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ABSTRACT 

An important advance in understanding the mechanics of solids over the last 50 years has been develop 
ment of a suite of models that describe the performance of engineering materials while accounting for 
internal fluctuations and anisotropies (ex., anisotropic response of grains) over a hierarchy of length 
scales. Only limited engineering adoption of these tools has occurred, however, because of the lack of 
measured material responses at the length scales where the models are cast Here, we demonstrate an 
integrated experimental capability utilizing high energy X rays that provides an in situ, micrometer scale 
probe for tracking evolving microstructure and intergranular stresses during quasi static mechanical 
testing. We present first of a kind results that show an unexpected evolution of the intergranular stres 
ses in a titanium alloy undergoing creep deformation. We also discuss the expectation of new discoveries 
regarding the underlying mechanisms of strength and damage resistance afforded by this rapidly devel 
oping X ray microscopy technique. 

Published by Elsevier Ltd 
Introduction 

Many critical engineering materials, such as metals and ceram 
ics, are polycrystalline. As such, they are inherently heterogeneous 
over a hierarchy oflength scales ranging from the engineered com 
ponent, to the distribution of different crystalline grains, phases, 
voids and/or secondary particles, and down to the distribution of 
lattice defects at the atomic scale. This structural heterogeneity 
manifests as anisotropy in functional material properties such as 
stiffness, strength, conductivity, and damage resistance. However, 
engineered products are almost universally designed using 
idealized homogeneous representations of the material at the 
macroscopic scale. While this approximation scheme permits 
unambiguous linkages between boundary condition constraints 
and material response for a range of structures such as bridges, 
aircraft, and electronic devices, it is often quite limited in terms of 
predictive capability. 
More recently, much interest has been paid to materials science 
at the so called "mesoscale" [1,2). While not an explicit length 
scale, the mesoscale can be thought of here as a length scale over 
which homogenization breaks down, and where materials proper 
ties are the result of an ensemble of constituents. In the present 
context, this length scale encompasses an ensemble of individual 
crystallites or "grains", possibly including a distribution of voids 
and secondary phase particles. Each grain or constituent expresses 
directionally dependent properties (e.g. strength, stiffness, electri 
cal conductivity, etc.) stemming from the atomic compositions and 
structure along with crystal defects. The metrics of these ensem 
bles, referred to as the microstructure of the material, result in 
the internal forces of a loaded body being distributed quite heter 
ogeneously. In tum, these heterogeneities drive the emergent 
behaviors of creep, crack initiation and fracture. With few excep 
tions, mesoscale information has not been incorporated into the 
design process, not because mesoscale modeling tools do not exist, 
but rather because of a lack of appropriate experimental data and 
methods with which to validate such models, leaving an unaccept 
able level of risk for a design engineer. 
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One approach toward capturing the necessary experimental
data is integration of in situ mechanical testing with advanced
characterization methods to provide full 3D microstructural char
acterization of the test volume, in which ensembles of individually
resolved grains are tracked throughout an experiment [3]. Measur
ing a sufficiently large number of grains is important, not only to
characterize the heterogeneities in internal stresses as they
develop, but also to facilitate detection of rare events such as
void/crack nucleation. This information could be used to validate
predictive models that explicitly represent 3D microstructure [4].
In this work, we describe a novel capability to nondestructively
characterize the evolving microstructure and micromechanical
state of deforming polycrystalline ensembles through concurrent
integration of three high energy synchrotron X ray techniques.
We present first of a kind results for a titanium alloy specimen
undergoing time dependent creep deformation that reveal a com
plex redistribution of internal stresses during the creep process.
Methods

High energy diffraction microscopy (HEDM)

The enabling technology for performing the measurements pre
sented herein is high energy synchrotron radiation. High energy
synchrotron sources provide a unique blend of high brilliance,
high energy (>50 keV) radiation that enables nondestructive eval
uation of microstructure and micromechanical state in bulk (pen
etration depths on the order of millimeters) engineering
materials. For reference, the brilliance of these light sources can
be 6 10 orders of magnitude greater than that of a laboratory X
ray source. Over the past 15 years, several experimental techniques
capable of independently mapping structure and grain by grain
mechanical response have been developed. In order to study ‘‘bulk’’
phenomena, as well as the relevant statistics to capture critical
events (void/crack nucleation), it is necessary to measure on the
order of 1000 grains. The most prevalent techniques capable of
spatially resolved measurements of microstructure and microme
chanical state for aggregates that large are tomography and a class
of diffraction based measurements that are built upon the rotating
crystal method [5,6]. These techniques consist of interrogating a
sample with monochromatic X rays while the sample is continu
ously rotated and images of diffracted beams are collected on area
detectors in transmission geometry over discrete angular intervals
[7 10], and are alternately referred to as three dimensional X ray
diffraction microscopy (3DXRD) or high energy X ray diffraction
microscopy (HEDM). These techniques differ from polychromatic
methods such as differential aperture X ray microscopy (DAXM)
[11], which consists of point by point measurements and uses
micro focused beams of lower energy polychromatic X rays
(8 35 keV) to probe three dimensional structure relatively near
sample surfaces. The polychromatic methods offer excellent intra
granular resolution, but are less suited for characterizing large
ensembles of interior grains.

The three X ray techniques we have integrated are referred to
as far field HEDM (ff HEDM) [12 15], near field HEDM (nf HEDM)
[8,16,17], and absorption micro computed tomography (l CT)
[18]. These techniques result in correlated data that (1) quantify
an average elastic strain tensor (stress tensor with known elastic
stiffness matrix) for each grain, (2) map the structure and local
crystallographic orientation within and between grains, and (3)
permit observation of the structure of voids, cracks, and second
phase inclusions, respectively. In each case, raw data consists of
images of diffracted or transmitted X ray beams collected on area
detectors placed at different working distances while the specimen
is rotated and irradiated with a monochromatic X ray beam. The
2
Distribution Statement A.  Approved fo
experiment was conducted at the high energy beamline 1 ID E at
the Advanced Photon Source (APS), Argonne National Laboratory
using an X ray energy of 65.4 keV. While measurement hardware,
procedures, and analysis software have been developed indepen
dently for each technique, the ability to collect unified correlated
datasets yields a more complete view of the evolving material that
is greater than the sum of the independent results.

Far field high energy diffraction microscopy (ff HEDM)
The ff HEDM technique provides the average elastic strain ten

sor (from which average stress tensors can be calculated assuming
linear elasticity), the average crystallographic orientation, and the
center of mass position for individual grains within a deforming
polycrystalline sample [12 15]. The data reduction consists of a
back projection method where individual diffraction spots are first
identified by segmentation of the detector image, subsequently
associated with one or more Debye Scherrer rings using a speci
fied space group and angular tolerance, then finally associated with
a uniquely oriented crystal lattice through an indexing operation.
Once a set of orientations is obtained, the 12 degrees of freedom
that describe the orientation (3), position (3), and elastic strain
(6) of an individual grain are optimized, in a least squares sense,
using the subset of measured spot centroids associated with it
from the indexing [15]. The detector is positioned ‘‘far’’ (�1 m)
from the specimen to improve angular resolution of the diffraction
pattern and thus provide high elastic strain sensitivity. Typically
the strain resolution of this technique is quoted to be ±1 � 10 4.
This value is directly coupled to experimental conditions and is
often conservative [19,20]. It is important to note that these mea
surements differ from conventional ‘aggregate’ or so called powder
experiments since each diffraction spot originates from and is
assigned to an individual grain within the specimen while account
ing for precession during the rotation of the specimen.

The selection of the X ray beam size with respect to the average
grain size in the specimen dictates how the ff HEDM results should
be interpreted. If the beam size is large enough such that the grains
of interest are fully irradiated, then the center of mass, average ori
entation, and the average elastic strain tensor represent grain aver
aged quantities. However, in the current work we used a line
focused X ray beam as wide as the specimen (�1.4 mm on the
diagonal) but only �2 lm tall (along the tensile axis). The novel
application of the line focused beam for the ff HEDM technique
provides the average elastic strain and stress tensors for the irradi
ated portion of each grain, i.e. the grain cross section averaged
(GCSA) elastic strains/stresses, resulting in sub grain resolution
in the direction orthogonal to the plane of the beam.

Near field high energy diffraction microscopy (nf HEDM)
The nf HEDM experiment nondestructively characterizes the

microstructure (crystallographic orientation, size/shape/relative
position of each grain) within the diffracting sample [8,16,17].
The measurement presented herein employed the same line
focused X ray beam as for ff HEDM (�2 lm by the width of the
sample) to scan a ‘layer’ of the material. A high resolution detector
images the shapes of diffraction spots as the sample rotates. A spec
imen volume is mapped by translating the sample perpendicular to
the beam plane to illuminate successive layers. Diffraction mea
surements from each layer are measured at multiple sample to
detector distances such that diffraction spots are seen to radiate
away from the grain of origin, thus encoding the grain position as
well as the scattering angles. The salient feature of the experimental
geometry is that the detector needs to be ‘‘near’’ the specimen
(within 10 mm), providing greater sensitivity to grain position
rather than diffraction angle. The data reduction consists of itera
tively comparing a forward model of potential crystal orientations
for each volume element (voxel) within the sample to the measured
 
r public release; distribution unlimited.
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diffraction patterns [16,17). For nf HEDM the orientation and spa 
tial resolution are often quoted as <0.1 o and 2 11m. respectively. 
Given the sample to detector distance requirements for nf HEDM, 
concurrent application of the technique during conventional 
mechanical testing has previously not been possible. Application 
of a conventional loadframe on a rotation stage would result in 
the support posts striking the nf HEDM detector during rotation. 

Absorption micro computed tomography (J.J. Cf) 
The 11 cr measurements were collected with a beam hundreds 

of microns tall which spanned the width of the sample cross sec 
tion. This technique relies on imaging variations in the intensity 
of the direct transmitted beam during rotation of the sample. This 
information corresponds to fluctuations of electron density in the 
material and can be used to identify and track the evolution of 
voids, cracks, and additional phases or inclusions [18). This tech 
nique provides key information for identifying regions of interest 
and monitoring the evolution during application of external 
stimuli. The resolution of 11 cr is defined by the experimental 
conditions, but <1 11m has become commonplace for lower energy 
X rays. With the experimental conditions employed here using 
high energy X rays, the detector resolution of ~ 1.5 11m sets the 
measurement resolution. 

Rotation and linear axial motion system (RAMS) 

The concurrent application of 11 cr. tT HEDM, and nf HEDM 
during loading requires the precise 360° rotation of a sample under 
going tensile and/or compressive loading within the grips of a 
mechanical testing system (loadframe) without obstructing the 
X ray signal or operation of the X ray detectors. Therefore, we have 
made a major advance by developing a high precision coaxial two 
spool rotation and linear axial motion system (RAMS) [21 ), as 
shown in Fig. 1. The RAMS device was designed to overcome the 
Fig. 1. Experimental setup with various aspects shown to scale. (a) A schematic 
illustration of the rotation and linear axial motion system (RAMS} loadframe, and 
the far field detector are shown with respect to the X-ray beam. (b) A typical 
specimen mounted within the grips is shown to indicate the close proximity to the 
near field detector scintillator. (c) A cut away "top-view" of the RAMS device 
illustrates that, while 3600 rotation of the entire loadframe is not possible due to 
conOict with the near field detector, the RAMS device achieves this rotation within 
the loadframe grips. 

3 
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constraints imposed by the proximity of the nf HEDM detector 
and allows the specimen to rotate continuously within the grips 
of a stationary conventional mechanical testing system while 
undergoing tensile and/or compressive loading up to 2 kN. The 
RAMS device uses a paired spool design, where each spool consists 
of two air bushings (center of the spool) to carry radial loads and 
two air bearings (top/bottom of the spool) to carry axial loads. This 
allows for precise angular motion from small steps to continuous 
rotation about the loading axis. Rotation of the specimen during 
uniaxial loading is achieved through a servomotor, gear reducer, 
pre loaded linear ball spline, and two t iming belts. 

The RAMS device was mounted within the grips of a servohy 
draulic MTS model 858, available at the APS 1 10 beamline. Each 
subassembly was designed to support the axial and radial loads 
expected during the mechanical test. Moreover, since we seek to 
measure the precession of diffracting grains, it is imperative that 
any eccentricity or non recoverable wobble in the rotation system 
be minimized. In conventional systems where a loadframe is 
positioned on a rotation stage, this artifact is introduced due to 
the rotation axis and the loading direction not being exactly parallel, 
which limits the overall resolution of each of the techniques. Using a 
capacitance measurement system we determined the non recover 
able wobble within the RAMS to be below the resolution of each 
technique. 

Material 

In a first application of this new capability, we measured a 
titanium alloy (Ti 7 AI) tensile specimen undergoing room temper 
ature creep deformation. The Ti 7Al material (provided by Dr. 
Adam Pilchak, AFRL) was initially cast as a ~75 mm ingot, hot 
isostatic pressed, extruded into a ~30 x 30 mm2 square, and finally 
unidirectionally rolled at 955 oc to a thickness of ~7.5 mm. The 
material was recrystallized at 955 oc for 24 h and furnace cooled, 
producing a single phase a. (HCP crystal structure) material with 
a basal texture and nearly equiaxed grains with an average size 
of ~ 100 11m. The tensile specimen was prepared with the tensile 
axis transverse to the rolling and normal directions. The aniso 
tropic elastic moduli employed to convert elastic strains to stresses 
are shown in Table 1. 

Creep is the time dependent plastic deformation of a material 
under constant load. While typically thought of as an elevated tern 
perature behavior, titanium alloys are well known to exhibit signif 
icant creep at room temperature [23 ). Titanium creep behavior is a 
complex phenomenon dependent on the local microstructure and 
grain level interactions, among other factors, and is an area of 
interest because it has been tied to dwell fatigue sensitivity which 
is a major design constraint for titanium based structural campo 
nents [24 26). 
Results and discussion 

Experiment 

The specimen was held in the RAMS device and subjected to an 
applied tensile load of 525 MPa (near the elastic limit), then the 
load was immediately reduced to 473 MPa and held fixed for 
24 h. In addition to the elastic strains accumulated during loading, 
Table 1 
The elastic constants (Voigt convention) used for this effort are shown in units of GPa 
(22]. 

Cn Cu 

162.4 92.0 69.0 180.7 46.7 
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the specimen accumulated ,...,0.6% plastic strain during the creep 
hold. All three high energy X ray measurements were carried out 
on the same 3 0 region of the sample, while under load, and the 
output data sets have been put into a common reference frame. 
While a complete interpretation of the material evolution is 
beyond the scope of this paper, we demonstrate the richness of 
the combined data sets and show that novel observed phenomena 
can be extracted from only a single layer of the reconstructed 
volume. 

Structural characterization 

The 30 grain structure obtained from in situ nf HEDM of a sub 
section of the specimen is shown in Fig. 2a. The angle between the 
applied loading direction and the local crystallographic 'c axis', 
which influences slip and twinning responses, is shown in 
Fig. 2b. Fig. 2c shows a layer from a 11 cr measurement, which 
was used to measure and track the cross sectional area of the spec 
imen in order to convert the applied load to a macroscopic tensile 
stress value. The 11 cr scan also showed that the sample was fully 
dense with no voids, cracks, etc. at dimensions above the ~ 1.5 11m 
measurement resolution. 

Merging data from multiple techniques 

Merging of the nf HEDM and ff HEDM datasets begins with the 
assumption that the same region of the specimen is irradiated in 
a 

eo 

70 

20 

10 

Fig. 2. Structure of Ti- 7AI tensile specimen. (a) A 1 x 1 x 0.192 mm3 volume of the 
crystallographic orientation using each degree of freedom in the Rodrigues orientation 
convey the - 2 )Am resolution of the reconstructed boundaries. (b) The co-axiality angle b
single cross section (c) Layer from a jl-CT measurement showing the sample cross-section
or cracks. 

4
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both measurements. We used the same line focused beam for both 
but the data were collected sequentially and this may lead to 
micron scale thermal or other drifts (future work will implement 
simultaneous collection in each layer). Center of mass positions 
and average orientations for each grain can be used to align data 
sets but this was not necessary in the present case. On the other 
hand, drifts may contribute to the few discrepancies that are found 
in the sets of grains identified by nf HEDM and ff HEOM analysis, 
as shown in Fig. 3. For example, small cross sections associated 
with grain edges may come into or out of the beam. Further, due 
to differing resolutions of the two techniques set by the pixel sizes 
and the very different dynamic ranges of the detectors, there may 
be cases where small cross sections not visible to the nf HEOM are 
identified by ff HEDM. 

While nf HEDM and ff HEDM data were measured sequentially 
in time, they were both measured concurrently with respect to the 
deformation. Throughout the deformation, the merging of the nf 
HEOM, ff HEOM, and 11 cr results is facilitated through the use 
of a fiducial marker. A 30 11ffi gold cube was bonded to the speci 
men surface to provide a non deforming reference feature. 

Completeness 

The primary figure of merit in both the nf HEOM and ff HEDM 
data reduction is alternately referred to as "confidence" or 
"completeness" [15,17). It is calculated as the ratio of indexed 
(measured) to predicted diffraction spots on the detector for each 
c 

100 11m 

specimen as measured with nf-HEDM is shown with each grain colored by the 
parameterization (see 127)) to set the RGB color value. Three grains are isolated to 
etween the crystallographic c-axis and loading direction is shown for each grain in a 
. This measurement confirmed that the specimen gauge volume was absent of voids 
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Fig . 3 . The lf-HEDM center of mass positions are overlaid as symbols on the nf­
HEDM grain map. The red triangles are small grains identified by lf-HEDM that 
were not present in the nf-HEDM analysis. 
single lattice scattering unit subject to an appropriate set of toler 
ances. For the ff HEDM analysis we present results with a com 
pleteness greater than 40%. For the ff HEDM experimental 
conditions presented here there were 216 expected diffraction 
spots and the minimum number measured for a grain above the 
40% completeness threshold was 86. The white regions shown in 
Figs. 2b, 6 and 8 are not voids, but rather regions where the com 
pleteness of the ff HEDM data reduction is below this threshold. 
This is not a limitation of the data, but rather highlights the further 
need for developing data reduction tools built upon a forward 
model as opposed to the back projection approach previously 
described. 

Completeness maps for the nf HEDM and ff HEDM results are 
shown in Figs. 4 and 5, respectively. The completeness for the nf 
HEDM measurements decreases near grain boundaries where the 
forward model projects diffraction to the edges of observed diffrac 
tion spots. Moreover, as the nf HEDM reconstruction process is 
built on a forward model that currently does not include strain, 
distortions of the lattice result in lower completeness measured 
under load. The ff HEDM completeness decreases with increasing 
deformation for several reasons, including a decrease in the above 
OM Pa 473MPa 100 

80 (") 
0 
3 ., 

60 ~ 
:::> 

40 

~ 
VI 
VI 

~ 
20 

0 

Fig .4 . The completeness is shown as a percent for the nf-HEDM results. The results 
are shown using grayscale to highlight the variation in completeness surrounding 
grain boundaries. 
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background intensity and "smearing" of the diffraction peaks due 
to increased defect content. It also becomes much more difficult 
to accurately segment individual diffraction signals once smearing 
becomes significant enough to cause a large degree of overlap. 
Efforts are underway to develop a truly integrated approach to 
the data analysis that treats the nf HEDM and ff HEDM measured 
data as a single X ray experiment, as opposed to individual 
techniques with their different strengths and weaknesses. 

Stress evolution 

Fig. 6 shows grain cross section averaged (GCSA) normal and 
shear stresses, obtained from ff HEDM data, overlaid on the nf 
HEDM grain map from Fig. 2b. Here GCSA indicates the material 
response averaged over the grain cross section and the height of 
the beam (~2 j.Ull). Using the typically quoted uncertainty for ff 
HEDM latt ice strain measurements of ±1 x 10 4 [19,20] and 
Young's modulus for titanium alloys ( 120 GPa), we approximate 
the uncertainty for each stress component as ±12 MPa. Clearly, 
the GCSA stress states in different grains vary significantly. This 
is further illustrated in Fig. 7, which shows scatter plots for each 
stress component versus grain ID and demonstrates an increase 
in scatter of the post creep deformation stress states. Comparisons 
between the lattice orientations in Fig. 2b and the stress maps of 
Fig. 6 indicate that, while a portion of the heterogeneity is corre 
lated with orientation, significant additional variation can be 
assigned to anisotropic local neighborhoods. This is particularly 
clear when one compares the before and after creep stresses, 
which are quite different in spite of the fixed loading condition. 

Given that the body is in equilibrium, we know that the stresses 
within a cross section must integrate to the applied stress state. 
Accepting that ff HEDM provides GCSA quantities, we can approx 
imate the integration by calculating a weighted average over the 
cross section using the grain areas measured from the nf HEDM 
analysis. The results for this weighted average are shown in Table 2. 
Though not conclusive, the close proximity of the stress state 
determined from the weighted average to the applied stress state 
provides increased confidence in the results. 

Analysis 

The stress evolution in the grains is governed by the complex 
boundary value problem established by the anisotropic elastic 
and plastic properties of the individual grains within the mutual 
constraints of their local neighborhoods. Interestingly, we observe 
an increasingly heterogeneous stress field as creep proceeds. To 
quantitatively assess the stress evolution during creep, we focus 
on the von Mises effective stress (u.u) to describe deviatoric 
responses, the hydrostatic tension (uH) for isotropic responses, 
and the stress co axiality angle (</> ). The stress co axiality angle is 
defined as the angle between the stress vector for an individual 
grain, 0" [Uxx Uyy Uzz Uxy Uxz Uyz), and the applied macroscopic 
stress vector, in this case UApplied = [04730000] MPa, as shown in 
Eq. (1 ). 

1 CT • (J APPlied 
cos -

I (JII (J Applied I (1) 

This is a scalar quantity that conveys the rotation of the stress 
state during creep against which stresses can be readily plotted 
[28 30]. 

Fig. 8a shows that while the mean GCSA effective stress across the 
displayed sample cross section is nearly the same before and after 
creep deformation ( 498 502 MPa), the standard deviation increases 
appreciably (32 47 MPa). The largest relative positive and negative 
changes in the effective stress for individual grains are 145 MPa and 
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loading, at 473 MPa prior to creep deformation, and at 473 MPa after 24 h of creep 
deformation. 
109 MPa, respectively. Conversely, the hydrostatic tension shown 
in Fig. 8b indicates a substantial increase in both the mean 
(123 163 MPa) and standard deviation (23 49 MPa). The largest 
change in the hydrostatic tension for individual grains was from 
6
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206 MPa to 387 MPa. Perhaps even more interesting is the evolution 
of the stress co axiality angle shown in Fig. 8c. Surprisingly, the 
stresses evolved away from the applied loading direction rather than 
toward it, indicating that during uniaxial creep deformation the 
intergranular stresses in the body trend toward greater triaxiality, 
as opposed to shifting to align with the applied load. Though not 
shown, we note that the modest creep deformation ( ~0.6% plastic 
strain) does not lead to appreciable changes in average grain orien 
tations or grain breakup associated with slip, indicating that the sig 
nificant stress evolution cannot be explained through lattice 
rotations. We hypothesize that the creep evolution occurs through 
inhomogeneous and anisotropic motions of defects (dislocations) 
that transfer load between grains and account for the observed evo 
lution of stress states. Since the applied load is constant but the time 
scale is extremely long by standards for thermally activated or rate 
dependent processes, these motions most likely correspond to 
depinning of dislocations and intermittent changes in stress state. 
Additional far field HEDM data collected during the 24 h creep 
period should shed considerable light on these rate dependent 
dynamics. 

Interpretation 

Though known within the mechanics community, it is worth 
stating the implications of these results on the commonly used 
Schmid factor analysis to indicate which slip systems will be active 
within a grain. This analysis, which was originally developed for 
interpreting deformation of single crystals [31), assumes the grain 
level stress state is uniaxial tension The results presented herein, 
as well as in other tT HEDM studies [32,33), show this assumption 
to be invalid for the polycrystalline specimen, particularly given 
the trend of increasing stress co axiality angle during creep defor 
mation shown in Fig. 8c. 

The results in Fig. 8e show a previously unknown phenomenon. 
Upon initial loading the hydrostatic tension decreases linearly with 
increasing stress co axiality angle (negative slope of red points in 
Fig. 8e). During the 24 h at fixed applied load, this trend breaks 
down and grains with both the highest and lowest hydrostatic ten 
sion have a high stress co axiality angle. Again, this phenomenon 
cannot be modeled on a single grain basis but rather must involve 
complex interactions. 

The true value of the capability illustrated here lies in the oppor 
tunity to test hypotheses and explore complex phenomena that 
have historically restricted the development of mesoscale based 
design tools. For example, titanium alloys are prone to not only 
creep but also to the elusive phenomenon of dwell fatigue which 
compounds aspects of both static and cyclic loading and results in 
the propagation of a crack to failure. Dwell fatigue limits the life 
time of many aircraft components. Despite many research efforts, 
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the underlying mechanisms remain unknown. Our data reveal the 
internal stresses in individual grains which result from complex 
grain interactions. Such data should offer significant insight into 
the mesoscale boundary conditions that drive crack initiation and 
short crack growth. A large plastic strain is known to initiate void 
nucleation [34), and the voids are known to grow and coalesce 
when subjected to a high hydrostatic tensile stress [35,36), leading 
to a strong decrease in ductility with increasing hydrostatic tension 
[35,37 39). Our analysis shows that initially high hydrostatic stress 
is correlated with low stress co axiality angle. As the creep defor 
mation proceeds the stress states become further decoupled from 
the external loading direction as seen by an increase in magnitude 
of the stress co axiality angle (Fig. 8e) and seemingly random spa 
tial distribution (Fig. 8c). This observation necessitates the develop 
ment of validated mesoscale based models. 
Sources of error 

Though the results from this initial study are promising, these 
experiments contain many sources of error that influence the cal 
culated stress values. Specifically, any error due to uncertainty in 
the lattice constants, elastic moduli, and the sample dimensions 
will result in a scaling of the stress values. Such errors would alter 
the values of the presented stresses, but not the nature of the 
trends. 

Moreover, issues such as stage precision and detector distortions 
also come into play [40). The propagation of errors in the fitted 
(gaussian assumption) diffraction spot posit ions through the least 
squares fitting of the grain deformation gradient was discussed by 
Edmiston et al. [41 ). The values of the stress deviators have been 
shown to be relatively insensitive to small errors in the calibration 
of the instrument parameters. A detailed discussion of the 
7 
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calibration and deformation gradient fitting procedures may be 
found in [15). It should also be noted again that the nf HEDM and 
tT HEDM scans were not measured concurrently in this study. There 
fore it can be expected that the absolute registry of the diffracting 
volumes between the two scans could differ along the loading axis 
by ~1 11m (stage error, beam drift). Furthermore, small non orthog 
anality between the rotation axis and the major axis of the beam 
profi le could lead to very small portions of grains leaving the beam 
for some part of the 360° scanning interval. This would lead to arti 
ficially low completeness values for otherwise valid grains. 
Outlook 

Continuing developments within the HEDM community are 
rapidly advancing. Currently the data from each of the three tech 
niques are analyzed separately and subsequently combined. 
Though the current datasets are key for model development, the 
quality will increase as we begin to adapt our treatment of the 
raw data to consider all three techniques in concert. Moving to a 
forward model of the interaction of the X rays and the material 
that accounts for the signals measured at each detector will result 
in a tool that far exceeds the sum of the results from the conven 
tional analysis for each technique. Moreover, such advances should 
cascade through other crystalline material systems. Our selected 
example highlights the strengths of the tool, however, for other 
materials such as ceramic matrix composites, the need for HEDM 
type datasets is equally pronounced given the complex interplay 
of evolving microstructure and void networks during loading 
[42,43). 

We have shown here that three probes can be combined in one 
experimental setup: nf HEDM (grain geometries, orientations, ori 
entation gradients, boundary networks), tT HEDM (grain centers of 
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Table 2 
The area weighted average of each stress component is provided in units of MPa. 
During the creep experiment the nonzero component of the applied macroscopic 
stress state ( <1 yy) was 4 73 MPa. The estimated uncertainty in each component is 
±12MPa. 
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mass, orientations, and strain states), ll cr (density variations due 
to inclusions, cracks, voids). The experimental facility at the APS 1 
10 E hutch and our in situ mechanical loading system are also 
compatible with at least three additional configurations, each 
yielding complementary types of information Instead of the single 
far field detector used here, one can employ a four panel array of 
the same detector type (the "hydra" array) which yields increased 
strain resolution and/or higher q coverage [44). A "very far field" 
configuration places an additional detector ~4 m downstream of 
the sample; this allows high resolution reciprocal space mapping 
in the vicinity of isolated Bragg peaks which has been shown to 
yield information about nano scale defect configurations such as 
dislocation cells. [9,45,46). Finally, small angle scattering can be 
measured ~6 m downstream of the sample to yield sensitivity to 
statistical distributions of nano scale features such as second 
phases and early stage voids [44,47,48). It is possible to use any 
and all of these capabilit ies to probe an individual sample while 
under load. Further, a next generation RAMS device is being con 
structed that will facilitate cyclic and torsional loading at high 
8
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temperatures. This extremely extensive and flexible set of capabil 
ities promises to illuminate many mesoscale materials problems 
and should play an important role in development of improved 
understanding and modeling capabilities. 
Summ ary 

The nature of the application of structural materials demands 
that their performance be reliable. It's well known that the behavior 
of such materials is a product of the microstructure, and that failure 
initiation sites can often be linked to local microstructural features. 
Yet modern design and sustainment methodologies for structural 
materials remain reliant upon models with homogenized represen 
tations of the material structure and large scale conventional 
mechanical testing efforts. This is extremely costly, both in the 
sense that conventional mechanical test databases are expensive 
to produce, and also that this homogenization approximation 
scheme inherently requires unnecessary conservatism as local 
microstructural (mesoscale) effects are ignored. Moving forward, 
the development and validation of a microstructure sensit ive mod 
eling framework that can accurately predict materials behavior 
(including variability and uncertainty) would allow the maximiza 
tion of component capability and life, while reducing cost/time to 
certify and improve safety. 

The type of results presented here, with integrated data charac 
terizing the material structure as well as internal stress distribu 
tions, should play a key role in developing a more sophisticated 
understanding of material behaviors and should serve as a basis 
for validation of modeling efforts. Development of new materials 
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expressing improved performance characteristics, as well as
building efficiencies into the design process, rests upon establishing
validated computational models that link materials processing to
microstructure and microstructure to properties and performance
[49]. Trusted modeling tools for the prediction of responses at the
grain level and above have been severely limited by the historical
lack of in situ characterization at the mesoscale.

We have demonstrated a new experimental capability that pro
vides a micron scale (mesoscale) spatiotemporally resolved probe
for tracking evolving microstructure correlated with the stresses
driving deformation. These first of a kind results already show
an unexpected evolution of grain level stresses in a titanium alloy
undergoing creep deformation. We anticipate many additional dis
coveries since this new form of microscopy is in its infancy. Within
this powerful new methodology, the explicit microstructure
becomes the test bed for exploring the validity of historically nec
essary or wholly new assumptions, and for driving further model
development. Moreover, these datasets open the possibility of
new fundamental design frameworks built upon quantitatively
defined hierarchies of theories coupling nano scale to meso scale
and macroscopic responses. Such models are critical for developing
the next generation of engineering design protocols, for example
the design of components with graded microstructures, where
the microstructure at a specific point in a component is tailored
to provide optimized properties for that location.
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