two-point boundary value problem in Cartesian coordinates, however, she found 

that the time interval for which Picard iteration converges is reduced to about 0.38 of an orbit period. 
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As a consequence of the independence and orthogonality of the basis functions, the coefficients multiplying the 

Chebyshev basis functions may be computed, as an inner product of the basis functions with the integrand, in 

parallel by separate independent threads with no matrix inversion required.  This independently computable 

integrand approximation coefficients is the first of two available layers of parallelization in the MCPI method. The 

second layer of parallelization is much more important and is enabled by the fact that acceleration over the entire 

state trajectory 
1( )ix t

 permits us to compute independently and simultaneously. Thus the calculation of the 

integrand functions (which must be computed as a function of the system states along the current approximate 

trajectory, at the nodes, as required for the discrete inner products leading to the approximation coefficients) can be 

performed at all nodes simultaneously in parallel processor threads. Using MCPI, over an order of magnitude 

speedup from traditional methods is achieved in serial processing, and an additional one-to-two orders of magnitude, 

are achieved in parallel architectures, depending on the specifics of the parallel implementation. 

 

A key feature of MCPI is a non-uniform cosine sampling of the{ 1 1}    domain of the called Chebyshev-

Gauss-Lobatto (CGL) nodes: cos( / ), 0,1,2...,j j N j N    . This set of samples has higher nodal density 

near the 1  domain boundaries, which enables a higher accuracy solution near the boundaries to compensate for the 

Runge phenomena (a common concern whereby larger oscillatory errors may occur near the edges of the domain 

due to lack of support for the approximation outside the boundaries of the domain). The coefficients that linearly 

combine the Chebyshev basis functions are approximated by the method of least squares, which generally requires a 

matrix inversion. A consistent choice of basis functions, weights, and node locations to ensure orthogonality means 

that the matrix required to be inverted in the Normal Equations of least squares is diagonal, thus the inverse is trivial 

and the coefficient computation is independent.   

Bai’s dissertation [6] extended the classical work of Clenshaw and Norton [16], and the more recent and related 

works of Feagin [15] Fukushima [17] and Shaver [18].  Bai established new convergence insights and optimized the 

solution of initial value problems utilizing vector-matrix formulations.  Bai and Junkins applied MCPI to non-linear 

IVPs and orbit propagation in [7], and then showed promising results comparing MCPI to other higher order 

integrators such as Runge-Kutta-Nystrom 12(10). In reference [8] Bai and Junkins applied MCPI to efficiently solve 

Lambert’s orbit transfer problem in the usual Cartesian coordinates, and to solve an optimal control trajectory design 

problem, formulated in polar coordinates, more accurately and efficiently than the Chebyshev pseudospectral 

method. Notably, over intervals where the Picard iteration converges, there is no need to use a shooting method to 

solve Lambert problems and similar two point boundary value problems (TPBVPs).  Furthermore, the MCPI 

algorithm renders the indirect (Pontryagin’s Principle) state, co-state differential equations solveable without a 

shooting method for a large class of problems.  In [9] Bai and Junkins use MCPI in three-body station-keeping 

control problem for halo orbits, formulated as a sequence of TPBVPs. Subsequent publications by Junkins et al. 

[10], [11], and [12] further clarify the concept and derivation of MCPI and orthogonal approximation in general, and 

apply the method to various problems in astrodynamics. Reference [13] discusses an implementation of the MCPI 

algorithm for the IVP as an easily accessible library, mainly focused on the case of Cartesian coordinates. 

 

A full derivation of MCPI is outside the scope of this paper. Instead we present flow charts in Fig. 1 that briefly 

summarize the algorithms represented in the compact vector/matrix formulation, which is computationally the most 

efficient way to implement the method. The above references provide detailed derivations, as well as examples and 

results that demonstrate the power of the MCPI algorithms with regard to efficiency and accuracy. Additionally, 

those references contain comparisons to other well-known integrators including high-order Runge-Kutta methods 

and the Gauss-Jackson method.  
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Fig. 1. Vector matrix form for the Initial Value Problem 

 

 

5. RESULTS AND DISCUSSION 

 

Method of Manufactured Solutions 

 

We consider three test cases (LEO, GEO, Molniya) and propagate each for 10 two-body orbital periods. The 

MMS error metric for determining the closeness of the analytical solution is computed as 

 

                                                                     
14

( )
, say (10 )

( , ( ))

r

r

t

t t
 

d

f x
,                                              (11) 

 

and the error metric for determining the closeness of the numerical approximation to the analytical solution is 

calculated as the maximum absolute difference between the position norms of the two trajectories (numerical 

and analytical).  

 

In this paper we consider only MCPI and RKN(12)10. As mentioned earlier, a drawback for step integrators is 

that the velocity must be approximated and differentiated to obtain acceleration. This limits the ability of MMS 

to quantify the accuracy of the algorithm. For the MATLAB implementation of RKN(12)10 used for this 

analysis, it is possible to specify an input time array on a cosine distribution, thus allowing the velocity to be fit 

and approximated with Chebyshev polynomials, and then differentiated using Chebyshev polynomials of the 

second kind [6]. Interpolation with Chebyshev polynomials is very accurate compared with other methods such 

as power series approximation. The MATLAB Gauss-Jackson algorithm used for this analysis does not permit 

specification of a desired input time array, thus leading to a less accurate approximation. Until further 

investigation is performed with regard to better fitting techniques, we have decided to exclude it from the 

analysis.  
 

Fig. 2 shows MMS error for MCPI and RKN(12)10 plotted as a function of increasing orbital distance. Both 

integrators are relatively stable, maintaining 12 digits of accuracy over this interval. For this GEO test case, 

MCPI appears to be more accurate that RKN(12)10. Fig. 3 shows how the MMS error for MCPI (LEO, GEO, 

Molniya) gradually increases over a range of decreasing Hamiltonian accuracies. The test is performed over 50 

orbits. 
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       Fig. 2 Comparison of MMS errors for MCPI                  Fig. 3 Comparison of MMS errors for MCPI and 

                         and RKN(12)10, over 10 orbits.                   RKN(12)10, as a function of Hamiltonian accuracy.  

 

Round Trip Closure 

 

We consider 3 test cases (LEO, GEO, Molniya) and propagate each forward in time for 50 two-body orbital 

periods. The final states are then used as the initial conditions and time is reversed to propagate backwards and 

recover the initial conditions. Fig. 4 shows the Molniya test case integrated forward and backward in time with 

MCPI. The node locations on the return trajectory are intentionally selected to be at different positions from that 

on the forward trajectory. This is done to eliminate aliasing and error cancellation that may arise from 

performing the reverse calculation at the exact same node locations as the forward solution. A subtraction of the 

states is done over the entire trajectory and the difference is plotted in Fig. 4. 

 

Neither solution in Fig. 4 is correct because each is effected by numerical error that accumulates during the 

propagation. The left most values are most significant because these represent the error in the recovery of the 

initial conditions after propagating forward for 50 orbits and then backwards for 50 orbits. The error is smallest 

on the far right because this is where the final states at the end of 50 orbits of forward propagation are set as the 

initial conditions for the backward propagation. The general trend shows the error slowly accumulating over 

time. In addition to the general trend there are also variations that occur periodically as a function of position 

around the orbit. See the enlarge inset at the bottom left of the figure. 

 

 
Fig. 4.   Reverse Integration Closure over 50 Molniya orbits (Period = 12 hours).             
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RTC errors are computed for each test case over a range of tolerances (
71 10 ,

91 10 ,
111 10 , 

131 10 ,
151 10 ). The error metric, Eq. (12), is used to quantify the accuracy of each RTC solution. In Figs. 

5 through 7, the RTC error is plotted as a function of Hamiltonian accuracy. As expected, the general trend 

shows the RTC error increasing as the accuracy of the solution decreases. In general, MCPI seems to perform 

better at higher solution accuracies that Gauss-Jackson. For the Molniya case at low Hamiltonian accuracies 

MCPI has a large RTC error. This is likely due to sub-optimal segmentation and node distribution. The 

algorithm was tuned by hand for the high accuracy cases, and the same segmentation is used for the low 

accuracy cases. We anticipate improved results for the low accuracy range once the optimal segmentation 

scheme is implemented [19]. Fig. 8 shows how the RTC error changes as the propagation time increases from 

10 to 50 orbits. We note that the MCPI Molniya test case shows some variation (improved accuracy after 50 

orbit RTC compared with 40 orbit RTC). This is likely depicting the variations observable in Fig. 4. In Fig. 9 

we take the average of RTC error values on either side of the desired 50 orbit propagation distance. 

Considerable fluctuation is evident over this small range, thus highlighting the importance of computing an 

average value. Overall, the three integrators show relatively similar stability trends. 
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      Fig. 5 LEO: Comparison of RTC errors over 50                 Fig. 6 GEO: Comparison of RTC errors over 50 

     orbits for Gauss-Jackson, MCPI and RKN(12)10,               orbits for Gauss-Jackson, MCPI and RKN(12)10, 
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Fig. 7 Molniya: Comparison of RTC errors over 50 orbits for Gauss-Jackson, MCPI and RKN(12)10, as a 

function of Hamiltonian accuracy. 
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Fig. 8 Comparison of RTC errors for Gauss-Jackson, MCPI and RKN(12)10, as a function of orbital 

propagation distance. Top to bottom: LEO, GEO, Molniya. 
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Fig. 9 Variation of RTC error over two orbital periods in the vicinity of 50 orbits RTC. 

 

6. CONCLUSION 

 

A common method for validating the accuracy of numerical integrators is confirming that the Hamiltonian of the 

converged solution maintains machine precision for the time interval over which the computation was performed. 

This is a useful test for conservative systems, but for non-conservative systems the Hamiltonian check is no longer 

sufficient and other methods for validating the accuracy of the solution must be employed.  

 

Two methods, the Method of Manufactured Solutions (MMS) and Round Trip Closure (RTC) are employed for 

comparing the accuracy of three numerical integrators: Modified Chebyshev Picard Iteration, Gauss-Jackson and 

Runge-Kutta-Nystrom. The two tests reveal all three integrators are comparably stable for long-term integration for 

LEO, GEO and highly eccentric orbits. Of the three MCPI is the most efficient for serial computation (see sister 

paper [20]) and is also ideally suited for parallel computation to enable further speedup. 
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ABSTRACT 

 

Modified Chebyshev Picard Iteration (MCPI) is a numerical method for approximating solutions of Ordinary 

Differential Equations (ODEs) that uses Picard Iteration with orthogonal Chebyshev polynomial basis functions to 

obtain approximate time histories of system states.  Unlike stepping numerical integrators, such as most Runge-

Kutta methods, MCPI approximates large segments of the trajectory by evaluating the forcing function at multiple 

nodes along the current approximation of the trajectory during each iteration.  The orthogonality of the basis 

functions and vector-matrix formulation allow for low overhead cost, efficient iterations, and parallel evaluation of 

the forcing function.  Despite these advantages MCPI only achieves a geometric rate of convergence.  This means it 

can require significantly more function evaluations than other integrators to generate an approximation over a given 

time span.  As the computational complexity of the ODE forcing function increases, it decreases the relative speed 

of MCPI when compared to other integrators.  On the other hand, there are many potential implicit avenues to 

alleviate these disadvantages. 

 

To overcome the later iterations’ geometric convergence, we introduce here the method of Terminal Convergence 

Approximation Modified Chebyshev Picard Iteration (TCA-MCPI).  TCA-MCPI takes advantage of the property 

that once moderate accuracy has been achieved with the Picard Iteration or with a warm start of the iteration, the 

spatial deviation of nodes along the segment approaches zero (i.e., the nodes quickly approach fixed points in the 

force field).  Applying well-justified local approximation methods to the forcing function at each node during 

terminal Picard iterations greatly reduces the number of full function evaluations required to achieve convergence.  

In many cases the full function evaluations per node necessary to achieve final convergence is reduced to a small 

single digit number. 

 

One example of the potentially deleterious effect of a complex forcing function on MCPI is the high-order spherical-

harmonic gravity models used for high accuracy orbital trajectory generation.  When applied to orbital trajectory 

integration and combined with a starting approximation from the F&G Solution TCA-MCPI outperforms all current 

state-of-practice integration methods for astrodynamics.  This paper presents the development of Terminal 

Convergence Approximation Modified Chebyshev Picard Iteration, as well as its implementation for orbital 

trajectory integration using multiple approximation methods.  Examples comparing the output, timing, and 

performance from the TCA-MCPI to state-of-practice numerical integration methods, including Runge-Kutta 7-8, 

Runge-Kutta-Nystrom 12th-10th, and the 8th order Gauss-Jackson predictor-corrector algorithm, are presented as well.  

 

1. INTRODUCTION 

 

In order to effectively monitor the state of the orbital environment surrounding the Earth and to maintain awareness 

of potential threats to our space infrastructure, accurate methods for efficient catalog propagation and maintenance 

are invaluable. These methods are additionally useful in hypothesis-testing for various space situational awareness 

settings that require many high fidelity orbits to be iterated.  Modified Chebyshev Picard Iteration (MCPI) has 

proven to be an effective method for solving the initial value problem for smooth and continuous Ordinary 

Differential Equations (ODEs), which is a large class of systems that includes orbital propagation.  MCPI is a 

technique for numerical quadrature for ODEs that uses a trajectory approximation, generated from a set of high-

order orthogonal Chebyshev polynomials, and recursively refines it using Picard iteration.  The second order vector 

matrix implementation of the MCPI algorithm, shown in Figure 1, consists of two major stages: initialization and 

iteration.  The initialization stage includes the determination of the time span and number of function evaluation 

nodes for the trajectory segment approximation, the creation of certain constant matrices required for iteration, the 

necessary time transformation, and the generation of an initial trajectory guess.  The iteration stage evaluates the 
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forcing function at each of the nodes along the trajectory, and improves upon the trajectory approximation with an 

update of the velocity and subsequent update of the position.  The algorithm then repeats the iteration phase until 

either the accuracy requirement or iteration limit is met.  This formulation allows for low overhead and efficient 

iterations while also allowing for massive parallelization because all functions evaluations can be completed 

independently and simultaneously. [1][2][3] 

 

 
Figure 1: Second Order Cascade MCPI Algorithm for Solving Initial Value Problems 

 

As mentioned, one limitation of MCPI is that it only achieves a geometric rate of convergence with typically up to 

one order of magnitude reduction in the solution approximation error achieved on each terminal iteration.  As a 

result it can require a significant number of iterations to converge when compared to other methods.  This can be a 

significant issue for high-accuracy orbital propagation because the spherical harmonic gravity function is 

computationally expensive.  Terminal Convergence Approximation Modified Chebyshev Picard Iteration (TCA-

MCPI) a modification to the original form of MCPI introduces a method of dramatically reducing the number of full 

force function evaluations to increase computational efficiency without adversely effecting final accuracy. 

 

2. ORBITAL TRAJECTORY SEGMENTATION AND NODAL PLACEMENT 

 

As part of the initialization of MCPI the time span for integration and the number of evaluation nodes must be 

selected.  In contrast to stepping integrators or some implicit integrators that consider relatively short time segments, 

MCPI considers a large segment of a trajectory simultaneously; as a result the traditional methods for variable step 

size determination do not translate well for use with in MCPI.  Additionally, traditional methods do not provide 

much insight into the number of evaluation nodes that should be used for each segment.  While general methods for 

time span determination and nodal density selection are presently under development, for applications to a specific 

problem it is possible to use heuristic methods and physical insight to generate a segment setup (number of 

segments, node locations) that leads to efficient solutions to that class of problems.   

 

A study of the accuracy performance of MCPI with varying time spans and nodal density was completed on a 

characteristic set of orbits with varying semi-major axis and eccentricity to establish a general approximate method 
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for segment setup for efficient and accurate orbital propagation.  A periodic scheme that repeats for each orbit was 

adopted (“orbit completion” is defined as successive passages through perigee, the smallest radius on a generally 

perturbed orbit).  The difficulty of the numerical quadrature for any method for non-maneuvering satellites is 

greatest surrounding the perigee of an orbit and simplest at apogee, therefore smaller timespans and/or greater nodal 

density are required there to achieve a constant level of accuracy throughout the orbit.  An odd number of segments 

(generally three) with time spans and node counts that are symmetric with respect to perigee was selected for 

simplicity and to reflect evident physical truths approximated by Kepler’s second law of motion.  An example of this 

segmentation setup method for a highly eccentric (e~0.7) LEO orbit is shown in Figure 2. The different colors 

represent the three segments used to integrate the orbits and show the node distribution for each segment.    

 

 

 
Figure 2: Example MCPI Segmentation Scheme 

 

 

3. INITIAL ORBITAL TRAJECTORY APPROXIMATION 

 

For successive iterations, MCPI uses a current approximation of a trajectory to generate an improved approximation.  

If a sufficiently accurate initial guess for the path being approximated can be provided analytically, it is possible to 

avoid the most slowly converging initial iterations that MCPI would require generating an approximation as accurate 

as the analytical initial guess.  This process is known as providing MCPI with a “warm-start”.  To accelerate the 

computation of orbital trajectories, Battin’s analytical two-body solution  (exact solution for the F&G functions) to 

the two-body problem is used to generate the initial approximation. [4] Using the actual two-body trajectory as 

“warm-start” for the full perturbed trajectory puts the initial trajectory approximation in the general proximity of the 

true solution and allows for some of the iterations that would otherwise be required to be skipped altogether.   It is 

also possible to invoke analytical perturbation theories to account for the zonal harmonics and approximately for 

drag. [5] 

 

4. TERMINAL CONVERGENCE APPROXIMATION 

 

Since the nodes are known to approach fixed points in the force field during terminal convergence, it is possible to 

avoid the high number of the function evaluations by judiciously replacing the full forcing function evaluations with 

a local force approximation.  This is effective because MCPI is repeatedly evaluating the forcing function at nodes 

with the same spacing in τ.  As the approximation of the trajectory approaches the true solution, the variation of the 

node locations in physical space approaches zero; this means that as the function accuracy requirements for the 

improving the approximation of the trajectory increase, so will the accuracy of any type of local force function 

quasi-linear approximation.  It is possible to apply this principle in the case of a general forcing function using 

partial derivatives, Taylor Series techniques, or any other method of reliable approximation.  Specifically for orbital 

trajectory propagation, it is possible to determine a computationally simple correction at each node of some a priori 

approximate gravity model that locally replaces the full-fidelity force model to high precision. 

 

In order for the substitution of approximate function evaluations to be an effective, a metric for determining when 

the use of the approximation will accelerate convergence is needed.  If an inaccurate local force function is 

employed, it can cause MCPI to converge to an erroneous trajectory, and if full function evaluations are used when 
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they are not required then it will be unnecessarily computationally expensive.  To provide insight to these issues, we 

define the quantity level of approximate convergence as the ratio of the correction norm after the most recent full 

function evaluation to the current correction norm.  We have found that comparing the reliable level of accuracy of 

the approximation used to the level of approximate convergence can be utilized as an effective switching metric.  

When the accuracy of the approximation is greater than the level of approximate convergence from the last full 

evaluation then it is safe to perform an approximate evaluation; otherwise, a full evaluation is required.  

Additionally, in the case that the chosen approximation can be used without a full function evaluation, initial 

approximate evaluations can be used until the current correction norm exceeds the accuracy of the approximation. 

These qualitative ideas apply to any local force approximation approach. 

 

The key to utilizing terminal convergence approximation for orbital propagation is approximating the EGM2008 

spherical harmonic gravity function using the analytical calculation for the two-body acceleration with only the J2-

J6 perturbations to achieve approximate initial convergence.  This force model can reliably predict at least 4 

significant figures of the EGM2008 gravity model, so that was the level of accuracy used for comparison to level of 

approximate convergence. [6]  While the correction norm is above that level of physical accuracy of the two-body 

plus J2-J6 approximation provides the entire force evaluation.  Once that level of correction norm is exceeded a full 

EGM2008 gravity evaluation is performed. At this point, the “local offset” difference between the two-body plus J2-

J6 approximation and the full evaluation is recorded (Equations 1-2).  The local offsets are the local summation of 

all higher order gravity effects at that point.  Since the shortest high frequency gravity wavelength is in 10s of km 

and since the local convergence errors are typically a fraction of 1 km, the offset is slowly varying spatially relative 

to convergence errors.   This local offset, at each node, is treated as a constant perturbation imposed upon the 

approximation in subsequent approximate evaluations, as shown in Equation 3.  A flow chart representation of the 

terminal convergence approximation algorithm that would replace the “Function Evaluation” step within the 

standard MCPI implementation (Figure 1) is shown in Figure 3.  This method of function approximation is similar 

to one developed independently for use in the Bandlimited implicit Runge–Kutta method, with the key distinction 

being that the present approach utilizes accuracy based metrics for selection of whether or not to utilize the 

approximate model, and also to tailor adaptively the local convergence tolerances consistent with the physical 

accuracy of the force approximation. [7] 

 

𝑔𝑓𝑢𝑙𝑙(𝜏, 𝑥(𝜏)) = 𝐸𝐺𝑀2008(𝑥(𝜏)) 

 

𝛥𝑔(𝜏) = 𝑔(𝜏, 𝑥(𝜏)) − 𝐽2𝐽6(𝑥(𝜏)) 

 

𝑔(𝜏, 𝑥(𝜏)) = 𝐽2𝐽6(𝑥(𝜏))  −  𝛥𝑔(𝜏) 

 

 

 

 
Figure 3: Gravity Function Evaluation Flow Chart 

 

(1) 

 

(2) 

 

(3) 

89



5. RESULTS 

 

Comparing TCA-MCPI to the standard MCPI algorithm shows that introducing the approximation results in a major 

reduction in the required number of full function evaluations and in a minor penalty in terms of the number of 

iterations needed.  This translates to major savings in terms of computational effort and run times, because extra 

iterations with the approximation are substantially less computationally expensive than a full evaluation. 

  
Figure 4: MCPI and TCA-MCPI Convergence Progress vs. Iteration Number 

 

A study examining the performance of TCA-MCPI to other state of the practice integrators on various characteristic 

orbits was completed.  The integrators considered were Runge-Kutta 4th-5th Order, Runge-Kutta 7th-8th Order, 

Runge-Kutta-Nystrom 12th-10th Order, Gauss-Jackson 8th Order, and finally the original version of MCPI without 

the implementation of terminal convergence approximation.  Each integrator was used to propagate the same set of 

six orbits; a circular, moderately eccentric, and highly eccentric at perigee altitudes of both a Low Earth Orbit and 

Geosynchronous Orbit.  Figure 5 illustrates the set of LEO altitude orbits. 

 
Figure 5: Circular, Moderately Eccentric and Highly Eccentric Orbital Trajectories with a LEO Perigee Altitude 

 

Table 1 presents the orbital elements for each case, as well as the orbital period.  Figures 6-17 provide a comparison 

of the computation time for one orbital period, the function evaluations required for each integrator, and how 

accurately each integrator preserves the relative Hamiltonian.  In the case of Gauss-Jackson there are two function 

evaluations values reported, initial function evaluations, and the total function evaluations.  The initial evaluations 

are required as part of the setup for the integrator, but are not required for evaluation after initialization; for the 

integration of subsequent orbits the number of required valuations would be the total number of evaluations minus 

the initial evaluations. [8] [9] [10][11]   This study was run using MatlabTM 2013a with a custom EGM2008 

Spherical Harmonic Gravity used as the only forcing function. [10] 
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Table 1: Test Case Orbit Elements and Period 

 a e i M Ω ω T (s) 

Case LC 6.7087 E6 0.0027 1.1866 1.5735 1.6057 4.8022 5.4905 E3 

Case LME 8.4920 E6 0.21 1.1866 0.0154 1.6057 0.077 7.7883 E3 

Case LHE 21.641 E6 0.69 1.1866 0.0066 1.6057 0.0859 31.683 E4 

Case GC 42.164 E6 0 0 0 0 0 86.164 E3 

Case GME 53.372 E6 0.21 0 0 0 0 122.271 E3 

Case GHE 136.01 E9 0.69 0 0 0 0 499.21 E3 

 
Figure 6: Case LC Relative Hamiltonian Preservation 

 
Figure 7: Case LC Timing and Function Evaluation Results 

 

 
Figure 8: Case LME Relative Hamiltonian Preservation 
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Figure 9: Case LME Timing and Function Evaluation Results 

 
Figure 10: Case LHE Relative Hamiltonian Preservation 

 
Figure 11: Case LHE Timing and Function Evaluation Results 
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Figure 12: Case GC Relative Hamiltonian Preservation 

 
Figure 13: Case GC Timing and Function Evaluation Results 

 
Figure 14: Case GME Relative Hamiltonian Preservation 
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Figure 15: Case GME Timing and Function Evaluation Results 

 

 
Figure 16: Case GHE Relative Hamiltonian Preservation 

 
Figure 17: Case GHE Timing and Function Evaluation Results 
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6. CONCLUSIONS  

 

Terminal Convergence Approximation Modified Chebyshev Picard Iteration shows the best performance in terms of 

timing and function evaluations in all cases, even requiring fewer evaluations than the repeating evaluations for the 

“industry-standard” Gauss-Jackson in circular LEO cases.  In the circular orbit cases Gauss-Jackson has the second 

best performance, while the Runge-Kutta-Nystrom 12th-10th order and occasionally Runge-Kutta 7th-8th order 

perform better than Gauss-Jackson in the eccentric cases (as is well known).  Runge-Kutta 4th-5th is generally the 

poorest performer in all cases.  The single orbit case considered here illustrates the worst case for results for timing 

of Gauss-Jackson and the two MCPI variants because these methods require initialization to start performing 

integration. As the total number of orbits considered increases the fraction of the total time that these initializations 

represent will diminish.  Of the methods tested in a serial mode in this paper, only MCPI parallelizes efficiently for 

each orbit, and this opens up substantial further speedups. Finally, TCA-MCPI provides a reliable method of using 

approximation methods to effectively circumvent many of the computationally expensive function evaluations 

required for standard MCPI and other methods based on Picard Iteration without negatively affecting the accuracy 

of the final approximation. 
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