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Abstract 
Phase 2 of the IARPA program ICArUS (Integrated Cognitive-neuroscience Architectures for 
Understanding Sensemaking) requires a research problem that poses cognitive challenges of 
spatial-temporal sensemaking (BAA, 2010). The problem serves as a challenge for performers 
who are building integrated cognitive-neuroscience models, and as a tool for obtaining data from 
human experiments. This document describes the challenge problem, and outlines the T&E (Test 
& Evaluation) approach for evaluating models in Comparative Performance Assessment and 
Cognitive Fidelity Assessment (BAA, 2010). Normative (Bayesian) solutions to the challenge 
problem are derived, as needed to support the assessment of human and model performance. 
Opportunities are also identified for transition of the challenge problem design and results to the 
geospatial Intelligence Community. 
 
Note: This document was originally prepared and delivered to IARPA in March, 2014, in order 
to support ICArUS Phase 2 T&E efforts that concluded in June, 2014.
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1 Introduction 
This document was originally prepared and delivered to IARPA in March, 2014, to support 
ICArUS Phase 2 Test & Evaluation (T&E) efforts that concluded in June, 2014. Further 
background is provided in a summary document (Burns, Fine, Bonaceto, & Oertel, 2014) titled 
ICArUS: Overview of Test and Evaluation Materials, available at 
http://www.mitre.org/publications. 
 
The ICArUS Phase 2 challenge problem is a Tractable Analytic Challenge To Investigate 
Cognitive Sensemaking, dubbed TACTICS. The design is a balance of experimental rigor, for 
assessment of models in the laboratory, and practical relevance, for transition of results to real-
world applications in the Intelligence Community. This balance is achieved using a 
computational approach to human experiments and model evaluations, covering a spectrum of 
"missions" that are all Variations (Section 3) on the same basic task Description (Section 2). 
Normative Solutions (Section 4), which are needed for rigorous Evaluation (Section 5), are 
developed as part of the design. Important Definitions (Section 7) and a brief discussion of 
potential directions for long-term Transition (Section 6) are also provided. 
 
Referring to the title of this document, Sections 1-7 all address the challenge problem "design". 
The "test specification" is captured in Section 5 (Evaluation), which describes the methods and 
metrics for various assessments required by the BAA (2010).  

1.1 Motivation 

Although practical applications to real-world intelligence are not the focus of this document, 
TACTICS is intended to aid Transition And Communication To Intelligence Community 
Stakeholders. This objective is accomplished using a computational approach to human-
experimental design and a relational mapping to real-world intelligence analysis. 
 
The relational mapping to support Transition (Section 6) is based on computational variables 
made explicit in the design of TACTICS. More specifically, six types of intelligence analyses 
(and corresponding variables of TACTICS) are characterized as: vulnerability analysis (P), 
opportunity analysis (U), capability analysis (Pc), activity analysis (Pt), frequency analysis (Ft), 
and intentionality analysis (Pa). TACTICS addresses all six, but focuses on how these various 
analyses are integrated in sensemaking. The six types of analyses and corresponding variables of 
TACTICS are explicitly mapped to 26 real-world case studies of geospatial intelligence. These 
case studies were developed in Descriptive (Cognitive) Task Analysis (MITRE, 2013), via 
interviews with analysts and reviews of published articles, see Transition (Section 6). As noted 
in Transition (Section 6), TACTICS is:  
 

A game of repeated risk assessment and action (Kaplan & Garrick, 1980; Garrick, et al., 
2004), posing cognitive challenges that are prototypical of intelligence and operations in 
threat situations (Burns, 2010; McDonald, 1950) – including counterinsurgency (COIN) 
and other security domains (airport/border, cyber/network, crime/fraud, drugs/gangs, 
etc.). 
 

http://www.mitre.org/publications
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Here the term "game" (von Neumann & Morgenstern, 1944) is used in the game-theoretic sense 
of an adversarial (Red-Blue) interaction requiring inferencing and decision making – including 
inferences about what, when, and where the opponent will act (an action), how he will act (a 
tactic), and why he will act that way (an intent). 

1.2 Foundation 

With respect to rigor, a computational approach to challenge problem design begins by 
formalizing Definitions (Section 7) of conceptual notions described in the BAA (2010), 
especially the notion of a "frame" and associated "core sensemaking processes" listed in Table 1 
of the BAA. Here at the outset it is useful to highlight a few of these definitions, first and 
foremost that of sensemaking (where italicized words are all defined in Section 7): 
 

Sensemaking is a recurring cycle of obtaining evidence and updating confidence in 
competing hypotheses, to explain and predict an evolving situation. 
 

This definition is consistent with literature cited in the BAA, including Klein, et al. (2007), who 
cite Weick (1995), who cites Louis (1980), who named and described the process as follows: 
 

"Sensemaking can be viewed as a recurring cycle... The cycle begins as individuals form 
unconscious and conscious anticipations and assumptions, which serve as predictions 
about future events. Subsequently, individuals experience events that may be discrepant 
from predictions. Discrepant events, or surprises, trigger a need for explanation, or post-
diction, and correspondingly, for a process through which interpretations of 
discrepancies are developed..." 
 

According to this description, sensemaking can be boiled down to three basic processes by which 
humans "make sense" of any real-world situation (Burns, 2014; 2005) or media communication 
(Burns, in press; 2012), as follows: First a person uses current beliefs (confidences in 
hypotheses) to form expectations of data (evidence). These expectations may or may not be met 
by subsequent observations. Any violation of expectation, from surprising evidence, then fuels 
the formation of an explanation – which is an updating of beliefs (confidences in hypotheses) in 
light of the data (evidence). 
 
Moving beyond this conceptual description, a comprehensive understanding of sensemaking 
requires computational modeling at functional, psychological, and biological levels. Although 
the latter levels are the main aim of ICArUS, design of a challenge problem first requires a 
computational theory at the functional level, in the Marr (1982) sense of specifying "what is the 
goal of the computation..., and what is the logic of the strategy by which it can be carried out?" 
 
One such theory (dubbed Octaloop; see Burns, 2014) was developed to guide design of the Phase 
1 challenge problem (Burns, Greenwald, & Fine, 2014), and the same theory is used here to 
guide design of the Phase 2 challenge problem. By necessity, this computational theory goes 
further than conceptual notions like those of the "data-frame" theory (Klein, et al., 2007) 
described in the BAA. In particular, the term "frame" is used loosely by many authors (cited in 
Klein, et al., 2007) to mean many different things. The data-frame theory itself never defines 
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"frame" precisely, but rather uses this term in referring to a "story", "map", "script", "plan", or 
any other explanatory knowledge structure that is not data and yet is needed to make sense of 
data. Here the term is given a more formal definition as follows: 
 

Frames are knowledge structures, comprising hypotheses, evidence, and confidences, 
including conditional likelihoods of evidence (i.e., conditional on hypotheses) as well as 
conditional likelihoods of hypotheses (i.e., conditional on evidence). In spatial context 
frames, likelihoods depend on spatial factors. In event sequence frames, likelihoods 
depend on temporal (and spatial) factors. 
 

When the components of frames are made explicit, as in this definition, researchers are in a 
better position to model and measure how frames might be "learned" and "assessed" and "re-
framed" – as all of these terms are used to describe "core sensemaking processes" in BAA Table 
1. In particular, the notion of re-framing is defined more formally here as follows: 
 

Re-framing (aka Set-shifting) is a revision of hypotheses, or revision of confidences 
across hypotheses, in which the most likely hypothesis changes due to the observation of 
surprising evidence (i.e., evidence that is not likely to be caused by the currently-most-
likely hypothesis or hypotheses). 
  

Besides distinguishing between hypotheses and confidence, the computational definitions above 
also distinguish between hypotheses and evidence. This difference is important because it reflects 
causal structure (Pearl, 2000), which plays a key role in all sensemaking – including forward 
(prognostic) inferences whereby a sensemaker is forming expectations – as well as backward 
(forensic) inferences whereby a sensemaker is forming explanations. Thus the causal structure is 
hypotheses → evidence, where hypotheses are hypothetical causes of evidential effects (i.e., 
causes → effects) and the direction of inferencing can be in either or both directions – forward 
along the arrow direction or backward in reverse of that direction. A causal hierarchy is merely 
the nesting of this basic structure into more complex structures where hypotheses at one level 
serve as evidence at the higher levels (see Figure 3 of Burns, 2005).  
 
TACTICS is based on a causal hierarchy with four arrows as follows: 
 

intent → tactic → action → feature → datum. 
  

The task itself requires re-framing at each level of the causal hierarchy, as discussed further in 
Section 1.3 (Clarification). Mathematically, causality at each level is measured and modeled by 
conditional probabilities – and these conditional probabilities are computational representations 
of event sequence (and spatial context) frames. Conceptually, the five levels in this causal 
hierarchy are similar to the Joint Directors of Laboratories (JDL) Data Fusion Group model. The 
JDL model (Steinberg & Bowman, 2004) is a functional-hierarchical specification of input data, 
model outputs, and associated inferencing applicable to a broad class of geospatial fusion 
problems aimed at understanding and affecting situations (similar to sensemaking, but with a 
focus on system performance rather than human performance). The five layers of the JDL model, 
labeled  0 (Raw Signals), 1 (Entities), 2 (Situations), 3 (Impact), and 4 (Performance), can be 
mapped roughly to the TACTICS levels of datum, feature, action, tactic, and intent, respectively.  
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1.3 Clarification 

Per BAA Table 3, Phase 2 of ICArUS is focused on a notion of event "sequences", and 
associated cognitive biases that may arise from heuristic processes in human sensemaking. The 
purpose of the present section is to clarify how TACTICS captures sequences, and how this 
treatment relates to previous literature on "frames" (noted above) – especially "scripts". 
 
Temporal events in the form of "sequences" are often referred to as "schema" (Barlett, 1932) or 
"scripts" (Schank & Abelson, 1977). For example, one sequence may be A, B, and C, where B is 
likely to occur after A, and C is likely to occur after A and B. Such scripts (or plans or event 
sequence frames) are formally defined by conditional probabilities, e.g., P(B|A) is high and 
P(C|A,B) is high. Importantly, it is only through knowledge of these conditional likelihoods that 
a sensemaker can make predictions like "probably C next" after observing A and B; also form 
explanations like "probably script 1" after observing all or part of the sequence A, B, and C. 
 
In TACTICS these sorts of scripts occur at three different time scales in nested levels of the 
causal hierarchy. At the lowest level (and shortest timescale), a player receives a sequence of 
intelligence reports (aka INTS), each reporting some datum. From these data the player infers 
temporal-spatial features that relate to different stages of an action script – e.g., the enemy 
vulnerability (a spatial feature), capability (a temporal feature), and activity (a temporal-spatial 
feature). This sequence is akin to a sequence A, B, and C described above, where the analogue of 
"script 1" is "attack" and "script 2" is "no attack". 
  
Then, at a higher level of the causal hierarchy (and longer timescale), the sequence is a series of 
actions such as "attack", "no attack", "no attack", etc. Once again the sequence is governed by 
conditional probabilities that depend on spatial and temporal context. In this case the scripts lie at 
the level of tactics, e.g., "tactic 1" and "tactic 2", where an enemy who plays with tactic 1 (e.g., 
aggressive) is likely to exhibit a different pattern of actions (attacks) than an enemy who plays 
with tactic 2 (e.g., passive). Knowledge of these tactics, including their underlying conditional 
probabilities, is what enables a player to predict actions (attack or no attack) from assumed 
tactics, and also to infer tactics (tactic 1 or tactic 2) from attack patterns.  
 
Finally, at an even higher level of the causal hierarchy (and even longer timescale), a script is a 
sequence of tactics such as "tactic 1", "tactic 2", etc., where a Blue player must explain and 
predict changes in Red tactics that are governed by enemy intent. 
 
Notice that the notion of set-shifting applies at each of the three levels and timescales described 
above. For example, at the highest level a player may know or learn that his opponent is 
consistently playing according to tactic 1 (e.g., aggressive). So "tactic 1" becomes a strong 
assumption and the player is led down a so-called "garden path" of expectations. The set-shift 
then comes after a surprise (Burns, in press; 2012), when the player is faced with overwhelming 
evidence to the contrary. This is a violation of expectations, which requires re-framing in order 
to form an explanation like "Aha – tactic 2!" .  
 
Likewise, set-shifting happens at a lower level when a player strongly expects an attack and is 
surprised to observe no attack (or vice versa). This forces re-framing of beliefs about how actions 
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are constrained by tactics (and intents). Finally, set-shifting also occurs at an even lower level 
when the player strongly expects one feature from INT data and yet observes a different feature. 
This forces re-framing of beliefs about how spatial-temporal features of INTS are constrained by 
intentional actions.  
 
As described above, set-shifting in TACTICS differs in three important ways from other 
laboratory tasks more typically used for measuring the phenomenon, such as the Wisconsin Card 
Sorting Task (Berg, 1948; Monchi, et al., 2001). One difference is that in TACTICS the so-called 
"rule" (or "script") is not deterministic but rather it is probabilistic, governed by conditional 
probabilities. The reason for this is that a probabilistic task is required to capture the relevant 
conditions of real-world situations in which set-shifting (and sensemaking more generally) 
actually occurs, i.e., under uncertainty. A second difference is that in TACTICS the set-shifting 
occurs at three different (nested) time scales, namely: within a trial (feature set-shifting); 
between trials (action set-shifting); and between batches of trials (tactic set-shifting). 
  
A final difference is that in TACTICS the set-shifting occurs in a causal hierarchy, at each level 
of the hierarchy as well as across levels of the hierarchy. Moreover, and perhaps most 
importantly, intent is itself constrained at the highest level of the hierarchy via a reward structure 
given by the payoff matrix of the game (see Description, Section 2). The reward structure 
provides players with a natural basis for causal reasoning, as it encourages and enables them to 
explain why there was a change – not just how things may have changed or what (or when or 
where) things may have changed. This feature of a game allows the laboratory task to more 
realistically capture the causal structure of naturalistic situations that are relevant to real-world 
intelligence analysis and security operations (Burns, 2010). 

1.4 Missions 

Besides the inferencing processes that are central to re-framing (set-shifting) across a causal 
hierarchy, as discussed above, TACTICS poses additional cognitive challenges that are 
associated with many real-world sensemaking situations. These processes, which are addressed 
in Variations (Section 3) of the basic task, include decision-making based on inferences and 
foraging for new evidence. TACTICS addresses all three cognitive processes, i.e., inferencing, 
decision-making, and foraging, in order to cover the scope of sensemaking set forth in the BAA 
as follows: 
 

"Sensemaking is a volitional process that involves multiple shifts in attention, continuous 
exploration [foraging], and evaluation [inferencing] of multiple pieces of evidence, and 
repeated decision making..." 
 

The design of TACTICS includes various "missions" that address each of these three processes, 
individually (to the extent they can be separated) and in combination. But before discussing 
Variations (Section 3), the basic task is presented first in Description (Section 2).  
 
As an overview, Figures 1 and 2 are screen shots of the graphical user interface use in the 
missions. Many more screen shots and non-technical instructions to users are provided by the 
tutorial (see Burns & Bonaceto, 2014) embedded in the TACTICS software itself. 
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Table 1 provides a listing of variables referred to in the Description (Section 2) and Variations 
(Section 3). Table 2 summarizes the temporal-spatial features of intelligence data (sources) 
modeled in TACTICS, along with the meaning, measure, and symbol assigned to each feature.  
 
As seen in Table 2, the measure of meaning for each feature is a probability (frequency), which 
is a measure of likelihood; or a utility, which is a measure of consequence. This is because 
TACTICS involves inferencing, which is computationally modeled by probabilities; as well as 
decision-making and foraging, which are computationally modeled by expected utilities. As 
discussed in Section 6 (Transition), raw data are of no use in accomplishing these cognitive 
competencies unless some person or system infers or assigns associated likelihoods 
(probabilities) and consequences (utilities).  
 
In TACTICS, most of the probabilities and utilities are assigned to raw data by INT sources 
themselves – much like real-world intelligence would provide some measure of meaning beyond 
just raw data. This is to focus ICArUS experiments on the cognitive processes of sensemaking 
per se, rather than on estimating various quantities needed as input to sensemaking. The 
approach also enables experimental measures of "average" sensemaking performance (as 
required by BAA), where the average is an average over human subjects who are all using the 
same inputs to sensemaking. 
 
The main exception to this approach involves a Blue intelligence handbook called the 
BLUEBOOK, which represents Red tactics as needed for Blue to infer the propensity 
(likelihood) of Red attack. In some cases, Red tactics are not known for sure and hence must be 
inferred forensically from past attacks (SIGACTS). For those cases, the input to prognostic 
sensemaking involves a good deal of forensic sensemaking, i.e., in a mission where Blue must 
infer Red tactics and detect changes in Red tactics (see Variations Section 3). 
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Figure 1: Geographic Information System (GIS) display and Graphical User Interface (GUI).  
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Figure 2: "Batch plot" of significant activities (SIGACTS) for  a series (batch) of trials.  
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Table 1: Listing of variables in design of TACTICS. 

Symbol Meaning 

a attack, an action by Red 

~a not-attack, an action by Red  

BB Blue's model of his own (Blue) tactics 

BR Blue model of his opponent's (Red's) tactics 

Bt Blue's choice of action (d or ~d) on trial t  

d divert, an action by Blue 

~d not-divert, an action by Blue 

Ft frequency of past activity by Red over some number of trials (t) 

P probability that Blue will defeat Red in a showdown (i.e., if a and ~d) at a Blue point, P(x,y) 

Pa probability that Red will attack on trial t, Pa(t) = Pt,p,c(t) 

Pc probability that Red has the capability to attack on trial t, Pc(t) 

P~d probability that Blue will not divert on trial t, P~d(t) 

Pp probability that Red has the propensity to attack on trial t, given the capability to attack, Pp(t) 

Pp,c probability that Red has the propensity and capability to attack on trial t, Pp,c(t)  

Pt probability of Red attack as signaled by Red activity on trial t, Pt(t)  

Pt,p,c probability of Red attack on trial t, per activity, propensity, and capability, Pa(t) = Pt,p,c(t) 

r shortest straight-line distance from Blue point to Blue border  

RB Red's model of his opponent's (Blue's) tactics 

RR Red's model of his own (Red) tactics 

Rt Red's choice of action (a or ~a) on trial t 

t trial number; also number of trials in Ft or number of trials since last attack in function for Pc(t) 

U utility at stake in a showdown at a Blue point, U(x,y)  

v constant parameter in vulnerability function for P(x,y)  

x,y space coordinates 
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Table 2: Temporal-spatial features of intelligence data in TACTICS, along with the associated 

meanings, measures, and symbols. 

 
Datum 

 
Feature 

 
Meaning 

 
Measure 

 
Symbol 

 
OSINT 

 
Proximity 

 
Vulnerability 

 
Probability 

 
P 

 
IMINT 

 
Density 

 
Opportunity 

 
Utility 

 
U 

 
HUMINT 

 
Recency 

 
Capability 

 
Probability 

 
Pc 

 
SIGINT 

 
Reliability 

 
Activity (prognostic) 

 
Probability 

 
Pt 

 
BLUEBOOK 

 
Probability and Utility 

 
Propensity 

 
Probability  

 
Pp 

 
Batch Plots 
(SIGACTS) 

 
History 

 
Activity (forensic) 

 
Frequency  

 
Ft 
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2 Description 
Phase 2: The text of this Description will focus on the basic task, to be implemented in five 
"missions" of the Phase 2 experiment (see Variations in Section 3). Footnotes are used 
throughout in referring to "more complex tasks", which are further extensions to the basic task 
not currently implemented in the TACTICS design or software. 
 
The task: In TACTICS, a cognitive human (Blue defense) vs. computer agent (Red offense) 
game is played over a series of trials, in an area of interest, using data depicted on a Geographic 
Information System (GIS) display (see Figure 1). Each trial involves one point in a Blue region 
within the area of interest. [Note: In some Variations (Section 3), a trial may involve more than 
one point in the Blue region]. Red and Blue each have two options for action on a trial. Red may 
attack the Blue point, or else not attack. Blue may divert from the Blue point to avoid a possible 
Red attack, or else not divert and risk the consequence of a possible Red attack. The result of a 
showdown (Red attack and Blue not divert) is U units of utility won by Blue (lost by Red) at a 
probability P, or U units of utility won by Red (lost by Blue) at a probability 1-P. Blue loses 1 
unit of utility when he diverts and Red does not attack, i.e., when Blue spends resources to divert 
and Red does not spend resources to attack. The outcome is 0 units of utility for Red and Blue 
when neither spends resources (i.e., Red does not attack and Blue does not divert), or when both 
spend resources but there is no showdown (i.e., Red attacks and Blue diverts). To minimize 
losses (i.e., optimize defense), Blue must acquire and apply knowledge of relevant probabilities 
and utilities. The Blue (human) player must also adapt to the outcomes of trials and detect 
changes in Red (agent) tactics. The task manipulates Blue (human) response demands as 
discussed in Variations (Section 3) to measure cognitive performance in inferencing over 
hypotheses, decision-making based on inferences, and foraging for new evidence. 
 
The map: A GIS display (see Figure 1) outlines the region of Blue defense in an area of interest. 
In some Variations, a Blue player can "mouse click" to see "batch plots" of attacks over 
previous trials. A batch plot (Figure 2) is the cumulative display of significant activities 
(SIGACTS), i.e., attacks and outcomes that occurred over a series of trials, and can be "played-
back" in time to show the trial-by-trial accumulation of SIGACTS. 
 
A trial:  On each trial (which represents a day in the area of interest), Blue receives a sequence of 
intelligence reports about spatial-temporal features of events in an attack script – see Table 2. 
The spatial features affect Red's vulnerability to Blue defense and opportunity to inflict damage. 
The temporal events include Red's latent capability to attack Blue and Red's latest activity near 
Blue points. Blue must first use these spatial and temporal clues in inferencing, to estimate and 
update the probability that Red will attack on the current trial. Blue must then use the results of 
inferencing for decision-making, to choose a Blue action (i.e., divert or ~divert) at the Blue point 
on the current trial. In Variations (Section 3) of the basic task, Blue also must make foraging 
decisions about where to obtain further information (at one of several Blue points), and perform 
forensic inferencing to diagnose Red tactics and detect changes in Red tactics. 
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OSINT:  To start a trial, the location of planned Blue activity1 is assumed to be reported in open-
source media (OSINT), hence known by Red as well as Blue (see Figure 1). This is the location 
at which Red may potentially attack Blue on the current trial. The GIS also displays the shortest 
straight-line distance (r) measuring proximity of the Blue point to the border of the Blue region. 
A large distance implies a relatively large vulnerability for Red (and relatively small 
vulnerability) for Blue, if an attack is attempted by Red. Thus r affects the probability P that 
Blue will defeat Red if Red chooses to attack. This probability increases as r increases, per the 
function P = 1 - e-vr (see Figure 3). As such, P is the cumulative distribution function for a 
constant failure rate model corresponding to the exponential (Poisson) distribution (see Roberts, 
et al., 1981), which assumes that the probability of "failure" (i.e., Blue failure to defeat Red if 
Red attacks) is constant2 for each delta-r in the integration performed to compute P. The value of 
P at the location is displayed by the GIS, and assumed known by both Blue and Red. Note that in 
TACTICS the value of P is always ≤ 0.5, see Section 4 Solutions. As such Blue is playing 
"defense" against Red, and the Blue objective is to minimize expected losses in a game where 
Blue's expected utility is ≤ 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1 The location(s) of Blue activity on each trial will be selected at random by the computer, much like a random "deal" of card(s) 
in poker. However, the random selection may be constrained by experimenters to ensure that stimuli are most suitable for 
assessment of human and model performance, see Evaluation (Section 5). A more complex task might allow the Blue player to 
choose Blue point(s) on each trial, subject to some appropriate constraints – such that both Blue and Red might anticipate the 
Blue points that are likely or not likely to be at stake on future trials.   
2 The failure rate v is assumed to be constant in time, although more complex tasks might vary v in space and time. A more 
complex task might also make P a function of further variables, besides just proximity (r), and/or might require that the Blue 
human (or a human teammate) estimate P as either a point estimate or a probability distribution. The Blue points and 
corresponding values of P are known by both Blue and Red, although more complex tasks could vary the availability and 
reliability of this knowledge between Red and Blue. Note that in the real world, estimating P from geospatial features of terrain 
might be considered a form of suitability analysis.  

Figure 3: Probability that Blue will defeat Red if Red attacks a Blue point, as a function of distance 
(r) from the Blue point to the Blue border, P  = 1 - e-vr, assuming v = 2.   
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IMINT:  Besides OSINT, both Red and Blue have access to open-source imagery intelligence 
(IMINT) showing buildings and other terrain features (see Figure 1). Of particular concern is the 
density of buildings in the vicinity of the Blue point, which is assumed to measure Red's 
opportunity to inflict damage on Blue. This opportunity is quantified as a utility (U), which is 
directly proportional to building density3. The value of U is computed and displayed by the GIS, 
and assumed known by both Blue and Red. Note that in TACTICS the values of U are limited to 
integers U = 2, 3, 4, or 5. This is to simplify the space of solutions for human experiments, see 
Section 4 Solutions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
HUMINT:  After OSINT (P) and IMINT (U), Blue receives an additional report from human 
intelligence (HUMINT), which is displayed by the GIS and seen only by Blue. This HUMINT 
report reflects Red's overall capability to recruit members, acquire weapons, transport forces, 
arrange escape, and satisfy other requirements for launching an attack against Blue. The 
capability to attack is modeled as a probability of attack, Pc, assuming Red wishes to attack 
(which depends on Red tactics, see BLUEBOOK below). More specifically, this Red capability 
(probability) Pc is 1.0 at the start of a mission and increases with time (t) after the last attack 
during the mission, per a discrete function that models temporal recency effects much like the 
continuous function P models spatial proximity effects. That is, Pc models temporal "failures" 
(i.e., Blue failure to prevent the Red attack capability) whereas P models spatial "failures" (i.e., 
Blue failure to defend, which is a Blue vulnerability)4. 
                                                 
3 A more complex task might make U a function of further spatial (and/or temporal) variables, besides just building density, 
and/or might require that the Blue human (or a human teammate) estimate U. Like P (from OSINT), the value of U on each trial 
(from IMINT) is known by both Red and Blue, although more complex tasks could vary the availability and reliability of this 
knowledge between Red and Blue. More complex tasks might also vary the subjective utility of objective utility U between Red 
and Blue, to simulate different value structures of asymmetric adversaries. Note that in the real world, estimating U from 
geospatial features of terrain might be considered a form of suitability analysis. 
4 The step function is assumed constant, although more complex tasks might vary the function with space and time. For example, 
in a more complex task Red's capability may depend on recent outcomes and their effects on the surrounding ("Green") 

Figure 4: Probability that Red has the capability to attack, as a function of time (t = number of 
trials) since the last attack. 
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BLUEBOOK:  Besides HUMINT, Blue is asked to consider the Blue "team" knowledge about 
Red's tactics, as expressed in a Blue handbook called the BLUEBOOK. In particular, the 
BLUEBOOK specifies how Red's propensity to attack, given the capability to attack, depends on 
vulnerability (i.e., probability P discussed under OSINT above) and opportunity (i.e., utility U 
discussed under IMINT above). In Variations (Section 3) of the basic task, the BLUEBOOK 
may represent Red's tactics for one or more Red "styles" and the style may be known or 
unknown5. After referring to the BLUEBOOK, Blue is asked to report his belief about Red's 
propensity to attack, i.e., the likelihood (measured by a conditional probability) Pp that Red will 
attack on the current trial, assuming that Red has the capability to attack on the current trial. 
Then, after reporting Pp, Blue is asked to adjust his estimate of the probability that Red will 
attack on the current trial , considering the HUMINT value of Pc as well as Blue's own report 
of Pp. The answer, Pp,c, represents Blue's best estimate of Red's attack probability based on 
intelligence about Red's propensity to attack and Red's capability to attack. 
 
SIGINT:  Finally, after reporting Pp,c, Blue receives a report from signals intelligence (SIGINT) 
about Red activity on the current trial. This report is based on communications (e.g., cell phone 
usage) that would signal Red coordination around the Blue point to support a Red attack. The 
SIGINT report is always of limited reliability, because SIGINT will sometimes "miss" Red 
attack signals and sometimes (but less likely) "hear" Red attack signals when none exist. Also, it 
is assumed that SIGINT detects only the occurrences of communications and not the contents of 
those communications. More specifically, if ground truth is "yes" (i.e., Red is actually 
coordinating an attack) then "YES" will be reported by SIGINT at 60% probability and "NO" 
will be reported by SIGINT at 40% probability. On  the other hand, if ground truth is "no" (i.e., 
Red is not actually coordinating an attack) then "NO" will be reported by SIGINT at 80% 
probability and "YES" will be reported by SIGINT at 20% probability. In experimental 
manipulations (see Variations, Section 3), SIGINT resources may be limited such that Blue must 
choose a location at which to collect SIGINT. The SIGINT return and associated likelihoods6 can 
be used to infer the probability Pt of Red's activity on the current trial, independent of Red's 
propensity to attack (see Pp above) and independent of Red's capability to attack (see Pc above). 

                                                                                                                                                             
 
 
 
 
population – e.g., Pc may increase when Red is winning and decrease when Red is losing. Also in more complex tasks, the 
estimating of Red's capability Pc (either point estimate or a probability distribution) might be performed by a Blue human (or a 
human teammate). Finally, in more complex tasks, the planning, transport, and other precursors (or successors) to Red attack 
(and Blue defense) may be treated explicitly as separate events, and modeled with conditional probabilities that relate these 
events to each other (and spatial context) in Red tactics. Note that in the real world, these capability analyses might be performed 
in conjunction with suitability analyses, like those corresponding to P (vulnerability) and U (opportunity) mentioned above. 
5 For example, the BLUEBOOK might specify the propensity function Pp = fn(P, U) by which Red makes his choice to attack (or 
~attack), given Red capability to attack, for a "Passive" style and for an "Aggressive" style. In that case Blue would need to infer 
the likelihood of each Red style in order to estimate Pp = fn(P, U) from the BLUEBOOK values. 
6 More complex tasks might vary the nature of SIGINT reports, i.e., to include the contents of messages as well as their 
probabilities, and/or to reflect a variable area around the Blue point, and/or to vary the reliability of SIGINT with spatial-
temporal context.  
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After receiving SIGINT, Blue is asked7 to report the probability of attack based only on 
SIGINT (P t). Blue is then asked to update his estimate of the probability that Red will 
attack on the current trial (Pt,p,c), i.e., considering the likelihood of Red's activity (per Pt) as 
well as the prior combination of Red's propensity and capability (Pp,c). This yields a final 
estimate of the Red attack probability8 Pa = Pt,p,c.  
 
Red's move: Red's action, chosen without Blue knowing, is either to "attack" or "~attack" (not 
attack). Assuming Red chooses to attack, the attack will actually occur only if Blue does not foil 
the attack by a move to "divert" Blue forces away from the Blue point at stake. Red's choice on 
the trial (Rt) depends on Red's capability Pc (given by HUMINT) and propensity Pp (given by 
BLUEBOOK), where Pp depends on vulnerability (P given by OSINT) and opportunity (U given 
by IMINT). The propensity Pp (per BLUEBOOK, see above) is reflected in Red's tactics (RR), 
which in turn reflect the reward structure (discussed below) by which outcomes are scored. In 
general, Red's propensity to attack would also depend on Red's beliefs about Blue's tactics (RB), 
because the expected utility of Red's action depends on the probability P~d(RB) that Blue will not 
divert forces and hence will face a potential attack. However the current TACTICS assumes that 
Red's tactics are not dependent on Blue's tactics, i.e., Red's tactics are only a function of P, U, 
and time since the last attack. 
 
Blue's move: Blue's action, chosen without Red knowing, is either to "divert" or "~divert" (not 
divert). Blue's choice on the trial (Bt) is governed by his intentionality (rationality) and reflects 
Blue tactics (BB), which depend on vulnerability (P) and opportunity (U) as well as Blue's beliefs 
about the probability Pa(BR) of Red attack. Note that this probability in turn depends on Blue's 
model of Red tactics, BR. The Red tactics are known for some missions, but for other missions 
the Red tactics are unknown (hence BR must be inferred by Blue). After reporting his estimate of 
Red's attack probability Pa(BR) = Pt,p,c (see SIGINT above), Blue is asked to choose an action, 
either "divert" or "~divert" . This Blue choice is based on knowledge of the "payoff matrix" 
(see Figure 5), which is also known by Red, and which specifies the expected utility to be gained 
or lost by each player (Blue and Red) for each possible combination of Blue-Red actions: (~d, a), 
(~d, ~a), (d, a), and (d, ~a).    
 
 
 
 
 

                                                 
7 Note that this and other questions may not be asked on every trial of every mission. For example, the answer to the question 
here (Pt) would be the same or similar across trials for each value of SIGINT ("YES" or "NO"), as long as the SIGINT 
reliabilities are held constant. 
8 In the real world, estimating the probability Pa of Red attack (along with estimating the probability P of Blue success and utility 
U of the target) is analogous to TTP (Tactics, Techniques, and Procedures) analysis. This type of analysis integrates various 
suitability and activity analyses, along with historical and inferential knowledge about enemy tactics, to produce actionable I&W 
(Indications and Warnings, see Grabo, 2004) intelligence estimates such EMPCOA (Enemy's Most Probable Course of Action) 
and EMDCOA (Enemy's Most Dangerous Course of Action). In the real world, these intelligence estimates are relayed to and 
employed by operational forces. In TACTICS, Blue is playing the role of both intelligence and operations, as he uses his own 
inferences (e.g., Pa) to make his own decisions (see "Blue's move"). More complex experiments could involve a team of two (or 
more) Blue players, i.e., separating the intelligence and operations functions in order to investigate communication and 
coordination in team sensemaking. Likewise more complex experiments could involve a team of Blue analysts, each performing 
one or more of the various suitability (P, U), capability (Pc,), propensity (Pp), activity (Pt), or intentionality (Pa) analyses.    



 

 

20 

 

 a (Red attack) ~a (Red ~attack) 
 

~d (Blue ~divert) 
 

U * [2 * P - 1] 
 

 
0 

 
d (Blue divert) 

 
0 
 

 
-1 

 
 a (Red attack) ~a (Red ~attack) 
 

~d (Blue ~divert) 
 

-U * [2 * P - 1] 
 

 
0 

 
d (Blue divert) 

 
0 
 

 
+1 

 

Figure 5: Payoff matrix for Blue (top matrix) and Red (bottom matrix). 

 
The score: After Blue's move, Red's move is revealed and the values of P and U are used to 
generate a significant activity (SIGACT) report of the outcome. Referring to Figure 5, in the case 
of a showdown (i.e., Red attack and Blue ~divert) one of two outcomes [+U Blue (-U Red), -U 
Blue (+U Red)] is randomly chosen by the computer at probabilities [P, 1-P], respectively. This 
produces expected utilities as indicted in the upper-left cell (~d, a) of each payoff matrix (Blue 
and Red) above. For all other combinations of actions, i.e., (~d, ~a), (d, a), and (d, ~a), the payoff 
is a fixed value. Note that the payoffs for Blue and Red are always equal in magnitude but 
opposite in sign, so TACTICS is a zero-sum game9. 
 
A batch: A "batch" is a series of trials, with each trial involving a new Blue point in the region 
of Blue defense – i.e., on the same GIS map (Figure 1). The parameters of Red's tactics are held 
constant over trials of Missions 1-3 (see Variations, Section 3). In Missions 4-5, Red tactics will 
change at some point in the mission, and the Graphical User Interface (GUI) allows Blue to 
make "batch plots" (see Figure 2) in order to diagnose the Red tactics and detect the changes in 
Red tactics.  

  

                                                 
9 This scoring system rewards a player (Blue or Red) with utility +U for winning a showdown, which occurs when Red attacks 
and Blue ~divert. The utility is 0 for Blue (0 for Red) if Red attacks and Blue diverts; also 0 for Blue (0 for Red) if Red ~attack 
and Blue ~divert. The utility is -1 Blue (+1 Red) when Red ~attack and Blue diverts, because Blue invested resources in the 
divert and Red did not invest resources in an attack. More complex tasks might use other scoring systems, including non-zero-
sum utilities for Red and Blue to reflect the relative importance of various outcomes to asymmetric adversaries. More complex 
tasks might also make other aspects of the game state dependent on outcomes, e.g., changing the Blue border in response to Blue 
wins (growing the Blue region) or Red wins (shrinking the Blue region), and/or changing various other parameters (e.g., v in the 
vulnerability model) in response to Blue or Red wins.  
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3 Variations 
The basic task (see Description, Section 2) is manipulated across missions as needed to measure 
Blue sensemaking processes and cognitive biases (per BAA Table 3). In particular, it is useful to 
distinguish three different but related cognitive processes as follows: inferencing, decision-
making (based on inferencing), and foraging (based on inferencing and decision-making). These 
processes are highlighted and evaluated in Missions 1-3 as described below. In addition is it 
useful to distinguish between prognostic inferencing, to predict future attacks, and forensic 
inferencing, to explain previous attacks. Missions 1-3 are focused on prognostic inferencing, 
whereas Missions 4-5 require forensic inferencing as a basis for prognostic inferencing. 
  
Mission 1. You judge the chance (inferencing): Mission 1 is focused on measuring how Blue 
updates his HUMINT and BLUEBOOK prior (Pp,c) with SIGINT (Pt) likelihoods to compute a 
posterior probability Pt,p,c. Mission 1 also measures how Blue combines Pp from BLUEBOOK 
with Pc from HUMINT to compute the prior Pp,c. Each trial of Mission 1 involves only one Blue 
point, and the Red tactics (Pp) are specified by the BLUEBOOK as a function of P and U, Pp = 
fn(P, U), as follows: 
 

 U = 2 or 3 U = 4 or 5 
 

P > 25% 
 

20% 
 

 
40% 

 
P ≤ 25% 

 
60% 

 

 
80% 

 
 
Based on previous research (Burns, 2007) and pilot studies, we expect to see a conservative bias 
in human posteriors Pt,p,c, where Pt,p,c is computed as an average of Pt and Pp,c rather than a 
Bayesian-normalized product of Pt and Pp,c. This bias can be characterized Anchoring and 
Adjustment (Tversky & Kahneman, 1974), where Pt and Pp,c act as anchors and the averaging of 
these anchors reflects an inadequate adjustment made in computing the posterior Pt,p,c. We also 
expect to see a conservative bias in estimates of Pt itself. This bias can be characterized as 
Availability (Tversky & Kahneman, 1974), where humans tend to use the readily available 
SIGINT likelihood P(SIGINT| attack) as a surrogate for the Bayesian-normalized posterior Pt = 
P(attack| SIGINT). Finally, we expect to see a bias in human estimates of the prior Pp,c. This bias 
can be characterized as a form of Representativeness known as the "conjunction fallacy", 
whereby humans compute Pp,c as an average of Pp and Pc, and thereby fail to compute a joint 
probability Pp,c = Pp * Pc that is less than Pp and less than Pc.  
 
As such, Mission 1 addresses Octaloop (Burns, 2014) step [3] estimating likelihoods as well as 
Octaloop step [4] aggregating confidence. Note that here in Mission 1, Blue's choice to "divert" 
or "~divert" will be made by a Blue agent (not the human), to ensure that all human subjects 
receive the same post-judgment stimuli (which may affect Blue's inferencing behavior).  
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Mission 1 addresses the BAA "core sensemaking processes" of Learn Frames (Features), 
Recognize Patterns / Select a Frame, Assess the Frame, Re-frame (Features). 
 
Mission 2. You make the choice (decision-making): Mission 2 is focused on measuring how 
Blue uses his estimate of Pa = Pt,p,c from inferencing (discussed above), along with the known 
values of P and U, to make choices (Octaloop step [5], speculating consequences) of "divert" or 
"~divert" and then adapt to outcomes (Octaloop step [6], evaluating consequence). Like Mission 
1, Mission 2 also measures inferences of Pp,c and Pt,p,c. Each trial involves only one Blue point, 
but the Red tactics are not known for certain. Instead, the BLUEBOOK specifies attack 
probabilities Pp as a function of P and U, for two Red styles: Passive and Aggressive.  
 
The Passive Red tactics, Pp(Passive) = fn(P, U), are as follows:  
   

 U = 2 or 3 U = 4 or 5 
 

P > 25% 
 

20% 
 

 
30% 

 
P ≤ 25% 

 
40% 

 

 
50% 

 
The Aggressive Red tactics, Pp(Aggressive) = fn(P, U), are as follows:  
 

 U = 2 or 3 U = 4 or 5 
 

P > 25% 
 

50% 
 

 
60% 

 
P ≤ 25% 

 
70% 

 

 
80% 

 
 
Using these two BLUEBOOK tables, a normative solution for Pp can be can be computed on 
each trial using the attack history up to that trial, see Forensic Inferencing in Section 4.4. A 
normative solution for each stage of Prognostic Inferencing, per Section 4.1, can then be 
computed in the same manner as for Mission 1. Finally, given the results of inferencing, a 
normative solution for Decision-making (see Section 4.2) computes the Blue option (divert or 
~divert) with highest expected utility. We expect that humans will exhibit a form of Probability 
Matching (Burns & Demaree, 2009) in which choices to divert or ~divert are biased, such that 
human decisions will often deviate from normative decisions.  
 
In addition to the core processes addressed in Mission 1, Mission 2 addresses the BAA "core 
sensemaking processes" of Learn Frames (Actions), Generate Expectations of Missing Data 
(SIGACT), Acquire Additional Data (SIGACT), Re-frame (Actions).  
 



 

 

23 

 

Mission 3. You send the spies (foraging):  Mission 3 is focused on measuring how Blue allocates 
limited resources in collecting information (per Octaloop step [7], anticipating evidence) to 
support choices of actions (divert or ~divert) like those made in Mission 2 (per steps [5] and [6] 
of Octaloop). Each trial involves two Blue points, but Red can attack at only one (or neither) of 
the Blue points. Also, Blue can obtain a SIGINT10 report at only one of the two points. 
 
A normative solution for Blue's choice of SIGINT location (Section 4.3.2) can be computed by 
considering both SIGINT options (point 1 and point 2), and by evaluating the expected gain in 
information from each option. Before SIGINT, Blue is asked to consider Red's propensity Pp 
(given by the BLUEBOOK) and Red's capability Pc (given by HUMINT) in order to estimate 
Pp,c without SIGINT. After reporting Pp,c, Blue is asked to pick one Blue point for collecting 
SIGINT, before making his decision to divert or ~divert at each point.  
 
For example, Blue may choose to get SIGINT at the Blue point of highest Red attack probability 
(highest Pp,c), or the point with highest Blue vulnerability (lowest P), or the point of highest 
utility (highest U). We expect to see Confirmation Bias in Seeking Evidence (Nickerson, 1998; 
Klayman & Ha, 1987; Fischhoff & Beyth-Marom, 1983), where Blue seeks SIGINT on the Blue 
point with the highest attack probability. However, as noted in Section 4.3.2, this so-called bias 
is actually the optimal behavior for maximizing expected information gains from SIGINT. 
Therefore, the non-normative bias is to NOT always seek SIGINT at the location with highest 
Pp,c, and the frequency at which humans exhibit this behavior will be taken as a measure of 
Confirmation Bias. 
 
In addition to the core processes addressed in Missions 1 and 2, Mission 3 addresses the BAA 
"core sensemaking processes" of Generate Expectations of Missing Data (SIGINT), Acquire 
Additional Data (SIGINT). 
 
Missions 4,5. You spot the change: Missions 4-5 differ from Missions 1-3 in that Red tactics 
change at some point in time. In Mission 4, the change is from Passive to Aggressive, or vice 
versa, where the parameters of each style are the same as in Mission 2 above. For Mission 5, one 
style is P-sensitive, as defined by the following values of Pp(P-sensitive):  
 

 U = 2 or 3 U = 4 or 5 
 

P > 25% 
 

40% 
 

 
40% 

 
P ≤ 25% 

 
60% 

 

 
60% 

 
The other style is U-sensitive, as defined by the following values of Pp(U-sensitive): 
 

                                                 
10 More complex tasks might present more than two Blue points on each trial, and/or or require that the Blue player choose 
among various INTS (i.e., OSINT, IMINT, HUMINT, SIGINT) with the choice being subject to some specified constraint(s) – 
e.g., choose only one or two or three of the four INTS, and do so at only some (not all) of the Blue points. 
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 U = 2 or 3 U = 4 or 5 
 

P > 25% 
 

20% 
 

 
80% 

 
P ≤ 25% 

 
20% 

 

 
80% 

 
 
In these missions, Blue must infer Red's tactics in the first place, as well as detect the change at 
some unknown point in time, in order to support inferencing and decision-making. To enable 
testing of more trials, the sources of intelligence for Missions 4-5 are limited to OSINT and 
IMINT (i.e., no HUMINT or SIGINT) "within" each trial. Also, to support Blue's inferences 
about Red tactics "between" trials, on selected trials (e.g., every ten trials) Blue is allowed to 
create and inspect "batch plots" of past attacks. In so doing a player is performing forensic 
foraging through previous attack histories (SIGACTS), which differs from the prognostic 
foraging for intelligence (SIGINT) in Missions 1-3. 
  
Missions 4 and 5 differ from one another primarily in the difficulty of detecting Red tactics and 
the change in Red tactics. In Mission 4, Red's tactics are known to reflect either a "Passive" or 
"Aggressive" style, and the style can be inferred from the total frequency of past attacks. In 
Mission 5, the possible Red styles are "P-sensitive" or "U-sensitive", and these styles cannot be 
inferred only from the total frequency of past attacks. Instead, the inference requires attention to 
values of P and U in subsets of past attacks.  
 
Missions 4-5 are designed to measure three final biases, namely Change Blindness, Persistence 
of Discredited Evidence, and Satisfaction of Search. For Change Blindness, we expect that 
humans will be delayed in detecting the change of Red tactics, and possibly even fail to detect 
the change at all – especially in Mission 5. For Persistence of Discredited Evidence, we expect 
that human uncertainty about the Red style will persist to the end of Mission 4, i.e., even after 
obtaining ample evidence (SIGACTS) to discredit beliefs held before the change in Red style. 
For Satisfaction of Search, we expect that humans will terminate their searches for data through 
batch plots prematurely, i.e., not perform an exhaustive search through all past attacks that are 
available in batch plots. 
 
Missions 4-5 address Octaloop steps [8] discriminating evidence, [1] isolating evidence, and [2] 
generating hypotheses.  
 
In addition to the core processes addressed in Missions 1-3, Missions 4-5 address the BAA "core 
sensemaking processes" of Learn Frames (Tactics), Generate Expectations of Missing Data 
(Batch Plots), Acquire Additional Data (Batch Plots), Re-frame (Tactics).  
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4 Solutions 

4.1 Inferencing (Prognostic) 

4.1.1 Inferencing at One Blue Point 

For inferencing in a prognostic sense, i.e., to predict the probability of Red attack, the normative 
solution at each stage of a trial depends on the probabilities being aggregated. For Mission 1, Pp 
is given by the BLUEBOOK based on OSINT (P) and IMINT (U), and Pc is given by HUMINT. 
For Mission 2, Blue must perform forensic inferencing (see Section 4.4) to obtain the value of 
Pp. In both missions, Pc and Pp are normatively combined as a simple product because Pp,c = 
P(propensity, capability) = P(capability) * P(propensity|capability) = Pc * Pp.  
 
In the next stage of a trial, Pp,c and Pt are normatively combined in a Bayesian update: Pt,p,c ~ Pt * 
Pp,c and (1-Pt,p,c) ~ (1-Pt ) * (1-Pp,c), where ~ implies a normalization (i.e., division by the sum [Pt 
* Pp,c + (1-Pt ) * (1-Pp,c)] to ensure that the posteriors Pt,p,c and 1-Pt,p,c sum to 1). Notice that 
aggregation at this stage is different than at the first stage, because here at the second stage the 
probabilities being combined are both referring to the same hypothesis that may or may not be 
true, namely the hypothesis that Red will attack. Conversely, at the first stage, the probabilities 
being combined refer to different hypotheses, namely a hypothesized capability to attack (Pc) 
and a hypothesized propensity to attack (Pp) assuming the capability, where an actual attack 
would require that both hypotheses be true. 
 
In Missions 1 and 2, another twist arises because Pt is not provided directly but rather must be 
inferred from the SIGINT likelihoods (Burns, 2006). These likelihoods are given to Blue as 
follows: P(Y|y) = 60%, P(N|y) = 40%, P(Y|n) = 20%, and P(N|n) = 80%, where "Y" and "N" 
refer to signals (SIG = YES or NO) whereas "y" and "n" refer to the ground truth (yes or no). In 
effect, the human must first "invert" the SIGINT likelihoods from P(evidence|hypothesis) to 
compute posteriors P(hypothesis|evidence) using Bayes Rule. This yields Pt = P(y|S) and 1-Pt = 
1-P(y|S) = P(n|S) for whichever signal was received (S = Y or S = N). For example, if SIGINT 
reports Y then we have (assuming a uniform prior): 
  
 Pt = P(y|Y) = P(Y|y) / [P(Y|y) + P(Y|n)] = 60% / [60% + 20%] = 75%  
 
 1-Pt = P(n|Y) = 25%. 
 
On the other hand, if SIGINT reports N then we have (assuming a uniform prior): 
 
 Pt = P(y|N) = P(N|y) / [P(N|y) + P(N|n)] = 40% / [40% + 80%] = 33% 
  
 1-Pt = P(n|N) = 67%. 
 
In short, the Bayesian value of Pt is 75% (not 60%) if SIGINT reports Y, and 33% (not 40%) if 
SIGINT reports N. 
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4.1.2 Inferencing at Two Blue Points 

The above solutions for prognostic inferencing apply to trials of Missions 1 and 2, where all 
INTS (OSINT, IMINT, HUMINT, SIGINT) are provided at only one Blue point (i.e., one 
location in the region of Blue defense) on each trial. In Mission 3, each trial presents INTS at 
two Blue points. The same solution for Pp,c = Pc * Pp applies at each location on a trial of Mission 
3, because the HUMINT (Pc) representing Red attack capability applies equally to any and all 
locations. However, in Mission 3 the BLUEBOOK specifies different values for Red attack 
propensity (Pp) at each location based on OSINT (P) and IMINT (U), as follows: 
 
 

 U = 2 or 3 U = 4 or 5 
 

P > 25% 
 

10% 
 

 
20% 

 
P ≤ 25% 

 
30% 

 

 
40% 

 
Note that each of these values is one half the corresponding value specified by the BLUEBOOK 
in Mission 1, because here in Mission 3 Red may attack at either (or neither) of the two Blue 
locations. 
 
After reporting Pp,c on a trial of Mission 3, at each of two Blue locations, Blue must choose a 
location (denoted 1 or 2) at which to receive SIGINT. The normative solution for this decision is 
developed in Section 4.3, Foraging. Depending on whether SIGINT returns "chatter" (SIG = 
YES) or "silence" (SIG = NO), the Bayesian distribution {Pt, 1-Pt} at the location where SIGINT 
was obtained (call it location 1) will be either {75%, 25%} or {33%, 67%}, see Section 4.1.1.  
 
Because Red can attack at only one (or neither) location, but not both locations, there are three 
hypotheses {A, B, C} that must be considered: A = attack at location 1; B = attack at location 2; 
C = no attack at location 1 or 2. The priors are given by {Pp,c,1, Pp,c,2, 1-Pp,c,1-Pp,c,2}, respectively. 
The likelihoods given "chatter" at location 1 (assumed to be the location at which SIGINT was 
obtained) are {75%, 12.5%, 12.5%}, and the likelihoods given "silence" at location 1 are {33%, 
33.5%, 33.5%}. Note that these likelihood distributions are each of the form {Pt,1, (1-Pt,1)/2, (1-
Pt,1)/2}, because the probability 1-Pt,1 applies to hypotheses B and C (i.e., ~A). 
 
Finally, the prior distribution is updated using the likelihood distribution, to compute the 
posterior distribution as a Bayesian-normalized product of prior and likelihood. Note that the 
posterior probability of attack will differ from the prior probability of attack even at location 2 
for which no SIGINT was obtained. This is because of the dependency between locations 
introduced by the assumption that Red can attack at only one (or neither) location. 
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4.2 Decision-Making 

4.2.1 Non-equilibrium Solution 

The non-equilibrium solution for each player (Blue or Red) is computed from the payoff matrix 
(Figure 5) by assuming that the probability of an opponent's action is known. 
 
For Blue, the expected utility (E) of each option (divert or ~divert) is computed as follows: 
 
 Ed = Pa * {0} + (1 - Pa) * {-1} = Pa - 1 
   E~d = Pa * {U * [2 * P - 1]} + (1 - Pa) * {0} = Pa * {U * [2 * P - 1]} 
 
where Pa is the probability that Red will attack, P is the probability that Blue will defeat Red if 
Red attacks, and U is the utility gained by the winner of a showdown.  
 
Blue should divert if Ed > E~d, i.e., if Ed - E~d > 0: 
 
 Ed - E~d  =  (Pa - 1) - Pa * {U * [2 * P - 1]} > 0 
   =  Pa - (Pa * U * 2 * P) + (Pa * U) > 1 
 
or -P * [2 * U * Pa] > -Pa * (U + 1) + 1. 
 
Hence Blue should divert when: P < [Pa * (U + 1) - 1] / (2 * U * Pa). 
 
For Red, the expected utility (E) of each option (attack or ~attack) is computed as follows: 
 
 Ea = -P~d * {U * [2 * P - 1]} + (1 - P~d) * {0} = -P~d *  {U * [2 * P - 1]} 
 E~a = P~d * {0} + (1 - P~d) * {1} = 1 - P~d   
   
where P~d is the probability that Blue will ~divert, P is the probability that Blue will defeat Red if 
Red attacks, and U is the utility gained by the winner of a showdown.  
 
Red should attack if Ea > E~a, i.e., if Ea - E~a > 0. That is: 
 
 Ea - E~a  =  -P~d * {U * [2 * P - 1]} - (1 - P~d) > 0. 
 
Notice this is the same as the equation for Blue, if we replace Pa (in the equation for Blue) by P~d 
(in the equation for Red). 
  
Thus Red should attack when: P < [P~d * (U + 1) - 1] / (2 * U * P~d). 
 
These non-equilibrium solutions for Blue and Red are illustrated in Figure 6 and discussed 
further below for two cases of interest: P > 0.5 and P < 0.5. 
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For Blue, when P > 0.5: If Blue ~divert then his expected utility is > 0 (if Red attacks) or = 0 (if 
Red ~attack). If Blue diverts then his expected utility is = 0 (if Red attacks) or = -1 (if Red 
~attack). Thus regardless of Pa, Blue should always ~divert when P > 0.5. 
 
For Blue, when P < 0.5: If Blue ~divert then his expected utility is < 0 (if Red attacks) or = 0 (if 
Red ~attack). If Blue diverts then his expected utility is = 0 (if Red attacks) or -1 (if Red 
~attack). Because neither option (~divert or divert) is always better, Blue must consider the 
probability Pa of Red attack. As Pa decreases, ~divert by Blue is less likely to result in a 
showdown with negative expected utility and more likely to result in 0 expected utility. Thus, the 
P threshold for ~divert decreases (from 0.5 to smaller values) as Pa decreases (from 1 to smaller 
values) along a line of constant U (see Figure 6). At a given value of Pa, the expected loss (i.e., 
magnitude of expected utility < 0) resulting from Blue ~divert and Red attack increases as U 
increases. Thus the P threshold for ~divert increases as U increases.  
 
For Red, when P > 0.5: If Red attacks then his expected utility is < 0 (if Blue ~divert) or = 0 (if 
Blue diverts). If Red ~attack then his expected utility is = 0 (if Blue ~divert) or = +1 (if Blue 
diverts). Thus regardless of P~d, Red should always ~attack when P > 0.5. 
 
For Red, when P < 0.5: If Red attacks then his expected utility is > 0 (if Blue ~divert) or = 0 (if 
Blue diverts). If Red ~attack then his expected utility is = 0 (if Blue ~divert) or +1 (if Blue 
diverts). Because neither option (attack or ~attack) is always better, Red must consider the 
probability P~d of Blue ~divert. As P~d decreases, attack by Red is less likely to result in a 
showdown with positive expected utility and more likely to result in 0 expected utility. Thus, the 
P threshold for ~attack decreases (from 0.5 to smaller values) as P~d decreases (from 1 to smaller 
values) along a line of constant U (see Figure 6). At a given value of P~d, the expected gain (i.e., 
magnitude of expected utility > 0) resulting from Red attack and Blue ~divert increases as U 
increases. Thus the P threshold for ~attack increases as U increases. 
 

~attack ~divert 

attack divert 

Figure 6: Non-equilibrium solutions for Blue (left) and Red (right).  
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4.2.2 Nash-Equilibrium Solution 

The Nash-equilibrium solution is computed, in two steps (Davis, 1997), from the payoff matrix 
in Figure 5. Note that this solution applies only to a zero-sum game. 
 
First, for the case where P > 0.5, inspection of the payoff matrix (Figure 5) shows that ~divert 
(~d) dominates divert for Blue and ~attack (~a) dominates attack (a) for Red. Thus when P > 0.5 
Blue should always ~divert (~d) and Red should always ~attack (~a). Also see Figure 6 above. 
The "value" of the game to each player is the expected utility assuming Blue always chooses 
~divert and Red always chooses ~attack. This value, per the payoff matrix, is 0 for Blue and Red. 
  
Then, for the case where P < 0.5, the optimal strategy for each player is a "mixed strategy" 
where each option is played at a probability (P~d for Blue and Pa for Red), which in turn depends 
on P and U. 
  
For Blue, we consider the expected utility (across options, divert and ~divert) for each of Red's 
options (i.e., attack or ~attack). If Red attacks, Blue's expected utility is: 
 
 P~d * {U * [2 * P - 1]} + (1 - P~d) * {0}  
 
where P~d is the probability that Blue will ~divert and 1 - P~d is the probability that Blue will 
divert. If Red ~attack, Blue's expected utility is: 
 
 P~d * {0} + (1 - P~d) * {-1} 
 
Because the game is zero-sum, Red's expected utility for each Red action is always the negative 
of Blue's expected utility (derived above). Therefore Blue's mixed strategy (P~d) can be 
computed by equating the two expected utilities written above and solving for P~d as follows: 
 
 P~d * {U * [2 * P - 1] = P~d – 1, which reduces to: 
  
 P~d * [2 * P * U - U - 1] = -1 
 
So Blue's optimal mixed strategy is as follows (see Figure 7): P~d =  1 / [1 - U * (2 * P - 1)]. 
  
Using the same approach to solve for Red's optimal mixed strategy we obtain: 
 
 -Pa * {U * [2 * P - 1]} + (1 - Pa) * {0} = Pa * {0} + (1 - Pa) * {1} 
 
This produces an equation for Pa that is the same as the equation for P~d above. 
 
So Red's optimal mixed strategy is as follows (see Figure 7): Pa =  1 / [1 - U * (2 * P - 1)]. 
 
Finally, the value of the game to a player is the expected utility for either option (e.g., Blue 
~divert or divert) assuming the numerical value of the associated mixed strategy. Thus the value 
of the game for Blue is given by P~d - 1, as follows: 



 

 

30 

 

 
 VB = P~d - 1 = 1 / [1 + U - 2 * U * P] - 1  
                     = [1 - 1 - U + 2 * U * P] / [1 + U - 2 * U * P].  
  
The value of the game for Blue is (see Figure 8): VB =   (U * [2 * P - 1]) / (1 - U * [2 * P - 1]). 
 
The value of the game for Red is (see Figure 8): VR =  -(U * [2 * P - 1]) / (1 - U * [2 * P - 1]). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Nash-equilibrium solutions for Blue (left) and Red (right).  

Figure 8: Nash-equilibrium value of the game to Blue (left) and Red (right).  
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4.2.3 Decision-Making at Two Blue Points 

When two (or more) Blue points appear on a trial, Blue must consider the possibility of Red 
attack at each point. As discussed in Mission 3 of Variations (Section 3), Red can attack at only 
one (or neither) Blue point, but Blue can divert (or ~divert) from either one or both Blue points.  
 
Thus Blue has four options across the points [1,2] as follows: A = [d1,d2], B = [d1,~d2], C = 
[~d1,d2], and D = [~d1,~d2]. And Red has three options across the points [1,2] as follows: A = 
[a1,~a2], B = [~a1,a2], and C = [~a1,~a2]. 
 
Unlike the simpler case where Blue only needs to consider the Red attack probability Pa at one 
point, Blue now has to estimate the probability of each Red option (A, B, C). The non-
equilibrium strategy is described here, assuming the probability of each Red option (which 
depends on Blue's model BR of Red tactics) is specified in the BLUEBOOK. To start, it is 
assumed that the BLUEBOOK specifies a "two point" propensity function Pp = fn(P, U, BR) that 
can be computed for each of the two Blue points, Pp1 and Pp2, using the probabilities (P1, P2) and 
utilities (U1, U2) at these two points as known from OSINT and IMINT, respectively. Note that 
Pp1 + Pp2 ≤ 1, because Red can attack at only one (or neither) Blue point. 
 
Each value of Pp can then be combined with Pc (which is the same for each Blue point) and Pt 
(see Foraging below), to compute the probability of attack at each point: Pa1 = Pt,p,c,1 and Pa2 = 
Pt,p,c,2; also the probability of no attack, which is equal to 1-Pa1-Pa2. This gives Blue the 
probability of each Red option (A, B, C). 
  
Using these three probabilities, Blue can use the payoff matrix along with known values of 
probabilities (P1, P2) and utilities (U1, U2) to compute the expected utility for each Blue option: A 
= [d1,d2], B = [d1,~d2], C = [~d1,d2], and D = [~d1,~d2]. Given the resulting vector of expected 
utilities [UA, UB, UC, UD], the optimal Blue decision is to always choose the option with the 
highest expected utility. Unlike the simpler case of one Blue point analyzed in Section 4.2.1, the 
optimal solution in this case is a more complex function of three (not just two) Red probabilities 
and four (not just two) Blue options – hence not readily illustrated in parametric plots like Figure 
6.   

4.3 Foraging 

For foraging, in Mission 3, Blue must choose one of two Blue points at which to receive 
SIGINT. After SIGINT, Blue must update his beliefs and make a decision (i.e., a choice of 
option A, B, C, or D in Decision Making at Two Blue Points, discussed above). In many cases of 
real-world importance, the collections and analysis functions are separated from the operations 
function, such that the collector and analyst do not know exactly what decisions their intelligence 
will be used to support. Indeed even within the intelligence function itself, there may be a 
separation between collection and analysis such that the collector does not know exactly what 
inferences his intelligence (e.g., SIGINT) will be used to support. Thus there are several possible 
solutions to the foraging mission posed by TACTICS, two of which are derived below.  
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4.3.1 Maximizing the Information Gain at Independent Points 

To begin, assume there are two collections options for Blue: option 1 is to get SIGINT at point 1, 
and option 2 is to get SIGINT at point 2. The expected informatic utilities (i.e., expected 
information gains) are denoted E1 and E2, respectively. The collections problem is to compute E1 
and E2, so that Blue can then select the option (1 or 2) with highest E, i.e., max(E1, E2). 
   
At a given Blue point (1 or 2), the computation of E requires two forms of input. One input is the 
current probability of attack Pa, i.e., "prior" to receiving SIGINT (which will be received only if 
this Blue point is chosen). The other input is knowledge of SIGINT reliability, in the form of a 
"hit rate" (h), "miss rate" (1-h), "false alarm rate" (f), and "correct rejection rate" (1-f). As 
outlined in Description (Section 2), the likelihoods of signals (S = Y or S = N) given ground 
truth (y or n) are as follows: 
 

h = p(Y|y) = 0.60 
 
1-h = p(N|y) = 0.40 
 
f = p(Y|n) = 0.20 
 
1-f = p(N|n) = 0.80. 
 

Using u to denote the informatic utility from each possible SIGINT return (Y or N), the expected 
information gain for SIGINT at a Blue point is given as follows:  
  
 E = p(Y) * u(Y) + p(N) * u(N). 
 
The marginal probabilities p(Y) and p(N) of signals (Y and N) are each computed as the sum of 
joint probabilities, as follows: 
 
 p(Y) = p(y) * p(Y|y) + p(n) * p(Y|n) = p * h + (1-p) * f  
 
 p(N) = p(y) * p(N|y) + p(n) * p(N|n) = p * (1-h) + (1-p) * (1-f) 
 
where p = p(y) = Pa is the "prior" (before SIGINT) probability of Red attack at the Blue point, 
and p(n) = 1-p(y) = 1-p. 
 
The informatic utilities u(Y) and u(N) depend on the probability of attack before and after 
SIGINT. More specifically, the gain in information (Shannon & Weaver, 1949) is computed as 
the KL-divergence (Kullback & Leibler, 1951) of a posterior (after SIGINT) probability 
distribution P' = {p', 1-p'} relative to a prior (before SIGINT) probability distribution P = {p, 1-
p}, where the posterior P'(Y) is computed assuming a signal Y and the posterior P'(N) is 
computed assuming a signal N. These KL-divergences of P' from P are computed as follows: 
 
 u(Y) = -Σ [P * log2 PY'] + Σ [P * log2 P] 
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 u(N) = -Σ [P * log2 PN'] + Σ [P * log2 P] 
 
where each sum is taken over the two probabilities in each distribution, e.g., P = {p, 1-p} = 
{p(y), 1-p(y)}, PY' = {p'(y|Y), 1-p'(y|Y)}, and PN' = {p'(y|N), 1-p'(y|N)}. 
 
The posterior distributions, PY' = {p'(y|Y), 1-p'(y|Y)} and PN' = {p'(y|N), 1-p'(y|N)}, are 
computed from the prior distribution P = {p(y), 1-p(y)} = {p, 1-p} and parameters (h, f) of 
SIGINT, via the application of Bayes Rule as follows: 
 
 p'(y|Y) = (p * h) / [(p * h) + (1-p) * f)] 
 
 p'(y|N) = [p * (1-h)] / [(p * (1-h) + (1-p) * (1-f)]. 
 
Thus to recap: The expected information gain E for SIGINT at a Blue point is obtained in four 
steps: 

 
First compute the marginal probabilities p(Y) and p(N) of each signal, using the prior 
probabilities P = {p, 1-p} and reliabilities (h, f) of SIGINT.  
 
Then compute the posterior probabilities P' = {p', 1-p'} conditional on each signal (Y and 
N), via Bayes Rule using the prior probabilities P = {p, 1-p} and likelihoods (reliabilities) 
of SIGINT. 
  
Then compute the informatic utilities u(Y) and u(N), as the KL-divergences of posterior 
probabilities P' from prior probabilities P for each signal. 
 
Finally, compute expected utility E as the product of probability * utility summed over 
both possible SIGINT returns (Y, N). 
 

Figure 9 shows the results for E as a function of Pa = p, assuming h = 0.6 and f = 0.2. This figure 
shows that E is high when p is small or large. For intermediate values of p, E is low and not very 
sensitive to p. Thus, if there are no further constraints on Pa at the two Blue points (i.e., if Pa1 and 
Pa2 are independent), then the optimal choice (of point 1 or point 2, to receive SIGINT) will 
depend (per Figure 9) on the relative magnitudes of Pa1 and Pa2. If Pa1 is small or large and Pa2 is 
intermediate, then the optimal choice is point 1. Likewise, if Pa2 is small or large and Pa1 is 
intermediate, then the optimal choice is point 2. Otherwise the optimal choice depends on the 
precise values of Pa1 and Pa2. 
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SIGINT hit rate (h) = 0.6 and false alarm rate (f) = 0.2. 

 

4.3.2 Maximizing the Information Gain at Dependent Points 

The above analysis applies only if the two or more Blue points are treated as independent. 
However, in real-world situations, there is often further knowledge that constrains analytical 
inferences and hence affects the optimal choice for collection. The same is true in TACTICS, 
where the Blue analyst knows that Red can attack only one (or neither) Blue point on a 
given trial, i.e., Pa1 + Pa2 ≤ 1. With this knowledge, the value of Pa1 constrains the value of Pa2, 
and vice versa. 
 
To account for this constraint requires a more complex treatment than the previous analysis 
performed for one point at a time. More specifically, we can define a frame of discernment (set 
of hypotheses) to cover the set of Red attack possibilities: {A, B, C}, where A = [a1,~a2], B = 
[~a1,a2], and C = [~a1,~a2]. The corresponding set of probabilities {P(A), P(B), P(C)} = {Pa1, Pa2, 
1-Pa1-Pa2} is hereafter denoted as the prior probability distribution P = {pA, pB, pC}. 
 
With this prior distribution and SIGINT parameters (h, f), the expected information gain for 
SIGINT at each Blue point (1 and 2) is as follows: 
  
 E1 = p1(Y) * u1(Y) + p1(N) * u1(N) 
 E2 = p2(Y) * u2(Y) + p2(N) * u2(N). 
 
The marginal probabilities are computed as the sum of joint probabilities, as follows: 
 
 p1(Y) = p1(y) * p1(Y|y) + p1(n) * p1(Y|n) = pA * h + (1-pA) * f  
 p2(Y) = p2(y) * p2(Y|y) + p2(n) * p2(Y|n) = pB * h + (1-pB) * f  
 

Figure 9: Expected gain in information (E) from SIGINT, as a function of prior probability, 
with SIGINT hit rate (h) = 0.6 and false alarm rate (f) = 0.2. 
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 p1(N) = p1(y) * p1(N|y) + p1(n) * p1(N|n) = pA * (1-h) + (1-pA) * (1-f) 
 p2(N) = p2(y) * p2(N|y) + p2(n) * p2(N|n) = pB * (1-h) + (1-pB) * (1-f) 
 
The informatic utilities, computed as KL-divergences of P' from P are as follows: 
 
 u1(Y) = -Σ [P * log2 PY1'] + Σ [P * log2 P] 
 u2(Y) = -Σ [P * log2 PY2'] + Σ [P * log2 P] 
 
 u1(N) = -Σ [P * log2 PN1'] + Σ [P * log2 P] 
 u2(N) = -Σ [P * log2 PN2'] + Σ [P * log2 P] 
 
where each sum is taken over the three probabilities in each distribution, e.g., P = {pA, pB, pC) = 
{P(A), P(B), p(C)}, PY1' = {p(A|Y1), p(B|Y1), p(C|Y1)}, etc. 
 
The posterior distributions are computed from the prior distributions and likelihoods 
(reliabilities) of SIGINT, via the application of Bayes Rule. The likelihoods (L) of SIGINT are 
as follows: 
 
 LY1 = {P(Y1|A), P(Y1|B), P(Y1|C)} = {h, f, f} 
 LY2 = {P(Y2|A), P(Y2|B), P(Y2|C)} = {f, h, f} 
  
 LN1 = {P(N1|A), P(N1|B), P(N1|C)} = {1-h, 1-f, 1-f} 
 LN2 = {P(N2|A), P(N2|B), P(N2|C)} = {1-f, 1-h, 1-f}. 
 
For example, referring to the likelihood distribution LY1, P(Y1|A) refers to the probability of 
receiving a signal Y at point 1 assuming Red option A (i.e., Red attack at point 1). This is the hit 
rate, h. Conversely, P(Y1|B) refers to the probability of receiving a signal Y at point 1 assuming 
Red option B (i.e., Red attack at point 2, which means no Red attack at point 1). This is the false 
alarm rate, f. Similarly, P(Y1|C) refers to the probability of receiving a signal Y at point 1 
assuming Red option C (i.e., no Red attack at point 1 or point 2, which means no Red attack at 
point 1). This is also the false alarm rate, f. The likelihood distribution LY2 is obtained by the 
same logic. 
 
Referring to the likelihood distribution LN1, P(N1|A) refers to the probability of receiving a signal 
N at point 1 assuming Red option A (i.e., Red attack at point 1). This is the miss rate, 1-h. 
Conversely, P(N1|B) refers to the probability of receiving a signal N at point 1 assuming Red 
option B (i.e., Red attack at point 2, which means no Red attack at point 1). This is the correct 
rejection rate, 1-f. Similarly, P(N1|C) refers to the probability of receiving a signal N at point 1 
assuming Red option C (i.e., no Red attack at point 1 or point 2, which means no Red attack at 
point 1). This is also the correct rejection rate, 1-f. The likelihood distribution LN2 is obtained by 
the same logic. 
 
Thus to recap: The expected information gains E1 and E2 for SIGINT at Blue points 1 and 2, 
subject to the constraint that Red can attack at only one (or neither) point, are obtained in four 
steps: 
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First compute the marginal probabilities of each signal at each point, using the prior 
probabilities and reliabilities (h, f) of SIGINT. 
 
Then compute the posterior probabilities conditional on each signal at each point, via 
Bayes Rule using the prior probabilities and likelihoods (reliabilities) of SIGINT. 
 
Then compute the informatic utilities, as the KL-divergences of posterior probabilities 
from prior probabilities for each signal at each point. 
  
Finally, compute expected utility as the product of probability * utility summed over both 
possible SIGINT returns at each point. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Difference in expected information gains (E1 - E2) for SIGINT at two points (1 and 2). 
Each point has a different "prior" (before SIGINT) probability of att ack, PA at point 1 and PB at 

point 2. SIGINT reliabilities are h = 0.6 and f = 0.2. Refer to text for further details. 
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Figure 10 shows the results assuming SIGINT reliabilities are h = 0.6 and f = 0.2. This figure 
plots the difference in expected information gains, E1 - E2, as a function of PA (prior probability 
at point 1) and PB (prior probability at point 2). The figure shows that the difference E1 - E2 is > 0 
(denoted by the symbol x) whenever PA > PB, and the difference E1 - E2 is < 0 (denoted by the 
symbol *) whenever PA < PB. In other words, the optimal point (1 or 2) at which to request 
SIGINT is whichever point has the higher prior probability (i.e., PA for point 1 or PB for point 2). 
 
This result is consistent with a confirmation preference, aka "positive test strategy", which is 
known to be an optimal strategy for seeking information in hypothesis testing of many realistic 
situations (Klayman & Ha, 1987). The result is also consistent with the normative solution 
computed for the Phase 1 challenge problem (Burns, Greenwald, & Fine, 2014), which was to 
seek SIGINT on the enemy group with the highest attack probability. Importantly, this 
confirmation preference is not a Confirmation Bias per se because the strategy is actually 
optimal (i.e., not sub-optimal). 

4.4 Inferencing (Forensic) 

In Missions 2, 4, and 5, forensic analyses are required to infer the Red style from previous 
attacks. These forensic inferences are needed to support prognostic inferences of the Red attack 
probability Pp, as a function of P and U, on each trial. A normative (Bayesian) solution can be 
computed assuming there is no change in Red style over time. This solution applies rigorously to 
Mission 2 but only approximately to Missions 4 and 5 (where there is a change in Red style).  
 
The solution, which assumes no change in Red style over time, is computed as follows: First, 
actual data from SIGACTS (attack or ~attack) on all previous trials are used to compute the total 
frequency (F) of attack, i.e., the number of attacks (n) divided by the number of trials (t): F = n/t. 
Then, the likelihood (probability) of actually observing this frequency (F) is computed for two 
generative models of attack frequency (f). For example, in Mission 4 these two generative 
models would be fPassive and fAggressive, which are computed from the BLUEBOOK values of Red 
attack probability – with each BLUBOOK value (corresponding to a P,U combination) weighted 
by the actual frequency of the associated P,U conditions. Finally, the likelihood of observing F 
for each generative model f can be computed from the binomial distribution, which gives the 
probability p(F|f) = [t! / (n! (t-n)!)] * fn * (1-f)(t-n). Assuming a uniform prior distribution in 
which each generative model is equally likely, p(fPassive) = p(fAggressive), the posterior probability 
p(f|F) of each Red style is computed from Bayes Rule to obtain p(Passive) and p(Aggressive).   
 
Given this forensic inference of p(Passive) and p(Aggressive), values of P and U (from OSINT 
and IMINT) can be used along with BLUEBOOK values of Red attack probability to compute: 
P(Attack| IMINT, OSINT) = p(Passive) * P(Attack| BLUEBOOK(Passive), IMINT, OSINT) + 
p(Aggressive) * P(Attack| BLUEBOOK(Aggressive), IMINT, OSINT). 
 
Note that for Mission 2, the calculation of generative model frequency f would be based on Pc * 
Pp, where Pc is given by HUMINT for each trial (but Pc is the same for each model f). In 
Missions 4-5, Pc = 1 always. For Mission 5, the calculation of p(F|f) would be performed 
separately for each P,U cell of the BLUEBOOK, and then cells for each style (P-sensitive and U-
sensitive) would be aggregated to obtain p(P-sensitive) and p(U-sensitive).   
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5 Evaluation 
This section outlines the methods to be employed in Comparative Performance Assessment, 
Cognitive Fidelity Assessment, and Neural Fidelity Assessment. The T&E approach for each 
type of assessment is similar to that of Phase 1 (Burns, Greenwald, & Fine, 2014), therefore this 
section focuses on differences in Phase 2. 

5.1 Comparative Performance Assessment (CPA) 

Comparative Performance Assessment (CPA) will assess a model's success in matching human 
performance, per the BAA Table 4 criterion of a 65% success rate (for Phase 2). The primary 
data represent judgments in the form of probability distributions, reported by humans and models 
on stages of trials of missions that require inferencing (see Variations, Section 3). These data on 
judgments are assessed by an Absolute Success Rate (ASR), discussed in Section 5.1.1 below. 
Additional data represent choices made on stages of trials of missions that require decision-
making and foraging (see Variations, Section 3). These data on choices are assessed by a 
Relative Match Rate (RMR), discussed in Section 5.1.3 below. 
 
For both ASR and RMR, human data from individual participants are aggregated into measures 
of average performance in order to assess neural models. This is discussed further in Section 
5.1.2 below. Also, ASR and RMR are subject to weighting factors that are applied to each 
mission in computing a model's overall performance on CPA. This is discussed further in Section 
5.1.4 below. The methods and missions for CPA are summarized in Table 3. 
 
 

Table 3: Methods and missions for Comparative Performance Assessment (CPA). 

 

Process Method 
Mission 

1 2 3 4 5 
Inferencing ASR X X X X X 

Decision-making RMR  X X X X 
Foraging RMR   X   

 
 

5.1.1 Absolute Success Rate (ASR) 

The primary measures of sensemaking are probability distributions reported by humans and 
models on stages of trials of missions. In Phase 1, a model distribution was compared to the 
human distribution using a Relative Success Rate (RSR) that accounts for two forms of 
similarity. One similarity is between the human distribution P and a model distribution M, 
denoted SPM. The other similarity is between the human distribution P and a "random" 
(maximum entropy) distribution R, denoted SPR. These similarity measures, in turn, are based on 
an information-theoretic (Shannon & Weaver, 1949) measure of "divergence" (Kullback & 
Leibler, 1951), denoted K, between two probability distributions. 
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All of these quantities (RSR, SPM, SPR, KPM, and KPR) are defined and discussed in the Phase 1 
Challenge Problem Design and Test Specification (Burns, Greenwald, & Fine, 2014). For 
convenience the equations are repeated here as follows: 
 
 KPM = -Σ [P * log2 M] + Σ [P * log2 P]  
 KPR = -Σ [P * log2 R] + Σ [P * log2 P] 
 
 SPM = 100% * (2 ^ -KPM) 
 SPR = 100% * (2 ^ -KPR) 
 
  RSR = max[0%, (SPM - SPR) / (100% - SPR)] 
 
where P, M, and R are discrete probability distributions, e.g., P = {P, 1-P} for the case of two 
hypotheses; P is the human distribution; M is a model distribution; and R is the "random" 
(uniform) distribution, e.g., R = {0.50, 0.50}.  
 
Using these equations, the RSR for one data point (i.e., a probability distribution reported on a 
stage of a trial of a mission) is computed as follows: First, KPM and KPR are computed from P, M, 
and R. These K values range from 0 (perfect match of model to human) to infinity (worst 
possible match of model to human). Then, the K values are converted to S values that range from 
0% (worst match, K is infinite) to 100% (perfect match, K is zero). Finally, SPM is scaled by SPR 
and the final RSR is limited to values 0% ≤ RSR ≤ 100%. 
 
The scaling of SPM by SPR is performed because even a poor match of model to human will often 
produce KPM < 1 and hence SPM > 50%. Per RSR, a model's match to human data is therefore 
measured on a scale of 0-100% relative to a random model's match to human data. If a neural 
model matches human data worse than the random model, then RSR is set to its minimum value 
of 0%. Otherwise RSR > 0%. For example, if M matches P with similarity SPM = 80%, and R 
matches P with similarity SPR = 40%, then M would score (80 – 40) / (100 – 40) = 67%. 
 
The above approach from Phase 1 is problematic for Phase 2, because in Phase 2 it is more 
difficult to design trials for which human performance is far from random (e.g., a uniform 
probability distribution {P, 1-P} in which P = 1-P). In that case, there is little or no potential for 
any model to outperform a random model, so the "relative" success measured by RSR is near 
zero even when the "absolute" difference between model and human distributions is small. 
 
To address this issue, Phase 2 will adopt a different metric for use in CPA. The new metric is an 
Absolute Success Rate (ASR), defined as follows: 
 
 ASR = max[0%, (100% - 2 * RMSPM)] 
 
where RMSPM is the Root Mean Squared error between the human (P) and model (M) 
distributions.  
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For example, assume the human distribution is P = {70%, 30%} and the model distribution is M 
= {53%, 47%}. In that case RMSPM = 17% and ASR = 66%. Thus with two hypotheses, the 
Phase 2 criterion of 65% would be satisfied by a model with RMSPM ≤ 17.5%.  
 
Besides ASR, which will be used to score model performance, RSR will also be computed as an 
indication of how much predictive capability a model has relative to (i.e.,  over and above) a 
random solution. 
 
Note that the definition of ASR above includes a factor of two. This factor is derived from a 
principled approach to address the fact that RMS errors are dependent on the number of 
hypotheses. The factor of two assumes there are two hypotheses, as there are on all trials of 
Phase 2, e.g., {attack, ~attack}. The factor accounts for the difference between a maximum 
entropy distribution and minimum entropy distribution when there are two hypotheses. That is, 
the RMS distance between maximum entropy {50%, 50%} and minimum entropy {100%, 0%} 
is 50%, so the "zero-value" of ASR is set to occur when RMS = 50%, such that the factor is 
100%/50% = 2. By the same logic, with four hypotheses the RMS distance between maximum 
entropy {25%, 25%, 25%, 25%} and minimum entropy {100%, 0%, 0%, 0%} is 43.3%, so the 
appropriate ASR factor would be 100%/43.3% = 2.31 (rather than 2). 
 
Per the above logic, ASR is scaled by the difference between a maximum-entropy (random) and 
minimum-entropy distribution, in order to account for the number of hypotheses in probability 
distributions. In that sense there is some notion of "relative" scaling. But this is much different 
from the "relative" performance that is modeled by RSR, because ASR can be high even when 
the human distribution is nearly random. Therefore ASR is indeed an Absolute Success Rate that 
differs markedly from the Relative Success Rate RSR.   

5.1.2 Average Performance 

As discussed above, ASR is concerned with judgments reported in the form of probability 
distributions. In that case, the average human performance at one data point (i.e., a stage of a trial 
of a mission) is an average probability distribution – computed as a simple average across the N 
human subjects. On the other hand, RMR (discussed below) is concerned with choices reported 
in decision-making and foraging, where each human subject makes a forced choice among 
options (e.g., option A or option B). In that case the average human performance at one data 
point is an aggregate frequency distribution – computed by summing the number of responses 
for each option and dividing by the number of human subjects. 
 
Per the BAA, CPA reduces individual human responses to average human performance in order 
to assess model predictions. T&E requires that a model compute a comparable average model 
performance. It is the responsibility of the modeler (not T&E) to determine how the average 
model performance is computed. It is also the responsibility of the modeler's software to 
compute average model performance and report each data point as a single response (i.e., not a 
collection of individual model responses). 
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5.1.3 Relative Match Rate (RMR) 

Absolute Success Rate (ASR), discussed in Section 5.1.1, applies to human judgments that are 
reduced to average probability distributions. A different metric, called Relative Match Rate 
(RMR), applies to human choices that are reduced to aggregate frequency distributions. 
Mathematically, these frequency distributions, e.g. {A%, B%}, are equivalent to discrete 
probability distributions in that each value is a number 0-100% and the numbers sum to 100%. 
However, the single (forced choice) response of a model on each trial is akin to a frequency of 
{100%, 0%} or {0%, 100%}. Thus RMR differs from RSR in computing the relative match of 
the model's forced choice responses to human forced choice frequency distributions.  
 
The calculation of RMR on each trial is performed much like in Phase 1. First, the option with 
highest frequency in the average human data is identified as fmax. Second, the human frequency 
corresponding to the model choice is identified as fmod. Finally, the ratio fmod/fmax is taken as the 
measure of RMR on the trial. 
 
For example, assume the average human frequencies for options {A, B} on a trial are {60%, 
40%}. A model that chooses option A would score 60/60 = 100%, and a model that chooses 
option B would score 40/60 = 67%. By this method, a model scores 100% for a choice that 
matches the dominant human response. The model scores a ratio amount (< 100%) for a choice 
that does not match the dominant human response, and the ratio decreases as the non-dominant 
human frequency decreases relative to the dominant human frequency. 
 
This approach applies to any choice between two options, e.g., Blue decision-making choices 
between {d, ~d} in Mission 2, or Blue forging choices between {point 1, point 2} in Mission 3. 
The same approach would extend to larger sets involving three, four, or more options. 

5.1.4 Relative Weighting 

As described above, ASR or RMR will be computed for each data point (stage on trial) in one or 
more missions, see Table 3. Within a mission, all judgment data points will be weighed equally 
in computing an average ASR for the mission, and all forced choice data points will be weighed 
equally in computing an average RMR for the mission. Similarly, all missions will be weighed 
equally in computing the overall ASR and overall RMR. Finally, ASR and RMR will be weighed 
equally in computing the overall score of a model on CPA.  

5.2 Cognitive Fidelity Assessment (CFA) 

Cognitive Fidelity Assessment (CFA), like Comparative Performance Assessment (CPA), is 
concerned with how well a model predicts human performance – but more specifically with a 
focus on cognitive biases. The two assessments are clearly related, because any model that 
closely matches human data per CPA will naturally replicate behavioral biases. However, CFA is 
distinguished by an explicit focus on cognitive biases, to encourage generalization and 
application of models and insights to real-world intelligence and operations. Per BAA Table 4, 
for Phase 2, a model is required to exhibit 5 of the 8 biases listed in BAA Table 3. 
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CFA requires formal (computational) definitions of biases – i.e., so the existence of bias in 
human data can be identified in experiments, and so the extent of such bias exhibited by neural 
models can be evaluated (and possibly extrapolated in Transition, see Section 6). These 
definitions, in turn, require a reference model or "benchmark" from which biases can be 
measured objectively. Although omniscient benchmarks like "ground truth" or "hindsight" might 
be chosen, these are unfair standards because they assume more information that the sensemaker 
himself has when he needs to make sense. Thus the proper standard is a normative model 
(Edwards, 1954; Edwards, 1961; Edwards, et al., 1963), which is given the same information 
(knowledge and data) as the human sensemaker but computes Bayesian judgments (in 
inferencing) and choices (in decision-making and foraging). 
 
By this approach, normative solutions provide a critical foundation for defining and measuring 
cognitive biases. The necessary Solutions are derived in Section 4, as the first step in preparing 
for CFA. The next step is to describe and define the BAA (Table 3) biases, relative to these 
normative solutions (or relative to some other benchmarks when normative solutions are 
intractable). The last step in preparing for CFA is pilot testing of human subjects, in order to 
establish at which stages of which trials of which missions the humans exhibit biases per the 
definitions.  
 
All eight BAA biases were described briefly in Variations (Section 3), as a preview of how 
various missions might elicit these biases. The following sections provide more detailed 
descriptions and computational definitions, with each section focusing on biases for one of the 
cognitive processes outlined in Variations (Section 3), namely: inferencing (Section 5.2.2), 
decision-making (Section 5.2.3), and foraging (Section 5.2.4). But before addressing the biases 
individually, it is useful to consider them collectively, and especially to highlight the difference 
between heuristics and biases. 

5.2.1 Heuristics and Biases 

As defined in the literature on judgment and decision-making (Kahneman, et al. 1982; Gilovich, 
et al., 2002), heuristics are simplified processes (aka "rules of thumb") in human thinking that 
cause subjective judgments and decisions to deviate from normative (optimal) judgments and 
decisions. The deviations themselves, measured objectively, are called biases. For example, a 
heuristic known as Representativeness may produce a bias known as Change Blindness; a 
heuristic known as Availability may produce a bias known as Satisfaction of Search; and a 
heuristic known as Anchoring and Adjustment may produce a bias known as Confirmation 
Bias.  
 
The difference between a "heuristic" and a "bias" is important for three reasons. First, the BAA 
includes the six heuristics and biases noted above but refers to them all as "biases". Because half 
of them are actually heuristics, the BAA biases may be somewhat redundant with respect to the 
human behaviors that are implied. In CFA, T&E must define distinct behaviors for each of the 
eight BAA biases – even those that are actually heuristics. Second, only biases are measurable 
directly from human behavioral experiments, because the associated heuristics are merely 
conjectures about the cognitive processes that produce biases. This requires that T&E itself make 
subjective judgments about which heuristics are causing which biases, in order to assess all eight 
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of the BAA biases (which actually include some heuristics). Finally, there is overlap even among 
the biases themselves, because different heuristics may produce the same or similar behavioral 
bias. For example, a Persistence of Discredited Evidence and a Confirmation Bias can refer to 
the same response in which the weighing of evidence is skewed toward "confirming" a favored 
hypothesis more than it should be by "discredited" evidence.  
 
In theory, a single heuristic may produce different and perhaps even opposite behaviors (biases) 
in different situations. Similarly, a single bias may actually refer to several different behaviors 
that stem from different heuristics in different missions of TACTICS. For example, 
Confirmation Bias is a broad term (Nickerson, 1998) that can refer to bias in aggregating 
likelihoods (in inferencing) and/or bias in selecting evidence (in foraging). These issues have 
been carefully considered in the definition of biases and specification of metrics for CFA, in 
order to meet the intent as well the content of the BAA's guidance (Table 3 and Appendix F). In 
so doing, each BAA "bias" will be assigned a formal metric that can be measured directly in 
human data from the Phase 2 experiment. These metrics are similar to those defined and 
employed in Phase 1, which included four of the eight biases for Phase 2.  
 
The metrics and missions for CFA are summarized in Table 4. Note that in some cases the metric 
is the same for different biases, e.g., NP < NQ. In that case the measured bias is the same, but the 
postulated heuristic that causes the bias in a context (i.e., stage of trial of mission) is different 
and consistent with the BAA "bias". 
 
 

Table 4: Metrics and missions for Cognitive Fidelity Assessment (CFA). 

 
BAA Bias Metric Mission 

1 2 3 4 5 

Anchoring and Adjustment NP < NQ  X X    

Persistence of Discredited Evidence NP < NQ    X X 

Representativeness P > Q X X X   

Availability NP < NQ X     

Probability Matching n  X  X X 

Confirmation Bias f   X   

Satisfaction of Search s    X X 

Change Blindness b    X X 
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5.2.2 Inferencing 

As discussed in Variations (Section 3), the main BAA biases associated with inferencing are 
Anchoring and Adjustment, Persistence of Discredited Evidence, Representativeness, and 
Availability.  
 
One bias can be measured simply by comparing the human probability (P) to the Bayesian 
probability (Q). That is, in prognostic inferencing at the start of a trial in Missions 1-3, it appears 
from pilot data that humans are typically computing Pp,c as the arithmetic average of Pc and Pp. 
This average is greater than the normative solution given by Qp,c = Pc * Pp. Therefore, the bias is 
measured by Pp,c  > Qp,c. The underlying heuristic is one of Representativeness in which 
capability and propensity are treated as equally representative of the composite activity (attack), 
such that Pc and Pp are averaged to obtain Pp,c. 
 
For the remaining three inferencing biases, it is useful to distinguish "conservative" from "non-
conservative biases – where conservatism is computed by a quantity referred to as Negentropy 
(also used in Phase 1, see Burns, Greenwald, & Fine, 2014). Negentropy ranges from 0% to 
100% as entropy ranges from maximum entropy to minimum entropy, and entropy itself refers to 
the uncertainty across a set of hypotheses. For example, {50%, 50%} represents maximum 
entropy (0% Negentropy), and {100%, 0%} represents minimum entropy (100% Negentropy). 
Mathematically, entropy is computed as follows: 
 
 EP = -Σ P * log2 P 
 
and Negentropy is computed as follows: 
 
 NP = (Emax - E) / Emax 

 
where Emax depends on the number of hypotheses in the frame of discernment, i.e., Emax = 1 for 
the case of two hypotheses, and Emax = 2 for the case of four hypotheses. 
 
A conservative bias in inferencing is defined as one in which a human extracts less overall 
certainty than he or she should from the evidence he or she is given (Edwards, 1982), i.e., the 
distribution P is too "flat". A non-conservative (confirmation) bias in inferencing is the opposite 
case in which a human assigns too much certainty, i.e., the distribution P is too "peaked". 
Mathematically, the difference is captured by comparing Negentropy NP of the human 
distribution P to Negentropy NQ of the Bayesian distribution Q. A conservative bias implies NP < 
NQ, and a non-conservative bias implies NP > NQ. Thus, N allows us to distinguish one class of 
inferencing biases from the opposite class of inferencing biases. 
 
In the case of forensic inferencing, in Missions 4 and 5, pilot data suggest that humans are 
conservative in their estimate of P(style), where the styles are: Passive and Aggressive in 
Mission 4; P-sensitive and U-sensitive in Mission 5. Although we only compute a quasi-
Bayesian solution, under the assumption that there is no change in Red style during these 
missions (see Section 4.4), pilot data show that humans are more conservative than this quasi-
Bayesian – especially after the change in Red style. This conservatism (NP < NQ) can be 
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characterized as Persistence of Discredited Evidence, because too much uncertainty 
(conservatism) "persists" in the human distribution even though early evidence (from SIGACTS) 
has been "discredited" by later evidence (from SIGACTS). 
 
Returning to the task of prognostic inferencing, in Missions 1-2, two additional conservative 
biases can be measured by NP < NQ. First, in Mission 1, pilot data show that humans are 
conservative in reporting the distribution {Pt, 1-Pt}, which represents the probability of {attack 
~attack} based only on SIGINT. In effect, humans are failing to compute a Bayesian-normalized 
posterior and instead report the raw SIGINT likelihoods (see Section 4.1). This is attributed to 
Availability as the SIGINT likelihoods are readily available whereas the normative probabilities 
{Pt, 1-Pt} require further computation (i.e., normalization over the hypotheses {attack, ~attack}). 
The bias is measured only in Mission 1 because this is the only mission for which subjects are 
required to report Pt.  
 
The final conservative bias occurs in Bayesian updating of Pp,c with Pt to compute Pt,p,c. Pilot 
data suggest that humans are once again averaging, much like in Representativeness discussed 
above. However, here the normative solution is to compute a Bayesian-normalized product of 
Pp,c and Pt, rather than a simple product. For this Bayesian update, the conservative bias 
stemming from averaging is characterized as Anchoring and Adjustment – because there are 
effectively two "anchors" (Pp,c and Pt) and the inadequate adjustment is to compute an arithmetic 
average of the anchors rather than a Bayesian-normalized product. Like the other conservative 
biases mentioned above, this Anchoring and Adjustment is measured by NP < NQ. 

5.2.3 Decision-Making 

As discussed in Variations (Section 3), the main BAA bias associated with decision-making is 
Probability Matching. In CFA this bias is assessed for Missions 2, 4, and 5. On these missions, 
Blue decisions to divert (d) or not divert (~d) represent choices that will be assessed using the 
metric RMR in CPA. Thus CFA uses a different measure of performance, relative to normative 
solutions (not considered in CPA), aimed specifically at the bias of Probability Matching. 
 
In particular, on each trial the normative Solutions (Section 4) can be used to compute the 
optimal (Bayesian) Blue choice. We expect human choices will sometimes deviate from the 
Bayesian choices, for various reasons. For example, humans may be biased in their estimation of 
expected utility for each option, Ed and E~d. On the other hand, humans may properly compute 
expected utilities (or at least their relative magnitudes as needed to make optimal choices, i.e., Ed 
> E~d or Ed < E~d) but sometimes not choose the option (d or ~d) with higher expected utility. 
That behavior would imply Probability Matching, where humans are presumably choosing the 
two options at frequencies governed by their relative expected utilities as scaled by a 
multinomial logit function (see Burns & Demaree, 2009).  
 
In Mission 2 (and other missions), humans are not asked to report expected utilities. Therefore 
any bias in decisions would include bias in estimating expected utilities and bias in applying the 
estimates per Probability Matching. Nevertheless, T&E will compute the deviation in decisions 
(relative to normative solutions) and use those errors as a measure of the BAA bias for 
Probability Matching. On each trial, a number 1 or 0 will be assigned to a human's decision. The 
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number 1 means the human chose the normative option (d or ~d), and the number 0 means he or 
she did not. Across all subjects, the numbers (1 or 0) will be used to compute an average number 
n on each trial of each mission. Finally, the average number nH across all trials of the mission 
will be taken as the measure of Probability Matching. For example, if nH = 1 then there is no 
bias in decisions relative to normative solutions. As nH decreases there is more bias, and at least 
some (perhaps much) of this bias might be attributed to the mechanisms of probability matching. 
 
A similar calculation will be done for a model, to compute an equivalent average number nM 
across all trials of a mission. This model number nM will be compared to the human number nH 
in order to assess Probability Matching. The comparison of nM to nH will assessed by a 
Marginal Success Rate (MSR, discussed in Section 5.2.6 below). 
 
With respect to Variations (Section 3), some of the inferencing biases may also be exhibited in 
decision-making – especially Availability, Representativeness, and Anchoring and Adjustment. 
The reason, mentioned above, is that these are actually heuristic processes (not biases) and such 
heuristics may apply to inferencing, decision-making, or other cognitive processes. For example, 
a decision-making situation may be representative of familiar situations, and/or the outcome of 
an earlier decision may especially vivid or otherwise available from memory, and either or both 
phenomena may cause a human to be anchored to a sub-optimal strategy. 
 
Therefore, in theory these heuristics might be measured in the context of decision-making as 
well as in the context of inferencing. However, in TACTICS human subjects are making choices 
that have outcomes, so the sequences of choices and outcomes across trials are different for each 
subject. This makes it infeasible to assess these heuristics (biases) in the context of decision-
making or foraging (Section 5.2.4), so instead they are assessed only in the context of 
inferencing (Section 5.2.2). 

5.2.4 Foraging 

The remaining biases listed in Table 4 are assessed in the context of foraging. As discussed in 
Variations (Section 3), Mission 3 involves prognostic foraging (to obtain SIGINT) whereas 
Missions 4 and 5 involve forensic foraging (to review SIGACTS).  
 
First, for prognostic foraging in Mission 3, the variable Pa is a measure of the humans' 
confidence in Red attack at each Blue point (1 or 2), i.e., Pa1 and Pa2. In the case of a "pure" 
confirmation preference, humans would always seek SIGINT on the point (1 or 2) with higher Pa 
in order to "confirm" their belief. Instead we expect (based on pilot data) that humans will often 
but not always do so, as measured by a frequency f. Therefore, similar to the numbers nH and nM 
computed for Probability Matching, we will compute numbers fH and fM as a means of assessing 
Confirmation Bias. The comparison of fM to fH will be assessed by a Marginal Success Rate 
(MSR, discussed in Section 5.2.6 below). 
 
Here it is important to note that, although the term Confirmation Bias is being used by T&E per 
BAA, the actual behavior here is a confirmation preference and it is not a confirmation bias per 
se. As found in Solutions (Section 4), the optimal choice (under reasonable assumptions for 
maximizing information gain) is to seek SIGINT on the Blue point (point 1 or point 2) with the 
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higher Pa. In that sense the only "bias" is actually a conservative (not confirmation) bias in which 
humans do not always exhibit the confirmation preference. But even the status of this 
conservative behavior as a "bias" is not so clear cut, because the normative solution assumes 
there is no second-order uncertainty (i.e., a probability of the probability Pa). A human being 
who feels he or she does not know Pa with certainty may adopt a form of Probability Matching, 
where the frequency at which he or she does not choose the point with highest Pa increases as 
second-order uncertainty increases. Indeed that very strategy has been shown to be optimal 
(normative), in the context of other tasks with second-order uncertainty for which humans are 
found to exhibit Probability Matching (Burns & Demaree, 2009). 
 
Finally, two additional biases will be assessed in the context of forensic foraging through batch 
plots in Missions 4 and 5. These two biases, Change Blindness and Satisfaction of Search, are 
somewhat different from the other biases in three respects. First, these biases do not typically 
appear in the literature on judgment and decision making (Kahneman, et al., 1982; Gilovich, et 
al., 2002) or in discussions of how that literature may apply to the practice of intelligence 
analysis (Heuer, 1999). Second, it is not clear what assumptions should be made in computing 
normative solutions for Change Blindness and Satisfaction of Search.  
 
The literature on these biases implies that any changes should be detected and all searches 
should be exhaustive, yet that is clearly infeasible and unreasonable for a person or agent that has 
limited resources. Moreover, a normative solution that did address such limitations would also 
need to make assumptions about the potential benefits of detecting changes or completing 
searches – and these assumptions would be very dependent on the context of the change or 
search situation. Finally, Change Blindness (Macknik, et al., 2008) and Satisfaction of Search 
(Berbaum, et al., 1990) are largely biases in attention and visual perception, and these lower-
level cognitive processes are outside the scope of the ICArUS BAA. 
 
In that light Change Blindness and Satisfaction of Search are treated somewhat differently from 
the other BAA biases, and defined relative to omniscient knowledge and unlimited effort – such 
that any change that is not successfully detected will be characterized as a Change Blindness, 
and any search that is not completed will be characterized as a Satisfaction of Search. In effect, 
the bias will be defined as a specific change not detected or search not completed. For example, 
in Missions 4 and 5, if Red tactics actually change on trial t, then the extent of Change Blindness 
will be measured by the number bH of trials it takes for subjects to detect the change (measured 
by a report of P(style) > 50% for the correct post-change style).  
 
Similarly, when a search though "batch plots" of previous trials is required to detect Red's style, 
the extent of Satisfaction of Search will be measured by the fraction sH of all items (on average 
across subjects) searched in "mouse clicks" associated with batch plots. Like the numbers n (for 
Probability Matching), f (for Confirmation Bias), and b (for Change Blindness), the number s 
(for Satisfaction of Search) will be assessed by comparing the model value sM to the human 
value sH and computing the Marginal Success Rate (MSR, discussed in Section 5.2.6 below). 
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5.2.5 Simple Match Rate (SMR) 

As discussed in Section 5.2.2, the inferencing biases (Anchoring and Adjustment, Persistence of 
Discredited Evidence, Representativeness, and Availability) are all defined by some measure of 
probability or Negentropy in an inequality (human relative to Bayesian). At each stage of each 
trial of a mission, the model either satisfies the same inequality as humans and is assigned a 
score of 1, or the model does not satisfy the same inequality as humans and is assigned a score of 
0. The scores are then summed over a mission to obtain a fraction (0-100%), called the Simple 
Match Rate (SMR). All missions for which a bias is assessed (see Table 4) will be weighted 
equally in computing an overall SMR for that bias. The resulting score will be compared to the 
BAA passing threshold of > 65% (Phase 2) for each bias. 

5.2.6 Marginal Success Rate (MSR) 

The biases in decision-making (Probability Matching) and foraging (Confirmation Bias, 
Satisfaction of Search, and Change Blindness) are all defined by a single number (i.e., n, f, s, or 
b) computed for humans (e.g., nH) and a model (e.g., nM). Each number applies to a mission, and 
the number for each bias (on each mission) is assessed by a Marginal Success Rate (MSR), 
defined below. 
 
Given a number nH from humans and a corresponding number nM for a model, the quantity |nH - 
nM| / nH provides a proportional measure of error or "failure" of the model. Therefore a measure 
of success is 1 - (|nH - nM| / nH). When nM < nH, this measure of success is always > 0 and < 1. 
When nH < nM < 2*nH, the measure of success is also > 0 and < 1. However, when nM > 2*nH 
then the measure of success is < 0, so a "floor" is imposed to keep it = 0. The marginal success 
rate is thus defined as follows: 
 
 MSR = max[0, 1 - (|nH - nM| / nH)]. 
 
For example, assume nH = 0.8. In that case, a model with nM = 0.6 would score MSR = 75%, and 
a model with nM = 1.0 would also score MSR = 75%. Substituting other symbols for n, the same 
measure of Marginal Success Rate (MSR) applies to f, s, and b.  
 
Like SMR above, results for MSR are averaged across missions with equal weighting of each 
mission on which the bias is assessed (see Table 4). The resulting score will be compared to the 
BAA passing threshold of > 65% (Phase 2) for each bias. 

5.3 Neural Fidelity Assessment (NFA) 

CPA and CFA are quantitative assessments, hence sensitive to details of challenge problem 
design. Neural Fidelity Assessment (NFA) performs qualitative assessments, using methods that 
would apply to any challenge problem design. Details of the NFA approach and schedule, for 
Phase 2 as well as Phase 1, have already been documented in the Phase 1 Challenge Problem 
Design and Test Specification (Burns, Greenwald, & Fine, 2014). Per BAA Table 4, for Phase 2, 
a model is required to faithfully represent 5 of 7 key brain systems.   
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6 Transition 
As outlined in Introduction (Section 1), the Phase 2 challenge problem is intended to serve two 
purposes. The primary purpose, discussed in earlier sections, is to provide a rigorous test-bed for 
measuring and modeling human sensemaking performance. The secondary purpose is to aid in 
relevant Transition And Communication To Intelligence Community Stakeholders. This 
purpose, like the primary purpose, is accomplished by the computational design of TACTICS – 
which enables a relational mapping to real-world cases of geospatial intelligence. 

6.1 Relational Mapping 

The mapping highlights six specific types of intelligence analysis that are modeled by variables 
of TACTICS, namely: vulnerability analysis (P), opportunity analysis (U), capability analysis 
(Pc), activity analysis (Pt), frequency analysis (Ft), and intentionality analysis (Pa). All six types 
of analyses were observed across 26 real-world case studies, developed in Descriptive 
(Cognitive) Task Analysis (MITRE, 2013), via structured interviews with analysts and reviews 
of published articles. These case studies informed challenge problem design, and a post-design 
review was performed to make the mapping explicit.  
 
Results of the review are provided in Table 5, showing the six types of analyses and associated 
variables of TACTICS for each of the cases by title (MITRE, 2013). The Xs in this table are 
admittedly subjective judgments and are probably incomplete, as they are based on short stories 
by which the case studies are documented. Nevertheless, the mapping does suggest that each 
case study involves at least one of the six types of analysis, and most cases involve two or more 
of the six types. In making this mapping, the following questions were used to judge if a type of 
analysis (P, U, Pc, Pt, Ft, or Pa) applied ("yes" = X) or not ("no" = blank) to each case study:  
 

P: Does the analysis model spatial constraints on probabilities of activities, such as 
proximity or other properties? 
 
U: Does the analysis model spatial constraints on utilities of activities, such as density or 
other properties? 
 
Pc: Does the analysis model temporal constraints on probabilities of activities, such as 
recency or other properties? 
 
Pt: Does the analysis exploit current reports on probabilities of activities, such as signals 
from SIGINT data? 
 
Ft: Does the analysis review previous reports of activities and frequencies, such as "hot-
spot" (heat map) plots of SIGACTS? 
 
Pa: Does the analysis involve predictions (prognostic) or explanations (forensic) of 
operations (how) and intentions (why) – i.e., beyond merely observations (who, what, 
when, and where) and visualizations of activities and frequencies? 
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Table 5: Mapping variables of TACTICS to case studies of intelligence. 

No. Title of Case Study P U Pc Pt Ft Pa 

1 Clinical vs. Actuarial Geospatial Profiling Strategies X    X  

2 Route Security in Baghdad X X   X X 

3 International Security Assistance Force Handoff X X X  X X 

4 Explosively Formed Penetrator Placement X X X  X X 

5 Finding Osama Bin Laden X X X    

6 Geospatial Abduction Problems X    X  

7 Mapping of Cholera in Nineteenth-Century London     X  

8 Clandestine Airstrips in Guatemala X      

9 Mapping of Arsenic in Twentieth-Century Bangladesh     X  

10 Complexity and Accuracy of Geospatial Profiling Strategies X    X  

11 Geospatial Analysis of Terrorist Activities X X   X  

12 District Control     X X 

13 Tunisian Refugee Flow   X    

14 Improvised Explosive Device (IED) Use in Afghanistan and Pakistan     X  

15 Gang Roundup     X  

16 Gang Geographic Movement     X  

17 Predicting Mortgage Fraud X X   X X 

18 Tracking High-Value Cargo X X X X  X 

19 Environmental Study X  X    

20 Trench Mystery X X X  X X 

21 IED Attack Patterns  X X X  X X 

22 Underground Facility X X X  X X 

23 Memphis Airport Communications Failure  X X     

24 Banking Infrastructure X X     

25 The Lone Reconnaissance Vehicle X X X X  X 

26 Road Network Impact on Insurgency X X X  X  
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Table 5 shows that the majority of cases involve vulnerability (P) analysis and frequency (Ft) 
analysis. The vulnerability (P) analyses typically employ various distance functions by which 
suitability is modeled, much like spatial proximity of a Blue point to the Blue border constrains 
the probability P (vulnerability) in TACTICS. The frequency (Ft) analyses typically produce "dot 
plots" of historical activities, overlaid on geographic displays, much like the "batch plots" in 
TACTICS. 
 
In about half of the 26 cases, there was also utility (U) analysis, and/or capability (Pc) analysis, 
and/or intentionality (Pa) analysis. Of particular interest are the 10 stories of intentionality (Pa) 
analysis, because these are the cases that most clearly go beyond suitability analysis to require 
sensemaking – i.e., in predictions and explanations, per the definition of sensemaking outlined 
in Introduction (Section 1) and Definitions (Section 7). Referring to Table 5, two cases of 
predicting intentionality involve activity (Pt) analysis to support the estimation of Pa 
prognostically, whereas eight cases of explaining intentionality involve frequency (Ft) analysis to 
support the estimation of Pa forensically. 
 
As discussed in Description (Section 2), TACTICS involves all six types of analyses – although 
the focus is on intentionality analysis (Pa) as Blue's main task is to predict the probability that 
Red will attack and to explain Red tactics – i.e., because these are the key functions of 
sensemaking. The various other analyses are greatly simplified in TACTICS, compared to real-
world intelligence, to the point where results for most individual types of suitability (capability, 
activity, etc.) analyses are computed by the "system" and provided to Blue as INT "data" along 
with associated likelihoods (probabilities). This makes the task posed by TACTICS closest to 
that of an "all-source" analyst who acquires and exploits data from various geospatial 
intelligence sources (OSINT, IMINT, HUMINT, SIGINT, and SIGACTS). In fact the task of 
TACTICS goes beyond that of an all-source analyst to include the job of a decision-maker, who 
uses the all-source assessment to select operational courses of action.  

6.2 Analytical Systems 

Here it is important to acknowledge that raw data (INT reports) are useless for sensemaking, 
unless some person or system can assign corresponding likelihoods (discussed above). In the 
real-world this step is often tacit as an analyst may reason without making his or her estimates of 
likelihoods explicit. But the fact is that there must be at least an implicit assignment of 
likelihoods to raw data, if such data are to be of any use in reasoning to the most likely 
explanation (a hypothesis) or prediction (of evidence).  
 
The ICArUS challenge problem must make such likelihoods explicit (see Burns, 2014), in order 
to separate the function of estimating individual likelihoods from the function of aggregating 
multiple likelihoods. This separation is required, for rigor in measuring various cognitive biases 
that would otherwise be confounded in experiments.  
 
For example, consider the judgment of Red attack probability, Pa = Pt,p,c, which is an aggregation 
of various individual probabilities (Pt, Pp, and Pc) and an input to decision-making. If a human 
experiment measures only Blue decisions (d or ~d), without measuring the underlying judgments 
of Pa that affect such decisions, then there is no way to establish if a biased decision stems from 
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bias in Pa or from biases in other parameters of the decision (e.g., P, U, Ed, E~d). Likewise, if the 
contributing judgments (Pt, Pp, Pc) are not measured individually (and collectively), then there is 
no way to establish if bias in Pa stems from estimating the individual probabilities (and which 
ones?) and/or aggregating the multiple probabilities (at which stage?).  
 
The same separation is also quite relevant to real-world intelligence because it highlights the 
computational importance of likelihoods, which are required either implicitly or explicitly to 
"make sense" of any data. This is especially relevant to the engineering of "systems" that might 
usefully support sensemaking, as such systems must be able to both compute and communicate 
likelihoods to human sensemakers (Burns, 2007; 2006). 
 
In fact the distinction between estimating individual probabilities and aggregating multiple 
probabilities was the focus of early efforts to design machine systems that could support humans 
in real-world intelligence and operations functions (see Edwards & Phillips, 1964; Edwards, et 
al., 1968). Those groundbreaking efforts were aimed at mitigating conservative human biases 
(Edwards, 1982) by having systems aggregate the likelihoods in tasks of Bayesian inference. 
Unfortunately the systems were largely unsuccessful in practice, for two reasons. 
  
First, the job of estimating individual likelihoods (needed for input to the aggregation algorithm) 
was left to human beings, so inputs to the system were subject to human biases of likelihood 
estimation. Second, and more importantly, it was unrealistic to expect that human beings could 
and would provide the proper conditional likelihoods needed as input to the system – especially 
when they did not intuitively understand the aggregation algorithm (Burns, 2007; 2006).  
 
In short, the problem to be solved is not separation of the two functions (i.e., estimation versus 
aggregation). Rather the problem is integration of the two functions – which hinges on 
communication and coordination whenever the two functions are performed by two different 
agents (human and system, or human and human, or system and system).  
 
More recently, a prototype system was developed to support humans in performing the integrated 
functions of likelihood estimation and aggregation. This system, called Bayesian Boxes (Burns 
2007; 2006), is an interactive visualization using geometric representations of probabilistic 
information. The system helps humans understand what likelihoods must be estimated, and how 
they are then aggregated – by intuitively illustrating what are the inputs and outputs, as well as 
how the outputs are computed from the inputs. As such, the system is an example of "visual 
analytics" (see National Research Council, 2013, discussed in Section 6.4.1), which might be 
implemented, evaluated, and demonstrated in TACTICS. 
 
TACTICS is a useful test-bed in this regard, because it naturally poses the dual problems of 
estimating likelihoods (from BLUEBOOK knowledge and/or experience) and aggregating those 
likelihoods with various INT likelihoods from OSINT, HUMINT, and SIGINT. Each of these 
INT reports is accompanied by an associated probability that quantifies vulnerability, capability, 
or activity, respectively, akin to the likelihoods that might be developed implicitly or explicitly in 
real-world suitability analyses. 
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As mentioned in footnotes throughout Description (Section 2), each form of suitability analysis 
might be made more realistic in more complex versions of the basic task. That flexibility makes 
TACTICS scalable to any level of complexity, ranging from the current "lab" version (which 
could be further simplified, if desired) to almost any "real" demonstration that might be deemed 
useful in transition. More realistic demonstrations might be used to portray the integrated 
challenges of estimating individual likelihoods and aggregating multiple likelihoods, as 
discussed above. 
 
The lab version of TACTICS developed for Phase 2 is purposely limited with respect to the 
details of various suitability analyses, for both practical and programmatic reasons. From a 
practical perspective, if humans were required to perform more detailed suitability analyses 
themselves, it would detract from the current focus of experiments on sensemaking itself. From a 
programmatic perspective, more complex and realistic suitability analyses would require human 
visual perception and natural language processing capabilities, as well as extensive domain 
expertise (i.e., rich and sophisticated knowledge representations, RASKR), which are all outside 
the scope of the ICArUS BAA. 

6.3 Adversarial "Agents" 

Despite limitations noted above, the lab version of TACTICS may hold potential for real-world 
applications of ICArUS models and insights. This promise stems from adversarial aspects of the 
task, which serve to make TACTICS: 
 

A game of repeated risk assessment and action (Kaplan & Garrick, 1980; Garrick, et al., 
2004), posing cognitive challenges that are prototypical of intelligence and operations in 
threat situations (Burns, 2010; McDonald, 1950) – including counterinsurgency (COIN) 
and other security domains (airport/border, cyber/network, crime/fraud, drugs/gangs, 
etc.). 
 

In particular, a model that plays TACTICS (Blue or Red or both) with human-like biases, as 
measured and modeled in the lab, may be a useful "agent" in agent-based simulations (Axelrod, 
1984; Axelrod, 1997; National Research Council, 1998). Computational simulations are 
currently performed in many real-world security domains, but the agent models are typically not 
grounded in psychological or neuro-biological research on cognitive biases. This creates an 
opportunity for models that are more firmly based on behavioral research, particularly models 
that can credibly extrapolate from constrained lab conditions (in which they were developed and 
validated) to real-world situations of interest to the Intelligence Community. 
 
It remains to be seen how well neural models developed by ICArUS can extrapolate to more 
complex sensemaking (especially given scope limitations of the program, discussed above). 
Nevertheless, applications may be possible for game situations that involve relatively simple 
background knowledge and payoff structures, such as the "Stackelberg" game simulations 
currently being performed to support airport security operations. In fact a recent study in this 
domain by Pita, et al. (2010) highlights the importance of agent models that can act with human 
bias, noting that: 
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“Our results show that the anchoring bias may play an important role in human 
responses… and exploiting this bias can lead to significant performance improvements. 
This is an important conclusion… [with] real deployment at LAX and Federal Air 
Marshals service.” 
 

As currently designed in TACTICS, a Blue human plays against a Red agent with a very simple 
payoff structure for both players. Possible extensions that may prove useful in transition include 
a Blue agent playing against a Red human, or a Blue agent playing against a Red agent (as in 
most agent-based simulations, which have no humans in the loop). Extensions might also 
introduce more complex payoff structures, and/or scale-up complexity along any or all of the six 
(or more?) types of geospatial intelligence noted above in Section 6.1 – perhaps using "teams" of 
Blue (and Red) comprising different individuals, each performing different analytical and 
operational functions but acting together in a coordinated fashion (Powers, et al., 2010). 

6.4 Organizational Training 

As discussed above, Adversarial Agents and Analytical Systems are two areas for transition of 
ICArUS models and insights. A third area that holds potential for transition is Organizational 
Training, based on lessons learned from the design of TACTICS and human/model experiments 
with the game. Some topics that might be addressed in such a training program are outlined in 
the following sections. 

6.4.1 What is Sensemaking, Anyway? 

As a practical matter, the computational design of TACTICS (also see Burns, 2014) serves to 
expose and explain sensemaking more formally than previous research on the topic (see 
Introduction, Section 1). In a first step toward transition, the computational approach has enabled 
a relational mapping of TACTICS to 26 cases of real-world intelligence, discussed in Section 
6.1. This mapping may allow intelligence analysts as well as ICArUS itself to better understand 
analytic "tradecraft" from the scientific perspective of cognitive computing.  
 
Further steps in the same direction may be informed by knowledge gained in the challenge 
problem design process, particularly insights associated with cognitive biases (Section 5) and the 
normative solutions (Section 4) that are required for rigorously measuring and modeling such 
biases. These insights might be elucidated by a training program that demonstrates biases in 
hands-on fashion using the current version or tailored demo of TACTICS as a use case. 
  
Perhaps the most important and underappreciated insight of all, which would be made clear in 
such a demo, is the key role played by likelihoods – i.e., likelihoods of evidence given 
hypotheses, and likelihoods of hypotheses given evidence. These likelihoods are the critical 
components of frames, or scripts, or whatever else one chooses to call the knowledge structures 
involved in sensemaking.  
 
As discussed in Section 6.2, data are useless for sensemaking without some person or system that 
infers or assigns associated likelihoods. So tools and techniques for "storing" (warehousing) or 
"seeing" (visualizing) or "sharing" (disseminating) data are useful for sensemaking only to the 
extent that they represent likelihoods (which most current systems do not) and/or support human 
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users in estimating and aggregating likelihoods (which most current systems do not). This 
suggests opportunities to advance the practice of intelligence sensemaking (Burns, 2011), where 
a focus on likelihoods may lead to novel systems (Section 6.2) as well as future training for the 
geospatial intelligence workforce. 
 
For example, a recent report by the National Research Council (NRC, 2013) on "Future U.S. 
Workforce for Geospatial Intelligence" begins by stating that: 
 

"We live in a changing world with multiple and evolving threats to national security, 
including terrorism, asymmetrical warfare, and social unrest. Visually depicting and 
assessing these threats [emphasis added] using imagery and other geographically-
referenced information is the mission of the National Geospatial-Intelligence Agency 
(NGA). As the nature of the threat evolves, so do the tools, knowledge, and skills needed 
to respond." 
 

The NRC report reviews existing disciplines and core competencies of geospatial intelligence, 
including those associated with Geographic Information Systems, which are primarily concerned 
with visually depicting various aspects of the threats. The report also identifies emerging 
disciplines where new competencies are required for assessing these threats, including "human 
geography" (i.e., understanding the activities of individual and organizations), "visual 
analytics" (i.e., cognitive reasoning, especially as aided by visual interfaces), and "forecasting"  
(i.e., anticipating outcomes or behaviors using statistics and modeling).  
 
Notice that these new and emerging areas are less concerned with depicting aspects of threats 
and more concerned with assessing the threats themselves – ultimately to support appropriate 
actions. As such the emerging disciplines of geospatial intelligence are clearly aligned with the 
practice of sensemaking, which is concerned with explaining (understanding) and predicting 
(forecasting) the behavioral activities of actors in geospatial areas of interest. The more 
established disciplines of geospatial intelligence are geared more toward developing and 
depicting data, and performing various forms of suitability (vulnerability, opportunity, capability, 
etc.) analyses, which in turn serve as inputs to threat assessment – in sensemaking. 
 
The NRC report goes on to observe that academic degrees and agency training in the emerging 
disciplines of geospatial intelligence are still in their infancy. Therefore new training programs, 
like new "tools" (systems, see Section 6.2), represent an opportunity for applying Integrated 
Cognitive-neuroscience Architectures for Understanding Sensemaking. TACTICS may be useful 
for that purpose as the game itself is a tool that could be used in training on "heuristic and 
biases" (discussed below).  

6.4.2 Heuristics and Biases 

Although there is much talk of "bias" in the Intelligence Community (e.g., George & Bruce, 
2008), most of this talk is not grounded in computational theory or experimental testing, let alone 
a combination of the two. As a result there are many unsupported arguments about if and when 
humans are biased or not – and why it is important – and what can be done about it. Conversely, 
the academic literature contains many computational and experimental studies of cognitive 
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biases, but each is typically limited to one (or a few) isolated bias(es) studied in the context of an 
artificial lab task that lacks natural richness. A potential contribution of TACTICS is to help 
bridge this apparent gap with an adversarial game task combining scientific rigor with analytic 
relevance. 
 
The design of TACTICS shows first-hand how difficult it is to rigorously define relevant biases, 
because such definitions are sensitive to assumptions that must be made in computing solutions. 
For example, perhaps the most infamous bias discussed in intelligence circles is Confirmation 
Bias, and yet the normative analyses of TACTICS show that a confirmation preference (in 
seeking evidence) is actually optimal assuming realistic values for sensor parameters – hence it is 
not really a "bias" per se. This suggests that other so-called biases may also be useful (if not 
optimal), too – at least in many situations of real-world importance. In fact much research in 
recent years points to the advantages of heuristics that are naturally employed in cognitive 
reasoning (Gigerenzer, 2000; Gigerenzer & Selten, 2001; Gigerenzer & Todd, 1999).  
 
It appears that even the most basic distinction between a "heuristic" (psychological process) and 
"bias" (behavioral result) is not well-appreciated in the Intelligence Community, despite the 
influential Psychology of Intelligence Analysis (Heuer, 1999). Thus a training program may add 
value simply by clarifying and exemplifying "heuristics and biases" in a use case of geospatial 
intelligence demonstrated by TACTICS. More value could be added by addressing other 
important definitions and distinctions from a computational perspective, much like the design of 
TACTICS itself began by formalizing vague notions like "frames" and "re-framing" and "set-
shifting" in terms of hypotheses, evidence, and likelihoods. This would help relate the emerging 
view of "sensemaking" to an established view of "hypothesis testing", which has been used by 
some in the Intelligence Community for decades (Zlotnick, 1970; Fisk, 1972; Schweitzer, 1976; 
Heuer, 1999) to formalize the practice of the same basic process that ICArUS calls sensemaking.  
 
Beyond these definitions and distinctions, a training program might also distinguish the cognitive 
processes that can lead to various sensemaking biases, i.e., the processes of inferencing, 
decision-making, and foraging.  For instance, one can postulate a Confirmation Bias in 
combining likelihoods, and/or in assigning likelihoods (which would then be used in combining 
likelihoods), and/or in selecting evidence (which would then be used in assigning likelihoods and 
combining likelihoods). Typically authors focus on only one of these behaviors without 
addressing the others in concert. For example, two recent and relevant experiments on 
Confirmation Bias measured the relative "weight" of support assigned to one or more hypotheses 
(Lehner, et al., 2008; Lehner, et al., 2009). However, the "overweighting" observed in these 
studies might be mitigated or even reversed by the "conservative" biases (Edwards, 1982) known 
to affect human aggregation of such "weights" (which are actually likelihoods).  
 
In some cases it appears that the so-called Confirmation Bias may actually be an author's own 
bias – as the term has come to be a catch-all for almost any favored effect that the author himself 
would like to "confirm" in lab testing or storytelling. This was illustrated in a formal analysis 
(Burns, 2005) of a well-known story dealing with so-called Confirmation Bias (Perrow, 1984). 
TACTICS enables more integrated and empirical measures of the "confirming" and 
"disconfirming" cognitive processes, so that associated biases (whatever they are called) can be 
studied in a more rigorous and relevant fashion. 
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Finally, it should be acknowledged that a completely different type of Confirmation Bias may in 
fact be the most ubiquitous and important – and yet it is apparently the least studied of all. That 
type of Confirmation Bias applies to creating a frame of discernment (set of hypotheses) in the 
first place, whereby an analyst may tend to confirm one or more of his current hypotheses rather 
than generate new hypotheses that may better explain the evidence. This is the familiar bias we 
see in major intelligence failures sometimes referred to as "failures of imagination" (The 9/11 
Commission Report, 2004). 
  
Unfortunately this bias is difficult to study with computational and experimental rigor. Instead it 
is easier to study how people reason over a controlled (fixed and known) sets of hypotheses. So, 
here again, the literature on biases itself may be "biased" in "confirming" what is most 
convenient to study rather than addressing what is most relevant and important. Admittedly the 
design of TACTICS also suffers from this same bias, driven by the need to meet BAA 
requirements for evaluating models in Comparative Performance Assessment (CPA) and 
Cognitive Fidelity Assessment (CFA). However, Missions 4 and 5 of TACTICS do approach a 
more creative sensemaking in which humans are making forensic inferences at a higher level of 
abstraction (e.g., the Red style, Passive or Aggressive) in order to support prognostic inferences 
at a lower level of abstraction (e.g., the probability of Red attack).  
 
Looking beyond Phase 2, TACTICS might be extended to support future research on more 
"wicked" (open) problems posing challenges of creative (abductive) sensemaking. These are 
clearly the problems of most relevance to the Intelligence Community, often explored in "team" 
training and Red-Blue exercises. But thus far they have not been researched with much rigor 
using computational models and experimental testing (Powers, et al., 2010; Ambrose & Ahern, 
2008). These problems that require "creative thinking" have also not been addressed by research 
on "critical thinking", which is typically measured by closed-form questions in multiple-choice 
format (MITRE, 2014). 

6.4.3 Structured Analytic Techniques 

A final topic that deserves mention, in the context of Organizational Training, is Structured 
Analytic Techniques (SATs). The SATs include Analysis of Competing Hypotheses (ACH, see 
Heuer, 1999), designed to help address Confirmation Bias, as well as many other techniques 
(Beebe & Pherson, 2012). These SATs are promoted as tools that can mitigate biases and prevent 
intelligence failures, and they may indeed do so. But it is not clear to what extent SATs actually 
help, or in what respects SATs may not help and may even hurt.  
 
For example, one empirical study of Confirmation Bias (Lehner, et al., 2008) showed that ACH 
offered a significant reduction in bias only for participants without intelligence analysis 
experience. Also, results of the ICArUS experiments (using experienced and inexperienced 
participants) shows that numerous biases remain even when structured techniques like ACH are 
employed. In Phases 1 and 2, the experimental protocol effectively forced all participants to 
adopt the technique of ACH, and yet significant biases were still measured in individual and 
average human responses. This suggests that ACH does not eliminate biases, and it may even 
introduce biases.  
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The point here is not to argue for or against the use of ACH or any other SAT. Rather, the point 
is that much work remains to establish the advantages and disadvantages of SATs, using rigorous 
and relevant evaluations. Moreover, it should be noted that most "structured" techniques are 
merely "questions" or "checklists", so they are basically what most analysts (at least experienced 
analysts) would be doing anyway – implicitly and naturally. This may help explain the limited 
benefit of ACH noted above (Lehner, et al., 2008), which was found only for participants 
without intelligence experience.  
 
Moving beyond the questions and checklists of SATs, there appear to be opportunities for more 
revolutionary advances in analytic tools, techniques, and training. But these advances will 
require a cognitive-scientific approach that addresses intelligence analysis from a computational 
perspective (Burns, 2014), like the approach adopted by ICArUS and its challenge problem of 
TACTICS.  

6.5 Conclusion 

As noted in the Introduction (Section 1), a computational approach is needed to advance the 
scientific understanding of sensemaking at functional, psychological, and biological levels of 
abstraction. Research products of ICArUS span all three levels, to promote transition in the form 
of Analytical Systems, Organizational Training, and Adversarial Agents, as follows: 
 

At the functional level, formal design of a challenge problem exposes the computational 
functions of sensemaking, including inferencing (prognostic and forensic), decision-
making, and foraging. In that regard, ICArUS holds potential for transition to Analytical 
Systems. 
 
At the psychological level, human data and Bayesian benchmarks enable a deeper 
understanding of heuristics and biases in geospatial sensemaking. In that regard, ICArUS 
holds potential for transition to Organizational Training. 
 
At the biological level, neural models that emulate human behavior can help explain the 
fundamental mechanisms that give rise to sensemaking biases. In that regard, ICArUS 
holds potential for transition to Adversarial Agents. 
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7 Definitions 
Abducting is a form of sensemaking in which re-framing creates new hypotheses not previously 
considered in one's frame of discernment. 
 
Bayesian refers to the use of Bayes Rule for updating beliefs in hypotheses given evidence. 
Bayes Rule is mathematical specification of how prior (before evidence) probabilities of 
hypotheses and conditional likelihoods of evidence (given hypotheses) are combined to compute 
posterior (after evidence) probabilities of hypotheses. Bayesian also refers to the optimal 
computation of expected utility, in decision-making situations, as the product of probability and 
utility summed across all possible outcomes of an option. 
 
Causal Hierarchy is an ordering of causal factors in which higher factor(s) cause or constrain 
lower factor(s), such that: the assumption of a higher factor (hypothesis) can be used to infer the 
probability of a lower factor (evidence) – in a prediction of evidence (i.e., in forward inference); 
and the observation of a lower factor (evidence) can be used to infer the probability of a higher 
factor (hypothesis) – in an explanation of evidence (i.e., in backward inference). In TACTICS, 
the causal hierarchy is represented by four arrows (→) as follows: intent → tactic → action → 
feature → datum.  
 
Confidence is a measure of belief in the truth of a hypothesis (i.e., confidence in explanation) or 
evidence (i.e., confidence in prediction), quantified as a likelihood (probability) ranging from 
zero to one. [In a more specific sense, not used here, confidence is a measure of second-order 
probability, i.e., the probability that some probability is correct.] 
 
Evidence is a report of a datum or feature or action or tactic or anything else that might be 
observed at any level of a causal hierarchy. The term evidence may be used in referring to actual 
observations (i.e., evidence that may be explained by hypotheses and likelihoods) or potential 
observations (i.e., evidence that may be predicted by hypotheses and likelihoods). 
 
Explanations are backward inferences about the likelihoods of hypotheses in light of evidence.  
  
Frames are knowledge structures, comprising hypotheses, evidence, and confidences, including 
conditional likelihoods of evidence (i.e., conditional on hypotheses) as well as conditional 
likelihoods of hypotheses (i.e., conditional on evidence). In spatial context frames, likelihoods 
depend on spatial factors. In event sequence frames, likelihoods depend on temporal (and spatial) 
factors. 
 
Frame of Discernment refers to the set of hypotheses (and/or set of evidence) over which one 
reasons and assigns confidence. 
 
Hypotheses are possible explanations of evidence, typically involving causal reasons for 
evidence. 
 
Inferencing is the assignment of confidences to hypotheses in one's frame of discernment. 
Abducting is a class of inferencing that involves the creation of new hypotheses.  
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Likelihood is a general term referring to confidence measured by probability. The term 
likelihood is also used in a more specific (Bayesian) sense when referring to the probability of 
some evidence conditional on a hypothesis.  
 
Posterior refers to the result of Bayesian updating, in which prior probabilities are updated with 
likelihoods (of evidence given hypotheses) to compute posterior probabilities (of hypotheses 
given evidence). 
 
Predictions are forward inferences about the likelihoods of evidence in light of hypotheses.  
 
Prior refers to the probability of a hypothesis in the absence of evidence, i.e., prior to obtaining 
the evidence. 
 
Probability is a mathematical measure of belief in the truth of a hypothesis or evidence. As such, 
probability is a measure of mental confidence.  
 
Re-framing (aka Set-shifting) is a revision of hypotheses, or revision of confidences across 
hypotheses, in which the most likely hypothesis changes due to the observation of surprising 
evidence (i.e., evidence that is not likely to be caused by the currently-most-likely hypothesis or 
hypotheses).  
 
Sensemaking is a recurring cycle of obtaining evidence and updating confidence in competing 
hypotheses, to explain and predict an evolving situation. 
 
Set-shifting is another term for re-framing. 
 
Spatial Hierarchy is an ordering of spatial features in which higher level(s) include features at 
lower level(s). In TACTICS, an area of interest includes regions, and a region includes circles 
around points – thus the spatial hierarchy is: area(region(circle(point))). 
 
Temporal hierarchy is an ordering of temporal events in which higher level(s) include events at 
lower level(s). In TACTICS, a mission is a sequence of batches, and a batch is a sequence of 
trials. Each trial includes a sequence of temporal-spatial features (of events, from INT reports), 
in stages of the trial, thus the temporal hierarchy is mission(batch(trial(stage))). 
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