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The primary objectives of the Phase II of the project are: (a) implement the context-aware parallel random number generator (CPRNG), 
developed in Phase I of this project, (b) implement the interstream correlation (ISC) test so that the quality of the random numbers (RNs) 
used by applications are evaluated and quality metrics are reported on demand. Both objectives have been accomplished. 





Beyond these objectives, additional design and implementation contributions have been accomplished. A flexible CPRNG-ISC Test (CIT) 
framework was developed and implemented so that a third party tester such as Dieharder or TestU01 can be run along with ISC test to 
corroborate or compare ISC test results with those from the well-known single-stream test batteries. The CPRNG Library facilitates 
implementation and use of other random number generators within the test framework easily.





To demonstrate the flexibility of the CIT framework, we implemented the MLFG generator from SPRNG package together with a number of 
other generators, some of which have become available since the beginning of this Phase II project.  





Three versions of CPRNG were implemented: CPU-based context-free generator, a CPU-based context-aware generator, and GPU-based 
context-free generator.
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Inventions (DD882)



Scientific Progress



1. Accomplishments





A flexible CPRNG-ISC Test (CIT) framework was developed and implemented so that a third party tester such as Dieharder or 
TestU01 can be run along with the ISC test to corroborate or compare ISC test results with those from the well-known single-
stream test batteries. 





The CPRNG Library is implemented in a flexible manner to facilitate implementation and use of other random number 
generators within the test framework easily (see Figure 1 in the attached document).





To demonstrate the flexibility of the CIT framework, we implemented the MLFG generator from SPRNG package [7], drand48—
available on standard Unix/Linux systems, and a parallel RNG based on cryptographic operations from the family of generators 
proposed by D.E. Shaw Group [12], and a pathological linear congruence generator (pLCG). In addition, we implemented within 
CPRNG Library to provide access to Intel’s new digital random number generator (DRNG) and Nvidia’s GPU-based generator 
MTGP32 [6], when the host system has the necessary hardware—newer processor chips or GPUs, respectively—to support 
these generators.





Three versions of CPRNG were implemented: CPU-based context-free generator, which is used to report results in this report, 
CPU-based context-aware generator, and GPU-based context-free generator. A context-aware generator automatically, without 
any changes to the application code, uses distinct RN streams when the application requests for RNs from a stream from 
different program contexts.





2. Performance Analysis





CPRNG, the new parallel random generator developed in Phase I of this project, was implemented in the SPRNG package in 
Phase I. In Phase II, it was implemented as a standalone library package with a simple application programming interface. The 
results given in Figure 2 of the attached document indicate that the time to initialize a RN stream is decreased slightly, and the 
time to obtain a RN is reduced by 20-30%. CPRNG generates RNs with very low overhead.





The ISC Test was used to determine the interstream correlations for MLFG and CPRNG in Phase I. In Phase II, several other 
random number generators implemented within the CPRNG Library have been evaluated for interstream correlations using the 
CPRNG-ISC Test framework. The results, given in Figure 3 of the attached document, show that CPRNG generates a large 
number of parallel RN streams with low interstream correlations.





The CIT framework is used to compare the quality metrics—DR and KS statistics [8],[9]—by ISC test with the Dieharder [11] 
and TestU01 [10] test batteries that are commonly used in literature. In general, the two test batteries corroborate each other’s 
test results for a given stream of RNs. The Ising model simulation [5], which simulates the spread of energy in a 2-D lattice, and 
for which the exact theoretical results are available, is the application we used to corroborate or refute the results by various test 
methods.





For the pathological linear congruence generator (pLCG), which is designed to have high interstream correlations, the ISC Test 
and the two test batteries indicate significant correlations among RNs. This is confirmed by the Ising model simulations. On the 
other hand, drand48, a sequential generator commonly available on Linux and Unix systems, is reported to have high 
correlations by Dieharder and TestU01. However, ISC test does not indicate any correlations; the Ising model simulations 
confirm the ISC test results.
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3. Business and Dissemination Plan


The major components supporting long term sustainability of CPRNG include:


• Preservation of all the software files and documentation,


• Development and growth of a body of users, and


• Continuation of CPRNG commercial licensing efforts, with a primary objective of licensing to a strategic partner such as a 
processor manufacturer (for inclusion in its tools library), or system manufacturer or vendor, or a major software provider.





3.1. Rationale


In order to accomplish the above, Silicon Informatics plans to assign its interest in CPRNG software, the “GetCPRNG.com” 
domain and associated website creative files to the University of Texas (UT) System. To the extent practicable, Silicon 
Informatics will continue to support the development of a user community and commercial licensing efforts. 





The innovations developed during the course of this project are extensive and a bit ahead of their time than was anticipated at 
the outset of Phase II of this project. Despite our extensive outreach to the government, academic and private sectors, users’ 
needs appear to be met with conventional tools, including those that have been introduced since the inception of this project. 
One possible explanation is that much of the high performance computing software used for production runs has yet to be 
adapted and optimized to run on GPGPU-enhanced machines. [This information was presented by IDC in conjunction with at 
the SC14 Conference in New Orleans, LA, Nov 2014, a copy of which was provided to the COTR]. Despite these software 
issues, semiconductor manufacturers continue to innovate in areas of parallelization, processor-coprocessor integration and 
memory. One example is Intel Corporation’s Knights Landing processor, a “many integrated core” architecture that competes 
with GPGPU products. Knights Landing, with first shipments expected in 2015, will work as a host processor, capable of 
running an OS and applications on its own, while at the same time functioning as a coprocessor. Another example is Nvidia’s 
Titan X GPGPU, announced at Nvidia’s 2015 GPU Technology Conference, which will deliver up to 7 teraflops of single 
precision performance. We cite these processor trends, as they exemplify the future of High Performance Computing (HPC) 
where the circumstances on the demand side will eventually ripen for CPRNG’s innovations.





In the meantime, while applications software is adapted and optimized (or “rewritten” according to IDC), the greatest challenge 
is to gain CPRNG user experience. Toward that end, the University of Texas at San Antonio (UTSA) is well positioned. 
Unhindered by jointly held intellectual property rights, UTSA will have the ability to make our CPRNG software available not only 
to Government users, but also to users throughout the UT System. Under sole ownership, the process of licensing CPRNG 
commercially will be streamlined.





3.2. Further Work





Based on our evaluation of CPRNG and several other generators, CPRNG appears to be a high quality random number 
generator suitable for parallel applications that require a large number independent random number (RN) streams. The ISC test 
is a unique test to evaluate correlations among streams without being limited by the number of streams or number of random 
numbers. It also has the capability to evaluate the random numbers used by an application on the fly and provide a quality 
metric on the correlations among the random numbers used. The CIT framework provides a flexible framework to (a) evaluate 
new random number generators easily and compare them to the existing ones and (b) compare and calibrate the new random 
number generator test packages against the current test packages. CIT framework is very powerful for the design and testing of 
new random number generators and test suites.





The research and software produced by this project can be extended in making CIT framework more accessible to researchers 
that use a wide variety of computing platforms including multicore, GPU and many integrated core (MIC) architectures. Another 
direction for further work is to implement CPRNG and some of the other generators for MIC architectures such as Intel Xeon 
Phi. Currently, the ISC test can analyze RNs based a pre-specified grouping of streams and and interleaving method. However, 
the ISC test can be made even more powerful by recoding it to analyze random numbers consumed by application in multiple 
ways simultaneously.





Appendixes:


A. Phase I Final Technical Report


B. Paper, Context-Aware Parallel Pseudorandom Number Generators for Large Parallel Computations, 2011 DoD High 
Performance Computing Modernization Program (HCPMP) Users Group Conference, Rajendra V. Boppana, June 2011


C. US Patent 8,868,630 B1, entitled Verification of Pseudorandom Number Streams, Inventors Rajendra V. Boppana and Ram 
C. Tripathi


D. US Patent Application 13/426,028, entitled Generation of Distinct Pseudorandom Number Streams based on Program 
Context, inventor Rajendra V. Boppana



Technology Transfer

Silicon Informatics together with subcontractor University of Texas at San Antonio have engaged in outreach to several DoD 
Defense Supercomputing Resource Centers and service laboratories and have organized demonstrations to researchers at 
ARL and NRL. Our outreach extended to NASA and DoE laboratories as well as to private corporations.  Most of these 
organizations have participated in the HPC User Forum (www.hpcuserforum) which is organized by IDC and convened twice 
annually at various locations throughout the USA.  During the course of this project, we have attended four of the HPC User 
Forum meetings and were invited to present at the meeting held in Boston MA in 2013.  We have also attended two IEEE/ACM 
Supercomputing conferences, SC13 and SC14, where we met with representatives from Government and private industry.  In 
addition, we participated in the DoD SBIR/STTR Beyond Phase II conference in San Antonio in December 2014 where we 
participated in several one-on-one meetings with DoD lab, agency and industry representatives.
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Technical Progress Report 
and Final Report 

STTR Phase II Project:  Random Number Generation for High Performance Computing 

Period of Performance: December 20, 2012 — March 19, 2015 

                                                 

1. Accomplishments 

The primary objectives of the Phase II of the project are: (a) implement the context-aware 
parallel random number generator (CPRNG), developed in Phase I of this project [1],[2],[4], 
with simple application programming interface (API) and scalability to accommodate 
applications running on a large number of processor cores or general purpose graphics 
processing unit (GPU) cores; (b) implement the interstream correlation (ISC) test so that the 
quality of the random numbers (RNs) used by applications are evaluated and quality metrics are 
reported on demand [3]. Both objectives have been accomplished. The following additional 
design and implementation contributions have been accomplished in this project. 

A flexible CPRNG-ISC Test (CIT) framework was developed and implemented so that a third-
party tester such as Dieharder or TestU01 can be run along with ISC test to corroborate or 
compare ISC test results with those from the well-known single-stream test batteries.   

The CPRNG Library is implemented in a flexible manner to facilitate implementation and use of 
other random number generators within the test framework easily (see Figure 1). 

 

CPRNG 
Library 

ISC Test 
Third-party 

Tester 
Application 

RN RN RN

Application 
Results 

ISC Test
Results

Other Tester
Results

Figure 1. CPRNG-ISC Test framework. ISC Test can be run concurrently with application and quality of
the random numbers (RNs) consumed by the application can be provided periodically or upon the
completion of the application. In addition, a third-party tester such as the single-stream offline test
packages could be used to provide an alternate method to assess the quality of the RNs.  

CPRNG Library is designed to accommodate a wide variety of random number generators with a simple
interface and compare their suitability for a given application.  

Also, new random number generator test packages can be evaluated by comparing their performance
against ISC Test or other known test packages. 
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To demonstrate the flexibility of the CIT framework, we implemented the MLFG generator from 
SPRNG package [7], drand48—available on standard Unix/Linux systems, and a parallel RNG 
based on cryptographic operations from the family of generators proposed by D.E. Shaw Group 
[12], and a pathological linear congruence generator (pLCG). In addition, we implemented 
within CPRNG Library to provide access to Intel’s new digital random number generator 
(DRNG) and Nvidia’s GPU-based generator MTGP32 [6], when the host system has the 
necessary hardware—newer processor chips or GPUs, respectively—to support these generators.  

Three versions of CPRNG were implemented: CPU-based context-free generator, which is used 
to report results in this report, CPU-based context-aware generator, and GPU-based context-free 
generator.  A context-aware generator automatically, without any changes to the application 
code, uses distinct RN streams when the application requests for RNs from a stream from 
different program contexts.  

 

2. Performance Analysis 

CPRNG, the new parallel random generator developed in Phase I of this project, was 
implemented in the SPRNG package in Phase I.  In Phase II, it was implemented as a standalone 
library package with a simple application programming interface. The results given in Figure 2 
indicate that the time to initialize a RN stream is decreased slightly, and the time to obtain a RN 
is reduced by 20-30%. CPRNG generates RNs with very low overhead.  

 

 

The ISC Test was used to determine the interstream correlations for MLFG and CPRNG in 
Phase I. In Phase II, several other random number generators implemented within the CPRNG 

Figure 2. Comparison of RN stream initialization and RN generation times for two implementations of
CPRNG. CPRNG 2 is the Phase II implementation in the CPRNG Library. CPRNG1 is the Phase I
implementation of CPRNG in SPRNG package. For comparison purposes, the times for MLFG, a parallel
RNG in SPRNG package are shown. 
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Library have been evaluated for interstream correlations using the CPRNG-ISC Test framework. 
The results, given in Figure 3, show that CPRNG generates a large number of parallel RN 
streams with low interstream correlations.  

The CIT framework is used to compare the quality metrics—DR and KS statistics [8],[9]—by 
ISC test with the Dieharder [11] and TestU01 [10] test batteries that are commonly used in 
literature. In general, the two test batteries corroborate each other’s test results for a given stream 
of RNs. The Ising model simulation [5], which simulates the spread of energy in a 2-D lattice, 
and for which the exact theoretical results are available, is the application we used to corroborate 
or refute the results by various test methods.  

For the pathological linear congruence generator (pLCG), which is designed to have high 
interstream correlations, the ISC Test and the two test batteries indicate significant correlations 
among RNs. This is confirmed by the Ising model simulations. On the other hand, drand48, a 
sequential generator commonly available on Linux and Unix systems, is reported to have high 
correlations by Dieharder and TestU01. However, ISC test does not indicate any correlations; the 
Ising model simulations confirm the ISC test results.   
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Figure 3. ISC Test of interstream correlations for various random number generators implemented or
accessed through CPRNG Library. The generators implemented within the CPRNG Library include
mlfg—a generator from SPRNG package—and  crypt—a cryptographic operations-based generator from
a family of generators designed by D.E. Shaw Group. The generators accessed through CPRNG Library
include mtgp—a GPU-based RNG by Nvidia—and i-rng—a new RNG by Intel which has hardware-
support for seed generation with high entropy and cryptographic operations for RN generation.  

Two statistical tests, Donner-Rossner and Kolmogorov-Smirnov tests, are used to accept or reject the
hypothesis that the parallel streams extracted from an RNG are not correlated. The significance levels are
0.05 for the DR test and 0.01 for the KS test. The dashed lines indicate the critical value below which the
test statistics (DR or KS) should remain to validate the hypothesis.  
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3. Business and Dissemination Plan  

The major components supporting long term sustainability of CPRNG include: 

 Preservation of all the software files and documentation,  
 Development and growth of a body of users, and 
 Continuation of CPRNG commercial licensing efforts, with a primary objective of 

licensing to a strategic partner such as a processor manufacturer (for inclusion in its tools 
library), or system manufacturer or vendor, or a major software provider.   

 

3.1. Rationale 

In order to accomplish the above, Silicon Informatics plans to assign its interest in CPRNG 
software, the “GetCPRNG.com” domain and associated website creative files to the University 
of Texas (UT) System.  To the extent practicable, Silicon Informatics will continue to support 
the development of a user community and commercial licensing efforts.   

The innovations developed during the course of this project are extensive and a bit ahead of their 
time than was anticipated at the outset of Phase II of this project.  Despite our extensive outreach 
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to the government, academic and private sectors, users’ needs appear to be met with 
conventional tools, including those that have been introduced since the inception of this project.  
One possible explanation is that much of the high performance computing software used for 
production runs has yet to be adapted and optimized to run on GPGPU-enhanced machines.1  
Despite these software issues, semiconductor manufacturers continue to innovate in areas of 
parallelization, processor-coprocessor integration and memory.  One example is Intel 
Corporation’s Knights Landing processor, a “many integrated core” architecture that competes 
with GPGPU products.  Knights Landing, with first shipments expected in 2015, will work as a 
host processor, capable of running an OS and applications on its own, while at the same time 
functioning as a coprocessor.  Another example is Nvidia’s Titan X GPGPU, announced at 
Nvidia’s 2015 GPU Technology Conference, which will deliver up to 7 teraflops of single 
precision performance.  We cite these processor trends, as they exemplify the future of High 
Performance Computing (HPC) where the circumstances on the demand side will eventually 
ripen for CPRNG’s innovations. 

In the meantime, while applications software is adapted and optimized (or “rewritten” according 
to IDC), the greatest challenge is to gain CPRNG user experience.  Toward that end, the 
University of Texas at San Antonio (UTSA) is well positioned.  Unhindered by jointly held 
intellectual property rights, UTSA will have the ability to make our CPRNG software available 
not only to Government users, but also to users throughout the UT System.  Under sole 
ownership, the process of licensing CPRNG commercially will be streamlined. 

 

3.2. Further Work 

Based on our evaluation of CPRNG and several other generators, CPRNG appears to be a high 
quality random number generator suitable for parallel applications that require a large number 
independent random number (RN) streams. The ISC test is a unique test to evaluate correlations 
among streams without being limited by the number of streams or number of random numbers. It 
also has the capability to evaluate the random numbers used by an application on the fly and 
provide a quality metric on the correlations among the random numbers used. The CIT 
framework provides a flexible framework to (a) evaluate new random number generators easily 
and compare them to the existing ones and (b) compare and calibrate the new random number 
generator test packages against the current test packages. CIT framework is very powerful for the 
design and testing of new random number generators and test suites.  

The research and software produced by this project can be extended in making CIT framework 
more accessible to researchers that use a wide variety of computing platforms including 
multicore, GPU and many integrated core (MIC) architectures. Another direction for further 

                                                 

1 Presentation by IDC, “IDC at SC14” slide 93 of 95, Nov 18, 2014:  “software is the #1 roadblock; better 
management software is needed, parallel software is lacking for most users, (and) many applications will need a 
major redesign.” 
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work is implement CPRNG and some of the other generators for MIC architectures such as Intel 
Xeon Phi. Currently, the ISC test can analyze RNs based a pre-specified grouping of streams and 
and interleaving method. However, the ISC test can be made even more powerful by recoding it 
to analyze random numbers consumed by application in multiple ways simultaneously. 

 

Programmatic issues: None.  

 

4. Schedule Update 
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5. Milestone Update 

Milestones completed to date: The fourth and final of the software is released in July 2015 to 
ARL researchers. This version supersedes the prior releases. Initial version of the project website 
is active and hosted by Rackspace at the URL getcprng.com.  

 

 

This report is supplemented by a 4-part Appendix consisting of the technical documents 
produced as part of the project and the final report from Phase I of this project. 

 

Prepared by:    Rajendra V. Boppana, Ph.D., P.I., University of Texas at San Antonio, and 

Robert Keller, Project Director, Silicon Informatics. 

July 22, 2015 
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Final Report 
STTR Project:  Random Number Generation for High Performance Computing 

                                                 

1. Summary of Work Completed 

This project has two primary objectives: (a) design and implement prototypes of highly scalable, 
high quality parallel random number generators (PRNGs) for a variety of computing and 
programming models including multicore/multithreaded, message passing, and general purpose 
graphics processing unit (GPGPU) models; (b) design and implement test methods that evaluate 
the independence of a large number of parallel random number (RN) streams and provide easy to 
use quality metrics. Both objectives have been accomplished.  

The rest of the final report is organized as follows. First, the main contributions are summarized. 
Descriptions of the work done for various tasks that were pursued to accomplish the project 
objectives are given next. Technical details and performance data are provided in two 
attachments: a supplementary report and a technical paper that will be presented at DoD HPC 
Users Group Conference, June 2011. 

Main contributions 

 A new statistical test, called ISC test, to evaluate interstream correlations of a large 
number of RN streams is designed and implemented. The ISC test is a significant 
contribution to the state-of-the art in PRNG testing. It can be used to evaluate billions of 
RN streams simultaneously and obtain an overall quality metric. This test has low 
computational overhead and can be adapted for online testing—in which the RNs 
consumed in an application are analyzed in parallel with the application and a quality 
metric is provided at the end of the application execution. To the best of our knowledge, 
this is the first such test. The ISC test identified potential correlations among the streams 
of a popular and widely used PRNG in the SPRNG package. The test results were further 
confirmed with a new DTMC simulation application we developed in this project. 

 ISC test is a first-level test method with applications of Ising model simulations and other 
applications forming the next level test methods. A new application based on the 
simulations of a discrete-time Markov chain (DTMC) model is implemented. This 
application can be used to test both intrastream correlations and interstream correlations 
for a large number of RN streams.  

 Online version of ISC test and additional physical modeling applications such as fracture 
analysis, multiscale modeling, and CTH will be added to the test package that will be 
implemented in Phase II. 

vishnu
Typewritten Text
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 A new context-aware parallel random number generator (CPRNG) is designed and 
implemented. CPRNG is highly scalable and supports applications that require a large 
and unpredictable number (at the beginning of the execution) of distinct RN streams. The 
current version is based on the multiplicative lagged Fibonacci generator (MLFG) 
technique. Additional CPRNGs based on other RN generation techniques will be 
designed and implemented in Phase II. 

 CPRNG implementation supports various computing/programming models: sequential, 
multicore/multithreaded, message passing (MPI), and GPGPU. We tested the functional 
correctness of all these implementations extensively. The prototype CPRNG 
implementation is free of memory leaks and race conditions; it can supply billions of RN 
streams easily. 

 CPRNG prototype implementation is tuned extensively for efficient initialization of RN 
Streams and generation of RNs. With respect to timing costs, CPRNG compares well 
with the basic MLFG, which does not provide the same level of flexible and scalable 
generation of streams dynamically.  

 Several code optimizations that reduce the overheads and improve the speed of CPRNG 
have been identified. With these optimizations incorporated (in Phase II implementation), 
CPRNG will perform faster with less overhead.  

Description of work completed 

To accomplish the project objectives, several tasks were identified and pursued during the 
project period. The work completed for each proposed task and the contributions are described 
below. 

A. Comparison and assessment of current parallel random number generators (PRNGs) and their 
evaluation techniques. 

As part of this task, we identified several PRNG software packages and sequential test packages. 
The SPRNG package from Florida State University, the Dieharder test package from Duke 
University, and the TestU01 package from Universite de Montreal obtained for this task are 
extensively used in the remainder of the project work. 

Regarding the currently available PRNGs, we identified the multiplicative lagged Fibonacci 
generator (MLFG), a parameterized approach to generate independent parallel RN streams, as 
the most suitable candidate for the design of highly scalable and high quality context-aware 
parallel random number generators (CPRNGs). We used version 2 of SPRNG package, which 
include 6 PRNGs, as the platform on which we implemented CPRNGs. The Ising model 
simulations (both Metropolis and Wolff algorithms) implemented in SPRNG have been 
extensively used to test and compare CPRNGs with the MLFG and other generators in SPRNG. 
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B. Implementation of PRNGs on multicore and GPGPUs 

SPRNG provides MPI (message passing interface)—based interface for parallel applications 
designed with MPI interface for interprocess communication. In addition, SPRNG is 
implemented in such a way that multithread programs can also use the package transparently. 
However, the burden is placed on the application developer/user to ensure that total number of 
streams used is known and the streams are allocated to different threads/processes suitably.  

We developed a test code to evaluate the time taken to initialize a new RN stream and the time to 
generate a random number from a stream using Intel’s timestamp counters. The timing tests are 
repeated several times and averaged to obtain representative timing data.  

Mersenne twister (MT), in particular, Nvidia developed MTGP generator, is extensively used by 
parallel applications that use GPUs. However, MTGP is a single-stream generator; it needs to be 
segmented and segments must be allocated to different threads. Our investigation did not find a 
truly scalable PRNG with small state-space and highly independent RN streams needed for 
large-scale GPGPU computing. 

C.  Evaluation of PRNGs using known statistical and application-based tests 

Single-stream test methods have been extensively studied in literature. Many single-stream tests 
were implemented in various test packages including the Dieharder and TestU01 packages, 
which we used extensively. Parallel random number streams are interleaved using the perfect 
shuffle pattern to create a single RN stream and single-stream tests are used for statistical 
evaluation of a PRNG. A single-stream test package contains 20 different types of basic tests 
(which may be repeated with different parameters to create up to 150 test instances) and gives 
pass/fail status for each test applied to the interleaved stream. This provides a vector of pass/fail 
information that will be hard to use for comparisons of different PRNGs.  

We tested the six generators in SPRNG using Dieharder and TestU01. All perform well with 
only an occasional failure for one of the tests. These tests use a few billions of RNs from the test 
stream for these tests. Therefore, they are not suitable to test a large number of parallel RN 
streams; if a billion streams are interleaved to form a single stream, then these tests only examine 
a few numbers from each stream, which may not be enough to assess the inter-stream 
correlations. On the other hand, if a billion RN streams are partitioned into several sets with each 
set consisting of a small number of RN streams, and single-stream tests are applied on each set, 
then these tests will take several 100s of hours on a desktop machine and provide multiple 
vectors of pass/fail information that will be hard to combine into an easy to understand quality 
metric. 

Regarding application-based testing, the Ising model simulation codes in SPRNG are the best 
known and most commonly used applications PRNG evaluations.  
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D. Development of new statistical tests to quantify inter-stream correlation 

We implemented an interstream correlation (ISC) test to evaluate the correlations among a large 
number of RN streams. This test requires parallel RN streams to be combined (using perfect 
shuffle interleaving or a biased-interleaving) into a bivariate RN stream (RNs 1, 3, … form X 
variates and RNs 2, 4, .. form Y variates). This bivariate RN stream is transformed into bivariate 
normal RN stream and the correlation coefficient, r , between the X and Y variates is computed.  
Several sets of RN streams are used compute several r ’s. Collectively, these r ’s are the samples 
that can be used to estimate  , the true common correlation coefficient among the parallel RN 

streams generated by the PRNG being evaluated. We used Donner and Rosner test method (DR-
test, Applied Statistics J., vol. 29, no. 1, 1980) to combine the r ’s and obtain the test statistic 
denoted Ht , which is a standard normal random variate. This can be used to test the null 

hypothesis 00 :H . Large absolute values of Ht  will lead to the rejection of the null 

hypothesis and the acceptance of the alternative hypothesis 01 :H . For a significance level 

050. , absolute values of Ht  above 1.96 leads to the rejection of the claim that parallel RN 

streams are independent; the probability that the rejection is erroneous is 050. . One could 
use different significance levels: for 020. , the absolute values of Ht  above 2.33 will lead to 

rejection of the claim of independence of RN streams with only 0.02 probability of being wrong.  

We developed a Kolmogorov-Smirnov test (KS-test) on the distribution of r ’s. In this test, the 
KS-test statistic, maxD , computed using the r ’s must be less than the critical value, n,D , for 

significance level   and n , the number of r 's used. 

A preliminary version of this test was described in Monthly Report 3 (January 2011). 

We used these ISC test with the two test metrics extensively to evaluate the correlations among 
the RN streams of a PRNG. This is a highly scalable test. We tested up to 1.5 billion RN 
streams with at least 100 numbers taken from each stream. To best of our knowledge, this is the 
first time a billion RN streams are tested simultaneously and a single figure of merit is given. 

In our test process, we identified significant correlations among RN streams of MLFG, a PRNG 
in the SPRNG package. Both DR-test and KS-test statistics, Ht  and maxD , give very high 

values leading the rejection of the claims of independence of the RN streams generated by this 
PRNG. MLFG fails the ISC test consistently when 15 million or more streams are considered.   

We confirmed this potential problem with MLFG using a new application we developed in this 
project. This application simulates a discrete-time Markov chain (DTMC) with an absorbing 
state. (The DTMC estimates the number of packet transmissions, which are the steps or state 
transitions in the model, it takes for a node to suspect its next hop node of dropping its packets in 
a multi-hop wireless network.) Compared to the Ising model simulations, DTMC model can use 
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a large number of RN streams much more speedily, and the theoretical values can be calculated 
easily. 

When 1.5 million or more streams are used, MLFG fails to match the theoretical estimation. 
Since the application is a simulation of the model, not the actual wireless network, using a good 
PRNG should lead to quick convergence of simulation estimates to match the theoretical 
estimates. 

E. Development of new scalable PRNGs 

A highly scalable context-aware parallel random number generator (CPRNG) that can provide 
distinct RN streams automatically for different contexts is designed. The first version is based on 
MLFG but with different initialization methods. This allows a large number of distinct RN 
streams that can be dynamically requested with very little communication cost: beyond the initial 
specified limit of RN streams, which do not incur any interprocess communication or thread 
synchronization/serialization, an application can request for new RN streams with only two 
interprocess communication messages or a mutex lock access. Extensive description of the 
design of CPRNG is given in Monthly Reports 4 and 5.  

F. Preliminary implementation and evaluation of CPRNG 

We implemented CPRNG in the SPRNG package. It can be used by sequential applications, 
multicore/multithreaded applications, MPI-based parallel applications, GPGPU based 
applications.  

The functional correctness of the implementation for all these scenarios is tested extensively 
using a parallel application (denoted all_reduce) that uses multiple RN streams and multiple 
numbers from each stream, computes their overall sum modulo 100. We used all_reduce to test 
as many as 1 million RN streams and ensured that CPRNG provides consistent RNs regardless of 
the number processes/threads used.  

We evaluated the timing costs of initialization and RN generation. The initialization cost of 
CPRNG is about 26,000 clock ticks, which is about the same as that of MLFG in SPRNG 
package. The RN generation cost is about 3 clock ticks more (23 vs. 20 ticks on a machine with 
Intel quad-core i7-870 CPU and 20 vs. 17 ticks on a machine with Intel Xeon E630 CPU). 

We evaluated the quality of CPRNG using the ISC test, Ising model simulations, and DTMC 
model simulations. The results for the Ising model simulations, given in the Monthly Report 5, 
show that CPRNG performs about the same as that MLFG implemented in the SPRNG package. 
However, these simulations use at most 256 RN streams.  

The ISC test is used for further evaluation. With up to 1.5 billion streams used, CPRNG 
performed well with test statics below the corresponding critical values in all but one instance. 
Even in that scenario, which used 1.5 billion RN streams,  the KS-statistic was slightly higher 
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than the corresponding critical value, but the DR-static was well below its corresponding critical 
value. Further testing with the DTMC application showed that using CPRNG allows the 
simulation results to converge to the theoretical values much more quickly than using MLFG. 

Technical details and performance data are given in a technical paper submitted as a supplement 
to this report. 

Business and Dissemination Plan 

One of ARO’s objectives in supporting this research is to ensure that the PRNG software that 
results from this research is relevant to and used in military and commercial simulation 
applications.  Our proposal for Phase II of this project sets forth a detailed plan to introduce the 
new context aware parallel random number generator (CPRNG) to the high performance 
computing (HPC) community and make it available to military, academic and commercial users.  

Major elements of this plan include: 

1. Communication to HPC User community.  The first such communication will be a paper 
presented by Rajendra Boppana at the HPCMP Users Group Conference on June 23, 
2011.  The paper is entitled:  “Context-Aware Parallel Pseudorandom Number 
Generators for Large Parallel Computations.”   Other presentation opportunities include 
SC11 (Seattle, November 2011, http://sc11.supercomputing.org/), SC12 (November 
2012) and IDC’s HPC User Forum April 2012.  Please note that it might be best to 
introduce our commercial version of the CPRNG software through a paper/presentation 
at the SC12 conference. 

UTSA and Silicon Informatics will interact with and provide the prototype software to 
select HPC users and parallel application developers to test the usability and quality of 
the random numbers generated by CPRNG and to evaluate the effectiveness of the online 
ISC test method. These evaluations will be used to refine the prototype prior to a more 
general release to the HPC community. 

2. Creation of a long-term sustainability plan, the product of research undertaken by Silicon 
Informatics, KEYW Corporation and the UTSA Center for Innovation and Technology 
Entrepreneurship.  The plan will identify ways to reach the broadest set of military, 
academic and commercial users while generating sufficient revenue to ensure that 
availability of the CPRNG software is sustainable over the long term.   

3. Release of prototype version of the CPRNG software, complete with documentation, for 
evaluation and implementation at US Government HPC centers, including DoD Major 
Shared Resource Centers.   

4. Development of a website that will facilitate distribution and support of the software for 
military, academic and commercial users.  
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5. Release of a fully-robust, commercial version of the CPRNG software. 

6. Granting royalty-based sublicense rights that enable the CPRNG software to be bundled 
and/or integrated with other applications software.       

 

Programmatic issues: None.  
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2. Schedule Update 

 

3. Milestone Update 

Milestones completed to date: Tasks A through G. 

Milestones expected to be completed during the next reporting period: None. 

Milestones expected to be missed during the next reporting period: None. 

 

 

Prepared by:     

Rajendra V. Boppana, Ph.D., P.I., University of Texas at San Antonio (technical section) and 
Robert Keller, Project Director, Silicon Informatics (Business plan) 

May 23, 2011 

 

Task Description
Completion 

Status

A Comparison and assessment of 
current PPRNGs and their 
evaluation techniques

100%

B Implementation of  PPRNGs on 
muilti-core CPUs and GPGPUs 100%

C Evaluation of PPRNGs using 
known statistical and application-
based tests

100%

D Development of new statistical 
tests to quantify inter-stream 
correlation

100%

E Development of new scalable  
PPRNG algorithms 100%

F Preliminary implementation and 
evaluation of new PPRNGs 100%

G Phase I  final report, including 
Phase II work plan 100%

Month 2Month 1 Month 6Month 5Month 4Month 3
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Final Report Supplement 
STTR Project:  Random Number Generation for High Performance Computing 

                                                 

This document supplements the final report for the project by providing test data and brief 
explanations of the same. 

1. RNG Timing Tests 

CPRNG is the new random number generator (RNG) designed in this project. MLFG, ALFG, 
and ALFG_17 are the RNGs in SPRNG package. CPRNG is implemented in the SPRNG 
package. Any parallel application currently designed to use SPRNG generators can use CPRNG 
by changing the RNG code to 9. No additional application modifications are needed. 

Two computers, a desktop computer with Intel Core i7-870 CPU and a rack server with Xeon 
E630 CPU, are used to estimate the time required for initialization of a random number (RN) 
stream and the time taken to generate a single random number from an already initialized stream. 
The times are given in clock ticks—2.93 ticks/ns for Core i7-870 and 2.53 ticks/ns for Xeon 
E630 machines. The initialization costs of CPRNG are about the same as those of MLFG, on 
which CPRNG is based. The cost of generating an RN is about 3 ticks higher compared to 
MLFG owing to the additional processing needed for context-aware RN generation. This can be 
easily eliminated if the application does not require contex-aware RN generation. 

   

The CPRNG implementation is free of leaks, is multithread safe, and works seamlessly with 
MPI-based applications. The GPU version of CPRNG is implemented as a different generator 
(with RNG code 10) with some restrictions on features: no context-awareness, and the maximum 
number of streams needed by the application must be specified at the beginning of the program 
execution. The CPU version of CPRNG  provides context-awareness, the ability to use distinct 
streams automatically for different contexts, and nearly unlimited number of RN distinct streams. 
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2.  ISC Tests for Inter-stream Correlations 

The ISC test is applied on several sets of RN streams. The RN streams in a set are interleaved 
using perfect shuffle or biased interleaving method. Consider three RN streams A, B and C with 
RNs, respectively, ,a,a,a 321 , ,b,b,b 321 , and ,c,c,c 321 . In perfect shuffle interleaving, a 

new stream ,a,c,b,a,c,b,a 3222111  is created. In biased interleaving, ,a,b,a,c,a,b,a 4231211  

is created. The RNs in the odd numbered positions form the X variates and the RNs in the even 
numbered positions form the Y variates. These are transformed into normal bivariates using Box-
Muller transform. Correlation coefficient, r , for the bivariate pairs is computed. This is repeated 
several times to obtain multiple r ’s. In our tests, we used 1500 sets of random number streams 
with the set size varied from 10 to 1,000,000 to obtain 150021 r,,r,r  . 

These r ’s are aggregated using a well-developed test method such as Donner and Rosner test 
(DR-test) or Kolmogorov-Smirnov test (KS-test) and a test statistic is obtained. The statistic for 
DR-test is denoted as Ht  and the statistic for KS-test as maxD . For each test, there is a critical 

value that is computed based on the desired significance level and the number of r ’s used. For 
DR-test at a significance level of 0.05, the critical value is 1.96 provided the number of bivariate 
pairs used to calculate each r  is large. For KS-test, at a significance level of 0.01, the critical 
value is 0.0274 when the number of r ’s used is 1500. If test statistic is significantly above the 
critical value, then the RN streams generated by the PRNG are likely to have significant 
interstream correlations.  

The two graphs below give the results of the two tests for shuffle-interleaving of RN streams. 
When the set size is 1,000,000, a million streams are used to obtain a single r , and a total of 1.5 
billion streams are used to obtain the 1500 r ’s used to calculate the test statistic. The dashed line 
indicates the critical value for that test. Our results indicate that MLFG (the built-in random 
number generator in the SPRNG package) fails both DR- and KS-tests for test configurations 
that use 1.5 million or more streams. On the other hand, CPRNG, which is also based on the 
same theoretical foundation as that of MLFG, performs well; it narrowly fails the KS-test only 
for the largest test configurations we used. 
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3. Application-based Tests 

Ising model simulations 

We have tested the prototype CPRNG with the Ising model simulations for a 1616  lattice 
based on Metropolis and Wolff algorithms. A distinct RN stream is used for each lattice point. 
The results for absolute error in specific heat vs. the standard deviation are shown for the 
Metropolis and Wolff algorithms in the graphs below. We used the same parameters indicated in 
the paper by Srinivasan et al., “Testing parallel random number generators,” Parallel Computing 
2003: 1616  lattice, 1000-word blocks, 1 million blocks with the first 100 blocks discarded. 
(These graphs are the revised versions of the graph presented in Monthly Report 5.) 

   

In these simulations, the absolute error (the difference between the theoretical calculations and 
the simulation values) of specific heat or energy is compared to the standard error of the same 
metric (1.96 times the standard deviation of the simulation values) at a significance level of 0.05. 
That is up to 5% of the error points may be greater than the standard error and lie above the cut-
off line indicated in the graph. The MLFG results in the left graph are exactly the same as the 
ones presented in Fig. 6 of the paper by Srinivasan et al. These results show that CPRNG is no 
worse than MLFG for this test. 

Markov model simulations 

We also implemented a new test based on the simulation of a discrete-time Markov chain 
(DTMC) that models the time it takes a node to suspect its next hop of dropping packets based 
on transmission overhearing in wireless ad hoc networks. The DTMC estimates the number of 
packet transmissions, which are the steps or state transitions in the model, it takes for a node to 
suspect its next hop node of dropping its packets in a multi-hop wireless network. The DTMC 
has an absorbing state denoting the state in which the next hop is suspected and L  transient 
states, where L  is the threshold to suspect the next hop node. Since the application is a 
simulation of the model, not the simulation of the actual wireless network, using a good PRNG 
should lead to quick convergence of simulation estimates to match the theoretical estimates. 
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Based on several test runs using the DTMC application, we observed that simulations that use 
MLFG do not converge as rapidly as the simulations that use CPRNG. 

Compared to the Ising model simulations, DTMC model simulations can use a large number of 
RN streams much more speedily, and the theoretical values can be calculated more easily. In 
fact, we implemented the code within the simulation program so that the appropriate theoretical 
values can be calculated based on the test parameters prior to a simulation. With appropriate 
choice of parameters, DTMC application can use a large number of RN streams and/or a large 
number of RNs from each stream. If a simulation is repeated k  times, and there are L  transient 
states, it is natural to use L  distinct RN streams in each simulation run or a total of kL  RN 
streams for the entire simulation. By changing the threshold L , the number of RNs consumed in 
a simulation run can be increased.  

The results of simulations for various threshold values L for a scenario are given in the following 
graph. For each threshold value, MLFG or CPRNG is used to simulate the Markov model to 
determine the number of steps taken to reach the absorbing state. This is repeated 10,000 times 
and the average number of steps taken to reach the absorbing state is estimated. This estimate is 
compared with the theoretical calculations by calculating the absolute deviation as a percentage 
of the theoretical value. The cut-off point is 1%. If the deviation is above 1%, then the simulation 
is considered to have not converged. For the four tests we conducted, simulations using MLFG 
converge in two out of four scenarios, while the simulations using CPRNG converged in all four 
cases. 

  

This application is promising, but further investigation is needed to understand its usefulness in 
testing the correlations among RN streams. 
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Abstract

Design and testing of parallel pseudorandom number generators (PRNGs) that generate millions of parallel random 
number (RN) streams needed for large parallel computations is a nontrivial task if: a) the number of parallel streams 
are not fixed at the beginning of the program execution, and they are to be generated in a distributed manner with low 
communication overhead; and b) the correlations among the parallel streams must be very low.  Furthermore, the current 
PRNGs require the user to manage the number of streams and their initialization, which can be onerous if each process 
or thread of a parallel application consumes RNs at multiple locations and, for better randomization, distinct RN streams 
must be used in each instance.  In this paper, both problems are addressed using context-aware PRNGs.  In this approach, 
each request for an RN stream by a process/thread results in the allocation of a large set of RN streams, so that each distinct 
program statement that calls for RN generation (denoted, RN context) is served with a distinct RN stream taken from the RN 
streams assigned to that process.  A prototype context-aware parallel random number generators (CPRNGs) based on the 
multiplicative lagged Fibonacci generator is implemented for automatic RN stream generation based on RN contexts.  A 
new parallel statistical test, called the inter-stream correlation (ISC) test, is designed and implemented to assess the degree 
of independence among a large number of parallel RN streams and provide an easy-to-use quality metric.  Preliminary 
results indicate that the prototype CPRNG provides high-quality RN streams, and that the ISC test promises to be a highly- 
effective test to assess correlations among a large number of RN streams.  

1.  Introduction 

Many scientific computing applications, business and finance applications, and complex systems modeling and 
analysis techniques use random number generators1 (RNGs) extensively for simulations of various likely scenarios and 
estimations of potential outcomes.  Often, these applications are highly-scalable and can take advantage of the availability 
of thousands of computing cores on heterogeneous systems comprising multi-core processors (CPUs) and highly-parallel 
general-purpose graphics processing units (GPGPUs), provided that suitable parallel random number generators (PRNGs) 
are available to simultaneously feed thousands of computing streams with high-quality random number (RN) streams with 
low intra- and inter-stream correlations.  

We present context-aware parallel random number generators (CPRNGs) based on a new approach to allocate and 
manage RN streams by parameterized random number generators that can generate virtually unlimited numbers of distinct 
RN Streams.  Lagged Fibonacci generators (LFGs), which generate a new RN by applying an arithmetic or logic operation 
on two or more previously generated RNs, can provide a large number of distinct RN streams, with each stream having a 
large cycle—the number of RNs that can be used before the sequence repeats.  A prototype CPRNG, based on multiplicative 
lagged Fibonacci generator (MLFG), is implemented and evaluated.  CPRNG provides two new features that a basic MLFG 
does not provide.   

 ● CPRNG uses the program context, in which a request for a random number is made, to automatically select and 
use distinct RN Streams for distinct contexts.  

 ● A typical PRNG requires the application to declare the maximum number of RN streams used in an execution run, 
and the number of distinct RN streams requested to be within this limit.  However, this can be a significant constraint 

1The random number generators we consider this paper are pseudorandom number generators.  For easier description, however, we simply refer to them 
as random number generators.  
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for applications that may spawn additional processes during the execution, based on the intermediate results and 
use unpredictable number of RN streams. 

 ● CPRNG relaxes this constraint and allows applications to request virtually unlimited number of RN streams beyond 
any initially-specified RN stream limit.

Another problem addressed in this work is the evaluation of intra-stream and inter-stream correlations—i.e., the quality 
of the random numbers generated.  Several excellent statistical tests[1,11] are available to test intra-stream correlations of 
a sequential RNG.  Test packages such as Diehearder[16] and TestU01[15] run a battery of such tests on an RN stream and 
provide pass/fail results from each test.  If an RN stream fails any of the tests, then additional, more detailed tests are 
conducted.  Otherwise, it is assumed that the RN stream is free of intra-stream correlations with very high probability.  

To assess the quality of a PRNG, several parallel RN streams generated by it are interleaved using the perfect shuffle 
pattern to create a single RN stream, and single-stream test batteries are used to evaluate the inter-stream correlations 
among the RN streams[7,8].  A single-stream test package contains 20 different types of basic tests (which may be repeated 
with different parameters to create up to 150 test instances) and gives pass/fail status for each test applied to the interleaved 
stream.  This provides a vector of pass/fail information that will be hard to use for comparisons of different PRNGs.  
Furthermore, these tests use a few billions of RNs from the test stream for these tests.  Therefore, they are not suitable 
to test a large number of parallel RN streams; if a billion streams are interleaved to form a single stream, then these tests 
only examine a few numbers from each stream, which may not be enough to assess the inter-stream correlations.  On the 
other hand, if a billion RN streams are partitioned into several subsets with each subset consisting of a small number of RN 
streams, and single-stream test batteries are applied on each set, then these tests will take several 100’s of hours on a desktop 
machine and provide multiple vectors of pass/fail information that will be hard to combine into an easy-to-understand 
quality metric.  

Another approach is to use thoroughly analyzed applications to test inter-stream and long-range correlations of RNGs.  
For example, a physics application involving simulations of two-dimensional (2D) Ising square lattice models with periodic 
boundary conditions, for which the exact solutions are known, is often used to evaluate PRNGs[3,4,7].  However, application-
based tests are computationally-expensive and may not be adaptable to test billions of parallel streams at a time.  Therefore, 
faster and more informative statistical tests of parallel RN streams are needed.  Currently, there are very few parallel 
statistical tests that do not require serialization of RN streams and have the potential to evaluate inter-stream correlations.

We present a new inter-stream correlation (ISC) test that evaluates a large number of parallel RN streams simultaneously, 
and provides an easy-to-use quality metric.  The ISC test divides the total streams to be evaluated into subsets of streams, 
and computes a correlation coefficient for each subset.  These correlation coefficients are aggregated using a theoretically-
sound test method such as the Donner and Rosner test (DR test)[13] or Kolmogorov-Smirnov test (KS test)[14] and a test 
statistic is obtained.  If the test statistic is too high compared to a suitably determined critical value, the claim of independent 
RN streams is rejected.  Lack of rejection indicates that the RN streams are likely to be independent.  

We present preliminary results of the implementation of a prototype CPRNG and the application of ISC test.  Timing 
tests show that CPRNG is nearly as fast as a basic PRNG, such as MLFG, and incurs only a small amount of overhead to 
provide the context-awareness.  The ISC test found significant correlations in the RN streams generated by multiplicative 
Fibonacci lagged generator (MLFG), in the widely-used SPRNG package.  

The rest of the paper is organized as follows.  Section 2 presents the basics of parallel random number generators.  
Section 3 presents the context-aware PRNGs, and compares a prototype PRNG with the widely-used MLFG in the SPRNG 
package.  Section 4 presents the ISC test and its application to CPRNG and MLFG, with up to 1.5 billion streams analyzed.  
Section 5 describes the related work in PRNGs and test methods.  Section 6 concludes the paper.  

2.  Background 

We are interested in parameterized RNGs that have the capability to generate a large number of RN streams with 
relatively simple changes to the initialization.  Lagged Fibonacci generators[8,9,10] are easy to parameterize and, with careful 
selection of the parameters, can be used to generate virtually unlimited number high-quality distinct RN streams easily.  In 
particular, we are interested in the multiplicative Fibonacci lagged generator (MLFG), which uses the recurrence relation: 
        xn = xn − k × xn−l     (mod 2m),    0 ≤ k < l < n, (1)
where l and k are the lags (or indices to the older random numbers used to generate the new random number), and xi ’s are 
positive and odd m-bit integers.  This generator produces 2(m−3)*(l−1) different RN streams, each with a cycle length of 2(m−3) ∙  
(2l−1).  Therefore, there are (m−3) ∙ (l−1) bits that need be determined uniquely for each RN stream.  (One of the initial lag 
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words and the least significant bits of all initial lag words are specified by the canonical form and parameters specified, and 
are common to all RN streams with those parameters[10].) 

For a 64-bit MFLG with lag 17, there are 261*16=2976 different RN streams, each with a distinct 976-bit seed value and a 
cycle length of 261 ∙ (217−1) ≈278.  In practice, the upper or the middle b, b<64, bits of xi’s are extracted and supplied as the 
RNs to improve the randomness, since the lower bits are often less random owing to the arithmetic operation involved.  We 
used the SPRNG package[8] and the MLFG available from its library, to implement a prototype CPRNG.  

Additive lagged Fibonacci generators (ALFGs) are obtained by replacing the multiply operation in Equation 1 with an 
add operation; xi’s are positive m-bit integers with at least one odd integer in the first l lags.  Compared to MLFGs, ALFGs 
provide more distinct RN streams with longer cycles for the same bit-size.  However, the intra-stream and inter-stream 
correlations are more significant in ALFGs.  To mitigate these issues, larger lags, l=1,279 or larger, are used.  SPRNG 
package combines two ALFGs with different lag words to provide a higher-quality ALFG.  On the other hand, MLFG can 
be used with smaller lags, e.g., l=17.  Therefore, for the most commonly used configuration in SPRNG package, ALFGs 
take twice as much time to initialize a new RN stream and to generate RNs as MLFG.   

SPRNG library package provides init_rng() and get_rn_dbl() function calls to initialize a new RN stream and to obtain 
the next RN in an already initialized stream, respectively.  The init_rng function is called by specifying the seed, parameter 
sets that specify the lags and the locations of the odd-numbered words in the initial set of lag words, maximum number of 
RN streams (denoted max_str) that will be requested by the application, and cur_str, the RN stream number in the range [0, 
max_str) that needs to be initialized.  The seed, parameter set, and max_str must be common in all init_rng() calls.  For most 
parallel applications, it is easy to allocate the RN streams to processes based on the input data and/or computations allocated 
to them.  For example, if a computational loop is partitioned cyclically among p processes, then iteration i is executed by 
process i%p ; in this case it is natural to allocate RN streams from the set i,i+p,… to process i.

Each call to init_rng() results in the initialization of the RN stream specified by the stream number, cur_str, and the 
calling code is given a pointer to the RN stream that should be used as argument in the function call get_rn_dbl() to obtain 
the next RN in the stream.  (SPRNG library provides several other function calls including requests for integer RNs instead 
of reals, but they are not of interest in this paper.) 

3.  Context-aware Parallel Random Number Generators 

If a process uses RNs in multiple locations for different purposes, then it is generally recommended that a distinct RN 
stream be used for each such context.  However, with the current RNG packages, this requires the application to explicitly 
initialize the additional RN streams needed and, more importantly, use the appropriate RN stream pointer in each context.  

This puts a significant burden on the application developer to manage the RN streams and contexts.  Any changes to the 
code that change the number of contexts require additional work by the application developer to make suitable changes to 
the RN stream management.  While it is natural and intuitive to partition RN streams based on the partitioning of input data 
or computations, explicitly managing multiple RN streams based on program contexts makes the application less portable 
and distracts the application developer.  

To address these concerns and to improve the quality of RNs used by applications, we developed the CPRNG.  The 
design methodology is to take a parameterized random number generator that has the capability to generate a large number 
of RN streams with relatively simple changes to the initialization and augment it with a scalable and automatic initialization 
process.  Our first CPRNG is based on the MLFG described in Section 2.  We used the SPRNG package and the MLFG 
available from its library, to implement the prototype CPRNG.  The design of CPRNG is elaborated below.  

3.1 CPRNG Design 

In CPRNG implementation, each init_rng() call allocates not just one RN stream but a set of distinct RN streams 
and returns a pointer, str_ptr, to the set; the streams in this set can be customized with program context without further 
calls to init_rng().  The RN-context, the context or the program location from which a RN number is requested, is used in 
addition to the stream-set pointer, str_ptr, to determine the specific RN stream to be used.  The RN context is derived from 
a combination of the program line number in the source code, the return address of the function call to get_rn_dbl(), the 
process/thread numbers, and any user supplied identifiers such as the iteration number.  When the application requests for 
a random number using the function call get_rn_dbl(str_ptr),  the RN-context will be used to determine the specific RN 
stream to be used in the set of streams pointed by str_ptr.  The appropriate RN stream is automatically initialized with the 
RN-context, if it is the first call from this context, and a RN from the stream is returned.  
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Figure 1 describes the initialization process by CPRNG with lag parameters l and k, 0 < k < l − 2.  A call to init_rng() 
results initialization of l − 3 of the lag words2 using a sequential RNG such as the recursive with carry (RWC) generator 
described in the Diehard package[2] seeded with the user-specified seed.  These lag words are common to the initialization 
of all RN streams, regardless of the process number or RN-context.  One of the remaining three lag words is filled with an 
ID that is guaranteed to be distinct for distinct cur_str numbers specified in init_rng().  The distinct ID word is common to 
the set of RN streams that are allocated in response to init_rng() call.  The remaining two lag words are filled with the RN-
context so that distinct RN-contexts result in distinct RN streams.  

Figure 1. Initialization of RN stream lags by CPRNG.  Each lag word is a 64-bit word with maximum lag L.  L-3 of the lag words 
are filled randomly, based on the user-specified seed and a sequential RNG.  These words are common to all RN streams used 

during the execution of the application.  Lag K, K<L-2, is initialized with a unique and distinct ID that is associated with the cur_
str used in the init_rng() call.  Lags K+1 and K+2 are initialized with RN-context to create a distinct RN stream fo reach distinct 

program context in each process.

For a CPRNG based on MLFG with maximum lag l=17 and 64-bit words, 22×61=2122 distinct RN streams are allocated 
with each init_rng() call.  Based on the context and str_ptr argument used in a call to get_rn_dbl(), an appropriate stream is 
selected, automatically initialized prior to first use, and the next RN in the stream is returned.  CPRNG may be used without 
RN-contexts by choosing appropriate parameters to init_rng() call.  If RN-contexts are not used, then the two lag words 
that are normally filled with RN-context are filled with the random bits generated by the sequential RWC generator; the lag 
word with distinct ID ensures that RN streams are distinct for distinct values of cur_str specified in the init_rng().  CPRNG 
will be simply a basic MLFG when used without context.   

For applications that use a large and variable number of RN streams, having to specify the maximum number of streams 
used during an execution run is a limitation.  Furthermore, certain large-scale parallel applications may spawn additional 
processes and threads dynamically depending on the input data and intermediate results.  To accommodate such situations, 
CPRNG assigns 210 distinct IDs for the lag word k upon a call to init_rng(), independent of any streams allocated to handle 
RN contexts.   Typically, only one of these IDs is used by a process.  However, if a process spawns threads or child processes 
and needs to use additional distinct RN streams without going through the initialization process, it can have them without 
any communication overhead by using the original initialization with the distinct ID word replaced with one of the unused 
IDs from its allocated IDs.  This leads to faster initialization of the new RN streams on demand.  If more RN streams are 
needed and init_rng() is called with cur_str value greater than max_str, a monotonically increasing counter is used to ensure 
that the lag word K is distinct.  However, the access to this counter needs to be serialized by using appropriate mutex locks 
in threaded applications or by assigning it to a process to serve the counter-values to the other processes of the application.  
Only in these instances, an additional communication or serialization overhead is incurred by CPRNG, compared to the 
static methods used in the current packages such as SPRNG.  On the other hand, CPRNG provides a virtually unlimited 

2The initialization of the lag words is more complicated than the simpler description given here.  For MLFG, all the lag words must be odd values.  The 
two consecutive 32-bit RNs generated by the RWC generator are used form a 61-bit integer and a least significant bit determined by the canonical form 
and parameter set is appended to it to form a 62-bit number, say, z.  The actual lag word is formed by using the operation (−1)y 3z mod 264 , where y is a 
randomly generated 1 or 0.  However, for easier description, we omit these implementation details.  See Reference 10 for the complete details.
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number of RN streams on demand, and avoids depletion of the available RN streams that can occur with static partitioning 
of the available RN streams for applications with many levels of dynamic process/thread creation.  

CPRNG is implemented in the SPRNG package as an additional PRNG.  The implementation provides the same 
application interface as the other PRNGS in the package.  Any parallel application currently designed to use SPRNG 
generators can use CPRNG by using an appropriate RNG code.  No additional application modifications are needed.  Just 
like the other PRNGs in the SPRNG package, CPRNG produces consistent and predictable RN streams for an application 
regardless of the number of processes/threads used for parallel computation.  The CPRNG implementation is free of 
memory leaks, is multithread safe, and works seamlessly with MPI-based applications.  The GPU version of CPRNG is 
implemented as a different generator with some restrictions on features: no context-awareness, and the maximum number 
of streams needed by the application must be specified at the beginning of the program execution.  

3.2 Timing Tests 

Two computers, a desktop computer with Intel Core i7-870 CPU and a rack server with Xeon E630 CPU, are used 
to estimate the time required for initialization of a random number (RN) stream by calling init_rng(),and the time taken 
to generate a single random number from an already initialized stream for CPRNG with lag 17 and three generators from 
the SPRNG package: MLFG—multiplicative lagged Fibonacci generator with lag 17, ALFG—lagged Fibonacci generator 
which is a combination of two additive Fibonacci generators with lag 1,279, and ALFG_17—lagged Fibonacci generator 
with lag 17.  

We used Intel CPU time-stamp counter for the time-stamps.  For RN stream initialization test, the time taken to 
initialize a single RN stream is subtracted from the time taken to initialize two RN streams.  This is repeated 100 times and 
the average of the times is taken as a sample point.  This experiment is repeated 10 times and the average of the 10 samples 
and the corresponding 95% confidence interval is calculated.  For RN generation test, the time taken to generate 1,000 
RNs from an already initialized stream is subtracted from the time taken to generate 1,000 RNs each from two previously 
initialized RN Streams.  This time is divided by 1,000 to get the time taken to generate a single RN.  This is repeated 100 
times and the average is taken as a single sample point.  This experiment is repeated 10 times and the average of the 10 
sample points and the corresponding 95% confidence interval is calculated.  

Figure 2 gives the times in clock-ticks—2.93 ticks/ns for the Core i7-870, and 2.53 ticks/ns for the Xeon E630 machines.  
The chart on the left gives the initialization time of an RN stream, while the chart on the right gives the time taken to get an 
RN from an initialized stream.  The initialization costs of CPRNG are about the same as those of MLFG, on which CPRNG 
is based.  The cost of generating an RN is about 3 ticks higher compared to MLFG owing to the additional processing 
needed for context-aware RN generation.  This can be easily eliminated if the application does not require context-aware 
RN generation.  ALFG has high initialization overhead since it uses two additive Fibonacci generators with a large amount 
of lag (the oldest RN used in calculating the next RN) to provide high-quality RN streams.  To rule out any experimental 
error, we tested ALFG with lag 17 (which is not recommended), whose initialization cost is comparable to those of MLFG 
and CPRNG.  

Figure 2. Time taken to initialize RN streams (left chart) and to generate RNs (right chart).  A desktop computer with Intel Core 
i7-870 CPU and a rack server with Xeon E630 are used.  The times are given in clock-ticks—2.93 ticks/ns for the Core i7-870, and 
2.53 ticks/ns for the Xeon E630.  The y-axis for the left chart is in log-scale.  The 95% confidence intervals are ± 1% of the mean-

values reported.
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4.  Inter-Stream Correlation Test 

The inter-stream correlation (ISC) test evaluates the correlations among a large number of RN streams.  The RN streams 
are divided into several subsets, and the streams in a subset are interleaved, using perfect shuffle or biased interleaving 
method.  Consider three RN streams A, B and C with RNs a1, a2, a3,…, b1, b2, b3,…, c1, c2, c3,…, respectively.  In perfect 
shuffle interleaving, a new stream a1, b1, c1, a2, b2, c2, a3,… is created.  In biased interleaving, a1, b1, a2, c1, a3, b2, a4,… is 
created.  The RNs in the odd-numbered positions form the X variates and the RNs in the even-numbered positions form the 
Y variates.  These are transformed into normal bi-variates using Box-Muller transform[12].  Correlation coefficient, r, for the 
bi-variate pairs is computed.  This is repeated several times to obtain multiple r’s.  Collectively, these r’s are the samples 
that can be used to estimate ρ, the true common correlation coefficient among the parallel RN streams generated by the 
PRNG being evaluated.  

The r’s are aggregated using a theoretically-sound test method such as Donner and Rosner test (DR-test)[13] or 
Kolmogorov-Smirnov test (KS-test)[14] and a test statistic is obtained.  The statistic for DR-test is denoted as tH and the 
statistic for KS-test as Dmax.  For each test, there is a critical value that is computed based on the desired significance level 
and the number of r’s used.  For example, for DR-test at a significance level of 0.05, the critical value is 1.96 provided the 
number of bi-variate pairs used to calculate each r is large.  If the test statistic is significantly above the critical value, then 
the RN streams generated by the PRNG are likely to have significant inter-stream correlations.  

The DR-test combines the r’s and gives the test statistic tH, which is a standard normal variate.  This can be used to 
test the null hypothesis H0 : ρ = 0 .  Large absolute values of tH will lead to the rejection of the null hypothesis and the 
acceptance of the alternative hypothesis H1: ρ≠0.  For the significance level α=0.05, absolute values of tH above 1.96 lead to 
the rejection of the claim that parallel RN streams are independent; the probability that the rejection is erroneous is α=0.05.  
One could use different significance levels: for α=0.02, the absolute values of tH above 2.33 will lead to rejection of the 
claim of independence of RN streams with only 0.02 probability of being wrong.   

The distribution of r’s is approximately normal.  These r’s can be converted into standard normal variates using sample 
variance of r’s and the fact that we are testing for ρ=0.  This enables us to apply the KS-test on the distribution of r’s.  In 
this test, the KS-test statistic, Dmax, computed using the r’s must be less than the critical value, Da,n, for significance level α 
and n , the number of r‘s used.  For KS-test, at a significance level of 0.01, the critical value is 0.0274 when the number of 
r’s used is 1,500.  

Figure 3 gives the results of the two tests for shuffle-interleaving of RN streams generated by CPRNG and MLFG.  In 
our tests, we used 1,500 sets of random number streams with the set size varied from 10 to 1,000,000 to obtain r1, r2,…, 
r1,500.  When the set size is 1,000,000, a million streams are used to obtain a single r, and a total of 1.5 billion streams are 
used to obtain the 1,500 r’s used to calculate the test statistic.  The dashed-lines indicate the critical values for the test 
statistics.  Our results indicate that MLFG (the built-in random number generator in the SPRNG package) fails both DR- 
and KS-tests for test configurations that use 1.5 million or more streams.  On the other hand, CPRNG, which is also based 
on the same theoretical foundation as that of MLFG, performs well; it narrowly fails the KS-test only for the largest test 
configurations we used.  

Figure 3. ISC tests for CPRNG and MLFG.  The dashed-lines indicate the critical values.  The y-axes for both charts are in 
log-scale.  For both tests, MLFG’s test statistic is significantly higher than the critical value, indicating that the RN streams 

generated by MLFG may have significant inter-stream correlations and must be tested further.
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5.  Related Work 

The designs of sequential and parallel RNGs are extensively investigated by many researchers owing to their 
importance to computational science and to the elegant, mathematical nature of the problem.  Knuth[1] discusses several 
RNGs, and many excellent single-stream test methods that are implemented in popular test batteries such as Dieharder[16] 

and TestU01[15].  Linear congruential generators that use a recursive equation of the form xn=a ∙ xn−1+b (mod 2m), where a 
and b are constants, are commonly available as part of the C math library in a typical UNIX environment.  One of 219937 

the most popular sequential RNGs is the Mersenne twister[5] which offers an RN stream with a cycle of length.  A graphics 
processing unit (GPU) version of this RNG[6] is commonly used by applications designed to use GPUs.  

Additive and multiplicative lagged Fibonacci generators[8–10] have been extensively investigated because of the ease 
with which they can be used to generate distinct RN streams.  Of the two, MLFG is considered to be more robust, producing 
higher-quality RN streams.  Both generators are implemented in the popular SPRNG package[8].  We have used the SPRNG 
package extensively.  The prototype implementation of CPRNG is based on the MLFG implementation and supports 
SPRNG’s application interface.  

SPRNG also implements several sequential tests and provides a systematic way to interleave several streams into 
a single-stream and apply the sequential tests.  However, owing to the availability of more exhaustive test packages, 
Dieharder and TestU01, we did not use the single-stream tests in SPRNG.  Another important resource provided by SPRNG 
is the Ising model simulation codes based on Metropolis and Wolff algorithms.  These applications are widely-used to 
evaluate sequential and parallel RNGs[3,4,7].  

6.  Conclusion 

Context-aware parallel random number generators are based on a new approach to allocate and manage RN streams by 
parameterized random number generators that can generate virtually unlimited numbers of distinct RN Streams.  Compared 
to the parallel random number generators in the current packages such as SPRNG, CPRNGs can automatically provide 
distinct RN streams depending on the program context to improve the quality of the RNs used.  To achieve the same effect 
with the current PRNGs, the application needs to, explicitly, manage multiple streams and their usage based on the program 
context.  Furthermore, CPRNGs support highly-complex parallel applications that require a large and variable number of 
RN streams by dynamically allocating RN streams beyond the maximum number of RN streams specified at the beginning 
of program execution.  In contrast, the current PRNGs do not allow applications to request RN streams beyond the initially 
specified number of RN streams.  Some implementations, e.g., SPRNG, handle this issue by partitioning the total RN 
streams using a binary partitioning scheme.  For applications that have many levels of dynamic process/thread creation, this 
can result in depletion of RN streams available to dynamically-created processes/threads.  

The inter-stream correlation test evaluates the correlations among a large number of RN streams.  Using a well-known 
test method such as the Donner and Rosner test or the Kolmogorov-Smirnov test, it provides an aggregate PRNG quality 
metric.  This test complements the existing sing-stream test batteries and application-based tests currently available.  It is 
applied to evaluate inter-stream correlations among as many as 1.5 billion RN streams.  The ISC test shows that the MLFG 
used in SPRNG has significant inter-stream correlations when 1.5 million or more streams are considered.  In addition to 
providing an easy-to-use quality metric, the ISC test is fast and can be adapted to on-line testing, in which the actual RNs 
used by an application are fed to ISC test, and overall quality of the RNs used is provided at the end of the execution of the 
application.  

In the future, we plan to revise the current implementation and release a CPRNG library package to the HPC community.  
We also plan to design and implement additional CPRNGs based on other RNGs.  We will work with HPC practitioners in 
adapting new applications that use multi-scale simulation models to augment the current test methods.  
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A method of assessing parallel random number streams 
includes mixing two or more parallel random number 
streams. Mixing the parallel random number streams may 
include pairing at least one of the random number streams 
with other random number streams. For each mixed random 
number stream, an inter-stream correlation value may be 
computed based on a correlation among the random number 
steams used. A quality metric for the parallel random number 
streams may be determined from inter-stream correlation val­
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parallel random number streams. A quality metric for a single 
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VERIFICATION OF PSEUDORANDOM 
NUMBER STREAMS 

PRIORITY CLAIM 

This application claims priority to U.S. Provisional Appli­
cation No. 61/454,259 entitled "Verification of Pseudoran­
dom Number Streams" to Boppana eta!. filed Mar. 18, 2011, 
which is incorporated herein by reference in its entirety. 

2 
stream passes most or all of the single-stream tests, then the 
PRNG may be deemed to be of good quality and is accepted 
for use in applications. 

SUMMARY 

In an embodiment, a method of assessing parallel random 
number streams includes mixing two or more parallel random 
number streams. Mixing the parallel random number streams 

BACKGROUND 

1. Field 
This disclosure relates to the field of computation. More 

particularly, this disclosure relates to methods for assessing 
pseudorandom number streams. 

10 may include pairing one of the random number streams with 
one or more of the other random number streams. For each 
pairing of the parallel random number streams, an inter­
stream correlation value may be computed based on a corre-

2. Description of the Related Art 
Random number generators, which generate streams of 

seemingly random numbers, are used in many computing 
applications. An application may use a single stream of ran­
dom numbers or multiple streams of random numbers simul­
taneously. A sequential random number generator is designed 

15 lation between the two random number streams in the pair. A 
quality metric for the parallel random number streams is 
determined from inter-stream correlation values for the pairs 
of the parallel random number streams. 

In an embodiment, a method of assessing quality of a 

20 random number stream includes segmenting the random 
number stream into two or more random number substreams. 
The random number substreams may be mixed. Mixing the 
random number substreams may include pairing one of the 
substreams with one or more of the other substreams. For 

to generate a single stream of random numbers, the starting 
point of which may be changed with the initial (seed) value. A 
parallel random number generator (PRNG) is designed to 25 

generate multiple, independent streams of random numbers 
simultaneously with a simple change in a parameter used to 
initialize the random number streams. 

It is often useful to test a random number generator to 
assess the quality of the random number stream. Some single- 30 

stream statistical test batteries provide pass/fail indication for 
each test in the battery, since it may not be meaningful to 
combine the statistical computations from multiple tests to 
provide an overall quality metric for the RNG (random num­
ber generator) tested. Therefore, it is common to use the test 35 

results as a multi-bit vector data, with each bit representing 
the pass/fail status for a test. The statistical test batteries do 
not provide a single quantitative metric to compare the two 
generators. This could be a limitation if two RNGs that need 

each pair of the random number substreams, a correlation 
value may be computed based on a correlation between the 
random number sub streams in the pair. A quality metric for 
the random number stream is determined from correlation 
values for the pairs of the random number substreams. 

In various embodiments, methods, systems and apparatus 
are used to test a large number of parallel random number 
streams and to quantify interstream correlations among them 
so that their randonmess can be assessed. Correlations may be 
tested among a large number (hundreds to billions) of streams 
and the computed correlation coefficients may be combined 
so that the user of a parallel random number generator can 
assess a priori or dynamically (during the consumption of the 
random numbers) the quality of random numbers used for 
his/her application. In some embodiments, an online test is 

to be compared fail different tests. 40 performed of the quality ofRN streams as the random num­
bers are generated by the PRNG for an actual application use. Single-stream tests may be ineffective for testing the cor­

relations of random numbers among a large number (e.g., 
thousands to billions) of parallel random number streams 
since the a typical single-stream test method may operate on 
blocks of a few thousands of numbers at a time. Typical 45 

existing test methods may be considered off-line methods in 
the sense that the tests are fed with data generated by the 
random number generator that is being evaluated specifically 
for test purposes. 

Parallel random number streams may be generated by a 50 

parameterized family of pseudorandom number generators, 
by a collection of true random number generators that gener-

In some embodiments, an interstream correlation (ISC) 
test evaluates a large number of parallel RN streams simulta­
neously and provides a quality metric. The ISC test may 
divide the total streams to be evaluated into subsets of 
streams, with at least two streams in each subset, and compute 
a correlation coefficient for each subset. These correlation 
coefficients may be combined using a theoretically sound test 
method such as the Donner and Rosner test (DR test) or 
Kolmogorov-Smirnov test (KS test), and a test statistic may 
be obtained. If the test statistic is higher than a suitably 
determined critical value, the claim of independent RN 
streams is rejected. A lack of rejection indicates that the RN 
streams are likely to be independent. 

BRIEF DESCRIPTION OF THE DRAWINGS 

ate random numbers based on enviroumental signals such as 
noise levels and temperature, computing and communication 
delays, events induced by computer users or other sources, or 55 

any combination of the pseudo- and true random number 
generators. The quality of the random numbers used may be 
crucial for quick and accurate results from computer-based 
simulations and for robust security protocols and security 
keys used in security protocols. 

FIG. 1 is an exemplary block diagram illustrating a parallel 
pseudorandom number generator test metric computation 

60 according to one embodiment. 
Some methods to test and assess the independence of par­

allel random number streams are typically based on sequen­
tial test methods that are designed to test intra-stream corre­
lations of a single random number stream. One practice for 
statistical testing of PRNG quality is to generate parallel 65 

streams, interleave them to form a single stream, and apply 
single-stream tests to the interleaved stream. If the interleaved 

FIG. 2 is an exemplary flow chart of the logic implemented 
by an inter-stream correlation test according to one embodi­
ment. 

FIG. 3 is a flow diagram illustrating one embodiment of 
assessing parallel random number streams. 

FIG. 4 is a flow diagram illustrating one embodiment of 
assessing a random number stream. 
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While the invention is described herein by way of example 
for several embodiments and illustrative drawings, those 
skilled in the art will recognize that the invention is not 
limited to the embodiments or drawings described. It should 
be understood, that the drawings and detailed description 
thereto are not intended to limit the invention to the particular 
form disclosed, but on the contrary, the intention is to cover all 
modifications, equivalents and alternatives falling within the 
spirit and scope of the present invention as defined by the 
appended claims. The headings used herein are for organiza- 10 

tiona! purposes only and are not meant to be used to limit the 
scope of the description or the claims. As used throughout this 
application, the word "may" is used in a permissive sense 
(i.e., meaning having the potential to), rather than the man­
datory sense (i.e., meaning must). Similarly, the words 15 

"include", "including", and "includes" mean including, but 
not limited to. 

DETAILED DESCRIPTION OF EMBODIMENTS 

4 
the remaining streams (if the specification is biased interleav­
ing) or with a subset of the other streams (if the specification 
is group, shuffled or pairwise interleaving) to create a single 
stream with RN s from the selected stream occupying the odd 
numbered positions and the RNs from the other streams occu­
pying the even numbered positions. Stream mixer program 
may skip the user-specified number of initial RN s from one or 
more of the streams prior to mixing them. The RN s in the odd 
numbered positions (positions 1, 3, 5, ... ) from the resulting 
mixed stream may be considered as x,' s and the RN s in the 
even numbered positions as y,'s. Therefore, the resulting 
mixed stream may be considered as a sequential stream of (x,; 
y,) bivariate pairs. This mixed stream may be fed to correla­
tion coefficient computing program 203. Correlation coeffi­
cient computing program 203 may calculate inter-stream cor­
relations of the two streams provided to it by the stream mixer 
202. The computed correlation coefficient is stored. A tester 
204 checks if all the desired combinations of interstream 
correlations are computed. If there are one or more combina-

The following abbreviations and acronyms are used herein. 
RN: Random number; 
RNG: pseudorandom number generator; 
PRNG: parallel pseudorandom number generator; 
ISC: interstream correlation; 

20 tions remain, the stream mixer provides the next stream pair 
to the correlation coefficient computing program 203. If all 
desired combinations of stream pairs are examined, then 
PRNG quality metric 205 is computed. The PRNG quality 
metric may be computed using, in various embodiments, an 

CPU: central processing unit or processor; 
GPU: graphic processing unit or graphics processor used for 
general purpose array computing; 

25 aggregation method, a goodness-of-fit method, percentile 
method or mean absolute deviation method. In some embodi­
ments, the method for computing the PRNG quality metric is 
based on user specification. In some embodiments, the final 

MC: Monte Carlo simulations. 
As used herein, "pairing", in the context of number 30 

streams, includes mixing or combining one stream with one 
or more other streams, or considering or assessing one stream 
in relation to one or more other streams (for example com­
puting a correlation between two streams). As examples, a 
pairing may include: (a) pairing a selected stream with 35 

another stream, (b) pairing a selected stream with an inter­
leaved stream of two or more other streams, and (c) interleav­
ing a selected stream and one or more other streams. 

As used herein, "random number" includes, but is not 
limited to, a true random number, a pseudorandom number, or 40 

a number generated from a combination of true random and 
pseudorandom number methods. As used herein, a "random 
number generator" includes, but is not limited to, a pseudo­
random number generator. 

FIG. 1 is an exemplary block diagram illustrating the 45 

PRNG test metric computation. In FIG. 1 PRNG 101 is the 
parallel random number generator that needs to be tested for 
the independence of its streams 102. Each line may provide a 
single stream ofRNs spaced in time. These RNs may be fed 
to the application 103 as part of the application's input data. 50 

The application 103 may be executed normally and the output 
of the application may be obtained. 

In some embodiments, a parallel random number generator 
may be part of the application. In such cases, PRNG 101 and 
Application 103 may be described by a single block feeding 55 

ISC Tester 105. 
ISC Tester 105 may be fed with RN streams 102 and a test 

specification. The test specification may specify the interleav­
ing method for mixing the streams and the statistical method 
that is used for computation of a quality metric. 60 

output (which may be a p-value in statistics) may be a sig­
nificance level above which the claim of independence of the 
parallel streams carmot be rejected. In certain embodiments, 
the user may specify a significance level, and the quality 
metric is used to determine if the PRNG meets the user­
specified significance level. 

FIG. 3 is a flow diagram illustrating one embodiment of 
assessing parallel random number streams. In some embodi­
ments, the parallel random number streams are generated by 
a random number generation system for purposes of evaluat­
ing the quality of the random number generation system. This 
may be described as a priori or offline test. In other embodi­
ments, the quality of parallel random number streams gener-
ated on demand by an application is assessed continually 
while the application is running. This may be described as 
dynamic, on-the-fly, or online test. 

At 220, parallel random number streams may be mixed in 
one or more ways to create one or more streams of bivariate 
pairs. Mixing the parallel random number streams may 
include pairing the random number streams with one another. 
In some embodiments, a selection of a mixing method to be 
used for mixing the random number streams is received from 
a user. 

At 222, an inter-stream correlation value may be computed 
for each mixed stream ofbivariate pairs based on a correlation 
among the random number streams used to create the mixed 
stream. The correlation values may be, for example, a corre­
lation coefficient computed by taking several (two or more) 
bivariate pairs from the mixed stream. The number ofbivari­
ate pairs used in the correlation value computation may be 
specified by the user. 

At 224, a quality metric for the parallel random number 
streams may be determined from inter-stream correlation val­
ues for the mixed streams. The quality metric may serve as a 
figure of merit for the parallel random number streams. The 
quality metric may provide a measure of the independence of 

FIG. 2 is an exemplary flow chart oflogic implemented by 
an inter-stream correlation test according to one embodiment. 
ISC Tester 105 may be fed with parallel RN streams and test 
specification criteria. The initialization and storage unit 201 
may ensure that these RNs are available for repeated use 
during the test method. Based on the specified interleaving, 
stream mixer program 202 may select a stream and mix it with 

65 the parallel number streams from one another. In some 
embodiments, a selection of a testing method to be used for 
computing a quality metric for the random number streams is 
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received from a user. The quality metric may be measured 
against a significance level specified by a user. 

FIG. 4 is a flow diagram illustrating one embodiment of 
assessing a random number stream. In some embodiments, 
the random number stream is generated by a random number 
generation system for purposes of testing the random number 
generation system. In other embodiments, the quality of the 
random number stream is assessed during consumption of the 
random numbers by an application (online test). 

At 240, a random number stream is segmented into random 10 

number sub streams. In one embodiment, the random number 
stream is segmented using a leap-frog method. In another 
embodiment, the random number stream is segmented using 
a cycle-division method. 

At 242, random number substreams may be mixed to form 15 

substreams of bivariate pairs. Mixing the random number 
substreams may include pairing the random number sub­
streams with one another. In some embodiments, a selection 
of a mixing method to be used for mixing the random number 
sub streams is received from a user. 20 

At 244, an inter-stream correlation value may be computed 
for each mixed sub stream of bivariate pairs based on a corre­
lation between the substreams used to create the mixed sub­
streams. The number of bivariate pairs (at least two) used in 
the correlation value computation may be specified by the 25 
user. 

At 246, a quality metric for the random number stream may 
be determined from inter-stream correlation values for the 
mixed substreams. The quality metric may serve as a figure of 
merit for the random number stream. The quality metric may 

30 
serve as a figure of merit for the parallel random number 
streams. The quality metric may provide a measure of the 
independence of the parallel number streams from one 
another. In some embodiments, a selection of a testing 
method to be used for computing a quality metric for the 
random number streams is received from a user. The quality 35 

metric may be measured against a significance level specified 
by a user. 

In some embodiments, inter-stream correlations are quan­
tified among multiple parallel random number (RN) streams 
as a numerical factor, and a figure of merit is assigned for a 40 

PRNG. In one embodiment, a system includes three main 
components: stream mixer 202, correlation coefficient calcu­
lator 203, and PRNG quality metric calculator 205. 

Let us consider k, where k;;:2, RN streams S 1 , S2 , ... , Sk for 
which we need to check if there is a significant inter-stream 45 
correlation (ISC) among them. To compute the correlation, 
we construct a bivariate sample (X,Y) given by (x,, y,), i=1, 
2, ... , n. (It is common to use capitalized letters for random 
variables and lower case letters with appropriate subscripts 
for the observed samples corresponding to the random vari-

50 
abies.) A straight-forward bivariate sampling takes two RN 
streams at a time; but this results in 

6 
samples we need to analyze to capture all possible correla­
tions will be nearly 50 million. To reduce the computational 
complexity, we construct k or fewer bivariate samples in 
which each RN stream is checked for correlation with one or 
more of the other RN streams. This is explained in the fol­
lowing steps. 

Step 1. Mix the RN Streams in one of the Following 
Ways 

Biased Interleaving: 
Use n numbers from S1 as then observations on the X 

variate, and interleave the remaining k-1 streams to provide n 
observations on theY variate. 

(An alternative approach is to use coarse interleaving of the 
k-1 streams. Let n be a large multiple of (k-1 ). Take the first 
n RNs from S1 to form then observations on X. Take first 

n 

k-1 

RNs from S2 , the second 

n 

k-1 

RN s from S3 and so on to form n values on Y. Extensive testing 
showed that both methods of interleaving give statistically 
similar results. The first approach is oblivious to the total 
number ofRNs to be generated by each stream, which may 
simplifY the generation and storage of the random numbers.) 

This gives (x,,y,), i=1, 2, ... , n, with S1 as the selected 
stream. This can be repeated with S,, i=2, ... , k, as the 
selected stream providing X values and 

n 

k-1 

RNs from each of the other k-1 streams providing Yvalues. 
In this method, each (X,Y) bivariate sample shares (overlaps) 

n(k- 2) 

k-1 

of its Y values with each of the other bivariate samples. 
Group Interleaving: 

k(k -1) 

2 

This method of mixing the RN streams extends the concept 
ofbiased interleaving to form bivariate samples with no over-

55 lap, which may be desirable for statistical test methods. In this 
method, the given k RN streams are grouped into groups ofh 
streams each, where 2shsk. There will be g groups, where 

possible bivariate samples, in which each bivariate sample 
shares one of the streams with 2(k-2) other bivariate samples, 
or 

k 

2 

bivariate samples, in which no streams are shared among the 
bivariate samples. Ifk=10,000, then the number of bivariate 

60 g = l~J. 

Therefore, group interleaving uses gh streams for correlation 
calculations. (If h does not divide k evenly without any 

65 remainder, then gh<k<gh+h.) Using the streams in each 
group, a bivariate sample is formed as follows. One of the 
streams from the group is selected to provide n observations 
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of the X variate. The remaining h-1 streams are interleaved to 
provide n values for the Y variate; each of these streams 
provides up to 

random numbers. (As indicated earlier, fine or coarse inter­
leaving may be used to interleave the h -1 streams.) This gives 
g bivariate samples each with n observations. There is no 
sharing of random numbers among the bivariate samples. 

Shuffled Interleaving: 
This method is a variation of group interleaving, obtained 

8 
(3) 

(4) 

The correlation coefficient of the bivariate normal pairs 
(zx,, zy,), i=1, 2, ... , n, is computed. 

The Box-Muller transform is not symmetric in the sense 
that switching (X,Y) ordering yields a different correlation 
coefficient value. In particular, Box-Muller transform is sen­
sitive to the RN streams used for Y variates and amplifies the 

10 correlations among the RN streams used for Y variates to 
calculate different 8's. If the selected stream is used to draw 

by interleaving all streams of the group evenly and taking the 15 

values in the odd-numbered positions forming the X variate 
and values in the even numbered positions forming the Y 
variate. Shuffled interleaving also produces g different (X,Y) 
stream pairs with no overlapping. For the special case ofh=k, 
there is only one group resulting in only one (X,Y) bivariate 20 

sample; this special case is the state of the art for statistical 
testing of interstream correlations. 

observations for X and the interleaved stream is used to draw 
observations for Y with biased interleaving, then Box-Muller 
transform correctly amplifies the correlation among the dif­
ferent versions of the interleaved streams used for Y. Any pair 
of interleaved streams formed by biased-interleaving share 

n(k- 2) 

k-1 

values, and the quality metric computed in the next step is 
dominated by the correlation among the interleaved streams. 

Pairwise Interleaving: 

To avoid this, since the purpose ofiSC test is to find correla­
tions among different individual streams, the interleaved 
stream should be used for the observations of X and the 
selected stream for the observations ofY when biased inter­
leaving is used to mix RN streams. For group, shuffled, and 
pairwise interleaving the order of the streams is not an issue 
since all streams used for X andY variates are independent. 

A special case of group interleaving (and shuffled inter­
leaving) is the pairwise interleaving, which is obtained by 25 

choosing h=2; each group is a pair of streams. Therefore, 
pairwise interleaving uses n RNs from stream S1 as the n 
observations of the X variate and n RNs from S2 as the 
observations of theY variate from the first group. This again 
gives (x,,y,), i=1, 2, ... , n. This can be repeated to obtain up 30 

to 
Correlation coefficients from several pairs of streams gen­

erated using the biased interleaving are obtained. Let these 
coefficients be denoted r 10 r2, ... , rk. Each r, gives the 

35 interstream correlations from a selected stream to the rest of l~J-1 

additional pairs with stream 

S;,i=2,4, ... ,2l~J-1, 

providing X values and stream S,+1 providing Y values. 

Step 2. Calculate Correlation ofX,Y Streams 

Consider a pair of values (x,,y,), i=1, 2, ... , n, taken one 
each from the two streams. If the RN s are integers in the range 

the streams. 
If group or shuffled interleaving is used, r 1 , r2, ... , rg, where 

40 
g = l~J 

and his the group size, are the interstream correlations with r, 
representing the correlation coefficient between streams S,h, 

45 S,h+1 , ... , S,h+h-l· For the special case of pairwise-interleav­
ing, 

[0, m-1], then they are converted to reals in the range (0,1] 50 

using the conversion 

RN 
1--, 

m 

where RN is an integer random number. If the RNs are from 
uniform [0, 1 ), then they are converted to (0, 1] range using 
the conversion 1-RN. If the RNs are from uniform (0,1) 
distribution, no additional preprocessing is needed. Let the 
resulting random variates be denoted ux, and uy,. The Box­
Muller transform given by the following equations is applied 
to convert RNs to normal random variates, zx, and zy,. (All 
logarithms are to the base e.) 

are the interstream correlations, where r, represents the cor­
relation coefficient between streams s2i and s2i+l. 

(Alternatively, the polar transform may be used to convert 
55 (x,, y,) pairs to normal random variate pairs. First, x, andy, are 

converted to reals in the range ( -1, 1). If the RNs are integers, 
they can be converted into reals in the range ( -1,1). If the RNs 
are from uniform (0,1) distribution, then the numbers are 
extended to ( -1,1) range. Let these be denoted ux, and uy,. If 

60 ux/ +uy/;;:1, the (x,, y,) pair is rejected and another pair from 
the streams is chosen and tested for suitability. This is 
repeated until a suitable pair is found. The processed values 
ux, and uy, of (x,, y,) pair that is found suitable are used to 

r"~-2Iog(ux,) (1) 65 

compute the corresponding normal random variates pair 
using the following equations. 

(2) s=V m}+uyi2 (5) 
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An alternative expression for rF in terms of the r, is 

ZX; = ux;) -21:g(s) 
(6) 

k k n (1 + r;)'i-n (1- r;)'i 
(11) 

i=l i=l 
rp = ---,--,----,,--------

n (1 + r;)'i + n (1 - r;)'i 
i=l i=l 

_ ) -21og(s) 
ZYi - uyi --

5
-

(7) 

10 with 

Since it rejects RN pairs that are simultaneously too large 
or too small, ISC testing based on the polar transform may 
result in the underestimation of the actual inter-stream corre- 15 

lations. Therefore, polar transform is not recommended for 
ISC testing and the computation of PRNG quality metric. 
However, the polar transform may be used to reduce the 
correlations between a given pair ofRN streams by removing 

20 
RN pairs that result in s;;,;l.) 

For the case of equal sample size, 

Cj = k' 

Step 3. Compute the Overall Interstream Correlation 
Metric 

The sequence ofr's obtained in the previous step denote 

k (or ~ if pairwise- interleaving is used) 

25 

30 

and the following bias-corrected transform 

- - rp 
ZH =Zw- --

9 
2n--

2 

may be used to estimate p by 

(12) 

(13) 

We can use the statistic tH=Z Hv'N-3k to test the hypothesis: 

if pairwise-interleaving is used) estimates of the actual cor­
relation coefficient p among the streams converted using the 35 
Box-Muller transform. The RNG quality metric may be 
obtained by converting the r's to normal variates using Fish­
er's z-transformation and using one of the following correla­ H0 : p=O. Under the null hypothesis H0 , tH has an asymptotic 

standard normal distribution. This gives a significance level 
40 above which the null hypothesis cannot be rejected. This 

significance level can be used to determine the quality of the 
PRNG. 

tion-coefficient combining methods described below. 

3.1. Aggregation Method 

Let r,, i=l, ... , k, be a correlation coefficient based on n, 
bivariate pairs. In the present disclosure, n 1 =n2 = ... =nk =n Let 
N=kn. 

Define 

1 ~1 +r;) Z; = -1o --. 
2 1-r; 

(8) 

Let 

3.2. Percentile Method 
To compute the quality metric, a significance level a is 

45 chosen and rh=r1_a12 and r1=ra~2 quantile values are taken 
from the sorted sequence of r's. The Fisher's z-transforma­
tion given by the following equation is applied to both quan­
tiles to obtain Zh and Z1. 

50 

[
1 +r;l 0.51og --

z 1-r; .. h l 
;= ( 1 /~) ,tis or. 

(14) 

k (9) 55 
~(n; -3)Z; 

- i=l Zw=_:_:_, __ _ 

.Z.: (n; -3) 
i=l 

An estimate of the common correlation p is 

- e2Zw -1 
rp = tanh(Zw) = ---. 

e2Zw + 1 

(10) 

The quality of the PRNG is given by the significance level 
at which Zh <2.33 and Z1>-2.33, where 2.33 is the 99th per­
centile (0.99 quantile) for the standard normal random vari­
able. 

60 Alternatively, the significance level for the selection of r 
quantiles may be fixed and the significance level at which Zh 
and Z1 satisfY the corresponding Z-quantiles may be taken as 
a PRNG quality metric. 

3.3. Goodness-of-Fit Method 
65 Kolmogorov-Smirnov (KS) test is a goodness-of-fit test 

method that may be used instead of the aggregate method to 
determine the correlation among the RN streams in consid-
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eration. The method is applied as follows. Each r,, 1sisk, is 
converted to standard normal variates using the Fisher's 
z-transform described above and sorted in ascending order to 
obtain z,, i = 1, ... , k. For each z,, the corresponding cumula­
tive probability, f,, is computed. If r,'s are normally distrib­
uted, then the cumulative probabilities will be uniformly 
spaced in the interval [0, 1]. The KS test statistic, D, the 
maximum deviation off,, i=1, ... , k from a true uniform 
distribution, is computed as follows. 

{ 
i -1 i } 

D =MAX /;- -, -- /; 
lsisk k k 

(15) 

IfD is below the critical value for a given significance level, 
then the hypothesis that r,'s are normally distributed cannot 
be rejected at that significance level. The critical values for 
KS test precomputed for various significance levels are given 
in most standard books on statistics. 

3.4. Mean Absolute Deviation Method 
Let rq be the q-quantile value in the sorted sequence ofr,'s. 

Also, let rq1 , rq2 , ... , rqm be m r,'s selected at quantiles 
q1, ... , qm, from this sequence. Using Fisher's z-transform 
above, the corresponding standard normal values zq1 , 

zq2 , ... , zqm are computed. From these, the corresponding 
cumulative probabilities for the z values are computed; let 
they be fq1 , fq 2 , ... , fqm· The mean absolute deviation is 
computed using the following equation. 

E= ~ lfq; -qil 

lsism m 

(16) 

There is no critical value against which E can be compared. 
The lower the value E, the better. Though KS test requires 
more computations, it is a more thorough test and should be 
preferred to the mean absolute deviation test. On the other 
hand, for on-the-fly testing of very long RN streams, the mean 
absolute deviation method may be more practical to imple-
ment. 
Application of ISC Test to a Single Stream 

In some embodiments, an ISC test may be used to deter­
mine intra-stream correlations as follows. A single stream 
may be segmented into k substreams by leap-frog or cycle­
division methods, or by any other method. In the leap-frog 
method, substream i, 1 sisk consists ofRNs in positions i, k+i, 
2k+i ... of the stream. In the cycle-division method, k pair­
wise disjoint subsets, each containing n consecutive RNs of 
the original single RN stream are picked. An ISC test can be 
applied on the sub streams to obtain the quality metric as in the 
case of parallel RN streams. In this case, however, the ISC test 
gives the quality metric based on the intra stream correlations. 

In some embodiments, an interstream correlation (ISC) 
test evaluates a large number of parallel RN streams simulta­
neously and provides a quality metric. The ISC test may 
divide the total streams to be evaluated into subsets of 
streams, and compute a correlation coefficient for each sub­
set. These correlation coefficients may be combined using a 
theoretically sound test method such as the Donner and Ros­
ner test (DR test) or Kolmogorov-Smimov test (KS test), and 

10 

12 
In some embodiments, an interstream correlation test 

evaluates correlations among a large number ofRN streams. 
Using a test method such as the Donner and Rosner test or the 
Kolmogorov-Smimov test, the interstream correlation test 
may provide an overall PRNG quality metric. In some 
embodiments, results of an interstream correlation test are 
used in conjunction with other single-stream test batteries and 
application-based tests. The test may be used to evaluate 
interstream correlations among billions ofRN streams. 

In an embodiment, an interstream correlation test evaluates 
the correlations among a large number of subsets. The subsets 
may be interleaved using shuffled or biased interleaving 
method. As one example, three RN streams A, Band C may be 
considered with RNs a1 , a2 , a3 , ... , b1 , b2 , b3 , ... , and c1 , c2 , 

15 c3 , ... , respectively. In shuffled interleaving (also called 
perfect shuffle interleaving), a new stream a1 , b 1 , c 10 a2 , b2 , c2 , 

a3 , ... is created. In biased interleaving, a1 , b 1 , a2 , c1 , a3 , b2 , 

a4 , ... is created. The RN sin the odd numbered positions form 
the X variates and the RN s in the even numbered positions 

20 form theY variates to create bivariate pairs. These may be 
transformed into bivariate normal pairs using Box-Muller 
transform. Correlation coefficient, r, for the bivariate normal 
pairs is computed. This may be repeated several times to 
obtain multiple r' s. Collectively, these r' s are the samples that 

25 can be used to estimate p, the true common correlation coef­
ficient among the parallel RN streams generated by the 
PRNG being evaluated. 

The r' s may be combined using a theoretically sound test 
method such as Donner and Rosner test (DR-test) or Kolmog-

30 orov-Smimov test (KS-test). Based on the test data, a test 
statistic may be obtained. For purposes of this example, the 
statistic for DR-test is denoted as tH and the statistic for 
KS-test as Dmax· For each test, there may be a critical value 
that is computed based on the desired significance level and 

35 the number ofr's used. For example, for DR-test at a signifi­
cance level of0.05, the critical value may be 1.96 provided the 
number of bivariate pairs used to calculate each r is large and 
the number ofr's is more than 2. If test statistic is above the 
critical value, then the RN streams generated by the PRNG 

40 are likely to have significant interstream correlations. 
In this example, the DR-test combines the r's and gives the 

test statistic tH, which is a standard normal variate. This can be 
used to test the null hypothesis H0 :p=O. Large absolute values 
oftH will lead to the rejection of the null hypothesis and the 

45 acceptance of the alternative hypothesis H1 :p>'O. For the sig­
nificance level a=0.05, absolute values oftH above 1.96lead 
to the rejection of the claim that parallel RN streams are 
independent. The probability that the rejection is erroneous is 
a=O.OS. One could use different significance levels: for 

50 a=0.02, the absolute values of tH above 2.33 will lead to 
rejection of the claim of independence of RN streams with 
only 0.02 probability of being wrong. 

The distribution of r's may be approximately normal. 
These r' s can be converted into standard normal variates 

55 using sample variance of r' s, testing for p=O. The KS test may 
be applied on the distribution ofr's. In this case, the KS-test 
statistic, Dmax• computed using the r's is to be less than the 
critical value, Dam for significance level a andn, the number 
of r's used. ForKS-test, at a significance level of 0.01, the 

60 critical value may be 0.0274 when the number ofr's used is 
1500. 

a test statistic may be obtained. If the test statistic is higher 
than a suitably determined critical value, the claim of inde- 65 

pendent RN streams is rejected. A lack of rejection indicates 
that the RN streams are likely to be independent. 

In some embodiments, r's may be combined using other 
computationally more complex tests such as Anderson-Dar­
ling or Shapiro-Wilk tests. 

In some embodiments, r's may be combined using compu­
tationally simpler tests such as the percentile method and 
mean absolute deviation method. The simpler methods may 
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be preferred for online tests to reduce the use of computing 
resources used for quality metric computations, whereas the 
more complex methods may be preferred for offline tests. 

14 

Systems and methods described herein may be used in a 
variety of applications. Examples of applications for systems 
and methods as described herein include (a) simulation -based 
solutions to large scientific and engineering problems, (b) 
parameterized Monte Carlo simulations of scientific, engi­
neering, and finance problems, (c) distributed computing, and 
(d) protocols and keys used for information assurance and 
security. 

Systems and methods described herein, such as the ISC 
tester described above relative to FIG. 1, may be implemented 
in hardware including field programmable gate arrays (FP­
GAs) and application specific integrated circuit (ASIC) chips, 
or a suitable combination of hardware and software and 
which can be one or more software systems on a general 
purpose processor (CPU) or graphics processing unit (GPU). 

The memory medium may store a software program or 
programs operable to implement embodiments as described 
herein. The software program(s) may be implemented in vari­
ous ways, including, but not limited to, procedure-based tech­
niques, component-based techniques, and/or object-oriented 
techniques, among others. For example, the software pro­
grams may be implemented using ActiveX controls, C++ 
objects, as a library or standalone programs in a programming 
language such as C, C++, Java or in a scripting language such 

10 as Bash, Perl, Python, or AWK, JavaBeans, Microsoft Foun­
dation Classes (MFC), browser-based applications (e.g., Java 
applets ), traditional programs, or other technologies or meth­
odologies, as desired. A CPU executing code and data from 

15 
the memory medium may include a means for creating and 
executing the software program or programs according to the 
embodiments described herein. 

Computer systems may, in various embodiments, include 
components such as a CPU with an associated memory 20 

medium such as Compact Disc Read-Only Memory (CD­
ROM). The memory medium may store program instructions 
for computer programs. The program instructions may be 
executable by the CPU. Computer systems may further 
include a display device such as monitor, an alphanumeric 25 

input device such as keyboard, a directional input device such 
as mouse, a voice recognition system to dictate text and issue 
commands for processing, and a touch screen that may serve 
as a keyboard or mouse. Computer systems may be operable 
to execute the computer programs to implement computer- 30 

implemented systems and methods. A computer system may 
allow access to users by way of any browser or operating 
system. 

Embodiments of a subset or all (and portions or all) of the 
above may be implemented by program instructions stored in 35 

a memory medium or carrier medium and executed by a 
processor. A memory medium may include any of various 
types of memory devices or storage devices. The term 
"memory medium" is intended to include an installation 
medium, e.g., a Compact Disc Read Only Memory (CD- 40 

ROM), floppy disks, or tape device; a computer system 
memory or random access memory such as Dynamic Ran­
dom Access Memory (DRAM), Double Data Rate Random 
Access Memory (DDR RAM), Static Random Access 
Memory (SRAM), Extended Data Out Random Access 45 

Memory (EDO RAM), Rambus Random Access Memory 
(RAM), etc.; or a non-volatile memory such as a magnetic 
media, e.g., a hard drive (which may be a disk or solid state), 
or optical storage. The memory medium may comprise other 
types of memory as well, or combinations thereof. In addi- 50 

tion, the memory medium may be located in a first computer 
in which the programs are executed, or may be located in a 
second different computer that connects to the first computer 
over a network, such as the Internet. In the latter instance, the 
second computer may provide program instructions to the 55 

first computer for execution. The term "memory medium" 
may include two or more memory mediums that may reside in 
different locations, e.g., in different computers that are con­
nected over a network. In some embodiments, a computer 
system at a respective participant location may include a 60 

memory medium(s) on which one or more computer pro­
grams or software components according to one embodiment 
may be stored. For example, the memory medium may store 
one or more programs that are executable to perform the 
methods described herein. The memory medium may also 65 

store operating system software, as well as other software for 
operation of the computer system. 

The ISC Tester may be embedded in an application or may 
be combined with a random number generator. 

Further modifications and alternative embodiments of vari­
ous aspects of the invention may be apparent to those skilled 
in the art in view of this description. Accordingly, this 
description is to be construed as illustrative only and is for the 
purpose of teaching those skilled in the art the general manner 
of carrying out the invention. It is to be understood that the 
forms of the invention shown and described herein are to be 
taken as embodiments. Elements and materials may be sub­
stituted for those illustrated and described herein, parts and 
processes may be reversed, and certain features of the inven­
tion may be utilized independently, all as would be apparent 
to one skilled in the art after having the benefit of this descrip-
tion of the invention. Methods may be implemented manu­
ally, in software, in hardware, or a combination thereof. The 
order of any method may be changed, and various elements 
may be added, reordered, combined, omitted, modified, etc. 
Changes may be made in the elements described herein with-
out departing from the spirit and scope of the invention as 
described in the following claims. 

What is claimed is: 
1. A method of assessing parallel random number streams, 

comprising: 
creating mixed random number streams by mixing two or 

more parallel random number streams, wherein mixing 
the two or more parallel random number streams com­
prises pairing at least one of the random number streams 
with at least one other of the random number streams; 

computing, by a computer system, for each of the mixed 
random number streams, an inter-stream correlation 
value based on a correlation between the bivariate pairs 
constructed from the mixed stream; and 

determining, from inter-stream correlation values for two 
or more mixed random number streams, a quality metric 
for the parallel random number streams. 

2. The method of claim 1, wherein determining the quality 
metric comprises off-line testing of the two or more parallel 
random number streams, wherein the two or more parallel 
random number streams are generated by a random number 
generation system for purposes of testing the random number 
generation system. 

3. The method of claim 1, wherein determining the quality 
metric comprises on-line testing of the two or more parallel 
random number streams during consumption of the random 
numbers by an application. 

4. The method of claim 1, wherein determining the quality 
metric comprises combining inter-stream correlation values 
for at least two random number streams. 
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5. The method of claim 1, wherein mixing two or more 
parallel random number streams comprises receiving a user 
selection of a mixing approach. 

6. The method of claim 1, wherein the set of all streams 
may be mixed. 

7. The method of claim 1, wherein the set of all streams 
may be grouped into subsets. 

8. The method of claim 1, wherein mixing a set or subset of 
three or more parallel random number streams comprises 
biased interleaving of a stream with the remaining streams in 10 

the set or subset. 
9. Themethodofclaim1, whereinmixingasetorsubsetof 

two or more parallel random number streams comprises 
shuffled interleaving of all streams in the set or subset. 

10. The method of claim 1, wherein mixing a set or subset 15 

of two parallel random number streams comprises pair-wise 
interleaving of at the two streams. 

11. The method of claim 1, wherein determining the quality 
metric comprises receiving a user selection of a test method. 

16 
19. The method of claim 1, further comprising determining 

whether the quality metric for the two or more parallel ran­
dom number streams meets a user-specified significance 
level. 

20. A system, comprising: 
a processor; 
a memory coupled to the processor, wherein the memory 

comprises program instructions executable by the pro­
cessor to implement: 

creating mixed random number streams by mixing two or 
more parallel random number streams, wherein mixing 
the two or more parallel random number streams com­
prises pairing at least one of the random number streams 
with at least one other of the random number streams; 

computing, for each of the mixed random number streams, 
an inter-stream correlation value based on a correlation 
between the bivariate pairs constructed from the mixed 
stream; and 

determining, from inter-stream correlation values for two 
or more mixed random number streams, a quality metric 
for the parallel random number streams. 

12. The method of claim 1, wherein the quality metric 20 

comprises a significance level, wherein the significance level 
comprises a level above which a claim of independence can­
not be rejected. 21. A non-transitory, computer-readable storage medium 

comprising program instructions stored thereon, wherein the 
25 program instructions are configured to implement: 

13. The method of claim 1, wherein the quality metric is 
tested against a user-specified significance level. 

14. The method of claim 1, wherein the quality metric is 
determined based on an aggregate method. 

15. The method of claim 1, wherein the quality metric is 
determined based on a goodness-of-fit method. 

16. The method of claim 1, wherein the quality metric is 30 

determined based on a percentile method. 
17. The method of claim 1, wherein the quality metric is 

determined based on a mean absolute deviation method. 
18. The method of claim 1, further comprising applying a 

polar transform to remove some bivariate pairs from a mixed 35 

random number stream from the determination of the quality 
metric, wherein removing the one or more bivariate pairs 
reduces correlations among the random number streams used 
in creating the mixed random number stream. 

creating mixed random number streams by mixing two or 
more parallel random number streams, wherein mixing 
the two or more parallel random number streams com­
prises pairing at least one of the random number streams 
with at least one other of the random number streams; 

computing, for each of the mixed random number streams, 
an inter-stream correlation value based on a correlation 
between the bivariate pairs constructed from the mixed 
stream; and 

determining, from inter-stream correlation values for two 
or more mixed random number streams, a quality metric 
for the parallel random number streams. 

* * * * * 
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 PRIORITY CLAIM 

 

[0001] This application claims priority to U.S. Provisional Application 

No. 61/454,856 entitled “GENERATION OF DISTINCT PSEUDORANDOM 

NUMBER STREAMS BASED ON PROGRAM CONTEXT” to Boppana filed 5 

March 21, 2011, which is incorporated herein by reference in its entirety.  

 BACKGROUND 

Field 

 

[0002] This disclosure is generally related to parallel computing 10 

applications, simulation codes and protocols that use pseudorandom numbers and 

more specifically to algorithms and methods to generate pseudorandom numbers.  

Description of the Related Art 

 

[0003] Many important scientific computing applications, business and 15 

finance applications, and complex systems modeling and analysis techniques use 

pseudorandom number generators (“RNGs”).  These applications may take advantage 

of the availability of thousands of computing cores on heterogeneous systems 

comprising multi-core processors (“CPUs”) and highly parallel general purpose 

graphics processing units (“GPUs”), provided that suitable parallel pseudorandom 20 

number generators (“PRNGs”) are available to simultaneously feed thousands of 

computing streams with high quality random number (“RN”) streams with low intra- 

and inter-stream correlations (inter-stream correlations  may be referred to herein as 

“ISCs”). 

 25 

[0004] A parallel or distributed application has the computational task that 

may be divided into several thousands or millions of subtasks, with each subtask 

executed by a separate thread or process (henceforth, process). Each process has 
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distinct ID that is usually logically numbered within the context of the application 

execution.  

[0005] For an iterative parallel application, each process may execute 

some of the iterations. For example, for a large lattice structure simulation, each 

process may simulate the working of a few of the lattice points. Therefore, processes 5 

often cycle through computing and communication mode. In the computing mode, a 

process may use the available data to perform new calculations needed to make 

progress toward the solution. In the communication mode, a process may send its data 

or receive other process’ data.  

[0006] It is common to use the single-program multiple data (SPMD) 10 

programming method to code parallel applications, in which each of the processes 

receives the same computer code but has explicit instructions that specify based on 

the process’s ID its portion of the task.  

[0007] If an SPMD-based parallel application code that uses random 

numbers is executed, all or some of the processes (spawned for the execution of the 15 

application code) request random numbers from the same program locations or 

contexts. 

[0008] In some applications, all required processes may be spawned 

statically at the start of the code execution. In other applications, some of the 

processes are spawned initially and any additional processes are spawned dynamically 20 

by the existing processes based on the application data and the coded algorithm or 

model. In highly complex simulation codes, the initial processes may need to spawn 

additional processes, dynamically, during the execution. However, with SPMD 

programming method, all processes use the same application code with the task for 

each process specified by conditional statements based on the data and the process ID.   25 

[0009] In some systems, to distinguish requests for random numbers from 

different processes, an application is coded such that each process uses a RN stream 

identifier to explicitly identify a distinct stream allocated to it. The stream allocated to 
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a process may be initialized by a special function call prior to generating or using any 

RNs from that stream. 

[0010] A large application code that uses RNs may be executed by 

dividing the computing task among multiple processes. Typically, each process is 

allocated at least one distinct RN stream to provide the RNs needed during its 5 

computations. To improve randomness and to improve the reproducibility of results, 

an application may be coded such that each portion of computing workload, for 

example, each small subset of the iterations of a large iterative code, may be assigned 

a distinct RN stream identifier so that each workload may use a distinct RN stream for 

the necessary RNs in its execution. In such cases, especially for efficiency reasons, 10 

each process may be assigned one or more of the computing workloads, and thus, one 

or more of the distinct RN stream identifiers. It is computationally inefficient, hard to 

reproduce results, or both to code an application so that an RN stream is shared by 

multiple processes. 

[0011] The RN streams to processes may be allocated based on the input 15 

data and/or computations allocated to them. For example, if a computational loop is 

partitioned cyclically among p  processes, then iteration i  may be executed by 

process pi% ; if each iteration is to use a separate RN stream, then the number of 

iterations is smaller than the maximum of RN streams and it may be natural to 

allocate RN streams �,, pii +  from the set of all RN streams to process i . 20 

[0012] One way to ensure that distinct RN streams are used is to allocate 

distinct RN stream identifiers and to use a PRNG that ensures that distinct RN stream 

identifiers result in initialization of distinct RN streams, which for a well-designed 

PRNG, may have low or undetectable—based on the currently available statistical and 

other tests—interstream correlations. 25 

[0013] If the application requires each process or computational workload 

to request random numbers from multiple program locations or contexts, then there 

may be two options. One option is to use the same RN stream for all contexts within a 
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process.  The same contexts in two different processes will still use distinct RN 

streams provided distinct stream identifiers are allocated and initialized for different 

processes.  

[0014] A second option is to use multiple distinct streams for multiple 

contexts in each process, potentially one distinct RN stream for each distinct program 5 

context. This second option may be desirable for better randomness properties. In 

such a case, the application code is explicitly written to manage these multiple 

streams. If the number of distinct streams needed for an application is not known in 

advance, the maximum number of streams needed per process is estimated and the 

same are allocated to each process.  10 

[0015] If the estimation is too small, then a program error is generated and 

execution is halted.  In this case, the user needs to revise the estimate for the number 

of streams needed and resubmit the application for execution.  

[0016] If the estimation is too large, then the program may run out of 

distinct RN streams for processes spawned after some point. This is especially true for 15 

parallel applications that are tuned and run on large clusters of computers with a large 

number of processes are run on even larger clusters of computers with even more 

processes, by a simple change in compile-time or runtime options without application 

recoding, to take advantage of the additional performance offered by the larger 

hardware. 20 

[0017] To further control the generation of RN streams, an application 

may provide a single-seed value, typically by a designated master process (usually 

process 0) to a PRNG. The single-seed value is typically a 32- or 64-bit number, often 

an integer, specified by the user as part of the application’s input data. By keeping all 

other input data the same and changing only the seed value, the user can run multiple 25 

instances of the same scenario, average the results and obtain potential simulation 

error estimations (also called, confidence intervals in statistics). 
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[0018] The quality of the random numbers used may be crucial for quick 

and accurate solutions to simulation-based computer solutions and for robust security 

protocols and security keys used in security protocols.  It may be desirable to use 

distinct parallel RN streams if an application code calls for RNs from multiple distinct 

locations so that, within a process, multiple calls for RNs from the same location (also 5 

called, program context) are satisfied by providing RNs from a specific stream, while 

the calls for RNs from different locations of the program within the same computing 

iteration will be satisfied by providing RNs from different streams. Distinct RN 

streams across different processes may be ensured by the use of distinct RN stream 

identifiers to initialize the RN streams. To use distinct RN streams for distinct 10 

contexts within a process or computational workload, the application has to be coded 

specifically to use distinct RN stream identifiers for each such program context. Such 

an approach may, however, provide an unreasonable burden on the application 

designer and make revisions to application code, which may change the number of 

program contexts from which RNs are requested, cumbersome and potentially error-15 

prone. 

[0019] In some parameterized PRNGs, each process is given one RN 

stream with appropriately parameterized seed or iteration function.  Two main 

approaches to design PRNGs are (a) splitting a sequential RN stream into multiple 

substreams, with each substream treated as a distinct RN stream for application 20 

execution purposes, and (b) parameterization of the initialization (seed) state of an 

RNG with multiple random number cycles or the parameterization of the iteration 

function of the initialization of an RNG. The leap-frog technique which splits a 

sequential RN stream in an interleaved manner — if a sequential stream consisting of 

x1, x2, x3, … needs to be split into k streams, then stream i consists of RNs xi, xk+i, 25 

x2k+i, …, 1 � i � k —received extensive attention. But it is inherently not scalable 

owing to initialization cost—a large multiple of k RNs must be generated first to 

initialize each processor/process—and potentially increased intra-stream correlations. 
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[0020] The Mersenne twister (MT) is a variant of feedback shift register-

based random number generator. The original generator MT19937, which generates a 

single RN stream with a very long cycle of length 199372  (that is, the sequence of 

RNs repeats after generating this many RNs), is very popular and is widely 

implemented in various software packages (including Gnu Scientific Library, gsl 5 

package). SFMT19937, a parallel 128-bit version, and MTGP, a GPU version as part 

of NVIDIA CUDA library, are also available. Using MT to generate multiple parallel 

RN streams often requires splitting its sequential RN stream. This is largely an ad hoc 

process since the maximum number of RNs needed in each segment needs to be 

estimated. This also may compromise the randomness quality since segmenting the 10 

stream and using the segments changes the correlations among the RNs used. Direct 

parallelization by changing the parameters of MT is computationally expensive and 

may not be suitable for dynamic generation of random number streams in a high-

performance simulation code. 

 15 
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SUMMARY 

 

[0021] In an embodiment, a method of providing random number streams 

to a process includes determining one or more program contexts within a process.  

Each of the program contexts may include code that calls for one or more random 5 

numbers.   For each of at least two of the program contexts, a random number stream 

is provided to the process.  The random number stream for each program context is 

based on the determined program context and is distinct from the random number 

stream for the other program contexts in the process. 

[0022] In an embodiment, a method of providing random numbers streams 10 

to processes performing a parallel computation includes determining program 

contexts within one process of a parallel computation.   Each of the program contexts 

may include code that calls for one or more random numbers.  A random number 

stream is provided to the process for each of the program contexts.  The random 

number stream provided is based in part on the determined program context and 15 

based in part on which of the two or more processes the program context is in. 

[0023] In an embodiment, a method of providing random numbers streams 

to processes performing a parallel computation includes receiving a call for one or 

more random numbers from a program context in a process of a parallel computation.  

A random number stream is used to provide a random number for each such call.  The 20 

random number stream provided is based at least in part on the determined program 

context.  

[0024] In some embodiments, a context-aware parallel pseudorandom 

number generator uses the program context in which a request for a random number is 

made to automatically select and use distinct random number streams for distinct 25 

contexts. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

 

[0025] FIG. 1 is a block diagram illustrating a random number generator 

that provides distinct random number streams to different program contexts of a 

parallel computation. 5 

[0026] FIG. 2 is a block diagram illustrating a random number generator 

that can provide distinct random number streams to different program contexts and 

different processes of a parallel computation based on program context and other 

information.  

[0027]   FIG. 3 illustrates providing random number streams to a process 10 

based on a determined program context.  

[0028] FIG. 4 illustrates one embodiment of the initialization process by a 

context-aware random number generator.  

[0029] While the invention is described herein by way of example for 

several embodiments and illustrative drawings, those skilled in the art will recognize 15 

that the invention is not limited to the embodiments or drawings described.  It should 

be understood, that the drawings and detailed description thereto are not intended to 

limit the invention to the particular form disclosed, but on the contrary, the intention 

is to cover all modifications, equivalents and alternatives falling within the spirit and 

scope of the present invention as defined by the appended claims.  The headings used 20 

herein are for organizational purposes only and are not meant to be used to limit the 

scope of the description or the claims.  As used throughout this application, the word 

"may" is used in a permissive sense (i.e., meaning having the potential to), rather than 

the mandatory sense (i.e., meaning must).  Similarly, the words “include”, 

“including”, and “includes” mean including, but not limited to.  25 
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DETAILED DESCRIPTION OF EMBODIMENTS 

  

[0030] As used herein, “random number” includes a pseudorandom 

number.  As used herein, a “random number generator” includes a pseudorandom 

number generator. 5 

[0031] As used herein, a “context-aware parallel pseudorandom number 

generator” means a parallel pseudorandom number generator which generates one or 

more random number streams and provides random numbers based on information 

relating to a program context for requesting random numbers.      

[0032] As used herein, the phrase “primitive process”, or simply 10 

“process”, is used to represent a thread or process assigned to execute one 

computational workload.   In some cases, a thread or process used in an execution of 

the application may perform the work of multiple primitive processes. 

[0033] In some embodiments, distinct random number streams are 

assigned to different program contexts.    The streams may be assigned such that no 15 

two processes cooperatively working on a parallel computation use the same random 

number stream.  In some embodiments, the use of program context enables context-

aware parallel pseudorandom number generators to generate distinct random number 

streams even for processes that use only one stream identifier by call for random 

numbers from multiple locations.  20 

[0034] In some embodiments, a collection of random number streams is 

given to each process so that each distinct statement (denoted, random number 

context) that calls for a random number is served with a distinct generator taken from 

the PRNGs assigned to that process.  To ensure that each process of the parallel 

computation that executes the same code uses distinct random number streams, the 25 

streams may, in certain embodiments, be further initialized with distinct RN stream 

identifiers supplied by the application code.  This RN stream identifier may be used to 
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determine a distinct identifier, in 64- or more bits, generated by a special library 

module.   

[0035] In some embodiments, random number context (RN-context) is 

used in conjunction with the RN stream identifier to determine the RN stream to be 

used. The RN context may be derived from the return address of the function call to 5 

the random number generator.     

[0036] FIG. 1 is a block diagram illustrating a random number generator 

that provides distinct random number streams to different program contexts of a 

parallel computation.   Parallel computation 100 includes processes 102.   In some 

embodiments, processes 102 each include SPMD-based parallel application code for 10 

carrying out parallel computation 100.   Contexts 104 may correspond to a location in 

the code of one of processes 102.   Processes 102 include contexts 104.   

[0037] Random number generator 106 may provide random number 

streams to contexts 104 in processes 102.  Each of contexts 104 may make calls 108 

requesting random numbers.  In response, random number generator 106 may 15 

generate a random number stream 110 to the context.   In some embodiments, each 

random number stream 110 is generated from, or retrieved from, one of library 

modules 114.    

[0038] In some embodiments, a distinct stream is provided to each random 

number context.  For example, the random number stream provided to context A of 20 

process 1 may be distinct from the random number streams provided to context B of 

process 1, which may be different from the random number stream provided to 

context C of process 1, and so on.    

[0039] Each of processes 102 may include multiple iterations 112.  Each 

of iterations 112 may be associated with an iteration number.   For each of iterations 25 

112 of processes 102, context 104 may separately call for a random number stream.     
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[0040] In some embodiments, random number context (RN-context) is 

used with other information to determine an RN stream to be used for a computation.  

The RN context may be derived from the return address of the function call to the 

random number generator, a process number or thread number, an iteration number (if 

appropriate), any user supplied stream identifier, or a combination of one or more of 5 

these elements.  A user supplied stream identifier may be, for example, an index to 

RN stream contexts or a pointer to a data structure containing the RN stream context.    

[0041] FIG. 2 is a block diagram illustrating a random number generator 

that can provide distinct random number streams to different program contexts and 

different processes of a parallel computation based on program context and other 10 

information.   An application’s request for a random number may provide user-

specified stream ID 120 to library module 114.   A process ID 122 may be associated 

with each of processes 102.   An iteration number 124 may be associated with each 

iteration of a process.  User-specified stream ID 120, process ID 122, and iteration 

number 124 may be accessed by random number generator 106.   In some 15 

embodiments, random number generator 106 uses one or more of  user-specified 

stream ID 120, process ID 122, and iteration number 124, in combination context 

information associated with one of contexts 104, to determine the random number 

stream to be used to provide one or more random numbers to the context. The random 

number stream may be initialized if it is not already initialized, as in the case of the 20 

first call to this stream.  

[0042] Each of processes 102 may have unique process ID 122.  Random 

number generator 106 may provide a distinct stream to each program context and 

process.   Thus, for example, random number stream 115 supplied to Context A of 

process 2 in response to call 113 may be distinct from random number stream 110 25 

supplied to Context A of process 1 in response to call 108. 

[0043] In one embodiment, context-aware parallel pseudorandom number 

generators are implemented as library modules that can be linked to application codes 
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at the compile time.  Random numbers may be retrieved from the CPRNG library 

using function calls at the run time. 

[0044] FIG. 3 illustrates providing random number streams to a process 

based on a determined program context.  At 200, a program context is determined for 

program contexts within a process.   Each of the program contexts may include code 5 

that calls for one or more random numbers.  For example, referring to FIG. 1, process 

1 includes program context A, Context B, and Context C.   

[0045] At 202, a random number stream is provided for each of the 

program contexts based on the determined program context.   For example, referring 

to FIG. 1, random number generator 106 may provide a distinct random number 10 

stream to each of Context A, Context B, and Context C in process 1.    For example, 

random number stream 111 provided to Context B in response to call 109 may be 

distinct from random number stream 110 provided to Context A in response to call 

108.   

[0046] In some embodiments, random number streams are generated for 15 

two or more processes in a parallel computation.   The random numbers streams may 

be provided such that the random number streams used by one process are distinct 

from those of other processes.   In certain embodiments, streams are generated such 

that the corresponding contexts of different parallel processes are provided with 

distinct random number streams.  For example, random number generator 106 may 20 

provide a random number stream to context A of process 1 that is distinct from the 

random number stream provided to context A of process 2.   

[0047] In some embodiments, a parameterized pseudorandom number 

generator (RNG) is used to generate a large number of random number (RN) streams. 

The RNG may be augmented with a scalable and automatic initialization process.   25 

Parameterized PRNGs that may be used in some embodiments of a context-aware 

random number generator include an additive lagged Fibonacci generator (ALFG) or 

a multiplicative lagged Fibonacci generator (MLFG).  
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[0048] An additive lagged Fibonacci generator (ALFG) uses an addition-

based recursion:    

[0049] ,0),2(mod nlkxxx m
lnknn <<<+= −−  

[0050] where l  and k  are the lags (or indices to the older numbers used to 

generate the new number),  kln ,,  are positive integers, and s'ix  are m -bit random 5 

numbers. The values 17=l  and  5=k  are commonly used to generate multiple 

distinct streams of 32- or 64-bit RNs. However, to pass very stringent intra-stream 

correlations tests, the lag, l , needs to be very high, over 1000.  

[0051] A drawback of ALFG may be the initialization cost of l  words 

before generating any RNs that can be used by the application code. 10 

[0052] An advantage of ALFG may be that it has a large number of 

independent and long cycles of RNs. For a b-bit, r lagged ALFG, there are )1)(1(2 −− lb  

cycles, each of length 12)12( −− bl . 

[0053] A multiplicative lagged Fibonacci generator (MLFG) is similar to 

ALFG except that multiplication instead of addition is used in the recursion. MLFG 15 

has only one-fourth as many cycles, and each of only one-fourth as long as those in 

ALFG.  MLFGs may be suitable in many embodiments of a CPRNG, since even with 

a small lag of 17, it may be feasible to generate RN streams that pass many of the 

stringent tests.  

[0054] The multiplicative Fibonacci lagged generator (MLFG)  uses the 20 

recurrence relation 

[0055] ,0),2(mod nlkxxx m
lnknn <<<×= −−  

[0056] Where m  is the random integer size in bits, l  and k   are the lags 

or offsets to the stream of previously generated random numbers, and ,, lixi >  are 

the random numbers generated. RNs lxxx ,,, 21 �  form the initialization (seed) 25 
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sequence or state and the initial words of a RN stream. The state of RN stream is 

always given by its most recent l  words. Theoretical results show that each distinct 

combination of certain )1()3( −×− ml  of the ml ×  bits in the seed gives a distinct 

RN stream for a total of  )1)(3(2 −− ml  streams, each with a cycle of 
3)3( 2)12(2 −+− ≈−× lmml  RNs. Therefore, there are ( ) ( )13 −×− lm  bits that may need to 5 

be determined uniquely for each RN stream initialization (seed) sequence.  

[0057] A 64-bit MFLG with lag 17 may be implemented in one example.    

With 64-bit integers and a lag of 17, there are 2939761661 10622 ×≈=×  different RN 

streams, each with distinct 976 -bit seed value and a cycle length of 
23781761 1032)12(2 ×≈≈−⋅ . A few of the lower bits of s'ix  may be discarded and 10 

remaining bits of ix ’s are used to supply the RNs to improve the randomness since 

the lower bits are often less random owing to the arithmetic operation involved.  The 

random numbers may be provided as integers or as real numbers in the range [0,1) by 

computing the fractions resulting from the division of the integer ix ’s with 

rnmax_1+ , where rnmax_  is the maximum value an ix  may take. In one 15 

embodiment, a PRNG package called SPRNG and the MLFG available from its 

library are used to implement a CPRNG.  

[0058] In one implementation of context-aware random number 

generation, a SPRNG library package provides init_rng() and get_rn_dbl() function 

calls to initialize a new RN stream and to obtain the next RN in an already initialized 20 

stream, respectively.  The init_rng function is called by specifying the seed, 

parameters set that specify the lags and the locations of the odd numbered words in 

the initial set of lag words, maximum number of RN streams (denoted max_str) that 

will be requested by the application, and cur_str, the RN stream number in the range 

1max_str10 -,,, �  that needs to be initialized. The seed, parameter set, and max_str 25 

may be common in all init_rng() calls.  Each call to init_rng function returns a pointer 

to one RN stream.  
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[0059] In one embodiment of a CPRNG implementation, each init_rng() 

call allocates not just one RN stream but a set of distinct RN streams and returns a 

pointer, str_ptr, to the set; the streams in this set can be customized with program 

context without further calls to init_rng(). The RN-context, the context or the program 

location from which a RN number is requested, is used in addition to the stream-set 5 

pointer, str_ptr, to determine the specific RN stream to be used. The RN context may 

be derived from a combination of the program line number in the source code, the 

return address of the function call to get_rn_dbl(), the process/thread numbers, and 

any user supplied identifiers such as the iteration number. When the application 

requests for a random number using the function call get_rn_dbl(str_ptr),  the RN-10 

context is used to determine the specific RN stream to be used in the set of streams 

pointed by str_ptr. The appropriate RN stream may be automatically initialized with 

the RN-context, if it is the first call from this context, and a RN from the stream is 

returned.  

[0060] Each call to init_rng() may result in the initialization of the RN 15 

stream specified by the stream number, cur_str, and the calling code is given a pointer 

to the RN stream that should be used as argument  in the function call get_rn_dbl() to 

obtain the next RN in the stream. 

[0061] In this example embodiment, CPRNG differs from the MLFG in 

the SPRNG package in several ways: (a) automatically generating distinct RN streams 20 

based on program context for the same str_ptr value; (b) initialization method used to 

seed RN streams to improve the randomness and also to ensure that RN context can 

be added to dynamically create distinct RN streams without requiring additional 

init_rng() calls; (c) the distinct ID field that allocates distinct values for a portion of 

the seed sequence statically (when the cur_str value is less than max_str value in the 25 

function call init_rng()) and additional seed sequences dynamically beyond the 

max_str limit in case the application requires more RN streams than originally 

estimated. Extensive statistical tests are used to show that CPRNG implementation of 

MLFG generates billions of RN streams with low interstream correlations while the 
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implementation of the same theoretical generator in SPRNG exhibits statistically 

significant correlations for more than a million streams. The specification of max_str 

limits the maximum number of cur_str values that can be used to call init_rng() in 

SPRNG implementation, whereas max_str is a threshold to determine whether the 

initialization sequences are allocated statically or dynamically. Static allocation of the 5 

seed sequences improves repeatability of the computations when rerun with the same 

input data and dynamic allocation of seed sequences relieves the burden of specifying 

the maximum number of stream allocations needed a priori.  Context-awareness 

provides distinct RN streams for distinct program contexts even when str_ptr used in 

the calls to get_rn_dbl() is the same.  In SPRNG implementation, the application 10 

needs to be coded explicitly to use different str_ptr in calling get_rn_dbl() to achieve 

the same functionality.  In this example embodiment, CPRNG may avoid such 

application coding and automate the management of distinct streams for distinct 

contexts. 

[0062] FIG. 4 illustrates one embodiment of the initialization process by 15 

CPRNG.   In this example shown in FIG. 4, the initialization may be based on lag 

parameters l  and k , 10 −<< lk . A call to init_rng() results initialization of 3−l  of 

the lag words using a sequential RNG such as the recursion with carry (RWC) 

generator, a 32-bit generator, initialized with the user specified seed integer. In this 

example, these lag words are common to the initialization of all RN streams 20 

regardless of the process number or RN-context. One of the remaining three lag 

words is filled with an ID that is guaranteed to be distinct for distinct cur_str numbers 

specified in init_rng(). The distinct ID word is common to the set of RN streams that 

are allocated based on different RN contexts but have the same cur_str number. The 

remaining two lag words are filled with the RN-context so that distinct RN-contexts 25 

result in distinct RN streams. 

[0063] In the embodiment shown in FIG. 4, initialization of RN stream 

state by CPRNG.  In this example, the state consists of l  lag words. Each lag word is 

a 32-bit or, more typically, 64-bit word with maximum lag l , 3−l  of the lag words is 
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filled randomly based on the user specified seed and a sequential RNG. In this 

example, these words are common to all RN streams used during the execution of the 

application. Lag k , 1−< lk , is initialized with a unique and distinct ID that is 

associated with the cur_str used in the init_rng() call. Lags 1+k  and 2+k  are 

initialized with RN-context to create a distinct RN stream for each distinct program 5 

context in each process.  

[0064] For MLFG, all the lag words are odd values. Therefore, for each 

lag word, only ( )3−m  of each lag word in an m  -bit MLFG are determined uniquely, 

and a least significant bit determined by the canonical form and parameter set is 

appended to it to form an )2( −m -bit number, say, z . The actual lag word may be 10 

formed by using the operation mzy 2 mod3)1(− , where y  is a randomly generated 1 

or 0. Henceforth, the discussion of a lag word initialization pertains to the generation 

of the ( )3−m  bits since every initial lag word will be transformed using the operation 

mzy 2 mod3)1(− .  For a 64-bit MLFG, two consecutive 32-bit RNs generated by the 

RWC generator may be  used form a 61-bit integer for the lag words filled by it. 15 

Similarly, only 61 bits of each of the lag words used for distinct ID word and the RN 

context words need to be determined uniquely. 

[0065] In some embodiments, the number of bits used for distinct ID may 

be more or fewer than 3−m  bits, and more than one lag word or only a portion of a 

lag word may be used. Up to 2−l  lag words are available for distinct ID 20 

specification. Similarly, the number of bits used RN context may be more or fewer 

than )3(2 −m  bits used in the example embodiment in FIG. 4. Furthermore, the 

positions of distinct ID bits and RN context bits can be anywhere in the 

( ) ( )13 −×− lm  bits available to seed distinct RN streams. Any bits not used for 

distinct ID and RN context fields will be randomly filled with the RWC or some other 25 

good sequential random number generator initialized with user supplied 32-bit or 64-

bit single-seed value 
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[0066] For a CPRNG based on MLFG with maximum lag 17=l  and 64-

bit words, 122612 22 =×  distinct RN streams may be allocated with each init_rng() call. 

Based on the context and str_ptr argument used in a call to get_rn_dbl(), an 

appropriate stream is selected, automatically initialized prior to first use, and the next 

RN in the stream is returned. CPRNG may be used without RN-contexts by choosing 5 

appropriate parameters to init_rng() call. If RN-contexts are not used, then the two lag 

words that are normally filled with RN-context are filled with the random bits 

generated by the sequential RWC generator.  The lag word with distinct ID may be 

used to ensure that RN streams are distinct for distinct values of cur_str specified in 

the init_rng(). CPRNG may be simply a basic MLFG when used without context.  10 

[0067] For applications that use a large and variable number of RN 

streams, having to specify the maximum number of streams used during an execution 

run is a limitation. Furthermore, certain large-scale parallel applications may spawn 

additional processes and threads dynamically depending on the input data and 

intermediate results. To accommodate such situations, CPRNG may assign several 15 

( 102  in the example embodiment) consecutive distinct IDs for the lag word k  upon a 

call to init_rng(), independent of any streams allocated to handle RN contexts. 

Therefore, CPRNG may allocate multiple initialization (seed) sequences, which can 

be used to initialize distinct RN streams by simply initializing the distinct ID lag word 

based on the unused distinct IDs allocated and keeping the other initialization words 20 

the same, to the calling process.  Typically, only one of these IDs is used by a process. 

However, if a process spawns threads or child processes and needs to use additional 

distinct RN streams without going through the initialization process, it can have them 

without any communication overhead by using the original initialization with the 

distinct ID word replaced with one of the unused IDs from its allocated IDs. This 25 

leads to faster initialization of the new RN streams on demand. If more RN streams 

are needed and init_rng() is called with cur_str value greater than max_str, a 

monotonically increasing counter is used to ensure that the lag word K is distinct. 

However, the access to this counter may need to be serialized by using appropriate 

mutex locks in threaded applications or by assigning it to a process to serve the 30 
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counter values to the other processes of the application. In these instances, an 

additional communication or serialization overhead may be incurred by CPRNG 

compared to the static methods used in some packages. On the other hand, CPRNG 

provides virtually unlimited number of RN streams on demand, limited only by the 

number of bits used for the distinct ID, and avoids depletion of the available RN 5 

streams that can occur with static partitioning of the available RN streams for 

applications with many levels of dynamic process/thread creation.  

[0068] In some existing parallel random number generators (PRNG), only 

the user supplied stream identifier is used to determine the RN stream, thus leaving 

the burden of managing multiple RN streams to the user.  This can be onerous, 10 

especially if the application is iterative and RNs are consumed at multiple locations in 

each iteration.  Use of a CPRNG may relieve a user from managing multiple streams 

for each thread or process. In some embodiments, the use of process/thread numbers 

may be used in addition to context information.  The option of using process/thread 

number to determine RN contexts may be selected by a user at a compile-time or 15 

runtime. Use of a process/thread number in determining the RN context may reduce 

reproducibility of results.   

[0069]  In some embodiments, once a unique RN-context is determined, 

RN-context information may be embedded into a seed sequence to initialize an RN 

stream.  The seed sequence may be, for example, a 976 -bit sequence for a 64-bit 20 

MLFG with lag 17. In some cases, it may be sufficient to limit the RN-context size to, 

for example, two lag words (122 bits; only 61 bits of each 64-bit lag word are 

determined, and the remaining three bits are determined by a canonical form used to 

initialize the lag words).  The RN-context may be concatenated with an additional 

deterministically generated distinct ID (one lag word or 61 bits) to further distinguish 25 

the initialization of RN streams. The remaining bits may be filled randomly using a 

good sequential RNG, such as a recursion with carry (RWC) generator using a user-

supplied seed integer.  These random bits may be common to the initialization of all 

RN streams.  



Atty. Dkt. No.: 5660-14400 Page 20      Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C. 

[0070] In some embodiments, a CPRNG implements a scalable 

initialization of RN streams. In one embodiment, the CPRNG initializes RN streams 

using a return address, any user supplied identifier, seed information, and additional 

information that is generated by a CPRNG library. This additional information may 

be generated in different ways depending, for example, on the application code.  5 

[0071] If the application is an MPI-based parallel program using single-

program multiple data (SPMD) program model, then a special CPRNG module may 

be associated with process 0.  The user may be neither aware of this nor expected to 

modify the application code. This CPRNG module may allocate several, for example, 
102 , consecutive distinct 64-bit IDs in response to each initialization request.  Each 10 

RN context may be augmented with one of the distinct IDs.  

[0072] Some MPI processes dynamically spawn processes/threads that use 

RN streams.  In some embodiments, a process supplies its unused IDs to its child 

processes to automatically ensure that RN streams are distinct.  If a process runs out 

of its allocated distinct IDs, then the CPRNG module may allocates additional distinct 15 

IDs.  (In such instances, an additional communication overhead may be incurred by 

CPRNG compared to the static methods used in the some packages.) Such an 

approach may require very low communication among the processes for RN stream 

initialization.  

[0073] For parametric studies based on Monte Carlo simulations, the RN 20 

streams used for each instance of simulation can be ensured to be distinct by 

specifying the specific IDs (fore example, 64-bit IDs) to be used as additional input 

file that will be used by the CPRNG library.   A script (such as a Python script)  may 

partition ID space and generate the additional input files. 

[0074] In SPRNG and other works, the initialization for an RN stream 25 

may be determined based on a user-supplied stream identifier and a seed integer.  The 

seed integer may be, for example, a 32-bit or a 64-bit integer.   To handle the issue of 

new RN streams for additional processes/threads spawned dynamically, the RN 
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stream initialization space may be partitioned statically using a binary partitioning 

scheme to ensure initialization without any communication among processes. This 

can result in depletion of the initialization sequences quickly for applications with 

many levels of dynamic process/thread creation. 

[0075] Although certain of the embodiments described above relate to 5 

simulations, systems and methods described herein may be used in a variety of 

applications.   Examples of applications systems and methods described herein 

include (a) simulation-based solutions to large scientific and engineering problems, 

(b) parameterized Monte Carlo simulations of scientific, engineering, and finance 

problems, (c) distributed computing, and (d) protocols and keys used for information 10 

assurance and security. 

[0076] Systems and methods described herein may be implemented in 

hardware including field programmable gate arrays (FPGAs) and application specific 

integrated circuit (ASIC) chips, or a suitable combination of hardware and software 

and which can be one or more software systems on a general purpose processor 15 

(CPU) or graphics processing unit (GPU). 

[0077] Computer systems may, in various embodiments, include 

components such as a CPU with an associated memory medium such as Compact 

Disc Read-Only Memory (CD-ROM).  The memory medium may store program 

instructions for computer programs.  The program instructions may be executable by 20 

the CPU.  Computer systems may further include a display device such as monitor, an 

alphanumeric input device such as keyboard, a directional input device such as 

mouse, a voice recognition system to dictate text and issue commands for processing, 

and a touch screen that may serve as a keyboard or mouse.  Computer systems may be 

operable to execute the computer programs to implement computer-implemented 25 

systems and methods.  A computer system may allow access to users by way of any 

browser or operating system. 
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[0078] Embodiments of a subset or all (and portions or all) of CPRNG 

may be implemented and executed in a computer and the random number streams and 

random numbers so generated are accessed via computer network by at least one other 

computer executing the application requesting random numbers. 

[0079] Embodiments of a subset of all (and portions or all) of code and 5 

data needed for CPRNG operation—initialize and maintain random number streams 

and provide random numbers from these streams—may be stored on a remote 

computer, which, in turn, provides the said instructions and data via a computer 

network to at least one other computer, which executes uses the received instructions 

and data to initialize and maintain random numbers and provide random numbers for 10 

applications requesting the same. 

[0080] Embodiments of a subset or all (and portions or all) of the above 

may be implemented by program instructions stored in a memory medium or carrier 

medium and executed by a processor.  A memory medium may include any of various 

types of memory devices or storage devices.  The term “memory medium” is intended 15 

to include an installation medium, e.g., a Compact Disc Read Only Memory (CD-

ROM), floppy disks, or tape device; a computer system memory or random access 

memory such as Dynamic Random Access Memory (DRAM), Double Data Rate 

Random Access Memory (DDR RAM), Static Random Access Memory (SRAM), 

Extended Data Out Random Access Memory (EDO RAM), Rambus Random Access 20 

Memory (RAM), etc.; or a non-volatile memory such as a magnetic media, e.g., a 

hard drive, or optical storage.  The memory medium may comprise other types of 

memory as well, or combinations thereof.   In addition, the memory medium may be 

located in a first computer in which the programs are executed, or may be located in a 

second different computer that connects to the first computer over a network, such as 25 

the Internet.  In the latter instance, the second computer may provide program 

instructions to the first computer for execution.  The term “memory medium” may 

include two or more memory mediums that may reside in different locations, e.g., in 

different computers that are connected over a network.  In some embodiments, a 
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computer system at a respective participant location may include a memory 

medium(s) on which one or more computer programs or software components 

according to one embodiment may be stored.  For example, the memory medium may 

store one or more programs that are executable to perform the methods described 

herein.  The memory medium may also store operating system software, as well as 5 

other software for operation of the computer system. 

[0081] The memory medium may store a software program or programs 

operable to implement embodiments as described herein.  The software program(s) 

may be implemented in various ways, including, but not limited to, procedure-based 

techniques, component-based techniques, and/or object-oriented techniques, among 10 

others.  For example, the software programs may be implemented using ActiveX 

controls, C++ objects, as a library or standalone programs in a programming language 

such as C, C++, Java or in a scripting language such as Bash, Perl, Python, or AWK, 

JavaBeans, Microsoft Foundation Classes (MFC), browser-based applications (e.g., 

Java applets), traditional programs, or other technologies or methodologies, as 15 

desired.  A CPU executing code and data from the memory medium may include a 

means for creating and executing the software program or programs according to the 

embodiments described herein. 

[0082] Further modifications and alternative embodiments of various 

aspects of the invention may be apparent to those skilled in the art in view of this 20 

description.  Accordingly, this description is to be construed as illustrative only and is 

for the purpose of teaching those skilled in the art the general manner of carrying out 

the invention.  It is to be understood that the forms of the invention shown and 

described herein are to be taken as embodiments.  Elements and materials may be 

substituted for those illustrated and described herein, parts and processes may be 25 

reversed, and certain features of the invention may be utilized independently, all as 

would be apparent to one skilled in the art after having the benefit of this description 

of the invention. Methods may be implemented manually, in software, in hardware, or 

a combination thereof.  The order of any method may be changed, and various 
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elements may be added, reordered, combined, omitted, modified, etc.  Changes may 

be made in the elements described herein without departing from the spirit and scope 

of the invention as described in the following claims. 
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WHAT IS CLAIMED IS: 

 1.   A method of providing random number streams to a process, comprising: 

 

determining one or more program contexts within a process, wherein at least 

one of the one or more program contexts comprises code that calls for one 5 

or more random numbers; and 

 

providing, for each of at least one of the program contexts, a random number 

stream to the process, wherein the random number stream provided for at 

least one of the program contexts is based at least in part on the 10 

determined program context, and wherein the random number stream 

provided for at least one of the program contexts is distinct from the 

random number stream for at least one other of the program contexts. 

 

 2.  The method of claim 1, wherein each of the program contexts is provided a 15 

random number stream that is distinct from the random number stream for any of the 

other program contexts in the process.  

 

 3.  The method of claim 1, wherein providing the random number stream to the 

process for each of at least one of the two or more program contexts comprises providing 20 

a set of distinct random number streams in response to a call from one of the  program 

contexts. 

 4.  The method of claim 1, wherein providing the random number stream to the 

process for each of at least one of the two or more program contexts comprises 

initializing the states of the random number streams, wherein the states are used to 25 

generate distinct random number streams for at least two of the program contexts. 

 

5.   The method of claim 1, wherein the random-number context is determined 

based, at least in part, on the return address of a function call to obtain a random number. 

 30 
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 6.   The method of claim 1, wherein providing the random number stream to the 

process for each of at least one of the two or more program contexts comprises 

embedding context information into a seed sequence to initialize the random number 

stream. 

 5 

 7.   The method of claim 1, wherein the process is one of two or more processes in 

a parallel process computation, wherein the random number stream provided for at least 

one of the program contexts is based in part on a process identifier for the process, 

wherein the random number stream is distinct from the random number stream provided 

for program contexts in at least one other process of the two or more processes in the 10 

parallel process computation. 

 

 8.   The method of claim 1, wherein the random number stream provided for at 

least one of the program contexts is based in part on a user-supplied stream identifier for 

program context. 15 

 

 9.  The method of claim 1, wherein providing the random number stream to the 

process for each of at least one of the two or more program contexts comprises receiving 

a stream identifier stored in, or generated from, a library module. 

 20 

 10.   The method of claim 1, wherein the random number stream provided for at 

least one of the program contexts is based in part on an iteration number. 

 

 11.   The method of claim 1, wherein the random number stream provided for at 

least one of the program contexts is based in part on a user-specified seed value. 25 

 

 12.   The method of claim 1, wherein the process is a dynamically spawned 

process, wherein a random number stream allocated to it is based in part on unused 

initialization sequences from the random number streams originally allocated to  the 

parent process from which the process was spawned. 30 



Atty. Dkt. No.: 5660-14400 Page 27      Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C. 

 

13. A system, comprising: 

 

a processor; 

a memory coupled to the processor, wherein the memory comprises program 5 

instructions executable by the processor to implement:  

 

determining one or more program contexts within a process, wherein at least 

one of the one or more program contexts comprises code that calls for one 

or more random numbers; and 10 

 

providing, for each of at least one of the program contexts, a random number 

stream to the process, wherein the random number stream provided for at 

least one of the program contexts is based at least in part on the 

determined program context, and wherein the random number stream 15 

provided for at least one of the program contexts is distinct from the 

random number stream for at least one other of the program contexts. 

 

14. The system of claim 13, further comprising: 

a network of systems in which one or more systems may store portions or 20 

all of code and data needed for CPRNG and compute or provide 

instructions or data needed to use CPRNG or the random numbers to at 

least one or more other systems by way of the computer network. 

 

15. The system of claim 13, wherein each of the program contexts is provided a 25 

random number stream that is distinct from the random number stream for any of the 

other program contexts in the process. 
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16.  A non-transitory, computer-readable storage medium comprising program 

instructions stored thereon, wherein the program instructions are configured to 

implement: 

determining one or more program contexts within a process, wherein at least 

one of the one or more program contexts comprises code that calls for one 5 

or more random numbers; and 

 

providing, for each of at least one of the program contexts, a random number 

stream to the process, wherein the random number stream provided for at 

least one of the program contexts is based at least in part on the 10 

determined program context, and wherein the random number stream 

provided for at least one of the program contexts is distinct from the 

random number stream for at least one other of the program contexts.  

 

17. The computer-readable storage medium of claim 16, wherein the program 15 

instructions further comprise: 

CPRNG code and data in the storage medium of one computer accessed by 

way of a computer network by another computer to initialize and maintain 

random number streams and generate random numbers. 

 20 

18. The computer-readable storage medium of claim 16, wherein each of the 

program contexts is provided a random number stream that is distinct from the random 

number stream for any of the other program contexts in the process. 

 

 19.   A method of providing random numbers streams to processes performing a 25 

parallel computation, comprising: 

 

determining one or more program contexts within one process of a parallel 

computation, wherein the parallel computation includes two or more 
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processes performed in parallel, wherein each of the one or more program 

contexts comprises code that calls for one or more random numbers; and 

 

providing a random number stream to the one process for each of at least one 

of the one or more program contexts, wherein the random number stream 5 

provided is based in part on the determined program context and based in 

part on which of the two or more processes the program context is in.  

 

20. The method of claim 19, wherein each of the program contexts is provided a 

random number stream that is distinct from the random number stream for any of the 10 

other program contexts in the process. 

 

 21.   The method of claim 19, further comprising: 

determining one or more program contexts within a second process of the parallel 

computation; and 15 

 

providing a random number stream to the second process for each of at least one 

of the one or more program contexts,  

 

wherein the random number stream to the second process is determined based in 20 

part on the determined program context and based in part on which of the two 

or more processes the program context is in, 

 

wherein the random number stream provided for a program context is distinct 

from the random number stream provided for the program contexts in at least 25 

one other process of the two or more processes in the parallel computation. 

 

 22.   The method of claim 19, wherein the random number stream is distinct from 

the random number stream provided for a corresponding program context in at least one 

other process of the two or more processes in the parallel computation. 30 
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 23.   The method of claim 19, wherein the random number stream provided for at 

least one of the program contexts is based in part on a process identifier for the process.   

 

 24.   The method of claim 19, wherein the random number stream is distinct from 5 

the random number stream provided for program contexts in at least one other process of 

the two or more processes in the parallel computation. 

  

 25.   The method of claim 19, wherein providing a random number stream to the 

one process for each of at least one of the two or more program contexts comprises 10 

providing a random number stream for each of at least two of the two or more program 

contexts, 

wherein the random number stream provided for the program contexts is based at 

least in part on the determined program context, and  

wherein the random number stream provided for at least one of the program 15 

contexts is distinct from the random number stream for at least one other of the program 

contexts. 

  

 26.   The method of claim 19, wherein the random-number context is based, at 

least in part, on the return address of a function call to obtain a random number. 20 

 

 27.   A method of providing random numbers streams to processes performing a 

parallel computation, comprising: 

 

receiving a call for one or more random numbers from a program context in a 25 

process one process of a parallel computation, wherein  one process is one 

of two or more processes performed in a parallel computation; and 
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providing a random number stream to the one process for the program 

contexts, wherein the random number stream provided is based at least in 

part on the determined program context.    

 

28.  The method of claim 28, wherein based in part on which of the two or more 5 

processes the program context is in. 

 

 29.   The method of claim 28, wherein the random-number context is based, at 

least in part, on the return address of a function call to obtain a random number. 

 10 



 

 
 2 

Amendments to the Claims 

 

This listing of claims will replace all prior versions, and listings, of claims in the above-

captioned application: 

 

1.  (Currently Amended):  A method of dynamically providing random number streams to a 

process, comprising:  

 

determining, by a processing device, a plurality of program contexts within the process, 

wherein each program context comprises calls for one or more random numbers; 

and 

 

providing automatically, for each program context, a distinct random number stream, 

wherein the random number stream provided for one of the program contexts is 

based at least in part on the determined program context, and wherein the random 

number stream provided for one of the program contexts is distinct from the 

random number stream for at least one other of the program contexts.  

 

2.  (Original):  The method of claim 1, wherein each of the program contexts is provided a 

random number stream that is distinct from the random number stream for any of the other 

program contexts in the process.  

 

3.  (Original):  The method of claim 1, wherein providing the random number stream to the 

process for each of at least one of the two or more program contexts comprises providing a set of 

distinct random number streams in response to a call from one of the program contexts. 

 

4.  (Original):  The method of claim 1, wherein providing the random number stream to the 

process for each of at least one of the two or more program contexts comprises initializing the 
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states of the random number streams, wherein the states are used to generate distinct random 

number streams for at least two of the program contexts. 

 

5.  (Currently amended):  The method of claim 1, wherein one or more of the program contexts 

includes one or more random-number context[s] and each of the random number contexts is 

determined based, at least in part, on a return address of a function call to obtain a random 

number.  

 

6.  (Original):  The method of claim 1, wherein providing the random number stream to the 

process for each of at least one of the two or more program contexts comprises embedding 

context information into a seed sequence to initialize the random number stream. 

 

7.  (Original):  The method of claim 1, wherein the process is one of two or more processes in a 

parallel process computation, wherein the random number stream provided for at least one of the 

program contexts is based in part on a process identifier for the process, wherein the random 

number stream is distinct from the random number stream provided for program contexts in at 

least one other process of the two or more processes in the parallel process computation. 

 

8.  (Original):  The method of claim 1, wherein the random number stream provided for at least 

one of the program contexts is based in part on a user-supplied stream identifier for program 

context. 

 

9.  (Original):  The method of claim 1, wherein providing the random number stream to the 

process for each of at least one of the two or more program contexts comprises receiving a 

stream identifier stored in, or generated from, a library module. 

 

10.  (Original):  The method of claim 1, wherein the random number stream provided for at least 

one of the program contexts is based in part on an iteration number. 
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11.  (Original):  The method of claim 1, wherein the random number stream provided for at least 

one of the program contexts is based in part on a user-specified seed value. 

 

12.  (Original):  The method of claim 1, wherein the process is a dynamically spawned process, 

wherein a random number stream allocated to it is based in part on unused initialization 

sequences from the random number streams originally allocated to  the parent process from 

which the process was spawned. 

 

13.  (Currently Amended):  A system, comprising: 

 

a processor; 

a memory coupled to the processor, wherein the memory comprises program instructions 

executable by the processor to implement:  

 

determining, using the processor, a plurality of program contexts within a process, 

wherein each program context comprises calls for one or more random numbers; 

and 

 

providing automatically, for each program context, a distinct random number stream, 

wherein the random number stream provided for one of the program contexts is 

based at least in part on the determined program context, and wherein the random 

number stream provided for one of the program contexts is distinct from the 

random number stream for at least one other of the program contexts. 

 

14.  (Original):  The system of claim 13, further comprising: 

 

a network of systems in which one or more systems may store portions or all of code and 

data needed for CPRNG and compute or provide instructions or data needed to 
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use CPRNG or the random numbers to at least one or more other systems by way 

of the computer network. 

 

15.  (Original):  The system of claim 13, wherein each of the program contexts is provided a 

random number stream that is distinct from the random number stream for any of the other 

program contexts in the process. 

 

16.  (Currently amended):  A non-transitory, computer-readable storage medium comprising 

program instructions stored thereon, wherein the program instructions are configured to 

implement: 

 

determining one or more program contexts within a process, wherein at least one of the 

one or more program contexts comprises code that calls for one or more random 

numbers; and 

 

providing automatically, for each of at least one of the program contexts, a random 

number stream to the process, wherein the random number stream provided for at 

least one of the program contexts is based at least in part on the determined 

program context, and wherein the random number stream provided for at least one 

of the program contexts is distinct from the random number stream for at least 

one other of the program contexts.  

 

17.  (Original):  The computer-readable storage medium of claim 16, wherein the program 

instructions further comprise: 

 

CPRNG code and data in the storage medium of one computer accessed by way of a 

computer network by another computer to initialize and maintain random number 

streams and generate random numbers. 

 



 

 
 6 

18.  (Original):  The computer-readable storage medium of claim 16, wherein each of the 

program contexts is provided a random number stream that is distinct from the random number 

stream for any of the other program contexts in the process. 

 

19-29.  (Canceled) 
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ABSTRACT 

 

A method of providing random number streams to a process includes determining 

two or more program contexts within a process.  Each of the program contexts may 

include code that calls for one or more random numbers.   For each of at least two of the 5 

program contexts, a random number stream is provided to the process.  The random 

number stream for each program context is based on the determined program context and 

is distinct from the random number stream for the other program contexts in the process. 
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