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A controlled laboratory environment to study EO signal degradation 
due to underwater turbulence  

Silvia Matt*a, Weilin Houa, Wesley Goodea, Guigen Liub, Ming Hanb, Andrey Kanaevc, Sergio 
Restainoc 

aNaval Research Laboratory, Stennis Space Center, MS 39426, USA; bDepartment of Electrical 
Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; cNaval Research 

Laboratory, Washington DC, DC 20375, USA 

ABSTRACT  

Temperature microstructure in the ocean can lead to localized changes in the index of refraction and can distort 
underwater electro-optical (EO) signal transmission. A similar phenomenon is well-known from atmospheric optics and 
generally referred to as “optical turbulence”. Though turbulent fluctuations in the ocean distort EO signal transmission 
and can impact various underwater applications, from diver visibility to active and passive remote sensing, there have 
been few studies investigating the subject. To provide a test bed for the study of impacts from turbulent flows on 
underwater EO signal transmission, and to examine and mitigate turbulence effects, we set up a laboratory turbulence 
environment allowing the variation of turbulence intensity. Convective turbulence is generated in a large Rayleigh-
Bénard tank and the turbulent flow is quantified using high-resolution Acoustic Doppler Velocimeter profilers and fast 
thermistor probes. The turbulence measurements are complemented by computational fluid dynamics simulations of 
convective turbulence emulating the tank environment. These numerical simulations supplement the sparse laboratory 
measurements. The numerical data compared well to the laboratory data and both conformed to the Kolmogorov 
spectrum of turbulence and the Batchelor spectrum of temperature fluctuations. The controlled turbulence environment 
can be used to assess optical image degradation in the tank in relation to turbulence intensity, as well as to apply 
adaptive optics techniques. This innovative approach that combines optical techniques, turbulence measurements and 
numerical simulations can help understand how to mitigate the effects of turbulence impacts on underwater optical 
signal transmission, as well as advance optical techniques to probe oceanic processes.  

Keywords: Optical turbulence, turbulence measurements, Rayleigh-Bénard tank, numerical simulation, temperature 
measurements, computational fluid dynamics, oceanic optics 
 

1. INTRODUCTION  
“Optical turbulence” is a well-known concept in atmospheric optics where it describes the degradation of EO 
transmission caused by variations in the index of refraction of air due to turbulence-induced temperature changes along 
the optical path. This is the same type of phenomenon that occurs when looking at air over a hot road or burning candle. 
The same concept applies underwater, and here, the visual disturbance can be caused by variations in either temperature 
or salinity that are associated with turbulent microstructure. Most often, temperature fluctuations are the dominating 
factor affecting the index of refraction [1], except in the case of strong freshwater or salt water influence, such as in river 
outflows or estuaries, or possibly in surface lenses generated by rainfall. In this study, we neglect the influence of 
salinity and instead focus on the effect of temperature.  

Underwater “optical turbulence” at sea was investigated in the 1970s by [2], who used this term to describe “small 
inhomogeneities in the index of refraction of seawater, their origins, and the effects they have on underwater optical 
systems”. Possibly due to the fact that it is secondary to particle scattering in many locations, the phenomenon of 
“optical turbulence” in the ocean has since not received widespread attention, even though it can affect a wide range of 
applications, from diver visibility to active and passive remote sensing. More recently, [1] looked at the effect of “light 
scattering on oceanic turbulence” with numerical studies compared to measurements in a small laboratory tank. Two 
recent field studies aimed at characterizing naturally-occurring “optical turbulence” in the aquatic environment highlight 
the difficulties associated with collecting concurrent data on optics and turbulence in the ocean [3] or lakes [4].  
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Field data are generally affected by a number of external parameters, including platform motion polluting the velocity 
data and scattering due to particles degrading the optical signal, and to reduce the number of parameters involved, we 
developed a laboratory environment for the study of underwater “optical turbulence”. The laboratory setup permits the 
variation of turbulence intensity and thus a “controlled turbulence environment” is generated, which also provides a 
framework for repeatable experiments. The laboratory experiments are supplemented by numerical simulations using 
computational fluid dynamics (CFD). The numerical simulations provide full fields of temperature and velocity and thus 
provide a better view of the large-scale flow field and distribution of turbulence parameters than could be gathered with 
the sparse laboratory measurements alone. 

To quantify the impact of turbulent fluctuations on optical signal transmission, the optical turbulence parameter Sn can 
be calculated. Sn is the oceanic equivalent of the atmospheric optical turbulence coefficient Cn

2 and is a function of 
turbulent kinetic energy and temperature variance dissipation rates, ε and χ, respectively [5][6]: 

Sn ~ χ ε -1/3   (1) 

Thus, in order to estimate Sn and the amount of image degradation from turbulence, we need information on both 
velocity and temperature fluctuations. These measurements need to be of sufficient resolution to allow inferring 
dissipation rates ε and χ.  

 

         
Figure 1. Laboratory tank at NRLSSC. The photo on the right shows the Vectrino profiler ADV and the CT temperature 
probe. 

 

2. METHODS 
Laboratory Setup 

The laboratory setup consists of a large acrylic tank which is 5m long and has a cross section of 0.5m by 0.5m and is 
outfitted with stainless steel plates at the bottom and top that can be temperature controlled (Fig. 1, left). In this tank, 
convective Rayleigh-Bénard type turbulence is generated by heating and cooling the bottom and top, respectively. The 
strength of the convective turbulence in the tank is a function of the temperature difference across the tank and can be 
characterized in terms of the Rayleigh number, defined as  

Ra = gαΔTd3/(νDT)  (2) 

Where g is the acceleration due to gravity, α is the thermal expansion coefficient, ∆T is the temperature difference 
between the plates, d is the distance between the plates, ν is the kinematic viscosity, and DT is the thermal diffusivity.   

The Rayleigh number of the flow can be changed by changing the plate temperatures, and thus the turbulence intensity 
can be varied. In our experiments, Ra ranges from 1.5∙1010 to around 4∙1010, corresponding to a temperature difference 
∆T between the plates of 6K and 16K, respectively.  
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The turbulence in the tank is quantified by high-resolution Acoustic Doppler Velocimeter profilers (Nortek Vectrino 
Profiler) and fast thermistor probes (PME high-resolution conductivity-temperature (CT) probe) (Fig. 1, right). These 
instruments provide high-resolution velocity and temperature measurements, at 100 and 64Hz, respectively. Three 
ADVs and two CT probes were mounted in the tank and collected time series of high-resolution velocity and 
temperature/conductivity for the subsequent estimation of ε and χ. Data were collected at a sampling frequency of 100Hz 
with the Vectrino Profiler and at 64Hz with the CT probes, which were controlled by a Nortek Vector ADV in our setup. 
Turbulent kinetic energy dissipation rate ε and temperature variance dissipation rate χ were calculated from the velocity 
and temperature measurements via spectral fitting to Kolmogorov spectra (for velocity) and Batchelor spectra (for 
temperature) and compared to values obtained from the numerical simulations of convective turbulence in the tank for 
comparable Rayleigh number and setup [7][8][9][10]. The turbulence data is put into the context of measurements of 
optical target clarity, by placing a high-speed imaging camera and active optical target, an iPad displaying optical 
resolution charts, at opposite ends of the tank, providing an optical path length of around 5m. To quantify the extent of 
image degradation from optical turbulence, an image quality metric, namely the Structural Similarity Index Method 
(SSIM) can be applied [11]. The SSIM measures the similarity between two images, where one is considered to be of 
“perfect quality”.  
 

 
Figure 2. Image degradation for different “optical turbulence” strengths. The images are taken with an optical path of 5m (the 
length of the laboratory tank) of an optical resolution chart across a region of turbulent water. Left is for a lower yet still “strong” 
level of optical turbulence and on the right is the highest level of turbulence (“extreme”) we can achieve in the tank. 

Images from the laboratory show the image degradation due to optical turbulence for a case of “strong” (Fig. 2, left, ΔT 
≈ 6K) and “extreme” optical turbulence (Fig. 2, right, ΔT ≈  16K). Here, particle scattering is secondary to the changes 
in the index of refraction due to temperature microstructure. Note that the effect of optical turbulence is more 
pronounced at the higher spatial frequencies. When applying the SSIM metric to a sequence of video images in order to 
quantify the extent of image degradation from optical turbulence, the differing amounts of image degradation for the two 
turbulence cases is confirmed [12]. 

Numerical Tank 

The sparse laboratory measurements (three Vectrino Profilers and two temperature probes) were complemented by CFD 
simulations of the convective tank. These three-dimensional, very high-resolution, non-hydrostatic numerical 
simulations provide full fields of temperature and velocity for the estimation of turbulence parameters and their impact 
on the optics. 

The numerical experiments were performed with the open-source CFD package OpenFOAM using a Large-Eddy 
Simulation (LES) approach. In LES, the larger-scale eddies in the flow are explicitly resolved, while the scales smaller 
than the grid-size are modeled [13]. The traditional Smagorinsky model was chosen as the sub-grid scale model [14]. 
Here, we present results from a very high-resolution, millimeter-scale simulation with ∆x = ∆y = 5mm, ∆z = 2.5mm, 
which corresponds to 20 million grid points in the 5m by 0.5m by 0.5m domain (Fig. 3). Exploratory simulations at 
lower resolution (∆x = ∆y = ∆z = 1cm) were run on a modern, high-performance, dual six-core Linux desktop, whereas 
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Figure 3. “Numerical Tank" used to simulate Rayleigh-Bénard convection and emulating the laboratory tank setup. The 
temperature field (in K) is shown and several convective plumes are visible. Top is “strong” optical turbulence, bottom is 
for “extreme” optical turbulence. (Note that this figure appears in color in the web version of this article.) 

production runs at the millimeter-scale resolution required High-Performance Computing resources at the DoD 
Supercomputing Resource Center, due to the high computational cost. 

Temperature and velocity from the numerical simulations provide a view of the overall circulation in the tank, thus 
supplementing the sparse laboratory measurements. The simulations illustrate that convective cells are established in the 
tank and a more detailed description of the fields in the tank has been reported in [12]. The size and number of the 
convective cells that develop in the tank are a function of the tank dimensions, in particular the tank height, since the 
water rises and sinks and gets diverted once it reaches the solid boundaries at the top and bottom. With a tank of depth d 
= 0.5m and length L = 5m, we observe on the order of ten convective cells in our domain. In addition to the convective 
cells, secondary circulations, namely in the cross-sectional direction, develop in the domain. These circulations can be 
visually confirmed in the laboratory when adding a tracer to the fully developed flow field, such as, for example, the 
seeding material needed to collect ADV data.  The model temperature fields allow the calculation of the index of 
refraction (IOR) from these fields, using the empirical relation described in [15]. These fields, which have been reported 
in [12], can then provide an illustration of the disturbance expected to be encountered by an optical beam passing 
through the tank. 
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Figure 4.  Vectrino Profiler data from laboratory tank for “strong” (top) and “extreme” (middle) optical turbulence. Results 
from the numerical simulation of the tank are shown at the bottom, for the case of “extreme” turbulence. (Note that this 
figure appears in color in the web version of this article.) 
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3. RESULTS 
Comparing data from the Vectrino Profiler for “strong” and “extreme” optical turbulence, shows the maximum 
velocities are on the order of 2 cm/s for both cases (Fig. 4). The Vectrino data is shown for all nine points from the 
Vectrino Profiler, which cover a horizontal sampling volume of ~3cm.  Comparing the laboratory data to output from the 
numerical model from a similar location in the tank, reveals that the variability time scales and velocity magnitudes are 
similar. Note that the Vectrino data is collected at a sampling frequency of 100 Hz, whereas the model data is 
subsampled every 5s, due to the large amount of data generated. The model time step is Δt = 0.01s, so it is possible to 
save model data at 100 Hz for a more direct comparison with the Vectrino data. 

 
Figure 5. Energy spectra (left) and temperature gradient spectra (right) from laboratory and model data. The energy spectra 
show no significant change for different convective turbulence strengths [12] and are shown here only for the highest level 
of turbulence. The temperature gradient spectra do resolve the difference in turbulence strengths. (Note that this figure 
appears in color in the web version of this article.) 

To further quantify the turbulence in the tank and to estimate the turbulence parameters necessary to estimate the optical 
turbulence coefficient Sn, we calculate turbulent kinetic energy dissipation rates ε and temperature variance dissipation 
rates χ from the data collected in the laboratory. These values are then compared to ε and χ calculated from the numerical 
experiments. The numerical data compared well to the laboratory data and both conformed to the Kolmogorov spectrum 
of turbulence and the Batchelor spectrum of temperature gradients (Fig. 5). The numerical model was able to 
qualitatively reproduce the turbulence fields observed in the laboratory tank. Quantitatively, the numerical simulations 
are consistent with the observed ε in the tank, despite the fact that they do not resolve the spectrum down to the 
Kolmogorov microscale, which is on the order of mm for this flow. The laboratory data show that even for convective 
strength with dramatically different impact on the optics (see Fig. 2), the ε in the tank remains within one order of 
magnitude. To illustrate how ε is expected to vary across the tank cross-section, we can take the spectrum from the 
numerical model data at every 5m-long velocity section in the tank, for each x- and z-position (Fig. 6). 

The value of ε stays mostly within one order of magnitude across the tank. The variation near the boundaries due to 
boundary layer effects can be expected, and is consistent with the cross-sectional circulation seen in the velocity field. 
While the ε from the model is consistent with the laboratory value, both are of O(10-7 W/kg) for the experiments shown, 
the numerical simulations do not fully resolve the temperature gradients and thus underestimate χ, even at the high 
resolution used in our experiments (Δ x = Δ y = 5mm, Δ z = 2.5mm; 20 M grid points).  The values of χ from both the 
laboratory and the numerical simulations show a significant difference for different convective turbulence strengths, but 
since the estimates from the numerical simulations are strongly resolution dependent and lower than the laboratory 
values for comparable turbulence strength, estimating the model sub-grid scale contribution to χ is of critical importance 
and is the subject of ongoing work. Since the effect on the optics is driven by changes in the index of refraction due to 
temperature variations, these results reemphasize the importance of characterizing in detail the temperature distribution 
to assess the impact of the turbulent fluctuations on the optics.  

The PME microstructure temperature sensor (GE FP07 thermistor) has been reported to resolve the variance in the 
temperature gradient spectrum up to a frequency of about 25Hz [10]. A single-pole response function can be applied to 
help with the sensor related roll-off at higher frequencies or wavenumbers. Additionally, noise in the measurements may 
make it impossible to resolve the spectrum to the Batchelor number cut-off.  In order to address this need for improved 
higher-resolution temperature measurements, we tested a novel miniature fiber-optic sensor for high-resolution and high-
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speed temperature. A detailed description of this sensor can be found in a companion paper by Liu et al. [16]. Figure 7 
shows three channels of this new fiber-optic sensor mounted next to the PME microstructure temperature sensor in the 
tank. 

The new high-resolution sensor collected temperature data at 500Hz, revealing high-resolution details in temperature 
variation (Fig. 8). The sensor was able to resolve the temperature gradient spectrum beyond the Batchelor number cut-
off; a noted improvement over the FP07 thermistor (Fig. 9). 

 

 

 
 

Figure 6. Turbulent kinetic energy dissipation rate ε from velocity section along the length of the tank at each x-z-point, in 
W/kg. Left row: low Ra turbulence at times t = 250s (top) and t = 1675s (bottom). Right row: high Ra turbulence at times t 
= 250s (top) and t = 1675s (bottom). (Note that this figure appears in color in the web version of this article.) 
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4. CONCLUSIONS
In order to study the impact of temperature microstructure on underwater optical signal transmission, we performed 
experiments in a controlled laboratory environment complemented by high-resolution, non-hydrostatic numerical 
simulations. The goal was to develop a setup where turbulence levels can be controlled and fully characterized. This 
setup, which allows for repeatable experiments under controlled conditions, can help us understand processes involved 
in optical turbulence and provides a platform for the testing of optical techniques to mitigate turbulence effects 
underwater, such as the use of  adaptive optics techniques to mitigate underwater optical turbulence [17][18]. 

Optical turbulence is mainly due to temperature (or salinity) variations affecting the IOR of water, and to adequately 
describe the effect on the optics, it is particularly critical to resolve the temperature gradients. This can present a 
challenge in both the laboratory and the model, due to noise and resolution requirements, respectively. In the model, 
further work is needed to address questions related to sub-grid scale contributions in LES to the rate of temperature 
variance dissipation. In the laboratory, the unique asset of the Rayleigh-Bénard convective tank allowed us to test a 
novel miniature fiber-optic sensor for high-resolution and high-speed temperature to address the need for improved 
temperature measurements. The new high-resolution sensor collected temperature data at 500Hz and resolved the 
temperature gradient spectrum beyond the Batchelor number cut-off; a noted improvement over the FP07 sensor, which 
is generally described as resolving the variance in the spectrum up to a frequency of about 25Hz. 

Our unique approach of integrating optical techniques, turbulence measurements and numerical simulations can help 
advance our understanding of how to mitigate the effects of turbulence impacts on underwater optical signal 
transmission, as well as on the use of optical techniques to probe oceanic processes.  

Figure 8. Temperature time series FP07 compared with FOTS fiber optics sensor. Left: time series over approximately 20 
minutes, right: close-up of time = 200s to 300s, showing the detail in the data from FOTS. (Note that this figure appears in color 
in the web version of this article.) 
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the spectrum to the Batchelor cut-off wavenumber. (Note that this figure appears in color in the web version of this article.) 
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