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Electron backscatter diffraction was used to study grain structure development in heavily cryogenically rolled
Cu 30%Zn brass. The produced microstructure was found to be very inhomogeneous. At a relatively coarse
scale, it consisted of texture bands having crystallographic orientations close to the α and γ fibers. The texture
bands contained internal structure comprising shear bands, mechanical twins, and low angle boundaries. Such
featuresweremore pronouncedwithin theγ fiber, and this resulted in a heterogeneous ultrafine grain structure.
The cryogenic rollingwas concluded to benot straightforward for production of nanocrystalline grain structure in
Cu 30%Zn brass.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The possibility of a substantial improvement in the mechanical
properties of alloys has given rise to considerable commercial interest
in techniques for grain refinement. Of particular importance are cost
effective methods that can be used for production of large quantities
of ultrafine grain materials. In this regard, an approach involving large
deformation at cryogenic temperatures has recently attracted significant
attention. It is believed that low temperatures may suppress dynamic
recovery and stimulate mechanical twinning, thereby enhancing the
grain refinement effect. This may decrease the level of strain necessary
to achieve an ultrafine microstructure and thus enable the application
of conventional working processes such as rolling to obtain such
materials.

To date, the majority of research in the field of cryogenic working
has focused on aluminum alloys and pure copper [e.g., 1 7]. In both
materials, cryogenic rolling has been found to provide no significant
grain refinement effect [1,2]. This disappointing observation has been
attributed to the suppression of cross slip under cryogenic conditions,
thus leading to a retardation of the formation of dislocation boundaries
[2]. On the other hand, pronounced microstructural refinement has
been observed during dynamic (high strain rate) cryogenic deformation
Processing, Graduate School of
a, Sendai 980-8579, Japan.
ironov).
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of copper [3] and alpha brass [8] as well as during cryogenic rolling of
commercial purity titanium [9]. In all cases, the formation of an
ultrafine grain structure has been attributed to mechanical twining
and shear banding. Thus, it appears that cryogenic deformation is
most effective for materials prone to activation of these two deformation
mechanisms.

Due to its very low stacking fault energy, extensive twinning and
shear banding usually occur during cold deformation of Cu 30Zn
brass, and thus significant grain refinementmay be expected. This effect
is well documented for rolling of this material at ambient temperature
[10], as well as for dynamic cryogenic deformation [8], as mentioned
above. Because dislocations in this alloy are dissociated into partials, a
distinct cell structure is not formed. This gives rise to significant strain
hardening and the activation of profuse mechanical twinning after a
true strain of ~0.6 [8,10]. The extensive twinning produces a nanoscale,
lamellar like, twin matrix structure. Due to the very small slip distance,
subsequent slip in the twinned areas occurs primarily along a common
twin/matrix {111} plane [10]. This provides a rotation of the slip plane
toward the rolling plane, thus reducing the associated Schmid factor
for slip to zero [10]. As a result of the suppression of grain scale slip,
intense shear banding occurs after true strains of ~0.8 [8,10]. This
eventually leads to the formation of a nanoscale structure [8,10].

It should be noted that prior microstructural observations of heavily
cold rolled alpha brass were performed primarily by transmission
electron microscopy (TEM). Despite the excellent resolution of TEM,
the statistical reliability of such results is not clear. Hence, the objective
ublic release; distribution unlimited.



1 Note: EBSD maps shown in Figs. 1a & 3 were obtained by stitching two smaller EBSD
maps.

2 Here and hereafter, a reader is referred to on-line version of the paper to see figures in
color.

Fig. 1. Texture of cryo-rolled brass: (a) Low-resolution EBSD inverse-pole-figure map (color orientation code is shown in the bottom left corner), (b) orientation distribution function de-
rived from the map. In (b), some of the ideal rolling textures for face-centered cubic metals [12] are also shown.
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of the present work was to provide deeper insight into themechanisms
of grain refinement and texture evolution during cryogenic rolling of
Cu 30%Zn brass using electron back scatter diffraction (EBSD) imaging.

2. Materials and methods

The programmaterial comprised Cu 30%Zn, variously referred to as
yellowor cartridge brass,with ameasured composition (inwt.%) of 29.5
Zn, 0.5 Pb andbalance Cu. Itwasmanufactured by ingot casting followed
by 10% cold rolling and subsequent annealing at 800 °C for 30 min. This
processing route produced millimeter size grains which retained some
degree of the original dendritic structure, but very few annealing twins.

The material was cryogenically rolled to 90 pct. overall thickness
reduction (true strain = −2.3) using a reduction per pass of 10 pct. In
order to provide cryogenic deformation conditions, the rolling preform
and work rolls were soaked in liquid nitrogen prior to each pass and
held for 20 min; immediately after each pass, the workpiece was
re inserted into liquid nitrogen. The typical flat rolling convention
was adopted in this work; i.e., the rolling, long transverse, and thickness/
normal directions were denoted as RD, TD, and ND, respectively.

To preserve the deformation induced microstructure, the cryo
rolled material was stored in a freezer at ~−20 °C prior to examination.

Microstructure characterization was performed primarily via EBSD
examination of the mid thickness rolling plane (containing the RD
and TD). For this purpose, samples were prepared using conventional
metallographic techniques followed by long term (24 h) vibratory
polishingwith a colloidal silica suspension. EBSD analysis was conduct
ed with a JSM 7800F field emission gun, scanning electronmicroscope
equipped with a TSL OIM™ EBSD system. To examinemicrostructure at
different scales, several EBSD maps were acquired with a scan step size
of 0.05 or 0.25 μm. To differentiate the maps, they are denoted as “high
resolution” and “low resolution”, respectively, throughout this paper. To
2
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improve the reliability of the EBSD data, small grains comprising three
or fewer pixels were automatically removed from the maps using the
grain dilation option in the TSL software; this procedure thus excluded
grains smaller than ~0.09 μm from consideration. Furthermore, to
eliminate spurious boundaries caused by orientation noise, a lower
limit boundary misorientation cutoff of 2° was used. A 15° criterion
was employed to differentiate low angle boundaries (LABs) and high
angle boundaries (HABs). Grain sizewas quantified by the determination
of the area of each grain and the calculation of its circle equivalent diam
eter, i.e., the so called grain reconstruction method was applied [11].

3. Results and discussion

The principal results of thiswork comprised quantitative determina
tion of various texture and microstructure features.

3.1. Texture

A composite1 low resolution EBSD inverse pole figure (IPF)map for
the cryo rolledmaterial is shown in Fig. 1a; in themap, individual grains
are colored according to their crystallographic directions relative to the
ND using the typical color code triangle in the bottom left corner of the
figure.2 From a broad perspective, the structure consisted of bands
aligned with the RD and having a crystallographic orientation close to
b110N//ND or b111N//ND (green and blue colors, respectively).
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Fig. 2. Distribution of texture intensity (x random) along (a) α-fiber, (b) β-fiber, (c) τ-fiber, and (d) γ-fiber.
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Orientation data from the IPF map were used to quantify the
crystallography of the banded structure in more detail (Figs. 1b, 2 and
Table 1). For comparison purposes, several ideal rolling orientations
for face centered cubic metals (after Hirsch, et al. [12]) are shown in
Fig. 1b. To a first approximation, the observed texture was interpreted
in terms of the superposition of two partial fibers α b110N//ND and
γ b111N//ND (Figs. 1b and 2); the α fiber was more pronounced than
the γ fiber (Table 1). Thus, the texture bands in Fig. 1a are indicative
of the α and γ fibers. Within the α fiber, strong Brass {110}b112N and
Goss {110}b100N components were noted (Figs. 1b & 2a), whereas
the γ fiber was dominated by the Y {111}b112N texture component
(Figs. 1b & 2d). The Brass, Goss and Y components were characterized
by large orientation spreads which gave rise to texture intensity along
the β and τ fibers (Fig. 2b & c). Furthermore, the Brass orientation was
Table 1
Volume fractions of texture components.

Texture component

Notation Crystallographic orientation

α-Fiber <110>//ND

γ-Fiber <111>//ND

Brass {110}<112>/{110}<113>

Goss {110}<100>

Y {111}<112>

*Note: Predominant orientations are highlighted in gray.

3 
Distribution Statement A.  Approved for p
found to be shifted from the expected φ1 = 35° location toward φ1 =
25° (Fig. 2a), i.e., from {110}b112N to {110}b113N. The reason for this
effect is unclear.

The measured texture was as expected for heavily cold rolled brass
[10]. The Brass component is commonly accepted to be a stable end
orientation, whereas Y and Goss are typically transient orientations
originating from twinning, slip, and subsequent shear banding [10].
The origin of the latter two orientations is discussed in more detail in
Section 3.3.

3.2. Microstructure

Insight into grain structure evolution was obtained from Kikuchi
band (image quality) and grain boundary maps (Fig. 3) which were
Volume fraction (pct.) 

within 15-deg. tolerance

49.0

17.4

22.5/30.8

9.9

7.3

ublic release; distribution unlimited.



Fig. 3. LowresolutionEBSDmaps illustrating grain structure of cryo-rolled brass: (a)Kikuchi-bandmapand (b) grain-boundarymap. In (a), selected areas showclusteringof deformationbands.
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derived from the same region as the IPF map in Fig. 1a. Of particular
interest were dark bands in the image contrast map such as that
indicated by an arrow in Fig. 3a. As shown below, these bands
comprised an ultrafine grain structure, thus likely being shear bands
commonly observed in heavily cold rolled brass. Importantly, the
shear bands were preferentially concentrated within the γ fiber as
deduced by a comparison of Figs. 1a and 3a. Moreover, the γ fiber was
also characterized by a larger twin content and denser LAB substructure
than found in the α fiber (Figs. 3b & 1a).

Higher resolution EBSD data within the specific texture bands
provided a clearer view of the substructure within the α and γ fibers
(Figs. 4 and 5). Within the α fiber, shear bands were observed only
sporadically (arrows in Fig. 4a). They were characterized by a very
fine grain structure and were surrounded by twins (Fig. 4b).
Interestingly, the shear bands lay relatively close to traces of {111}
Fig. 4.Microstructurewithin theα-fiber bands: (a) Image-qualitymapand (b) grain-boundarym

4
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close packed planes (Fig. 4a). All these observations agree well
with those for shear bands found in alpha brass heavily rolled at
room temperature [10]. With the exception of the shear bands, the
substructure of the α fiber was relatively simple. It was dominated
by nearly parallel arrays of LABs which were aligned with the
{111} plane traces (Fig. 4b). Such lamellar substructures are typical
for heavily cold rolled cubic metals, and are usually attributed to a
specific grain subdivision mechanism [13]. The observed lamellar
boundaries were typically low angle in nature (Fig. 4b) thus indicat
ing that the LAB to HAB transformation was relatively slow. In
addition, very fine, equiaxed grains were observed sporadically in
the microstructure (an example is circled in Fig. 4b); their origin is
not clear.

The substructure within the γ fiber, by contrast, was more com
plicated, mainly as a result of numerous shear bands and series of
ap. In (a), arrows indicate deformation bands; broken lines indicate traces of {111} planes.

 
r public release; distribution unlimited.



Fig. 5.Microstructure within the γ-fiber bands: (a) Image-quality map and (b) grain-boundary map. In (b), the arrow indicates an example of a deformation-induced HAB.

Fig. 6. Orientation distribution functions showing texture within (a) twinned areas and (b) shear bands.

3 Spatially, the shear bands were preferentially located within the γ texture bands
(Fig. 1a). However, their crystallographic orientations were often close to the α fiber
(Fig. 6b). Thus, shear banding was associated with the transformation of the γ fiber into
the α fiber.
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twins (Fig. 5). The mean grain size within the shear bands was
~0.2 μm. The twins had nearly lenticular morphology and were also
~0.2 μm in thickness (Fig. 5b) thus providing evidence of their
deformation origin. The LAB substructure was relatively dense and
complicated, but the lamellar morphology seemed to predominate
(Fig. 5b). The mean LAB misorientation was higher than that in the
α fiber (5.8° vs 4.4°), thus suggesting more rapid microstructural
evolution in the γ fiber. Some subboundary segments even accumu
lated misorientations over 15°, thus transforming into deformation
induced HABs; an example is indicated by the arrow in Fig. 5b.
However, such transformations were relatively rare, and thus grain
refinement within the γ fiber was largely a result of shear banding
and twinning (Fig. 5b).

It is worth noting that the grain structure revealed in the present
study is substantially coarser than those observed by Xiao et al. in
dynamically cryo deformed brass [8]. In the earlier work, the formation
of nanoscale microstructure consisting of ~50 nm grains within shear
bands and ~10 nm twins was reported [8]. This discrepancy may be
related to different deformation conditions (i.e., rolling vs dynamic
plastic deformation) or different microstructure characterization
techniques (EBSD vs TEM) used in these efforts.
5 
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3.3. Crystallographic orientations of twinned areas and shear bands

Due to the large impact of twinning and shear banding on grain
refinement, their origin was of particular interest. Thus, the crystallo
graphic orientations of these features were extracted from EBSD maps
and are summarized in Figs. 6 & 7 and Table 2.

The crystallographic orientations of the twinned areas were close to
the γ fiber (Fig. 6a, Table 2) with a pronounced Y {111}b112N texture
component (Figs. 6a & 7d, Table 2). This is as expected for heavily
cold rolled brass. The Y texture is commonly accepted to originate
frommechanical twinning of grainswith the Copper {112}b111N orien
tation, which occurs at an intermediate level of rolling reduction, and
the subsequent slip of the twinned andmatrix material on the common
{111} twinning plane [10].

The orientation distribution of the shear bands was more complex. It
included elements of theαfiber3with strongBrass andGoss components
ublic release; distribution unlimited.



Fig. 7. Intensity (x random) of twinned-region and shear-band texture components within (a) α-fiber, (b) β-fiber, (c) τ-fiber, and (d) γ-fiber.
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(Figs. 6b & 7a, Table 2) as well as the γ fiber (Fig. 6b) with Y and Z
{111}b110N orientations (Fig. 7d, Table 2). All of these observations are
in line with the typical textures developed during rolling of brass at
room temperature [10]. The Z orientation is believed to originate from
twinningof the S {123}b634N component (developed atmoderate rolling
reductions) and subsequent slip. Together with the Copper twins, this
produces the γ fiber. This fiber consists of packages of very narrow
(~0.1 μm) twin/matrix lamellae and is characterized by an alignment of
{111} planes with the rolling plane. In the γ fiber, the further slip is
believed to be increasingly difficult because either the Schmid factor for
Table 2
Volume fractions of texture components in twinned regions and within shear bands.

α-Fiber

γ-Fiber

Texture component

Notation Crystallographic orientation

<110>//ND

<111>//ND

Brass {110}<112>/{110}<113>

Goss {110}<100>

Y {111}<112>

Z {111}<110>

*Note: Predominant orientations are highlighted in gray.

6
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slip on the operative plane decreases toward zero or the slip distance
for slip on the other {111} planes is limited. Such geometrically strength
ened structures are believed to be highly unstable and prone to shear
banding. The shear bands rotate the γ fiber toward the Goss orientation,
and subsequent slip in the Goss produces the final stable Brass texture.
The presence of the Y, Z, Goss, and Brass orientations within the shear
bands revealed in this work thus reflect different stages of texture
development.

It is also noteworthy that the peak intensity of the orientation distri
bution of the shear bands was relatively low (Fig. 6b). This observation
Volume fraction (pct.)

within 15-deg. tolerance

Twinned region Shear bands

7.4 32.0

76.0 13.5

1.8/1.5 11.5/14.8

1.5 6.6

50.6 4.7

12.8 5.3
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is consistent with the large orientation spread typically found within
shear bands in cold rolled brass [10], and can be attributed to the com
plex character of slip within the shear bands.

From the above results, it appears that the twinning and shear
banding processes at cryogenic temperatures are broadly similar to
those occurring during rolling at room temperature. Therefore, grain
refinement during cryogenic rolling should also be governed by the
development of the easily twinned Copper and S orientations at
intermediate levels of strain. To increase the volume fraction of the
fine grained structure in the final material, it is thus necessary to
promote the extensive formation of the Copper and S orientations at
moderate levels of reduction. Unfortunately, it is not clear now how
this can be achieved.

It is also worth noting that a benefit of rolling at cryogenic tempera
ture to refine the grain sizewas not evident. To clarify this issue, a direct
comparison of microstructures produced by conventional cold rolling
and cryogenic rolling is required.

4. Summary

In this work, high resolution EBSD was applied to establish the
mechanisms of grain refinement during cryogenic rolling of Cu 30%Zn
brass. The main conclusions from this work are as follows.

(1) Cryogenic rolling can be applied to break down millimeter scale
grains to produce an ultrafine grain structure. However, the
microstructure thus produced tends to be heterogeneous.
Broadly speaking, it may be described in terms of texture bands
having crystallographic orientations close to the α b110N//ND
fiber and γ b111N//ND fiber. At a local scale, on the other hand,
the texture bands contain microstructural features comprising
mechanical twins, shear bands, and LABs. Grain refinement was
found to be primarily related to twinning and shear banding.
The preferential concentration of twins and shear bands within
the γ fiber bring about the heterogeneous microstructure.

(2) The crystallographic orientations of twinned areas are dominat
ed by the γ fiber with a pronounced Y {111}b112N component.
The orientation distribution of the shear bands is much broader
varying from the Y {111}b112N to Goss {110}b100N and Brass
{110}b112N components. This suggests that mechanisms of
twinning and shear bandingwere broadly similar to those occur
ring during rolling at ambient temperature.
7 
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