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Optimal Runge-Kutta Schemes for High-order Spatial and

Temporal Discretizations

Nathan L. Mundis∗ Ayaboe K. Edoh† Venkateswaran Sankaran‡

* ERC, Inc.,

†University of California – Los Angeles,

‡Air Force Research Laboratory,

Edwards Air Force Base, California 93524

Numerical discretization for unsteady flow simulations can be broken down into spatial and temporal parts

which interplay in complex and sometimes unexpected ways. This paper attempts to address how the prop-

erties of the spatial discretization help drive the choice of temporal discretization. In addition, it examines

methods for higher than second-order accurate time integration using L-stable singly-diagonally-implicit (ES-

DIRK) Runge-Kutta methods.1, 2 Von Neumann analysis is used to examine the theoretical effects of different

spatial/temporal discretization combinations. The predictive nature of the von Neumann analysis is then val-

idated through the exploration of the convection of acoustic waves in one dimension and an isentropic vortex

in three dimensions. Is is shown that the computational results follow the expected trends taking the von Neu-

mann analysis of the schemes into account. This work highlights that, for unsteady problems, both dissipation

and dispersion errors must be accounted for when selecting optimal Runge-Kutta time integrators.

I. Introduction

The use of high-order spatial discretizations is becoming common for complex, unsteady flow simulations. How-

ever, the accuracy of time integration methods has not kept pace with advances in spatial accuracy and second-order

accurate methods in time remain the norm. This limit in temporal accuracy is primarily a result of the second Dahlquist

barrier which states that no A-stable, implicit linear multistep method of order of accuracy greater than two exists.3

As such, for higher-order time integration, multistage methods, such as Runge-Kutta (RK) methods must be utilized.

Since multistage methods require multiple residual calculations for a given time step, they seem immediately to be

poor choices. However, Wang and Mavriplis have shown, for the same fourth-order, diagonally implicit Runge-Kutta

method investigated in this work, that high accuracy requirements favor higher-order time integration using larger time

steps versus lower-order time integration with smaller time steps.4 In the present work, an attempt is made to gener-

alize these results to a broader class of high-order temporal and spatial schemes. Specifically, von Neumann analysis

is performed to categorize the dissipation and dispersion properties of several candidate schemes and to discern their

comparative strengths and weaknesses. The results of the von Neumann analysis are then shown to extend readily to

real world flows in the form of a convecting isentropic vortex.

Explicit Runge-Kutta time integrators may seem to offer a cheaper route to high-order temporal accuracy, and,

indeed, are widely used for that purpose. However, explicit methods are limited by stability restrictions that make

them unsuitable for stiff problems such as flows with disparate physical timescales. Examples include low Mach

number flows, which are particularly challenging when the low-Mach regions occur simultaneously with transonic and

supersonic regions. In addition, timescale stiffness occurs in high Reynolds number boundary layers, wherein the close

cell spacing in the wall-normal direction introduces severe time-step restrictions that render the evolution of large-scale

features such as vortices quite inefficient. Preconditioning methods have been developed to address the low-Mach

limit,5,6,7,8,9,10,11,12 aspect ratio convergence degradation,5,8 and both the low and high Reynolds number limits,8,9

among others. Moreover, for preconditioned unsteady solutions in physical time, a dual-time stepping paradigm must
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be used13 where each physical time-step is treated as an instantaneously steady solution in pseudo time. In this way,

preconditioning can be used at the pseudo-time level and the accuracy of the physical-time solution is retained. In fact,

it has also been shown that the preconditioning formulation enables the definition of the artificial dissipation terms to

be cast in such a way that accuracy is preserved for stiff problems.7 Therefore, for generality and because of interest in

multi-speed and high Reynolds number, wall-bounded flow regimes, a dual-time framework is adopted in the present

work.

In the present work, von Neumann analysis14 is used systematically to examine the stability behavior and the nu-

merical dissipation and dispersion errors of general combinations of high-order spatial and temporal discretizations.

Different Runge-Kutta time integrators are applied to central-difference spatial schemes with added artificial dissipa-

tion terms. The overall objective is to gain better understanding of the accuracy of these schemes and to determine

optimal choices of spatial and temporal discretizations for practical Euler and Navier-Stokes simulations at all speeds

and Reynolds numbers.

The following section describes the governing equations and spatial and temporal discretizations. Then, the theory

behind von Neumann analysis as well as its results in the form of dissipation and dispersion error analyses are pre-

sented. Next, results of the convection of acoustic waves in one dimension and an isentropic vortex in three dimensions

are cataloged. Finally, important conclusions as well as the path forward from the present work are summarized.

II. Governing Equations

Consider the Navier-Stokes equations written using dual-time stepping with both physical- and pseudo-time steps,

as follows:
∂Q

∂τ
+

∂Q

∂t
+

∂Fi

∂xi

=
∂Vi

∂xi

+H (1)

where the first term is the pseudo-time derivative, the second term is the physical-time derivative, the third term is the

convective term using the inviscid fluxes Fi, the fourth term is the derivative of the viscous fluxes Vi, and the last term

H is a source term. In the present work, H = 0 for all of the solutions and analyses presented: it is included above

for thoroughness. The vector of conserved variables is given by Q = [ρ ρui ρe0]
T

, while the inviscid fluxes are

given by Fi = [ρui ρuiu j + pδi j uiρh0]
T

where h0 = e0 +
p
ρ . To aid in analysis, the Navier-Stokes equations are

frequently written in quasi-linear form as follows:

∂Q

∂τ
+

∂Q

∂t
+A

∂Q

∂xi

=
∂Vi

∂xi

+H (2)

where A= ∂Fi

∂Q
= MΛΛΛM−1, with M and M−1 being the right and left eigenvectors, respectively, and ΛΛΛ being the matrix

of eigenvalues, λ = {ui + c,ui,ui − c}. The Navier-Stokes equations can also be rendered in a residual formulation as

follows:
∂Q

∂τ
+

∂Q

∂t
+Rs (Q) = 0 (3)

where Rs =
∂Fi

∂xi
− ∂Vi

∂xi
−H is the complete spatial residual of the chosen spatial discretization.

A. Spatial Discretization

In the present work, the convection term will be discretized using central differences with second, fourth, and sixth

orders of accuracy, as follows:
∂ϒ j

∂xi

∣

∣

∣

∣

II

=
ϒ j+1 −ϒ j−1

2∆xi
(4)

∂ϒ j

∂xi

∣

∣

∣

∣

IV

=
−ϒ j+2 + 8ϒ j+1 − 8ϒ j−1 +ϒ j−2

12∆xi

(5)

∂ϒ j

∂xi

∣

∣

∣

∣

VI

=
ϒ j+3 − 9ϒ j+2 + 45ϒ j+1− 45ϒ j−1 + 9ϒ j−2 −ϒ j−3

60∆xi

(6)

where ϒ could be Fi or Q depending on the form of the equations.

As is well known, if central differences are used for the convection term, it is generally necessary to add a dissi-

pative term to the Navier-Stokes equations to ensure convergence. In the present work, scalar artificial dissipation is
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utilized for this purpose as follows:

Rs =
∂Fi

∂xi

− εη ‖ λ ‖ ∂ηQ

∂x
η
i

− ∂Vi

∂xi

−H (7)

where η is an even number corresponding to one more than the order of accuracy inherent in the artificial dissipation

term, ‖ λ ‖= |ui|+ c is the maximum inviscid eigenvalue of the pseudo-linear equations where ui is the velocity in the

direction in which the derivative is being taken, and εη is a scaling factor appropriate for the chosen order of accuracy:

εII =
∆xi

2
, εIV =−∆x3

i

12
, εV I =

∆x5
i

60
.

Typically, ∂ηQ

∂x
η
i

is discretized using a second-order accurate finite difference formula of the η-degree derivative. The

order of accuracy of the artificial dissipation term is given by the power of the ∆xi in the εη coefficients.

B. Preconditioning

To accelerate the convergence of the system for a variety of physical and computational phenomena that can cause

the system to become stiff, preconditioning can be used. Phenomena that increase the stiffness of the system include,

but are not limited to, low Mach number, high aspect-ratio cells, low and high Reynolds number, and high-frequency

unsteadiness. Preconditioning techniques to address all of these phenomena have already been developed in the lit-

erature.6,7,5,8,9 In addition, the source term H can also cause the system to become stiff. Preconditioning to address

source term stiffness could also be developed along similar lines, depending on the nature of the source term.

C. Temporal Discretizations

Thus far, the focus has been on the spatial discretization. In this section, the discretization of the temporal derivatives

is considered. Both physical- and pseudo-time derivatives are discretized with Runge-Kutta methods. Consider the

flow equations written in residual form as given above, but repeated for convenience:

∂Q

∂τ
+

∂Q

∂t
=−Rs (Q) .

First, the physical time derivative will be discretized as follows:

∂Q

∂τ
+

Qm −Qn

∆t
=−

s

∑
j=1

am jRs

(

Q j
)

(8)

where n is the physical-time step index, m is the physical-time Runge-Kutta stage index, and s is the number of RK

stages. The residual weights am j are drawn from the Butcher tableau for the chosen physical-time method. Each stage

occurs at a discrete fraction of the time step, which is given by the left column of c j in the Butcher tableau. If the

Runge-Kutta method is fully-implicit, the summation in equation (8) must truly range over all stages and the unknown

stage values must all be solved simultaneously. However, if a diagonally-implicit Runge-Kutta method is used instead,

this sum proceeds only through the current stage because the Butcher tableau for such a method is lower triangular.

Additionally, since current-stage values depend only on past-stage values, only the current stage value is unknown

during each stage evaluation. Thus, subsequent stages can be solved sequentially. For this reason, only diagonally-

implicit Runge-Kutta methods are considered in the present work. The updated solution at the end of the physical-time

step is calculated from the already-solved stage values as follows:

Qn+1 = Qn −∆t
s

∑
j=1

b jRs

(

Q j
)

(9)

where the b j are taken from the bottom row of the Butcher tableau. All the schemes considered herein are ”stiffly

accurate” meaning the row of b j is identical to the last row of am j. This property means that the result of the last

stage is also the result at the end of the time step and is considered to be an essential property in the solution of stiff

equations.15 The Butcher tableaux for all of the Runge-Kutta methods mentioned herein are given in Appendix A.

The pseudo-time derivative can be discretized either implicitly with BDF1 or explicitly with forward-Euler or an

explicit Runge-Kutta method; in the present work, Jameson’s explicit fourth-order Runge-Kutta is used for pseudo-

time stepping. Choice of the pseudo-time discretization has little impact on solution accuracy and primarily impacts

solution efficiency. As such the precise choice of pseudo-time method will not be discussed further.
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III. Von Neumann Analysis

One of the main goals of this analysis is to examine the characteristics of different time integrators when applied

to specified spatial discretizations. For linear equations, von Neumann analysis can not only give indications of the

stability of a given combination of spatial and temporal schemes, it can also indicate how the numerical solution will

differ from the exact solution. The output of von Neumann analysis includes both of the following: which wave

numbers are damped and by how much per time step (dissipation error) and how the wave speeds at various wave

numbers correspond to the exact wave speeds at those same wave numbers (dispersion error). The following sections

describe both how von Neumann analysis can be applied to the implicit Runge-Kutta time integrators and the results

for different combinations of the spatial and temporal discretizations discussed above. It should be noted that although

von Neumann analysis is technically only valid for linear equations, it has been assumed that the insights garnered from

it are at least approximately applicable to the non-linear Euler equations. It should also be noted that the method used

in this paper to perform von Neumann analysis is specifically tailored for equations that can be treated numerically as

systems of ordinary differential equations.

A. Theory

To derive von Neumann analysis, begin with the scalar equation:

∂q

∂t
+λ

∂q

∂x
− εη|λ|

∂ηq

∂xη
= 0 (10)

Replace q with its Fourier representation at spatial points j and temporal points n:

qn
j = ∑∞

k=1 q̂keωteikx

qn
j−1 = ∑∞

k=1 q̂keωteik(x−∆x)

qn
j+1 = ∑∞

k=1 q̂keωteik(x+∆x)

qn+1
j = ∑∞

k=1 q̂keω(t+∆t)eikx

etc.

(11)

Even though an infinite summation is shown above, a given resolution can in fact only resolve a finite number of modes.

Taking q̂k = 1 (because it turns out that all the q̂k will cancel for linear systems) and using the above substitutions in

equation (10) with the spatial part discretized using central differences, the following spatial eigenvalue contributions

are obtained for the flux contribution:

Z(θ)II =− i
∆x

λsinθ

Z(θ)IV =− i
6∆x

λ [8sinθ− sin2θ]

Z(θ)V I =− i
30∆x

λ [45sinθ− 9sin2θ+ sin3θ]

Z(θ)V III =− i
140∆x

λ
[

224sinθ− 56sin2θ+ 32
3

sin3θ− sin4θ
]

(12)

where θ = k∆x is the wave number which ranges from [−π,π]. For the artificial dissipation contribution, the following

spatial eigenvalue contributions are obtained for second-order accurate η-derivatives:

Z(θ)η = ζη
|λ|
2

(−1)
η
2 −1 (2cosθ− 2)η

(13)

where, as above, η is an even number corresponding to one more than the order of accuracy inherent in the artificial

dissipation term and:

ζII =
1

∆x
, ζIV =

1

6∆x
, ζVI =

1

30∆x
, ζVIII =

1

140∆x

which mirror the coefficients of the convective terms above. It should be noted that the convective contribution is

purely imaginary and the diffusive contribution is purely real. The total spatial eigenvalues are the the sum of the

convective term for the order of accuracy chosen and the diffusive term for the order of accuracy chosen.

Once the eigenvalues for the spatial discretization are found, they are then used in the time discretization. As noted

previously, all of the time discretizations considered herein can be written as Runge-Kutta schemes. The amplification
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factor for the combined spatial-temporal scheme can be calculated as follows for a general RK scheme with a Butcher

tableau as referenced in the previous section:

qn+1 = qn +∆t
s

∑
i=1

biki (14)

where the ki are the stage values found as follows for equation (10), above:

ki = Z (θ)qn+ci∆t = Z (θ)

(

qn +
s

∑
j=1

ai jk j

)

. (15)

where ci is the fraction of the time step at which the current stage is occurring, as given by the left column of a Butcher

tableau, discussed above. By rearranging this equation into the following form:

(1− aiiZ)ki −Z

(

s

∑
j=1,i6= j

ai jk j

)

= qnZ (16)

it becomes clear that it can be rewritten as a linear system as follows:













1− a11Z −a12Z · · · −a1sZ

−a21Z 1− a22Z · · · −a2sZ
...

...
. . .

...

−as1Z −as2Z · · · 1− assZ



































k1

k2

...

ks























= qn























Z

Z
...

Z























(17)

This equation is then solved for ki, which are then combined in equation (14) as follows to find the amplification factor

G(Z) as a function of the complex spatial eigenvalues as follows:

G
(

Z
(

θ
)

)

=
qn+1

qn
= ∆t

(

1+
s

∑
i=1

biki

)

. (18)

When the magnitude of G(Z) is found, |G| gives the amplification of the scheme for a given spatial eigenvalue or

wave number. When |G|> 1, the scheme is unstable as the values are amplified. When |G|< 1, the scheme is stable

as the values are dissipated. Ideally |G| ≤ 1, but also very close to one for all wave numbers except the highest wave

number. When the angle formed by the real and imaginary parts of G(Z) is found and divided by the corresponding

wave speed −λθ for the given scheme, the phase error of the overall scheme is found, as follows:

φe =

tan−1

(

Im(G)
Re(G)

)

−λθ
. (19)

The phase error φe indicates what proportion of the exact wave speed the wave, corresponding to a given wave number,

is traveling. When φe > 1 the wave is moving faster than it should and when φe < 1 the wave is moving slower than it

should. Ideally, φe = 1 at all wave numbers.

B. Results

The results of the von Neumann analyses can clarify how the various spatial and temporal discretization combinations

behave. For instance, when progressively higher-order central differences are used, the spatial eigenvalues can be

observed to stay closer to their exact values for a larger range of wave numbers. This trend is expressed mainly by

shifting the location at which the extreme values occur to a higher wave number and increasing the magnitude of that

extreme, as can be seen in Figure (1(a)). In other words, as the order of accuracy increases, the eigenvalues for the

lower wave numbers become more and more linear. Even though the extreme value of the eigenvalues increases with

increasing order of accuracy, the condition number for different Mach numbers remains the same no matter the order

of accuracy of the spatial scheme because the spatial eigenvalues scale equally for all wave numbers.

The addition of artificial dissipation to the spatial discretization adds a negative real part to the spatial eigenvalues.

As the order of accuracy of the artificial dissipation term increases, the magnitude of this added real term increases
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Figure 1: (a) The imaginary part of the spatial eigenvalues for central differences of second, fourth, sixth, and eighth

order, and (b) the real part of the spatial eigenvalues for artificial dissipation of first, third, fifth, and seventh order

more slowly (indicating better accuracy), as can be seen in Figure (1(b)). It should be noted that since scalar dissipation

is used, all three waves experience the same amount of dissipation for a given wave number. It should be obvious that

this can cause problems at low Mach numbers. The fastest wave has a ratio of dissipation to convection of one at

the mid-wave number for second-order central differences and first-order artificial dissipation, whereas the slowest

wave, which scales like Mach number, has a ratio of convection to dissipation of 1
M

at the the mid-wave number. It

should also be noted that the CFL number acts as a scaling factor; thus, if the CFL number doubles, both the real

and imaginary parts of all three sets of spatial eigenvalues double. For this reason, it is sufficient only to examine the

spatial eigenvalue trends at a single CFL number.

To add the impact of the temporal discretization to the von Neumann analysis, the complex parametric curves

describing the spatial eigenvalues (with the wave number being the parameter) are overlaid on the contour map of the

amplification factor in the complex plane for the chosen temporal scheme. The complex valued amplification factors

that correspond to the spatial eigenvalue curves are used to find both the the magnitude of the growth factor, i.e. one

minus the numerical dissipation of the overall scheme, as well as the phase error of the overall scheme, as a function of

the wave number. Figures (2) and (3) plot the magnitude of the amplification factor versus the wave number for BDF1

and ESDIRK4 temporal discretizations. In all cases, only the most quickly propagating wave is shown. Subfigure (a)

charts this comparison using second-, fourth-, sixth-, and eighth-order central differences with no artificial dissipation,

while subfigure (b) plots the same series for spatial schemes with overall accuracy of first through sixth orders. As

can be seen, somewhat unexpectedly, higher-order central differences are actually more dissipative in the absence of

artificial dissipation. This result occurs because the growth factor in the imaginary direction (y-axis) decreases fairly

rapidly for BDF1. While the results for ESDIRK4 exhibit this same trend, it is important to note the scale on the y-axis

of the ESDIRK4 subplot (a) (i.e. dissipation is negligible).

Examining subfigure (b) in Figures (2) and (3) for spatial schemes with artificial dissipation and effective order

of accuracy as given in the plot legend, it is clear that for the BDF1 scheme, not much difference exists among the

spatial discretizations with the exception of the first-order accurate discretization. In other words, the BDF1 scheme

itself drives the overall numerical dissipation. On the other hand, for the ESDIRK4 scheme, it is clear that the artificial

dissipation term drives the overall numerical dissipation of the scheme. This is evidenced by the fact that schemes

with overall effective orders four and five, for instance, which share a common artificial dissipation term, are visually

coincident. It should also be noted that almost universally, higher-order spatial discretizations are less dissipative,

especially at low wave numbers, when the higher-order ESDIRK4 time integrator is used.

Of course, the dissipation of the scheme is not the whole story: dispersion error, as measured by the phase error,

i.e. how fast a wave travels relative to how fast it theoretically should be traveling, also plays a key role as a source of

numerical inaccuracy. Figures (4) and (5) plot the phase error for the BDF1 and ESDIRK4 time discretizations for all

the same spatial discretizations that were immediately previously discussed. As can be seen for the backward-Euler

time-discretization, universally, higher-order central differences have lower phase error for all wave numbers. This

trend becomes especially apparent when the overall order-of-accuracy discretizations are considered. These same

observations are even more pronounced when the ESDIRK4 time discretization is considered in Figure (5).

Figure (6) plots the magnitude of the growth factor (6(a)) and the phase error (6(b)) for the six different implicit

time integration schemes under consideration for the overall fifth-order accurate spatial discretization. In regards to
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Figure 2: The magnitude of the growth factor for the first-order accurate backward-Euler time discretization at a CFL

number of one (a) for second-, fourth-, sixth-, and eighth-order accurate central differences with no artificial

dissipation and (b) for the combination of convection and artificial dissipation terms that produces first through sixth

spatial orders of accuracy
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Figure 3: The magnitude of the growth factor for the fourth-order accurate ESDIRK4 time discretization at a CFL

number of one (a) for second-, fourth-, sixth-, and eighth-order accurate central differences with no artificial

dissipation and (b) for the combination of convection and artificial dissipation terms that produces first through sixth

spatial orders of accuracy
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Figure 4: The phase error for the first-order accurate backward-Euler time discretization at a CFL number of one (a)

for second-, fourth-, sixth-, and eighth-order accurate central differences with no artificial dissipation and (b) for the

combination of convection and artificial dissipation terms that produces first through sixth spatial orders of accuracy
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Figure 5: The phase error for the fourth-order accurate ESDIRK4 time discretization at a CFL number of one (a) for

second-, fourth-, sixth-, and eighth-order accurate central differences with no artificial dissipation and (b) for the

combination of convection and artificial dissipation terms that produces first through sixth spatial orders of accuracy

the growth factor, all of the ESDIRK schemes have very similar growth factor curves, especially in the lower half of

the wave numbers. Crank-Nicolson is less dissipative than any of the three aforementioned schemes at all except the

highest wave numbers, likely because of its small error constant, while backward-Euler is more dissipative at lower

wave numbers and less dissipative at higher wave numbers, which is not a desirable arrangement. When it comes

to phase error, generally, more accurate temporal discretizations have lower phase error, as can be seen from Figure

(6(b)). This is true at all but the highest wave numbers. The exception to this trend is BDF1, which has the highest

phase error of all the schemes at all wave numbers.
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Figure 6: The (a) magnitude of the growth factor and (b) phase error for the time discretizations shown in the legend

at a CFL number of one with overall effective fifth-order spatial accuracy

Figure (7) plots the dissipation (7(a)) and dispersion (7(b)) for the overall fifth-order accurate spatial discretization

and all of the time integrators for a CFL number of ten. This higher CFL number is plotted to assess how the

spatial/temporal schemes respond when different parts of a grid have different cell sizes (as may occur in the presence

of boundary layers) and to ascertain the effect of using larger time steps if, for instance, on a grid that would produce

the desired spatial resolution, the spatial error is still the dominant form of error. At increased CFL numbers, the

schemes are much more differentiated, with Crank-Nicolson clearly being the least dissipative and ESDIRK5 clearly

being the least dispersive. In light of the fact that ESDIRK4 has five implicit stages whereas ESDIRK5 has seven

implicit stages, the potential gains of ESDIRK5 over ESDIRK4 do not necessarily justify the increased cost. Indeed in

the flow results section, it will be shown that for the problems presented in this work, ESDIRK5 only shows worthwhile

accuracy gains over ESDIRK4 at high CFL numbers or on very resolved meshes.

Overall, the von Neumann analysis has shown that when a high-order spatial discretization is used a high-order

time discretization should also be used. Using one without the other appears to be an inefficient choice. It will be shown

that this is especially true on more refined spatial meshes. This analysis also shows that dispersion and dissipation are
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Figure 7: The (a) magnitude of the growth factor and (b) phase error for the time discretizations shown in the legend

at a CFL number of ten with overall effective fifth-order spatial accuracy

both important as sources of error. Indeed, it appears that dispersion error, in general, is the more important form of

error since higher-order temporal schemes appear mostly to correspond to schemes with lower dispersion error but not

necessarily lower dissipation error.

IV. Computational Results

Computational results are presented in the following subsections. First, one-dimensional solutions of the Euler

equations are presented. Then, results of the three-dimensional convection of a two-dimensional (cylindrical) isen-

tropic vortex are considered.

A. One-dimensional Results

The one-dimensional Euler equations serve as a simple test for the validation of the dissipation and dispersion char-

acteristics derived in the von Neumann analysis. The periodic governing equations utilize conservative variables as

expressed in equation (1), omitting the viscous and source terms. A Mach number M∞ = 0.5 is chosen and the uniform

background flow is defined by the following physical parameters:

ρ∞ = 8.7077× 10−1 kg

m3 , ρu∞ = 1.7458× 102 kg

m2·s , T∞ = 400K, R∞ = 2.871× 102 J
kg·K , γ = 1.4 (20)

While the Euler equations are solved in divergence form, the von Neumann analysis assumes linearity, which can be

accommodated by inducing only small perturbations with magnitude merely one-percent of the mean flow. The flow

is perturbed in a physically consistent manner by introducing the perturbations using the characteristic variables. In

this way, only the chosen wave numbers θ = k∆x can be excited. This process is given by the following equations:

Qo = Q∞ +MδQ̂u,u±c (21)

δQ̂u,u±c = δ̂ · cos(kx) (22)

where δ̂ = 0.01 or one percent of the quiescent flow value, as stated above. The subsequent evolution of the perturba-

tion wave by the numerical scheme is then tracked in characteristic variable space, so that it can be directly compared

to the dissipation and dispersion results supplied by the von Neumann analysis.

Only a single wavelength L of the perturbation is contained in the domain. This wavelength and therefore the

corresponding domain length is set to one meter. Resolutions I of ten and twenty points per wave are used so it can be

seen that there are necessarily only ten and twenty points, respectively, in the domain. These resolutions correspond

to a wave numbers of θ = 0.2π and θ = 0.1π, respectively. Cumulative dissipation |G|cum and dispersion error φe,cum

after a number of time steps N time steps can be predicted from the von Neumann analysis, as given by the following

equations (23):

|G|cum = |G|Nu+c

φe,cum =
∆xcum

L
=

N ·CFLu+c

I ·L (1−φe) (23)
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where ∆xcum is the cumulative absolute distance the wave is out of phase. Thus, φe,cum is expressed as the fraction of

the wavelength for which the solution is out of phase. The following computational cases focus on the right running

acoustic wave (q̂u+c) and are compared to theoretical results from von Neumann analysis.

Table (1) and Figure (8) compare the performance of Crank-Nicolson and the three ESDIRK schemes using an

overall fifth-order accurate spatial discretization with artificial dissipation. There are ten points per wave, a CFL

number of unity is used, and the wave is advanced one period. As can be seen, all schemes exhibit low dissipation,

while Crank-Nicolson exhibits noticeable dispersion. Examining the error plot, it becomes clear that the higher the

order of the scheme, the lower error it exhibits, with very little difference apparent between ESDIRK4 and ESDIRK5.

The following pattern should also be observed and noted: when the error is primarily dispersive, the minimum error

will occur at a position near the extrema of the waveform; however, when the error is primarily dissipative, the

minimum error will occur at a position near the inflection points of the waveform.

Table 1: Von Neumann and numerical results for the forward moving acoustic wave for the Euler equations with

artificial dissipation, with ten points per wave, at a CFL number of one, after one period of convection

Dissipation Error Dispersion Error

Scheme VNA Simulation VNA Simulation

CN 8.42× 10−3 2.77× 10−2 3.14× 10−2 3.08× 10−2

ESDIRK3 4.25× 10−2 4.26× 10−2 2.47× 10−3 2.39× 10−2

ESDIRK4 9.25× 10−3 9.26× 10−3 5.37× 10−4 5.26× 10−4

ESDIRK5 9.31× 10−3 9.31× 10−3 4.10× 10−4 4.00× 10−4
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Figure 8: (a) Amplitude and (b) error in the convection of the forward moving acoustic wave for the Euler equations

including artificial dissipation, with ten points per wave, at a CFL number of one, after one period of convection

Table (2) and Figure (9) shows the same data as previously for the same CFL number and resolution, but after ten

periods of convection. As is clearly seen, error accumulates as solution time increases, with Crank-Nicolson exhibiting

much more dispersion error and ESDIRK3 showing much more dissipation error. ESDIRK4 and ESDIRK5 even show

a small amount of dissipation, but the differences between them are still mostly unnoticeable.

Table 2: Von Neumann and numerical results for the forward moving acoustic wave for the Euler equations with

artificial dissipation, with ten points per wave, at a CFL number of one, after ten periods of convection

Dissipation Error Dispersion Error

Scheme VNA Simulation VNA Simulation

CN 8.11× 10−2 8.49× 10−2 3.14× 10−1 3.14× 10−1

ESDIRK3 3.52× 10−1 3.60× 10−1 2.47× 10−2 2.41× 10−2

ESDIRK4 8.88× 10−2 8.93× 10−1 5.37× 10−3 5.22× 10−3

ESDIRK5 8.93× 10−2 8.96× 10−2 4.10× 10−3 4.00× 10−3
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Figure 9: (a) Amplitude and (b) error in the convection of the forward moving acoustic wave for the Euler equations

including artificial dissipation, with ten points per wave, at a CFL number of one, after ten periods of convection

For all of the remaining one-dimensional cases, resolution has been increased to twenty points per wave. Table (3)

and Figure (10) chart a case with the same CFL number of one and ten periods of progression, as previously, but at this

increased spatial resolution. The dispersive properties of Crank-Nicolson are still evident at this finer resolution, but

the dissipation of ESDIRK3 appears to have been mostly eliminated. On examination of the error subplot, it becomes

clear ESDIRK3 still exhibits much higher dissipation than either ESDIRK4 or ESDIRK5.

Table 3: Von Neumann and numerical results for the forward moving acoustic wave for the Euler equations with

artificial dissipation, with twenty points per wave, at a CFL number of one, after ten periods of convection

Dissipation Error Dispersion Error

Scheme VNA Simulation VNA Simulation

CN 3.05× 10−3 1.00× 10−2 8.11× 10−2 8.11× 10−2

ESDIRK3 5.02× 10−2 5.02× 10−1 1.51× 10−3 1.53× 10−3

ESDIRK4 3.13× 10−3 3.13× 10−3 1.50× 10−4 1.58× 10−4

ESDIRK5 3.14× 10−3 3.14× 10−3 6.78× 10−5 6.90× 10−5

Implicit time integration methods, like the ones presented herein, are unconditionally stable and as such can be

run at higher CFL numbers than stability considerations would allow for explicit schemes. Increased CFL numbers

result in larger time steps, which increases the amount of temporal error. If the solution is already in a regime where

spatial error dominates, an increased CFL number will not greatly affect the overall error; however, if temporal error is

dominant, the overall accuracy of the solution will be degraded. Results for simulations at CFLu+c = 10 and which are

advanced for only two time steps, corresponding to one solution period, are shown in Table (4) and Figure (11). In this

figure, the differences in the accuracy among the various temporal schemes under consideration are clear. As the von

Neumann analysis predicted, Crank Nicolson preserves amplitude well yet is too dispersive, with its solution lagging

about 36% of the wavelength. ESDIRK3 exhibits high dissipation and dispersion, damping 50% of the amplitude and

lagging the exact solution by 20% of the wavelength. ESDIRK4 and ESDIRK5 are still very well behaved with the

solutions using them showing 99% and 95% of the original amplitude and phase errors of only about 5% and 1% of

the wavelength, respectively). However, the superior precision of ESDIRK5 is evident for this case; supporting the

predictions of von Neumann analysis, the computational results show that the fourth-order ESDIRK scheme is less

dissipative yet more dispersive than the fifth-order scheme.

Finally, Table (5) and Figure (12) performance of the temporal schemes under consideration for a very long solution

time. In fact, each wave is advanced for twenty-thousand time steps at a CFLu+c = 1, meaning that the wave convects

for one-thousand wave lengths. The popular Crank-Nicolson scheme does well to preserve the magnitude of the

wave, which has 74% of its original amplitude at the end of the computation. However, the Crank-Nicolson solution

suffers tremendously from dispersion error. To best capture the wave features, the aforementioned figure features

only two wavelengths, which obscures the fact that the Crank-Nicolson solution is actually about eight wavelengths

behind its correct position. As the plot shows, ESDIRK3 is obviously extremely dissipative and effectively damps

11 of 20

American Institute of Aeronautics and Astronautics



-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

A
m

pl
itu

de
 o

f t
he

 u
+

c 
C

ha
ra

ct
er

is
tic

 V
ar

ia
bl

e

X-Coordinate

Exact Solution
Crank-Nicolson

ESDIRK3

ESDIRK4
ESDIRK5

(a)

10-5

10-4

10-3

10-2

10-1

100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

A
bs

ol
ut

e 
E

rr
or

 in
 th

e 
u+

c 
C

ha
ra

ct
er

is
tic

 
 V

ar
ia

bl
e 

(lo
g 

sc
al

e)

X-Coordinate

Exact Solution
Crank-Nicolson

ESDIRK3

ESDIRK4
ESDIRK5

(b)

Figure 10: (a) Amplitude and (b) error in the convection of the forward moving acoustic wave for the Euler equations

including artificial dissipation, with twenty points per wave, at a CFL number of one, after ten periods of convection

Table 4: Von Neumann and numerical results for the forward moving acoustic wave for the Euler equations with

artificial dissipation, with twenty points per wave, at a CFL number of ten, after one period of convection

Dissipation Error Dispersion Error

Scheme VNA Simulation VNA Simulation

Crank-Nicolson 0.01× 10−1 0.02× 10−1 3.61× 10−1 3.50× 10−1

ESDIRK3 4.90× 10−1 4.90× 10−1 1.92× 10−1 2.00× 10−1

ESDIRK4 0.07× 10−1 0.07× 10−1 4.90× 10−2 5.00× 10−2

ESDIRK5 0.51× 10−1 0.55× 10−1 1.39× 10−2 1.00× 10−2
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Figure 11: (a) Amplitude and (b) error in the convection of the forward moving acoustic wave for the Euler equations

including artificial dissipation, with twenty points per wave, at a CFL number of ten, after one period of convection
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the perturbation entirely. ESDIRK4 and ESDIRK5, on the other hand, exhibit excellent dissipation and dispersion

characteristics, especially given the long solution time. For both schemes, damping is kept to approximately 27% as

the final solution maintains about 73% of the the correct amplitude. Dispersion is ≈ 3% of the wavelength. The ability

of ESDIRK4 and ESDIRK5 to preserve amplitude and phase in the presence of artificial dissipation seems highly

attractive for time-accurate solutions with high-order spatial discretizations. Figure(12(b)) shows the exact solution

along with the absolute error of ESDIRK4 and ESDIRK5 schemes, capturing the combined effect of cumulative

dissipation and dispersion errors and highlighting that ESDIRK5 does, in fact, have slightly lower overall error than

ESDIRK4.

Table 5: Von Neumann and numerical results for the forward moving acoustic wave for the Euler equations with

artificial dissipation, with twenty points per wave, at a CFL number of one, after one-thousand periods of convection

Dissipation Error Dispersion Error

Scheme VNA Simulation VNA Simulation

CN 2.63× 10−1 2.65× 10−1 8.11× 100 8.10× 100

ESDIRK3 9.94× 10−1 9.94× 10−1 1.51× 10−1 1.00× 10−1

ESDIRK4 2.69× 10−1 1.95× 10−1 1.50× 10−2 3.00× 10−2

ESDIRK5 2.70× 10−1 2.01× 10−1 6.78× 10−3 2.50× 10−2
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Figure 12: (a) Amplitude and (b) error in the convection of the forward moving acoustic wave for the Euler equations

including artificial dissipation, with twenty points per wave, at a CFL number of one, after one-thousand periods of

convection

These one-dimensional Euler computations serve as a validation of the von Neumann analysis results and have

helped inform perceptions of the strengths and weaknesses of the temporal schemes considered herein. Having estab-

lished expected performance near the linear regime of the Euler equations, the next section presents a more complex,

three-dimensional case.

B. Convection of an Isentropic Vortex

The isentropic vortex is a generally localized set of specific perturbations, which occur across a broad range of wave

numbers, to an otherwise uniform flow. The perturbations occur in the x- and y-velocity components and the tempera-

ture. Because these perturbations are isentropic, they result in perturbations in the pressure, density, and energy of the

flow as well. The velocity and temperature perturbations of the isentropic vortex are as follows:

δu =−
√

R∞T∞
α

2π
(y− y0)eφ(1−r2) (24)

δv =
√

R∞T∞
α

2π
(x− x0)eφ(1−r2) (25)

δT = T∞
α2 (γ− 1)

16φγπ2
e2φ(1−r2) (26)
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where α determines the strength of the vortex and φ determines the gradient of the vortex, which in turn determines

vortex size. Higher values of φ correspond to smaller vortices with more rapidly changing temperature and velocity

from the edge to the center. The vortex center is at (x0,y0) with the distance to this center from a coordinate (x,y)

given as r =

√

(x− x0)
2 +(y− y0)

2
. If these perturbations look a little different from those in other publications, it

is because they are in dimensional form. Many other publications assume a particular non-dimensionalization, but do

not always explicitly state that fact.4

For all of the vortex test cases presented herein α = 4 and φ = 1; as a result, the vortex has a diameter of about 2.2m

(vortex diameter is determined as the diameter of the area where the density perturbation is more than five-percent of

the free stream value). The cases are run at a free stream Mach number of M∞ = 0.5 in the x-direction. The free stream

density is set to be ρ∞ = 1.0 kg

m3 . It was desired that the free stream speed of sound be a round number close to its typical

value for air, so c∞ = 400 m
s

was chosen. Given that R∞ = 287.11 J
kg·K and γ = 1.4 for air, this necessarily means that

free stream temperature and pressure have the following values T∞ = 398.06K and p∞ = 114285.7Pa. Thus, the free

stream conserved variables have the following values:

ρ∞ = 1.0 kg

m3 , ρu∞ = 200.0 kg

m2·s , ρv∞ = 0.0 kg

m2·s , ρw∞ = 0.0 kg

m2·s , ρe0,∞ = 305714.3 kg

m·s2 (27)

Given the strength of the vortex and the free stream Mach number, this test case will clearly be affected by the non-

linearity of the Euler equations

First, the formal orders of accuracy of both the spatial and temporal discretizations examined herein are establishes

by convecting the isentropic vortex, described above, for a short amount of time. For spatial accuracy, the vortex is

convected for one time step whose fixed length is ∆t = 0.0000107421875s on a computational mesh that is 22.0m×
22.0m in the x- and y-directions and whose resolution varies. Because the flow should have no variation in the z-

direction, four points were used in that dimension for all grid resolutions. As a result, the length of the grid in z varies

depending on the x and y grid resolution such that ∆x = ∆y = ∆z. Thus, for a grid resolution of one-hundred nodes

in the x- and y-directions, the mesh would be 0.88m in the z-direction. Boundaries are periodic in all three directions.

The given time-step size corresponds to a CFL number close to one when the mesh resolution is 1600 points in each

of the x- and y-directions. Figure (13) plots the results of the spatial-order-of-accuracy tests. As can be seen, the errors

of all the spatial schemes considered exhibit the expected convergence trends as resolution increases. Since both axes

are given in terms of powers of two in Figure (13), a third-order scheme, for example, is expected to decrease three

grid lines for every one grid line decrease in dx.
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Figure 13: Variation of the L2-norm of solution error in density with spatial resolution for the isentropic vortex after

one time step, demonstrating formal order-of-accuracy convergence for the given spatial schemes

For the temporal accuracy study the vortex is convected for 0.0064s on a computational mesh that is 24.0m×
24.0m× 0.04m with a fixed resolution of 2400× 2400× 4 nodes in each of the three directions, yielding ∆x = ∆y =
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∆z = 0.01. Again, boundaries are periodic in all three dimensions. This case is run with different time step sizes

ranging from as large as 0.0064s to as small as 6.25× 10−6s with each smaller time step being 1
2

as large as its

immediately bigger time step. These time steps correspond to CFL numbers ranging from 896 to 0.875. Obviously,

this means that for smaller time-step sizes, the solution must be run for a greater number of time steps to achieve the

overall 0.0064s of solution time. Figure (14) plots the density error convergence of Crank-Nicolson as well as third-,

fourth-, and fifth-order ESDIRK. As can be seen, all four schemes demonstrate the expected order-of-accuracy error

convergence.
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Figure 14: Variation of the L2-norm of solution error in density with time-step size for the isentropic vortex after

0.0064 seconds, demonstrating formal order-of-accuracy convergence for the given temporal schemes

Next, the vortex with conditions as given above, is convected for a much longer time on the same mesh that was

used for the spatial-accuracy study, i.e. 22.0m× 22.0m in the x- and y-directions. Since, as was stated earlier, the

vortex diameter is about 2.2m, the domain is about ten vortex diameters long and there are eleven points across the

vortex on a mesh with one-hundred nodes in x and y. The density perturbation of the vortex along its x-direction

center-line after two and four domain lengths of convection using the stated grid, at a free stream CFL number of

about one (1.09375 to be precise), and for the four different time discretizations is shown in Figure (15). As can be

seen, all three ESDIRK schemes produce the same results while Crank-Nicolson shows only a small variation, even

after forty vortex widths of convection. This results seems to indicate that for this mesh at a CFL number of one,

spatial error dominates temporal error for all time schemes under consideration.

To verify the spatial-error-dominance hypothesis, Figure (16(a)) plots solution error after a short time (0.0275s)

versus grid resolution at a constant CFL number of about one. Because the CFL number is held constant, the temporal

resolution necessarily increases at the same rate as the spatial resolution from right to left along the x-axis of the chart.

As can be seen, all three ESDIRK schemes as well as the explicit third-order Runge-Kutta-Wray, which is frequently

used as the time-integrator in high-order Cartesian codes and is included for the sake of comparison, have fifth-order

error convergence. Crank-Nicolson initially shows fifth-order error convergence, but its accuracy reduces to second-

order as resolution increases, signaling that at higher resolution, the temporal scheme becomes the dominant source

of error. It should be noted that the one-hundred node grid used above corresponds to the second point from the right

(as noted), meaning it is clearly in the spatially-dominant regime for all time schemes. Figure (16(b)) shows the error

of the different time schemes relative to the the ESDIRK5 scheme at a CFL number of about one (to allow for more

straightforward visualization of the differences). As can be seen, at finer resolutions, ESDIRK3 has about half the

error of RK-Wray, while ESDIRK4 and ESDIRK5 have the same amount of error for the entire domain of the plot,

signaling that spatial error is clearly dominant for these time schemes at all tested grid resolutions.

Referring again to Figure (16), it can be seen that Crank-Nicolson starts to have a different slope at the third point

from the left, which corresponds to forty-one points across the vortex, or four times the resolution shown previously.
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Figure 15: Density at the vortex center line for the time discretization given in the legend with eleven points across

the vortex at a CFL number close to one after convecting (a) two periods, (b) four periods .

(a) (b)

Figure 16: Comparison of the density error for different time discretizations at a CFL number of one for (a) absolute

error and (b) error scaled by the ESDIRK5 error at a CFL number close to one.
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A significant difference in error, however, is not seen until the next point to the left with eighty-one points across the

vortex. Figure (17) shows the density at the vortex center line for the vortex on this eight-times resolution grid after

four periods of convection. All lines appear to overlay the exact solution in the (a) subplot. The (b) subplot, therefore,

displays the absolute error, i.e. the absolute value of the difference between the numerical and exact solutions. It can

clearly be seen in this figure that Crank-Nicolson has about an order and a half higher error than the three ESDIRK

schemes, which themselves have quite similar error curves. This is the expected result taking into account the trends

seen in the previous figure.

0.6

0.7

0.8

0.9

1.0

 8  10  12  14

D
en

si
ty

X-Coordinate

Exact Solution
CN2-CL

ESDIRK3-CL
ESDIRK4-CL
ESDIRK5-CL

(a)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

 8  10  12  14

A
bs

ol
ut

e 
E

rr
or

 in
 D

en
si

ty
 (

lo
g 

sc
al

e)

X-Coordinate

Exact Solution
CN2-CL

ESDIRK3-CL
ESDIRK4-CL
ESDIRK5-CL

(b)

Figure 17: (a) Density and (b) absolute error in density at the vortex center line for the time discretization given in the

legend with eighty-one points across the vortex at a CFL number of about one after convecting four periods.

Figure (18) shows the density profile at the center-line for the isentropic vortex at a CFL number of about eight on

a grid with one-hundred points in the x- and y-directions after having convected for two and four domain lengths. An

additional curve has been added to these plots, designated ”CN2-MAX” corresponding to the profile at the maximum

density perturbation for the Crank-Nicolson time scheme. This additional curve was added because the vortex has

meandered off the center-line by six grid spacings after two domain lengths and by ten grid spacings after four domain

lengths of travel. As can be seen, differences among all schemes besides ESDIRK4 and ESDIRK5 are apparent at this

larger CFL number. Additionally, it can be observed that, although Crank-Nicolson does an excellent job at preserving

the magnitude of the perturbation (low dissipation), the fact that, because of dispersion error, the vortex travels along

an incorrect path (it convects both faster and at a slightly downward angle compared to how it should convect), actually

leads to this scheme’s having higher error than the more dissipative, but less dispersive ESDIRK3 scheme.
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Figure 18: Density at the vortex center line for the time discretization given in the legend with eleven points across

the vortex at a CFL number of about eight after convecting (a) two periods and (b) four periods.

Finally, Figure (19) is analogous to Figure (16), plotting temporal scheme error at a constant CFL number of about

eight versus temporal and spatial resolution for the three ESDIRK schemes. As can be seen from the (a) subfigure,

ESDIRK3 converges as third order for all resolutions, having much higher error at fine resolutions. As such, its

error dwarfs the error of the other two ESDIRK schemes; thus, it was not included in subfigure (b). The second plot
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demonstrates that for ESDIRK5, error is roughly independent of resolution, while relative error increases at better

resolutions when the ESDIRK4 scheme is used. This is the expected result and points toward a preference of having

the order of accuracy of the selected time scheme be the same as that of the selected spatial scheme to guarantee that

overall error always converges at a constant slope.
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Figure 19: Comparison of the density error for ESDIRK4 and ESDIRK5 time discretizations and a CFL number of

about eight for (a) absolute error and (b) error scaled by the ESDIRK5 error at a CFL number close to one.

V. Conclusions and Future Work

The von Neumann analysis presented herein highlights advantages and disadvantages of the various time integra-

tors. As expected, Crank-Nicolson, with its low error constant (the lowest of all second-order A-stable linear multistep

methods),3 performs well in terms of dissipation error, but is more dispersive because of its second-order accuracy.

Moreover, its lack of L-stability, as is frequently cited,4 remains a concern. As such, the six-stage (utilizing five im-

plicit stages that require solution) ESDIRK4 appears to strike the best compromise between diffusion and dispersion

errors, while its stage-count makes it a candidate, in terms of efficiency, for the preferred scheme. The compromise

nature of this choice becomes especially apparent at CFL numbers greater than one.

The computational results tend to support the choice of ESDIRK4 as the preferred temporal integrator for fifth-

order spatial schemes. It performs just as well as ESDIRK5 for typical time-step sizes and mesh resolutions. That

being said, having the order of accuracy of the spatial and temporal schemes being the same does have the advantage

of guaranteeing that the ratio of spatial to temporal error remains constant no matter the grid resolution at a given,

constant CFL number.

This work clearly demonstrates that the common practice of using a third-order time integrator (like Runge-Kutta-

Wray) coupled with a fifth-order spatial discretization is inadequate. As the grid is refined, the time step must be

refined to a greater degree to experience an overall fifth order accurate decrease in the overall error. Specifically, if

spatial resolution is doubled, spatial error will theoretically decrease by a factor of thirty-two while temporal error

would only decrease by a factor of eight if the CFL number were kept constant. To get the same factor of thirty-two

decrease temporal resolution would need to increase by a factor of 2
5/3 ≈ 3.175.

Future work should be divided into three areas. First, L-stable Runge-Kutta time integrators whose growth factors

decrease more slowly away from the origin in the complex left half of the eigenvalue plane should be developed

for use with high-Reynolds number flows. Schemes with these properties (if they exist) should prove to have lower

dissipation error while retaining the dispersion error characteristics of high-order temporal schemes already observed.

Additionally, the present work highlights the need for lower error spatial schemes with the same formal order of

accuracy. Such spatial discretizations would take maximum advantage of the high-order time discretizations both

on coarser meshes and when using CFL numbers around one. Candidates for lower-error spatial schemes include

compact-difference schemes16 for their enhanced spatial resolution and filtering schemes17,18 because of their potential

for highly scale-discriminant damping. Finally, a third area for future work is to add the preconditioning techniques

described above8 to the current methods. By adding preconditioning, more efficient and accurate solutions should be

produced.
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A. Butcher Tableaux

This appendix presents the Butcher Tableaux for all the of the Runge-Kutta schemes presented herein. The tableaux

for the non-ESDIRK schemes can be referenced in Butcher19 while the tableaux for the ESDIRK schemes are credited

to these sources.1,2

1 1

1

Implicit, First-order

Backward-Euler

0 0 0

1 1/2 1/2

1/2 1/2

Implicit, Second-order

Crank-Nicolson

0 0 0 0

8/15 8/15 0 0

2/3 1/4 5/12 0

1/4 0 3/4

Explicit,Third-order

Runge-Kutta-Wray

0 0 0 0 0

1/4 1/4 0 0 0

1/3 0 1/3 0 0

1/2 0 0 1/2 0

0 0 0 1

Explicit,Fourth-order

Jameson-Runge-Kutta

0 0 0 0 0

1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

0 0

3
5

2746238789719
10658868560708

− 640167445237
6845629431997

1767732205903
4055673282236

0

1 1471266399579
7840856788654

− 4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

1471266399579
7840856788654

− 4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

Implicit, Third-order ESDIRK3

0 0 0 0 0 0 0

1
2

1
4

1
4

0 0 0 0

83
250

8611
62500

− 1743
31250

1
4

0 0 0

31
50

5012029
34652500

− 654441
2922500

174375
388108

1
4

0 0

17
20

15267082809
155376265600

− 71443401
120774400

730878875
902184768

2285395
8070912

1
4

0

1 82889
524892

0 15625
83664

69875
102672

− 2260
8211

1
4

82889
524892

0 15625
83664

69875
102672

− 2260
8211

1
4

Implicit, Fourth-order ESDIRK4

0 0 0 0 0 0 0 0 0

41
100

41
200

41
200

0 0 0 0 0 0

2935347310677
11292855782101

41
400

− 567603406766
11931857230679

41
200

0 0 0 0 0

1426016391358
7196633302097

683785636431
9252920307686

0 − 110385047103
1367015193373

41
200

0 0 0 0

92
100

3016520224154
10081342136671

0 30586259806659
12414158314087

− 22760509404356
11113319521817

41
200

0 0 0

24
100

218866479029
1489978393911

0 638256894668
5436446318841

− 1179710474555
5321154724896

− 60928119172
8023461067671

41
200

0 0

3
5

1020004230633
5715676835656

0 25762820946817
25263940353407

− 2161375909145
9755907335909

− 211217309593
5846859502534

− 4269925059573
7827059040749

41
200

0

1 − 872700587467
9133579230613

0 0 22348218063261
9555858737531

− 1143369518992
8141816002931

− 39379526789629
19018526304540

32727382324388
42900044865799

41
200

− 872700587467
9133579230613

0 0 22348218063261
9555858737531

− 1143369518992
8141816002931

− 39379526789629
19018526304540

32727382324388
42900044865799

41
200

Implicit, Fifth-order ESDIRK5
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