
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

334-229-8396

62556-MA-ST2.1

W911NF-13-C-0025

Final Report

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

The primary objectives of the Phase II of the project are: (a) implement the context-aware parallel random number
generator (CPRNG), developed in Phase I of this project, (b) implement the interstream correlation (ISC) test so
that the quality of the random numbers (RNs) used by applications are evaluated and quality metrics are reported on
demand. Both objectives have been accomplished.

Beyond these objectives, additional design and implementation contributions have been accomplished. A flexible

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

28-07-2015 20-Dec-2012 19-Mar-2015

Approved for Public Release; Distribution Unlimited

Final Report: Random Number Generation for High Performance
Computing

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

CPRNG, Pseudorandom Number Generation for High Performance Computing, Interstream Correlation (ISC) Test, ISC Framework

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Alain Bopda

Rajendra V. Boppana, Ph.D., P.I., UTSA, and Robert M Keller, Silicon
Informatics, Inc.

665502

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Silicon Informatics, Inc.
6500 Parnell Ave.

Edina, MN 55435 -1515

19-Mar-2015

ABSTRACT

Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

Final Report: Random Number Generation for High Performance Computing

Report Title

The primary objectives of the Phase II of the project are: (a) implement the context-aware parallel random number generator (CPRNG),
developed in Phase I of this project, (b) implement the interstream correlation (ISC) test so that the quality of the random numbers (RNs)
used by applications are evaluated and quality metrics are reported on demand. Both objectives have been accomplished.

Beyond these objectives, additional design and implementation contributions have been accomplished. A flexible CPRNG-ISC Test (CIT)
framework was developed and implemented so that a third party tester such as Dieharder or TestU01 can be run along with ISC test to
corroborate or compare ISC test results with those from the well-known single-stream test batteries. The CPRNG Library facilitates
implementation and use of other random number generators within the test framework easily.

To demonstrate the flexibility of the CIT framework, we implemented the MLFG generator from SPRNG package together with a number of
other generators, some of which have become available since the beginning of this Phase II project.

Three versions of CPRNG were implemented: CPU-based context-free generator, a CPU-based context-aware generator, and GPU-based
context-free generator.

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of
the project to the date of this printing. List the papers, including journal references, in the
following categories:

(b) Papers published in non-peer-reviewed journals (N/A for none)

Presentation to the HPC User Forum, Boston MA, in September 2013 by Rajendra V Boppana, Ph.D. An electronic copy of the presentation
was provided to the COTR and is available online at www.hpcuserforum.com. At the HPC User Forum website, click on "previous meeting
archive," then "September 2013 Boston," and then "RajBoppana.pdf."

(c) Presentations

Received Paper

TOTAL:

Received Paper

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

1.00Number of Presentations:

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

Received Paper

TOTAL:

Received Paper

TOTAL:

Received Paper

TOTAL:

Books

Number of Manuscripts:

Patents Submitted

Patents Awarded

Awards

Graduate Students

Arising from Phase I of this project, there were two U.S. patent applications based on inventions that were developed by
University of Texas at San Antonio (UTSA) during Phase I and subsequently reported to the Contracting Officer on DD
Form 882. These patent applications include: "Generation of Distinct Pseudorandom Number Streams Based on Program
Context," and "A Statistical Test Method to Quantify Inter-Streams Based on Program Context." A DD Form 882
describing these inventions was submitted to the Contracting Officer by UTSA on Feb 16, 2012.

On October 21, 2014, US Patent Number 8,868,630 B1, based on the latter patent application above, issued. Regarding the
former, a US Patent Office Notice of Allowance has issued. The issued patent and patent application are included as
appendices in the pdf file accompanying this final report.

Received Book

TOTAL:

Received Book Chapter

TOTAL:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Discipline
Robin Schulze 0.43

0.43

1

Names of Post Doctorates

Names of Faculty Supported

Names of Under Graduate students supported

Names of Personnel receiving masters degrees

Names of personnel receiving PHDs

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:
The number of undergraduates funded by your agreement who graduated during this period and intend to work

for the Department of Defense
The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:

0.00

0.00

0.00

0.00

0.00

0.00

0.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in
science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue
to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:......

......

......

......

......

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

National Academy Member
Rajendra V. Boppana 0.30
Ram C. Tripathi 0.08
Ravinderpal Singh Sandhu 0.04
Ashok Srinivasan 0.08

0.50

4

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

NAME

Total Number:

NAME

Total Number:

......

......

Sub Contractors (DD882)

Names of other research staff

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

97 South Woodward Avenue, Third Floor

Provide subject matter expertise (testing of pseudorandom number generators) to the Principal Investigator. In particular, provide guidance regarding the development and implementation of the context aware pseudorandom number generator test program.

Provide subject matter expertise (testing of pseudorandom number generators) to the Principal Investigator. In particular, provide guidance regarding the development and implementation of the context aware pseudorandom number generator test program.

Serve as Principal Investigator for the overall Phase II effort. Provided direction to the Silicon Informatics software engineer assigned to the project as well as subcontractor Florida State University. Primarily responsible for testing and delivery of software and related documentation.

Serve as Principal Investigator for the overall Phase II effort. Provided direction to the Silicon Informatics software engineer assigned to the project as well as subcontractor Florida State University. Primarily responsible for testing and delivery of software and related documentation.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Florida State University Sponsored Research Administration

874 Traditions Way, Third Floor

Tallahassee FL 323064166

SI-2013-001

12/20/12 12:00AM

12/29/14 12:00AM

Florida State University

Tallahassee FL 323060001

SI-2013-001

12/20/12 12:00AM

12/29/14 12:00AM

University of Texas at San Antonio One UTSA Circle

San Antonio TX 782491644

SI-2012-001

12/20/12 12:00AM

3/19/15 12:00AM

University of Texas at San Antonio 6900 North Looop 1604 West

San Antonio TX 782491130

SI-2012-001

12/20/12 12:00AM

3/19/15 12:00AM

1 a.

1 a.

1 a.

1 a.

Inventions (DD882)

Scientific Progress

1. Accomplishments

A flexible CPRNG-ISC Test (CIT) framework was developed and implemented so that a third party tester such as Dieharder or
TestU01 can be run along with the ISC test to corroborate or compare ISC test results with those from the well-known single-
stream test batteries.

The CPRNG Library is implemented in a flexible manner to facilitate implementation and use of other random number
generators within the test framework easily (see Figure 1 in the attached document).

To demonstrate the flexibility of the CIT framework, we implemented the MLFG generator from SPRNG package [7], drand48—
available on standard Unix/Linux systems, and a parallel RNG based on cryptographic operations from the family of generators
proposed by D.E. Shaw Group [12], and a pathological linear congruence generator (pLCG). In addition, we implemented within
CPRNG Library to provide access to Intel’s new digital random number generator (DRNG) and Nvidia’s GPU-based generator
MTGP32 [6], when the host system has the necessary hardware—newer processor chips or GPUs, respectively—to support
these generators.

Three versions of CPRNG were implemented: CPU-based context-free generator, which is used to report results in this report,
CPU-based context-aware generator, and GPU-based context-free generator. A context-aware generator automatically, without
any changes to the application code, uses distinct RN streams when the application requests for RNs from a stream from
different program contexts.

2. Performance Analysis

CPRNG, the new parallel random generator developed in Phase I of this project, was implemented in the SPRNG package in
Phase I. In Phase II, it was implemented as a standalone library package with a simple application programming interface. The
results given in Figure 2 of the attached document indicate that the time to initialize a RN stream is decreased slightly, and the
time to obtain a RN is reduced by 20-30%. CPRNG generates RNs with very low overhead.

The ISC Test was used to determine the interstream correlations for MLFG and CPRNG in Phase I. In Phase II, several other
random number generators implemented within the CPRNG Library have been evaluated for interstream correlations using the
CPRNG-ISC Test framework. The results, given in Figure 3 of the attached document, show that CPRNG generates a large
number of parallel RN streams with low interstream correlations.

The CIT framework is used to compare the quality metrics—DR and KS statistics [8],[9]—by ISC test with the Dieharder [11]
and TestU01 [10] test batteries that are commonly used in literature. In general, the two test batteries corroborate each other’s
test results for a given stream of RNs. The Ising model simulation [5], which simulates the spread of energy in a 2-D lattice, and
for which the exact theoretical results are available, is the application we used to corroborate or refute the results by various test
methods.

For the pathological linear congruence generator (pLCG), which is designed to have high interstream correlations, the ISC Test
and the two test batteries indicate significant correlations among RNs. This is confirmed by the Ising model simulations. On the
other hand, drand48, a sequential generator commonly available on Linux and Unix systems, is reported to have high
correlations by Dieharder and TestU01. However, ISC test does not indicate any correlations; the Ising model simulations
confirm the ISC test results.

References

[1] R.V. Boppana, “Context-aware parallel pseudorandom number generators for large parallel computations,” In Proceedings
Of DoD High Performance Computing Modernization Program Users Group Conference, pp. 634-641, 2011.

[2] R.V. Boppana, “Generation of distinct pseudorandom number streams based on program context,” UT Patent Approved
(application number 13/426,028), June 2015.

[3] R.V. Boppana and R.C. Tripathi, “Verification of pseudorandom number streams,” US Patent 8.868,630 B1, October 2014.

[4] R.V. Boppana, “Final Report,” STTR Project: Random number generation for high performance computing, ARO Contract #
W911NF-11-C-0026, May 2011.

[5] P. Coddington, Tests of random number generators using Ising model simulations. Int. J. of Mod. Phys. 7, 3, 295-303, 1996.

[6] NVIDIA, Inc. CUDA Programming Guide, version 1.0, 1997.

[7] M. Mascagni and A. Srinivasan, Algorithm 806: SPRNG: a scalable library for pseudorandom number generation. ACM
Transactions on Mathematical Software (TOMS), 26(3), pp. 436-461, 2000.

[8] A. Donner and B. Rosner. On inferences concerning a common correlation coefficient. Applied Statistics, 29(1):69-76, 1980.

[9] P. V. Rao. Statistical Research Methods in the Life Sciences. Brooks/Cole, 1998.

[10] P. L'Ecuyer and R. Simard. TestU01: A C library for empirical testing of random number generators. ACM Trans. Math.
Softw. 33, 4, August 2007.

[11] R. G. Brown, D. Eddelbuettel and D. Bauer. Dieharder Test Package, v 3.29.0, Duke University. Online: http://www.phy.

duke.edu/~rgb/General/dieharder.php. Retrieved on Nov. 2010.

[12] J.K. Salmon et al., “Parallel Random Numbers: As Easy as 1, 2, 3,” In Procs. of Supercomputing, 2011.

3. Business and Dissemination Plan

The major components supporting long term sustainability of CPRNG include:

• Preservation of all the software files and documentation,

• Development and growth of a body of users, and

• Continuation of CPRNG commercial licensing efforts, with a primary objective of licensing to a strategic partner such as a
processor manufacturer (for inclusion in its tools library), or system manufacturer or vendor, or a major software provider.

3.1. Rationale

In order to accomplish the above, Silicon Informatics plans to assign its interest in CPRNG software, the “GetCPRNG.com”
domain and associated website creative files to the University of Texas (UT) System. To the extent practicable, Silicon
Informatics will continue to support the development of a user community and commercial licensing efforts.

The innovations developed during the course of this project are extensive and a bit ahead of their time than was anticipated at
the outset of Phase II of this project. Despite our extensive outreach to the government, academic and private sectors, users’
needs appear to be met with conventional tools, including those that have been introduced since the inception of this project.
One possible explanation is that much of the high performance computing software used for production runs has yet to be
adapted and optimized to run on GPGPU-enhanced machines. [This information was presented by IDC in conjunction with at
the SC14 Conference in New Orleans, LA, Nov 2014, a copy of which was provided to the COTR]. Despite these software
issues, semiconductor manufacturers continue to innovate in areas of parallelization, processor-coprocessor integration and
memory. One example is Intel Corporation’s Knights Landing processor, a “many integrated core” architecture that competes
with GPGPU products. Knights Landing, with first shipments expected in 2015, will work as a host processor, capable of
running an OS and applications on its own, while at the same time functioning as a coprocessor. Another example is Nvidia’s
Titan X GPGPU, announced at Nvidia’s 2015 GPU Technology Conference, which will deliver up to 7 teraflops of single
precision performance. We cite these processor trends, as they exemplify the future of High Performance Computing (HPC)
where the circumstances on the demand side will eventually ripen for CPRNG’s innovations.

In the meantime, while applications software is adapted and optimized (or “rewritten” according to IDC), the greatest challenge
is to gain CPRNG user experience. Toward that end, the University of Texas at San Antonio (UTSA) is well positioned.
Unhindered by jointly held intellectual property rights, UTSA will have the ability to make our CPRNG software available not only
to Government users, but also to users throughout the UT System. Under sole ownership, the process of licensing CPRNG
commercially will be streamlined.

3.2. Further Work

Based on our evaluation of CPRNG and several other generators, CPRNG appears to be a high quality random number
generator suitable for parallel applications that require a large number independent random number (RN) streams. The ISC test
is a unique test to evaluate correlations among streams without being limited by the number of streams or number of random
numbers. It also has the capability to evaluate the random numbers used by an application on the fly and provide a quality
metric on the correlations among the random numbers used. The CIT framework provides a flexible framework to (a) evaluate
new random number generators easily and compare them to the existing ones and (b) compare and calibrate the new random
number generator test packages against the current test packages. CIT framework is very powerful for the design and testing of
new random number generators and test suites.

The research and software produced by this project can be extended in making CIT framework more accessible to researchers
that use a wide variety of computing platforms including multicore, GPU and many integrated core (MIC) architectures. Another
direction for further work is to implement CPRNG and some of the other generators for MIC architectures such as Intel Xeon
Phi. Currently, the ISC test can analyze RNs based a pre-specified grouping of streams and and interleaving method. However,
the ISC test can be made even more powerful by recoding it to analyze random numbers consumed by application in multiple
ways simultaneously.

Appendixes:

A. Phase I Final Technical Report

B. Paper, Context-Aware Parallel Pseudorandom Number Generators for Large Parallel Computations, 2011 DoD High
Performance Computing Modernization Program (HCPMP) Users Group Conference, Rajendra V. Boppana, June 2011

C. US Patent 8,868,630 B1, entitled Verification of Pseudorandom Number Streams, Inventors Rajendra V. Boppana and Ram
C. Tripathi

D. US Patent Application 13/426,028, entitled Generation of Distinct Pseudorandom Number Streams based on Program
Context, inventor Rajendra V. Boppana

Technology Transfer

Silicon Informatics together with subcontractor University of Texas at San Antonio have engaged in outreach to several DoD
Defense Supercomputing Resource Centers and service laboratories and have organized demonstrations to researchers at
ARL and NRL. Our outreach extended to NASA and DoE laboratories as well as to private corporations. Most of these
organizations have participated in the HPC User Forum (www.hpcuserforum) which is organized by IDC and convened twice
annually at various locations throughout the USA. During the course of this project, we have attended four of the HPC User
Forum meetings and were invited to present at the meeting held in Boston MA in 2013. We have also attended two IEEE/ACM
Supercomputing conferences, SC13 and SC14, where we met with representatives from Government and private industry. In
addition, we participated in the DoD SBIR/STTR Beyond Phase II conference in San Antonio in December 2014 where we
participated in several one-on-one meetings with DoD lab, agency and industry representatives.

Monthly Status Report Period: 20 December 2014 — 19 March 2015 Silicon Informatics, Inc.

CLIN: 0014AM Contract #: W911NF-13-C-0025

Academic Partners: University of Texas at San Antonio and Florida State University

1

Technical Progress Report
and Final Report

STTR Phase II Project: Random Number Generation for High Performance Computing

Period of Performance: December 20, 2012 — March 19, 2015

1. Accomplishments

The primary objectives of the Phase II of the project are: (a) implement the context-aware
parallel random number generator (CPRNG), developed in Phase I of this project [1],[2],[4],
with simple application programming interface (API) and scalability to accommodate
applications running on a large number of processor cores or general purpose graphics
processing unit (GPU) cores; (b) implement the interstream correlation (ISC) test so that the
quality of the random numbers (RNs) used by applications are evaluated and quality metrics are
reported on demand [3]. Both objectives have been accomplished. The following additional
design and implementation contributions have been accomplished in this project.

A flexible CPRNG-ISC Test (CIT) framework was developed and implemented so that a third-
party tester such as Dieharder or TestU01 can be run along with ISC test to corroborate or
compare ISC test results with those from the well-known single-stream test batteries.

The CPRNG Library is implemented in a flexible manner to facilitate implementation and use of
other random number generators within the test framework easily (see Figure 1).

CPRNG
Library

ISC Test
Third-party

Tester
Application

RN RN RN

Application
Results

ISC Test
Results

Other Tester
Results

Figure 1. CPRNG-ISC Test framework. ISC Test can be run concurrently with application and quality of
the random numbers (RNs) consumed by the application can be provided periodically or upon the
completion of the application. In addition, a third-party tester such as the single-stream offline test
packages could be used to provide an alternate method to assess the quality of the RNs.

CPRNG Library is designed to accommodate a wide variety of random number generators with a simple
interface and compare their suitability for a given application.

Also, new random number generator test packages can be evaluated by comparing their performance
against ISC Test or other known test packages.

Monthly Status Report Period: 20 December 2014 — 19 March 2015 Silicon Informatics, Inc.

CLIN: 0014AM Contract #: W911NF-13-C-0025

Academic Partners: University of Texas at San Antonio and Florida State University

2

To demonstrate the flexibility of the CIT framework, we implemented the MLFG generator from
SPRNG package [7], drand48—available on standard Unix/Linux systems, and a parallel RNG
based on cryptographic operations from the family of generators proposed by D.E. Shaw Group
[12], and a pathological linear congruence generator (pLCG). In addition, we implemented
within CPRNG Library to provide access to Intel’s new digital random number generator
(DRNG) and Nvidia’s GPU-based generator MTGP32 [6], when the host system has the
necessary hardware—newer processor chips or GPUs, respectively—to support these generators.

Three versions of CPRNG were implemented: CPU-based context-free generator, which is used
to report results in this report, CPU-based context-aware generator, and GPU-based context-free
generator. A context-aware generator automatically, without any changes to the application
code, uses distinct RN streams when the application requests for RNs from a stream from
different program contexts.

2. Performance Analysis

CPRNG, the new parallel random generator developed in Phase I of this project, was
implemented in the SPRNG package in Phase I. In Phase II, it was implemented as a standalone
library package with a simple application programming interface. The results given in Figure 2
indicate that the time to initialize a RN stream is decreased slightly, and the time to obtain a RN
is reduced by 20-30%. CPRNG generates RNs with very low overhead.

The ISC Test was used to determine the interstream correlations for MLFG and CPRNG in
Phase I. In Phase II, several other random number generators implemented within the CPRNG

Figure 2. Comparison of RN stream initialization and RN generation times for two implementations of
CPRNG. CPRNG 2 is the Phase II implementation in the CPRNG Library. CPRNG1 is the Phase I
implementation of CPRNG in SPRNG package. For comparison purposes, the times for MLFG, a parallel
RNG in SPRNG package are shown.

Monthly Status Report Period: 20 December 2014 — 19 March 2015 Silicon Informatics, Inc.

CLIN: 0014AM Contract #: W911NF-13-C-0025

Academic Partners: University of Texas at San Antonio and Florida State University

3

Library have been evaluated for interstream correlations using the CPRNG-ISC Test framework.
The results, given in Figure 3, show that CPRNG generates a large number of parallel RN
streams with low interstream correlations.

The CIT framework is used to compare the quality metrics—DR and KS statistics [8],[9]—by
ISC test with the Dieharder [11] and TestU01 [10] test batteries that are commonly used in
literature. In general, the two test batteries corroborate each other’s test results for a given stream
of RNs. The Ising model simulation [5], which simulates the spread of energy in a 2-D lattice,
and for which the exact theoretical results are available, is the application we used to corroborate
or refute the results by various test methods.

For the pathological linear congruence generator (pLCG), which is designed to have high
interstream correlations, the ISC Test and the two test batteries indicate significant correlations
among RNs. This is confirmed by the Ising model simulations. On the other hand, drand48, a
sequential generator commonly available on Linux and Unix systems, is reported to have high
correlations by Dieharder and TestU01. However, ISC test does not indicate any correlations; the
Ising model simulations confirm the ISC test results.

Monthly Status Report Period: 20 December 2014 — 19 March 2015 Silicon Informatics, Inc.

CLIN: 0014AM Contract #: W911NF-13-C-0025

Academic Partners: University of Texas at San Antonio and Florida State University

4

Figure 3. ISC Test of interstream correlations for various random number generators implemented or
accessed through CPRNG Library. The generators implemented within the CPRNG Library include
mlfg—a generator from SPRNG package—and crypt—a cryptographic operations-based generator from
a family of generators designed by D.E. Shaw Group. The generators accessed through CPRNG Library
include mtgp—a GPU-based RNG by Nvidia—and i-rng—a new RNG by Intel which has hardware-
support for seed generation with high entropy and cryptographic operations for RN generation.

Two statistical tests, Donner-Rossner and Kolmogorov-Smirnov tests, are used to accept or reject the
hypothesis that the parallel streams extracted from an RNG are not correlated. The significance levels are
0.05 for the DR test and 0.01 for the KS test. The dashed lines indicate the critical value below which the
test statistics (DR or KS) should remain to validate the hypothesis.

Monthly Status Report Period: 20 December 2014 — 19 March 2015 Silicon Informatics, Inc.

CLIN: 0014AM Contract #: W911NF-13-C-0025

Academic Partners: University of Texas at San Antonio and Florida State University

5

References

[1] R.V. Boppana, “Context-aware parallel pseudorandom number generators for large parallel
computations,” In Proceedings Of DoD High Performance Computing Modernization Program Users
Group Conference, pp. 634-641, 2011.

[2] R.V. Boppana, “Generation of distinct pseudorandom number streams based on program context,”
UT Patent Approved (application number 13/426,028), June 2015.

[3] R.V. Boppana and R.C. Tripathi, “Verification of pseudorandom number streams,” US Patent
8.868,630 B1, October 2014.

[4] R.V. Boppana, “Final Report,” STTR Project: Random number generation for high performance
computing, ARO Contract # W911NF-11-C-0026, May 2011.

[5] P. Coddington, Tests of random number generators using Ising model simulations. Int. J. of Mod.
Phys. 7, 3, 295-303, 1996.

[6] NVIDIA, Inc. CUDA Programming Guide, version 1.0, 1997.
[7] M. Mascagni and A. Srinivasan, Algorithm 806: SPRNG: a scalable library for pseudorandom

number generation. ACM Transactions on Mathematical Software (TOMS), 26(3), pp. 436-461,
2000.

[8] A. Donner and B. Rosner. On inferences concerning a common correlation coefficient. Applied
Statistics, 29(1):69-76, 1980.

[9] P. V. Rao. Statistical Research Methods in the Life Sciences. Brooks/Cole, 1998.
[10] P. L'Ecuyer and R. Simard. TestU01: A C library for empirical testing of random number generators.

ACM Trans. Math. Softw. 33, 4, August 2007.
[11] R. G. Brown, D. Eddelbuettel and D. Bauer. Dieharder Test Package, v 3.29.0, Duke University.

Online: http://www.phy.duke.edu/~rgb/General/dieharder.php. Retrieved on Nov. 2010.
[12] J.K. Salmon et al., “Parallel Random Numbers: As Easy as 1, 2, 3,” In Procs. of Supercomputing,

2011.

3. Business and Dissemination Plan

The major components supporting long term sustainability of CPRNG include:

 Preservation of all the software files and documentation,
 Development and growth of a body of users, and
 Continuation of CPRNG commercial licensing efforts, with a primary objective of

licensing to a strategic partner such as a processor manufacturer (for inclusion in its tools
library), or system manufacturer or vendor, or a major software provider.

3.1. Rationale

In order to accomplish the above, Silicon Informatics plans to assign its interest in CPRNG
software, the “GetCPRNG.com” domain and associated website creative files to the University
of Texas (UT) System. To the extent practicable, Silicon Informatics will continue to support
the development of a user community and commercial licensing efforts.

The innovations developed during the course of this project are extensive and a bit ahead of their
time than was anticipated at the outset of Phase II of this project. Despite our extensive outreach

Monthly Status Report Period: 20 December 2014 — 19 March 2015 Silicon Informatics, Inc.

CLIN: 0014AM Contract #: W911NF-13-C-0025

Academic Partners: University of Texas at San Antonio and Florida State University

6

to the government, academic and private sectors, users’ needs appear to be met with
conventional tools, including those that have been introduced since the inception of this project.
One possible explanation is that much of the high performance computing software used for
production runs has yet to be adapted and optimized to run on GPGPU-enhanced machines.1
Despite these software issues, semiconductor manufacturers continue to innovate in areas of
parallelization, processor-coprocessor integration and memory. One example is Intel
Corporation’s Knights Landing processor, a “many integrated core” architecture that competes
with GPGPU products. Knights Landing, with first shipments expected in 2015, will work as a
host processor, capable of running an OS and applications on its own, while at the same time
functioning as a coprocessor. Another example is Nvidia’s Titan X GPGPU, announced at
Nvidia’s 2015 GPU Technology Conference, which will deliver up to 7 teraflops of single
precision performance. We cite these processor trends, as they exemplify the future of High
Performance Computing (HPC) where the circumstances on the demand side will eventually
ripen for CPRNG’s innovations.

In the meantime, while applications software is adapted and optimized (or “rewritten” according
to IDC), the greatest challenge is to gain CPRNG user experience. Toward that end, the
University of Texas at San Antonio (UTSA) is well positioned. Unhindered by jointly held
intellectual property rights, UTSA will have the ability to make our CPRNG software available
not only to Government users, but also to users throughout the UT System. Under sole
ownership, the process of licensing CPRNG commercially will be streamlined.

3.2. Further Work

Based on our evaluation of CPRNG and several other generators, CPRNG appears to be a high
quality random number generator suitable for parallel applications that require a large number
independent random number (RN) streams. The ISC test is a unique test to evaluate correlations
among streams without being limited by the number of streams or number of random numbers. It
also has the capability to evaluate the random numbers used by an application on the fly and
provide a quality metric on the correlations among the random numbers used. The CIT
framework provides a flexible framework to (a) evaluate new random number generators easily
and compare them to the existing ones and (b) compare and calibrate the new random number
generator test packages against the current test packages. CIT framework is very powerful for the
design and testing of new random number generators and test suites.

The research and software produced by this project can be extended in making CIT framework
more accessible to researchers that use a wide variety of computing platforms including
multicore, GPU and many integrated core (MIC) architectures. Another direction for further

1 Presentation by IDC, “IDC at SC14” slide 93 of 95, Nov 18, 2014: “software is the #1 roadblock; better
management software is needed, parallel software is lacking for most users, (and) many applications will need a
major redesign.”

Monthly Status Report Period: 20 December 2014 — 19 March 2015 Silicon Informatics, Inc.

CLIN: 0014AM Contract #: W911NF-13-C-0025

Academic Partners: University of Texas at San Antonio and Florida State University

7

work is implement CPRNG and some of the other generators for MIC architectures such as Intel
Xeon Phi. Currently, the ISC test can analyze RNs based a pre-specified grouping of streams and
and interleaving method. However, the ISC test can be made even more powerful by recoding it
to analyze random numbers consumed by application in multiple ways simultaneously.

Programmatic issues: None.

4. Schedule Update

Monthly Status Report Period: 20 December 2014 — 19 March 2015 Silicon Informatics, Inc.

CLIN: 0014AM Contract #: W911NF-13-C-0025

Academic Partners: University of Texas at San Antonio and Florida State University

8

5. Milestone Update

Milestones completed to date: The fourth and final of the software is released in July 2015 to
ARL researchers. This version supersedes the prior releases. Initial version of the project website
is active and hosted by Rackspace at the URL getcprng.com.

This report is supplemented by a 4-part Appendix consisting of the technical documents
produced as part of the project and the final report from Phase I of this project.

Prepared by: Rajendra V. Boppana, Ph.D., P.I., University of Texas at San Antonio, and

Robert Keller, Project Director, Silicon Informatics.

July 22, 2015

Final Technical Report Silicon Informatics, Inc.
CLIN: 0001AF Academic Partner: University of Texas at San Antonio
Period: 26 Oct 10– 25 Apr 11 Contract #: W911NF-11-C-0026

Page 1 of 8

Final Report
STTR Project: Random Number Generation for High Performance Computing

1. Summary of Work Completed

This project has two primary objectives: (a) design and implement prototypes of highly scalable,
high quality parallel random number generators (PRNGs) for a variety of computing and
programming models including multicore/multithreaded, message passing, and general purpose
graphics processing unit (GPGPU) models; (b) design and implement test methods that evaluate
the independence of a large number of parallel random number (RN) streams and provide easy to
use quality metrics. Both objectives have been accomplished.

The rest of the final report is organized as follows. First, the main contributions are summarized.
Descriptions of the work done for various tasks that were pursued to accomplish the project
objectives are given next. Technical details and performance data are provided in two
attachments: a supplementary report and a technical paper that will be presented at DoD HPC
Users Group Conference, June 2011.

Main contributions

 A new statistical test, called ISC test, to evaluate interstream correlations of a large
number of RN streams is designed and implemented. The ISC test is a significant
contribution to the state-of-the art in PRNG testing. It can be used to evaluate billions of
RN streams simultaneously and obtain an overall quality metric. This test has low
computational overhead and can be adapted for online testing—in which the RNs
consumed in an application are analyzed in parallel with the application and a quality
metric is provided at the end of the application execution. To the best of our knowledge,
this is the first such test. The ISC test identified potential correlations among the streams
of a popular and widely used PRNG in the SPRNG package. The test results were further
confirmed with a new DTMC simulation application we developed in this project.

 ISC test is a first-level test method with applications of Ising model simulations and other
applications forming the next level test methods. A new application based on the
simulations of a discrete-time Markov chain (DTMC) model is implemented. This
application can be used to test both intrastream correlations and interstream correlations
for a large number of RN streams.

 Online version of ISC test and additional physical modeling applications such as fracture
analysis, multiscale modeling, and CTH will be added to the test package that will be
implemented in Phase II.

vishnu
Typewritten Text
Appendix A: Phase I Final Report

Final Technical Report Silicon Informatics, Inc.
CLIN: 0001AF Academic Partner: University of Texas at San Antonio
Period: 26 Oct 10– 25 Apr 11 Contract #: W911NF-11-C-0026

Page 2 of 8

 A new context-aware parallel random number generator (CPRNG) is designed and
implemented. CPRNG is highly scalable and supports applications that require a large
and unpredictable number (at the beginning of the execution) of distinct RN streams. The
current version is based on the multiplicative lagged Fibonacci generator (MLFG)
technique. Additional CPRNGs based on other RN generation techniques will be
designed and implemented in Phase II.

 CPRNG implementation supports various computing/programming models: sequential,
multicore/multithreaded, message passing (MPI), and GPGPU. We tested the functional
correctness of all these implementations extensively. The prototype CPRNG
implementation is free of memory leaks and race conditions; it can supply billions of RN
streams easily.

 CPRNG prototype implementation is tuned extensively for efficient initialization of RN
Streams and generation of RNs. With respect to timing costs, CPRNG compares well
with the basic MLFG, which does not provide the same level of flexible and scalable
generation of streams dynamically.

 Several code optimizations that reduce the overheads and improve the speed of CPRNG
have been identified. With these optimizations incorporated (in Phase II implementation),
CPRNG will perform faster with less overhead.

Description of work completed

To accomplish the project objectives, several tasks were identified and pursued during the
project period. The work completed for each proposed task and the contributions are described
below.

A. Comparison and assessment of current parallel random number generators (PRNGs) and their
evaluation techniques.

As part of this task, we identified several PRNG software packages and sequential test packages.
The SPRNG package from Florida State University, the Dieharder test package from Duke
University, and the TestU01 package from Universite de Montreal obtained for this task are
extensively used in the remainder of the project work.

Regarding the currently available PRNGs, we identified the multiplicative lagged Fibonacci
generator (MLFG), a parameterized approach to generate independent parallel RN streams, as
the most suitable candidate for the design of highly scalable and high quality context-aware
parallel random number generators (CPRNGs). We used version 2 of SPRNG package, which
include 6 PRNGs, as the platform on which we implemented CPRNGs. The Ising model
simulations (both Metropolis and Wolff algorithms) implemented in SPRNG have been
extensively used to test and compare CPRNGs with the MLFG and other generators in SPRNG.

Final Technical Report Silicon Informatics, Inc.
CLIN: 0001AF Academic Partner: University of Texas at San Antonio
Period: 26 Oct 10– 25 Apr 11 Contract #: W911NF-11-C-0026

Page 3 of 8

B. Implementation of PRNGs on multicore and GPGPUs

SPRNG provides MPI (message passing interface)—based interface for parallel applications
designed with MPI interface for interprocess communication. In addition, SPRNG is
implemented in such a way that multithread programs can also use the package transparently.
However, the burden is placed on the application developer/user to ensure that total number of
streams used is known and the streams are allocated to different threads/processes suitably.

We developed a test code to evaluate the time taken to initialize a new RN stream and the time to
generate a random number from a stream using Intel’s timestamp counters. The timing tests are
repeated several times and averaged to obtain representative timing data.

Mersenne twister (MT), in particular, Nvidia developed MTGP generator, is extensively used by
parallel applications that use GPUs. However, MTGP is a single-stream generator; it needs to be
segmented and segments must be allocated to different threads. Our investigation did not find a
truly scalable PRNG with small state-space and highly independent RN streams needed for
large-scale GPGPU computing.

C. Evaluation of PRNGs using known statistical and application-based tests

Single-stream test methods have been extensively studied in literature. Many single-stream tests
were implemented in various test packages including the Dieharder and TestU01 packages,
which we used extensively. Parallel random number streams are interleaved using the perfect
shuffle pattern to create a single RN stream and single-stream tests are used for statistical
evaluation of a PRNG. A single-stream test package contains 20 different types of basic tests
(which may be repeated with different parameters to create up to 150 test instances) and gives
pass/fail status for each test applied to the interleaved stream. This provides a vector of pass/fail
information that will be hard to use for comparisons of different PRNGs.

We tested the six generators in SPRNG using Dieharder and TestU01. All perform well with
only an occasional failure for one of the tests. These tests use a few billions of RNs from the test
stream for these tests. Therefore, they are not suitable to test a large number of parallel RN
streams; if a billion streams are interleaved to form a single stream, then these tests only examine
a few numbers from each stream, which may not be enough to assess the inter-stream
correlations. On the other hand, if a billion RN streams are partitioned into several sets with each
set consisting of a small number of RN streams, and single-stream tests are applied on each set,
then these tests will take several 100s of hours on a desktop machine and provide multiple
vectors of pass/fail information that will be hard to combine into an easy to understand quality
metric.

Regarding application-based testing, the Ising model simulation codes in SPRNG are the best
known and most commonly used applications PRNG evaluations.

Final Technical Report Silicon Informatics, Inc.
CLIN: 0001AF Academic Partner: University of Texas at San Antonio
Period: 26 Oct 10– 25 Apr 11 Contract #: W911NF-11-C-0026

Page 4 of 8

D. Development of new statistical tests to quantify inter-stream correlation

We implemented an interstream correlation (ISC) test to evaluate the correlations among a large
number of RN streams. This test requires parallel RN streams to be combined (using perfect
shuffle interleaving or a biased-interleaving) into a bivariate RN stream (RNs 1, 3, … form X
variates and RNs 2, 4, .. form Y variates). This bivariate RN stream is transformed into bivariate
normal RN stream and the correlation coefficient, r , between the X and Y variates is computed.
Several sets of RN streams are used compute several r ’s. Collectively, these r ’s are the samples
that can be used to estimate  , the true common correlation coefficient among the parallel RN

streams generated by the PRNG being evaluated. We used Donner and Rosner test method (DR-
test, Applied Statistics J., vol. 29, no. 1, 1980) to combine the r ’s and obtain the test statistic
denoted Ht , which is a standard normal random variate. This can be used to test the null

hypothesis 00 :H . Large absolute values of Ht will lead to the rejection of the null

hypothesis and the acceptance of the alternative hypothesis 01 :H . For a significance level

050. , absolute values of Ht above 1.96 leads to the rejection of the claim that parallel RN

streams are independent; the probability that the rejection is erroneous is 050. . One could
use different significance levels: for 020. , the absolute values of Ht above 2.33 will lead to

rejection of the claim of independence of RN streams with only 0.02 probability of being wrong.

We developed a Kolmogorov-Smirnov test (KS-test) on the distribution of r ’s. In this test, the
KS-test statistic, maxD , computed using the r ’s must be less than the critical value, n,D , for

significance level  and n , the number of r 's used.

A preliminary version of this test was described in Monthly Report 3 (January 2011).

We used these ISC test with the two test metrics extensively to evaluate the correlations among
the RN streams of a PRNG. This is a highly scalable test. We tested up to 1.5 billion RN
streams with at least 100 numbers taken from each stream. To best of our knowledge, this is the
first time a billion RN streams are tested simultaneously and a single figure of merit is given.

In our test process, we identified significant correlations among RN streams of MLFG, a PRNG
in the SPRNG package. Both DR-test and KS-test statistics, Ht and maxD , give very high

values leading the rejection of the claims of independence of the RN streams generated by this
PRNG. MLFG fails the ISC test consistently when 15 million or more streams are considered.

We confirmed this potential problem with MLFG using a new application we developed in this
project. This application simulates a discrete-time Markov chain (DTMC) with an absorbing
state. (The DTMC estimates the number of packet transmissions, which are the steps or state
transitions in the model, it takes for a node to suspect its next hop node of dropping its packets in
a multi-hop wireless network.) Compared to the Ising model simulations, DTMC model can use

Final Technical Report Silicon Informatics, Inc.
CLIN: 0001AF Academic Partner: University of Texas at San Antonio
Period: 26 Oct 10– 25 Apr 11 Contract #: W911NF-11-C-0026

Page 5 of 8

a large number of RN streams much more speedily, and the theoretical values can be calculated
easily.

When 1.5 million or more streams are used, MLFG fails to match the theoretical estimation.
Since the application is a simulation of the model, not the actual wireless network, using a good
PRNG should lead to quick convergence of simulation estimates to match the theoretical
estimates.

E. Development of new scalable PRNGs

A highly scalable context-aware parallel random number generator (CPRNG) that can provide
distinct RN streams automatically for different contexts is designed. The first version is based on
MLFG but with different initialization methods. This allows a large number of distinct RN
streams that can be dynamically requested with very little communication cost: beyond the initial
specified limit of RN streams, which do not incur any interprocess communication or thread
synchronization/serialization, an application can request for new RN streams with only two
interprocess communication messages or a mutex lock access. Extensive description of the
design of CPRNG is given in Monthly Reports 4 and 5.

F. Preliminary implementation and evaluation of CPRNG

We implemented CPRNG in the SPRNG package. It can be used by sequential applications,
multicore/multithreaded applications, MPI-based parallel applications, GPGPU based
applications.

The functional correctness of the implementation for all these scenarios is tested extensively
using a parallel application (denoted all_reduce) that uses multiple RN streams and multiple
numbers from each stream, computes their overall sum modulo 100. We used all_reduce to test
as many as 1 million RN streams and ensured that CPRNG provides consistent RNs regardless of
the number processes/threads used.

We evaluated the timing costs of initialization and RN generation. The initialization cost of
CPRNG is about 26,000 clock ticks, which is about the same as that of MLFG in SPRNG
package. The RN generation cost is about 3 clock ticks more (23 vs. 20 ticks on a machine with
Intel quad-core i7-870 CPU and 20 vs. 17 ticks on a machine with Intel Xeon E630 CPU).

We evaluated the quality of CPRNG using the ISC test, Ising model simulations, and DTMC
model simulations. The results for the Ising model simulations, given in the Monthly Report 5,
show that CPRNG performs about the same as that MLFG implemented in the SPRNG package.
However, these simulations use at most 256 RN streams.

The ISC test is used for further evaluation. With up to 1.5 billion streams used, CPRNG
performed well with test statics below the corresponding critical values in all but one instance.
Even in that scenario, which used 1.5 billion RN streams, the KS-statistic was slightly higher

Final Technical Report Silicon Informatics, Inc.
CLIN: 0001AF Academic Partner: University of Texas at San Antonio
Period: 26 Oct 10– 25 Apr 11 Contract #: W911NF-11-C-0026

Page 6 of 8

than the corresponding critical value, but the DR-static was well below its corresponding critical
value. Further testing with the DTMC application showed that using CPRNG allows the
simulation results to converge to the theoretical values much more quickly than using MLFG.

Technical details and performance data are given in a technical paper submitted as a supplement
to this report.

Business and Dissemination Plan

One of ARO’s objectives in supporting this research is to ensure that the PRNG software that
results from this research is relevant to and used in military and commercial simulation
applications. Our proposal for Phase II of this project sets forth a detailed plan to introduce the
new context aware parallel random number generator (CPRNG) to the high performance
computing (HPC) community and make it available to military, academic and commercial users.

Major elements of this plan include:

1. Communication to HPC User community. The first such communication will be a paper
presented by Rajendra Boppana at the HPCMP Users Group Conference on June 23,
2011. The paper is entitled: “Context-Aware Parallel Pseudorandom Number
Generators for Large Parallel Computations.” Other presentation opportunities include
SC11 (Seattle, November 2011, http://sc11.supercomputing.org/), SC12 (November
2012) and IDC’s HPC User Forum April 2012. Please note that it might be best to
introduce our commercial version of the CPRNG software through a paper/presentation
at the SC12 conference.

UTSA and Silicon Informatics will interact with and provide the prototype software to
select HPC users and parallel application developers to test the usability and quality of
the random numbers generated by CPRNG and to evaluate the effectiveness of the online
ISC test method. These evaluations will be used to refine the prototype prior to a more
general release to the HPC community.

2. Creation of a long-term sustainability plan, the product of research undertaken by Silicon
Informatics, KEYW Corporation and the UTSA Center for Innovation and Technology
Entrepreneurship. The plan will identify ways to reach the broadest set of military,
academic and commercial users while generating sufficient revenue to ensure that
availability of the CPRNG software is sustainable over the long term.

3. Release of prototype version of the CPRNG software, complete with documentation, for
evaluation and implementation at US Government HPC centers, including DoD Major
Shared Resource Centers.

4. Development of a website that will facilitate distribution and support of the software for
military, academic and commercial users.

Final Technical Report Silicon Informatics, Inc.
CLIN: 0001AF Academic Partner: University of Texas at San Antonio
Period: 26 Oct 10– 25 Apr 11 Contract #: W911NF-11-C-0026

Page 7 of 8

5. Release of a fully-robust, commercial version of the CPRNG software.

6. Granting royalty-based sublicense rights that enable the CPRNG software to be bundled
and/or integrated with other applications software.

Programmatic issues: None.

Final Technical Report Silicon Informatics, Inc.
CLIN: 0001AF Academic Partner: University of Texas at San Antonio
Period: 26 Oct 10– 25 Apr 11 Contract #: W911NF-11-C-0026

Page 8 of 8

2. Schedule Update

3. Milestone Update

Milestones completed to date: Tasks A through G.

Milestones expected to be completed during the next reporting period: None.

Milestones expected to be missed during the next reporting period: None.

Prepared by:

Rajendra V. Boppana, Ph.D., P.I., University of Texas at San Antonio (technical section) and
Robert Keller, Project Director, Silicon Informatics (Business plan)

May 23, 2011

Task Description
Completion

Status

A Comparison and assessment of
current PPRNGs and their
evaluation techniques

100%

B Implementation of PPRNGs on
muilti-core CPUs and GPGPUs 100%

C Evaluation of PPRNGs using
known statistical and application-
based tests

100%

D Development of new statistical
tests to quantify inter-stream
correlation

100%

E Development of new scalable
PPRNG algorithms 100%

F Preliminary implementation and
evaluation of new PPRNGs 100%

G Phase I final report, including
Phase II work plan 100%

Month 2Month 1 Month 6Month 5Month 4Month 3

Final Technical Report Supplement Silicon Informatics, Inc.
CLIN: 0001AF Academic Partner: University of Texas at San Antonio
Period: 26 Oct 10 – 25 Apr 11 Contract #: W911NF-11-C-0026

Page 1 of 4

Final Report Supplement
STTR Project: Random Number Generation for High Performance Computing

This document supplements the final report for the project by providing test data and brief
explanations of the same.

1. RNG Timing Tests

CPRNG is the new random number generator (RNG) designed in this project. MLFG, ALFG,
and ALFG_17 are the RNGs in SPRNG package. CPRNG is implemented in the SPRNG
package. Any parallel application currently designed to use SPRNG generators can use CPRNG
by changing the RNG code to 9. No additional application modifications are needed.

Two computers, a desktop computer with Intel Core i7-870 CPU and a rack server with Xeon
E630 CPU, are used to estimate the time required for initialization of a random number (RN)
stream and the time taken to generate a single random number from an already initialized stream.
The times are given in clock ticks—2.93 ticks/ns for Core i7-870 and 2.53 ticks/ns for Xeon
E630 machines. The initialization costs of CPRNG are about the same as those of MLFG, on
which CPRNG is based. The cost of generating an RN is about 3 ticks higher compared to
MLFG owing to the additional processing needed for context-aware RN generation. This can be
easily eliminated if the application does not require contex-aware RN generation.

The CPRNG implementation is free of leaks, is multithread safe, and works seamlessly with
MPI-based applications. The GPU version of CPRNG is implemented as a different generator
(with RNG code 10) with some restrictions on features: no context-awareness, and the maximum
number of streams needed by the application must be specified at the beginning of the program
execution. The CPU version of CPRNG provides context-awareness, the ability to use distinct
streams automatically for different contexts, and nearly unlimited number of RN distinct streams.

Final Technical Report Supplement Silicon Informatics, Inc.
CLIN: 0001AF Academic Partner: University of Texas at San Antonio
Period: 26 Oct 10 – 25 Apr 11 Contract #: W911NF-11-C-0026

Page 2 of 4

2. ISC Tests for Inter-stream Correlations

The ISC test is applied on several sets of RN streams. The RN streams in a set are interleaved
using perfect shuffle or biased interleaving method. Consider three RN streams A, B and C with
RNs, respectively, ,a,a,a 321 , ,b,b,b 321 , and ,c,c,c 321 . In perfect shuffle interleaving, a

new stream ,a,c,b,a,c,b,a 3222111 is created. In biased interleaving, ,a,b,a,c,a,b,a 4231211

is created. The RNs in the odd numbered positions form the X variates and the RNs in the even
numbered positions form the Y variates. These are transformed into normal bivariates using Box-
Muller transform. Correlation coefficient, r , for the bivariate pairs is computed. This is repeated
several times to obtain multiple r ’s. In our tests, we used 1500 sets of random number streams
with the set size varied from 10 to 1,000,000 to obtain 150021 r,,r,r  .

These r ’s are aggregated using a well-developed test method such as Donner and Rosner test
(DR-test) or Kolmogorov-Smirnov test (KS-test) and a test statistic is obtained. The statistic for
DR-test is denoted as Ht and the statistic for KS-test as maxD . For each test, there is a critical

value that is computed based on the desired significance level and the number of r ’s used. For
DR-test at a significance level of 0.05, the critical value is 1.96 provided the number of bivariate
pairs used to calculate each r is large. For KS-test, at a significance level of 0.01, the critical
value is 0.0274 when the number of r ’s used is 1500. If test statistic is significantly above the
critical value, then the RN streams generated by the PRNG are likely to have significant
interstream correlations.

The two graphs below give the results of the two tests for shuffle-interleaving of RN streams.
When the set size is 1,000,000, a million streams are used to obtain a single r , and a total of 1.5
billion streams are used to obtain the 1500 r ’s used to calculate the test statistic. The dashed line
indicates the critical value for that test. Our results indicate that MLFG (the built-in random
number generator in the SPRNG package) fails both DR- and KS-tests for test configurations
that use 1.5 million or more streams. On the other hand, CPRNG, which is also based on the
same theoretical foundation as that of MLFG, performs well; it narrowly fails the KS-test only
for the largest test configurations we used.

Final Technical Report Supplement Silicon Informatics, Inc.
CLIN: 0001AF Academic Partner: University of Texas at San Antonio
Period: 26 Oct 10 – 25 Apr 11 Contract #: W911NF-11-C-0026

Page 3 of 4

3. Application-based Tests

Ising model simulations

We have tested the prototype CPRNG with the Ising model simulations for a 1616 lattice
based on Metropolis and Wolff algorithms. A distinct RN stream is used for each lattice point.
The results for absolute error in specific heat vs. the standard deviation are shown for the
Metropolis and Wolff algorithms in the graphs below. We used the same parameters indicated in
the paper by Srinivasan et al., “Testing parallel random number generators,” Parallel Computing
2003: 1616 lattice, 1000-word blocks, 1 million blocks with the first 100 blocks discarded.
(These graphs are the revised versions of the graph presented in Monthly Report 5.)

In these simulations, the absolute error (the difference between the theoretical calculations and
the simulation values) of specific heat or energy is compared to the standard error of the same
metric (1.96 times the standard deviation of the simulation values) at a significance level of 0.05.
That is up to 5% of the error points may be greater than the standard error and lie above the cut-
off line indicated in the graph. The MLFG results in the left graph are exactly the same as the
ones presented in Fig. 6 of the paper by Srinivasan et al. These results show that CPRNG is no
worse than MLFG for this test.

Markov model simulations

We also implemented a new test based on the simulation of a discrete-time Markov chain
(DTMC) that models the time it takes a node to suspect its next hop of dropping packets based
on transmission overhearing in wireless ad hoc networks. The DTMC estimates the number of
packet transmissions, which are the steps or state transitions in the model, it takes for a node to
suspect its next hop node of dropping its packets in a multi-hop wireless network. The DTMC
has an absorbing state denoting the state in which the next hop is suspected and L transient
states, where L is the threshold to suspect the next hop node. Since the application is a
simulation of the model, not the simulation of the actual wireless network, using a good PRNG
should lead to quick convergence of simulation estimates to match the theoretical estimates.

Final Technical Report Supplement Silicon Informatics, Inc.
CLIN: 0001AF Academic Partner: University of Texas at San Antonio
Period: 26 Oct 10 – 25 Apr 11 Contract #: W911NF-11-C-0026

Page 4 of 4

Based on several test runs using the DTMC application, we observed that simulations that use
MLFG do not converge as rapidly as the simulations that use CPRNG.

Compared to the Ising model simulations, DTMC model simulations can use a large number of
RN streams much more speedily, and the theoretical values can be calculated more easily. In
fact, we implemented the code within the simulation program so that the appropriate theoretical
values can be calculated based on the test parameters prior to a simulation. With appropriate
choice of parameters, DTMC application can use a large number of RN streams and/or a large
number of RNs from each stream. If a simulation is repeated k times, and there are L transient
states, it is natural to use L distinct RN streams in each simulation run or a total of kL RN
streams for the entire simulation. By changing the threshold L , the number of RNs consumed in
a simulation run can be increased.

The results of simulations for various threshold values L for a scenario are given in the following
graph. For each threshold value, MLFG or CPRNG is used to simulate the Markov model to
determine the number of steps taken to reach the absorbing state. This is repeated 10,000 times
and the average number of steps taken to reach the absorbing state is estimated. This estimate is
compared with the theoretical calculations by calculating the absolute deviation as a percentage
of the theoretical value. The cut-off point is 1%. If the deviation is above 1%, then the simulation
is considered to have not converged. For the four tests we conducted, simulations using MLFG
converge in two out of four scenarios, while the simulations using CPRNG converged in all four
cases.

This application is promising, but further investigation is needed to understand its usefulness in
testing the correlations among RN streams.

634

2011 DoD High Performance Computing Modernization Program Users Group Conference

Context-Aware Parallel Pseudorandom Number Generators for Large Parallel
Computations

Rajendra V. Boppana
CS Dept. and Inst. for Cyber Security, University of Texas at San Antonio, TX

boppana@cs.utsa.edu

Abstract

Design and testing of parallel pseudorandom number generators (PRNGs) that generate millions of parallel random
number (RN) streams needed for large parallel computations is a nontrivial task if: a) the number of parallel streams
are not fixed at the beginning of the program execution, and they are to be generated in a distributed manner with low
communication overhead; and b) the correlations among the parallel streams must be very low. Furthermore, the current
PRNGs require the user to manage the number of streams and their initialization, which can be onerous if each process
or thread of a parallel application consumes RNs at multiple locations and, for better randomization, distinct RN streams
must be used in each instance. In this paper, both problems are addressed using context-aware PRNGs. In this approach,
each request for an RN stream by a process/thread results in the allocation of a large set of RN streams, so that each distinct
program statement that calls for RN generation (denoted, RN context) is served with a distinct RN stream taken from the RN
streams assigned to that process. A prototype context-aware parallel random number generators (CPRNGs) based on the
multiplicative lagged Fibonacci generator is implemented for automatic RN stream generation based on RN contexts. A
new parallel statistical test, called the inter-stream correlation (ISC) test, is designed and implemented to assess the degree
of independence among a large number of parallel RN streams and provide an easy-to-use quality metric. Preliminary
results indicate that the prototype CPRNG provides high-quality RN streams, and that the ISC test promises to be a highly-
effective test to assess correlations among a large number of RN streams.

1. Introduction

Many scientific computing applications, business and finance applications, and complex systems modeling and
analysis techniques use random number generators1 (RNGs) extensively for simulations of various likely scenarios and
estimations of potential outcomes. Often, these applications are highly-scalable and can take advantage of the availability
of thousands of computing cores on heterogeneous systems comprising multi-core processors (CPUs) and highly-parallel
general-purpose graphics processing units (GPGPUs), provided that suitable parallel random number generators (PRNGs)
are available to simultaneously feed thousands of computing streams with high-quality random number (RN) streams with
low intra- and inter-stream correlations.

We present context-aware parallel random number generators (CPRNGs) based on a new approach to allocate and
manage RN streams by parameterized random number generators that can generate virtually unlimited numbers of distinct
RN Streams. Lagged Fibonacci generators (LFGs), which generate a new RN by applying an arithmetic or logic operation
on two or more previously generated RNs, can provide a large number of distinct RN streams, with each stream having a
large cycle—the number of RNs that can be used before the sequence repeats. A prototype CPRNG, based on multiplicative
lagged Fibonacci generator (MLFG), is implemented and evaluated. CPRNG provides two new features that a basic MLFG
does not provide.

 ● CPRNG uses the program context, in which a request for a random number is made, to automatically select and
use distinct RN Streams for distinct contexts.

 ● A typical PRNG requires the application to declare the maximum number of RN streams used in an execution run,
and the number of distinct RN streams requested to be within this limit. However, this can be a significant constraint

1The random number generators we consider this paper are pseudorandom number generators. For easier description, however, we simply refer to them
as random number generators.

vishnu
Typewritten Text
Appendix B: Technical Paper on CPRNG and ISC Test

635

for applications that may spawn additional processes during the execution, based on the intermediate results and
use unpredictable number of RN streams.

 ● CPRNG relaxes this constraint and allows applications to request virtually unlimited number of RN streams beyond
any initially-specified RN stream limit.

Another problem addressed in this work is the evaluation of intra-stream and inter-stream correlations—i.e., the quality
of the random numbers generated. Several excellent statistical tests[1,11] are available to test intra-stream correlations of
a sequential RNG. Test packages such as Diehearder[16] and TestU01[15] run a battery of such tests on an RN stream and
provide pass/fail results from each test. If an RN stream fails any of the tests, then additional, more detailed tests are
conducted. Otherwise, it is assumed that the RN stream is free of intra-stream correlations with very high probability.

To assess the quality of a PRNG, several parallel RN streams generated by it are interleaved using the perfect shuffle
pattern to create a single RN stream, and single-stream test batteries are used to evaluate the inter-stream correlations
among the RN streams[7,8]. A single-stream test package contains 20 different types of basic tests (which may be repeated
with different parameters to create up to 150 test instances) and gives pass/fail status for each test applied to the interleaved
stream. This provides a vector of pass/fail information that will be hard to use for comparisons of different PRNGs.
Furthermore, these tests use a few billions of RNs from the test stream for these tests. Therefore, they are not suitable
to test a large number of parallel RN streams; if a billion streams are interleaved to form a single stream, then these tests
only examine a few numbers from each stream, which may not be enough to assess the inter-stream correlations. On the
other hand, if a billion RN streams are partitioned into several subsets with each subset consisting of a small number of RN
streams, and single-stream test batteries are applied on each set, then these tests will take several 100’s of hours on a desktop
machine and provide multiple vectors of pass/fail information that will be hard to combine into an easy-to-understand
quality metric.

Another approach is to use thoroughly analyzed applications to test inter-stream and long-range correlations of RNGs.
For example, a physics application involving simulations of two-dimensional (2D) Ising square lattice models with periodic
boundary conditions, for which the exact solutions are known, is often used to evaluate PRNGs[3,4,7]. However, application-
based tests are computationally-expensive and may not be adaptable to test billions of parallel streams at a time. Therefore,
faster and more informative statistical tests of parallel RN streams are needed. Currently, there are very few parallel
statistical tests that do not require serialization of RN streams and have the potential to evaluate inter-stream correlations.

We present a new inter-stream correlation (ISC) test that evaluates a large number of parallel RN streams simultaneously,
and provides an easy-to-use quality metric. The ISC test divides the total streams to be evaluated into subsets of streams,
and computes a correlation coefficient for each subset. These correlation coefficients are aggregated using a theoretically-
sound test method such as the Donner and Rosner test (DR test)[13] or Kolmogorov-Smirnov test (KS test)[14] and a test
statistic is obtained. If the test statistic is too high compared to a suitably determined critical value, the claim of independent
RN streams is rejected. Lack of rejection indicates that the RN streams are likely to be independent.

We present preliminary results of the implementation of a prototype CPRNG and the application of ISC test. Timing
tests show that CPRNG is nearly as fast as a basic PRNG, such as MLFG, and incurs only a small amount of overhead to
provide the context-awareness. The ISC test found significant correlations in the RN streams generated by multiplicative
Fibonacci lagged generator (MLFG), in the widely-used SPRNG package.

The rest of the paper is organized as follows. Section 2 presents the basics of parallel random number generators.
Section 3 presents the context-aware PRNGs, and compares a prototype PRNG with the widely-used MLFG in the SPRNG
package. Section 4 presents the ISC test and its application to CPRNG and MLFG, with up to 1.5 billion streams analyzed.
Section 5 describes the related work in PRNGs and test methods. Section 6 concludes the paper.

2. Background

We are interested in parameterized RNGs that have the capability to generate a large number of RN streams with
relatively simple changes to the initialization. Lagged Fibonacci generators[8,9,10] are easy to parameterize and, with careful
selection of the parameters, can be used to generate virtually unlimited number high-quality distinct RN streams easily. In
particular, we are interested in the multiplicative Fibonacci lagged generator (MLFG), which uses the recurrence relation:
 xn = xn − k × xn−l (mod 2m), 0 ≤ k < l < n, (1)
where l and k are the lags (or indices to the older random numbers used to generate the new random number), and xi ’s are
positive and odd m-bit integers. This generator produces 2(m−3)*(l−1) different RN streams, each with a cycle length of 2(m−3) ∙ 
(2l−1). Therefore, there are (m−3) ∙ (l−1) bits that need be determined uniquely for each RN stream. (One of the initial lag

636

words and the least significant bits of all initial lag words are specified by the canonical form and parameters specified, and
are common to all RN streams with those parameters[10].)

For a 64-bit MFLG with lag 17, there are 261*16=2976 different RN streams, each with a distinct 976-bit seed value and a
cycle length of 261 ∙ (217−1) ≈278. In practice, the upper or the middle b, b<64, bits of xi’s are extracted and supplied as the
RNs to improve the randomness, since the lower bits are often less random owing to the arithmetic operation involved. We
used the SPRNG package[8] and the MLFG available from its library, to implement a prototype CPRNG.

Additive lagged Fibonacci generators (ALFGs) are obtained by replacing the multiply operation in Equation 1 with an
add operation; xi’s are positive m-bit integers with at least one odd integer in the first l lags. Compared to MLFGs, ALFGs
provide more distinct RN streams with longer cycles for the same bit-size. However, the intra-stream and inter-stream
correlations are more significant in ALFGs. To mitigate these issues, larger lags, l=1,279 or larger, are used. SPRNG
package combines two ALFGs with different lag words to provide a higher-quality ALFG. On the other hand, MLFG can
be used with smaller lags, e.g., l=17. Therefore, for the most commonly used configuration in SPRNG package, ALFGs
take twice as much time to initialize a new RN stream and to generate RNs as MLFG.

SPRNG library package provides init_rng() and get_rn_dbl() function calls to initialize a new RN stream and to obtain
the next RN in an already initialized stream, respectively. The init_rng function is called by specifying the seed, parameter
sets that specify the lags and the locations of the odd-numbered words in the initial set of lag words, maximum number of
RN streams (denoted max_str) that will be requested by the application, and cur_str, the RN stream number in the range [0,
max_str) that needs to be initialized. The seed, parameter set, and max_str must be common in all init_rng() calls. For most
parallel applications, it is easy to allocate the RN streams to processes based on the input data and/or computations allocated
to them. For example, if a computational loop is partitioned cyclically among p processes, then iteration i is executed by
process i%p ; in this case it is natural to allocate RN streams from the set i,i+p,… to process i.

Each call to init_rng() results in the initialization of the RN stream specified by the stream number, cur_str, and the
calling code is given a pointer to the RN stream that should be used as argument in the function call get_rn_dbl() to obtain
the next RN in the stream. (SPRNG library provides several other function calls including requests for integer RNs instead
of reals, but they are not of interest in this paper.)

3. Context-aware Parallel Random Number Generators

If a process uses RNs in multiple locations for different purposes, then it is generally recommended that a distinct RN
stream be used for each such context. However, with the current RNG packages, this requires the application to explicitly
initialize the additional RN streams needed and, more importantly, use the appropriate RN stream pointer in each context.

This puts a significant burden on the application developer to manage the RN streams and contexts. Any changes to the
code that change the number of contexts require additional work by the application developer to make suitable changes to
the RN stream management. While it is natural and intuitive to partition RN streams based on the partitioning of input data
or computations, explicitly managing multiple RN streams based on program contexts makes the application less portable
and distracts the application developer.

To address these concerns and to improve the quality of RNs used by applications, we developed the CPRNG. The
design methodology is to take a parameterized random number generator that has the capability to generate a large number
of RN streams with relatively simple changes to the initialization and augment it with a scalable and automatic initialization
process. Our first CPRNG is based on the MLFG described in Section 2. We used the SPRNG package and the MLFG
available from its library, to implement the prototype CPRNG. The design of CPRNG is elaborated below.

3.1 CPRNG Design

In CPRNG implementation, each init_rng() call allocates not just one RN stream but a set of distinct RN streams
and returns a pointer, str_ptr, to the set; the streams in this set can be customized with program context without further
calls to init_rng(). The RN-context, the context or the program location from which a RN number is requested, is used in
addition to the stream-set pointer, str_ptr, to determine the specific RN stream to be used. The RN context is derived from
a combination of the program line number in the source code, the return address of the function call to get_rn_dbl(), the
process/thread numbers, and any user supplied identifiers such as the iteration number. When the application requests for
a random number using the function call get_rn_dbl(str_ptr), the RN-context will be used to determine the specific RN
stream to be used in the set of streams pointed by str_ptr. The appropriate RN stream is automatically initialized with the
RN-context, if it is the first call from this context, and a RN from the stream is returned.

637

Figure 1 describes the initialization process by CPRNG with lag parameters l and k, 0 < k < l − 2. A call to init_rng()
results initialization of l − 3 of the lag words2 using a sequential RNG such as the recursive with carry (RWC) generator
described in the Diehard package[2] seeded with the user-specified seed. These lag words are common to the initialization
of all RN streams, regardless of the process number or RN-context. One of the remaining three lag words is filled with an
ID that is guaranteed to be distinct for distinct cur_str numbers specified in init_rng(). The distinct ID word is common to
the set of RN streams that are allocated in response to init_rng() call. The remaining two lag words are filled with the RN-
context so that distinct RN-contexts result in distinct RN streams.

Figure 1. Initialization of RN stream lags by CPRNG. Each lag word is a 64-bit word with maximum lag L. L-3 of the lag words
are filled randomly, based on the user-specified seed and a sequential RNG. These words are common to all RN streams used

during the execution of the application. Lag K, K<L-2, is initialized with a unique and distinct ID that is associated with the cur_
str used in the init_rng() call. Lags K+1 and K+2 are initialized with RN-context to create a distinct RN stream fo reach distinct

program context in each process.

For a CPRNG based on MLFG with maximum lag l=17 and 64-bit words, 22×61=2122 distinct RN streams are allocated
with each init_rng() call. Based on the context and str_ptr argument used in a call to get_rn_dbl(), an appropriate stream is
selected, automatically initialized prior to first use, and the next RN in the stream is returned. CPRNG may be used without
RN-contexts by choosing appropriate parameters to init_rng() call. If RN-contexts are not used, then the two lag words
that are normally filled with RN-context are filled with the random bits generated by the sequential RWC generator; the lag
word with distinct ID ensures that RN streams are distinct for distinct values of cur_str specified in the init_rng(). CPRNG
will be simply a basic MLFG when used without context.

For applications that use a large and variable number of RN streams, having to specify the maximum number of streams
used during an execution run is a limitation. Furthermore, certain large-scale parallel applications may spawn additional
processes and threads dynamically depending on the input data and intermediate results. To accommodate such situations,
CPRNG assigns 210 distinct IDs for the lag word k upon a call to init_rng(), independent of any streams allocated to handle
RN contexts. Typically, only one of these IDs is used by a process. However, if a process spawns threads or child processes
and needs to use additional distinct RN streams without going through the initialization process, it can have them without
any communication overhead by using the original initialization with the distinct ID word replaced with one of the unused
IDs from its allocated IDs. This leads to faster initialization of the new RN streams on demand. If more RN streams are
needed and init_rng() is called with cur_str value greater than max_str, a monotonically increasing counter is used to ensure
that the lag word K is distinct. However, the access to this counter needs to be serialized by using appropriate mutex locks
in threaded applications or by assigning it to a process to serve the counter-values to the other processes of the application.
Only in these instances, an additional communication or serialization overhead is incurred by CPRNG, compared to the
static methods used in the current packages such as SPRNG. On the other hand, CPRNG provides a virtually unlimited

2The initialization of the lag words is more complicated than the simpler description given here. For MLFG, all the lag words must be odd values. The
two consecutive 32-bit RNs generated by the RWC generator are used form a 61-bit integer and a least significant bit determined by the canonical form
and parameter set is appended to it to form a 62-bit number, say, z. The actual lag word is formed by using the operation (−1)y 3z mod 264 , where y is a
randomly generated 1 or 0. However, for easier description, we omit these implementation details. See Reference 10 for the complete details.

638

number of RN streams on demand, and avoids depletion of the available RN streams that can occur with static partitioning
of the available RN streams for applications with many levels of dynamic process/thread creation.

CPRNG is implemented in the SPRNG package as an additional PRNG. The implementation provides the same
application interface as the other PRNGS in the package. Any parallel application currently designed to use SPRNG
generators can use CPRNG by using an appropriate RNG code. No additional application modifications are needed. Just
like the other PRNGs in the SPRNG package, CPRNG produces consistent and predictable RN streams for an application
regardless of the number of processes/threads used for parallel computation. The CPRNG implementation is free of
memory leaks, is multithread safe, and works seamlessly with MPI-based applications. The GPU version of CPRNG is
implemented as a different generator with some restrictions on features: no context-awareness, and the maximum number
of streams needed by the application must be specified at the beginning of the program execution.

3.2 Timing Tests

Two computers, a desktop computer with Intel Core i7-870 CPU and a rack server with Xeon E630 CPU, are used
to estimate the time required for initialization of a random number (RN) stream by calling init_rng(),and the time taken
to generate a single random number from an already initialized stream for CPRNG with lag 17 and three generators from
the SPRNG package: MLFG—multiplicative lagged Fibonacci generator with lag 17, ALFG—lagged Fibonacci generator
which is a combination of two additive Fibonacci generators with lag 1,279, and ALFG_17—lagged Fibonacci generator
with lag 17.

We used Intel CPU time-stamp counter for the time-stamps. For RN stream initialization test, the time taken to
initialize a single RN stream is subtracted from the time taken to initialize two RN streams. This is repeated 100 times and
the average of the times is taken as a sample point. This experiment is repeated 10 times and the average of the 10 samples
and the corresponding 95% confidence interval is calculated. For RN generation test, the time taken to generate 1,000
RNs from an already initialized stream is subtracted from the time taken to generate 1,000 RNs each from two previously
initialized RN Streams. This time is divided by 1,000 to get the time taken to generate a single RN. This is repeated 100
times and the average is taken as a single sample point. This experiment is repeated 10 times and the average of the 10
sample points and the corresponding 95% confidence interval is calculated.

Figure 2 gives the times in clock-ticks—2.93 ticks/ns for the Core i7-870, and 2.53 ticks/ns for the Xeon E630 machines.
The chart on the left gives the initialization time of an RN stream, while the chart on the right gives the time taken to get an
RN from an initialized stream. The initialization costs of CPRNG are about the same as those of MLFG, on which CPRNG
is based. The cost of generating an RN is about 3 ticks higher compared to MLFG owing to the additional processing
needed for context-aware RN generation. This can be easily eliminated if the application does not require context-aware
RN generation. ALFG has high initialization overhead since it uses two additive Fibonacci generators with a large amount
of lag (the oldest RN used in calculating the next RN) to provide high-quality RN streams. To rule out any experimental
error, we tested ALFG with lag 17 (which is not recommended), whose initialization cost is comparable to those of MLFG
and CPRNG.

Figure 2. Time taken to initialize RN streams (left chart) and to generate RNs (right chart). A desktop computer with Intel Core
i7-870 CPU and a rack server with Xeon E630 are used. The times are given in clock-ticks—2.93 ticks/ns for the Core i7-870, and
2.53 ticks/ns for the Xeon E630. The y-axis for the left chart is in log-scale. The 95% confidence intervals are ± 1% of the mean-

values reported.

639

4. Inter-Stream Correlation Test

The inter-stream correlation (ISC) test evaluates the correlations among a large number of RN streams. The RN streams
are divided into several subsets, and the streams in a subset are interleaved, using perfect shuffle or biased interleaving
method. Consider three RN streams A, B and C with RNs a1, a2, a3,…, b1, b2, b3,…, c1, c2, c3,…, respectively. In perfect
shuffle interleaving, a new stream a1, b1, c1, a2, b2, c2, a3,… is created. In biased interleaving, a1, b1, a2, c1, a3, b2, a4,… is
created. The RNs in the odd-numbered positions form the X variates and the RNs in the even-numbered positions form the
Y variates. These are transformed into normal bi-variates using Box-Muller transform[12]. Correlation coefficient, r, for the
bi-variate pairs is computed. This is repeated several times to obtain multiple r’s. Collectively, these r’s are the samples
that can be used to estimate ρ, the true common correlation coefficient among the parallel RN streams generated by the
PRNG being evaluated.

The r’s are aggregated using a theoretically-sound test method such as Donner and Rosner test (DR-test)[13] or
Kolmogorov-Smirnov test (KS-test)[14] and a test statistic is obtained. The statistic for DR-test is denoted as tH and the
statistic for KS-test as Dmax. For each test, there is a critical value that is computed based on the desired significance level
and the number of r’s used. For example, for DR-test at a significance level of 0.05, the critical value is 1.96 provided the
number of bi-variate pairs used to calculate each r is large. If the test statistic is significantly above the critical value, then
the RN streams generated by the PRNG are likely to have significant inter-stream correlations.

The DR-test combines the r’s and gives the test statistic tH, which is a standard normal variate. This can be used to
test the null hypothesis H0 : ρ = 0 . Large absolute values of tH will lead to the rejection of the null hypothesis and the
acceptance of the alternative hypothesis H1: ρ≠0. For the significance level α=0.05, absolute values of tH above 1.96 lead to
the rejection of the claim that parallel RN streams are independent; the probability that the rejection is erroneous is α=0.05.
One could use different significance levels: for α=0.02, the absolute values of tH above 2.33 will lead to rejection of the
claim of independence of RN streams with only 0.02 probability of being wrong.

The distribution of r’s is approximately normal. These r’s can be converted into standard normal variates using sample
variance of r’s and the fact that we are testing for ρ=0. This enables us to apply the KS-test on the distribution of r’s. In
this test, the KS-test statistic, Dmax, computed using the r’s must be less than the critical value, Da,n, for significance level α
and n , the number of r‘s used. For KS-test, at a significance level of 0.01, the critical value is 0.0274 when the number of
r’s used is 1,500.

Figure 3 gives the results of the two tests for shuffle-interleaving of RN streams generated by CPRNG and MLFG. In
our tests, we used 1,500 sets of random number streams with the set size varied from 10 to 1,000,000 to obtain r1, r2,…,
r1,500. When the set size is 1,000,000, a million streams are used to obtain a single r, and a total of 1.5 billion streams are
used to obtain the 1,500 r’s used to calculate the test statistic. The dashed-lines indicate the critical values for the test
statistics. Our results indicate that MLFG (the built-in random number generator in the SPRNG package) fails both DR-
and KS-tests for test configurations that use 1.5 million or more streams. On the other hand, CPRNG, which is also based
on the same theoretical foundation as that of MLFG, performs well; it narrowly fails the KS-test only for the largest test
configurations we used.

Figure 3. ISC tests for CPRNG and MLFG. The dashed-lines indicate the critical values. The y-axes for both charts are in
log-scale. For both tests, MLFG’s test statistic is significantly higher than the critical value, indicating that the RN streams

generated by MLFG may have significant inter-stream correlations and must be tested further.

640

5. Related Work

The designs of sequential and parallel RNGs are extensively investigated by many researchers owing to their
importance to computational science and to the elegant, mathematical nature of the problem. Knuth[1] discusses several
RNGs, and many excellent single-stream test methods that are implemented in popular test batteries such as Dieharder[16]

and TestU01[15]. Linear congruential generators that use a recursive equation of the form xn=a ∙ xn−1+b (mod 2m), where a
and b are constants, are commonly available as part of the C math library in a typical UNIX environment. One of 219937

the most popular sequential RNGs is the Mersenne twister[5] which offers an RN stream with a cycle of length. A graphics
processing unit (GPU) version of this RNG[6] is commonly used by applications designed to use GPUs.

Additive and multiplicative lagged Fibonacci generators[8–10] have been extensively investigated because of the ease
with which they can be used to generate distinct RN streams. Of the two, MLFG is considered to be more robust, producing
higher-quality RN streams. Both generators are implemented in the popular SPRNG package[8]. We have used the SPRNG
package extensively. The prototype implementation of CPRNG is based on the MLFG implementation and supports
SPRNG’s application interface.

SPRNG also implements several sequential tests and provides a systematic way to interleave several streams into
a single-stream and apply the sequential tests. However, owing to the availability of more exhaustive test packages,
Dieharder and TestU01, we did not use the single-stream tests in SPRNG. Another important resource provided by SPRNG
is the Ising model simulation codes based on Metropolis and Wolff algorithms. These applications are widely-used to
evaluate sequential and parallel RNGs[3,4,7].

6. Conclusion

Context-aware parallel random number generators are based on a new approach to allocate and manage RN streams by
parameterized random number generators that can generate virtually unlimited numbers of distinct RN Streams. Compared
to the parallel random number generators in the current packages such as SPRNG, CPRNGs can automatically provide
distinct RN streams depending on the program context to improve the quality of the RNs used. To achieve the same effect
with the current PRNGs, the application needs to, explicitly, manage multiple streams and their usage based on the program
context. Furthermore, CPRNGs support highly-complex parallel applications that require a large and variable number of
RN streams by dynamically allocating RN streams beyond the maximum number of RN streams specified at the beginning
of program execution. In contrast, the current PRNGs do not allow applications to request RN streams beyond the initially
specified number of RN streams. Some implementations, e.g., SPRNG, handle this issue by partitioning the total RN
streams using a binary partitioning scheme. For applications that have many levels of dynamic process/thread creation, this
can result in depletion of RN streams available to dynamically-created processes/threads.

The inter-stream correlation test evaluates the correlations among a large number of RN streams. Using a well-known
test method such as the Donner and Rosner test or the Kolmogorov-Smirnov test, it provides an aggregate PRNG quality
metric. This test complements the existing sing-stream test batteries and application-based tests currently available. It is
applied to evaluate inter-stream correlations among as many as 1.5 billion RN streams. The ISC test shows that the MLFG
used in SPRNG has significant inter-stream correlations when 1.5 million or more streams are considered. In addition to
providing an easy-to-use quality metric, the ISC test is fast and can be adapted to on-line testing, in which the actual RNs
used by an application are fed to ISC test, and overall quality of the RNs used is provided at the end of the execution of the
application.

In the future, we plan to revise the current implementation and release a CPRNG library package to the HPC community.
We also plan to design and implement additional CPRNGs based on other RNGs. We will work with HPC practitioners in
adapting new applications that use multi-scale simulation models to augment the current test methods.

Acknowledgments

This work was done as part of the STTR Phase I contract W911NF-11-C-0026 funded by the US Army Research
Office (ARO) Program Manager, Dr. Joe Myers. The primary computer used for the development and testing was acquired
with funds from National Science Foundation grant CNS-0551501. Additional computer resources were provided by
UTSA Institute for Cyber Security. The contents of this paper do not necessarily represent the position or the policy of the
Government and no official endorsement should be inferred. The author thanks Professors Ram Tripathi and Ravi Sandhu
at UT San Antonio and Mr. Robert Keller and Mr. Hemant Trivedi at Silicon Informatics Inc. for their help and participation
in this project. Prof. Tripathi identified the DR-test and helped the author implement the DR-test and the KS test. Mr.
Trivedi helped with the implementation of CPRNG and the time-stamp counter used in the timing tests.

641

References

1. Knuth, K.E., The Art of Computer Programming, Volume 2: Semi-Numerical Algorithms, 3rd ed., Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, 1997.
2. Marsaglia, G., Diehard software package, available at http://stat.fsu.edu/pub/diehard, 1995.
3. Ferrenberg, A.M., D. Landau, and Y. Wong, “Monte Carlo simulations: Hidden errors from ‘good’random number generators”, Phys.
Rev., 69, 23, pp. 3382–3384, 1992.
4. Coddington, P. “Tests of random number generators using Ising model simulations”, Int. J. of Mod. Phys., 7, 3, pp. 295–303, 1996.
5. Matsumoto, M. and T. Nishimura, “Mersenne twister: a 623-dimensionally equi-distributed uniform pseudo-random number generator”,
ACM Transactions on Modeling and Computer Simulation (TOMACS), v.8 n.1, pp. 3–30, Jan. 1998.
6. Podlozhnyuk, V., Parallel Mersenne Twister, Version 1.0, Nvidia, 2007.
7. Srinivasan, A., M. Mascagni, and D. Ceperley, “Testing parallel random number generators”, Parallel Computing, vol. 29, pp. 69–94,
2003.

8. Mascagni, M. and A. Srinivasan, “Algorithm 806: SPRNG: a scalable library for pseudo-random number generation”, ACM Transactions
on Mathematical Software (TOMS), 26(3), pp. 436–461, 2000.
9. Aluru, S., “Lagged Fibonacci Random Number Generators for Distributed Memory Parallel Computers”, Journal of Parallel and
Distributed Computing, 45(1), pp. 1–12, 1997.
10. Mascagni, M. and A. Srinivasan, “Parameterizing Parallel Multiplicative Lagged-Fibonacci Generators”, Parallel Computing, vol.
30, pp. 899–916, 2004.
11. Marsaglia, G., “A current view of random number generators”, Computing Science and Statistics: Proceedings of the XVIth Symposium
on the Interface, pp. 3–10, 1985.
12. Box, G.E.P. and M. E. Muller, A note on the generation of random normal deviates”, The Annals of Mathematical Statistics, 29(2),
pp. 610–611, 1958.
13. Donner, A. and B. Rosner, “On inferences concerning a common correlation coefficient”, Applied Statistics, 29(1), pp. 69–76, 1980.
14. Rao, P.V., Statistical Research Methods in the Life Sciences, Brooks/Cole, 1998.
15. L’Ecuyer, P. and R. Simard, “TestU01: A C library for empirical testing of random number generators”, ACM Trans. Math. Softw.,
33, 4, August 2007.
16. Brown, R.G., D. Eddelbuettel, and D. Bauer, Dieharder Test Package, v 3.29.0, Duke University, online: http://www.phy.duke.
edu/~rgb/General/dieharder.php, retrieved on Nov. 2010.

c12) United States Patent
Boppana et al.

(54) VERIFICATION OF PSEUDORANDOM
NUMBER STREAMS

(75) Inventors: Rajendra V. Boppana, San Antonio, TX
(US); Ram C. Tripathi, San Antonio,
TX (US)

(73) Assignee: Board of Regents of the University of
Texas System, Austin, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 324 days.

(21) Appl. No.: 13/423,927

(22) Filed: Mar. 19, 2012

Related U.S. Application Data

(60) Provisional application No. 61/454,259, filed on Mar.
18,2011.

(51) Int. Cl.
G06F 7158 (2006.01)

(52) U.S. Cl.
USPC 708/250

(58) Field of Classification Search
None
See application file for complete search history.

Test
Specification

111111 111
US008868630Bl

(10) Patent No.: US 8,868,630 Bl
Oct. 21, 2014 (45) Date of Patent:

(56) References Cited

U.S. PATENT DOCUMENTS

8,589,460 B2 *
2003/0065691 A1 *
2003/0236803 A1 *
2007/0162806 A1 *
2008/0288566 A1 *
2010/0235418 A1 *

* cited by examiner

1112013 Dong 708/254
4/2003 Schmidt 708/250

12/2003 Williams 708/252
7/2007 Matsumoto eta!. 714/728

1112008 Umeno et al. 708/250
9/2010 Dong 708/254

Primary Examiner- David H Malzahn
(74) Attorney, Agent, or Firm- Meyertons, Hood, Kivlin,
Kowert & Goetze!, P.C.; Eric B. Meyertons

(57) ABSTRACT
A method of assessing parallel random number streams
includes mixing two or more parallel random number
streams. Mixing the parallel random number streams may
include pairing at least one of the random number streams
with other random number streams. For each mixed random
number stream, an inter-stream correlation value may be
computed based on a correlation among the random number
steams used. A quality metric for the parallel random number
streams may be determined from inter-stream correlation val­
ues for the two or more mixed streams created from the
parallel random number streams. A quality metric for a single
random number stream may be computed by segmenting the
single random number stream into multiple substreams and
applying the methods of mixing streams and computing qual­
ity metric in the case of parallel streams.

21 Claims, 3 Drawing Sheets

RNStreams

No

PRNG Quality

vishnu
Typewritten Text
Appendix C: ISC Test Patent

U.S. Patent

PRNG
101

Oct. 21, 2014

102

Sheet 1 of 3

104

Test
Specification

FIG. 1

US 8,868,630 Bl

PRNG
......____. Quality

U.S. Patent Oct. 21, 2014 Sheet 2 of 3

RN Streams

Test ~::::::::::::::::-1 Initialize & store data
Specification 201

Stream Mixer:
Generate a

mixed stream
202

Calculate ISC
203

Yes

Compute PRNG
quality metric

205

PRNG Quality

FIG. 2

US 8,868,630 Bl

No

U.S. Patent Oct. 21, 2014 Sheet 3 of 3 US 8,868,630 Bl

Mix random number streams to
create one or more streams of

bivariate pairs.
220

...
r

Compute inter-stream
correlation values for mixed
streams of bivariate pairs.

Segment random number
stream into substreams.

222 240

... . ..

Determine quality metric for the Mix random number
parallel random number substreams to create one or

streams from the inter-stream more substreams of
correlation values of all streams

of bivariate pairs.
bivariate pairs.

242
224

...

FIG. 3 Compute correlation values
for mixed substreams of

bivariate pairs.
244

...

Determine quality metric
for the random number

stream from the correlation
values of all substreams of

bivariate pairs.
246

FIG. 4

US 8,868,630 B 1
1

VERIFICATION OF PSEUDORANDOM
NUMBER STREAMS

PRIORITY CLAIM

This application claims priority to U.S. Provisional Appli­
cation No. 61/454,259 entitled "Verification of Pseudoran­
dom Number Streams" to Boppana eta!. filed Mar. 18, 2011,
which is incorporated herein by reference in its entirety.

2
stream passes most or all of the single-stream tests, then the
PRNG may be deemed to be of good quality and is accepted
for use in applications.

SUMMARY

In an embodiment, a method of assessing parallel random
number streams includes mixing two or more parallel random
number streams. Mixing the parallel random number streams

BACKGROUND

1. Field
This disclosure relates to the field of computation. More

particularly, this disclosure relates to methods for assessing
pseudorandom number streams.

10 may include pairing one of the random number streams with
one or more of the other random number streams. For each
pairing of the parallel random number streams, an inter­
stream correlation value may be computed based on a corre-

2. Description of the Related Art
Random number generators, which generate streams of

seemingly random numbers, are used in many computing
applications. An application may use a single stream of ran­
dom numbers or multiple streams of random numbers simul­
taneously. A sequential random number generator is designed

15 lation between the two random number streams in the pair. A
quality metric for the parallel random number streams is
determined from inter-stream correlation values for the pairs
of the parallel random number streams.

In an embodiment, a method of assessing quality of a

20 random number stream includes segmenting the random
number stream into two or more random number substreams.
The random number substreams may be mixed. Mixing the
random number substreams may include pairing one of the
substreams with one or more of the other substreams. For

to generate a single stream of random numbers, the starting
point of which may be changed with the initial (seed) value. A
parallel random number generator (PRNG) is designed to 25

generate multiple, independent streams of random numbers
simultaneously with a simple change in a parameter used to
initialize the random number streams.

It is often useful to test a random number generator to
assess the quality of the random number stream. Some single- 30

stream statistical test batteries provide pass/fail indication for
each test in the battery, since it may not be meaningful to
combine the statistical computations from multiple tests to
provide an overall quality metric for the RNG (random num­
ber generator) tested. Therefore, it is common to use the test 35

results as a multi-bit vector data, with each bit representing
the pass/fail status for a test. The statistical test batteries do
not provide a single quantitative metric to compare the two
generators. This could be a limitation if two RNGs that need

each pair of the random number substreams, a correlation
value may be computed based on a correlation between the
random number sub streams in the pair. A quality metric for
the random number stream is determined from correlation
values for the pairs of the random number substreams.

In various embodiments, methods, systems and apparatus
are used to test a large number of parallel random number
streams and to quantify interstream correlations among them
so that their randonmess can be assessed. Correlations may be
tested among a large number (hundreds to billions) of streams
and the computed correlation coefficients may be combined
so that the user of a parallel random number generator can
assess a priori or dynamically (during the consumption of the
random numbers) the quality of random numbers used for
his/her application. In some embodiments, an online test is

to be compared fail different tests. 40 performed of the quality ofRN streams as the random num­
bers are generated by the PRNG for an actual application use. Single-stream tests may be ineffective for testing the cor­

relations of random numbers among a large number (e.g.,
thousands to billions) of parallel random number streams
since the a typical single-stream test method may operate on
blocks of a few thousands of numbers at a time. Typical 45

existing test methods may be considered off-line methods in
the sense that the tests are fed with data generated by the
random number generator that is being evaluated specifically
for test purposes.

Parallel random number streams may be generated by a 50

parameterized family of pseudorandom number generators,
by a collection of true random number generators that gener-

In some embodiments, an interstream correlation (ISC)
test evaluates a large number of parallel RN streams simulta­
neously and provides a quality metric. The ISC test may
divide the total streams to be evaluated into subsets of
streams, with at least two streams in each subset, and compute
a correlation coefficient for each subset. These correlation
coefficients may be combined using a theoretically sound test
method such as the Donner and Rosner test (DR test) or
Kolmogorov-Smirnov test (KS test), and a test statistic may
be obtained. If the test statistic is higher than a suitably
determined critical value, the claim of independent RN
streams is rejected. A lack of rejection indicates that the RN
streams are likely to be independent.

BRIEF DESCRIPTION OF THE DRAWINGS

ate random numbers based on enviroumental signals such as
noise levels and temperature, computing and communication
delays, events induced by computer users or other sources, or 55

any combination of the pseudo- and true random number
generators. The quality of the random numbers used may be
crucial for quick and accurate results from computer-based
simulations and for robust security protocols and security
keys used in security protocols.

FIG. 1 is an exemplary block diagram illustrating a parallel
pseudorandom number generator test metric computation

60 according to one embodiment.
Some methods to test and assess the independence of par­

allel random number streams are typically based on sequen­
tial test methods that are designed to test intra-stream corre­
lations of a single random number stream. One practice for
statistical testing of PRNG quality is to generate parallel 65

streams, interleave them to form a single stream, and apply
single-stream tests to the interleaved stream. If the interleaved

FIG. 2 is an exemplary flow chart of the logic implemented
by an inter-stream correlation test according to one embodi­
ment.

FIG. 3 is a flow diagram illustrating one embodiment of
assessing parallel random number streams.

FIG. 4 is a flow diagram illustrating one embodiment of
assessing a random number stream.

US 8,868,630 B 1
3

While the invention is described herein by way of example
for several embodiments and illustrative drawings, those
skilled in the art will recognize that the invention is not
limited to the embodiments or drawings described. It should
be understood, that the drawings and detailed description
thereto are not intended to limit the invention to the particular
form disclosed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims. The headings used herein are for organiza- 10

tiona! purposes only and are not meant to be used to limit the
scope of the description or the claims. As used throughout this
application, the word "may" is used in a permissive sense
(i.e., meaning having the potential to), rather than the man­
datory sense (i.e., meaning must). Similarly, the words 15

"include", "including", and "includes" mean including, but
not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

4
the remaining streams (if the specification is biased interleav­
ing) or with a subset of the other streams (if the specification
is group, shuffled or pairwise interleaving) to create a single
stream with RN s from the selected stream occupying the odd
numbered positions and the RNs from the other streams occu­
pying the even numbered positions. Stream mixer program
may skip the user-specified number of initial RN s from one or
more of the streams prior to mixing them. The RN s in the odd
numbered positions (positions 1, 3, 5, ...) from the resulting
mixed stream may be considered as x,' s and the RN s in the
even numbered positions as y,'s. Therefore, the resulting
mixed stream may be considered as a sequential stream of (x,;
y,) bivariate pairs. This mixed stream may be fed to correla­
tion coefficient computing program 203. Correlation coeffi­
cient computing program 203 may calculate inter-stream cor­
relations of the two streams provided to it by the stream mixer
202. The computed correlation coefficient is stored. A tester
204 checks if all the desired combinations of interstream
correlations are computed. If there are one or more combina-

The following abbreviations and acronyms are used herein.
RN: Random number;
RNG: pseudorandom number generator;
PRNG: parallel pseudorandom number generator;
ISC: interstream correlation;

20 tions remain, the stream mixer provides the next stream pair
to the correlation coefficient computing program 203. If all
desired combinations of stream pairs are examined, then
PRNG quality metric 205 is computed. The PRNG quality
metric may be computed using, in various embodiments, an

CPU: central processing unit or processor;
GPU: graphic processing unit or graphics processor used for
general purpose array computing;

25 aggregation method, a goodness-of-fit method, percentile
method or mean absolute deviation method. In some embodi­
ments, the method for computing the PRNG quality metric is
based on user specification. In some embodiments, the final

MC: Monte Carlo simulations.
As used herein, "pairing", in the context of number 30

streams, includes mixing or combining one stream with one
or more other streams, or considering or assessing one stream
in relation to one or more other streams (for example com­
puting a correlation between two streams). As examples, a
pairing may include: (a) pairing a selected stream with 35

another stream, (b) pairing a selected stream with an inter­
leaved stream of two or more other streams, and (c) interleav­
ing a selected stream and one or more other streams.

As used herein, "random number" includes, but is not
limited to, a true random number, a pseudorandom number, or 40

a number generated from a combination of true random and
pseudorandom number methods. As used herein, a "random
number generator" includes, but is not limited to, a pseudo­
random number generator.

FIG. 1 is an exemplary block diagram illustrating the 45

PRNG test metric computation. In FIG. 1 PRNG 101 is the
parallel random number generator that needs to be tested for
the independence of its streams 102. Each line may provide a
single stream ofRNs spaced in time. These RNs may be fed
to the application 103 as part of the application's input data. 50

The application 103 may be executed normally and the output
of the application may be obtained.

In some embodiments, a parallel random number generator
may be part of the application. In such cases, PRNG 101 and
Application 103 may be described by a single block feeding 55

ISC Tester 105.
ISC Tester 105 may be fed with RN streams 102 and a test

specification. The test specification may specify the interleav­
ing method for mixing the streams and the statistical method
that is used for computation of a quality metric. 60

output (which may be a p-value in statistics) may be a sig­
nificance level above which the claim of independence of the
parallel streams carmot be rejected. In certain embodiments,
the user may specify a significance level, and the quality
metric is used to determine if the PRNG meets the user­
specified significance level.

FIG. 3 is a flow diagram illustrating one embodiment of
assessing parallel random number streams. In some embodi­
ments, the parallel random number streams are generated by
a random number generation system for purposes of evaluat­
ing the quality of the random number generation system. This
may be described as a priori or offline test. In other embodi­
ments, the quality of parallel random number streams gener-
ated on demand by an application is assessed continually
while the application is running. This may be described as
dynamic, on-the-fly, or online test.

At 220, parallel random number streams may be mixed in
one or more ways to create one or more streams of bivariate
pairs. Mixing the parallel random number streams may
include pairing the random number streams with one another.
In some embodiments, a selection of a mixing method to be
used for mixing the random number streams is received from
a user.

At 222, an inter-stream correlation value may be computed
for each mixed stream ofbivariate pairs based on a correlation
among the random number streams used to create the mixed
stream. The correlation values may be, for example, a corre­
lation coefficient computed by taking several (two or more)
bivariate pairs from the mixed stream. The number ofbivari­
ate pairs used in the correlation value computation may be
specified by the user.

At 224, a quality metric for the parallel random number
streams may be determined from inter-stream correlation val­
ues for the mixed streams. The quality metric may serve as a
figure of merit for the parallel random number streams. The
quality metric may provide a measure of the independence of

FIG. 2 is an exemplary flow chart oflogic implemented by
an inter-stream correlation test according to one embodiment.
ISC Tester 105 may be fed with parallel RN streams and test
specification criteria. The initialization and storage unit 201
may ensure that these RNs are available for repeated use
during the test method. Based on the specified interleaving,
stream mixer program 202 may select a stream and mix it with

65 the parallel number streams from one another. In some
embodiments, a selection of a testing method to be used for
computing a quality metric for the random number streams is

US 8,868,630 B 1
5

received from a user. The quality metric may be measured
against a significance level specified by a user.

FIG. 4 is a flow diagram illustrating one embodiment of
assessing a random number stream. In some embodiments,
the random number stream is generated by a random number
generation system for purposes of testing the random number
generation system. In other embodiments, the quality of the
random number stream is assessed during consumption of the
random numbers by an application (online test).

At 240, a random number stream is segmented into random 10

number sub streams. In one embodiment, the random number
stream is segmented using a leap-frog method. In another
embodiment, the random number stream is segmented using
a cycle-division method.

At 242, random number substreams may be mixed to form 15

substreams of bivariate pairs. Mixing the random number
substreams may include pairing the random number sub­
streams with one another. In some embodiments, a selection
of a mixing method to be used for mixing the random number
sub streams is received from a user. 20

At 244, an inter-stream correlation value may be computed
for each mixed sub stream of bivariate pairs based on a corre­
lation between the substreams used to create the mixed sub­
streams. The number of bivariate pairs (at least two) used in
the correlation value computation may be specified by the 25
user.

At 246, a quality metric for the random number stream may
be determined from inter-stream correlation values for the
mixed substreams. The quality metric may serve as a figure of
merit for the random number stream. The quality metric may

30
serve as a figure of merit for the parallel random number
streams. The quality metric may provide a measure of the
independence of the parallel number streams from one
another. In some embodiments, a selection of a testing
method to be used for computing a quality metric for the
random number streams is received from a user. The quality 35

metric may be measured against a significance level specified
by a user.

In some embodiments, inter-stream correlations are quan­
tified among multiple parallel random number (RN) streams
as a numerical factor, and a figure of merit is assigned for a 40

PRNG. In one embodiment, a system includes three main
components: stream mixer 202, correlation coefficient calcu­
lator 203, and PRNG quality metric calculator 205.

Let us consider k, where k;;:2, RN streams S 1 , S2 , ... , Sk for
which we need to check if there is a significant inter-stream 45
correlation (ISC) among them. To compute the correlation,
we construct a bivariate sample (X,Y) given by (x,, y,), i=1,
2, ... , n. (It is common to use capitalized letters for random
variables and lower case letters with appropriate subscripts
for the observed samples corresponding to the random vari-

50
abies.) A straight-forward bivariate sampling takes two RN
streams at a time; but this results in

6
samples we need to analyze to capture all possible correla­
tions will be nearly 50 million. To reduce the computational
complexity, we construct k or fewer bivariate samples in
which each RN stream is checked for correlation with one or
more of the other RN streams. This is explained in the fol­
lowing steps.

Step 1. Mix the RN Streams in one of the Following
Ways

Biased Interleaving:
Use n numbers from S1 as then observations on the X

variate, and interleave the remaining k-1 streams to provide n
observations on theY variate.

(An alternative approach is to use coarse interleaving of the
k-1 streams. Let n be a large multiple of (k-1). Take the first
n RNs from S1 to form then observations on X. Take first

n

k-1

RNs from S2 , the second

n

k-1

RN s from S3 and so on to form n values on Y. Extensive testing
showed that both methods of interleaving give statistically
similar results. The first approach is oblivious to the total
number ofRNs to be generated by each stream, which may
simplifY the generation and storage of the random numbers.)

This gives (x,,y,), i=1, 2, ... , n, with S1 as the selected
stream. This can be repeated with S,, i=2, ... , k, as the
selected stream providing X values and

n

k-1

RNs from each of the other k-1 streams providing Yvalues.
In this method, each (X,Y) bivariate sample shares (overlaps)

n(k- 2)

k-1

of its Y values with each of the other bivariate samples.
Group Interleaving:

k(k -1)

2

This method of mixing the RN streams extends the concept
ofbiased interleaving to form bivariate samples with no over-

55 lap, which may be desirable for statistical test methods. In this
method, the given k RN streams are grouped into groups ofh
streams each, where 2shsk. There will be g groups, where

possible bivariate samples, in which each bivariate sample
shares one of the streams with 2(k-2) other bivariate samples,
or

k

2

bivariate samples, in which no streams are shared among the
bivariate samples. Ifk=10,000, then the number of bivariate

60 g = l~J.

Therefore, group interleaving uses gh streams for correlation
calculations. (If h does not divide k evenly without any

65 remainder, then gh<k<gh+h.) Using the streams in each
group, a bivariate sample is formed as follows. One of the
streams from the group is selected to provide n observations

US 8,868,630 B 1
7

of the X variate. The remaining h-1 streams are interleaved to
provide n values for the Y variate; each of these streams
provides up to

random numbers. (As indicated earlier, fine or coarse inter­
leaving may be used to interleave the h -1 streams.) This gives
g bivariate samples each with n observations. There is no
sharing of random numbers among the bivariate samples.

Shuffled Interleaving:
This method is a variation of group interleaving, obtained

8
(3)

(4)

The correlation coefficient of the bivariate normal pairs
(zx,, zy,), i=1, 2, ... , n, is computed.

The Box-Muller transform is not symmetric in the sense
that switching (X,Y) ordering yields a different correlation
coefficient value. In particular, Box-Muller transform is sen­
sitive to the RN streams used for Y variates and amplifies the

10 correlations among the RN streams used for Y variates to
calculate different 8's. If the selected stream is used to draw

by interleaving all streams of the group evenly and taking the 15

values in the odd-numbered positions forming the X variate
and values in the even numbered positions forming the Y
variate. Shuffled interleaving also produces g different (X,Y)
stream pairs with no overlapping. For the special case ofh=k,
there is only one group resulting in only one (X,Y) bivariate 20

sample; this special case is the state of the art for statistical
testing of interstream correlations.

observations for X and the interleaved stream is used to draw
observations for Y with biased interleaving, then Box-Muller
transform correctly amplifies the correlation among the dif­
ferent versions of the interleaved streams used for Y. Any pair
of interleaved streams formed by biased-interleaving share

n(k- 2)

k-1

values, and the quality metric computed in the next step is
dominated by the correlation among the interleaved streams.

Pairwise Interleaving:

To avoid this, since the purpose ofiSC test is to find correla­
tions among different individual streams, the interleaved
stream should be used for the observations of X and the
selected stream for the observations ofY when biased inter­
leaving is used to mix RN streams. For group, shuffled, and
pairwise interleaving the order of the streams is not an issue
since all streams used for X andY variates are independent.

A special case of group interleaving (and shuffled inter­
leaving) is the pairwise interleaving, which is obtained by 25

choosing h=2; each group is a pair of streams. Therefore,
pairwise interleaving uses n RNs from stream S1 as the n
observations of the X variate and n RNs from S2 as the
observations of theY variate from the first group. This again
gives (x,,y,), i=1, 2, ... , n. This can be repeated to obtain up 30

to
Correlation coefficients from several pairs of streams gen­

erated using the biased interleaving are obtained. Let these
coefficients be denoted r 10 r2, ... , rk. Each r, gives the

35 interstream correlations from a selected stream to the rest of l~J-1

additional pairs with stream

S;,i=2,4, ... ,2l~J-1,

providing X values and stream S,+1 providing Y values.

Step 2. Calculate Correlation ofX,Y Streams

Consider a pair of values (x,,y,), i=1, 2, ... , n, taken one
each from the two streams. If the RN s are integers in the range

the streams.
If group or shuffled interleaving is used, r 1 , r2, ... , rg, where

40
g = l~J

and his the group size, are the interstream correlations with r,
representing the correlation coefficient between streams S,h,

45 S,h+1 , ... , S,h+h-l· For the special case of pairwise-interleav­
ing,

[0, m-1], then they are converted to reals in the range (0,1] 50

using the conversion

RN
1--,

m

where RN is an integer random number. If the RNs are from
uniform [0, 1), then they are converted to (0, 1] range using
the conversion 1-RN. If the RNs are from uniform (0,1)
distribution, no additional preprocessing is needed. Let the
resulting random variates be denoted ux, and uy,. The Box­
Muller transform given by the following equations is applied
to convert RNs to normal random variates, zx, and zy,. (All
logarithms are to the base e.)

are the interstream correlations, where r, represents the cor­
relation coefficient between streams s2i and s2i+l.

(Alternatively, the polar transform may be used to convert
55 (x,, y,) pairs to normal random variate pairs. First, x, andy, are

converted to reals in the range (-1, 1). If the RNs are integers,
they can be converted into reals in the range (-1,1). If the RNs
are from uniform (0,1) distribution, then the numbers are
extended to (-1,1) range. Let these be denoted ux, and uy,. If

60 ux/ +uy/;;:1, the (x,, y,) pair is rejected and another pair from
the streams is chosen and tested for suitability. This is
repeated until a suitable pair is found. The processed values
ux, and uy, of (x,, y,) pair that is found suitable are used to

r"~-2Iog(ux,) (1) 65

compute the corresponding normal random variates pair
using the following equations.

(2) s=V m}+uyi2 (5)

US 8,868,630 B 1
9 10

An alternative expression for rF in terms of the r, is

ZX; = ux;) -21:g(s)
(6)

k k n (1 + r;)'i-n (1- r;)'i
(11)

i=l i=l
rp = ---,--,----,,--------

n (1 + r;)'i + n (1 - r;)'i
i=l i=l

_) -21og(s)
ZYi - uyi --

5
-

(7)

10 with

Since it rejects RN pairs that are simultaneously too large
or too small, ISC testing based on the polar transform may
result in the underestimation of the actual inter-stream corre- 15

lations. Therefore, polar transform is not recommended for
ISC testing and the computation of PRNG quality metric.
However, the polar transform may be used to reduce the
correlations between a given pair ofRN streams by removing

20
RN pairs that result in s;;,;l.)

For the case of equal sample size,

Cj = k'

Step 3. Compute the Overall Interstream Correlation
Metric

The sequence ofr's obtained in the previous step denote

k (or ~ if pairwise- interleaving is used)

25

30

and the following bias-corrected transform

- - rp
ZH =Zw- --

9
2n--

2

may be used to estimate p by

(12)

(13)

We can use the statistic tH=Z Hv'N-3k to test the hypothesis:

if pairwise-interleaving is used) estimates of the actual cor­
relation coefficient p among the streams converted using the 35
Box-Muller transform. The RNG quality metric may be
obtained by converting the r's to normal variates using Fish­
er's z-transformation and using one of the following correla­ H0 : p=O. Under the null hypothesis H0 , tH has an asymptotic

standard normal distribution. This gives a significance level
40 above which the null hypothesis cannot be rejected. This

significance level can be used to determine the quality of the
PRNG.

tion-coefficient combining methods described below.

3.1. Aggregation Method

Let r,, i=l, ... , k, be a correlation coefficient based on n,
bivariate pairs. In the present disclosure, n 1 =n2 = ... =nk =n Let
N=kn.

Define

1 ~1 +r;) Z; = -1o --.
2 1-r;

(8)

Let

3.2. Percentile Method
To compute the quality metric, a significance level a is

45 chosen and rh=r1_a12 and r1=ra~2 quantile values are taken
from the sorted sequence of r's. The Fisher's z-transforma­
tion given by the following equation is applied to both quan­
tiles to obtain Zh and Z1.

50

[
1 +r;l 0.51og --

z 1-r; .. h l
;= (1 /~) ,tis or.

(14)

k (9) 55
~(n; -3)Z;

- i=l Zw=_:_:_, __ _

.Z.: (n; -3)
i=l

An estimate of the common correlation p is

- e2Zw -1
rp = tanh(Zw) = ---.

e2Zw + 1

(10)

The quality of the PRNG is given by the significance level
at which Zh <2.33 and Z1>-2.33, where 2.33 is the 99th per­
centile (0.99 quantile) for the standard normal random vari­
able.

60 Alternatively, the significance level for the selection of r
quantiles may be fixed and the significance level at which Zh
and Z1 satisfY the corresponding Z-quantiles may be taken as
a PRNG quality metric.

3.3. Goodness-of-Fit Method
65 Kolmogorov-Smirnov (KS) test is a goodness-of-fit test

method that may be used instead of the aggregate method to
determine the correlation among the RN streams in consid-

US 8,868,630 B 1
11

eration. The method is applied as follows. Each r,, 1sisk, is
converted to standard normal variates using the Fisher's
z-transform described above and sorted in ascending order to
obtain z,, i = 1, ... , k. For each z,, the corresponding cumula­
tive probability, f,, is computed. If r,'s are normally distrib­
uted, then the cumulative probabilities will be uniformly
spaced in the interval [0, 1]. The KS test statistic, D, the
maximum deviation off,, i=1, ... , k from a true uniform
distribution, is computed as follows.

{
i -1 i }

D =MAX /;- -, -- /;
lsisk k k

(15)

IfD is below the critical value for a given significance level,
then the hypothesis that r,'s are normally distributed cannot
be rejected at that significance level. The critical values for
KS test precomputed for various significance levels are given
in most standard books on statistics.

3.4. Mean Absolute Deviation Method
Let rq be the q-quantile value in the sorted sequence ofr,'s.

Also, let rq1 , rq2 , ... , rqm be m r,'s selected at quantiles
q1, ... , qm, from this sequence. Using Fisher's z-transform
above, the corresponding standard normal values zq1 ,

zq2 , ... , zqm are computed. From these, the corresponding
cumulative probabilities for the z values are computed; let
they be fq1 , fq 2 , ... , fqm· The mean absolute deviation is
computed using the following equation.

E= ~ lfq; -qil

lsism m

(16)

There is no critical value against which E can be compared.
The lower the value E, the better. Though KS test requires
more computations, it is a more thorough test and should be
preferred to the mean absolute deviation test. On the other
hand, for on-the-fly testing of very long RN streams, the mean
absolute deviation method may be more practical to imple-
ment.
Application of ISC Test to a Single Stream

In some embodiments, an ISC test may be used to deter­
mine intra-stream correlations as follows. A single stream
may be segmented into k substreams by leap-frog or cycle­
division methods, or by any other method. In the leap-frog
method, substream i, 1 sisk consists ofRNs in positions i, k+i,
2k+i ... of the stream. In the cycle-division method, k pair­
wise disjoint subsets, each containing n consecutive RNs of
the original single RN stream are picked. An ISC test can be
applied on the sub streams to obtain the quality metric as in the
case of parallel RN streams. In this case, however, the ISC test
gives the quality metric based on the intra stream correlations.

In some embodiments, an interstream correlation (ISC)
test evaluates a large number of parallel RN streams simulta­
neously and provides a quality metric. The ISC test may
divide the total streams to be evaluated into subsets of
streams, and compute a correlation coefficient for each sub­
set. These correlation coefficients may be combined using a
theoretically sound test method such as the Donner and Ros­
ner test (DR test) or Kolmogorov-Smimov test (KS test), and

10

12
In some embodiments, an interstream correlation test

evaluates correlations among a large number ofRN streams.
Using a test method such as the Donner and Rosner test or the
Kolmogorov-Smimov test, the interstream correlation test
may provide an overall PRNG quality metric. In some
embodiments, results of an interstream correlation test are
used in conjunction with other single-stream test batteries and
application-based tests. The test may be used to evaluate
interstream correlations among billions ofRN streams.

In an embodiment, an interstream correlation test evaluates
the correlations among a large number of subsets. The subsets
may be interleaved using shuffled or biased interleaving
method. As one example, three RN streams A, Band C may be
considered with RNs a1 , a2 , a3 , ... , b1 , b2 , b3 , ... , and c1 , c2 ,

15 c3 , ... , respectively. In shuffled interleaving (also called
perfect shuffle interleaving), a new stream a1 , b 1 , c 10 a2 , b2 , c2 ,

a3 , ... is created. In biased interleaving, a1 , b 1 , a2 , c1 , a3 , b2 ,

a4 , ... is created. The RN sin the odd numbered positions form
the X variates and the RN s in the even numbered positions

20 form theY variates to create bivariate pairs. These may be
transformed into bivariate normal pairs using Box-Muller
transform. Correlation coefficient, r, for the bivariate normal
pairs is computed. This may be repeated several times to
obtain multiple r' s. Collectively, these r' s are the samples that

25 can be used to estimate p, the true common correlation coef­
ficient among the parallel RN streams generated by the
PRNG being evaluated.

The r' s may be combined using a theoretically sound test
method such as Donner and Rosner test (DR-test) or Kolmog-

30 orov-Smimov test (KS-test). Based on the test data, a test
statistic may be obtained. For purposes of this example, the
statistic for DR-test is denoted as tH and the statistic for
KS-test as Dmax· For each test, there may be a critical value
that is computed based on the desired significance level and

35 the number ofr's used. For example, for DR-test at a signifi­
cance level of0.05, the critical value may be 1.96 provided the
number of bivariate pairs used to calculate each r is large and
the number ofr's is more than 2. If test statistic is above the
critical value, then the RN streams generated by the PRNG

40 are likely to have significant interstream correlations.
In this example, the DR-test combines the r's and gives the

test statistic tH, which is a standard normal variate. This can be
used to test the null hypothesis H0 :p=O. Large absolute values
oftH will lead to the rejection of the null hypothesis and the

45 acceptance of the alternative hypothesis H1 :p>'O. For the sig­
nificance level a=0.05, absolute values oftH above 1.96lead
to the rejection of the claim that parallel RN streams are
independent. The probability that the rejection is erroneous is
a=O.OS. One could use different significance levels: for

50 a=0.02, the absolute values of tH above 2.33 will lead to
rejection of the claim of independence of RN streams with
only 0.02 probability of being wrong.

The distribution of r's may be approximately normal.
These r' s can be converted into standard normal variates

55 using sample variance of r' s, testing for p=O. The KS test may
be applied on the distribution ofr's. In this case, the KS-test
statistic, Dmax• computed using the r's is to be less than the
critical value, Dam for significance level a andn, the number
of r's used. ForKS-test, at a significance level of 0.01, the

60 critical value may be 0.0274 when the number ofr's used is
1500.

a test statistic may be obtained. If the test statistic is higher
than a suitably determined critical value, the claim of inde- 65

pendent RN streams is rejected. A lack of rejection indicates
that the RN streams are likely to be independent.

In some embodiments, r's may be combined using other
computationally more complex tests such as Anderson-Dar­
ling or Shapiro-Wilk tests.

In some embodiments, r's may be combined using compu­
tationally simpler tests such as the percentile method and
mean absolute deviation method. The simpler methods may

US 8,868,630 B 1
13

be preferred for online tests to reduce the use of computing
resources used for quality metric computations, whereas the
more complex methods may be preferred for offline tests.

14

Systems and methods described herein may be used in a
variety of applications. Examples of applications for systems
and methods as described herein include (a) simulation -based
solutions to large scientific and engineering problems, (b)
parameterized Monte Carlo simulations of scientific, engi­
neering, and finance problems, (c) distributed computing, and
(d) protocols and keys used for information assurance and
security.

Systems and methods described herein, such as the ISC
tester described above relative to FIG. 1, may be implemented
in hardware including field programmable gate arrays (FP­
GAs) and application specific integrated circuit (ASIC) chips,
or a suitable combination of hardware and software and
which can be one or more software systems on a general
purpose processor (CPU) or graphics processing unit (GPU).

The memory medium may store a software program or
programs operable to implement embodiments as described
herein. The software program(s) may be implemented in vari­
ous ways, including, but not limited to, procedure-based tech­
niques, component-based techniques, and/or object-oriented
techniques, among others. For example, the software pro­
grams may be implemented using ActiveX controls, C++
objects, as a library or standalone programs in a programming
language such as C, C++, Java or in a scripting language such

10 as Bash, Perl, Python, or AWK, JavaBeans, Microsoft Foun­
dation Classes (MFC), browser-based applications (e.g., Java
applets), traditional programs, or other technologies or meth­
odologies, as desired. A CPU executing code and data from

15
the memory medium may include a means for creating and
executing the software program or programs according to the
embodiments described herein.

Computer systems may, in various embodiments, include
components such as a CPU with an associated memory 20

medium such as Compact Disc Read-Only Memory (CD­
ROM). The memory medium may store program instructions
for computer programs. The program instructions may be
executable by the CPU. Computer systems may further
include a display device such as monitor, an alphanumeric 25

input device such as keyboard, a directional input device such
as mouse, a voice recognition system to dictate text and issue
commands for processing, and a touch screen that may serve
as a keyboard or mouse. Computer systems may be operable
to execute the computer programs to implement computer- 30

implemented systems and methods. A computer system may
allow access to users by way of any browser or operating
system.

Embodiments of a subset or all (and portions or all) of the
above may be implemented by program instructions stored in 35

a memory medium or carrier medium and executed by a
processor. A memory medium may include any of various
types of memory devices or storage devices. The term
"memory medium" is intended to include an installation
medium, e.g., a Compact Disc Read Only Memory (CD- 40

ROM), floppy disks, or tape device; a computer system
memory or random access memory such as Dynamic Ran­
dom Access Memory (DRAM), Double Data Rate Random
Access Memory (DDR RAM), Static Random Access
Memory (SRAM), Extended Data Out Random Access 45

Memory (EDO RAM), Rambus Random Access Memory
(RAM), etc.; or a non-volatile memory such as a magnetic
media, e.g., a hard drive (which may be a disk or solid state),
or optical storage. The memory medium may comprise other
types of memory as well, or combinations thereof. In addi- 50

tion, the memory medium may be located in a first computer
in which the programs are executed, or may be located in a
second different computer that connects to the first computer
over a network, such as the Internet. In the latter instance, the
second computer may provide program instructions to the 55

first computer for execution. The term "memory medium"
may include two or more memory mediums that may reside in
different locations, e.g., in different computers that are con­
nected over a network. In some embodiments, a computer
system at a respective participant location may include a 60

memory medium(s) on which one or more computer pro­
grams or software components according to one embodiment
may be stored. For example, the memory medium may store
one or more programs that are executable to perform the
methods described herein. The memory medium may also 65

store operating system software, as well as other software for
operation of the computer system.

The ISC Tester may be embedded in an application or may
be combined with a random number generator.

Further modifications and alternative embodiments of vari­
ous aspects of the invention may be apparent to those skilled
in the art in view of this description. Accordingly, this
description is to be construed as illustrative only and is for the
purpose of teaching those skilled in the art the general manner
of carrying out the invention. It is to be understood that the
forms of the invention shown and described herein are to be
taken as embodiments. Elements and materials may be sub­
stituted for those illustrated and described herein, parts and
processes may be reversed, and certain features of the inven­
tion may be utilized independently, all as would be apparent
to one skilled in the art after having the benefit of this descrip-
tion of the invention. Methods may be implemented manu­
ally, in software, in hardware, or a combination thereof. The
order of any method may be changed, and various elements
may be added, reordered, combined, omitted, modified, etc.
Changes may be made in the elements described herein with-
out departing from the spirit and scope of the invention as
described in the following claims.

What is claimed is:
1. A method of assessing parallel random number streams,

comprising:
creating mixed random number streams by mixing two or

more parallel random number streams, wherein mixing
the two or more parallel random number streams com­
prises pairing at least one of the random number streams
with at least one other of the random number streams;

computing, by a computer system, for each of the mixed
random number streams, an inter-stream correlation
value based on a correlation between the bivariate pairs
constructed from the mixed stream; and

determining, from inter-stream correlation values for two
or more mixed random number streams, a quality metric
for the parallel random number streams.

2. The method of claim 1, wherein determining the quality
metric comprises off-line testing of the two or more parallel
random number streams, wherein the two or more parallel
random number streams are generated by a random number
generation system for purposes of testing the random number
generation system.

3. The method of claim 1, wherein determining the quality
metric comprises on-line testing of the two or more parallel
random number streams during consumption of the random
numbers by an application.

4. The method of claim 1, wherein determining the quality
metric comprises combining inter-stream correlation values
for at least two random number streams.

US 8,868,630 B 1
15

5. The method of claim 1, wherein mixing two or more
parallel random number streams comprises receiving a user
selection of a mixing approach.

6. The method of claim 1, wherein the set of all streams
may be mixed.

7. The method of claim 1, wherein the set of all streams
may be grouped into subsets.

8. The method of claim 1, wherein mixing a set or subset of
three or more parallel random number streams comprises
biased interleaving of a stream with the remaining streams in 10

the set or subset.
9. Themethodofclaim1, whereinmixingasetorsubsetof

two or more parallel random number streams comprises
shuffled interleaving of all streams in the set or subset.

10. The method of claim 1, wherein mixing a set or subset 15

of two parallel random number streams comprises pair-wise
interleaving of at the two streams.

11. The method of claim 1, wherein determining the quality
metric comprises receiving a user selection of a test method.

16
19. The method of claim 1, further comprising determining

whether the quality metric for the two or more parallel ran­
dom number streams meets a user-specified significance
level.

20. A system, comprising:
a processor;
a memory coupled to the processor, wherein the memory

comprises program instructions executable by the pro­
cessor to implement:

creating mixed random number streams by mixing two or
more parallel random number streams, wherein mixing
the two or more parallel random number streams com­
prises pairing at least one of the random number streams
with at least one other of the random number streams;

computing, for each of the mixed random number streams,
an inter-stream correlation value based on a correlation
between the bivariate pairs constructed from the mixed
stream; and

determining, from inter-stream correlation values for two
or more mixed random number streams, a quality metric
for the parallel random number streams.

12. The method of claim 1, wherein the quality metric 20

comprises a significance level, wherein the significance level
comprises a level above which a claim of independence can­
not be rejected. 21. A non-transitory, computer-readable storage medium

comprising program instructions stored thereon, wherein the
25 program instructions are configured to implement:

13. The method of claim 1, wherein the quality metric is
tested against a user-specified significance level.

14. The method of claim 1, wherein the quality metric is
determined based on an aggregate method.

15. The method of claim 1, wherein the quality metric is
determined based on a goodness-of-fit method.

16. The method of claim 1, wherein the quality metric is 30

determined based on a percentile method.
17. The method of claim 1, wherein the quality metric is

determined based on a mean absolute deviation method.
18. The method of claim 1, further comprising applying a

polar transform to remove some bivariate pairs from a mixed 35

random number stream from the determination of the quality
metric, wherein removing the one or more bivariate pairs
reduces correlations among the random number streams used
in creating the mixed random number stream.

creating mixed random number streams by mixing two or
more parallel random number streams, wherein mixing
the two or more parallel random number streams com­
prises pairing at least one of the random number streams
with at least one other of the random number streams;

computing, for each of the mixed random number streams,
an inter-stream correlation value based on a correlation
between the bivariate pairs constructed from the mixed
stream; and

determining, from inter-stream correlation values for two
or more mixed random number streams, a quality metric
for the parallel random number streams.

* * * * *

Atty. Dkt. No.: 5660-14400 Customer No. 35690
 Eric B. Meyertons
 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
 P.O. Box 398
 Austin, TX 78767-0398
 Ph: (512) 853-8800

PATENT
5660-14400

GENERATION OF DISTINCT PSEUDORANDOM NUMBER

STREAMS BASED ON PROGRAM CONTEXT

By:

Rajendra V. Boppana

vishnu
Typewritten Text
Appendix D: CPRNG Patent

vishnu
Typewritten Text

UNITED STA 1ES p A 1ENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

NOTICE OF ALLOWANCE AND FEE(S) DUE

35690 7590 06110/2015

MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C.
P.O. BOX 398
AUSTIN, TX 78767-0398

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR

13/426,028 03/2112012 Rajendra V. Boppana

EXAMINER

Y AARY, MICHAEL D

ART UNIT PAPER NUMBER

2193

DATE MAILED: 06/10/2015

ATTORNEY DOCKET NO. CONFIRMATION NO.

6693-14400 2562

TITLE OF INVENTION: GENERATION OF DISTINCT PSEUDORANDOM NUMBER STREAMS BASED ON PROGRAM CONTEXT

APPLN. TYPE ENTITY STATUS ISSUE FEE DUE PUBLICATION FEE DUE PREV. PAID ISSUE FEE TOTAL FEE(S) DUE DATE DUE

nonprovisiona1 SMALL $480 $0 $0 $480 09/10/2015

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT.
PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS.
THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON
PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE
MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS
STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES
NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS
PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM
WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW
DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the ENTITY STATUS shown above. If the ENTITY STATUS is shown as SMALL or MICRO, verify whether entitlement to that
entity status still applies.

If the ENTITY STATUS is the same as shown above, pay the TOTAL FEE(S) DUE shown above.

If the ENTITY STATUS is changed from that shown above, on PART B- FEE(S) TRANSMITTAL, complete section number 5 titled
"Change in Entity Status (from status indicated above)".

For purposes of this notice, small entity fees are l/2 the amount of undiscounted fees, and micro entity fees are l/2 the amount of small entity
fees.

II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office
(USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section "4b"
of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a
request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing
the paper as an equivalent of Part B.

III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to
Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of
maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Pagel of3
PTOL-85 (Rev. 02/11)

Atty. Dkt. No.: 5660-14400 Page 1 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

 PRIORITY CLAIM

[0001] This application claims priority to U.S. Provisional Application

No. 61/454,856 entitled “GENERATION OF DISTINCT PSEUDORANDOM

NUMBER STREAMS BASED ON PROGRAM CONTEXT” to Boppana filed 5

March 21, 2011, which is incorporated herein by reference in its entirety.

 BACKGROUND

Field

[0002] This disclosure is generally related to parallel computing 10

applications, simulation codes and protocols that use pseudorandom numbers and

more specifically to algorithms and methods to generate pseudorandom numbers.

Description of the Related Art

[0003] Many important scientific computing applications, business and 15

finance applications, and complex systems modeling and analysis techniques use

pseudorandom number generators (“RNGs”). These applications may take advantage

of the availability of thousands of computing cores on heterogeneous systems

comprising multi-core processors (“CPUs”) and highly parallel general purpose

graphics processing units (“GPUs”), provided that suitable parallel pseudorandom 20

number generators (“PRNGs”) are available to simultaneously feed thousands of

computing streams with high quality random number (“RN”) streams with low intra-

and inter-stream correlations (inter-stream correlations may be referred to herein as

“ISCs”).

 25

[0004] A parallel or distributed application has the computational task that

may be divided into several thousands or millions of subtasks, with each subtask

executed by a separate thread or process (henceforth, process). Each process has

Atty. Dkt. No.: 5660-14400 Page 2 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

distinct ID that is usually logically numbered within the context of the application

execution.

[0005] For an iterative parallel application, each process may execute

some of the iterations. For example, for a large lattice structure simulation, each

process may simulate the working of a few of the lattice points. Therefore, processes 5

often cycle through computing and communication mode. In the computing mode, a

process may use the available data to perform new calculations needed to make

progress toward the solution. In the communication mode, a process may send its data

or receive other process’ data.

[0006] It is common to use the single-program multiple data (SPMD) 10

programming method to code parallel applications, in which each of the processes

receives the same computer code but has explicit instructions that specify based on

the process’s ID its portion of the task.

[0007] If an SPMD-based parallel application code that uses random

numbers is executed, all or some of the processes (spawned for the execution of the 15

application code) request random numbers from the same program locations or

contexts.

[0008] In some applications, all required processes may be spawned

statically at the start of the code execution. In other applications, some of the

processes are spawned initially and any additional processes are spawned dynamically 20

by the existing processes based on the application data and the coded algorithm or

model. In highly complex simulation codes, the initial processes may need to spawn

additional processes, dynamically, during the execution. However, with SPMD

programming method, all processes use the same application code with the task for

each process specified by conditional statements based on the data and the process ID. 25

[0009] In some systems, to distinguish requests for random numbers from

different processes, an application is coded such that each process uses a RN stream

identifier to explicitly identify a distinct stream allocated to it. The stream allocated to

Atty. Dkt. No.: 5660-14400 Page 3 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

a process may be initialized by a special function call prior to generating or using any

RNs from that stream.

[0010] A large application code that uses RNs may be executed by

dividing the computing task among multiple processes. Typically, each process is

allocated at least one distinct RN stream to provide the RNs needed during its 5

computations. To improve randomness and to improve the reproducibility of results,

an application may be coded such that each portion of computing workload, for

example, each small subset of the iterations of a large iterative code, may be assigned

a distinct RN stream identifier so that each workload may use a distinct RN stream for

the necessary RNs in its execution. In such cases, especially for efficiency reasons, 10

each process may be assigned one or more of the computing workloads, and thus, one

or more of the distinct RN stream identifiers. It is computationally inefficient, hard to

reproduce results, or both to code an application so that an RN stream is shared by

multiple processes.

[0011] The RN streams to processes may be allocated based on the input 15

data and/or computations allocated to them. For example, if a computational loop is

partitioned cyclically among p processes, then iteration i may be executed by

process pi% ; if each iteration is to use a separate RN stream, then the number of

iterations is smaller than the maximum of RN streams and it may be natural to

allocate RN streams �,, pii + from the set of all RN streams to process i . 20

[0012] One way to ensure that distinct RN streams are used is to allocate

distinct RN stream identifiers and to use a PRNG that ensures that distinct RN stream

identifiers result in initialization of distinct RN streams, which for a well-designed

PRNG, may have low or undetectable—based on the currently available statistical and

other tests—interstream correlations. 25

[0013] If the application requires each process or computational workload

to request random numbers from multiple program locations or contexts, then there

may be two options. One option is to use the same RN stream for all contexts within a

Atty. Dkt. No.: 5660-14400 Page 4 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

process. The same contexts in two different processes will still use distinct RN

streams provided distinct stream identifiers are allocated and initialized for different

processes.

[0014] A second option is to use multiple distinct streams for multiple

contexts in each process, potentially one distinct RN stream for each distinct program 5

context. This second option may be desirable for better randomness properties. In

such a case, the application code is explicitly written to manage these multiple

streams. If the number of distinct streams needed for an application is not known in

advance, the maximum number of streams needed per process is estimated and the

same are allocated to each process. 10

[0015] If the estimation is too small, then a program error is generated and

execution is halted. In this case, the user needs to revise the estimate for the number

of streams needed and resubmit the application for execution.

[0016] If the estimation is too large, then the program may run out of

distinct RN streams for processes spawned after some point. This is especially true for 15

parallel applications that are tuned and run on large clusters of computers with a large

number of processes are run on even larger clusters of computers with even more

processes, by a simple change in compile-time or runtime options without application

recoding, to take advantage of the additional performance offered by the larger

hardware. 20

[0017] To further control the generation of RN streams, an application

may provide a single-seed value, typically by a designated master process (usually

process 0) to a PRNG. The single-seed value is typically a 32- or 64-bit number, often

an integer, specified by the user as part of the application’s input data. By keeping all

other input data the same and changing only the seed value, the user can run multiple 25

instances of the same scenario, average the results and obtain potential simulation

error estimations (also called, confidence intervals in statistics).

Atty. Dkt. No.: 5660-14400 Page 5 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

[0018] The quality of the random numbers used may be crucial for quick

and accurate solutions to simulation-based computer solutions and for robust security

protocols and security keys used in security protocols. It may be desirable to use

distinct parallel RN streams if an application code calls for RNs from multiple distinct

locations so that, within a process, multiple calls for RNs from the same location (also 5

called, program context) are satisfied by providing RNs from a specific stream, while

the calls for RNs from different locations of the program within the same computing

iteration will be satisfied by providing RNs from different streams. Distinct RN

streams across different processes may be ensured by the use of distinct RN stream

identifiers to initialize the RN streams. To use distinct RN streams for distinct 10

contexts within a process or computational workload, the application has to be coded

specifically to use distinct RN stream identifiers for each such program context. Such

an approach may, however, provide an unreasonable burden on the application

designer and make revisions to application code, which may change the number of

program contexts from which RNs are requested, cumbersome and potentially error-15

prone.

[0019] In some parameterized PRNGs, each process is given one RN

stream with appropriately parameterized seed or iteration function. Two main

approaches to design PRNGs are (a) splitting a sequential RN stream into multiple

substreams, with each substream treated as a distinct RN stream for application 20

execution purposes, and (b) parameterization of the initialization (seed) state of an

RNG with multiple random number cycles or the parameterization of the iteration

function of the initialization of an RNG. The leap-frog technique which splits a

sequential RN stream in an interleaved manner — if a sequential stream consisting of

x1, x2, x3, … needs to be split into k streams, then stream i consists of RNs xi, xk+i, 25

x2k+i, …, 1 � i � k —received extensive attention. But it is inherently not scalable

owing to initialization cost—a large multiple of k RNs must be generated first to

initialize each processor/process—and potentially increased intra-stream correlations.

Atty. Dkt. No.: 5660-14400 Page 6 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

[0020] The Mersenne twister (MT) is a variant of feedback shift register-

based random number generator. The original generator MT19937, which generates a

single RN stream with a very long cycle of length 199372 (that is, the sequence of

RNs repeats after generating this many RNs), is very popular and is widely

implemented in various software packages (including Gnu Scientific Library, gsl 5

package). SFMT19937, a parallel 128-bit version, and MTGP, a GPU version as part

of NVIDIA CUDA library, are also available. Using MT to generate multiple parallel

RN streams often requires splitting its sequential RN stream. This is largely an ad hoc

process since the maximum number of RNs needed in each segment needs to be

estimated. This also may compromise the randomness quality since segmenting the 10

stream and using the segments changes the correlations among the RNs used. Direct

parallelization by changing the parameters of MT is computationally expensive and

may not be suitable for dynamic generation of random number streams in a high-

performance simulation code.

 15

Atty. Dkt. No.: 5660-14400 Page 7 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

SUMMARY

[0021] In an embodiment, a method of providing random number streams

to a process includes determining one or more program contexts within a process.

Each of the program contexts may include code that calls for one or more random 5

numbers. For each of at least two of the program contexts, a random number stream

is provided to the process. The random number stream for each program context is

based on the determined program context and is distinct from the random number

stream for the other program contexts in the process.

[0022] In an embodiment, a method of providing random numbers streams 10

to processes performing a parallel computation includes determining program

contexts within one process of a parallel computation. Each of the program contexts

may include code that calls for one or more random numbers. A random number

stream is provided to the process for each of the program contexts. The random

number stream provided is based in part on the determined program context and 15

based in part on which of the two or more processes the program context is in.

[0023] In an embodiment, a method of providing random numbers streams

to processes performing a parallel computation includes receiving a call for one or

more random numbers from a program context in a process of a parallel computation.

A random number stream is used to provide a random number for each such call. The 20

random number stream provided is based at least in part on the determined program

context.

[0024] In some embodiments, a context-aware parallel pseudorandom

number generator uses the program context in which a request for a random number is

made to automatically select and use distinct random number streams for distinct 25

contexts.

Atty. Dkt. No.: 5660-14400 Page 8 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG. 1 is a block diagram illustrating a random number generator

that provides distinct random number streams to different program contexts of a

parallel computation. 5

[0026] FIG. 2 is a block diagram illustrating a random number generator

that can provide distinct random number streams to different program contexts and

different processes of a parallel computation based on program context and other

information.

[0027] FIG. 3 illustrates providing random number streams to a process 10

based on a determined program context.

[0028] FIG. 4 illustrates one embodiment of the initialization process by a

context-aware random number generator.

[0029] While the invention is described herein by way of example for

several embodiments and illustrative drawings, those skilled in the art will recognize 15

that the invention is not limited to the embodiments or drawings described. It should

be understood, that the drawings and detailed description thereto are not intended to

limit the invention to the particular form disclosed, but on the contrary, the intention

is to cover all modifications, equivalents and alternatives falling within the spirit and

scope of the present invention as defined by the appended claims. The headings used 20

herein are for organizational purposes only and are not meant to be used to limit the

scope of the description or the claims. As used throughout this application, the word

"may" is used in a permissive sense (i.e., meaning having the potential to), rather than

the mandatory sense (i.e., meaning must). Similarly, the words “include”,

“including”, and “includes” mean including, but not limited to. 25

Atty. Dkt. No.: 5660-14400 Page 9 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

DETAILED DESCRIPTION OF EMBODIMENTS

[0030] As used herein, “random number” includes a pseudorandom

number. As used herein, a “random number generator” includes a pseudorandom

number generator. 5

[0031] As used herein, a “context-aware parallel pseudorandom number

generator” means a parallel pseudorandom number generator which generates one or

more random number streams and provides random numbers based on information

relating to a program context for requesting random numbers.

[0032] As used herein, the phrase “primitive process”, or simply 10

“process”, is used to represent a thread or process assigned to execute one

computational workload. In some cases, a thread or process used in an execution of

the application may perform the work of multiple primitive processes.

[0033] In some embodiments, distinct random number streams are

assigned to different program contexts. The streams may be assigned such that no 15

two processes cooperatively working on a parallel computation use the same random

number stream. In some embodiments, the use of program context enables context-

aware parallel pseudorandom number generators to generate distinct random number

streams even for processes that use only one stream identifier by call for random

numbers from multiple locations. 20

[0034] In some embodiments, a collection of random number streams is

given to each process so that each distinct statement (denoted, random number

context) that calls for a random number is served with a distinct generator taken from

the PRNGs assigned to that process. To ensure that each process of the parallel

computation that executes the same code uses distinct random number streams, the 25

streams may, in certain embodiments, be further initialized with distinct RN stream

identifiers supplied by the application code. This RN stream identifier may be used to

Atty. Dkt. No.: 5660-14400 Page 10 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

determine a distinct identifier, in 64- or more bits, generated by a special library

module.

[0035] In some embodiments, random number context (RN-context) is

used in conjunction with the RN stream identifier to determine the RN stream to be

used. The RN context may be derived from the return address of the function call to 5

the random number generator.

[0036] FIG. 1 is a block diagram illustrating a random number generator

that provides distinct random number streams to different program contexts of a

parallel computation. Parallel computation 100 includes processes 102. In some

embodiments, processes 102 each include SPMD-based parallel application code for 10

carrying out parallel computation 100. Contexts 104 may correspond to a location in

the code of one of processes 102. Processes 102 include contexts 104.

[0037] Random number generator 106 may provide random number

streams to contexts 104 in processes 102. Each of contexts 104 may make calls 108

requesting random numbers. In response, random number generator 106 may 15

generate a random number stream 110 to the context. In some embodiments, each

random number stream 110 is generated from, or retrieved from, one of library

modules 114.

[0038] In some embodiments, a distinct stream is provided to each random

number context. For example, the random number stream provided to context A of 20

process 1 may be distinct from the random number streams provided to context B of

process 1, which may be different from the random number stream provided to

context C of process 1, and so on.

[0039] Each of processes 102 may include multiple iterations 112. Each

of iterations 112 may be associated with an iteration number. For each of iterations 25

112 of processes 102, context 104 may separately call for a random number stream.

Atty. Dkt. No.: 5660-14400 Page 11 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

[0040] In some embodiments, random number context (RN-context) is

used with other information to determine an RN stream to be used for a computation.

The RN context may be derived from the return address of the function call to the

random number generator, a process number or thread number, an iteration number (if

appropriate), any user supplied stream identifier, or a combination of one or more of 5

these elements. A user supplied stream identifier may be, for example, an index to

RN stream contexts or a pointer to a data structure containing the RN stream context.

[0041] FIG. 2 is a block diagram illustrating a random number generator

that can provide distinct random number streams to different program contexts and

different processes of a parallel computation based on program context and other 10

information. An application’s request for a random number may provide user-

specified stream ID 120 to library module 114. A process ID 122 may be associated

with each of processes 102. An iteration number 124 may be associated with each

iteration of a process. User-specified stream ID 120, process ID 122, and iteration

number 124 may be accessed by random number generator 106. In some 15

embodiments, random number generator 106 uses one or more of user-specified

stream ID 120, process ID 122, and iteration number 124, in combination context

information associated with one of contexts 104, to determine the random number

stream to be used to provide one or more random numbers to the context. The random

number stream may be initialized if it is not already initialized, as in the case of the 20

first call to this stream.

[0042] Each of processes 102 may have unique process ID 122. Random

number generator 106 may provide a distinct stream to each program context and

process. Thus, for example, random number stream 115 supplied to Context A of

process 2 in response to call 113 may be distinct from random number stream 110 25

supplied to Context A of process 1 in response to call 108.

[0043] In one embodiment, context-aware parallel pseudorandom number

generators are implemented as library modules that can be linked to application codes

Atty. Dkt. No.: 5660-14400 Page 12 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

at the compile time. Random numbers may be retrieved from the CPRNG library

using function calls at the run time.

[0044] FIG. 3 illustrates providing random number streams to a process

based on a determined program context. At 200, a program context is determined for

program contexts within a process. Each of the program contexts may include code 5

that calls for one or more random numbers. For example, referring to FIG. 1, process

1 includes program context A, Context B, and Context C.

[0045] At 202, a random number stream is provided for each of the

program contexts based on the determined program context. For example, referring

to FIG. 1, random number generator 106 may provide a distinct random number 10

stream to each of Context A, Context B, and Context C in process 1. For example,

random number stream 111 provided to Context B in response to call 109 may be

distinct from random number stream 110 provided to Context A in response to call

108.

[0046] In some embodiments, random number streams are generated for 15

two or more processes in a parallel computation. The random numbers streams may

be provided such that the random number streams used by one process are distinct

from those of other processes. In certain embodiments, streams are generated such

that the corresponding contexts of different parallel processes are provided with

distinct random number streams. For example, random number generator 106 may 20

provide a random number stream to context A of process 1 that is distinct from the

random number stream provided to context A of process 2.

[0047] In some embodiments, a parameterized pseudorandom number

generator (RNG) is used to generate a large number of random number (RN) streams.

The RNG may be augmented with a scalable and automatic initialization process. 25

Parameterized PRNGs that may be used in some embodiments of a context-aware

random number generator include an additive lagged Fibonacci generator (ALFG) or

a multiplicative lagged Fibonacci generator (MLFG).

Atty. Dkt. No.: 5660-14400 Page 13 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

[0048] An additive lagged Fibonacci generator (ALFG) uses an addition-

based recursion:

[0049] ,0),2(mod nlkxxx m
lnknn <<<+= −−

[0050] where l and k are the lags (or indices to the older numbers used to

generate the new number), kln ,, are positive integers, and s'ix are m -bit random 5

numbers. The values 17=l and 5=k are commonly used to generate multiple

distinct streams of 32- or 64-bit RNs. However, to pass very stringent intra-stream

correlations tests, the lag, l , needs to be very high, over 1000.

[0051] A drawback of ALFG may be the initialization cost of l words

before generating any RNs that can be used by the application code. 10

[0052] An advantage of ALFG may be that it has a large number of

independent and long cycles of RNs. For a b-bit, r lagged ALFG, there are)1)(1(2 −− lb

cycles, each of length 12)12(−− bl .

[0053] A multiplicative lagged Fibonacci generator (MLFG) is similar to

ALFG except that multiplication instead of addition is used in the recursion. MLFG 15

has only one-fourth as many cycles, and each of only one-fourth as long as those in

ALFG. MLFGs may be suitable in many embodiments of a CPRNG, since even with

a small lag of 17, it may be feasible to generate RN streams that pass many of the

stringent tests.

[0054] The multiplicative Fibonacci lagged generator (MLFG) uses the 20

recurrence relation

[0055] ,0),2(mod nlkxxx m
lnknn <<<×= −−

[0056] Where m is the random integer size in bits, l and k are the lags

or offsets to the stream of previously generated random numbers, and ,, lixi > are

the random numbers generated. RNs lxxx ,,, 21 � form the initialization (seed) 25

Atty. Dkt. No.: 5660-14400 Page 14 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

sequence or state and the initial words of a RN stream. The state of RN stream is

always given by its most recent l words. Theoretical results show that each distinct

combination of certain)1()3(−×− ml of the ml × bits in the seed gives a distinct

RN stream for a total of)1)(3(2 −− ml streams, each with a cycle of
3)3(2)12(2 −+− ≈−× lmml RNs. Therefore, there are () ()13 −×− lm bits that may need to 5

be determined uniquely for each RN stream initialization (seed) sequence.

[0057] A 64-bit MFLG with lag 17 may be implemented in one example.

With 64-bit integers and a lag of 17, there are 2939761661 10622 ×≈=× different RN

streams, each with distinct 976 -bit seed value and a cycle length of
23781761 1032)12(2 ×≈≈−⋅ . A few of the lower bits of s'ix may be discarded and 10

remaining bits of ix ’s are used to supply the RNs to improve the randomness since

the lower bits are often less random owing to the arithmetic operation involved. The

random numbers may be provided as integers or as real numbers in the range [0,1) by

computing the fractions resulting from the division of the integer ix ’s with

rnmax_1+ , where rnmax_ is the maximum value an ix may take. In one 15

embodiment, a PRNG package called SPRNG and the MLFG available from its

library are used to implement a CPRNG.

[0058] In one implementation of context-aware random number

generation, a SPRNG library package provides init_rng() and get_rn_dbl() function

calls to initialize a new RN stream and to obtain the next RN in an already initialized 20

stream, respectively. The init_rng function is called by specifying the seed,

parameters set that specify the lags and the locations of the odd numbered words in

the initial set of lag words, maximum number of RN streams (denoted max_str) that

will be requested by the application, and cur_str, the RN stream number in the range

1max_str10 -,,, � that needs to be initialized. The seed, parameter set, and max_str 25

may be common in all init_rng() calls. Each call to init_rng function returns a pointer

to one RN stream.

Atty. Dkt. No.: 5660-14400 Page 15 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

[0059] In one embodiment of a CPRNG implementation, each init_rng()

call allocates not just one RN stream but a set of distinct RN streams and returns a

pointer, str_ptr, to the set; the streams in this set can be customized with program

context without further calls to init_rng(). The RN-context, the context or the program

location from which a RN number is requested, is used in addition to the stream-set 5

pointer, str_ptr, to determine the specific RN stream to be used. The RN context may

be derived from a combination of the program line number in the source code, the

return address of the function call to get_rn_dbl(), the process/thread numbers, and

any user supplied identifiers such as the iteration number. When the application

requests for a random number using the function call get_rn_dbl(str_ptr), the RN-10

context is used to determine the specific RN stream to be used in the set of streams

pointed by str_ptr. The appropriate RN stream may be automatically initialized with

the RN-context, if it is the first call from this context, and a RN from the stream is

returned.

[0060] Each call to init_rng() may result in the initialization of the RN 15

stream specified by the stream number, cur_str, and the calling code is given a pointer

to the RN stream that should be used as argument in the function call get_rn_dbl() to

obtain the next RN in the stream.

[0061] In this example embodiment, CPRNG differs from the MLFG in

the SPRNG package in several ways: (a) automatically generating distinct RN streams 20

based on program context for the same str_ptr value; (b) initialization method used to

seed RN streams to improve the randomness and also to ensure that RN context can

be added to dynamically create distinct RN streams without requiring additional

init_rng() calls; (c) the distinct ID field that allocates distinct values for a portion of

the seed sequence statically (when the cur_str value is less than max_str value in the 25

function call init_rng()) and additional seed sequences dynamically beyond the

max_str limit in case the application requires more RN streams than originally

estimated. Extensive statistical tests are used to show that CPRNG implementation of

MLFG generates billions of RN streams with low interstream correlations while the

Atty. Dkt. No.: 5660-14400 Page 16 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

implementation of the same theoretical generator in SPRNG exhibits statistically

significant correlations for more than a million streams. The specification of max_str

limits the maximum number of cur_str values that can be used to call init_rng() in

SPRNG implementation, whereas max_str is a threshold to determine whether the

initialization sequences are allocated statically or dynamically. Static allocation of the 5

seed sequences improves repeatability of the computations when rerun with the same

input data and dynamic allocation of seed sequences relieves the burden of specifying

the maximum number of stream allocations needed a priori. Context-awareness

provides distinct RN streams for distinct program contexts even when str_ptr used in

the calls to get_rn_dbl() is the same. In SPRNG implementation, the application 10

needs to be coded explicitly to use different str_ptr in calling get_rn_dbl() to achieve

the same functionality. In this example embodiment, CPRNG may avoid such

application coding and automate the management of distinct streams for distinct

contexts.

[0062] FIG. 4 illustrates one embodiment of the initialization process by 15

CPRNG. In this example shown in FIG. 4, the initialization may be based on lag

parameters l and k , 10 −<< lk . A call to init_rng() results initialization of 3−l of

the lag words using a sequential RNG such as the recursion with carry (RWC)

generator, a 32-bit generator, initialized with the user specified seed integer. In this

example, these lag words are common to the initialization of all RN streams 20

regardless of the process number or RN-context. One of the remaining three lag

words is filled with an ID that is guaranteed to be distinct for distinct cur_str numbers

specified in init_rng(). The distinct ID word is common to the set of RN streams that

are allocated based on different RN contexts but have the same cur_str number. The

remaining two lag words are filled with the RN-context so that distinct RN-contexts 25

result in distinct RN streams.

[0063] In the embodiment shown in FIG. 4, initialization of RN stream

state by CPRNG. In this example, the state consists of l lag words. Each lag word is

a 32-bit or, more typically, 64-bit word with maximum lag l , 3−l of the lag words is

Atty. Dkt. No.: 5660-14400 Page 17 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

filled randomly based on the user specified seed and a sequential RNG. In this

example, these words are common to all RN streams used during the execution of the

application. Lag k , 1−< lk , is initialized with a unique and distinct ID that is

associated with the cur_str used in the init_rng() call. Lags 1+k and 2+k are

initialized with RN-context to create a distinct RN stream for each distinct program 5

context in each process.

[0064] For MLFG, all the lag words are odd values. Therefore, for each

lag word, only ()3−m of each lag word in an m -bit MLFG are determined uniquely,

and a least significant bit determined by the canonical form and parameter set is

appended to it to form an)2(−m -bit number, say, z . The actual lag word may be 10

formed by using the operation mzy 2 mod3)1(− , where y is a randomly generated 1

or 0. Henceforth, the discussion of a lag word initialization pertains to the generation

of the ()3−m bits since every initial lag word will be transformed using the operation

mzy 2 mod3)1(− . For a 64-bit MLFG, two consecutive 32-bit RNs generated by the

RWC generator may be used form a 61-bit integer for the lag words filled by it. 15

Similarly, only 61 bits of each of the lag words used for distinct ID word and the RN

context words need to be determined uniquely.

[0065] In some embodiments, the number of bits used for distinct ID may

be more or fewer than 3−m bits, and more than one lag word or only a portion of a

lag word may be used. Up to 2−l lag words are available for distinct ID 20

specification. Similarly, the number of bits used RN context may be more or fewer

than)3(2 −m bits used in the example embodiment in FIG. 4. Furthermore, the

positions of distinct ID bits and RN context bits can be anywhere in the

() ()13 −×− lm bits available to seed distinct RN streams. Any bits not used for

distinct ID and RN context fields will be randomly filled with the RWC or some other 25

good sequential random number generator initialized with user supplied 32-bit or 64-

bit single-seed value

Atty. Dkt. No.: 5660-14400 Page 18 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

[0066] For a CPRNG based on MLFG with maximum lag 17=l and 64-

bit words, 122612 22 =× distinct RN streams may be allocated with each init_rng() call.

Based on the context and str_ptr argument used in a call to get_rn_dbl(), an

appropriate stream is selected, automatically initialized prior to first use, and the next

RN in the stream is returned. CPRNG may be used without RN-contexts by choosing 5

appropriate parameters to init_rng() call. If RN-contexts are not used, then the two lag

words that are normally filled with RN-context are filled with the random bits

generated by the sequential RWC generator. The lag word with distinct ID may be

used to ensure that RN streams are distinct for distinct values of cur_str specified in

the init_rng(). CPRNG may be simply a basic MLFG when used without context. 10

[0067] For applications that use a large and variable number of RN

streams, having to specify the maximum number of streams used during an execution

run is a limitation. Furthermore, certain large-scale parallel applications may spawn

additional processes and threads dynamically depending on the input data and

intermediate results. To accommodate such situations, CPRNG may assign several 15

(102 in the example embodiment) consecutive distinct IDs for the lag word k upon a

call to init_rng(), independent of any streams allocated to handle RN contexts.

Therefore, CPRNG may allocate multiple initialization (seed) sequences, which can

be used to initialize distinct RN streams by simply initializing the distinct ID lag word

based on the unused distinct IDs allocated and keeping the other initialization words 20

the same, to the calling process. Typically, only one of these IDs is used by a process.

However, if a process spawns threads or child processes and needs to use additional

distinct RN streams without going through the initialization process, it can have them

without any communication overhead by using the original initialization with the

distinct ID word replaced with one of the unused IDs from its allocated IDs. This 25

leads to faster initialization of the new RN streams on demand. If more RN streams

are needed and init_rng() is called with cur_str value greater than max_str, a

monotonically increasing counter is used to ensure that the lag word K is distinct.

However, the access to this counter may need to be serialized by using appropriate

mutex locks in threaded applications or by assigning it to a process to serve the 30

Atty. Dkt. No.: 5660-14400 Page 19 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

counter values to the other processes of the application. In these instances, an

additional communication or serialization overhead may be incurred by CPRNG

compared to the static methods used in some packages. On the other hand, CPRNG

provides virtually unlimited number of RN streams on demand, limited only by the

number of bits used for the distinct ID, and avoids depletion of the available RN 5

streams that can occur with static partitioning of the available RN streams for

applications with many levels of dynamic process/thread creation.

[0068] In some existing parallel random number generators (PRNG), only

the user supplied stream identifier is used to determine the RN stream, thus leaving

the burden of managing multiple RN streams to the user. This can be onerous, 10

especially if the application is iterative and RNs are consumed at multiple locations in

each iteration. Use of a CPRNG may relieve a user from managing multiple streams

for each thread or process. In some embodiments, the use of process/thread numbers

may be used in addition to context information. The option of using process/thread

number to determine RN contexts may be selected by a user at a compile-time or 15

runtime. Use of a process/thread number in determining the RN context may reduce

reproducibility of results.

[0069] In some embodiments, once a unique RN-context is determined,

RN-context information may be embedded into a seed sequence to initialize an RN

stream. The seed sequence may be, for example, a 976 -bit sequence for a 64-bit 20

MLFG with lag 17. In some cases, it may be sufficient to limit the RN-context size to,

for example, two lag words (122 bits; only 61 bits of each 64-bit lag word are

determined, and the remaining three bits are determined by a canonical form used to

initialize the lag words). The RN-context may be concatenated with an additional

deterministically generated distinct ID (one lag word or 61 bits) to further distinguish 25

the initialization of RN streams. The remaining bits may be filled randomly using a

good sequential RNG, such as a recursion with carry (RWC) generator using a user-

supplied seed integer. These random bits may be common to the initialization of all

RN streams.

Atty. Dkt. No.: 5660-14400 Page 20 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

[0070] In some embodiments, a CPRNG implements a scalable

initialization of RN streams. In one embodiment, the CPRNG initializes RN streams

using a return address, any user supplied identifier, seed information, and additional

information that is generated by a CPRNG library. This additional information may

be generated in different ways depending, for example, on the application code. 5

[0071] If the application is an MPI-based parallel program using single-

program multiple data (SPMD) program model, then a special CPRNG module may

be associated with process 0. The user may be neither aware of this nor expected to

modify the application code. This CPRNG module may allocate several, for example,
102 , consecutive distinct 64-bit IDs in response to each initialization request. Each 10

RN context may be augmented with one of the distinct IDs.

[0072] Some MPI processes dynamically spawn processes/threads that use

RN streams. In some embodiments, a process supplies its unused IDs to its child

processes to automatically ensure that RN streams are distinct. If a process runs out

of its allocated distinct IDs, then the CPRNG module may allocates additional distinct 15

IDs. (In such instances, an additional communication overhead may be incurred by

CPRNG compared to the static methods used in the some packages.) Such an

approach may require very low communication among the processes for RN stream

initialization.

[0073] For parametric studies based on Monte Carlo simulations, the RN 20

streams used for each instance of simulation can be ensured to be distinct by

specifying the specific IDs (fore example, 64-bit IDs) to be used as additional input

file that will be used by the CPRNG library. A script (such as a Python script) may

partition ID space and generate the additional input files.

[0074] In SPRNG and other works, the initialization for an RN stream 25

may be determined based on a user-supplied stream identifier and a seed integer. The

seed integer may be, for example, a 32-bit or a 64-bit integer. To handle the issue of

new RN streams for additional processes/threads spawned dynamically, the RN

Atty. Dkt. No.: 5660-14400 Page 21 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

stream initialization space may be partitioned statically using a binary partitioning

scheme to ensure initialization without any communication among processes. This

can result in depletion of the initialization sequences quickly for applications with

many levels of dynamic process/thread creation.

[0075] Although certain of the embodiments described above relate to 5

simulations, systems and methods described herein may be used in a variety of

applications. Examples of applications systems and methods described herein

include (a) simulation-based solutions to large scientific and engineering problems,

(b) parameterized Monte Carlo simulations of scientific, engineering, and finance

problems, (c) distributed computing, and (d) protocols and keys used for information 10

assurance and security.

[0076] Systems and methods described herein may be implemented in

hardware including field programmable gate arrays (FPGAs) and application specific

integrated circuit (ASIC) chips, or a suitable combination of hardware and software

and which can be one or more software systems on a general purpose processor 15

(CPU) or graphics processing unit (GPU).

[0077] Computer systems may, in various embodiments, include

components such as a CPU with an associated memory medium such as Compact

Disc Read-Only Memory (CD-ROM). The memory medium may store program

instructions for computer programs. The program instructions may be executable by 20

the CPU. Computer systems may further include a display device such as monitor, an

alphanumeric input device such as keyboard, a directional input device such as

mouse, a voice recognition system to dictate text and issue commands for processing,

and a touch screen that may serve as a keyboard or mouse. Computer systems may be

operable to execute the computer programs to implement computer-implemented 25

systems and methods. A computer system may allow access to users by way of any

browser or operating system.

Atty. Dkt. No.: 5660-14400 Page 22 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

[0078] Embodiments of a subset or all (and portions or all) of CPRNG

may be implemented and executed in a computer and the random number streams and

random numbers so generated are accessed via computer network by at least one other

computer executing the application requesting random numbers.

[0079] Embodiments of a subset of all (and portions or all) of code and 5

data needed for CPRNG operation—initialize and maintain random number streams

and provide random numbers from these streams—may be stored on a remote

computer, which, in turn, provides the said instructions and data via a computer

network to at least one other computer, which executes uses the received instructions

and data to initialize and maintain random numbers and provide random numbers for 10

applications requesting the same.

[0080] Embodiments of a subset or all (and portions or all) of the above

may be implemented by program instructions stored in a memory medium or carrier

medium and executed by a processor. A memory medium may include any of various

types of memory devices or storage devices. The term “memory medium” is intended 15

to include an installation medium, e.g., a Compact Disc Read Only Memory (CD-

ROM), floppy disks, or tape device; a computer system memory or random access

memory such as Dynamic Random Access Memory (DRAM), Double Data Rate

Random Access Memory (DDR RAM), Static Random Access Memory (SRAM),

Extended Data Out Random Access Memory (EDO RAM), Rambus Random Access 20

Memory (RAM), etc.; or a non-volatile memory such as a magnetic media, e.g., a

hard drive, or optical storage. The memory medium may comprise other types of

memory as well, or combinations thereof. In addition, the memory medium may be

located in a first computer in which the programs are executed, or may be located in a

second different computer that connects to the first computer over a network, such as 25

the Internet. In the latter instance, the second computer may provide program

instructions to the first computer for execution. The term “memory medium” may

include two or more memory mediums that may reside in different locations, e.g., in

different computers that are connected over a network. In some embodiments, a

Atty. Dkt. No.: 5660-14400 Page 23 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

computer system at a respective participant location may include a memory

medium(s) on which one or more computer programs or software components

according to one embodiment may be stored. For example, the memory medium may

store one or more programs that are executable to perform the methods described

herein. The memory medium may also store operating system software, as well as 5

other software for operation of the computer system.

[0081] The memory medium may store a software program or programs

operable to implement embodiments as described herein. The software program(s)

may be implemented in various ways, including, but not limited to, procedure-based

techniques, component-based techniques, and/or object-oriented techniques, among 10

others. For example, the software programs may be implemented using ActiveX

controls, C++ objects, as a library or standalone programs in a programming language

such as C, C++, Java or in a scripting language such as Bash, Perl, Python, or AWK,

JavaBeans, Microsoft Foundation Classes (MFC), browser-based applications (e.g.,

Java applets), traditional programs, or other technologies or methodologies, as 15

desired. A CPU executing code and data from the memory medium may include a

means for creating and executing the software program or programs according to the

embodiments described herein.

[0082] Further modifications and alternative embodiments of various

aspects of the invention may be apparent to those skilled in the art in view of this 20

description. Accordingly, this description is to be construed as illustrative only and is

for the purpose of teaching those skilled in the art the general manner of carrying out

the invention. It is to be understood that the forms of the invention shown and

described herein are to be taken as embodiments. Elements and materials may be

substituted for those illustrated and described herein, parts and processes may be 25

reversed, and certain features of the invention may be utilized independently, all as

would be apparent to one skilled in the art after having the benefit of this description

of the invention. Methods may be implemented manually, in software, in hardware, or

a combination thereof. The order of any method may be changed, and various

Atty. Dkt. No.: 5660-14400 Page 24 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

elements may be added, reordered, combined, omitted, modified, etc. Changes may

be made in the elements described herein without departing from the spirit and scope

of the invention as described in the following claims.

Atty. Dkt. No.: 5660-14400 Page 25 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

WHAT IS CLAIMED IS:

 1. A method of providing random number streams to a process, comprising:

determining one or more program contexts within a process, wherein at least

one of the one or more program contexts comprises code that calls for one 5

or more random numbers; and

providing, for each of at least one of the program contexts, a random number

stream to the process, wherein the random number stream provided for at

least one of the program contexts is based at least in part on the 10

determined program context, and wherein the random number stream

provided for at least one of the program contexts is distinct from the

random number stream for at least one other of the program contexts.

 2. The method of claim 1, wherein each of the program contexts is provided a 15

random number stream that is distinct from the random number stream for any of the

other program contexts in the process.

 3. The method of claim 1, wherein providing the random number stream to the

process for each of at least one of the two or more program contexts comprises providing 20

a set of distinct random number streams in response to a call from one of the program

contexts.

 4. The method of claim 1, wherein providing the random number stream to the

process for each of at least one of the two or more program contexts comprises

initializing the states of the random number streams, wherein the states are used to 25

generate distinct random number streams for at least two of the program contexts.

5. The method of claim 1, wherein the random-number context is determined

based, at least in part, on the return address of a function call to obtain a random number.

 30

Atty. Dkt. No.: 5660-14400 Page 26 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

 6. The method of claim 1, wherein providing the random number stream to the

process for each of at least one of the two or more program contexts comprises

embedding context information into a seed sequence to initialize the random number

stream.

 5

 7. The method of claim 1, wherein the process is one of two or more processes in

a parallel process computation, wherein the random number stream provided for at least

one of the program contexts is based in part on a process identifier for the process,

wherein the random number stream is distinct from the random number stream provided

for program contexts in at least one other process of the two or more processes in the 10

parallel process computation.

 8. The method of claim 1, wherein the random number stream provided for at

least one of the program contexts is based in part on a user-supplied stream identifier for

program context. 15

 9. The method of claim 1, wherein providing the random number stream to the

process for each of at least one of the two or more program contexts comprises receiving

a stream identifier stored in, or generated from, a library module.

 20

 10. The method of claim 1, wherein the random number stream provided for at

least one of the program contexts is based in part on an iteration number.

 11. The method of claim 1, wherein the random number stream provided for at

least one of the program contexts is based in part on a user-specified seed value. 25

 12. The method of claim 1, wherein the process is a dynamically spawned

process, wherein a random number stream allocated to it is based in part on unused

initialization sequences from the random number streams originally allocated to the

parent process from which the process was spawned. 30

Atty. Dkt. No.: 5660-14400 Page 27 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

13. A system, comprising:

a processor;

a memory coupled to the processor, wherein the memory comprises program 5

instructions executable by the processor to implement:

determining one or more program contexts within a process, wherein at least

one of the one or more program contexts comprises code that calls for one

or more random numbers; and 10

providing, for each of at least one of the program contexts, a random number

stream to the process, wherein the random number stream provided for at

least one of the program contexts is based at least in part on the

determined program context, and wherein the random number stream 15

provided for at least one of the program contexts is distinct from the

random number stream for at least one other of the program contexts.

14. The system of claim 13, further comprising:

a network of systems in which one or more systems may store portions or 20

all of code and data needed for CPRNG and compute or provide

instructions or data needed to use CPRNG or the random numbers to at

least one or more other systems by way of the computer network.

15. The system of claim 13, wherein each of the program contexts is provided a 25

random number stream that is distinct from the random number stream for any of the

other program contexts in the process.

Atty. Dkt. No.: 5660-14400 Page 28 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

16. A non-transitory, computer-readable storage medium comprising program

instructions stored thereon, wherein the program instructions are configured to

implement:

determining one or more program contexts within a process, wherein at least

one of the one or more program contexts comprises code that calls for one 5

or more random numbers; and

providing, for each of at least one of the program contexts, a random number

stream to the process, wherein the random number stream provided for at

least one of the program contexts is based at least in part on the 10

determined program context, and wherein the random number stream

provided for at least one of the program contexts is distinct from the

random number stream for at least one other of the program contexts.

17. The computer-readable storage medium of claim 16, wherein the program 15

instructions further comprise:

CPRNG code and data in the storage medium of one computer accessed by

way of a computer network by another computer to initialize and maintain

random number streams and generate random numbers.

 20

18. The computer-readable storage medium of claim 16, wherein each of the

program contexts is provided a random number stream that is distinct from the random

number stream for any of the other program contexts in the process.

 19. A method of providing random numbers streams to processes performing a 25

parallel computation, comprising:

determining one or more program contexts within one process of a parallel

computation, wherein the parallel computation includes two or more

Atty. Dkt. No.: 5660-14400 Page 29 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

processes performed in parallel, wherein each of the one or more program

contexts comprises code that calls for one or more random numbers; and

providing a random number stream to the one process for each of at least one

of the one or more program contexts, wherein the random number stream 5

provided is based in part on the determined program context and based in

part on which of the two or more processes the program context is in.

20. The method of claim 19, wherein each of the program contexts is provided a

random number stream that is distinct from the random number stream for any of the 10

other program contexts in the process.

 21. The method of claim 19, further comprising:

determining one or more program contexts within a second process of the parallel

computation; and 15

providing a random number stream to the second process for each of at least one

of the one or more program contexts,

wherein the random number stream to the second process is determined based in 20

part on the determined program context and based in part on which of the two

or more processes the program context is in,

wherein the random number stream provided for a program context is distinct

from the random number stream provided for the program contexts in at least 25

one other process of the two or more processes in the parallel computation.

 22. The method of claim 19, wherein the random number stream is distinct from

the random number stream provided for a corresponding program context in at least one

other process of the two or more processes in the parallel computation. 30

Atty. Dkt. No.: 5660-14400 Page 30 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

 23. The method of claim 19, wherein the random number stream provided for at

least one of the program contexts is based in part on a process identifier for the process.

 24. The method of claim 19, wherein the random number stream is distinct from 5

the random number stream provided for program contexts in at least one other process of

the two or more processes in the parallel computation.

 25. The method of claim 19, wherein providing a random number stream to the

one process for each of at least one of the two or more program contexts comprises 10

providing a random number stream for each of at least two of the two or more program

contexts,

wherein the random number stream provided for the program contexts is based at

least in part on the determined program context, and

wherein the random number stream provided for at least one of the program 15

contexts is distinct from the random number stream for at least one other of the program

contexts.

 26. The method of claim 19, wherein the random-number context is based, at

least in part, on the return address of a function call to obtain a random number. 20

 27. A method of providing random numbers streams to processes performing a

parallel computation, comprising:

receiving a call for one or more random numbers from a program context in a 25

process one process of a parallel computation, wherein one process is one

of two or more processes performed in a parallel computation; and

Atty. Dkt. No.: 5660-14400 Page 31 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

providing a random number stream to the one process for the program

contexts, wherein the random number stream provided is based at least in

part on the determined program context.

28. The method of claim 28, wherein based in part on which of the two or more 5

processes the program context is in.

 29. The method of claim 28, wherein the random-number context is based, at

least in part, on the return address of a function call to obtain a random number.

 10

 2

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the above-

captioned application:

1. (Currently Amended): A method of dynamically providing random number streams to a

process, comprising:

determining, by a processing device, a plurality of program contexts within the process,

wherein each program context comprises calls for one or more random numbers;

and

providing automatically, for each program context, a distinct random number stream,

wherein the random number stream provided for one of the program contexts is

based at least in part on the determined program context, and wherein the random

number stream provided for one of the program contexts is distinct from the

random number stream for at least one other of the program contexts.

2. (Original): The method of claim 1, wherein each of the program contexts is provided a

random number stream that is distinct from the random number stream for any of the other

program contexts in the process.

3. (Original): The method of claim 1, wherein providing the random number stream to the

process for each of at least one of the two or more program contexts comprises providing a set of

distinct random number streams in response to a call from one of the program contexts.

4. (Original): The method of claim 1, wherein providing the random number stream to the

process for each of at least one of the two or more program contexts comprises initializing the

 3

states of the random number streams, wherein the states are used to generate distinct random

number streams for at least two of the program contexts.

5. (Currently amended): The method of claim 1, wherein one or more of the program contexts

includes one or more random-number context[s] and each of the random number contexts is

determined based, at least in part, on a return address of a function call to obtain a random

number.

6. (Original): The method of claim 1, wherein providing the random number stream to the

process for each of at least one of the two or more program contexts comprises embedding

context information into a seed sequence to initialize the random number stream.

7. (Original): The method of claim 1, wherein the process is one of two or more processes in a

parallel process computation, wherein the random number stream provided for at least one of the

program contexts is based in part on a process identifier for the process, wherein the random

number stream is distinct from the random number stream provided for program contexts in at

least one other process of the two or more processes in the parallel process computation.

8. (Original): The method of claim 1, wherein the random number stream provided for at least

one of the program contexts is based in part on a user-supplied stream identifier for program

context.

9. (Original): The method of claim 1, wherein providing the random number stream to the

process for each of at least one of the two or more program contexts comprises receiving a

stream identifier stored in, or generated from, a library module.

10. (Original): The method of claim 1, wherein the random number stream provided for at least

one of the program contexts is based in part on an iteration number.

 4

11. (Original): The method of claim 1, wherein the random number stream provided for at least

one of the program contexts is based in part on a user-specified seed value.

12. (Original): The method of claim 1, wherein the process is a dynamically spawned process,

wherein a random number stream allocated to it is based in part on unused initialization

sequences from the random number streams originally allocated to the parent process from

which the process was spawned.

13. (Currently Amended): A system, comprising:

a processor;

a memory coupled to the processor, wherein the memory comprises program instructions

executable by the processor to implement:

determining, using the processor, a plurality of program contexts within a process,

wherein each program context comprises calls for one or more random numbers;

and

providing automatically, for each program context, a distinct random number stream,

wherein the random number stream provided for one of the program contexts is

based at least in part on the determined program context, and wherein the random

number stream provided for one of the program contexts is distinct from the

random number stream for at least one other of the program contexts.

14. (Original): The system of claim 13, further comprising:

a network of systems in which one or more systems may store portions or all of code and

data needed for CPRNG and compute or provide instructions or data needed to

 5

use CPRNG or the random numbers to at least one or more other systems by way

of the computer network.

15. (Original): The system of claim 13, wherein each of the program contexts is provided a

random number stream that is distinct from the random number stream for any of the other

program contexts in the process.

16. (Currently amended): A non-transitory, computer-readable storage medium comprising

program instructions stored thereon, wherein the program instructions are configured to

implement:

determining one or more program contexts within a process, wherein at least one of the

one or more program contexts comprises code that calls for one or more random

numbers; and

providing automatically, for each of at least one of the program contexts, a random

number stream to the process, wherein the random number stream provided for at

least one of the program contexts is based at least in part on the determined

program context, and wherein the random number stream provided for at least one

of the program contexts is distinct from the random number stream for at least

one other of the program contexts.

17. (Original): The computer-readable storage medium of claim 16, wherein the program

instructions further comprise:

CPRNG code and data in the storage medium of one computer accessed by way of a

computer network by another computer to initialize and maintain random number

streams and generate random numbers.

 6

18. (Original): The computer-readable storage medium of claim 16, wherein each of the

program contexts is provided a random number stream that is distinct from the random number

stream for any of the other program contexts in the process.

19-29. (Canceled)

Atty. Dkt. No.: 5660-14400 Page 32 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

ABSTRACT

A method of providing random number streams to a process includes determining

two or more program contexts within a process. Each of the program contexts may

include code that calls for one or more random numbers. For each of at least two of the 5

program contexts, a random number stream is provided to the process. The random

number stream for each program context is based on the determined program context and

is distinct from the random number stream for the other program contexts in the process.

�
��

��
�

� ���

	

�

�

�
�

��
	

�
�

�

�
��

	

�

�

�
�

��

�
�

�
�

�
�

��
�

�
�

�

�

�

�
��

�
��

�
�

�
�

�

�
�

�

�
��

�

�

��
�

�
�

�
�

�

�
��

�

�

��
�

�
�

��
��
�

!
�

�
�

"
�

#
�

�
�

!
�

�
�

"
�

$
�

�
�

!
�

�
�

"
�

!
�

�
�

�����������

�%�

��

!� �
�

�

	

�

�

�
�

��
	

�
�

�

�
��

	

�

�

�
�

�&

!
�

�
�

"
�

#
�

�
�

!
�

�
�

"
�

$
�

�
�

!
�

�
�

"
�

!
�

�
�

�
�

&
	

�
�

�

�
��

	

�

�

�
�

��
	

�
�

�

�
��

!
�

�
�

"
�

#
�

�
�

!
�

�
�

"
�

$
�

�
�

!
�

�
�

"
�

!
�

�
�

	

�

�

�
�

��
	

�
�

�

�
��

	

�

�

�
�

��

!
�

�
�

"
�

#
�

�
�

!
�

�
�

"
�

$
�

�
�

!
�

�
�

"
�

!
�

�
�

��
��
�

�
�

&
�

�
&

�
�

&
�

�
&

�
�

�

�
�

�

�
�

'

�
��

��
&

& ���

	

�

�

�
�

��
	

�
�

�

�
��

	

�

�

�
�

��

�
�

�
�

�
�

��
�

�
�

�

�

�

�
��

�
��

�
�

�
�

�

�
�

�

�
��

�

�

��
�

�
�

�
�

�

�
��

�

�

��
�

�
�

��
��
�

!
�

�
�

"
�

#
�

�
�

!
�

�
�

"
�

$
�

�
�

!
�

�
�

"
�

!
�

�
�

�����������

�%�

��

!� �
�

�

	

�

�

�
�

��
	

�
�

�

�
��

	

�

�

�
�

�&

!
�

�
�

"
�

#
�

�
�

!
�

�
�

"
�

$
�

�
�

!
�

�
�

"
�

!
�

�
�

�
�

&
	

�
�

�

�
��

	

�

�

�
�

��
	

�
�

�

�
��

!
�

�
�

"
�

#
�

�
�

!
�

�
�

"
�

$
�

�
�

!
�

�
�

"
�

!
�

�
�

	

�

�

�
�

��
	

�
�

�

�
��

	

�

�

�
�

��

!
�

�
�

"
�

#
�

�
�

!
�

�
�

"
�

$
�

�
�

!
�

�
�

"
�

!
�

�
�

��
��
�

�
�

&
�

�
&

�
�

&
�

�
&

�
�

�

�
�

�

�
�

'
�����������

�%�

��

!�

�
&

&

�
&

�
�

&
� �

�
(

�
�

�

�
&

�

�
&

&

�
&

�

� ���

������

������

	
�)��
����������
����������

�
��

����*�
�
��+��*��+
�,
�-
���

����
"�������+
�,
��
�����
&�&�

.
�

���
�,
�-
�������
"���
�� ��-�*�
���
��
���

�
������

����

�������,
��
������
&���

��-��

��-���/ �

�
�
�

��-�0

��-�0�/ �

��-�0�/ &

�
�
�

��-��

���!���
"�

���!���
"�

.���������.

