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One approach toward capturing the necessary experimental
data is integration of in situ mechanical testing with advanced
characterization methods to provide full 3D microstructural char
acterization of the test volume, in which ensembles of individually
resolved grains are tracked throughout an experiment [3]. Measur
ing a sufficiently large number of grains is important, not only to
characterize the heterogeneities in internal stresses as they
develop, but also to facilitate detection of rare events such as
void/crack nucleation. This information could be used to validate
predictive models that explicitly represent 3D microstructure [4].
In this work, we describe a novel capability to nondestructively
characterize the evolving microstructure and micromechanical
state of deforming polycrystalline ensembles through concurrent
integration of three high energy synchrotron X ray techniques.
We present first of a kind results for a titanium alloy specimen
undergoing time dependent creep deformation that reveal a com
plex redistribution of internal stresses during the creep process.

Methods
High energy diffraction microscopy (HEDM)

The enabling technology for performing the measurements pre
sented herein is high energy synchrotron radiation. High energy
synchrotron sources provide a unique blend of high brilliance,
high energy (>50 keV) radiation that enables nondestructive eval
uation of microstructure and micromechanical state in bulk (pen
etration depths on the order of millimeters) engineering
materials. For reference, the brilliance of these light sources can
be 6 10 orders of magnitude greater than that of a laboratory X
ray source. Over the past 15 years, several experimental techniques
capable of independently mapping structure and grain by grain
mechanical response have been developed. In order to study “bulk”
phenomena, as well as the relevant statistics to capture critical
events (void/crack nucleation), it is necessary to measure on the
order of 1000 grains. The most prevalent techniques capable of
spatially resolved measurements of microstructure and microme
chanical state for aggregates that large are tomography and a class
of diffraction based measurements that are built upon the rotating
crystal method [5,6]. These techniques consist of interrogating a
sample with monochromatic X rays while the sample is continu
ously rotated and images of diffracted beams are collected on area
detectors in transmission geometry over discrete angular intervals
[7 10], and are alternately referred to as three dimensional X ray
diffraction microscopy (3DXRD) or high energy X ray diffraction
microscopy (HEDM). These techniques differ from polychromatic
methods such as differential aperture X ray microscopy (DAXM)
[11], which consists of point by point measurements and uses
micro focused beams of lower energy polychromatic X rays
(8 35keV) to probe three dimensional structure relatively near
sample surfaces. The polychromatic methods offer excellent intra
granular resolution, but are less suited for characterizing large
ensembles of interior grains.

The three X ray techniques we have integrated are referred to
as far field HEDM (ff HEDM) [12 15], near field HEDM (nf HEDM)
[8,16,17], and absorption micro computed tomography (p CT)
[18]. These techniques result in correlated data that (1) quantify
an average elastic strain tensor (stress tensor with known elastic
stiffness matrix) for each grain, (2) map the structure and local
crystallographic orientation within and between grains, and (3)
permit observation of the structure of voids, cracks, and second
phase inclusions, respectively. In each case, raw data consists of
images of diffracted or transmitted X ray beams collected on area
detectors placed at different working distances while the specimen
is rotated and irradiated with a monochromatic X ray beam. The
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experiment was conducted at the high energy beamline 1 ID E at
the Advanced Photon Source (APS), Argonne National Laboratory
using an X ray energy of 65.4 keV. While measurement hardware,
procedures, and analysis software have been developed indepen
dently for each technique, the ability to collect unified correlated
datasets yields a more complete view of the evolving material that
is greater than the sum of the independent results.

Far field high energy diffraction microscopy (ff HEDM)

The ff HEDM technique provides the average elastic strain ten
sor (from which average stress tensors can be calculated assuming
linear elasticity), the average crystallographic orientation, and the
center of mass position for individual grains within a deforming
polycrystalline sample [12 15]. The data reduction consists of a
back projection method where individual diffraction spots are first
identified by segmentation of the detector image, subsequently
associated with one or more Debye Scherrer rings using a speci
fied space group and angular tolerance, then finally associated with
a uniquely oriented crystal lattice through an indexing operation.
Once a set of orientations is obtained, the 12 degrees of freedom
that describe the orientation (3), position (3), and elastic strain
(6) of an individual grain are optimized, in a least squares sense,
using the subset of measured spot centroids associated with it
from the indexing [15]. The detector is positioned “far” (~1 m)
from the specimen to improve angular resolution of the diffraction
pattern and thus provide high elastic strain sensitivity. Typically
the strain resolution of this technique is quoted to be +1 x 10 4.
This value is directly coupled to experimental conditions and is
often conservative [19,20]. It is important to note that these mea
surements differ from conventional ‘aggregate’ or so called powder
experiments since each diffraction spot originates from and is
assigned to an individual grain within the specimen while account
ing for precession during the rotation of the specimen.

The selection of the X ray beam size with respect to the average
grain size in the specimen dictates how the ff HEDM results should
be interpreted. If the beam size is large enough such that the grains
of interest are fully irradiated, then the center of mass, average ori
entation, and the average elastic strain tensor represent grain aver
aged quantities. However, in the current work we used a line
focused X ray beam as wide as the specimen (~1.4 mm on the
diagonal) but only ~2 pm tall (along the tensile axis). The novel
application of the line focused beam for the ff HEDM technique
provides the average elastic strain and stress tensors for the irradi
ated portion of each grain, i.e. the grain cross section averaged
(GCSA) elastic strains/stresses, resulting in sub grain resolution
in the direction orthogonal to the plane of the beam.

Near field high energy diffraction microscopy (nf HEDM)

The nf HEDM experiment nondestructively characterizes the
microstructure (crystallographic orientation, size/shape/relative
position of each grain) within the diffracting sample [8,16,17].
The measurement presented herein employed the same line
focused X ray beam as for ff HEDM (~2 pm by the width of the
sample) to scan a ‘layer’ of the material. A high resolution detector
images the shapes of diffraction spots as the sample rotates. A spec
imen volume is mapped by translating the sample perpendicular to
the beam plane to illuminate successive layers. Diffraction mea
surements from each layer are measured at multiple sample to
detector distances such that diffraction spots are seen to radiate
away from the grain of origin, thus encoding the grain position as
well as the scattering angles. The salient feature of the experimental
geometry is that the detector needs to be “near” the specimen
(within 10 mm), providing greater sensitivity to grain position
rather than diffraction angle. The data reduction consists of itera
tively comparing a forward model of potential crystal orientations
for each volume element (voxel) within the sample to the measured
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expressing improved performance characteristics, as well as
building efficiencies into the design process, rests upon establishing
validated computational models that link materials processing to
microstructure and microstructure to properties and performance
[49]. Trusted modeling tools for the prediction of responses at the
grain level and above have been severely limited by the historical
lack of in situ characterization at the mesoscale.

We have demonstrated a new experimental capability that pro
vides a micron scale (mesoscale) spatiotemporally resolved probe
for tracking evolving microstructure correlated with the stresses
driving deformation. These first of a kind results already show
an unexpected evolution of grain level stresses in a titanium alloy
undergoing creep deformation. We anticipate many additional dis
coveries since this new form of microscopy is in its infancy. Within
this powerful new methodology, the explicit microstructure
becomes the test bed for exploring the validity of historically nec
essary or wholly new assumptions, and for driving further model
development. Moreover, these datasets open the possibility of
new fundamental design frameworks built upon quantitatively
defined hierarchies of theories coupling nano scale to meso scale
and macroscopic responses. Such models are critical for developing
the next generation of engineering design protocols, for example
the design of components with graded microstructures, where
the microstructure at a specific point in a component is tailored
to provide optimized properties for that location.
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