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1. Introduction 

When analyzing network data captured at different endpoints of a radio-based 
network, one of the crucial metrics used to evaluate network performance is 
latency. To measure latency, the time tag of a packet being sent is recorded and 
compared to the time tag of the copy of the same packet received at the endpoint. 
For this to work properly, each of the packet-observing data recorders must be 
synchronized to a common time source. The Global Positioning System (GPS) is 
an ideal time source for such synchronization, as it provides a highly precise, 
globally accessible means to synchronize devices.1 This type of testing routinely 
requires that over 1 billion packets be examined and time-tagged within an 8-h set 
of test records. The process described herein made use of posttest processing 
techniques to provide packet-level time tagging with an accuracy close to 3 µs 
relative to Coordinated Universal Time (UTC), with a resolution of 1 µs. This 
enabled analysis of high-speed wireless networks where a medium-sized packet can 
be delivered in under 1 ms.2 This report describes how the US Army Research 
Laboratory (ARL) collaborated with the Analysis Team at the Army Test and 
Evaluation Command (ATEC), Aberdeen Test Center (ATC), to build a system that 
would leverage the capabilities of a high-performance-computing environment to 
reliably time-tag network packet data recorded in a High-Bandwidth Tactical 
Network. 

2. Data Collection Overview 

ATC’s Advanced Distributed Modular Acquisition System (ADMAS) is a data 
collection device that records metadata and raw binary data in Binary Large Object 
(BLOb) files.3 The recorded data are encoded into structures called Data Cuts 
(cuts). A cut is a slice of data wrapped in a predefined header. In general, a cut 
header contains the type of cut that follows the length of the recorded data and a 
microsecond timer value. 

The timer, or ticker, is based on an ADMAS’ internal clock, which increments for 
each microsecond that passes. This clock stores the current local time as an 
unsigned integer with range (0, 232). The ticker initializes to zero when the device 
is powered on and then resets back to zero every 232 µs. Thus, a reset, known as a 
“rollover”, occurs approximately every 1 h and 11 min. This means that in a 
network test lasting several hours, the ticker will roll over multiple times. Figure 1 
shows a sample of the file sequence numbers, tickers, and rollover values from a 
long-running test. 
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Fig. 1 Sample ADMAS time cut data 

ADMAS tickers are not directly synchronized to GPS and are affected by 
environmental conditions. Therefore, changes in the behavior of the ticker must be 
taken into account. For example, with a change in temperature, the microsecond 
ticker can speed up or slow down, causing drift relative to GPS time. This clock 
drift, along with the bias between GPS time and ticker time, can be accounted for 
by applying corrections extracted from a Kalman filter–based4 “clock model” of 
the relationship between ticker and GPS time. Aside from environmental 
difficulties, time correction also falls prey to data gaps and hardware malfunctions. 
These measurement and recording-type errors need to be addressed before the clock 
model can be used for correction. 

3. Time Cuts 

The ADMAS is capable of recording a wide variety of cut types. During tactical 
network testing, GPS cuts and network cuts provide the raw geospatial and network 
traffic data needed for analysis. These cuts, however, only contain the ADMAS’ 
ticker value and do not include the device’s ticker rollover count. To account for 
rollovers, time cuts are required. 

Time Cuts contain a GPS time5 matched with the ADMAS’ 32-bit ticker value and 
16-bit ticker rollover count. The ADMAS hardware uses field-programmable gate 
array (FPGA) circuitry to latch the ticker value when the GPS pulse-per-second 
signal is fired. The FPGA processing then captures the next GPS serial message 
that includes the time when the pulse fired, and the ticker and GPS times are 
recorded in the time cut. With the inclusion of the ticker rollover count, this data 
allows a clock model to be defined between the ticker values and GPS time. 
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4. ADMAS Stream Buffering 

One stream buffer for each cut type is used in writing cuts to BLOb files. While 
this maintains ticker order within each cut type, the order for cuts of different types 
is not guaranteed. Figure 2 depicts how time, network, and GPS cuts might be 
ordered in a BLOb file. In this figure, cuts are represented as small rectangles, the 
border color represents the type of cut, and the fill color represents the ticker value 
of the cut. We can see that the order of tickers in the BLOb file is not sequential 
when viewed without regard to cut type. 

 

Fig. 2 How cut tickers get out of order in BLObs 

In addition to the stream buffers’ effect on cut ordering within a file, buffering may 
also result in BLOb files containing cuts recorded before the file’s creation. An 
ADMAS will close its current BLOb file and open a new one when either 1,800 s 
have passed since the file was opened or the file size has exceeded 500 MB. A 
buffer may still contain data when the file is closed, in which case the cuts will be 
written to the new file. Each file is given an incremental sequence number that can 
be used in detecting these cases. 

Because of the effects of buffering, all cuts must be separated by type before having 
their ticker values converted to the GPS time domain. This is required to ensure 
that the proper rollover value is associated with each 32-bit ticker value. 

5. High-Performance-Computer (HPC) Processing 

The custom data reduction software used to organize and process tens of thousands 
of files containing billions of data cuts runs on high-performance computers (HPCs) 
in a scalable, distributed fashion. This means that data are spread across hundreds 
of compute cores that do not necessarily share memory. The reduction software 
uses an approach similar to map-reduce to collect all the information needed to 
produce a clock model. 
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The process of converting all of the BLOb data cut tickers into GPS-corrected time 
within the HPC environment is diagramed in Fig. 3.  

MPI Scatter Of Blob Files

Blob Files

TimeCuts, FileMetaData organized 
by ADMAS Power Cycle

MPI Scatter Of TimeCuts and FileMetadata 

FileMetaData, ClockModels

MPI Scatter of Blob files, FileMetaData and 
ClockModels;

Step 1

Step 2

Step 3

Extract TimeCuts and 
File Metadata

Create ClockModels

Network and Other Cuts are Extracted and 
ExtendedTickers are converted to UTC Time 
(Network Analysis Processing can Proceed)

CutData with GPSTime and Estimated Conversion Error
 

Fig. 3 Time conversion process 

Step 1 distributes the individual BLOb files across message-passing interface (MPI) 
worker processes. The purpose of this step is to extract all time cuts and metadata 
from each file, which includes the following: 

• Number of ticker rollovers at the start of the file 

• Indicator if the file contains one or more ticker rollovers for each cut type 
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• File name 

• File sequence number since the last startup 

• Types of data cuts in the file 

The time cuts and metadata are serialized back to a disk for further processing in 
step 2. 

Step 2 distributes the time cuts and metadata across the MPI worker processes; the 
distribution is segmented by data collector device and a “boot sequence” number. 
The boot sequence is derived from observations of the file sequence number present 
in each BLOb file. When the sequence goes backwards as time moves forwards, a 
reboot of the ADMAS has occurred. The reboot causes the relationship between 
GPS time and ticker time to be reset. This forces the creation of a new clock model 
for the time period following each reboot. 

During step 2, the clock models are fed the time cuts in time order. Once the clock 
models are done processing all of the time cuts, the clock model runtime parameters 
are serialized to a disk for the next step in processing. 

Step 3 redistributes the original BLOb files, file metadata, and the clock models 
across the MPI worker processes; the distribution is segmented by BLOb file. 
During this iterative step (Fig. 4), each data cut is extracted from a given BLOb 
file, and the ticker is converted to a GPS time using the clock model associated with 
the file. The data cut and the clock model–derived GPS time with estimated time 
conversion error are provided for further processing. 
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Fig. 4 Conversion process: step-3 details 

6. Employing the Clock Model 

Employing a clock model in step 3 starts with standardizing ticker times for cuts 
using the ticker rollover counts found in time cuts. The ticker rollover counts from 
time cuts are applied across the other cut types to convert all tickers to 48-bit 
unsigned integers. These 48-bit extended tickers define the cut order and can be 
correlated to epoch time using the clock model. The clock model details are 
discussed later in this report. 

Before beginning step 3, one must have the rollover properly aligned with the data, 
otherwise the data for that particular file will be off by a factor of 232 µs (~1 h,  
11 m). It is also important to keep track of the rollover count per file because it will 
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be needed when the files are redistributed for further processing. The HPC 
reduction software performs the actual time conversion when the file is 
reprocessed. 

During step 2, processing of the cut data within each BLOb file must be done in 
time-order to generate the correct rollover information for each file before it is 
redistributed, otherwise the application of the clock model cannot be done on the 
fly. Part of this information includes having the correct rollover count for the start 
of the file. To determine the rollover count, the file metadata must be collected in 
one place. It then gets sorted by the file creation time. Once sorted, missing 
rollovers can be detected during time cut data gaps. The processing of the data is 
broken into 2 significant parts: rollover collection and rollover application. 

7. Rollover Collection: Assumptions 

The initial design goal for rollover collection was to identify ticker rollovers and 
calculate the extended tickers of cuts on a per-file basis. This method, however, 
made some reasonable assumptions. 

The first assumption was that there is, at a maximum, one rollover per file. This 
assumption was based on the fact that the ticker value resets once every 1 h and 11 
min, and a BLOb file spans roughly 30 min or less. With the ADMAS configuration 
intact, this was a safe assumption. 

The next assumption was that a decrease in the ticker value for cuts of the same 
type must be caused by a ticker rollover. This assumption was based on the fact that 
tickers could only increment and cuts would be buffered in order. 

While the second assumption is theoretically sound, anomalous data dubbed rogue 
cuts can cause false positives in detecting ticker rollovers. A rogue cut is produced 
when valid, but erroneous data are written into a well-structured cut.6 In these cases, 
the ticker value is a random number, so it may appear that a rollover occurred when 
it did not. The algorithm to detect and reject rogue cuts is discussed in the 
Appendix. 

8. Rollover Collection: Detecting Rollovers 

In order to apply the clock model to each file independently, each file’s starting 
rollover count needed to be determined. To accomplish this, the following metadata 
from each file was collected: 

• The file creation time 
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• The file sequence number 

• Whether or not a rollover was detected in the file 

• The minimum and maximum time cuts 

The file creation time and sequence number are included in the file metadata and 
are readily available. With files ordered by the creation times, sequence numbers 
can be compared to delineate power cycles in the ADMAS collector. 

A power cycle is the period of time between device resets. Since sequence numbers 
are incremental, a file is considered to be the start of a power cycle when the 
sequence number is less than or equal to the sequence number of the previous file. 
Each power cycle resets the rollover count to zero and requires a separate clock 
model. 

The rollover count increments at most once per file based on the previous 
assumptions, thus allowing per file rollover detection. By keeping track of the high-
order bit of the ticker, we could detect a rollover once the value flips from one to 
zero, indicating the ticker value decreased. The change of the high-order bit 
represents 231 µs, which is large enough (roughly 35 min) to avoid the time 
variability of the unordered ticker values. Because there is a separate buffer for each 
cut type, the ticker could appear to roll over multiple times—once for each cut 
type—but would only be recorded as one occurrence. 

If a rollover had been detected in a file, the rollover values in the minimum and 
maximum time cuts could be used to determine the relative position of the rollover 
and, in turn, calculate the file’s starting rollover count. The relative position of the 
ticker rollover falls into one of the following categories: 

1. Before the minimum time cut 

2. Between the minimum and maximum time cuts 

3. After the maximum time cut 

4. Unknown position 

The rollover is determined to be in category 1 if the rollover count in the minimum 
time cut is greater than the maximum rollover in the previous file. In this case, the 
current file’s starting rollover must be one less than the minimum time cut rollover 
count. 

The rollover falls into category 2 if the minimum time cut rollover is one less than 
the maximum time cut rollover. In this case, the file’s starting rollover count would 
be equal to the minimum time cut rollover count. 
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If the rollover does not fall into either category 1 or 2, then, by default, it is 
attributed to category 3 and must have occurred after the maximum time cut. As 
with category 2, the file’s starting rollover count is equal to the minimum time cut 
rollover count. 

Category 4 sums up all the cases that do not fit into the other categories. Primarily, 
rollovers detected in a file are considered in this category when there are no time 
cuts recorded. However, complications with cut buffering can also cause the 
position of the rollover to become uncertain. 

9. Buffering Effect on Rollover Determination 

The ADMAS hardware has a 128-KB buffer size limit that must be reached before 
the cuts get written to a file. If the cuts are small enough, then a large number of 
cuts can be stored in the buffer and not written until a new file has been opened. So 
far, this has only been witnessed with network cuts. 

This creates a problem when the buffered cuts written to a new file contain a 
rollover. Since some different cut types from the same period of time will have been 
written to 2 different files, a rollover can be detected in both. This makes it appear 
that an extra rollover occurred and, in some cases, can even cause 2 rollovers to 
appear in a single file. 

This case breaks a few of the assumptions required to accurately produce extended 
ticker values for each cut. While detecting 2 files in sequence both with rollovers 
quickly identifies this case, the interwoven nature of the cut types makes calculating 
extended tickers a difficult task.  

10. Data Gaps 

Another difficult issue to overcome is gaps in the data. Gaps can be attributed to 
missing files or the monitored radio losing GPS satellite connectivity. Incorrect 
configurations and faulty hardware may also cause missing data. When combined 
with the buffering issue, a situation exists where it is impossible to determine the 
ticker rollover count needed to calculate extended tickers. 

11. Rollover Application 

Dealing with buffering and data gaps with the initial approach resulted in a lot of 
uncertainty for the file’s starting rollover count. Another approach can overcome 
the multiple rollovers and simplify the majority of the categorizing code from the 
previous approach. Instead of detecting rollovers for the entire file by examining 
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high order bits of any 2 consecutive cuts, detection occurs per cut type stream (refer 
back to Fig. 2). By recording each ticker value that starts a new rollover on a per-
cut-type basis, it is possible keep count of how many rollovers occurred in the file. 
The location of rollover occurrence within the file is no longer needed. 

When calculating extended ticker values, we use the same algorithms to order the 
file metadata and handle power cycles. Starting with the first file, a simple rollover 
count is maintained per cut type. In addition, the first post-rollover ticker value is 
kept per rollover observation. 

With valid time cuts within the file, the data gap problem is not very difficult. Even 
when time cuts are not in every file, there is a chance that the rollover can be 
guessed. This depends on the number of contiguous files missing time cuts and the 
sparseness of the other cut types. Without any time cuts, there are no reference 
points for predicting rollover counts. 

12. Missing Rollovers 

Missing rollovers are corrected by taking the difference between the rollover count 
for time cuts and the rollover count for the current cut type. This algorithm allows 
for overcorrection by marking the rollover count with a maximum of one higher 
than it actually is. This is a case caused by buffering, but it can easily be detected. 
The rollover guess is applied to the tickers of the last time cut and the first data cut 
of the current cut type. If the last time cut is less than the first current cut type, the 
rollover for the current cut type has been overcorrected. The detection is valid when 
the time cut stream has a rollover in the file and the current cut type stream does 
not. Subtracting one from the data cut’s starting file rollover corrects this instance. 

Missing rollovers also occur when the data are sparse. In this case, the rollover is 
truly missed. When the value of the ticker is on the upper half of the 32-bit value, 
it ends up being overcorrected by one rollover. Taking the distance between the 
minimum and maximum ticker of both the current cut type and the time cuts allows 
this case to be detected. If the difference of the current is less than 25% of the time 
cuts and it is on the high end of the 32 bits, it was overcorrected. Subtracting one 
rollover will correct this case. 

13. Clock Model Application 

Once the starting rollover count per cut type is determined correctly, the clock 
model can be employed to convert a ticker to GPS time. The input value for 
conversion by the clock model is a rollover-extended ticker value. A simple 
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addition of the ticker and the left bit shift of rollover count by 32 bits creates the 
rollover extended ticker.  

The clock model used is a second-order Kalman filter of the clock offset between 
ticker-time and GPS time. This model implements a tracking filter that uses as 
measurements the difference between local ticker time (extended ticker roughly 
converted to seconds) and GPS time, which provides a phase difference in seconds 
between the 2 clock sources (see Fig. 5 for an example). The filter maintains 3 state 
values (Fig. 6) for the model: Phase-Difference, Skew, and Aging-Noise. The 
relationship between these states is analogous to a single dimension Position, 
Velocity, Acceleration (PVA) model. Skew is the first derivative of Phase-
Difference, and Aging-Noise is the second derivative. The design for the filter is 
documented in the case study of WIN-T IOTE ClockModel Issues.7 

 
Fig. 5 Sample long-running ADMAS clock differences (3 clock model states) 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 = 𝟐𝟐𝟑𝟑𝟑𝟑 ∗ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 + 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 





















∆

∆
∆
















=

















−

−

−

100
10

2
1

*

2

t

tt

Aging
Skew

PhaseDiff

Aging
Skew

PhaseDiff

t

t

t

t

t

t

 
Fig. 6 Clock model state update equation 
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The clock model maintains a covariance matrix (Fig. 7), which is used to generate 
an estimated error of the conversion from ticker time to GPS time. When the 
estimated error of a conversion exceeds a threshold, the data associated with that 
ticker will be marked for limited analytical use. 
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Fig. 7 Clock model covariance matrix 

Prior to the ATC/ARL HPC efforts, the model employed for ATC network analysis 
was originally implemented in Java. The model design was ported over to Python 
and was enhanced to enable the extraction/distribution of the clock model states 
and covariance within the MPI environment. To accomplish this, a pass is made 
through the data files, and all time cuts are extracted from each file and fed to a 
separate clock model class instantiated for each ADMAS boot cycle (refer to step 
2 in Fig. 3). The ordered time cuts are fed into each model, and the state/covariance 
data is extracted and stored at 30-s intervals8 based on the GPS time.  

Finally, the clock models are distributed with BLOb files, and data cuts are 
extracted from the BLObs. Each data cut ticker value is rollover extended, and the 
GPS conversion is applied. The data cut with its GPS time tag and estimated time 
conversion error is now ready for the complex task of communications processing, 
where accurate time tags are critical for generating latency and network load 
calculations. 

14. Conclusion 

ARL’s Computational and Information Sciences Directorate, in collaboration with 
the Analysis Team at ATEC, ATC, has implemented a system that leverages the 
capabilities of an HPC environment to reliably time-tag network packet data 
recorded in a High-Bandwidth Tactical Network. Recent test events where over 1 
TB of test data was collected in each 24-h period were successfully processed using 
this system. 
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Appendix. Rogue Cut Detection 
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A custom-designed algorithm based on ticker values was used to detect and reject 
rogue cuts recorded in Binary Large Object (BLOb) files. This Appendix will 
endeavor to explain the algorithm used and prove its efficacy. 

Random tickers in rogue cuts were detected by comparing the differences between 
3 sequential ticker values. To determine if a ticker is that of a rogue cut, the 
algorithm first calculates the change between the ticker in question and the one 
before it, the change between the ticker in question and the one after it, and the 
difference between those 2 changes. The following equations describe this step, 
where 𝑡𝑡0 is the ticker in question, 𝑡𝑡− is the previous ticker, and 𝑡𝑡+ is the next ticker 
sequentially. 

∆𝑡𝑡−0 = 𝑡𝑡0 − 𝑡𝑡− 
∆𝑡𝑡0+ = 𝑡𝑡+ − 𝑡𝑡0 

∆∆𝑡𝑡−0+ = ∆𝑡𝑡0+ − ∆𝑡𝑡−0 

Next, the algorithm generates a score (𝑆𝑆 ) for the ticker being examined by 
comparing the difference between the 2 changes (∆∆𝑡𝑡−0+) and the change from the 
ticker in question to the one after (∆𝑡𝑡0+).  

𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) =  
ΔΔ𝑡𝑡−0+
Δ𝑡𝑡0+

=
Δ𝑡𝑡0+ − Δ𝑡𝑡−0

Δ𝑡𝑡0+
=  
𝑡𝑡+ − 2𝑡𝑡0 + 𝑡𝑡−

𝑡𝑡+ − 𝑡𝑡0
 

In the current implementation of the algorithm, a ticker (𝑡𝑡0) is determined to be 
from a rogue cut if the calculated score is between 1.5 and 2.5, with 2.0 representing 
the score with the highest confidence level. This relationship is described in the 
following expression: 

1.5 <  𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) < 2.5 

The equation is based on the high likelihood that a rogue ticker will be far from the 
expected ticker value. In these cases, either Δ𝑡𝑡−0 will be positive and Δ𝑡𝑡0+ will be 
negative or Δ𝑡𝑡−0 will be negative and Δ𝑡𝑡0+ will be positive. They will also have 
similar magnitudes. In these cases, the expression above will yield a value close to 
2. 

The limits 1.5 and 2.5 provide a necessary buffer for maximizing rogue cut 
detection and minimizing false positives. The limits are designed to avoid the 
accidental removal of legitimate cuts, particularly those where either Δ𝑡𝑡−0 or Δ𝑡𝑡0+ 
is very large because of time gaps or rollovers. 

In the simple case where there is no rogue ticker or rollover, all 3 tickers will be 
ordered least to greatest, and Δ𝑡𝑡−0 and Δ𝑡𝑡0+ will both be positive. In this case, the 
expression will always return a score less than one and fall outside the limits for 
detecting a rogue cut. 
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Special consideration also needs to be taken for rollovers. Tickers that appear 
immediately before or after a rollover could be misinterpreted as denoting rogue 
cuts if the limits used by the algorithm are not sufficiently constrictive. The range 
of scores produced by these tickers can be calculated by knowing the maximum 
elapsed time between 𝑡𝑡−  and 𝑡𝑡+ , the tickers before and after the ticker being 
examined. In the case of this algorithm, a BLOb file containing cuts has a maximum 
time span of 30 min ( 1.8 × 109 µs ). This implies that 𝑡𝑡+  occurs at most 
1.8 × 109 µs after 𝑡𝑡− with a value that is negatively offset by the rollover value 
(232 ). 𝑡𝑡−  occurs within 1.8 × 109 µs  before the rollover, and 𝑡𝑡+  occurs within 
1.8 × 109 µs after the rollover. 

For a ticker (𝑡𝑡0) occurring just before the rollover (Fig. A-1), the maximum score 
determined by the algorithm is 1.419 as shown in the following calculations: 

Premise:  

(1) 30 min = 1.8 × 109 µ𝑠𝑠 

(2) 232 − 1.8 × 109 ≤ 𝑡𝑡− < 𝑡𝑡0 ≤ 232 − 1 

(3) 0 ≤ 𝑡𝑡+ < 1.8 × 109 − 1 

(4) (232 + 𝑡𝑡+) − 𝑡𝑡− ≥ 1.8 × 109 

≡ 𝑡𝑡+ − 𝑡𝑡− ≥ 232 − 1.8 × 109 

≡ (𝑡𝑡+ − 𝑡𝑡0) − (𝑡𝑡− − 𝑡𝑡0) ≥ 232 − 1.8 × 109 

≡ (𝑡𝑡+ − 𝑡𝑡0) ≥ (𝑡𝑡− − 𝑡𝑡0) + 232 − 1.8 × 109 

Calculation: 

(1) 𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) =  𝑡𝑡+−2𝑡𝑡0+𝑡𝑡−
𝑡𝑡+−𝑡𝑡0

= 1 + 𝑡𝑡−−𝑡𝑡0
𝑡𝑡+−𝑡𝑡0

 

(2) min
𝑡𝑡−,𝑡𝑡0,𝑡𝑡+

𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) = 𝑆𝑆(232 − 2, 232 − 1, 0) = 1 + 1
232−1

≅ 1 

(3) 𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡−,𝑡𝑡0,𝑡𝑡+

𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) = 𝑆𝑆(232 − 1.8 × 109, 232 − 1, 0) = 1 + 1.8×109−1
232−1

≅ 1.419  

 

Fig. A-1 A ticker (𝒕𝒕𝟎𝟎) occurring just before a rollover 
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For a ticker (𝑡𝑡0) occurring just after the rollover (Fig. A-2), the minimum score 
determined by the algorithm is 3.386 as shown in the following calculations: 

Premise: 

(1) 30 min = 1.8 × 109 µ𝑠𝑠 

(2) 232 − 1.8 × 109 < 𝑡𝑡− ≤ 232 − 1 

(3) 0 ≤ 𝑡𝑡0 < 𝑡𝑡+ ≤ 1.8 × 109 − 1 

(4) (232 + 𝑡𝑡+) − 𝑡𝑡− ≥ 1.8 × 109 

≡ 𝑡𝑡+ − 𝑡𝑡− ≥ 232 − 1.8 × 109 

≡ (𝑡𝑡+ − 𝑡𝑡0) − (𝑡𝑡− − 𝑡𝑡0) ≥ 232 − 1.8 × 109 

≡ (𝑡𝑡+ − 𝑡𝑡0) ≥ (𝑡𝑡− − 𝑡𝑡0) + 232 − 1.8 × 109 

Calculation: 

(1) 𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) =  𝑡𝑡+−2𝑡𝑡0+𝑡𝑡−
𝑡𝑡+−𝑡𝑡0

= 1 + 𝑡𝑡−−𝑡𝑡0
𝑡𝑡+−𝑡𝑡0

 

(2) 𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡−,𝑡𝑡0,𝑡𝑡+

𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) = 𝑆𝑆(232 − 1, 0, 1.8 × 109 − 1) = 1 + 232−1
1.8×109−1

≅ 3.386  

(3) max
𝑡𝑡−,𝑡𝑡0,𝑡𝑡+

𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) = 𝑆𝑆(232 − 1, 0, 1) = 1 + 232−1
1

= 232 

 

Fig. A-2 A ticker (𝒕𝒕𝟎𝟎) occurring just after a rollover 

The full range of scores for ticker rollovers and other natural ticker values fall 
outside the range identifiable as rogues. Though expanding the limits of rogue cut 
detection to scores between 1.419 and 3.386 might seem reasonable given the above 
calculations, special consideration is given to the effects of data stream buffering 
within the data recorder. Buffering can artificially increase the apparent time span 
covered by a file, especially in cases where there are very few cuts. The bounds of 
1.5 and 2.5 were experimentally found to be the most accurate for the use case, 
detecting more than 99.8% of rogue cuts for medium- to high-packet* networks. 

The algorithm used to detect and reject rogue cuts looks for random ticker values 
by comparing each ticker to its neighbors. A score is calculated for each ticker, and 
                                                 

*Defined here as having an average packet rate greater than one packet per second. 
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those with scores that fall inside the predefined limits are identified as rogue. The 
limits chosen for the use case have been shown to effectively detect rogue cuts and 
to not produce any false positives. Thus, the efficacy of the algorithm has been 
proven.
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List of Symbols, Abbreviations, and Acronyms 

ADMAS Advanced Distributed Modular Acquisition System 

ARL US Army Research Laboratory 

ATC US Army Aberdeen Test Center 

ATEC US Army Test and Evaluation Command 

BLOb binary large object 

FPGA field-programmable gate array 

GPS Global Positioning System 

HPC High-Performance Computing 

IP Internet Protocol 

PVA Position, Velocity, Acceleration 

UTC Coordinated Universal Time 
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