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Final	  Report	  

Award	  Title:	  	  
“XUV	  Frequency	  Comb	  Development	  for	  Precision	  Spectroscopy	  and	  Ultrafast	  
Science”	  

Award	  No.	  FA9550-‐12-‐1-‐0048	  

Reporting	  Period:	  4/01/2012-‐	  3/31/2015	  

The primary goals of this grant were the development of next generation fs enhancement 
cavities for intracavity HHG (iHHG) and the first demonstration of a coherent dual-
frequency comb system in the VUV/XUV. During this grant period we have completed 
most of the key milestones. Much of our initial effort had been on the construction and 
testing of our next generation dual-frequency comb high power IR source and passively 
isolated xuv vacuum chamber, which is now completed. The source consists of 2 home-
built and phase coherent ~50 W, ~100fs Yb fiber frequency combs. The mutual phase 
stabilization between both combs and the fs enhancement cavity (fsEC) is achieved using 
optical phase locks with two common cw lasers (at 1064nm and 1052nm).  This system 
serves as the driving laser source for our work on intracavity high harmonic generation 
with fs frequency combs. Due to the phase coherence of the dual-comb source, we can 
now resolve individual frequency comb components in the IR. The next step was to 
observe and characterize individual fs comb components of the high harmonic light in the 
VUV and XUV, which to date had not been demonstrated. This would enable a simple 
and robust approach to direct frequency comb spectroscopy in the VUV and XUV. A 
very significant and recent achievement that enabled this is the coupling of 2 independent 
fs comb pulse trains into a single fsEC for the first time. This has enabled us to now 
demonstrate (i) measurements of ionization dynamics with a continuously and precisely 
controlled intracavity pump-probe delay and  (ii) the generation of spatially overlapped 
dual-comb high harmonic pulse trains that have been used for the first demonstration of 
dual-comb detection of individual comb components generated from intracavity high 
harmonic generation. Finally, numerical simulations provided valuable insight to the 
limitations caused by intra-cavity ionization dynamics.  

Dual-‐comb	  fsEC	  measurements	  of	  extreme	  optical	  nonlinearities.	  

Our	   experimental	   and	   theoretical	   work	   highlights	   the	   significant	   role	   photo-‐
ionization	   plays	   in	   the	   performance	   of	   iHHG.	   	   In	   addition	   to	   affecting	   the	   phase	  
matching	  conditions,	  the	  electron	  plasma	  generated	  by	  the	  high	  intensity	  circulating	  
pump	  pulse	  places	  a	  fundamental	  limitation	  on	  the	  maximum	  intensity	  available	  for	  
HHG.	   	   In	   the	   course	   of	   this	   grant	   period	   we	   demonstrated	   a	   novel	   pump-‐probe	  
technique	  for	  monitoring	  intracavity	  plasma	  dynamics.	  The	  basic	  idea	  is	  that	  with	  a	  
strong	   “pump”	   laser	   locked	   to	   the	   fsEC,	   a	   time	   delayed	   probe	   pulse	   (injected	   in	  
either	   the	   same	   or	   in	   a	   counter-‐propagating	   direction)	   can	   be	   used	   to	   detect	   the	  
plasma-‐induced	   phase	   shift	   resulting	   from	   the	   ionization	   of	   the	   gas	   target	   by	   the	  
pump.	  With	   the	   current	   dual-‐comb	   system	   coupled	   to	   a	   single	   fsEC,	   we	   can	   now	  
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precisely	  adjust	  the	  delay	  between	  the	  pump	  (fs	  comb	  #1)	  and	  probe	  pulse	  	  (fs	  comb	  
#2)	   from	   fs	   timescales	   up	   to	   the	  maximum	   round	   trip	   time	   of	  ~13	  ns,	   enabling	   a	  
near	  “real-‐time”	  picture	  of	  the	  evolving	  plasma	  density	  seen	  by	  the	  probe	  beam.	  In	  
Fig.	  1	  we	  show	   the	   results	   from	  one	  such	  measurement	   taken	  using	  xenon	  gas.	   In	  
this	  experiment	   the	  pump	  and	  probe	  pulses	  where	  counter-‐propagating	   inside	   the	  
fsEC.	   The	   shift	   of	   the	   fsEC	   due	   to	   the	   plasma	   produced	   from	   the	   pump	   pulse	   is	  
monitored	  by	  the	  error	  signal	  from	  the	  probe	  beam.	  The	  error	  is	  proportional	  to	  the	  
shift	   of	   the	   fsEC	   frequency,	   which	   in	   turn	   is	   proportional	   the	   nonlinear	   phase	  
acquired	  by	  the	  probe	  pulse	  each	  round	  trip.	  This	  phase	  is	  then	  proportional	  to	  the	  
plasma	  density.	  One	  can	  clearly	  see	  in	  Fig.	  1a	  the	  intracavity	  plasma	  dynamics	  as	  the	  
pump	   pulse	   ionizes	   the	   gas	   target	   each	   round	   trip,	   followed	   by	   the	   plasma	   decay	  
before	   the	   pump	   again	   arrives	   at	   the	   gas	   target.	   The	   decay	   mechanisms	   of	   the	  
plasma	   (spatial	   evolution	   and	   possible	   recombination)	   and	   conditions	   that	   may	  
affect	   its	   overall	   levels	   inside	   the	   fsEC	   are	   of	   great	   interest.	   In	   Fig	   1b	  we	   show	   a	  
zoomed	  in	  region	  in	  which	  the	  nonlinear	  response	  of	  both	  the	  xenon	  target	  and	  the	  
sapphire	  plate	  (used	  for	  output	  coupling	  of	  the	  VUV/XUV)	  is	  observed.	  Through	  this	  
new	  approach	  we	  can	  observe	  such	  dynamics	  directly	  for	  the	  first	  time	  and	  with	  a	  
very	  high	  signal-‐to-‐noise,	  timing	  resolution,	  and	  phase	  sensitivity.	  This	  approach	  is	  
dramatically	   more	   sensitive	   than	   standard	   interferometric	   techniques	   for	  
measuring	  optical	  nonlinearities	  due	  to	  the	  resonant	  nature	  of	  the	  fsEC.	  	  This	  work	  
has	  been	  published	  in	  multiple	  conference	  proceedings.	  A	  published	  version	  of	  the	  
work	  is	  expected	  to	  be	  accepted	  for	  publication	  in	  summer	  2015.	  	  

Dual-comb intracavity HHG 

With the current dual-comb system coupled to a single fsEC, we can now controllably 
and precisely tune the delay between two intracavity pulses from zero up to the maximum 
round trip time in the fsEC without a mechanical delay arm. Due to the optical phase 
locking between both laser systems and the fsEC, the relative delay between intracavity 
pulses can be fixed, and/or scanned through the entire delay range at a rate of up to ~10 
Hz (the maximum difference in repetition rates that the fsEC can support). Fig. 2 shows a 
schematic of the optical layout and an intracavity cross-correlation for the 3rd harmonic 
UV beams. This system enables dual-comb spectroscopy using any higher order 

Figure	  1.	  Intra-‐cavity	  measurement	  of	  ionization	  dynamics	  using	  the	  dual-‐comb	  system	  (a),	  and	  a	  
zoomed	  in	  region	  showing	  the	  nonlinear	  response	  due	  to	  both	  the	  gas	  jet	  ionization	  and	  the	  sapphire	  
plate	  (b). 
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harmonic. In a more general sense, it enables collinear VUV/XUV pulse pairs to be 
delivered with attosecond timing control, useful for not only spectroscopy but time 
resolved studies as well.  By recording this interferometric cross-correlation in a phase-
coherent manner for longer time scales, we are able to resolve individual comb 
components generated from iHHG for the first time (see Fig. 3). This should be easily 
extended to higher harmonics in the near future, enabling robust and precision 
spectroscopy from the UV to the XUV using direct comb spectroscopy. These results 
have also been presented and published in the proceedings of multiple conferences. We 
expect acceptance of peer-reviewed results towards the end of summer 2015.  

fs comb #1 

HHG#
Source vacuum chamber  

detector 
Xe  

fs comb #2 

3rd harmonic  

Figure	  2.	  Intra-‐cavity	  cross	  correlation	  of	  the	  3d	  harmonic	  from	  each	  fs	  comb.	  

Single interferogram trace 

FFT 

Figure	  3.	  	  Top	  plot	  shows	  a	  single	  cross-‐correlation	  interferogram	  between	  
the	  3rd	  harmonic	  beams.	  The	  lower	  figure	  shows	  a	  zoomed	  in	  picture	  of	  the	  
resulting	  Fourier	  transform,	  demonstrating	  detection	  of	  individual	  comb	  
components	  generated	  from	  iHHG> 

Distribution A Approved for public release.



AFOSR Deliverables Submission Survey

1.

1. Report Type

Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.

rjjones@optics.arizona.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report

520-235-6051

Organization / Institution name

University of Arizona

Grant/Contract Title
The full title of the funded effort.

XUV Frequency Comb Development for Precision Spectroscopy and Ultrafast Science

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".

FA9550-12-1-0048

Principal Investigator Name
The full name of the principal investigator on the grant or contract.

R. Jason Jones

Program Manager
The AFOSR Program Manager currently assigned to the award

Enrique Parra

Reporting Period Start Date

04/01/2013

Reporting Period End Date

03/31/2015

Distribution A Approved for public release.



Abstract

The primary goals of this grant were the development of next generation fs enhancement cavities for intracavity HHG
(iHHG) and the first demonstration of a coherent dual-frequency comb system in the VUV/XUV. During this grant
period we have completed most of the key milestones. Much of our initial effort had been on the construction and
testing of our next generation dual-frequency comb high power IR source and passively isolated xuv vacuum
chamber, which is now completed. The source consists of 2 home-built and phase coherent ~50 W, ~100fs Yb fiber
frequency combs. The mutual phase stabilization between both combs and the fs enhancement cavity (fsEC) is
achieved using optical phase locks with two common cw lasers (at 1064nm and 1052nm). This system serves as the
driving laser source for our work on intracavity high harmonic generation with fs frequency combs. Due to the phase
coherence of the dual-comb source, we can now resolve individual frequency comb components in the IR. The next
step was to observe and characterize individual fs comb components of the high harmonic light in the VUV and XUV,
which to date had not been demonstrated. This would enable a simple and robust approach to direct frequency comb
spectroscopy in the VUV and XUV. A very significant and recent achievement that enabled this is the coupling of 2
independent fs comb pulse trains into a single fsEC for the first time. This has enabled us to now demonstrate (i)
measurements of ionization dynamics with a continuously and precisely controlled intracavity pump-probe delay and
(ii) the generation of spatially overlapped dual-comb high harmonic pulse trains that have been used for the first
demonstration of dual-comb detection of individual comb components generated from intracavity high harmonic
generation. Finally, numerical simulations provided valuable insight to the limitations caused by intra-cavity ionization
dynamics.
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