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Development of a Multistage
Reliability-Based Design
Optimization Method
Complex system acquisition and its associated technology development have a troubled
recent history. The modern acquisition timeline consists of conceptual, preliminary, and
detailed design followed by system test and production. The evolving nature of the esti-
mates of system performance, cost, and schedule during this extended process may be a
significant contribution to recent issues. The recently proposed multistage reliability-
based design optimization (MSRBDO) method promises improvements over reliability-
based design optimization (RBDO) in achieved objective function value. In addition, its
problem formulation more closely resembles the evolutionary nature of epistemic design
uncertainties inherent in system design during early system acquisition. Our goal is to
establish the modeling basis necessary for applying this new method to the engineering
of early conceptual/preliminary design. We present corrections in the derivation and
solutions to the single numerical example problem published by the original authors,
Nam and Mavris, and examine the error introduced under the reduced-order reliability
sampling used in the original publication. MSRBDO improvements over the RBDO solu-
tion of 10–36% for the objective function after first-stage optimization are shown for the
original second-stage example problem. A larger 26–40% improvement over the RBDO
solution is shown when an alternative comparison method is used than in the original.
The specific implications of extending the method to arbitrary m-stage problems are pre-
sented, together with a solution for a three-stage numerical example. Several approaches
are demonstrated to mitigate the computational cost increase of MSRBDO over RBDO,
resulting in a net decrease in calculation time of 94% from an initial MSRBDO baseline
algorithm. [DOI: 10.1115/1.4025492]

1 Introduction

Until relatively recently, optimization processes and methods
were predominately focused on maximizing a system’s discrete
parameters of performance, particularly for complex systems.
However, in the modern systems acquisition era, the research and
development of complex engineering designs emphasizes system
optimization for high reliability, ease of maintainability, and
reduced risk of cost/schedule growth. Research into optimization
under uncertainty and RBDO holds the promise of facilitating
these types of system optimizations.

Ensuring system level optimization of reliability-type system
attributes requires the integration of advanced numerical methods
into the design and analysis processes to improve both the results
and the efficiency of these acquisition processes. For high-cost
complex systems, which require years of development before
reaching production, the incorporation of uncertainty methods
into the design, analysis, and optimization processes promises sig-
nificant payoffs. However, broad implementation of uncertainty
methods poses unique challenges in the context of analysis of
alternatives and technology development. In 2007–2008, Nam
and Mavris [1,2] proposed a MSRBDO method to accommodate
the multiple design decision stages and realizations of uncertainty
encountered during the early acquisition phases of complex sys-
tems, such as aircraft, under decreasing uncertainty. A notional
example of a single evolving technical performance measure
under uncertainty is illustrated in Fig. 1. Each of the periods

ending in a milestone can be considered as a discretized decision
stage. Figure 2 illustrates the design decision and uncertainty real-
ization process in the RBDO and MSRBDO approaches. Nam and
Mavris described the general nomenclature for MSRBDO and
compared the results for a two-stage reliability-based design opti-
mization (2SRBDO) numerical test problem to deterministic and
RBDO formulation solutions. An extension to the nomenclature
to accommodate the case where uncertainty variables/parameters
change between interim stages while remaining in uncertainty
parameter form expressed as a probability distribution, prior to
final realization as a deterministic value, is described in Ref. [4].

There are errors in the original derivation and solution to the
2SRBDO test problem of Nam and Mavris. The primary source of
the solution error was found to be the use of reduced-order Monte
Carlo sampling (MCS). The original work combined Monte Carlo
sampling over the first-stage uncertainty parameters with quantile
approximations for the second-stage reliability terms. This paper

Fig. 1 System performance measures/uncertainties over
acquisition timeline [3]
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describes the both derivation errors and numerical errors intro-
duced by reduced-order sampling in the original test problem and
applies the method to more general multistage forms of problems.
Some approaches are described, which reduce the sampling error
while mitigating the computational costs of higher order
sampling.

2 MSRBDO Results and Discussion

2.1 Formulation of 2SRBDO Test Problem 1
(Nam–Mavris)

2.1.1 Nam–Mavris Formulation. A minor change to the Nam
and Mavris nomenclature was made. The design variables are
represented here as x1, x2, and x3 rather than the original x, y, and
z in order to generalize the problem form for arbitrary numbers of
design variables.

It is illustrative to derive the 2SRBDO formulation starting
from a deterministic form. An example of this deterministic prob-
lem form can be expressed as

min
~x

f x1; x2; x3ð Þ ¼ x2
1 þ x2

2 þ x2
3 (1)

s:t: n1x1 þ n2x2 þ x3 � 5 � 0 (2)

where (x1, x2) 2 [0,1)2, x3 2 [0,2], and the bolded vector n repre-
sents the constraint function constants n1¼ 2 and n2¼ 3. This is a
nonlinear problem with linear inequality constraints.

This is now reformulated in RBDO probabilistic constraint
form, with n now representing the set of epistemic (re-
ducible) uncertainty parameters, modeled as normal distributions
n1 � N 2; 12ð Þ and n2 � N 3; 12ð Þ. Again, the design variables are

bounded: (x1, x2) 2 [0,1)2 and x3 2 [0,2]. After the addition of a
reliability target, a, to the constraint equation given in Eq. (2), the
single-stage RBDO problem is now in the form shown in
Eqs. (3)–(6). A reliability target is the minimum acceptable proba-
bility of satisfying the inequality constraint

min
x

f x1; x2; x3ð Þ ¼ x2
1 þ x2

2 þ x2
3 (3)

s:t: P n1x1 þ n2x2 þ x3 � 5 � 0½ � � a (4)

x1; x2ð Þ � 0 (5)

0 � x3 � 2 (6)

In general form, the probabilistic constraint for this type of prob-
lem can be expressed using Eq. (7), where nx is the number of
design variables

P a0 þ
Xnx

i¼1

aini þ bið Þxi � 0

" #
� a (7)

Figures 3(a)–3(c) illustrates the solution space of interest for the
RBDO and deterministic problems in the x1–x2 plane, for slices at
x3¼ 0.0, 1.0, and 2.0, respectively. The objective function values
are represented by the banded grayscale mapping, and the reliabil-
ity of meeting the feasibility constraint equation is shown by the
labeled black isolines. For this problem, the objective function
values are identical for the deterministic and RBDO forms of the
problem at any given (x1, x2, x3) design point, because f(x) is not
an explicit or implicit function of n.

The single-stage RBDO problem can now reformulated into
two sequential design decision stages, with the design variables
partitioned into a first-stage decision, nominally x(1)¼ (x1, x2),

Fig. 2 Comparison of decision/realization in RBDO and MSRDO

Fig. 3 Plots of RBDO solutions for x3 5 (a) 0, (b) 1, and (c) 2
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and a second-stage decision, xð2Þ ¼ (x3). Similarly, the uncertainty
parameters can be partitioned into a first-stage uncertain parame-

ter, nð1Þ, and a second-stage parameter, nð2Þ. We will use the prob-

lem form nð1Þ¼ n1 and nð2Þ¼ n2, for the purposes of the
derivations that follow. However, solutions for each of the two al-
ternative formulations will be presented. The reliability target is
similarly split into stage reliability targets at each optimization

stage, a¼ ðað1Þ; að2ÞÞ. In general, the reliability target at each sub-
sequent stage should increase, representing an increasing likeli-
hood of meeting the problem constraints as design decisions are
made.

This now sets up two sequential optimization problem stages.

The first decision stage selects the optimal members of xð1Þ s.t.

Pnð1Þ g � 0½ � � að1Þ, which is followed by a realization of the value

for the first-stage uncertainty parameter nð1Þ ! n̂ð1Þ. In the
second-stage problem, the optimal second-stage decision

variable x3 is then selected s.t. Pnð2Þ g � 0½ � � að2Þ, determining the

final value of the objective function. The realization of the final

uncertainty parameters in set nð2Þ then determines whether the
constraint function inequality g � 0 was met. The first-stage opti-
mization is expressed mathematically by Eqs. (5) and (6) and by

min
x 1ð Þ

E f x 1ð Þ; x 2ð Þ�; n 1ð Þ; n 2ð Þ
� �h i

¼ x2
1 þ x2

2 þ E x2
3

� �
(8)

s:t: P n1x1 þ n2x2 þ x3 � 5 � 0½ � � a 1ð Þ (9)

For the specific case of nð1Þ ¼ n1 and nð2Þ ¼ n2, the second-stage
optimization is now expressed by Eq. (6) and by

min
x 2ð Þ

E f x̂ 1ð Þ; x 2ð Þ; n̂ 1ð Þ; n 2ð Þ
� �h i

¼ x̂2
1 þ x̂2

2 þ x2
3 (10)

s:t: P n̂1x̂1 þ n2x̂2 þ x3 � 5 � 0
h i

� a 2ð Þ (11)

Recognize that the second-stage design variable, x3, will be
determined after the realization of the first-stage uncertainty
parameter, n1 ! n̂1, since the probabilistic constraint equation is
now in deterministically equivalent form. Therefore, during the
first-stage problem, the expected optimal value of x3, written as
x3*, is a function of n̂1; x̂1; x̂2. So, x3* now behaves as an implicit
uncertainty parameter during the first-stage optimization. This in
turn makes the first-stage objective function an implicit function
of the uncertainty parameters as well as an explicit function of the
first-stage design variables. For this specific problem, an increase
in x3* value increases the feasibility of the constraint (desired);
however, it also increases the numerical value of the objective
function (not desired). Due to this relationship, if x3 were
unbounded, x3* would be determined such that Pnð2Þ jnð1Þ ½g � 0�
¼ að2Þ, as stated by Nam and Mavris. Their first-stage optimiza-
tion calculated objective value and reliability expectations by
reduced-order MCS over only nð1Þ with N1¼ 106. The value of
nð2Þ was replaced in Ref. [2] with the second-stage reliability
target quantile value n2 ¼ U�1

n2
a 2ð Þ� �

. The corrected formulation is
provided below.

2.1.2 Paulson–Starkey Formulation. Algebraically solving
the constraint function from Eq. (11) for x3* at the limit state
g¼ 0 yields Eq. (12) after the substitution n2 ¼ U�1

n2
a 2ð Þ� �

x�3 ¼ �x̂1n̂1 � x̂2U
�1
n2

1� a 2ð Þ
� �

þ 5 (12)

This equation for x3* differs from the original solution given in
Nam and Mavris [2] by both the sign of the second term on the
RHS of Eq. (12) as well as the argument for inverse cumulative
distribution function, /�1

n (�). In addition, for this problem, x3 is
indeed a bounded variable, with lower and upper limits x3LL and
x3UL, respectively. Therefore, solutions of Eq. (12) for particular
combinations of x and nð1Þ may result in values for x3*, which fall
outside the bounds on the design variable x3. Therefore, calculat-
ing the exact reliability requires sampling over both nð1Þ and nð2Þ,
due to the necessity of a filter step applying x3 bounds after the
algorithm calculates x3*. Although Nam and Mavris [2] discuss
the effect of bounding on x3, MCS was performed only over nð1Þ.
This introduces an error in the estimated reliability at stage 2, after
the first-stage optimization.

After making the corrections to the original x3* derivation, a
first-stage optimization dual-loop MCS algorithm was written for
an exhaustive grid-pattern search over the design variable domain
with fixed spatial step sizes of dx¼60.0005. This is assumed
to be of the order of the solution by Nam–Mavris based on the
number of significant digits in those published results. The optimi-
zation loop did not utilize any gradient information for the objec-
tive function or constraint reliability. The outer loop calculates the
expected value of the objective function E[f(x)] at each (x1,x2)
design point by sampling only over the first-stage uncertainty,
which is referred to as first-order objective function sampling
(FOOFS). Future stage uncertainty parameters would be replaced
by the value from the inverse CDF function. If one wanted to
sample over first- and second-stage uncertainties, this is referred
to as SOOFS for second order. In the reliability loop, sampling
over first-stage uncertainty to calculate the reliability as utilized in
Ref. [2] is referred to as first-order reliability sampling (FORS).
Sampling over first- and second-stage uncertainty would be
second-order reliability sampling (SORS), and for arbitrary m,
first to third would be 3ORS, etc. In general, sampling over
anything less than the full m stages of a problem is referred to
here as reduced-order sampling.

To calculate solutions for the 2SRBDO problem, we evaluated
alternative MCS formulations for the reliability calculation, which
are summarized in Table 1. It is presumed that Nam and Mavris
used the formulation titled FORS-II. Our solution utilizes the
SORS-I formulation. To evaluate the impact of the corrections
in the derivation of Eq. (12) and use of SORS, E[f(x)] and
P[g(x,n)� 0] were calculated for N1¼N2¼ 106, at the location
of the published first-stage optima from the original solution in
Ref. [2]. A comparison of these results is shown in Table 2. The
Nam paper did not publish the values for E[x3*] at their optima;
so, no comparison could be made of those values. Although the
differences in the objective function values are fairly minor with
relative errors of less than 0.2%, the reliabilities for the constraint
function at those x(1) values failed to meet the problem’s first-

Table 1 Reliability sampling formulations

In g(x,n): n2 ¼ x3¼ Comments

FORS-I /�1
n2
ð1� að2ÞÞ E[x3*] For comparison only

FORS-II /�1
n2
ð1� að2ÞÞ x3* from Eq. (12), bound by x3LL and x3UL n2; x3 terms retain dependence on a(2)

FORS-III /�1
n2
ð1� að2ÞÞ x3* from Eq. (12), not bound by x3LL or x3UL g¼ 0 regardless of n̂1 value

SORS-I n̂2
x3* from Eq. (12), bound by x3LL and x3UL x3 term retains dependence on a(2)

SORS-II n̂2
5� n̂1x̂1 � n̂2x̂2 No terms retain a(2) dependence

Journal of Mechanical Design JANUARY 2014, Vol. 136 / 011007-3

Downloaded From: http://asmedigitalcollection.asme.org/ on 06/10/2015 Terms of Use: http://asme.org/terms



stage target reliability for all a(1) cases. The shortfalls in the calcu-
lated reliabilities from the reliability target ranged from 1.19% to
11.18%. It is unclear from Ref. [2] whether published values for
Pn½gðx; nÞ � 0� were actually calculated via FORS-II or if they
were assumed, since these results were shown with a different
number of significant digits than the other published results. Pseu-
docode for the FOOFS, FORS, and SORS logic implemented here
is shown in Figs. 4–6, respectively.

The first-stage optimization for the test problem was performed
using the FOOFS/SORS problem formulation. The solution space
of the two alternative first-stage optimization formulations for the
2SRBDO is changed fundamentally from the original RBDO solu-
tion. It was illustrative to again map the first-stage solution space
of this 2SRBDO problem. Again the objective function is shown
in grayscale contours, and the reliability values for the constraint
with labeled isolines, Fig. 7 shows the results for first-stage opti-
mization of the 2SRBDO for the case nð1Þ ¼ n1, and Fig. 8 for the
2SRBDO case nð1Þ ¼ n2, for reliability target values of a(1)¼ 0.95
and a(2)¼ 0.97. Contrast this with the plot of Fig. 3(b) for the
RBDO solution at x3¼ 1.0, which is near the RBDO problem’s
optimal value of x3¼ 1.03.

Reformulating an RBDO problem in MSRBDO form clearly
changes the nature of the optimization problem. The formerly
deterministic objective function is now an implicit function of n.
It follows from Figs. 7 and 8 that, if an engineering problem can
be represented as a MSRBDO problem and if decision maker

discretion exists in determining which uncertainty parameter(s) to
realize (reduce) earlier, then a quantifiable improvement to the
optimal objective function value can be used as the quantitative
decision criteria for that determination.

The computational burden was significantly increased by sam-
pling over both nð1Þ and nð2Þ during the reliability loop. In the
limit, computation time is proportional to Nm. As a result, a com-
promise in sampling resolution was utilized in the solution of the
test problem. Since it would be possible to correct errors due to
sampling size in the second-stage uncertainty parameters during

Table 2 Discrepancy with published results

a(1)¼ 0.95 a(1)¼ 0.97 a(1)¼ 0.99

aTS(n1)

Nam
aTS(n1)

Paulson
aTS(n2)

Nam
aTS(n2)

Paulson
aTS(n1)

Nam
aTS(n1)

Paulson
aTS(n2)

Nam
aTS(n2)

Paulson
aTS(n1)

Nam
aTS(n1)

Paulson
aTS(n2)

Nam
aTS(n2)

Paulson

x1 1.276 1.2760 0.659 0.6590 1.397 1.3970 0.736 0.7360 1.611 1.6110 1.205 1.2050
x2 1.218 1.2180 1.585 1.5850 1.322 1.3220 1.726 1.7260 1.993 1.9930 2.168 2.1680
E[f(x)] 4.807 4.816 3.901 3.906 5.665 5.675 4.469 4.475 8.176 8.188 6.818 6.820
P[g� 0] 0.95 0.899 0.95 0.838 0.97 0.936 0.97 0.885 0.99 0.978 0.99 0.960

Fig. 4 FOOFS objective function loop logic

Fig. 5 FORS reliability loop logic

Fig. 6 SORS reliability loop logic

Fig. 7 2SRBDO test problem first-stage objective function and
reliability values for n1
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that later stage of optimization, the first- and second-stage sam-
pling sizes were set differently at N1¼ 104 and N2¼ 103. Second,
in the outer optimization loop, at each grid point the minimum
possible value for the objective function was calculated using
x3¼ x3LL. If this minimum value would not result in replacing the
current optimal point, calculating the reliability of this point was
unnecessary and the algorithm moved on to the next grid point.
This resulted in reduced computation times at each spatial resolu-
tion setting. The final optimization results for each of the original
cases are shown in Table 3. In the table, xDET represents the deter-
ministic problem solutions, xSS denotes the single-stage RBDO
problem solutions, and xTS refers to the two-stage MSRBDO
problem solutions.

The table shows that, in every feasibility target case, the first-
stage E[f(x)] resulting from the 2SRBDO method is more optimal
(lower) than the solution to the single-stage RBDO formulation.
Therefore, the original justification for the MSRBDO method still
holds. By reformulating the RBDO problem over multiple deci-
sion/realization steps, a more optimal objective function value
results for the same value of the reliability target. Final values of
the expected objective function improved 9.8–36% by using the
MSRBDO method in lieu of RBDO for this example. Addition-
ally, there exists a preferred order for realizing the uncertainty
parameters in a multistage RBDO problem. For this problem,
using nð1Þ ¼ n2 resulted in a more optimal E[f(x)] at the first-
decision stage.

As a final observation of the results of Nam–Mavris, comparing
MSRBDO to RBDO solutions, from an engineering perspective, it
is more consistent to compare values of the objective functions for
identical values of the final constraint reliabilities. In other words,
results for single-stage RBDO with a¼ 0.97 would be more
appropriately compared with the results for 2SRBDO results
for a(2)¼ 0.97, since that is the requirement for the reliability of
satisfying the constraint after optimizing all the available design
variables. Table 4 compares the RBDO and 2SRBDO problem
results in this manner for the case of að2Þ ¼ 0:97. Objective func-
tion improvements of 26.1% and 40.6% show the MSRBDO for-
mulation to be even more advantageous than the RBDO form
when compared thusly.

2.1.3 Computational Efficiency. As mentioned previously, the
MSRBDO MCS algorithm was experimented with in order to
reduce the computational overhead that accompanies Monte Carlo
sampling over more than the first-stage uncertainty. A comparison
was made between 2SRBDO solutions to the same problem
above for a 101 by 101 x1–x2 grid with dx1¼ dx2¼ 0.015 for
three different solution strategies: baseline solution sampled at
N1¼N2¼ 104, the pre-SORS design point elimination solution
and N1¼N2¼ 104, and a solution implementing both pre-SORS
design point elimination and reduced second-stage sampling with
N1¼ 104 and N2¼ 103. The resulting calculation times and objec-
tive function values are shown in Fig. 9. The pre-SORS point
elimination alone reduced computational time by 33.9%, and
using both pre-SORS point elimination along with reduced sam-
pling for second-stage uncertainty reduced solution time 94.3%.

Since the outer optimization loop stepped through decreasing
dx step sizes by 50% until the solution’s spatial discretization cri-
terion was met, a series of runs were performed to evaluate any
the change in effectiveness of the pre-SORS design point elimina-
tion as the algorithm neared the final optima for the nð1Þ ¼ n1

problem with all three cases of að1Þ ¼ 0:95; 0:97; 0:99. The frac-
tion of design points that could be eliminated before the SORS
loop decreased as the algorithm neared the optima and increased
as the problem’s að1Þ increased. These results are shown in
Fig. 10. Therefore, pre-SORS point elimination is most effective
during the first three to four resolution steps.

2.2 3SRBDO Test Problem. A three-stage MSRBDO test
problem was investigated to identify general characteristics of
problems solvable with a MSRBDO method for arbitrary numbers
of stages, m. The single-stage RBDO problem is reformulated into

Fig. 8 2SRBDO test problem first-stage objective function and
reliability values for n2

Table 3 2SRBDO results using FOOFS/SORS

að1Þ ¼ 0:95; að2Þ ¼ 0:97 að1Þ ¼ 0:97; að2Þ ¼ 0:99 að1Þ ¼ 0:99; að2Þ ¼ 0:995

xDET xSS xTS n(1)¼ n1 xTS n(1)¼ n2 xSS xTS n(1)¼ n1 xTS n(1)¼ n2 xSS xTS n(1)¼ n1 xTS n(1)¼ n2

x1 0.7140 1.1030 1.2670 0.5059 1.2169 1.3531 0.5437 1.3335 1.4250 0.9695
x2 1.0715 1.7010 1.1062 1.5806 1.7975 1.2381 1.6931 2.0245 1.8759 2.1172
x3,(E[x3*]) 0.3755 1.0300 (1.1101) (0.6434) 1.2631 (1.2247) (0.6226) 1.9040 (1.1620) (0.4132)
E[f(x)] 1.7857 5.1709 4.6640 3.7462 6.3073 5.4622 4.1365 9.5020 7.5324 6.0668
P[g� 0] 0.5000 0.9500 0.9500 0.9500 0.9700 0.9700 0.9700 0.9900 0.9900 0.9900

Table 4 RBDO–2SRBDO comparison by final a

að1Þ ¼ 0:95; að2Þ ¼ 0:97

xSS a¼ 0.97 xTSn
(1)¼ n1 % Change xTS n(1)¼ n2 % Change

x1 1.2169 1.2670 4.1 0.5059 �58.4
x2 1.7975 1.1062 �38.5 1.5806 �12.1
x3, (E[x3*]) 1.2631 (1.1101) �12.1 (0.6434) �49.1
E[f(x)] 6.3073 4.6640 �26.1 3.7462 �40.6
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three sequential design decision stages, with the design variables
partitioned into a first-stage decision xð1Þ ¼ (x1), a second-stage
decision xð2Þ ¼ (x2), and a third-stage decision xð3Þ ¼ (x3). The
design variables are bounded, with x1 2 [0,1), x2 2 [0.5,4.5], and
x3 2 [0.5,2.5]. The stage uncertainty parameters were the Gaus-
sian distributions n 1ð Þ ¼ n1 � N 2; 0:32ð Þ, n 2ð Þ ¼ n2 � N 1; 0:32ð Þ,
and n 3ð Þ ¼ n1 � N 3; 0:32ð Þ. The stage reliability targets were set
at a¼ ðað1Þ; að2Þ; að3ÞÞ ¼ ð0:7; 0:8; 0:9Þ for both inequality con-
straints. This sets up three sequential optimization problems. The
first decision stage selects the optimal member of xð1Þ s.t.
Pnð1Þ g � 0½ � � að1Þ, which is followed by a realization of the value
for uncertainty parameter nð1Þ ! n̂ð1Þ. The first-stage optimization
is now given by

min
x 1ð Þ

E f x 1ð Þ; x 2ð Þ�; x 3ð Þ�; n 1ð Þ; n 2ð Þ; n 3ð Þ
� �h i

¼ x2
1 þ x2

2 þ x2
3 (13)

s:t: P g1 : n1x1 þ n2x2 þ n3x3 � 10 � 0½ � � a 1ð Þ (14)

P g2 : 0:5n1x1 þ 0:5n2x2 � 7 � 0½ � � a 1ð Þ (15)

For this particular form of MSRBDO problem, at the rth deci-
sion stage, the jth constraint equation can be expressed in the gen-
eral form of Eq. (16), where again nx is the number of design
variables

P a0;j þ
Xnx

i¼1

ai;jnixi � 0

" #
� a rð Þ (16)

For this form of MSRBDO inequality constraint system of
equations, it can be shown using the fundamental theorem for lin-
ear systems [5] that unique solutions at the limit state g¼ 0 for the

future stage design variables, x(j> r)*, exist at each first-stage
design point x̂ 1ð Þ and first-stage uncertainty realization under con-
sideration only if nc�m� 1.

The results of first-stage problem are plotted for 0� x1� 8 in
Fig. 11 at a spatial resolution of dx¼ 0.8. To illustrate the error
introduced via RORS sampling, the reliabilities of g1 and g2 were
calculated via first-order, second-order, and third-order reliability
sampling and are shown on the second y-axis of the figure. The
objective function is plotted with open circles on the primary
y-axis. Since the first-stage reliability target is 0.70, it is clear that
g1, shown in square symbols, would be treated as an active con-
straint only if FORS (shown by dashed line with unfilled symbols)
was used to calculate P[g1(x)� 0] (shown in the legend as
pgx1for). Use of SORS or 3ORS correctly indicates that only g2 is
an active constraint. Since the g2 constraint is only a function of
n1 and n2, there is no dependency on third-stage uncertainty.
Therefore, the SORS and 3ORS solutions for meeting the g2 con-
straint are identical and the curves for pgx2sor and pgx23or in
Fig. 11 are coincident.

The expectation values of x2, x3, and f(x) vs. x1 are shown in
Fig. 12, indicating where the upper and lower limits on x2 and x3

are encountered.

Fig. 9 Test problem 1 code speed improvement results

Fig. 10 Decreasing effectiveness of pre-SORS point elimina-
tion near region of optima

Fig. 11 3SRBDO test problem objective function and reliability
vs. x3

Fig. 12 E[x2], E[x3], and E[f(x)] vs. x1
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2.3 Hybrid Reduced-Order Reliability/Full Reliability
Optimization Algorithm. Full-order reliability sampling over
every stage’s uncertainty parameters imposes a high computa-
tional cost for anything but the simplest optimization MSRBDO
problems, particularly when the outer optimization loop is a sim-
ple grid marching algorithm. A hybrid algorithm, which performs
spatial grid marching over a bounded region using reduced-order
reliability sampling to determine an initial global optimum, was
combined with a second correction phase using a gradient-based
algorithm employing full-order reliability sampling to solve itera-
tively for E[f(x)] until meeting the condition ja(1)�P[g(x)� 0]j
� a_criterion. The Newton–Raphson root-finding method was
selected for this correction phase since it only requires the first
derivative of the function, and the method can be generalized in
multiple dimensions. In addition, near the root, the method
converges quadratically, with the number of significant digits of
the solution nearly doubling per iteration [6]. The algorithm was
demonstrated for the 3SRBDO problem above using a FOOFS/
FORS phase one and FOOFS/SORS during the correction phase.
To begin the correction phase, the last optima from phase one at
x1¼ 6.0 has its SORS reliability calculated. The initial gradient in
reliability at x1¼ 6.0 was calculated using first-order backward
difference with the SORS reliability calculated for the point
x1¼ 6.0� dx¼ 5.4, from the previous grid marching phase. For
subsequent iterations, the algorithm only requires calculation of
SORS reliability for the next x. For a_criterion¼ 0.005, the
optima was found after one step. More generally, if g1 had been
the active constraint in this problem, the desired level of accuracy
may have required the user to utilize a FOOFS/3ORS during the
second correction phase. Figure 13 shows the difference in com-
putational time for FORS/SORS vs. SORS/3ORS at three differ-
ent sampling levels for N1¼ (103,104,105). In each of the three
cases, N2¼N3¼ 103.

3 Summary

A MSRBDO Monte Carlo sampling solution algorithm has
been demonstrated using a dual-loop optimization/reliability sam-
pling approach for two numerical examples of probabilistically
constrained problems with linear inequality constraints. Deriva-
tion and solution errors in the originally published solution of the
two-stage MSRBDO problem were corrected, and the origin of
the error was shown to stem from use of reduced-order reliability
sampling when future-stage design variables are bounded.
Improvements to the objective function of 10–40% were obtained
when a MSRBDO problem formulation is utilized over that of

RBDO. Algorithm modifications were demonstrated to signifi-
cantly reduce the computational cost of a MSRBDO full-order
reliability sampling formulation, resulting in a net clock-time
reduction of 94%. The two improvements demonstrated first were
(1) the use of different sample sizes per stage and (2) grid point
elimination before reliability sampling. A third improvement
using a hybrid reduced-order reliability nongradient phase/full-
order reliability gradient phase algorithm was then successfully
demonstrated to reduce the cost of higher order reliability sam-
pling, while retaining that higher order accuracy near the final
solution.

More generally, a consistent nomenclature has been proposed
here for future discussions of m-stage MSRBDO results. This
nomenclature insures a clear description of the levels of reduced-
order uncertainty sampling utilized. Finally, an alternative
approach for comparing RBDO to MSRBDO results is proposed,
where results are compared for aRBDO¼ a(m)

MSRBDO, which apply
more consistently to realistic engineering applications.

4 Future Work

An application of the MSRBDO method to an expendable
launch vehicle engineering design optimization problem is
ongoing. In addition, the authors intend to identify and implement
additional modifications to the existing algorithm to increase the
optimization loop convergence efficiency and further reduce the
computational costs of the reliability calculation, which are a
drawback for the MSRBDO formulation. Additional work in this
area is required to extend application of the numerical method to a
broader range of engineering problems. Specific extensions under
consideration include: application to systems of nonlinear con-
straint equations, problems with multiple uncertainty parameters
per stage, and more complex forms of the uncertainty parameters
in the probabilistic constraint equations such as aixi=ni or aininjxi.
Finally, more advanced optimization algorithms should be
tested for the initial optimization phase, which can accommodate
the presence of multiple local optima. The DIRECT algorithm is
one such algorithm, which being considered for local optima
tolerance [7].

Nomenclature

E[�] ¼ expectation operator
Nj ¼ number of samples of jth stage uncertainty parameters

N l; r2ð Þ ¼ normal distribution of mean l and variance r2

P[�] ¼ probability
f ¼ objective function

gi ¼ ith constraint function
m ¼ number of decision stages in the problem
nc ¼ number of constraint equations
x ¼ set of deterministic decision variables
xi ¼ ith member of decision variable set

x(j) ¼ decision (design) variables determined during jth
stage

x̂ jð Þ ¼ realizations of jth stage decision variables
x(j)* ¼ expected values for jth stage decision variables at

stages prior to j
a ¼ RBDO feasibility target

a(j) ¼ MSRBDO feasibility target at jth decision stage
n ¼ set of uncertain (random) parameters
ni ¼ ith member of uncertain parameter set

n(j) ¼ uncertain parameters realized between stages j and
jþ 1

n̂ jð Þ ¼ realizations of jth stage uncertainty
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