
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

703-993-4776

58890-CS-SB1.1

W911NF-11-C-0048

Final Report

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

In this project, we tried to solve the isolation problem from a different perspective. We still set up two OSes for the
user. One is the trusted OS for secure transactions; the other is the untrusted OS for normal transactions. To
overcome the drawbacks of the VMMs, we provide a firmware-assisted system, referred to as secure switching
system, which allows users to switch between a trusted operating system and an untrusted operating system on the
same machine with a short switching time. In our solution, we put a small number of relatively trusted applications
in the trusted OS, and a large number of untrusted applications in another untrusted OS. Even if the untrusted OS

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

17-08-2015 14-Jan-2011 13-Jul-2011

Approved for Public Release; Distribution Unlimited

Final Report: Enforcing Hardware-Assisted Integrity for Secure
Transactions from Commodity Operating Systems

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

Tailor Trusted Spaces, Hardware-Assisted Security

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Anup Ghosh

Dr. Anup Ghosh, Dr. Kun Sun, Christopher Greamo

606055

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Secure Command, LLC
4972 Marshall Crown Rd.

Centreville, VA 20120 -6425

13-Jul-2011

ABSTRACT

Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

Final Report: Enforcing Hardware-Assisted Integrity for Secure Transactions from Commodity Operating Systems

Report Title

In this project, we tried to solve the isolation problem from a different perspective. We still set up two OSes for the user. One is the trusted
OS for secure transactions; the other is the untrusted OS for normal transactions. To overcome the drawbacks of the VMMs, we provide a
firmware-assisted system, referred to as secure switching system, which allows users to switch between a trusted operating system and an
untrusted operating system on the same machine with a short switching time. In our solution, we put a small number of relatively trusted
applications in the trusted OS, and a large number of untrusted applications in another untrusted OS. Even if the untrusted OS has been
compromised, it cannot affect the applications in the trusted OS. Our solution reduces the attack surface for secure transactions by
establishing a tailored trustworthy space and enables secure transactions with very low switching time on commodity hardware platforms.

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of
the project to the date of this printing. List the papers, including journal references, in the
following categories:

(b) Papers published in non-peer-reviewed journals (N/A for none)

(c) Presentations

Received Paper

TOTAL:

Received Paper

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

0.00Number of Presentations:

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

Received Paper

TOTAL:

Received Paper

TOTAL:

Received Paper

TOTAL:

Books

Number of Manuscripts:

Patents Submitted

Patents Awarded

Awards

Graduate Students

Names of Post Doctorates

Received Book

TOTAL:

Received Book Chapter

TOTAL:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Faculty Supported

Names of Under Graduate students supported

Names of Personnel receiving masters degrees

Names of personnel receiving PHDs

Names of other research staff

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:
The number of undergraduates funded by your agreement who graduated during this period and intend to work

for the Department of Defense
The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:

0.00

0.00

0.00

0.00

0.00

0.00

0.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in
science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue
to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:......

......

......

......

......

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

National Academy Member
Dr. Kun Sun 0.20

0.20

1

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

NAME

Total Number:

NAME

Total Number:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

......

......

Sub Contractors (DD882)

Inventions (DD882)

Scientific Progress

See attachment

Technology Transfer

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

George Mason University 4400 University Drive, MS 4C6

Fairfax VA 220304422

Research in bios hooks to support switching between operating systems.

3/3/11 12:00AM

7/11/11 12:00AM

George Mason University 4400 University Drive, MSN 4C6

Fairfax VA 220304422

Research in bios hooks to support switching between operating systems.

3/3/11 12:00AM

7/11/11 12:00AM

1 a.

1 a.

"Enforcing Hardware-Assisted Integrity for Secure Transaction from Commodity
Operating Systems"

PROJECT: OS10-IA4

Contract #: W911NF-C-0048

Final Technical Report (0001AF)

14 July 2011

Sponsored by

Army Research Office

Issued by U.S. Army Aviation and Missile Command Under

By

Secure Command Government Solutions, LLC

3975 University Drive, Suite 460
Fairfax, VA 22030

anup.ghosh@securecommand.com

Effective Date of Contract: 14 January 2011

Reporting Period: 14 June 2011 – 13 July 2011

CLIN: 0001

Distribution authorized to U.S. Government Agencies only; contains proprietary
information.

This Document contains Secure Command, LLC, proprietary information controlled and
protected by the data rights negotiated in the referenced contract above.

PROJECT: OS10-IA4 Monthly Status Report #6
Contract #: W911NF-C-0048 June 14, 2011 – July 13, 2011

Page | 2

Problem Summary
Nowadays, the end user’s computer is used for handling various tasks and transactions,
which can be divided into two categories: normal transactions and secure ones. Web
browsing, online gaming, and online socialization are the examples of the former
category; online banking and online shopping are the examples of the latter category. The
current operating system (OS) can provide user and processes level isolations between
the secure transactions and normal transactions; however, these isolations can be easily
bypassed by the malware through privilege escalation or other techniques. When one of
the applications is compromised, the whole operating system may be compromised too.
Considering the growing number of vulnerabilities in the applications and the OS kernels,
end users ask for an effective way to isolate secure transactions from normal transactions.

Researchers have tried to use virtual machine monitors (VMMs, also referred to as
hypervisors) to isolate different transactions. They dedicate one virtual machine (VM) for
normal transactions, and one or more VMs for secure transactions. As long as the virtual
machine monitor is not compromised, the compromised applications in the normal VM
cannot affect the applications in the secure VM. To reduce the virtualization overhead,
other virtualization technologies, such as OS level virtualization, are also used. In
addition, VMMs are increasingly employed as components to enforce system security
and resilience. We deem that the separation of secure transactions from normal
transactions is a good idea, but current isolation for these two categories of transactions
still has some problems. Although VMMs have raised the bar, their widespread adoption
has attracted the attention of the attackers towards VMM vulnerabilities. Once the VMM
has been compromised, all the VMs cannot be trusted. There has been a surge in the
reported vulnerabilities for commercial and open source hypervisors. Moreover, the
number and nature of attacks against the hypervisors are poised to grow.

Technical Approach
In this project, we tried to solve the isolation problem from a different perspective. We
still set up two OSes for the user. One is the trusted OS for secure transactions; the other
is the untrusted OS for normal transactions. To overcome the drawbacks of the VMMs,
we provide a firmware-assisted system, referred to as secure switching system, which
allows users to switch between a trusted operating system and an untrusted operating
system on the same machine with a short switching time. In our solution, we put a small
number of relatively trusted applications in the trusted OS, and a large number of
untrusted applications in another untrusted OS. Even if the untrusted OS has been
compromised, it cannot affect the applications in the trusted OS. Our solution reduces the
attack surface for secure transactions by establishing a tailored trustworthy space and
enables secure transactions with very low switching time on commodity hardware
platforms.

In our system, one trusted OS and one untrusted OS are installed on the same computer.
Although loaded into the computer memory at the same time, only one of the two OSes is
running for a given time; another OS is in sleep state. To switch, the system sleeps one
OS and wakes up another OS. We harness the BIOS and sleep states of Advanced

PROJECT: OS10-IA4 Monthly Status Report #6
Contract #: W911NF-C-0048 June 14, 2011 – July 13, 2011

Page | 3

Configuration and Power Interface (ACPI) to control the switching between OSes. We
employ Trusted Platform Module (TPM) during boot-up to ensure the integrity of the
BIOS. There is no reliance on the TPM after the system boot-up process is complete. The
combination of BIOS and TPM provides the Trusted Computing Base (TCB) of our
system.

Our system guarantees the integrity of the trusted operating system by operating at BIOS
level and providing a thorough isolation between the trusted and untrusted OSes, without
sharing any software code that could compromise the integrity of both OSes. Therefore,
there is no avenue for a vulnerable or compromised untrusted OS to compromise the
trusted OS or its applications, even though the two systems are installed and loaded on
the same machine.

To guarantee that a compromised untrusted OS cannot lead to the compromise of the
trusted OS, our system uses firmware-assisted isolation to achieve this goal. More
specifically, we isolate the following components:

• Memory Isolation: Two OS images will run in separate physical memory space.

Either OS cannot access the other OS’s memory space after boot-up. Therefore, a
process running in one OS cannot read, write, or execute memory space allocated
to another OS.

• CPU Isolation: Two operating systems never run concurrently. When one OS is
switched off, all contents in CPU registers and caches are saved in the memory or
hard disk and then flushed. There are no hidden channels between the two OSes
through the CPU registers or caches.

• Hard Disk Isolation: The trusted OS’s hard disk is isolated from the untrusted OS.
First, we dedicate one hard disk to each OS. A System Management Mode
(SMM)-based monitoring module monitors if an OS is accessing another hard
disk not belonging to itself or not. Second, a RAM disk is used for saving
temporary user data to add an extra layer of protection. Since these data is
actually stored in the RAM, it is not accessible in case the hard disk isolation
fails.

• Other I/O Isolation: When one OS is switched off, all contents maintained by the
device driver (e.g., graphic card, network card) are saved and then the devices are
powered off. At any time, at most one OS has the control of the devices. This
guarantees there is no hidden channel between the two OSes through the I/O
devices.

Since there is no running hypervisor or other middleware software that can connect and
control the two OSes, the attack surface in our system is much smaller than hypervisor-
based systems. An adversary can only target the BIOS-anchored SMM code, which is
tiny, and without any need for foreign code (i.e. third party device drivers). Moreover, the
BIOS code can be set to read-only at boot-up using TPM or other hardware lock and thus
protected from being modified by adversaries.

PROJECT: OS10-IA4 Monthly Status Report #6
Contract #: W911NF-C-0048 June 14, 2011 – July 13, 2011

Page | 4

Summary of Progress for Current Reporting Period

Reporting Period: 14 June – 13 July, 2011
During this reporting period, the research team focused on measuring performance on the
secure switching prototype. We measured two latencies: system loading time and
switching latency. System loading time is the time duration for loading two OSes into the
memory. OS Switching latency measures the time duration when switching from one OS
to another.

OS Loading and Switching Latency
We measure two latencies during SecureSwitch: system loading time and switching
latency. System loading time is the time duration for loading two OSes into the memory.
We use the real-time clock (RTC) to measure it. To record the beginning time, we print
out the RTC time through the serial port console at the beginning of the BIOS code. For
the ending time, we record the time when the “rc.local” file is executed in CentOS or
when a startup application is called in Windows XP. The loading times for both OSes are
very close within our system: 74 seconds for loading CentOS and 79 seconds for loading
Windows XP. The total loading time is 153 seconds. Though the loading time is
relatively long, it only occurs once when the user boots up the system. Moreover, the
loading time may be further reduced by using solid-state drive.

OS Switching latency measures the time duration when switching from one OS to
another. It consists of two parts: the time to suspend the current OS and the time to wake
up another OS. We use the system’s Time Stamp Counter (TSC) to measure the OS
wakeup time. TSC is a 64-bit register that is present on all x86 processors since the
Pentium, and it counts the number of ticks since reset. After pressing the power button,
the TSC is reset to 0. We write a user-level program to obtain the current TSC value
continuously. We then calculate the wakeup time as TSC*(1/CPU frequency). TSC can
be used to measure the wakeup time for both CentOS and Windows XP. However, it is
difficult to use TSC to measure Windows XP’s suspension time without the Windows
source code. Since the OS suspend does not involve the BIOS, we cannot use the BIOS to
read the TSC value either.

To solve this problem, we use an Oscilloscope,
Tektronix TDS 220, to measure the suspension
time. We connect the oscilloscope to the serial
port on the motherboard. When we initiate the
ACPI S3 sleep, a customized program sends an
electrical signal to the serial port to indicate the
start of S3 sleep. When the system finishes S3
sleep, the oscilloscope receives a power-off
electrical signal from the serial port. We use this method to measure the suspension delay
for both CentOS and Windows XP.

The latency when the system switches from the trusted OS to the untrusted one is
different from the latency when the system switches back, as shown in Table 1. We can

Table 1. Switching Time

PROJECT: OS10-IA4 Monthly Status Report #6
Contract #: W911NF-C-0048 June 14, 2011 – July 13, 2011

Page | 5

see that switching from Windows XP to CentOS requires 5.03 seconds, which is a little
faster than switching from CentOS to the Windows XP. For both OSes, the suspend time
is longer than the wakeup time. Windows XP’s suspend and wakeup times are longer
than those of CentOS.

Table 1 only provides a rough latency measurement that is constrained to the specific
hardware and software used in our prototype system. For instance, these measurements
will change when we use an external VGA card or execute a large number of processes in
the OS. The ASUS motherboard has one integrated VGA card with VIA chip and 256
MB video memory. When we insert an external VGA card with S3 chip and 64 MB
memory, the external VGA card needs less suspension time than the integrated one due to
a smaller video memory size. To our surprise, the external VGA card requires a wakeup
time that is three times longer than the integrated one due to the fact that coreboot needs
to call the option ROM of the external video card, but it encounters a computability
problem and dramatically delays the wakeup.

In addition, we run multiple while(1) programs on the Linux to see how the CPU
intensive processes affect the switching time. When we run five while(1) programs at the
same time, the switching time is about three times longer. We deduced that most of the
increasing is due to the user space suspend and wakeup, while the delay in kernel space
does not change much. This leads us to breakdown the operations in BIOS, user space,
and kernel space to understand the major contributors for the time delay. Due to the
closedsource nature of Windows XP, we only break down the operations on the CentOS
5.5 with Coreboot V4.

Linux Suspend Breakdown
We use Ftrace to trace the suspension function calls in Linux S3 sleep. According to the
function call graph generated by Ftrace, we divide the suspend operations into two phases:
user space suspend and kernel space suspend. We use the pm-suspend script provided by
the OS to trigger the suspend. The script basically notifies the Network Manager to shut
down networking and uses vbetool to call functions at video option ROM to save VGA
states. It then echoes string “mem” to /sys/power/state. This jumps to the kernel space
and stops the user space. In the kernel space, the suspend code goes through the device
tree and calls the device suspend function in each driver. The kernel then powers off
these devices. To measure the user space suspend, we record the TSC time stamp in file
/var/log/pm/suspend.log. For kernel time measurement, we add “printk” statements
between various components of the kernel.

Figure 1 shows the time breakdown for user space suspend, and Figure 2 shows the time
breakdown for kernel space suspend. The total suspend times for user space and kernel
space are 1517.33 ms and 722.79 ms respectively. In the user space, by running
command chvt 63, the monitor changes the GUI terminal to /dev/tty63 as the foreground
virtual terminal. In the clock operation, the OS stops the Network Time Protocol Daemon
and writes the current system time to RTC time in CMOS. For the video operation, the
OS uses vbetool to save current video state to the /var/run directory in memory. Other
events include stopping network manager and saving the state of CPU frequency

PROJECT: OS10-IA4 Monthly Status Report #6
Contract #: W911NF-C-0048 June 14, 2011 – July 13, 2011

Page | 6

governors, etc. In the kernel space, the most time is consumed by stopping the keyboard,
mouse, and hard disks. We use a PS/2 mouse and keyboard in our system. The
suspending functions of the mouse and keyboard drivers reset the devices, which causes
the delay. For the hard disk, delay comes from synchronizing the cache. The two hard
disks each have 16 MB caches, and cache write is enabled by default for the SATA disk.
The OS also needs to stop other devices, such as the USB and serial ports, which takes
relatively less time.

Figure 1. User Space Suspend Breakdown

Figure 2. Kernel Space Suspend Breakdown

Linux Wakeup Breakdown
Unlike S3 suspend, S3 wakeup operations are handled by both the BIOS and the OS. The
wakeup process starts from a hardware reset. The system enters the BIOS first, then
jumps to the OS wakeup vector. The total latency time in BIOS is almost constant and
equal to 1259.25 ms. Again, the OS wakeup operations can be divided into two parts:
kernel space wakeup and user space wakeup. The wakeup latency in kernel space and
user space are 698.74 ms and 612.04 ms respectively. Figure 3 shows the time
breakdown for the major components in the kernel space. The major delay contributors in
kernel space are the USB and the mouse. There are four USB ports on the motherboard.
Since coreboot doesn’t provide an optimized support for the USB, OS needs to initialize
all four of the USB ports. The BIOS must initialize the keyboard, but not necessarily the
mouse. We discovered that the mouse takes more time than the keyboard in kernel-space
wakeup due to the OS initialization of the mouse. Figure 4 shows the time breakdown for
wakeup in the user space. We can see that cleaning up the files and changing the
foreground’s virtual terminal (chvt 1) take up most of the time.

PROJECT: OS10-IA4 Monthly Status Report #6
Contract #: W911NF-C-0048 June 14, 2011 – July 13, 2011

Page | 7

Figure 3. User Space Wakeup Breakdown

Figure 4. Kernel Space Wakeup Breakdown

Plans for Next Reporting Period

This report completes the Phase I effort.

Issues / Concerns
No issues to report for this period.

Financial Status
As of July 13, 2011:

• Total cumulative expenditures are $99,997.
• Total funding received to date is $99,997.
• Remaining funding backlog is $0.

Projected Spend Profile: 2011

Jan 14 –
Feb 13

Feb 14 –
Mar 13

Mar 14 –
Apr 13

Apr 14 –
May 13

May 14 –
Jun 13

Jun 14 –
July 13

Expenditures $16,663 $16,663 $16,663 $16,663 $16,663 $16,663
Cumulative $16,663 $33,326 $49,989 $66,651 $83,314 $99,997
Funds Remaining $83,314 $66,651 $49,989 $33,326 $16,663 $0

