

 ARL-CR-0778 ● SEP 2015

 US Army Research Laboratory

High-Bandwidth Tactical-Network Data
Analysis in a High-Performance-Computing
(HPC) Environment: Time Tagging the Data

prepared by Brian Panneton
Technical and Project Engineering, LLC
Alexandria, VA

Jim Adametz and Jordan Franssen
QED Systems, LLC
Aberdeen, MD

under contract W91CRB-11-D-0007

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-CR-0778 ● SEP 2015

 US Army Research Laboratory

High-Bandwidth Tactical-Network Data
Analysis in a High-Performance-Computing
(HPC) Environment: Time Tagging the Data

prepared by Brian Panneton
Technical and Project Engineering, LLC
Alexandria, VA

James Adametz and Jordan Franssen
QED Systems, LLC
Aberdeen, MD

under contract W91CRB-11-D-0007

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

July 2012–December 2014
4. TITLE AND SUBTITLE

High-Bandwidth Tactical-Network Data Analysis in a High-Performance-
Computing (HPC) Environment: Time Tagging the Data

5a. CONTRACT NUMBER

W91CRB-11-D-0007
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Brian Panneton, Jim Adametz, and Jordan Franssen
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Technical and Project Engineering, LLC QED Systems, LLC
Alexandria, VA Aberdeen, MD

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIH-C
Aberdeen Proving Ground, MD 21005

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

ARL-CR-0778

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The analysis of data from radio-based network testing typically requires that the latency of data leaving one node and arriving
at a destination be determined. To properly calculate latency, transmit and receive times of network packets must be
measured, and those times must be synchronized to a common source. The Global Positioning System (GPS) is a readily
available time source that can be made available at each of the distributed nodes in a network. However, applying GPS-
synchronized time tags to recorded network packets has proven to be a challenge due to microsecond drift, data stream
buffering, and other technical issues. The process described in this report made use of posttest processing techniques to
provide packet-level time tagging with an accuracy close to 3 µs relative to Coordinated Universal Time, with a resolution of
1 µs. This enabled analysis of high-speed wireless networks where a medium-sized packet can be delivered in under 1 ms.

15. SUBJECT TERMS

tactical networks, data reduction, high-performance computing, data analysis, big data

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

28

19a. NAME OF RESPONSIBLE PERSON

Kenneth Renard
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-4678
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. Data Collection Overview 1

3. Time Cuts 2

4. ADMAS Stream Buffering 3

5. High-Performance-Computer (HPC) Processing 3

6. Employing the Clock Model 6

7. Rollover Collection: Assumptions 7

8. Rollover Collection: Detecting Rollovers 7

9. Buffering Effect on Rollover Determination 9

10. Data Gaps 9

11. Rollover Application 9

12. Missing Rollovers 10

13. Clock Model Application 10

14. Conclusion 12

15. References and Notes 13

Appendix. Rogue Cut Detection 15

List of Symbols, Abbreviations, and Acronyms 20

Distribution List 21

iv

List of Figures

Fig. 1 Sample ADMAS time cut data ..2

Fig. 2 How cut tickers get out of order in BLObs ..3

Fig. 3 Time conversion process..4

Fig. 4 Conversion process: Step-3 details ..6

Fig. 5 Sample long-running ADMAS clock differences (3 clock model
states) ...11

Fig. 6 Clock model state update equation ..11

Fig. 7 Clock model covariance matrix ...12

Fig. A-1 A ticker (𝒕𝒕𝟎𝟎) occurring just before a rollover17

Fig. A-2 A ticker (𝒕𝒕𝟎𝟎) occurring just after a rollover ...18

1

1. Introduction

When analyzing network data captured at different endpoints of a radio-based
network, one of the crucial metrics used to evaluate network performance is
latency. To measure latency, the time tag of a packet being sent is recorded and
compared to the time tag of the copy of the same packet received at the endpoint.
For this to work properly, each of the packet-observing data recorders must be
synchronized to a common time source. The Global Positioning System (GPS) is
an ideal time source for such synchronization, as it provides a highly precise,
globally accessible means to synchronize devices.1 This type of testing routinely
requires that over 1 billion packets be examined and time-tagged within an 8-h set
of test records. The process described herein made use of posttest processing
techniques to provide packet-level time tagging with an accuracy close to 3 µs
relative to Coordinated Universal Time (UTC), with a resolution of 1 µs. This
enabled analysis of high-speed wireless networks where a medium-sized packet can
be delivered in under 1 ms.2 This report describes how the US Army Research
Laboratory (ARL) collaborated with the Analysis Team at the Army Test and
Evaluation Command (ATEC), Aberdeen Test Center (ATC), to build a system that
would leverage the capabilities of a high-performance-computing environment to
reliably time-tag network packet data recorded in a High-Bandwidth Tactical
Network.

2. Data Collection Overview

ATC’s Advanced Distributed Modular Acquisition System (ADMAS) is a data
collection device that records metadata and raw binary data in Binary Large Object
(BLOb) files.3 The recorded data are encoded into structures called Data Cuts
(cuts). A cut is a slice of data wrapped in a predefined header. In general, a cut
header contains the type of cut that follows the length of the recorded data and a
microsecond timer value.

The timer, or ticker, is based on an ADMAS’ internal clock, which increments for
each microsecond that passes. This clock stores the current local time as an
unsigned integer with range (0, 232). The ticker initializes to zero when the device
is powered on and then resets back to zero every 232 µs. Thus, a reset, known as a
“rollover”, occurs approximately every 1 h and 11 min. This means that in a
network test lasting several hours, the ticker will roll over multiple times. Figure 1
shows a sample of the file sequence numbers, tickers, and rollover values from a
long-running test.

2

Fig. 1 Sample ADMAS time cut data

ADMAS tickers are not directly synchronized to GPS and are affected by
environmental conditions. Therefore, changes in the behavior of the ticker must be
taken into account. For example, with a change in temperature, the microsecond
ticker can speed up or slow down, causing drift relative to GPS time. This clock
drift, along with the bias between GPS time and ticker time, can be accounted for
by applying corrections extracted from a Kalman filter–based4 “clock model” of
the relationship between ticker and GPS time. Aside from environmental
difficulties, time correction also falls prey to data gaps and hardware malfunctions.
These measurement and recording-type errors need to be addressed before the clock
model can be used for correction.

3. Time Cuts

The ADMAS is capable of recording a wide variety of cut types. During tactical
network testing, GPS cuts and network cuts provide the raw geospatial and network
traffic data needed for analysis. These cuts, however, only contain the ADMAS’
ticker value and do not include the device’s ticker rollover count. To account for
rollovers, time cuts are required.

Time Cuts contain a GPS time5 matched with the ADMAS’ 32-bit ticker value and
16-bit ticker rollover count. The ADMAS hardware uses field-programmable gate
array (FPGA) circuitry to latch the ticker value when the GPS pulse-per-second
signal is fired. The FPGA processing then captures the next GPS serial message
that includes the time when the pulse fired, and the ticker and GPS times are
recorded in the time cut. With the inclusion of the ticker rollover count, this data
allows a clock model to be defined between the ticker values and GPS time.

3

4. ADMAS Stream Buffering

One stream buffer for each cut type is used in writing cuts to BLOb files. While
this maintains ticker order within each cut type, the order for cuts of different types
is not guaranteed. Figure 2 depicts how time, network, and GPS cuts might be
ordered in a BLOb file. In this figure, cuts are represented as small rectangles, the
border color represents the type of cut, and the fill color represents the ticker value
of the cut. We can see that the order of tickers in the BLOb file is not sequential
when viewed without regard to cut type.

Fig. 2 How cut tickers get out of order in BLObs

In addition to the stream buffers’ effect on cut ordering within a file, buffering may
also result in BLOb files containing cuts recorded before the file’s creation. An
ADMAS will close its current BLOb file and open a new one when either 1,800 s
have passed since the file was opened or the file size has exceeded 500 MB. A
buffer may still contain data when the file is closed, in which case the cuts will be
written to the new file. Each file is given an incremental sequence number that can
be used in detecting these cases.

Because of the effects of buffering, all cuts must be separated by type before having
their ticker values converted to the GPS time domain. This is required to ensure
that the proper rollover value is associated with each 32-bit ticker value.

5. High-Performance-Computer (HPC) Processing

The custom data reduction software used to organize and process tens of thousands
of files containing billions of data cuts runs on high-performance computers (HPCs)
in a scalable, distributed fashion. This means that data are spread across hundreds
of compute cores that do not necessarily share memory. The reduction software
uses an approach similar to map-reduce to collect all the information needed to
produce a clock model.

4

The process of converting all of the BLOb data cut tickers into GPS-corrected time
within the HPC environment is diagramed in Fig. 3.

MPI Scatter Of Blob Files

Blob Files

TimeCuts, FileMetaData organized
by ADMAS Power Cycle

MPI Scatter Of TimeCuts and FileMetadata

FileMetaData, ClockModels

MPI Scatter of Blob files, FileMetaData and
ClockModels;

Step 1

Step 2

Step 3

Extract TimeCuts and
File Metadata

Create ClockModels

Network and Other Cuts are Extracted and
ExtendedTickers are converted to UTC Time
(Network Analysis Processing can Proceed)

CutData with GPSTime and Estimated Conversion Error

Fig. 3 Time conversion process

Step 1 distributes the individual BLOb files across message-passing interface (MPI)
worker processes. The purpose of this step is to extract all time cuts and metadata
from each file, which includes the following:

• Number of ticker rollovers at the start of the file

• Indicator if the file contains one or more ticker rollovers for each cut type

5

• File name

• File sequence number since the last startup

• Types of data cuts in the file

The time cuts and metadata are serialized back to a disk for further processing in
step 2.

Step 2 distributes the time cuts and metadata across the MPI worker processes; the
distribution is segmented by data collector device and a “boot sequence” number.
The boot sequence is derived from observations of the file sequence number present
in each BLOb file. When the sequence goes backwards as time moves forwards, a
reboot of the ADMAS has occurred. The reboot causes the relationship between
GPS time and ticker time to be reset. This forces the creation of a new clock model
for the time period following each reboot.

During step 2, the clock models are fed the time cuts in time order. Once the clock
models are done processing all of the time cuts, the clock model runtime parameters
are serialized to a disk for the next step in processing.

Step 3 redistributes the original BLOb files, file metadata, and the clock models
across the MPI worker processes; the distribution is segmented by BLOb file.
During this iterative step (Fig. 4), each data cut is extracted from a given BLOb
file, and the ticker is converted to a GPS time using the clock model associated with
the file. The data cut and the clock model–derived GPS time with estimated time
conversion error are provided for further processing.

6

Fig. 4 Conversion process: step-3 details

6. Employing the Clock Model

Employing a clock model in step 3 starts with standardizing ticker times for cuts
using the ticker rollover counts found in time cuts. The ticker rollover counts from
time cuts are applied across the other cut types to convert all tickers to 48-bit
unsigned integers. These 48-bit extended tickers define the cut order and can be
correlated to epoch time using the clock model. The clock model details are
discussed later in this report.

Before beginning step 3, one must have the rollover properly aligned with the data,
otherwise the data for that particular file will be off by a factor of 232 µs (~1 h,
11 m). It is also important to keep track of the rollover count per file because it will

Blob File FileMetaData,
ClockModels

Locate
ClockModel

and MetaData
for the File

Get Initial
Rollover For

CutTypes

Extract Next
Cut

Get Ticker
And

Determine
Rollover

Extend Ticker
And Convert
To GPS Time

Using
ClockModel

Provide
CutData, GPS

Time, Est.
Time Err. For

Further
Processing

CutData with
GPSTime, Err

7

be needed when the files are redistributed for further processing. The HPC
reduction software performs the actual time conversion when the file is
reprocessed.

During step 2, processing of the cut data within each BLOb file must be done in
time-order to generate the correct rollover information for each file before it is
redistributed, otherwise the application of the clock model cannot be done on the
fly. Part of this information includes having the correct rollover count for the start
of the file. To determine the rollover count, the file metadata must be collected in
one place. It then gets sorted by the file creation time. Once sorted, missing
rollovers can be detected during time cut data gaps. The processing of the data is
broken into 2 significant parts: rollover collection and rollover application.

7. Rollover Collection: Assumptions

The initial design goal for rollover collection was to identify ticker rollovers and
calculate the extended tickers of cuts on a per-file basis. This method, however,
made some reasonable assumptions.

The first assumption was that there is, at a maximum, one rollover per file. This
assumption was based on the fact that the ticker value resets once every 1 h and 11
min, and a BLOb file spans roughly 30 min or less. With the ADMAS configuration
intact, this was a safe assumption.

The next assumption was that a decrease in the ticker value for cuts of the same
type must be caused by a ticker rollover. This assumption was based on the fact that
tickers could only increment and cuts would be buffered in order.

While the second assumption is theoretically sound, anomalous data dubbed rogue
cuts can cause false positives in detecting ticker rollovers. A rogue cut is produced
when valid, but erroneous data are written into a well-structured cut.6 In these cases,
the ticker value is a random number, so it may appear that a rollover occurred when
it did not. The algorithm to detect and reject rogue cuts is discussed in the
Appendix.

8. Rollover Collection: Detecting Rollovers

In order to apply the clock model to each file independently, each file’s starting
rollover count needed to be determined. To accomplish this, the following metadata
from each file was collected:

• The file creation time

8

• The file sequence number

• Whether or not a rollover was detected in the file

• The minimum and maximum time cuts

The file creation time and sequence number are included in the file metadata and
are readily available. With files ordered by the creation times, sequence numbers
can be compared to delineate power cycles in the ADMAS collector.

A power cycle is the period of time between device resets. Since sequence numbers
are incremental, a file is considered to be the start of a power cycle when the
sequence number is less than or equal to the sequence number of the previous file.
Each power cycle resets the rollover count to zero and requires a separate clock
model.

The rollover count increments at most once per file based on the previous
assumptions, thus allowing per file rollover detection. By keeping track of the high-
order bit of the ticker, we could detect a rollover once the value flips from one to
zero, indicating the ticker value decreased. The change of the high-order bit
represents 231 µs, which is large enough (roughly 35 min) to avoid the time
variability of the unordered ticker values. Because there is a separate buffer for each
cut type, the ticker could appear to roll over multiple times—once for each cut
type—but would only be recorded as one occurrence.

If a rollover had been detected in a file, the rollover values in the minimum and
maximum time cuts could be used to determine the relative position of the rollover
and, in turn, calculate the file’s starting rollover count. The relative position of the
ticker rollover falls into one of the following categories:

1. Before the minimum time cut

2. Between the minimum and maximum time cuts

3. After the maximum time cut

4. Unknown position

The rollover is determined to be in category 1 if the rollover count in the minimum
time cut is greater than the maximum rollover in the previous file. In this case, the
current file’s starting rollover must be one less than the minimum time cut rollover
count.

The rollover falls into category 2 if the minimum time cut rollover is one less than
the maximum time cut rollover. In this case, the file’s starting rollover count would
be equal to the minimum time cut rollover count.

9

If the rollover does not fall into either category 1 or 2, then, by default, it is
attributed to category 3 and must have occurred after the maximum time cut. As
with category 2, the file’s starting rollover count is equal to the minimum time cut
rollover count.

Category 4 sums up all the cases that do not fit into the other categories. Primarily,
rollovers detected in a file are considered in this category when there are no time
cuts recorded. However, complications with cut buffering can also cause the
position of the rollover to become uncertain.

9. Buffering Effect on Rollover Determination

The ADMAS hardware has a 128-KB buffer size limit that must be reached before
the cuts get written to a file. If the cuts are small enough, then a large number of
cuts can be stored in the buffer and not written until a new file has been opened. So
far, this has only been witnessed with network cuts.

This creates a problem when the buffered cuts written to a new file contain a
rollover. Since some different cut types from the same period of time will have been
written to 2 different files, a rollover can be detected in both. This makes it appear
that an extra rollover occurred and, in some cases, can even cause 2 rollovers to
appear in a single file.

This case breaks a few of the assumptions required to accurately produce extended
ticker values for each cut. While detecting 2 files in sequence both with rollovers
quickly identifies this case, the interwoven nature of the cut types makes calculating
extended tickers a difficult task.

10. Data Gaps

Another difficult issue to overcome is gaps in the data. Gaps can be attributed to
missing files or the monitored radio losing GPS satellite connectivity. Incorrect
configurations and faulty hardware may also cause missing data. When combined
with the buffering issue, a situation exists where it is impossible to determine the
ticker rollover count needed to calculate extended tickers.

11. Rollover Application

Dealing with buffering and data gaps with the initial approach resulted in a lot of
uncertainty for the file’s starting rollover count. Another approach can overcome
the multiple rollovers and simplify the majority of the categorizing code from the
previous approach. Instead of detecting rollovers for the entire file by examining

10

high order bits of any 2 consecutive cuts, detection occurs per cut type stream (refer
back to Fig. 2). By recording each ticker value that starts a new rollover on a per-
cut-type basis, it is possible keep count of how many rollovers occurred in the file.
The location of rollover occurrence within the file is no longer needed.

When calculating extended ticker values, we use the same algorithms to order the
file metadata and handle power cycles. Starting with the first file, a simple rollover
count is maintained per cut type. In addition, the first post-rollover ticker value is
kept per rollover observation.

With valid time cuts within the file, the data gap problem is not very difficult. Even
when time cuts are not in every file, there is a chance that the rollover can be
guessed. This depends on the number of contiguous files missing time cuts and the
sparseness of the other cut types. Without any time cuts, there are no reference
points for predicting rollover counts.

12. Missing Rollovers

Missing rollovers are corrected by taking the difference between the rollover count
for time cuts and the rollover count for the current cut type. This algorithm allows
for overcorrection by marking the rollover count with a maximum of one higher
than it actually is. This is a case caused by buffering, but it can easily be detected.
The rollover guess is applied to the tickers of the last time cut and the first data cut
of the current cut type. If the last time cut is less than the first current cut type, the
rollover for the current cut type has been overcorrected. The detection is valid when
the time cut stream has a rollover in the file and the current cut type stream does
not. Subtracting one from the data cut’s starting file rollover corrects this instance.

Missing rollovers also occur when the data are sparse. In this case, the rollover is
truly missed. When the value of the ticker is on the upper half of the 32-bit value,
it ends up being overcorrected by one rollover. Taking the distance between the
minimum and maximum ticker of both the current cut type and the time cuts allows
this case to be detected. If the difference of the current is less than 25% of the time
cuts and it is on the high end of the 32 bits, it was overcorrected. Subtracting one
rollover will correct this case.

13. Clock Model Application

Once the starting rollover count per cut type is determined correctly, the clock
model can be employed to convert a ticker to GPS time. The input value for
conversion by the clock model is a rollover-extended ticker value. A simple

11

addition of the ticker and the left bit shift of rollover count by 32 bits creates the
rollover extended ticker.

The clock model used is a second-order Kalman filter of the clock offset between
ticker-time and GPS time. This model implements a tracking filter that uses as
measurements the difference between local ticker time (extended ticker roughly
converted to seconds) and GPS time, which provides a phase difference in seconds
between the 2 clock sources (see Fig. 5 for an example). The filter maintains 3 state
values (Fig. 6) for the model: Phase-Difference, Skew, and Aging-Noise. The
relationship between these states is analogous to a single dimension Position,
Velocity, Acceleration (PVA) model. Skew is the first derivative of Phase-
Difference, and Aging-Noise is the second derivative. The design for the filter is
documented in the case study of WIN-T IOTE ClockModel Issues.7

Fig. 5 Sample long-running ADMAS clock differences (3 clock model states)

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 = 𝟐𝟐𝟑𝟑𝟑𝟑 ∗ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 + 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻





















∆

∆
∆
















=

















−

−

−

100
10

2
1

*

2

t

tt

Aging
Skew

PhaseDiff

Aging
Skew

PhaseDiff

t

t

t

t

t

t

Fig. 6 Clock model state update equation

12

The clock model maintains a covariance matrix (Fig. 7), which is used to generate
an estimated error of the conversion from ticker time to GPS time. When the
estimated error of a conversion exceeds a threshold, the data associated with that
ticker will be marked for limited analytical use.

















∂∂∂∂∂
∂∂∂∂∂
∂∂∂∂∂

=
2

2

2

**
**

**

ttttt

ttttt

ttttt

t

AgingAgingSkewAgingPhaseDiff
AgingSkewSkewSkewPhaseDiff

AgingPhaseDiffSkewPhaseDiffPhaseDiff
P

Fig. 7 Clock model covariance matrix

Prior to the ATC/ARL HPC efforts, the model employed for ATC network analysis
was originally implemented in Java. The model design was ported over to Python
and was enhanced to enable the extraction/distribution of the clock model states
and covariance within the MPI environment. To accomplish this, a pass is made
through the data files, and all time cuts are extracted from each file and fed to a
separate clock model class instantiated for each ADMAS boot cycle (refer to step
2 in Fig. 3). The ordered time cuts are fed into each model, and the state/covariance
data is extracted and stored at 30-s intervals8 based on the GPS time.

Finally, the clock models are distributed with BLOb files, and data cuts are
extracted from the BLObs. Each data cut ticker value is rollover extended, and the
GPS conversion is applied. The data cut with its GPS time tag and estimated time
conversion error is now ready for the complex task of communications processing,
where accurate time tags are critical for generating latency and network load
calculations.

14. Conclusion

ARL’s Computational and Information Sciences Directorate, in collaboration with
the Analysis Team at ATEC, ATC, has implemented a system that leverages the
capabilities of an HPC environment to reliably time-tag network packet data
recorded in a High-Bandwidth Tactical Network. Recent test events where over 1
TB of test data was collected in each 24-h period were successfully processed using
this system.

13

15. References and Notes

1. Dana P, Penrod B. The role of GPS in precise time and frequency
dissemination. Greenbelt (MD): National Aeronautics and Space
Administration; 1990 [accessed 2015 Jan 27]. http://ilrs.gsfc.nasa.gov
/docs/timing/gpsrole.pdf.

2. 700 bytes = 5,600 bits over a 50 Mbps wireless network => 112 µs.

3. Army Aberdeen Test Center (US). VISION BLOb description. Aberdeen
Proving Ground (MD): Army Aberdeen Test Center (US), Instrumentation
Development Division; 2014.

4. Kalman RE. A new approach to linear filtering and prediction problems.
Transactions of the ASME Journal of Basic Engineering. 1960;82(D):35–45
[accessed 2015 Jan 13]. https://www.cs.unc.edu/~welch/kalman
/media/pdf/Kalman1960.pdf.

5. ADMAS records GPS time (epoch time) as the number of whole seconds since
January 1, 2000.

6. The reasons for the existence of these rogue cuts is still under investigation by
the ADMAS development team. These represent a very small fraction of the
total cuts recorded (on the order of 0.00001% of cuts recorded).

7. Adametz J, McGowan J. Case study of WIN-T IOTE ClockModel issues.
Aberdeen Proving Ground (MD): Army Aberdeen Test Center (US),
Instrumentation Development Division; 2012.

8. The 30-s interval was empirically determined to be a useful clock model
storage interval. Because of the stability of the ticker to GPS relationship, very
little estimated error growth was observed to occur with this size interval.

14

INTENTIONALLY LEFT BLANK.

15

Appendix. Rogue Cut Detection

16

A custom-designed algorithm based on ticker values was used to detect and reject
rogue cuts recorded in Binary Large Object (BLOb) files. This Appendix will
endeavor to explain the algorithm used and prove its efficacy.

Random tickers in rogue cuts were detected by comparing the differences between
3 sequential ticker values. To determine if a ticker is that of a rogue cut, the
algorithm first calculates the change between the ticker in question and the one
before it, the change between the ticker in question and the one after it, and the
difference between those 2 changes. The following equations describe this step,
where 𝑡𝑡0 is the ticker in question, 𝑡𝑡− is the previous ticker, and 𝑡𝑡+ is the next ticker
sequentially.

∆𝑡𝑡−0 = 𝑡𝑡0 − 𝑡𝑡−
∆𝑡𝑡0+ = 𝑡𝑡+ − 𝑡𝑡0

∆∆𝑡𝑡−0+ = ∆𝑡𝑡0+ − ∆𝑡𝑡−0

Next, the algorithm generates a score (𝑆𝑆) for the ticker being examined by
comparing the difference between the 2 changes (∆∆𝑡𝑡−0+) and the change from the
ticker in question to the one after (∆𝑡𝑡0+).

𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) =
ΔΔ𝑡𝑡−0+
Δ𝑡𝑡0+

=
Δ𝑡𝑡0+ − Δ𝑡𝑡−0

Δ𝑡𝑡0+
=
𝑡𝑡+ − 2𝑡𝑡0 + 𝑡𝑡−

𝑡𝑡+ − 𝑡𝑡0

In the current implementation of the algorithm, a ticker (𝑡𝑡0) is determined to be
from a rogue cut if the calculated score is between 1.5 and 2.5, with 2.0 representing
the score with the highest confidence level. This relationship is described in the
following expression:

1.5 < 𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) < 2.5

The equation is based on the high likelihood that a rogue ticker will be far from the
expected ticker value. In these cases, either Δ𝑡𝑡−0 will be positive and Δ𝑡𝑡0+ will be
negative or Δ𝑡𝑡−0 will be negative and Δ𝑡𝑡0+ will be positive. They will also have
similar magnitudes. In these cases, the expression above will yield a value close to
2.

The limits 1.5 and 2.5 provide a necessary buffer for maximizing rogue cut
detection and minimizing false positives. The limits are designed to avoid the
accidental removal of legitimate cuts, particularly those where either Δ𝑡𝑡−0 or Δ𝑡𝑡0+
is very large because of time gaps or rollovers.

In the simple case where there is no rogue ticker or rollover, all 3 tickers will be
ordered least to greatest, and Δ𝑡𝑡−0 and Δ𝑡𝑡0+ will both be positive. In this case, the
expression will always return a score less than one and fall outside the limits for
detecting a rogue cut.

17

Special consideration also needs to be taken for rollovers. Tickers that appear
immediately before or after a rollover could be misinterpreted as denoting rogue
cuts if the limits used by the algorithm are not sufficiently constrictive. The range
of scores produced by these tickers can be calculated by knowing the maximum
elapsed time between 𝑡𝑡− and 𝑡𝑡+ , the tickers before and after the ticker being
examined. In the case of this algorithm, a BLOb file containing cuts has a maximum
time span of 30 min (1.8 × 109 µs). This implies that 𝑡𝑡+ occurs at most
1.8 × 109 µs after 𝑡𝑡− with a value that is negatively offset by the rollover value
(232). 𝑡𝑡− occurs within 1.8 × 109 µs before the rollover, and 𝑡𝑡+ occurs within
1.8 × 109 µs after the rollover.

For a ticker (𝑡𝑡0) occurring just before the rollover (Fig. A-1), the maximum score
determined by the algorithm is 1.419 as shown in the following calculations:

Premise:

(1) 30 min = 1.8 × 109 µ𝑠𝑠

(2) 232 − 1.8 × 109 ≤ 𝑡𝑡− < 𝑡𝑡0 ≤ 232 − 1

(3) 0 ≤ 𝑡𝑡+ < 1.8 × 109 − 1

(4) (232 + 𝑡𝑡+) − 𝑡𝑡− ≥ 1.8 × 109

≡ 𝑡𝑡+ − 𝑡𝑡− ≥ 232 − 1.8 × 109

≡ (𝑡𝑡+ − 𝑡𝑡0) − (𝑡𝑡− − 𝑡𝑡0) ≥ 232 − 1.8 × 109

≡ (𝑡𝑡+ − 𝑡𝑡0) ≥ (𝑡𝑡− − 𝑡𝑡0) + 232 − 1.8 × 109

Calculation:

(1) 𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) = 𝑡𝑡+−2𝑡𝑡0+𝑡𝑡−
𝑡𝑡+−𝑡𝑡0

= 1 + 𝑡𝑡−−𝑡𝑡0
𝑡𝑡+−𝑡𝑡0

(2) min
𝑡𝑡−,𝑡𝑡0,𝑡𝑡+

𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) = 𝑆𝑆(232 − 2, 232 − 1, 0) = 1 + 1
232−1

≅ 1

(3) 𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡−,𝑡𝑡0,𝑡𝑡+

𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) = 𝑆𝑆(232 − 1.8 × 109, 232 − 1, 0) = 1 + 1.8×109−1
232−1

≅ 1.419

Fig. A-1 A ticker (𝒕𝒕𝟎𝟎) occurring just before a rollover

18

For a ticker (𝑡𝑡0) occurring just after the rollover (Fig. A-2), the minimum score
determined by the algorithm is 3.386 as shown in the following calculations:

Premise:

(1) 30 min = 1.8 × 109 µ𝑠𝑠

(2) 232 − 1.8 × 109 < 𝑡𝑡− ≤ 232 − 1

(3) 0 ≤ 𝑡𝑡0 < 𝑡𝑡+ ≤ 1.8 × 109 − 1

(4) (232 + 𝑡𝑡+) − 𝑡𝑡− ≥ 1.8 × 109

≡ 𝑡𝑡+ − 𝑡𝑡− ≥ 232 − 1.8 × 109

≡ (𝑡𝑡+ − 𝑡𝑡0) − (𝑡𝑡− − 𝑡𝑡0) ≥ 232 − 1.8 × 109

≡ (𝑡𝑡+ − 𝑡𝑡0) ≥ (𝑡𝑡− − 𝑡𝑡0) + 232 − 1.8 × 109

Calculation:

(1) 𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) = 𝑡𝑡+−2𝑡𝑡0+𝑡𝑡−
𝑡𝑡+−𝑡𝑡0

= 1 + 𝑡𝑡−−𝑡𝑡0
𝑡𝑡+−𝑡𝑡0

(2) 𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡−,𝑡𝑡0,𝑡𝑡+

𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) = 𝑆𝑆(232 − 1, 0, 1.8 × 109 − 1) = 1 + 232−1
1.8×109−1

≅ 3.386

(3) max
𝑡𝑡−,𝑡𝑡0,𝑡𝑡+

𝑆𝑆(𝑡𝑡−, 𝑡𝑡0, 𝑡𝑡+) = 𝑆𝑆(232 − 1, 0, 1) = 1 + 232−1
1

= 232

Fig. A-2 A ticker (𝒕𝒕𝟎𝟎) occurring just after a rollover

The full range of scores for ticker rollovers and other natural ticker values fall
outside the range identifiable as rogues. Though expanding the limits of rogue cut
detection to scores between 1.419 and 3.386 might seem reasonable given the above
calculations, special consideration is given to the effects of data stream buffering
within the data recorder. Buffering can artificially increase the apparent time span
covered by a file, especially in cases where there are very few cuts. The bounds of
1.5 and 2.5 were experimentally found to be the most accurate for the use case,
detecting more than 99.8% of rogue cuts for medium- to high-packet* networks.

The algorithm used to detect and reject rogue cuts looks for random ticker values
by comparing each ticker to its neighbors. A score is calculated for each ticker, and

*Defined here as having an average packet rate greater than one packet per second.

19

those with scores that fall inside the predefined limits are identified as rogue. The
limits chosen for the use case have been shown to effectively detect rogue cuts and
to not produce any false positives. Thus, the efficacy of the algorithm has been
proven.

20

List of Symbols, Abbreviations, and Acronyms

ADMAS Advanced Distributed Modular Acquisition System

ARL US Army Research Laboratory

ATC US Army Aberdeen Test Center

ATEC US Army Test and Evaluation Command

BLOb binary large object

FPGA field-programmable gate array

GPS Global Positioning System

HPC High-Performance Computing

IP Internet Protocol

PVA Position, Velocity, Acceleration

UTC Coordinated Universal Time

21

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

1 TECH AND PROJ ENGR LLC
 (PDF) B PANNETON

1 QED SYSTEMS LLC
 (PDF) J ADAMETZ
 J FRANSSEN

 1 DIR USARL
 (PDF) RDRL CIN S
 K RENARD

22

INTENTIONALLY LEFT BLANK.

	List of Figures
	1. Introduction
	2. Data Collection Overview
	3. Time Cuts
	4. ADMAS Stream Buffering
	5. High-Performance-Computer (HPC) Processing
	6. Employing the Clock Model
	7. Rollover Collection: Assumptions
	8. Rollover Collection: Detecting Rollovers
	9. Buffering Effect on Rollover Determination
	10. Data Gaps
	11. Rollover Application
	12. Missing Rollovers
	13. Clock Model Application
	14. Conclusion
	15. References and Notes
	Appendix. Rogue Cut Detection
	List of Symbols, Abbreviations, and Acronyms

