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Final	
  Report	
  

Award	
  Title:	
  	
  
“XUV	
  Frequency	
  Comb	
  Development	
  for	
  Precision	
  Spectroscopy	
  and	
  Ultrafast	
  
Science”	
  

Award	
  No.	
  FA9550-­‐12-­‐1-­‐0048	
  

Reporting	
  Period:	
  4/01/2012-­‐	
  3/31/2015	
  

The primary goals of this grant were the development of next generation fs enhancement 
cavities for intracavity HHG (iHHG) and the first demonstration of a coherent dual-
frequency comb system in the VUV/XUV. During this grant period we have completed 
most of the key milestones. Much of our initial effort had been on the construction and 
testing of our next generation dual-frequency comb high power IR source and passively 
isolated xuv vacuum chamber, which is now completed. The source consists of 2 home-
built and phase coherent ~50 W, ~100fs Yb fiber frequency combs. The mutual phase 
stabilization between both combs and the fs enhancement cavity (fsEC) is achieved using 
optical phase locks with two common cw lasers (at 1064nm and 1052nm).  This system 
serves as the driving laser source for our work on intracavity high harmonic generation 
with fs frequency combs. Due to the phase coherence of the dual-comb source, we can 
now resolve individual frequency comb components in the IR. The next step was to 
observe and characterize individual fs comb components of the high harmonic light in the 
VUV and XUV, which to date had not been demonstrated. This would enable a simple 
and robust approach to direct frequency comb spectroscopy in the VUV and XUV. A 
very significant and recent achievement that enabled this is the coupling of 2 independent 
fs comb pulse trains into a single fsEC for the first time. This has enabled us to now 
demonstrate (i) measurements of ionization dynamics with a continuously and precisely 
controlled intracavity pump-probe delay and  (ii) the generation of spatially overlapped 
dual-comb high harmonic pulse trains that have been used for the first demonstration of 
dual-comb detection of individual comb components generated from intracavity high 
harmonic generation. Finally, numerical simulations provided valuable insight to the 
limitations caused by intra-cavity ionization dynamics.  

Dual-­‐comb	
  fsEC	
  measurements	
  of	
  extreme	
  optical	
  nonlinearities.	
  

Our	
   experimental	
   and	
   theoretical	
   work	
   highlights	
   the	
   significant	
   role	
   photo-­‐
ionization	
   plays	
   in	
   the	
   performance	
   of	
   iHHG.	
   	
   In	
   addition	
   to	
   affecting	
   the	
   phase	
  
matching	
  conditions,	
  the	
  electron	
  plasma	
  generated	
  by	
  the	
  high	
  intensity	
  circulating	
  
pump	
  pulse	
  places	
  a	
  fundamental	
  limitation	
  on	
  the	
  maximum	
  intensity	
  available	
  for	
  
HHG.	
   	
   In	
   the	
   course	
   of	
   this	
   grant	
   period	
   we	
   demonstrated	
   a	
   novel	
   pump-­‐probe	
  
technique	
  for	
  monitoring	
  intracavity	
  plasma	
  dynamics.	
  The	
  basic	
  idea	
  is	
  that	
  with	
  a	
  
strong	
   “pump”	
   laser	
   locked	
   to	
   the	
   fsEC,	
   a	
   time	
   delayed	
   probe	
   pulse	
   (injected	
   in	
  
either	
   the	
   same	
   or	
   in	
   a	
   counter-­‐propagating	
   direction)	
   can	
   be	
   used	
   to	
   detect	
   the	
  
plasma-­‐induced	
   phase	
   shift	
   resulting	
   from	
   the	
   ionization	
   of	
   the	
   gas	
   target	
   by	
   the	
  
pump.	
  With	
   the	
   current	
   dual-­‐comb	
   system	
   coupled	
   to	
   a	
   single	
   fsEC,	
   we	
   can	
   now	
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precisely	
  adjust	
  the	
  delay	
  between	
  the	
  pump	
  (fs	
  comb	
  #1)	
  and	
  probe	
  pulse	
  	
  (fs	
  comb	
  
#2)	
   from	
   fs	
   timescales	
   up	
   to	
   the	
  maximum	
   round	
   trip	
   time	
   of	
  ~13	
  ns,	
   enabling	
   a	
  
near	
  “real-­‐time”	
  picture	
  of	
  the	
  evolving	
  plasma	
  density	
  seen	
  by	
  the	
  probe	
  beam.	
  In	
  
Fig.	
  1	
  we	
  show	
   the	
   results	
   from	
  one	
  such	
  measurement	
   taken	
  using	
  xenon	
  gas.	
   In	
  
this	
  experiment	
   the	
  pump	
  and	
  probe	
  pulses	
  where	
  counter-­‐propagating	
   inside	
   the	
  
fsEC.	
   The	
   shift	
   of	
   the	
   fsEC	
   due	
   to	
   the	
   plasma	
   produced	
   from	
   the	
   pump	
   pulse	
   is	
  
monitored	
  by	
  the	
  error	
  signal	
  from	
  the	
  probe	
  beam.	
  The	
  error	
  is	
  proportional	
  to	
  the	
  
shift	
   of	
   the	
   fsEC	
   frequency,	
   which	
   in	
   turn	
   is	
   proportional	
   the	
   nonlinear	
   phase	
  
acquired	
  by	
  the	
  probe	
  pulse	
  each	
  round	
  trip.	
  This	
  phase	
  is	
  then	
  proportional	
  to	
  the	
  
plasma	
  density.	
  One	
  can	
  clearly	
  see	
  in	
  Fig.	
  1a	
  the	
  intracavity	
  plasma	
  dynamics	
  as	
  the	
  
pump	
   pulse	
   ionizes	
   the	
   gas	
   target	
   each	
   round	
   trip,	
   followed	
   by	
   the	
   plasma	
   decay	
  
before	
   the	
   pump	
   again	
   arrives	
   at	
   the	
   gas	
   target.	
   The	
   decay	
   mechanisms	
   of	
   the	
  
plasma	
   (spatial	
   evolution	
   and	
   possible	
   recombination)	
   and	
   conditions	
   that	
   may	
  
affect	
   its	
   overall	
   levels	
   inside	
   the	
   fsEC	
   are	
   of	
   great	
   interest.	
   In	
   Fig	
   1b	
  we	
   show	
   a	
  
zoomed	
  in	
  region	
  in	
  which	
  the	
  nonlinear	
  response	
  of	
  both	
  the	
  xenon	
  target	
  and	
  the	
  
sapphire	
  plate	
  (used	
  for	
  output	
  coupling	
  of	
  the	
  VUV/XUV)	
  is	
  observed.	
  Through	
  this	
  
new	
  approach	
  we	
  can	
  observe	
  such	
  dynamics	
  directly	
  for	
  the	
  first	
  time	
  and	
  with	
  a	
  
very	
  high	
  signal-­‐to-­‐noise,	
  timing	
  resolution,	
  and	
  phase	
  sensitivity.	
  This	
  approach	
  is	
  
dramatically	
   more	
   sensitive	
   than	
   standard	
   interferometric	
   techniques	
   for	
  
measuring	
  optical	
  nonlinearities	
  due	
  to	
  the	
  resonant	
  nature	
  of	
  the	
  fsEC.	
  	
  This	
  work	
  
has	
  been	
  published	
  in	
  multiple	
  conference	
  proceedings.	
  A	
  published	
  version	
  of	
  the	
  
work	
  is	
  expected	
  to	
  be	
  accepted	
  for	
  publication	
  in	
  summer	
  2015.	
  	
  

Dual-comb intracavity HHG 

With the current dual-comb system coupled to a single fsEC, we can now controllably 
and precisely tune the delay between two intracavity pulses from zero up to the maximum 
round trip time in the fsEC without a mechanical delay arm. Due to the optical phase 
locking between both laser systems and the fsEC, the relative delay between intracavity 
pulses can be fixed, and/or scanned through the entire delay range at a rate of up to ~10 
Hz (the maximum difference in repetition rates that the fsEC can support). Fig. 2 shows a 
schematic of the optical layout and an intracavity cross-correlation for the 3rd harmonic 
UV beams. This system enables dual-comb spectroscopy using any higher order 

Figure	
  1.	
  Intra-­‐cavity	
  measurement	
  of	
  ionization	
  dynamics	
  using	
  the	
  dual-­‐comb	
  system	
  (a),	
  and	
  a	
  
zoomed	
  in	
  region	
  showing	
  the	
  nonlinear	
  response	
  due	
  to	
  both	
  the	
  gas	
  jet	
  ionization	
  and	
  the	
  sapphire	
  
plate	
  (b). 
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harmonic. In a more general sense, it enables collinear VUV/XUV pulse pairs to be 
delivered with attosecond timing control, useful for not only spectroscopy but time 
resolved studies as well.  By recording this interferometric cross-correlation in a phase-
coherent manner for longer time scales, we are able to resolve individual comb 
components generated from iHHG for the first time (see Fig. 3). This should be easily 
extended to higher harmonics in the near future, enabling robust and precision 
spectroscopy from the UV to the XUV using direct comb spectroscopy. These results 
have also been presented and published in the proceedings of multiple conferences. We 
expect acceptance of peer-reviewed results towards the end of summer 2015.  

fs comb #1 

HHG#
Source vacuum chamber  

detector 
Xe  

fs comb #2 

3rd harmonic  

Figure	
  2.	
  Intra-­‐cavity	
  cross	
  correlation	
  of	
  the	
  3d	
  harmonic	
  from	
  each	
  fs	
  comb.	
  

Single interferogram trace 

FFT 

Figure	
  3.	
  	
  Top	
  plot	
  shows	
  a	
  single	
  cross-­‐correlation	
  interferogram	
  between	
  
the	
  3rd	
  harmonic	
  beams.	
  The	
  lower	
  figure	
  shows	
  a	
  zoomed	
  in	
  picture	
  of	
  the	
  
resulting	
  Fourier	
  transform,	
  demonstrating	
  detection	
  of	
  individual	
  comb	
  
components	
  generated	
  from	
  iHHG> 
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Abstract

The primary goals of this grant were the development of next generation fs enhancement cavities for intracavity HHG
(iHHG) and the first demonstration of a coherent dual-frequency comb system in the VUV/XUV. During this grant
period we have completed most of the key milestones. Much of our initial effort had been on the construction and
testing of our next generation dual-frequency comb high power IR source and passively isolated xuv vacuum
chamber, which is now completed. The source consists of 2 home-built and phase coherent ~50 W, ~100fs Yb fiber
frequency combs. The mutual phase stabilization between both combs and the fs enhancement cavity (fsEC) is
achieved using optical phase locks with two common cw lasers (at 1064nm and 1052nm). This system serves as the
driving laser source for our work on intracavity high harmonic generation with fs frequency combs. Due to the phase
coherence of the dual-comb source, we can now resolve individual frequency comb components in the IR. The next
step was to observe and characterize individual fs comb components of the high harmonic light in the VUV and XUV,
which to date had not been demonstrated. This would enable a simple and robust approach to direct frequency comb
spectroscopy in the VUV and XUV. A very significant and recent achievement that enabled this is the coupling of 2
independent fs comb pulse trains into a single fsEC for the first time. This has enabled us to now demonstrate (i)
measurements of ionization dynamics with a continuously and precisely controlled intracavity pump-probe delay and
(ii) the generation of spatially overlapped dual-comb high harmonic pulse trains that have been used for the first
demonstration of dual-comb detection of individual comb components generated from intracavity high harmonic
generation. Finally, numerical simulations provided valuable insight to the limitations caused by intra-cavity ionization
dynamics.
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