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Abstract

This thesis addresses the origin and effect of noise and fluctuations in quantum devices

that find applications in quantum information processing. In the first half of the thesis,

we consider a phenomenological model of the noise and study its effect on the fidelity of

quantum measurements and operations that are essential for quantum computing. We fo-

cus primarily on quantum gate operations in phase qubits, detection of microwave photons

and the measurement of the Berry curvature. Specifically, we examine the effect of the

Ohmic noise on optimally controlled flux-biased phase qubits for one- and two-quadrature

microwave pulses and demonstrate that two-quadrature pulses with fixed driving frequency

are as robust as variable driving frequency, in the presence of environment. Next, we

present a model to analyze the quantum efficiency of a microwave photon detector based on

a current-biased Josephson junction and study the effect of decoherence on the detection ef-

ficiency of the detector. We also present alternative set-ups for microwave photon detection

and provide a systematic method to compute the power absorbed by the detector. We then

consider the effect of decoherence on the Berry curvature measurement, which employs a

novel non-adiabatic protocol, and show that the curvature is immune to decoherence.

In the second half of the thesis, we go beyond the phenomenological models of the

noises and perform a detailed study of the microscopic description of the Johnson noise.

Here we focus primarily on quantum dot devices. We present a formalism to compute

relaxation rates in charge and spin qubits due to evanescent wave Johnson noise (EWJN)

from the metallic gates that are in proximity to quantum dots. The EWJN is analyzed

for the metallic gates that are characterized by both local and nonlocal dielectric response

functions. Additionally, we extend our treatment beyond the dipole approximation by

taking into account the finite size of the quantum dots. We also derive an enhancement

of the electric EWJN that occurs outside a thin metallic film, relative to the electric field

surrounding a conducting half-space.
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Chapter 1

Introduction

Physicists have long envisioned the idea of harnessing the power of quantum mechanics to

perform computational tasks [1, 2]. However, the actual work toward practical implemen-

tation of such a ground-breaking idea has only begun recently. The concept of quantum

computation has gained considerable momentum in recent years due to a discovery that

certain computational tasks, such as number factorization, period finding [3], and database

search [4], could be speeded up if these problems were encoded in the states of quantum

systems called quantum bits (or qubits) and computed employing operations described by

quantum mechanics [5]. Due to its quantum nature, a quantum bit can be in a superpo-

sition of both its logical states “0” and “1”. Hence, while a classical memory consisting

of n bits allows to store one out of 2n numbers, n quantum bits can store all 2n numbers

simultaneously. Logical operations on a quantum memory work in parallel to all these

numbers, whereas a classical computer would need to repeat the calculation 2n times. This

“built-in” parallelism facilitates a quantum computer to work exponentially faster allowing

to solve computationally intensive problems in seconds which would otherwise take years on

today’s fastest supercomputers. Furthermore, in a quantum processor, qubit states can be

superposed and entangled by sequences of externally controlled manipulations that result

in unitary transformations, also known as quantum gates. Such quantum operations allow

quantum computers to push boundaries of parallel computations, unconditionally secure
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communications, etc.

Numerous systems have now been proposed as promising candidates for quantum infor-

mation processing. Among these are trapped ions [6, 7], optical lattices [8, 9], photons [10],

nuclear spins of molecules (nuclear magnetic resonance, Nitrogen-vacancy centers in dia-

mond, etc.) [11, 12], quantum dots [13] and superconducting circuits [14]. While there exists

different platforms on which to build the hardware of a quantum computer, semiconduct-

ing and superconducting qubits based on solid-state technologies are the most promising

candidates that hold unique prospects of scalability and manageability owing to their ease

of integration with highly developed semiconductor technology and classical electronics.

For practical realization of a quantum computer, advances must be made to preserve

the quantum coherence much longer than gate operation times. The loss of the quan-

tum coherence of a qubit stems from the interaction of the qubit with its local environ-

ment. This phenomenon is often known as decoherence in the literatures. In the past

decade, tremendous progress has been made in identifying various sources of decoherence

that plague practical implementation of solid-state qubits [15]. In a semiconducting qubit,

some sources of decoherence are intrinsic in nature, such as charge coupling to phonons,

while others are extrinsic, such as Johnson noise due to fluctuating electromagnetic fields

arising from the metallic gates or transmission lines used to control the qubit. Similarly, in

superconducting qubits, the most notorious of all sources of decoherence is the presence of

defects in dielectric materials [16] used to construct Josephson junctions, which are building

blocks of superconducting qubits. Indeed, decoherence has been a constant worry since the

beginning of the field of quantum computing, which has led to emergence of new ideas like

decoherence free subspace [17], topological quantum computing [18, 19], error-correction

codes [20], dynamical decoupling [21], which have all galvanized the quest for harnessing

the power of quantum mechanics to perform complex computational tasks.

Since it is not practically possible to completely isolate a qubit from its environment,

controlling the qubit in the presence of environment is another equally important aspect

of quantum computation. Furthermore, qubits are often approximated by a two-level sys-
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tem, which is not necessarily accurate particularly in case of solid-state qubits based on

macroscopic degrees of freedom like charge or current as in charge or phase qubit in super-

conducting qubits. This poses another hindrance to accurate control of qubits during gate

operations. Inaccurate control often leads to additional error, which can surpass the thresh-

old of a fault-tolerant quantum computation [22, 23], rendering the output from quantum

operations unreliable. One way to overcome this problem is by engineering shaped pulses

that are optimized for particular gate operations and are easy to implement in the labora-

tory. Therefore, it is vitally important to perform a detailed study of the performance of

the optimally shaped pulses in the presence of environment that qubits are most likely to

encounter.

While decoherence is the most pressing issue and deserves undivided attention of the

scientific community, researchers have also managed to explore several other avenues within

mesoscopic physics which will ultimately benefit the field of quantum computing. One of

such avenues is circuit quantum electrodynamics (cQED), which also finds applications in

quantum information processing. Indeed, with the generation of non-classical propagating

fields [24, 25], and the demonstrated potential for microwave radiation to mediate coupling

between solid-state qubits [26], the field of cQED has become a rapidly evolving test-bed

for mesoscopic physics and a promising paradigm for quantum computation. However,

the lack of a microwave photon detector is one major deficiency within this field. High

efficiency microwave photon detection is an interesting problem for many areas of physics,

including low temperature measurement, quantum information science, particle physics

and astrophysics. For optical photons, there are many examples of devices capable of

detecting single photons with high efficiency [27]. However, reliable single photon detection

of microwaves is very difficult, principally due to their low energy. It is therefore imperative

to explore different models of on-chip microwave photon detector and analyze their efficiency

in the presence of coupling to the environment.

Aware of the difficulty in overcoming decoherence in a practical quantum computer

architecture, researchers have also started exploring alternative proposals for qubit imple-
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mentation that are fundamentally different from the previous proposals. In these proposals,

information is encoded in those degrees of freedom that are insensitive to local perturbations

and hence are protected against errors caused by interaction with the local environment.

This novel computing paradigm, known as topological quantum computing, has gained

considerable attention in recent years due to its intrinsic fault-tolerant nature. It has been

shown that universal quantum computation can be performed using only geometric effects

appearing in quantum phases [28]. The Berry phase is one of such geometric phases that

can be used to implement elementary quantum gates. Although geometric evolutions are

easy to control and resistant to error, it is not quite straightforward to measure the Berry

phase in practice. Traditional experiments for the Berry phase measurement require strict

adiabatic conditions and rely on interference effects [29]. The measurement process would

be greatly simplified if such stringent conditions could be avoided altogether. A more recent

proposal [30] that does not require strict adiabatic condition is a promising step in that

direction. Although non-adiabatic measurement protocols are very attractive, they may

not be immune to noises from the environment. It is, therefore, important to understand

how the coupling of a qubit to its environment affects the Berry curvature, and in turn the

Berry phase, in non-adiabatic measurement protocols.

To that end, this thesis consists of two major parts. The first part, comprising of

the first four chapters, discusses issues related to superconducting qubits. In particular, we

examine the optimally controlled phase qubit in the presence of the Ohmic environment and

propose alternative pulse sequences that are robust against the presence of the third level

in the qubit and easier to implement in the laboratory. We also analyze the efficiency of a

microwave photon detector based on a current-biased Josephson junction. Next, we consider

the effect of environment on the Berry curvature and discuss the prospects of measurement

of the Berry curvature in superconducting qubits. The second part, consisting of the next

two chapters, discusses issues related to semiconducting qubits. Here we perform a detailed

study of the physics of Johnson noise and provide formula for relaxation rates in charge and

spin qubits for various cases. The majority of the work done in this part has an emphasis on
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quantum dot devices, but it applies to other qubit architectures that incorporate metallic

gates, traps or electrodes in the vicinity of the qubit.

1.1 Thesis outline

This thesis describes several aspects of the theoretical issues related to semiconducting and

superconducting qubits. A common thread that ties together different chapters in this

thesis is the study of the effect of decoherence on measurements and operations in quantum

devices that find applications in quantum information processing.

In chapter 2, we provide a brief overview of different noise sources that are responsible

for dissipation and dephasing in superconducting and semiconducting qubits. Some of these

noise sources are due to external circuitry that is used to control and manipulate qubits,

while the other sources are intrinsic to qubit devices. We then proceed to discuss different

methods that can be used to study the coupling of a qubit to its environment. Here we

derive the master equation of an open quantum system using a phenomenological model of

the environment.

In chapter 3, we study the effect of environment on the gate operation of flux-biased

phase qubits. We employ the master equation for a reduced density matrix of the qubit

system coupled to the Ohmic environment, described by the Caldeira-Leggett model. Nu-

merically solving this equation, we evaluate the gate error as a function of gate time,

temperature, and environmental coupling strength for experimentally determined qubit pa-

rameters. The analysis is presented for single-quadrature microwave (control) pulses as well

as for two-quadrature pulses, which lower the gate error significantly for idealized systems

in the absence of environment. Our results indicate that two-quadrature pulses with fixed

and variable driving frequency have similar performance, which outweighs the performance

of single-quadrature pulses, in the presence of environment.

In chapter 4, we analyze the quantum efficiency of a microwave photon detector based

on a current-biased Josephson junction. We consider the Jaynes-Cummings Hamiltonian

to describe coupling between the photon field and the junction. We then take into ac-
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count the coupling of the junction and the resonator to the environment. We solve the

equation of motion of the density matrix of the resonator-junction system to compute the

quantum efficiency of the detector as a function of detection time, bias current, and energy

relaxation time. Our results indicate that junctions with modest coherence properties can

provide efficient detection of single microwave photons, with quantum efficiency in excess

of 80%. Furthermore, we discuss other alternative set-ups for microwave photon detection

and provide a systematic way of calculating the power absorbed by the detector in those

set-ups.

Next, we discuss the effect of decoherence on geometric phases in quantum mechanics.

In chapter 5, we perform a detailed analysis of the effect of relaxation and pure dephasing

on the Berry curvature, which is computed by employing a novel non-adiabatic protocol.

We then provide an experimentally convenient method to measure the Berry curvature.

Our results indicate that the Berry curvature is immune to decoherence in non-adiabatic

measurement protocols. In addition, we also consider the effect of the third level on the

measurement of the Berry curvature in superconducting qubits.

In the remaining chapters, we turn our attention to microscopic models of decoherence

in qubits, focusing primarily on semiconducting qubit architectures. In chapter 6, we focus

on the origin and effect of evanescent-wave Johnson noise in semiconducting qubits. In

many quantum computer architectures, the qubits are in close proximity to metallic device

elements. Metals have a high density of photon modes, and the fields spill out of the bulk

metal because of the evanescent-wave component. Thus thermal and quantum electromag-

netic Johnson-type noise from metallic device elements can decohere nearby qubits. Here

we use quantum electrodynamics to compute the strength of this evanescent-wave John-

son noise as a function of distance from a metallic half space. Previous treatments have

shown unphysical divergences on the surface of metallic gate. We remedy this by using a

proper nonlocal dielectric function. Decoherence rates of local qubits are proportional to

the magnitude of electric or magnetic correlation functions evaluated at the qubit position.

These rates serve as an important constraint on future device architectures. Compari-
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son with single-electron spin relaxation measurements shows that evanescent-wave Johnson

noise may constitute the dominant relaxation mechanism in experiments performed at low

magnetic field.

In chapter 7, we continue our study of decoherence in charge (spin) qubits due to

evanescent-wave Johnson noise (EWJN) in a laterally coupled double quantum dot (sin-

gle quantum dot). We derive expressions for the energy relaxation rates of charge and

spin qubits in a variety of dot geometries, and EWJN is shown to be a dominant source

of decoherence for spin qubits held at low magnetic fields. Previous studies in this field

approximated the charge or spin qubit as a point dipole. Ignoring the finite size of the

quantum dot in this way leads to a spurious divergence in the relaxation rate as the qubit

approaches the metal. Our approach goes beyond the dipole approximation and remedies

this unphysical divergence by taking into account the finite size of the quantum dot. Ad-

ditionally, we derive an enhancement of EWJN that occurs outside a thin metallic film,

relative to the field surrounding a conducting half-space.

Finally, in chapter 8 we offer concluding remarks.

1.2 Publications

Some of the main chapters in this thesis are based on published results, each of which

represents the work of many individuals. Here, I document my contribution to each work,

as well as my collaborators.

Chapter 3 is based on Ref. [31], titled Effect of the Ohmic environment on an optimally

controlled flux-biased phase qubit, which I completed with Prof. Maxim G. Vavilov. I carried

out the analytical and numerical calculations, under the supervision of Prof. Vavilov.

Chapter 4 is based on Ref. [32], titled Quantum efficiency of a microwave photon de-

tector based on a current-biased Josephson junction, which I completed with Prof. Robert

McDermott, and Prof. Maxim G. Vavilov. I carried out the main numerical calculation

based on a theoretical model suggested by Prof. Vavilov, which was based on an experi-

mental device first proposed and developed by Prof. McDermott.
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Chapter 6 is based on Ref. [33], titled Qubit relaxation from evanescent-wave John-

son noise, which I completed with Dr. Luke Langsjoen, Prof. Maxim G. Vavilov, and

Prof. Robert Joynt. I principally carried out the numerical work with assistance from Dr.

Langsjoen, based on theoretical work laid out by Prof. Vavilov, and Prof. Joynt.

Chapter 7 is based on Ref. [34], titled Relaxation in quantum dots due to evanescent-

wave Johnson noise, which I completed with Dr. Luke Langsjoen, Prof. Maxim G. Vavilov,

and Prof. Robert Joynt. I carried out the analytical and numerical work with assistance

from Dr. Langsjoen, Prof. Vavilov, and Prof. Joynt.
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Chapter 2

Qubit devices and decoherence

2.1 Introduction

Most proposals for implementing a quantum computer are based on qubits constructed from

microscopic degrees of freedom. They consider spin of either electrons or nuclei, or transition

dipoles of either atoms or ions in vacuum. These degrees of freedom are naturally very well

isolated from their environment, and hence decohere slowly. However, in other solid-state

qubit architectures like integrated superconducting circuits or semiconducting heterostruc-

tures, quantum coherence inevitably suffers from fluctuations due to their environment. In

this chapter, we first briefly discuss different sources of noises that plague semiconducting

and superconducting qubit architectures. We then discuss theoretical methods or models

that are used in this thesis to study coupling of the qubit devices to environment, within

the framework of open quantum systems.

2.2 Decoherence in superconducting qubits

Superconducting qubits are solid-state electrical circuits based on the Josephson junction

(JJ), which is non-dissipative and strongly non-linear circuit element [35]. In contrast to

microscopic entities such as spins or atoms, they tend to be well coupled to other circuits,

which make them very attractive candidates for readouts and gate implementations. How-
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ever, the same biasing wires that make superconducting circuits easy to manipulate and

measure also couple the qubit to the electromagnetic environment which is responsible for

dissipation and dephasing of the qubit. Any external circuit that is connected to the JJ

provides complex impedance Z(ω) to the Josephson junction. This external impedance is

defined as the ratio of the complex amplitudes of the voltage response of the environment

to the the oscillating current at frequency ω. The real part of this complex impedance

characterizes the dissipative contribution of the external electromagnetic environment. In

this and subsequent chapters, we primarily focus on the noise due to external circuits.

In addition to the noise due to external circuits, various other mechanisms are responsi-

ble for noises in superconducting qubits. Most of these mechanisms are intrinsic in nature.

For instance, the motion of charges in the defects in the oxide tunnel barrier and amorphous

dielectric of the circuit have been proposed to be the source of critical current noise [36, 37]

and charge noise [38, 39], respectively. The 1/f spectrum (where f is the frequency) of

the materials noises suggests that they all originate from two-level fluctuators in the amor-

phous tunnel layer of the junction [40]. Similarly, the relaxation of paramagnetic spins

located at the superconductor-insulator interfaces can be the source of low frequency 1/f

flux noise [41, 42], although the exact mechanism responsible for the origin of such spins is

not quite clear and is an area of active research.

2.3 Decoherence in semiconducting qubits

The building block of a semiconducting qubit is a quantum dot, which can be thought of

as a quantum box that can be filled with electrons (or holes) which occupy the available

discretized states of the system. The electrons can tunnel on and off the dot, which is

coupled to a large reservoir via tunnel barriers. The gate electrodes are used to control the

height of the barriers and consequently the rates for tunneling through the barriers on and

off the dots [43]. Although many kinds of quantum dots have been realized so far, in this

thesis we focus exclusively on GaAs or Si based quantum dots.

An important class of proposals consists of using the charge degree of freedom in semi-
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conducting double quantum dots to realize a charge qubit [44, 45]. A significant advantage

of the charge qubit is that it can be controlled directly via external voltage sources. While

charge qubits are easy to control and manipulate, they also couple easily to the outside en-

vironment. It is widely believed that the main contribution to decoherence in a charge qubit

comes from its coupling to fluctuating background charges (FBC) that create dynamical

electric field, which affects the charge qubit state [46, 47, 48]. The sources of FBCs are elec-

trons trapped in the insulating layer close to the surface of metallic gates/electrodes. These

electrons can also interact with the conduction electrons in the gates leading to significant

decoherence of charge qubits [49]. Other probable alternative microscopic mechanisms of

decoherence in charge qubits are via electron coupling to the phonon bath [50] and due to

gate voltage fluctuations [51].

Other proposals utilize the electron spin in semiconductor quantum dots, which can

be isolated and controlled with a high accuracy, to realize a spin qubit [52, 53]. However,

like a charge qubit, spin qubit also suffers from decoherence due to its coupling with the

surrounding environment. Two kinds of environment have been identified as the main

source of decoherence of an electron spin in a quantum dot. They are the phonons in

the lattice [54, 55] and the spins of atomic nuclei in the quantum dot [56]. In GaAs

based quantum dots, strong spin-orbit interaction is present even in the absence of external

electric fields. This interaction couples spin with the orbital degrees of freedom, which is

then coupled to phonons. Consequently, it leads to indirect coupling between the electron

spin and phonons [57]. The phonons constitute a large dissipative bosonic reservoir and

provide a source of dephasing and relaxation. Short time correlations in the phonon bath

induce a Markovian dynamics of the electron spin.

The electron spin and nuclear spins in a quantum dot couple via the hyperfine inter-

action, which creates entanglement between them and strongly affects the electron spin

dynamics [58, 59]. It turns out that long time correlations in the nuclear spin system in-

duce a non-Markovian dynamics of the electron spin, with non-exponential decay in time

of the expectation values of the electron spin components.
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In addition to the sources mentioned above, semiconducting qubits can also decohere

due to Johnson noise from the metallic gates that are in the vicinity of quantum dots. The

high density of evanescent modes (both electric and magnetic) nearby the metallic gates

easily couple to quantum dots causing the loss of their phase coherence and consequently

affecting both charge and spin qubits.

2.4 Modeling the dynamics of open quantum systems

Historically, description of open system dynamics has largely been based on the reduced den-

sity matrix formalism within which both intrinsic quantum mechanical fluctuations of the

system and external noise of its environment can be conveniently incorporated in a unified

manner. During the past few decades, efforts have been made to devise various phenomeno-

logical models and more recently, microscopic Hamiltonians have been used to describe an

open quantum system. In this section, we outline two theoretical models/methods that are

used to study the dynamics of a qubit device coupled to its environment in this thesis.

Lindblad master equation

In may cases, it is useful to model the dynamics of an open quantum system by means of

an appropriate equation of motion for its density matrix, which is known as the quantum

master equation. Here we consider the evolution of the density matrix of an open quantum

system, without providing any connections to underlying microscopic physical model of the

environment with which the system is coupled. This leads to a phenomenological descrip-

tion of dephasing and relaxation in the open quantum system, often known as Lindblad

dissipator.

Consider a system-reservoir coupling which is uncorrelated at t = 0, namely:

Ŵ (0) = ρ̂(0)⊗ ŴR(0) , (2.1)

where Ŵ , ρ̂, and ŴR are density matrices of the entire system (qubit and its environment),

a qubit device and a reservoir, respectively. Next, define a dynamical mapM(t) describing
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a transformation of the reduced system at t = 0 to some time t > 0 as:

ρ̂(t) =M(t)ρ̂(0) = TrR

[
Û(t, 0)Ŵ (0)Û †(t, 0)

]
, (2.2)

where Û(t, 0) is a unitary operator that defines the evolution of the qubit and its envi-

ronment combined. The map M represents a completely positive and trace preserving

quantum operation. If t is allowed to vary inM(t), then it leads to a family of one param-

eter dynamical maps with M(0) being the identity map. If the characteristic time scales

over which the reservoir correlation function decays are much smaller than the characteris-

tic time scales of the qubit device, memory effects in the dynamics of the reduced density

matrix equation can be neglected. This leads to a Markovian type behavior and may be

formalized with the help of a semigroup property:

M(t1)M(t2) =M(t1 + t2) , t1 , t2 ≥ 0 . (2.3)

Thus a quantum dynamical semigroup is a continuous, one-parameter family of dynamical

maps satisfying the semigroup property (Markovian). If the quantum dynamical semigroup

M(t) is contracting, then there exists a linear map L called a generator of the semigroup [60]:

M(t) = exp(Lt) , which leads to

dρ̂

dt
= L ρ̂(t) . (2.4)

The construction of the most general form of the generator L leads to the Lindblad master

equation. In the following, we present a derivation of the Lindblad form of equation of

motion for the reduced density matrix of the qubit system, following Ref. [60].

The Hamiltonian of a global system is given by:

Ĥ = Ĥq + ĤR + V̂ , (2.5)

where Ĥq and ĤR are the qubit and reservoir Hamiltonians, respectively and V̂ is the

interaction Hamiltonian between the qubit and the reservoir. In the interaction picture,

equation of motion of a full density matrix of the entire system Ŵ is given by the Von-

Neumann equation:

dŴI(t)

dt
=

1

i~

[
V̂I(t), ŴI(t)

]
, (2.6)
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where the subscript I denotes the interaction picture. The formal solution of the above

equation is given by:

ŴI(t) = ŴI(0) +
1

i~

∫ t

0
ds [V̂I(s), ŴI(s)] . (2.7)

Inserting the integral equation into the Von-Neumann equation and tracing the bath vari-

ables out we obtain:

dρ̂I
dt

= − 1

~2

∫ t

0
TrR

[
V̂I(t),

[
V̂I(s), ŴI(s)

]]
ds , (2.8)

where we assumed TrR

[
VI(t), ŴI(0)

]
= 0. The right hand side of the above equation still

depends on the full density matrix, and this is where we make the first approximation.

Within the Born approximation, it is assumed that the coupling between the system and

the reservoir is negligibly weak so that the reservoir density matrix is negligibly affected by

the interaction, and the total system after some time t is ŴI(t) = ρ̂I(t)⊗ ŴR
I , where ŴR

is the density matrix of the reservoir. This gives:

dρ̂I
dt

= − 1

~2

∫ t

0
TrR

[
V̂I(t),

[
V̂I(s), ρ̂I(s)⊗ ŴR

I

]]
ds . (2.9)

A further simplification, ρ̂I(s) → ρ̂I(t), leads to the evolution of the qubit density

matrix at time t dependent only on the present state. This assumption leads to the Redfield

equation, which is local in time, but depends on the choice of the initial preparation at t = 0.

Next, time-scale is coarse grained under an assumption that environmental excitations decay

over times which are not resolved. In other words, the reservoir correlation is much smaller

than the time scale over which the qubit state varies appreciably. This allows us to replace

s by t − s and send the upper limit of integration to ∞ in the above equation. Such an

approximation is often known as the Markovian approximation and it leads to the following

master equation:

dρ̂I
dt

= − 1

~2

∫ ∞
0

TrR

[
V̂I(t),

[
V̂I(t− s), ρ̂I(t)⊗ ŴR

I

]]
ds . (2.10)

So far we have performed the Born-Markov approximation. However, these approxima-

tions do not guarantee a quantum dynamical semigroup evolution. A further approximation
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involving the averaging over the rapidly oscillating terms in the master equation must be

performed. Such an approximation is often known as the rotating wave or secular approximation.

In order to demonstrate this, we first decompose the interaction Hamiltonian into eigenop-

erators of the system Hamiltonian:

V̂I(t) =
∑
α,ω

e−iωtÂα(ω)⊗ B̂α(t) , where

Âα(ω) =
∑

ε′−ε=ω
Π̂(ε) Âα Π̂(ε′) and

B̂α(t) = eiĤR t/~ B̂α e
−iĤR t/~ . (2.11)

Here Âα, B̂α denote operators belonging to the system and reservoir in the Schrodinger

picture. Π̂(ε) is the projection operator to the energy eigenstate of the system with energy

ε. Here we assumed discrete energy spectrum of the system Hamiltonian. An immediate

consequence of the above definition is that the following relation is satisfied: [Ĥq, Âα(ω)] =

−ωÂα(ω), that is, Âα(ω) lowers the qubit energy by ω while Â†(ω) raises it by ω. Inserting

this form of interaction Hamiltonian into the Born-Markov master equation, Eq.[2.10], we

obtain:

dρ̂I
dt

= − 1

~2

∑
ω,ω′

∑
α,β

ei(ω−ω
′)t χα,β(ω′)

[
Âβ(ω)ρ̂I(t) Â

†
α(ω′)− Â†α(ω′) Âβ(ω) ρ̂I(t)

]
+ h. c ,

(2.12)

where χα,β(ω′) is the one-sided Fourier transform of the reservoir correlation functions given

by:

χα,β(ω′) ≡
∫ ∞

0
ds eiω

′ s 〈B̂†α(t) B̂β(t− s)〉 , where

〈B̂†α(t) B̂β(t− s)〉 ≡ TrR[B̂†α(t) B̂β(t− s) ŴR
I ] . (2.13)

If ŴR
I is a stationary state of the reservoir, [V̂I , Ŵ

R
I ] = 0, then the reservoir correlation

functions are homogeneous in time

〈B̂†α(t) B̂β(t− s)〉 = 〈B̂†α(s) B̂β(0)〉 . (2.14)
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In the above equation, |ω−ω′|−1, where ω 6= ω′, defines the typical time scale associated with

the intrinsic evolution of the qubit device. If the characteristic time scale is short compared

to the relaxation time of the qubit device, the non-secular terms, that is, those for which

ω 6= ω′ may be neglected since they oscillate very rapidly during the relaxation time when

the qubit state varies appreciably. This is called the rotating wave approximation. With

this, the evolution equation becomes:

dρ̂I
dt

= − 1

~2

∑
ω

∑
α,β

χα,β(ω)

[
Âβ(ω)ρ̂I(t) Â

†
α(ω)− Â†α(ω) Âβ(ω) ρ̂I(t)

]
+ h. c , (2.15)

In the above equation, the term χα,β can be rearranged as:

χα,β(ω) =
1

2
γα,β + iSα,β(ω) , where

γα,β = χα,β(ω) + χ∗β,α(ω) =

∫ ∞
−∞

ds eiω s 〈B̂†α(s) B̂β(0)〉 , and

Sα,β(ω) =
1

2i

(
χα,β(ω)− χ∗β,α(ω)

)
. (2.16)

With these rearrangements, the equation of motion of the density matrix of the qubit can

be written as:

dρ̂I
dt

=
1

i~

[
ĤLS , ρ̂I(t)

]
+D[ρ̂I(t)] , where

ĤLS =
∑
ω

∑
α,β

Sα,β Â
†
α(ω) Âβ(ω) , (2.17)

is called the Lamb shift since it leads to the Lamb type renormalization of the unperturbed

energy levels of the qubit device due to coupling of the qubit to its environment. The term

D[ρ̂I(t)] is called the dissipator and takes the following form:

D[ρ̂I(t)] =
∑
ω

∑
α,β

γα,β

(
Âβ(ω) ρ̂I(t) Â

†
α(ω)− 1

2

{
Â†α(ω) Âβ(ω) , ρ̂I(t)

})
. (2.18)

Since the term γα,β in the dissipator is the Fourier transform of the the homogeneous

reservoir correlations functions, it is always positive and can be diagonalized. With that

the evolution equations take the form of the standard Lindblad equation. We emphasize

that the physical assumptions underlying the Lindblad form of the master equation are the



17

Born (weak coupling), Markov (memoryless) and rotating wave approximation (fast system

dynamics compared to the relaxation time). Lindblad equation is suitable for problems

where the above approximations are valid. In the next section, we relax the Markovian

assumption and derive a new master equation.

Caldeira-Leggett master equation

In this section, we consider a “microscopic” model of the environment, which is modeled

by a set of harmonic oscillators. Modeling environment by a bath of harmonic excitations

above a stable ground state was first proposed by Caldeira and Leggett [61]. We derive the

equation of motion of the reduced density matrix of the qubit, following Ref. [62]. In contrast

to the Lindblad equation, here we do not make any Markovian approximation. We assume

that system-reservoir coupling is a linear function of the system and bath coordinates. We

also assume that the qubit is weakly coupled to each bath mode. The weak perturbation

of any individual bath modes does not necessarily imply that the dissipative influence of

the environment on the system is weak as well. This is because the coupling of bath modes

add up and the number of modes can be very large, too. Here we treat bath modes as

mechanical oscillators. For electrical environment, the complex impedance can be modeled

by simply replacing mechanical oscillators by the LC-circuits [63].

The Hamiltonian of the global system is given by

Ĥ = Ĥq + ĤR + V̂ , where

Ĥq = p̂2/2M + Û(q̂) ,

ĤR =

N∑
α=1

(
p̂2
α

2mα
+

1

2
mα ω

2
α x̂

2
α

)
,

V̂ =

N∑
α=1

γα q̂ x̂α . (2.19)

Here Ĥq and ĤR are the qubit system and reservoir Hamiltonians, respectively, and V̂ is

the interaction Hamiltonian between the qubit and its environment. It is also necessary to

include a counter term in the form Ĥc = q̂2
∑N

α=1 γ
2
α/2mαω

2
α in the bare potential Û(q̂) to
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avoid a constant shift in the energy due to coupling of a qubit device to the bath of harmonic

oscillators. However, this term by itself does not contribute to the dynamics of the system,

hence we ignore this term in the following discussion. Assuming a weak coupling between the

system and its environment, we can treat the system-reservoir interaction perturbatively.

This allows us to solve the Von-Neumann equation 2.6 for the total density matrix of the

entire system iteratively in powers of the coupling parameter. The solution can be written

in the following form:

ŴI(t)− ŴI(0) =
1

i~

∫ t

0

[
V̂I(t

′), ŴI(0)
]
dt′ +

1

(i~)2

∫ t

0

∫ t′

0

[
V̂I(t

′),
[
V̂I(t

′′), ŴI(t
′′)
]]
dt′ dt′′ .

(2.20)

Finally, expanding it to all orders of the coupling parameter, we obtain

ŴI(t)− ŴI(0) =

∞∑
n≥1

T
∫ t

0
dt′..........

∫ tn−1

0
dtn

1

(i~)n

[
V̂I(t

′), .......,
[
V̂I(t

n), ŴI(0)
]
........

]
,

(2.21)

where T is a time ordering operator. Considering only first two terms in the above expan-

sion, we have

ŴI(t) = ŴI(0) +
1

i~

∫ t

0

[
V̂I(t

′), ŴI(0)
]
dt′ − 1

~2

∫ t

0

∫ t′

0

[
V̂I(t

′),
[
V̂I(t

′′), ŴI(0)
]]
dt′ dt′′ .

(2.22)

In order to obtain the equation of motion of the reduced density matrix of the qubit, we

trace the environment out followed by differentiation with respect to time. This leads to

dρ̂I
dt

=
1

i~
TrR

[
V̂I(t), ŴI(0)

]
− 1

~2

∫ t

0
TrR

[
V̂I(t),

[
V̂I(t

′), ŴI(0)
]]
dt′ . (2.23)

It is reasonable to approximate that the initial state of the qubit is decoupled from that of

the reservoir. Therefore, the density matrix of the entire system at t = 0 can be factored

into:

ŴI(0) = ŴR
I (0)⊗ ρ̂I(0) . (2.24)

Tracing the reservoir out and rearranging terms in 2.22, one can immediately obtain an

expression for ρI(0). Using this expression for ρI(0) along with 2.24 and keeping terms only
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up to second order in the coupling parameter, Eq. 2.23 reduces to the following form:

dρ̂I
dt

=
1

i~
TrR

[
V̂I(t), Ŵ

R
I (0)⊗ ρ̂I(t)

]
− 1

~2

∫ t

0
TrR

[
V̂I(t),

[
V̂I(t

′), ŴR
I (0)⊗ ρI(t)

]]
dt′+

1

~2

∫ t

0
TrR

[
V̂I(t), Ŵ

R
I (0)⊗ TrR

[
V̂I(t

′), ρ̂I(t)
]]
dt′ . (2.25)

Eq. 2.25 is the master equation written in the interaction picture. We can transform this

back into the Schrodinger picture by

dρ̂

dt
=

1

i~

[
Ĥq(t), ρ̂(t)

]
+ exp

(
−iĤqt

~

)
dρ̂I
dt

exp

(
iĤqt

~

)
. (2.26)

Assuming an initial state of the reservoir to be in equilibrium, that is,
[
ŴR(0), ĤB

]
= 0

and 〈x̂α(0)〉 = 0, which implies TrR
[
V̂ ŴR(0)

]
= 0, the master equation in the Schrodinger

picture can be simplified to the following form:

dρ̂

dt
=

1

i~

[
Ĥq(t), ρ̂(t)

]
+ L̂[ρ̂(t)] , where

L̂[ρ̂(t)] ≡ −1

~

∫ t

0
K(t, t′) q̂ q̂(t′ − t) ρ̂(t) dt′ +

1

~

∫ t

0
K(t′, t) q̂ ρ̂(t) q̂(t′ − t) dt′

+
1

~

∫ t

0
K(t, t′) q̂(t′ − t) ρ̂(t) q̂ dt′ − 1

~

∫ t

0
K(t′, t) ρ̂(t) q̂(t′ − t) q̂ dt′ (2.27)

This can also be written in a more compact form as

L̂[ρ̂(t)] ≡ −1

~

∫ t

0
dt′ η1(t− t′)

[
q̂ ,
[
q̂(t′ − t), ρ̂(t)

]]
+
i

~

∫ t

0
dt′ η2(t− t′)

[
q̂ ,
{
q̂(t′ − t), ρ̂(t)

}]
.

(2.28)

Here the position operator q̂(t) is the Heisenberg operator. In Eq. 2.28, the time-dependent

kernel K(t, t′) that appeared in 2.27 has been split into two parts η1 and η2, which are often

referred to as quantum noise and dissipation kernel, respectively [63]. These quantities can

be calculated analytically for the harmonic heat bath:

K†(t′, t) = K(t, t′) = K(t− t′) ≡ η1(t− t′)− iη2(t− t′)

η1(t− t′) =
1

2~

N∑
α=1

γ2
α

〈{
x̂α(t) , x̂α(t′)

}〉
=

∫ ∞
0

J(ω) [1 + 2N(ω)] cos(ω(t− t′)) dω ,

η2(t− t′) =
i

2~

N∑
α=1

γ2
α

〈[
x̂α(t) , x̂α(t′)

]〉
=

∫ ∞
0

J(ω) sin(ω(t− t′)) dω . (2.29)
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Here the position operator of the bath mode x̂α(t) is the Heisenberg operator. The Planck’s

function N(ω) = 1/[exp(~ωβ) − 1] defines an average excitation number of environment

modes with frequency ω and β = 1
kB T

, where kB is the Boltzmann’s constant and T is the

temperature of the heath bath. Here J(ω) is the spectral density of the reservoir, which is

given by

J(ω) =

N∑
α=1

γ2
αδ(ω − ωα)

2mαωα
(2.30)

It may also be useful to write the time dependent kernel K(t, t′) in the following form:

K(t, t′) = K(t− t′) =

∫ ∞
0

J(ω)
[
N(ω)eiω(t−t′) + {1 +N(ω)} e−iω(t−t′)

]
dω (2.31)

From this wee see that the kernel K(t − t′) is simply a Fourier transform of the spectral

density J(ω) weighted by an average number of bath excitations for emission and absorption.

For Ohmic heat bath, the spectral density is given by

J(ω) = 2M γ ω exp(−ω/ωs) , (2.32)

where γ is frequency-independent damping rate and ωs is the cut-off frequency. In order to

obtain a memoryless heat bath, that is, K(t−t′)→ δ(t−t′) (approximately), the time-scale

at which the bath changes appreciably |t − t′| must be much shorter than the time-scale

at which the qubit system changes appreciably. In other words, |t − t′|γ << 1. Since the

maximum frequency contribution of the Ohmic bath is ωs, we obtain a memoryless bath if

ωs >> γ.

We also note that for the Ohmic heat bath and in the limit of high temperature kBT >>

~ω0, Caldiera-Leggett master equation for the quantum Brownian motion (of a particle in

a harmonic potential) reduces to that of Lindblad form, with Lindblad operator given by:

Â ≡
√

4MkBT

~
q̂ + i

√
1

4MkBT
p̂ (2.33)

2.5 Discussion

In this chapter, we considered different sources of decoherence that affect superconducting

and semiconducting qubits. Some of the mechanisms for decoherence in superconducting
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circuits and quantum dots are external in nature, while the others are purely intrinsic and

specific to the qubit device in question. We also discussed theoretical methods used to

study the dynamics of an open quantum system. In the following chapters, we use methods

discussed in this chapter to study the dynamics of a qubit coupled to its environment.
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Chapter 3

Effect of the Ohmic environment

on optimally controlled flux-biased

phase qubit

3.1 Introduction

Superconducting circuits containing Josephson junctions are promising candidates for scal-

able quantum information processing [64]. However, small separations between successive

quantum energy states in these circuits [65, 66] do not permit selective manipulation of a

qubit in a two dimensional subspace and results in a dynamical leakage of the quantum

state to a broader Hilbert space of the circuit. To reduce this leakage, Motzoi et al. [67]

proposed Derivative Removal by Adiabatic Gate (DRAG) method, which reduces the gate

error to 10−5 for an experimentally optimal gate time of 6 ns. This error is well below the

required error threshold of 10−3 for fault tolerant quantum computation [68].

In addition to the dynamic leakage, any realistic model of a qubit must also address

coupling of the qubit to its environment, which leads to further destruction of qubit states.

Several efforts have already been made towards the study of accurate control of a qubit

system [69, 70, 71]. However, the effect of environment on optimally controlled qubit has
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only been studied in a phenomenological model [67], which leads to the evolution of density

matrix of the qubit in the Lindblad form [72].

In this chapter, we resort to a microscopic approach to the modeling of the environment.

We employ the Caldeira-Leggett model of the system-environment coupling, introduced in

chapter 2, to describe the coupling of a flux-biased phase qubit, which is driven by the

DRAG pulses, to the electromagnetic environment. Numerically solving equation of motion

for the qubit density matrix, we study the dependence of the gate error on temperature,

gate time and environmental coupling strength. Although numerous potential sources of

decoherence in phase qubits have been identified experimentally [73, 74, 75], in this chapter,

we focus on decoherence due to the Gaussian noise from the surrounding circuitry, which is

introduced to the qubit system within the Caldeira-Leggett model. The study of the effect

of ubiquitous low frequency 1/f noise on the gate error is out of the scope of this chapter.

We specifically study the role of dissipation in the gate error during the NOT gate oper-

ation. We find that for phase qubits with relaxation time T1 ≈ 700 ns [76], two-quadrature

DRAG pulses proposed in Ref. [67] result in the gate error exceeding 7× 10−3, which is too

high for fault tolerant quantum computation. We then address the limitation posed by the

environmental coupling on two-quadrature pulses. Here we find that for optimal DRAG

pulses [67], the coupling to environment must be reduced nearly by a factor of 6 to suppress

the gate error below the required threshold. We also investigate the gate error for simple

pulse shaping where the pulse amplitude of the first quadrature vary smoothly according to

a Gaussian-shaped function while the amplitude of the second quadrature is proportional

to the derivative of the first. In this case, however, the microwave drive frequency is held

constant. For this pulse shape, we find that the gate error reduces to 10−3 for a gate time

≈ 7 ns when the coupling to environment is reduced by an approximate factor of 10 from

the coupling in currently used phase qubits.
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3.2 Model

A flux-biased phase qubit consists of a Josephson junction (JJ) embedded in a superconduct-

ing loop. The schematic of a flux-biased phase qubit is show in Fig. 3.1. Finite resistance of

the JJ (see Fig. 3.1 (b)) results in dissipation processes in the qubit and can be accounted

for by the Caldeira-Leggett model, discussed in the previous chapter. The full Hamiltonian

of the qubit and the environment is

Ĥ = Ĥq + P̂ (t) + ĤR + V̂ . (3.1)

The Hamiltonian of a flux-biased phase qubit Ĥq is written in terms of operators Q̂ and δ̂,

the charge and phase difference of the JJ respectively:

Ĥq =
Q̂2

2C
+

1

2L

(
Φb −

Φ0

2π
δ̂

)2

− I0Φ0

2π
cos δ̂ , (3.2)

where L (C) is the loop inductance (junction capacitance), Φb is the external magnetic

flux applied to the phase qubit, I0 is the critical current of the JJ, and Φ0 = h/2e is the

flux quantum. The qubit is capacitively coupled to a microwave current source, which is

used to induce coherent transitions between the qubit states. This coupling introduces a

time-dependent part in the Hamiltonian:

P̂ (t) =
Φ0I(t)

2π
δ̂ . (3.3)

Here I(t) = Ix(t) cosωdt + Iy(t) sinωdt is the microwave current with frequency ωd. The

coupling between the qubit system and the reservoir is bilinear in the JJ phase δ̂ and

oscillator displacements x̂α:

V̂ =

N∑
α=1

γαx̂αq̂ , q̂ ≡ δ̂ − 2πΦb

Φ0
, (3.4)

where parameters γα determine the coupling strength between the qubit and reservoir mode

α. Our goal is to describe the time evolution of the qubit density matrix ρ̂(t). The qubit is

initially prepared in a pure state, corresponding to the density matrix ρ̂(0). Assuming that

the environment is in a thermal equilibrium at temperature T , the master equation for ρ̂(t)
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Figure 3.1: (a) Schematic of a flux-biased phase qubit, and (b) Resistively and capacitively
shunted junction model (RCSJ)

takes the following form:

dρ̂(t)

dt
=

1

i~

[
Ĥq(t), ρ̂(t)

]
+ L̂[ρ̂(t)] , (3.5)

where the Caldeira-Leggett (CL) dissipative term L̂[ρ̂(t)] was derived in the previous chap-

ter. Although the CL master equation 2.27, is local in time, it contains time-dependent

coefficients, which capture memory effects of the noise due to the heat bath. Here we

consider the spectral density for the Ohmic environment, which is given by

J(ω) = ξ
C

4e2
~2ω0 ω exp(−ω/ωs) , (3.6)

where ξ is a dimensionless coupling parameter, ~ω0 is the energy difference between the

qubit states and ωs is a cut-off frequency that exceeds all other frequency scales of the

qubit system.

In typical experiments with phase qubits [76, 77], the “potential” part of Ĥq in 3.2 has

one deep minimum and another very shallow minimum that disappears at the critical flux

Φc. External flux Φb is chosen in such a way that only a few levels are localized in the

shallow well, but these levels are still separated from levels localized in the deep well by

impenetrable barrier 1. As a result, we truncate the qubit Hamiltonian, Eqs. 3.2 and 3.3,

1The levels in the deep well can also be accounted in the present model, however, our numerical results
indicate that the gate error does not change significantly if those levels are also included in the calculation
for chosen values of parameters.
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to three localized levels and obtain the following Hamiltonian:

Ĥq(t) = ~
2∑
j=1

[
ωj−1Π̂j + aλj σ̂

+
j + a∗λj σ̂

−
j

]
+ Ĥnr , (3.7)

where Π̂j = |j〉〈j| is the projector for the jth level, σ̂+
j = |j〉〈j − 1| is the raising operator,

a = (Ix − iIy)eiωdt/2 is the amplitude of microwave drive, λj = Φ0〈j|δ̂|j − 1〉/2π~ is the

matrix element of the phase operator, ωj = (εj+1 − ε0)/~, εj is an energy eigenvalue of

time-independent Hamiltonian Hq and Ĥnr contains non-resonant terms. In this three-level

model, the lower two energy levels comprise qubit states while the third level accounts for

a leakage level.

3.3 Gate error and DRAG method

In order to quantify the error during gate operation, we use gate fidelity averaged over two

initial input states in a two dimensional Hilbert space, similar to one defined in Ref. [78]:

Fg =
1

2

2∑
j=1

Tr
[
Ûidealρ̂

(0)
j Û †idealρ̂j(tg)

]
. (3.8)

Here Ûideal represents an ideal evolution, ρ̂j(t) is an actual density matrix of the qubit

system with ρ̂j(0) = ρ̂
(0)
j , and ρ̂

(0)
j represents two initial axial states in a Bloch sphere. The

gate error E is defined as E = 1− Fg.

A simple approach to minimize leakage of quantum information from the qubit subspace

is to use a single-quadrature Gaussian envelope pulse given by

Ix(t) = Iπ(t) = Ae−(t−tg/2)2/2σ2−B, Iy(t) = 0 , (3.9)

where tg is a gate time and σ = tg/2. For a NOT gate operation, which we choose to focus

on without any loss of generality, constant B is chosen so that the Gaussian pulse starts

and finishes off at zero and A is defined by∫ tg

0
Iπ(t) dt = π. (3.10)

This pulse shape results in a large gate error, due to population of the third level, even for

reasonably short pulses.
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The DRAG method reduces the gate error to order of 10−5 for a gate time of 6 ns [67] by

using two quadratures and time-dependent detuning ∆1(t) = ω0−ωd = (λ2− 4)I2
π(t)/4δan,

where the anharmonicity parameter δan ≡ ω1 − 2ω0, and λ measures relative strength

of 0 → 1 and 1 → 2 transitions, that is, λ ≡ λ2/λ1. The DRAG protocol uses second

quadrature pulse to suppress the population of the third level generated by single quadrature

drive. This is evident from the Hamiltonian written in the adiabatic frame (see below). We

note that the laboratory frame is more suitable for the solution of the reduced density

matrix of the qubit coupled to its environment. Therefore, we preserve the form of the

quadrature amplitudes as in Ref. [67]

Ix = Iπ +
(λ2 − 4)I3

π

8δ2
an

, Iy =
−İπ
δan

, (3.11)

and obtain the following equation for the microwave driving frequency for the Hamiltonian

Eq. 3.7 in the laboratory frame

tω̇d(t) + ωd(t) = ω0 −∆1(t) , ωd(0) = ω0 . (3.12)

Although the DRAG correction is successful in reducing the gate error below the required

threshold, practical implementation may not be feasible due to stringent requirement to vary

microwave frequency. For this reason, we also consider two-quadrature pulses with fixed

driving frequency ωd = ω0
2. We transform the Hamiltonian Eq. 3.7 to a frame rotating

with frequency ωd with respect to the laboratory frame and obtain:

ĤR = ~
2∑
j=1

[
∆jΠ̂j +

Ix(t)

2
λj σ̂

x
j−1,j +

Iy(t)

2
λj σ̂

y
j−1,j

]
, (3.13)

where ∆2 = δan + 2 ∆1, and for ωd = ω0, the detuning ∆1 = 0. We introduce operators

σ̂xj,k = |k〉〈j|+ |j〉〈k| and σ̂yj,k = i|k〉〈j| − i|j〉〈k|.

To analyze the dynamics of rotating frame Hamiltonian HR, it is convenient to perform

an adiabatic transformation [67] D̂(t) = exp
[
−iIx(t)

(
α σ̂y0,1 + λ σ̂y1,2

)
/2δan

]
, which pre-

serves the form of the gate, if Ix(t) starts and finishes off at zero. This condition is satisfied

2We also made constant detuning of the driving frequency from ω0, but did not see any improvement
compared to ωd = ω0 case.
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by our choice of Ix(t) (see Eq. 3.9). The parameter α appearing in D̂ is a dimensionless

scaling parameter. After performing the transformation, the Hamiltonian, to first order in

Ix/δan, takes the following form:

HD

~
≈ Ix

2
σ̂x0,1 +

(4α− λ2)I2
x

4δan
Π̂1 +

[α İx
2δan

+
Iy
2

]
σ̂y0,1

+{δan +
(λ2 + 2α) I2

x

4δan
} Π̂2 +

[ İx
2δan

+
Iy
2

]
λ σ̂y1,2

+
(2− α)λ I2

x

8δan
σ̂x0,2 +

λ(α− 1)Ix Iy
4δan

σ̂y0,2 .

(3.14)

We then require resonant condition for the microwave π−pulse in the qubit subspace and

also eliminate the imaginary inertial term from the subspace, that is, require Π̂1 and σ̂y0,1

terms in Eq. 3.14 to vanish, to obtain:

α =
λ2

4
, Ix(t) = Iπ(t) , Iy(t) =

−αİπ(t)

δan
, (3.15)

where Iπ(t) is defined by Eqs. 3.9. The contributions to the gate error due to transitions

to the third level come from the second and third lines of Eq. 3.14 except for Π̂2 term,

which is not directly responsible for the gate error. Using the above expression for Iy(t)

and Eq. 3.10, we estimate the magnitude of these terms as

σ̂y1,2 :
[ İx

2δan
+
Iy
2

]
∼ 1

δant2g
;

σ̂x0,2 :
(2− α)λ I2

x

8δan
∼ 1

δant2g
;

σ̂y0,2 :
λ(α− 1)Ix Iy

4δan
∼ 1

δ2
ant

3
g

.

These estimates show that the error due to σ̂y1,2 and σ̂x0,2 terms are comparable and results

in the leading contribution to the gate error. In the case of a time-dependent detuning, the

choice of pulses is such that it eliminates the error associated with σ̂y1,2 term, and rescaling

of the pulse intensity (I3
π term in Eq. 3.11) removes the contribution to the gate error due

to σ̂x0,2 term. This elimination of ∼ 1/(δant
2
g) explains high effectiveness of variable driving

frequency DRAG pulses. For fixed frequency pulses, the pulse rescaling only marginally

reduces the gate error.
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Figure 3.2: Gate error vs. gate time in log-normal scale with (thick lines) and without
(thin lines) dissipation for a single quadrature Gaussian (σ = 0.5 tg) pulse (solid black),
the Gaussian (σ = 0.5 tg) pulse with first order DRAG correction and dynamical detuning
(dashed-dot blue), and the Gaussian (σ = 0.5 tg) pulse with fixed driving frequency ωd = ω0

and α = 0.5 (dashed red), all in the laboratory frame. For the dissipative case, temperature
T = 0.1 ~ω0, the cutoff frequency ωs = 10ω0 and the coupling parameter ξ = 2.

3.4 Results

Qubit parameters used below in our simulation are typical of phase qubits: C = 1 pF,

I0 = 1.5µA, βL = 2πI0L/φ0 = 3.2 and Φb = 0.955 Φc , where Φc is a critical flux. Numerical

simulation indicates that small variations of qubit parameters do not incur any noticeable

change in the gate error as long as there are at least three energy levels in the shallow

well of the potential. For these experimental parameters, we numerically solve the time-

independent Schrodinger’s equation with the Hamiltonian given by Eq. 3.2. From this

simulation, we obtain the following numerical values (rounded up to two decimal places):

ω0/2π = 6.2 GHz, λ = 1.42 and δan/2π = −380 MHz.

In Fig. 3.2, we plot the gate error for the DRAG pulses with and without time-dependent
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detuning for an ideal phase qubit without environment. We find that pulses with two

quadratures and fixed driving frequency (thin dashed red) perform much better than single

quadrature Gaussian pulses (thin solid black), but are not as effective as pulses with double

quadratures and time-dependent driving frequency (thin dashed-dot blue).

We verify numerically that the fixed frequency DRAG pulses give the minimal gate error

for the choice of parameter α according to Eq. 3.15. As shown in Fig. 3.3(a), minimum

value of the error occurs at around α = 0.5 for different gate times, cf. dashed blue curve

for tgω0 = 250 and solid black curve for tgω0 = 350. This result is consistent with Eq. 3.15,

since for the phase qubit λ = 1.42, which implies α = 0.5. For transmon qubits, discussed

in Ref. [79], α = 0.4 owing to different value of λ.

In order to study the effect of dissipation on the DRAG pulses, we integrate the master

equation 4.4 numerically using the fourth and fifth order Runge-Kutta method. First,

we consider relaxation of the qubit from the first excited state to the ground state in the

absence of a microwave drive, shown in Fig. 3.3(b). For this simulation, we choose the cut-off

frequency ωs = 10ω0 (throughout this paper), temperature T = 0.1 ~ω0, and the coupling

parameter ξ = 2 so that the relaxation time corresponds to experimentally observed decay

time of T1 ≈ 700 ns for phase qubits [76]. We note that the spontaneous relaxation rate of

the first excited state can also be evaluated from the master equation 4.4 as

Γ =
1

T1
= 2π~ω2

0

ξC

4e2
|q01|2, q01 = 〈0|q̂|1〉. (3.16)

For the above choice of dimensionless coupling parameter ξ, temperature T and the cut-off

frequency ωs, we study the effect of dissipation on two-quadrature pulses.

In Fig. 3.2, we observe a non-monotonic behavior of the gate error with gate time for

pulses with the DRAG corrections. We find that for shorter gate times, two-quadrature

pulses with time-dependent driving frequency are weakly affected by dissipation (thick

dashed-dot blue). However, for longer gate times, dissipation has a substantial effect on

two-quadrature pulses. For instance, for a gate time of ω0tg = 250 (tg ≈ 6 ns), the gate

error increases from 10−5 to higher order of 10−3 for two-quadrature pulses with dynamical

detuning, when dissipation is taken into account. This increase in the gate error is due to
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Figure 3.3: (a) Gate error vs. alpha for gate times ω0tg = 250 (dashed blue) and ω0tg = 350
(solid black). The phase qubit is driven by two-quadrature pulses with driving frequency
ωd = ω0 in the absence of environment. (b) Probability vs. time for temperature T =
0.1 ~ω0, coupling parameter ξ = 2 and cut-off frequency ωs = 10ω0. The microwave pulse
is turned off and the qubit is initially prepared in |1〉 state (solid black), which relaxes to
|0〉 state (dashed blue) due to dissipation.

relaxation of the qubit from the excited state to the ground state, which becomes prominent

for longer gate times. For comparison, we plot the gate error for three different types of

pulses: single-quadrature Gaussian pulse (thick solid black), the Gaussian pulse with first

order DRAG correction and time-dependent driving frequency (thick dashed-dot blue) and

the Gaussian pulse with two quadratures and fixed driving frequency (thick dashed red).

One can conclude from these plots that the performance of two-quadrature pulses without

detuning is comparable to the DRAG pulses with dynamical detuning when dissipation is

included.

Next, we study the effect of environmental coupling strength on the gate error. In

Fig. 3.4, we plot the gate error for different coupling parameters ξ for the phase qubit

driven by two-quadrature pulses with dynamical detuning. In this simulation, we consider

the temperature T = 0.1 ~ω0, and coupling parameters: ξ = 0 (thin dashed-dot blue),

ξ = 0.1 (thick solid green with circles), ξ = 0.3 (thick solid red) and ξ = 2 (thick dashed-

dot blue). At ξ = 0 the gate error originates entirely due to microwave-induced leakage

of the qubit state from the lowest two level subspace. The environment-induced transition

rates increase with increase in the environmental coupling strength ξ (see Eq. 3.16). As
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Figure 3.4: Gate error vs. gate time in log-normal scale for the Gaussian (σ = 0.5 tg)
pulse with variable frequency DRAG correction for temperature T = 0.1 ~ω0 and cut-off
frequency ωs = 10ω0. The environmental coupling parameters: ξ = 0 (thin dashed-dot
blue), ξ = 0.1 (thick solid green with circles), ξ = 0.3 (thick solid red) and ξ = 2 (thick
dashed-dot blue).

a result, the gate error also increases, which is corroborated by Fig. 3.4. One can infer

from the plot that two-quadrature pulses with time-dependent driving frequency suppress

the gate error to 10−3 for ξ = 0.3 and gate time ω0tg ≈ 200 (tg ≈ 5.5 ns). This indicates

that an increase in the relaxation time nearly by a factor of 6 from the currently observed

value is necessary to suppress the error below the threshold for fault tolerant computation.

We further analyze the effect of environmental coupling on fixed frequency two-quadrature

pulses for a range of gate times. For this case, gate errors for different values of ξ are plotted

in Fig. 3.5, where the temperature is the same as above and coupling parameters are: ξ = 0

(thin dashed red), ξ = 0.1 (thick solid green with circles), ξ = 0.2 (thick solid blue), ξ = 0.5

(thick solid black with triangles) and ξ = 2 (thick dashed red). These plots indicate that

the DRAG pulses with fixed driving frequency can effectively suppress the gate error if the
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Figure 3.5: Gate error vs. gate time in log-normal scale for the Gaussian (σ = 0.5 tg) pulse
with fixed frequency DRAG correction for temperature T = 0.1 ~ω0 and cut-off frequency
ωs = 10ω0. The environmental coupling parameters: ξ = 0 (thin dashed red), ξ = 0.1
(thick solid green with circles), ξ = 0.2 (thick solid blue), ξ = 0.5 (thick solid black with
triangles) and ξ = 2 (thick dashed red).

environmental coupling strength is weakened and gate times are slightly longer than 6ns.

More specifically, for ξ = 0.2 and a gate time of ω0tg ≈ 300 (tg ≈ 7 ns), the gate error is

close to 10−3. Therefore, we conclude that the relaxation time must be nearly a factor of 10

longer than the currently observed value to attain the threshold of the gate error for fixed

frequency DRAG pulses. This is a much better improvement compared to single-quadrature

pulses for which the gate error never reduces to the threshold for a reasonable choice of gate

times even in an ideal case, that is, ξ = 0, as shown in Fig. 3.2. Finally, we investigate the

effect of the temperature on the gate error. In Fig. 3.6, we plot the gate error normalized

to the error at zero temperature for two different gate times: ω0tg = 150 (dashed-dot blue)

and ω0tg = 350 (dashed black). The plot shows a monotonic growth of the gate error as

the temperature increases due to enhancement in the relaxation rate. We compare results
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Figure 3.6: Normalized gate error vs. temperature for the Gaussian (σ = 0.5 tg) pulse
with varying frequency DRAG correction. In numerical simulation, environmental coupling
parameter ξ = 2 and cut-off frequency ωs = 10ω0 are used for gate times ω0tg = 150
(dashed-dot blue) and ω0tg = 350 (dashed black). Analytical rate equation estimation of
the normalized gate error (solid red).

of the numerical solution of the master equation 4.4, and a simple picture of the error

due to coupling to the environment in terms of the “Fermi-Golden rule” transition rates.

Considering the environment at zero temperature and assuming that the contribution to the

error E from the environment is small, E � 1, we can evaluate the error as the probability

of an excitation of a reservoir mode during the qubit operation, which happens with rate Γ:

E(T = 0) = Γtgρ11(t), where ρ11(t) =
∫ tg

0 ρ11(t)dt/tg is the time-average of the probability

of the qubit being in the first excited state. At finite temperature, processes with excitation

of environment happen with rate Γ(T ) = Γ[1 +N(ω)]. In addition, the qubit can absorb an

excitation from the environment with rate ΓN(ω). We combine the qubit excitations from

the ground to first excited state and the first to second excited state with the relaxation

from the first to ground state and obtain the following estimate for the gate error due to



35

coupling to the environment:

E(T )

Γtg
=
[
{1 +N(ω0)}+ λ2N(ω1 − ω0)

]
ρ11(t) +N(ω0)ρ00(t) . (3.17)

Assuming the average occupation of the ground and first excited states to be ≈ 1/2, and

for a weak anharmonicity of the qubit system |δan| � ω0, the gate error reduces to

E(T )

E(0)
≈ 1 + 4N(ω0) . (3.18)

The estimated normalized gate error (solid red) is plotted in Fig. 3.6 together with the

gate error obtained from the numerical simulation. The rate equation estimate of the error

is fairly close to the error obtained from direct numerical simulation for a longer gate time

(dashed black). However, for a shorter gate time (dashed-dot blue), the estimated error

deviates from the exact numerical simulation considerably suggesting that the rate equation

description may not be valid for shorter gate times, as well as for higher temperatures.

3.5 Discussion

In this chapter we compared possible choices of microwave pulses for the NOT gate oper-

ation in fluxed-biased qubits. Particularly, we considered three options: single-quadrature

pulses and two-quadrature microwave (control) pulses with both variable and fixed fre-

quencies. Two-quadrature pulses led to significant suppression of the gate error compared

to single-quadrature pulses. However, the presence of dissipative environment increased

the gate error even for two-quadrature pulses significantly above the required threshold for

fault tolerant quantum computation in currently available phase qubits. We further inves-

tigated how the environmental coupling strength affects the gate error and found that an

improvement of the qubit relaxation time is crucial for effectiveness of the DRAG pulses.

We determined that two-quadrature pulses with fixed driving frequency suppressed the gate

error below the required threshold for a reasonable gate time of 7 ns, but for qubits with

the relaxation time ten times longer than the currently observed relaxation times. Simi-

larly, our analysis indicated that two-quadrature pulses with dynamical detuning can also
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effectively reduce the gate error below the required threshold if the relaxation time is longer

by at least a factor of 6. In comparison to fixed frequency DRAG pulses, this is a moderate

improvement over the longer relaxation time requirement, yet not impressive enough to

overcome the difficulty associated with implementing control pulses with variable driving

frequency. We expect that in a trade-off between complicated driving frequency and longer

relaxation times, the DRAG pulses with fixed frequency are viable alternatives for reducing

the gate error. We emphasize that for single-quadrature pulses, reduction of the gate error

below the error threshold of 10−3 is not possible for reasonable gate times, even in an ideal

case without any dissipation.

In addition, we observed a monotonic increase in the gate error with the temperature,

which is due to increase in the relaxation rate with the temperature. We found that the

temperature dependence of the gate error for longer pulses can be captured by a simple

error estimation based on the rate equations. Nonetheless, these estimates of the error for

shorter pulses differs from the gate error obtained from direct numerical solution of the

reduced density matrix. Therefore, full density matrix solution is necessary to calculate the

error for shorter gate times.
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Chapter 4

Microwave photon detector based

on a current-biased Josephson

junction

4.1 Introduction

Quantum optical photodetectors have contributed significantly to the development of quan-

tum optics and atomic physics [80] and now play an essential role in optical quantum in-

formation applications such as quantum computing and quantum key distribution [81, 82].

Recently, circuit quantum electrodynamics (cQED) has emerged as a novel paradigm for the

study of radiation-matter interaction in mesoscopic systems [83, 84, 85]. Moreover, cQED

is an attractive candidate for scalable quantum computing and transmission of quantum in-

formation [86, 87]. Following the original proposal, a variety of cQED architectures demon-

strating strong coupling between single photons and superconducting integrated circuits

have been realized experimentally [88, 89]. This work has paved the way for the develop-

ment of a superconducting microwave photon detector [90, 91] with possible applications

to quantum information processing and communication [92].

The microwave photon detector is based on the current-biased Josephson junction (JJ):
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Figure 4.1: (a) Schematic circuit diagram of JJ-based microwave photon detector coupled
to a resonator. (b) Potential energy landscape of the detector when bias current is close to
the critical current of the JJ . The junction is initialized in the |g〉 state and upon absorbing
an incident photon transitions to the |e〉 state, which rapidly tunnels to the continuum.

the JJ is biased so that absorption of a single microwave photon induces a transition to the

voltage state, producing a large and easily detected classical signal. While these detectors

are straightforward to operate and show potential for scalability, performance is degraded

by spurious dark counts due to quantum tunneling events in the absence of an absorbed

photon; moreover, energy relaxation within the detector results in photon loss and leads to

a reduction in measurement efficiency.

In this work, we theoretically determine the quantum efficiency of a microwave photon

detector based on a current-biased JJ. Previous analysis [93, 94] of this system was focused

on a wave-packet formulation of the photon field in a transmission line coupled to the

detector. Here we study the probability of photon detection by a JJ coupled to a microwave

cavity mode that is loaded with a fixed number of photons [95]. We solve the equation of

motion for the density matrix of the cavity-JJ system to obtain detector efficiency for

different values of operation time, current bias, and relaxation time of the junction. Our

results indicate that a JJ with decay time around 10 ns can detect a single microwave

photon in the cavity with an efficiency greater than 80%, for readily achievable circuit

parameters. We also find that the detector efficiency increases significantly with increasing

energy relaxation time T1 of the junction, suggesting that a highly efficient single microwave

photon detector is attainable for moderate improvements in junction quality.
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4.2 Josephson-junction based photon detector

The circuit diagram of the JJ-cavity system is shown in Fig. 4.1(a). The JJ is biased with a

current I close to the critical current I0. The junction Hamiltonian can be written in terms

of the charge operator Q̂ and the operator δ̂ of the phase difference across the JJ [96]:

ĤJJ =
Q̂2

2C
+ U(δ̂) , U(δ̂) = −I0Φ0

2π

(
cos δ̂ − I

I0
δ̂

)
. (4.1)

Here C is the junction capacitance and Φ0 = h/2e is the magnetic flux quantum. For

I . I0, the potential energy landscape U(δ) takes on a “tilted washboard” shape, with a

few discrete energy levels in shallow minima separated from the continuum by a barrier,

see Fig. 4.1(b). We truncate the junction Hamiltonian to the ground |g〉 and first excited

states |e〉 and obtain the following Hamiltonian for the JJ:

ĤJJ = ~ωegΠ̂e , (4.2)

where Π̂e = |e〉〈e| is the projection operator to the excited state and ωeg = (εe − εg)/~.

The coupling of the cavity with the JJ is modeled by the Jaynes-Cummings (JC) Hamil-

tonian [97]:

ĤJC = ~ωr
(
â†â+

1

2

)
+ ~ωegΠ̂e +

~Ω

2
(â†σ̂− + âσ̂+) , (4.3)

where ωr is the cavity resonance frequency, Ω is the vacuum Rabi frequency, and â†(â),

σ̂+(σ̂−) are the creation (annihilation) operators of the cavity and the junction, respectively.

The time evolution of the density matrix ρ̂(t) of the cavity-JJ system coupled to its

environment is governed by the following equation:

dρ̂(t)

dt
=

1

i~

[
ĤJC , ρ̂(t)

]
+ L̂γ [ρ̂(t)] + L̂κ[ρ̂(t)] + L̂T [ρ̂(t)] , (4.4)

where L̂γ [ρ̂(t)] and L̂κ[ρ̂(t)] are superoperators that capture damping in the JJ and the

cavity at low temperatures T � ~ωeg, ~ωr [98]:

L̂κ[ρ̂(t)] = κ

(
âρ̂â† − 1

2
{â†â, ρ̂}

)
, (4.5a)

L̂γ [ρ̂(t)] = γ

(
σ̂−ρ̂σ̂+ −

1

2
{σ̂+σ̂−, ρ̂}

)
. (4.5b)
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To account for switching of the ground and the first excited states of the JJ to the

voltage state, we introduce the tunneling superoperator LT [ρ̂(t)] [99, 100, 101, 102]:

L̂T [ρ̂(t)] = −

 Γeρ
nn
ee +

√
ΓeΓg

2
(ρnmeg + ρnmge )

Γe + Γg
2

ρnmeg +

√
ΓeΓg

2
(ρnmee + ρnmgg )

Γe + Γg
2

ρnmge +

√
ΓeΓg

2
(ρnmee + ρnmgg ) Γgρ

nn
gg +

√
ΓeΓg

2
(ρnmeg + ρnmge )

 ,

(4.6)

where Γe,g are the tunneling rates from the ground (|g〉) and first excited (|e〉) states of the

junction. If we approximate the potential in Eq. 4.1 by a cubic potential, then the tunneling

rate of the ground and the first excited states of the cubic potential can be computed by

WKB approximation:

Γj = ωp/2π[432∆U/~ωp]j+1/2/πj/2 exp[−36∆U/5~ωp] ,

where Γj=0 ≡ Γg and Γj=1 ≡ Γe represent the tunneling rates from the |g〉 and |e〉 states of

the JJ, respectively. The ratio Γe/Γg ≈ 250∆U/~ωp. Here ∆U = 4I0Φ0/3
√

2π(1− I/I0)3/2

is the barrier height and ωp = 21/4
√

2πI0/CΦ0(1 − I/I0)1/4 is the plasma frequency of

the cubic potential. The junction frequency ωeg is related to the plasma frequency by

ωeg ' ωp(1 − 5~ωp/36∆U). The tunneling rate of the first excited state of the junction is

then given by Γe ≈ 500 Γg = 7.3× 107 s−1 for ∆U/~ωp ≈ 2.

4.3 Quantum efficiency

The system is originally prepared in a pure state ρ̂n(0) = |n, g〉〈n, g| with n photons in the

cavity and the junction in the ground state |g〉. We assume n photons are loaded into the

cavity in a manner similar to that described by Hofheinz et al. [25], with loading rate faster

than the interaction rate between the JJ and the cavity. With this assumption, the detector

efficiency is unaffected by how photons are loaded into the cavity. We numerically solve

the above equation for the time evolution of the density matrix to compute the occupation

probabilities of the cavity and junction states. The probability that the JJ has switched to
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Figure 4.2: Switching probability P1 (P0) vs. photon detection time for initial states |1, g〉
(|0, g〉). Parameters used in this plot are: junction T1 = 10 ns, barrier height ∆U/~ωp =
2, vacuum Rabi frequency Ω/2π = 200 MHz, and cavity decay time 1/κ = 1µs. Here the
detuning between the cavity and the junction ∆ = 0. The solid blue curve is the quantum
efficiency η1 ≡ P1−P0 (see text). The maximum quantum efficiency of the detector is 50%
for an optimal detection time of 45 ns (the optimal point is marked by the filled blue circle).

the voltage state at time t is given by

Pn(t) = 1− Tr [ρ̂n(t)]. (4.7)

4.4 Result

We consider the following set of parameters for the JJ-cavity system, typical of those realized

in experiments [91]: JJ frequency ωeg/2π = 4.8 GHz, junction decay rate γ = 108 s−1,

cavity decay rate κ = 106 s−1, and vacuum Rabi frequency Ω/2π = 200 MHz. In Fig. 4.2,

we plot switching probabilities P1(t), P0(t) of the junction for initial states |1, g〉 (solid

red) and |0, g〉 (solid black), respectively. In this simulation, the parameters we consider

are ∆U/~ωp = 2 and we set the detuning between the cavity and the JJ to zero, i.e.,
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∆ ≡ ωr − ωeg = 0. The switching probability P1 in Fig. 4.2 features steps whose periodic

occurrence is a manifestation of Rabi oscillations of the JJ with period 2π/Ω = 5 ns. This

result is consistent with the picture that switching of the JJ halts momentarily when the

junction returns to the ground state in course of the Rabi oscillations.

Next, we discuss the presence of the wide plateau of P1 in Fig. 4.2. The occurrence

of this plateau can be understood from the fact that switching of the junction is briefly

frozen when the junction relaxes to the ground state due to dissipation. The JJ then

switches to the voltage state after time ∼ 1/Γg, the characteristic time scale for switching

of the junction in the case of zero photons. The height of this plateau can be estimated as

Γe/
(
Γe + γ

)
≈ 0.5, which agrees with the numerical result in Fig. 4.2.

In order to determine the quantum efficiency of the detector, we must properly treat dark

counts due to quantum tunneling from the |0, g〉 state in the absence of photon absorption.

The quantum efficiency η1 of the detector is defined as the difference between the switching

probabilities for an initial state with one photon P1(t), and for an initial state with no

photons P0(t): η1 ≡ P1(t) − P0(t). The quantum efficiency is shown in Fig. 4.2 by the

solid blue curve. For our choice of parameters Γe ' γ, the detector has maximum efficiency

of about 50% for the optimal detection time td around 45 ns. Next, we demonstrate that

the bandwidth of the Josephson microwave photon detector is broadened due to the finite

lifetime of the junction excited state. Here, we vary the frequency ωr of the cavity and

compute the quantum efficiency of the detector for the optimal detection time td obtained

at zero detuning ∆ = 0. The detector bandwidth is then given by the detuning at which

the quantum efficiency of the detector is reduced to half the efficiency obtained at zero

detuning. For a dissipation–free junction, the detector bandwidth is approximately given

by the vacuum Rabi frequency. However, in the presence of dissipation and tunneling,

the first excited state of the junction is broadened by ∼ γ + Γe. This broadening of the

energy level roughly accounts for the increased bandwidth of the detector. We find that

bandwidths are factors of 1.6, 2 and 2.3 larger than the vacuum Rabi frequency for bias

points ∆U/~ωp = 2, 1.9 and 1.8, respectively, as shown in Fig. 4.3. As we lower the
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Figure 4.3: Quantum efficiency η1 vs. detuning ∆/Ω for optimal detection time obtained
at ∆ = 0 for various bias points: ∆U/~ωp = 2 (solid blue), 1.9 (dashed-dot black), and 1.8
(dashed red). The bandwidths of the detector are 1.6Ω (solid blue), 2Ω (solid black) and
2.3Ω (solid red), respectively. The remaining parameters are as in Fig. 4.2.

ratio ∆U/~ωp, the tunneling rate Γe of the first excited state of the junction increases.

This in turn causes further broadening of the junction excited state thereby increasing the

bandwidth of the detector. Next, we analyze the effect of dissipation and bias point on the

efficiency of the detector. In Fig. 4.4(a), we plot the quantum efficiency of the detector for

different values of the junction relaxation time T1 from 10 ns to 500 ns, keeping all other

parameters the same as in Fig. 4.2. We find that the quantum efficiency increases with

increasing junction relaxation time T1 and reaches 94% for T1 = 500 ns and for a detection

time around 95 ns.

The change in bias current I of the junction modifies the ratio of barrier height ∆U

to the junction plasma frequency ωp. Taking different values of this ratio, we compute

the efficiency of the detector at fixed relaxation time T1 = 10 ns; the results are shown

in Fig. 4.4 (b). Upon decreasing the ratio ∆U/~ωp, the potential well becomes shallower,
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Figure 4.4: (a) Quantum efficiency η1 vs. photon detection time for ∆U/~ωp = 2 and for
various decay times of the junction: T1 = 10 ns (solid blue), T1 = 20 ns (dashed green), T1

= 50 ns (dash-dotted red), and T1 = 500 ns (dotted black). For T1 = 500 ns, the maximum
quantum efficiency is 94%. (b) Quantum efficiency η1 vs. photon detection time for junction
T1 = 10 ns for various bias points of the junction: ∆U/~ωp = 2 (dotted blue), 1.9 (dash-
dotted green), 1.8 (dashed red) and 1.7 (solid black). The maximum quantum efficiency is
84% for ∆U/~ωp = 1.7. The remaining parameters are as in Fig. 4.2.

leading to enhanced tunneling out of the first excited state and increased efficiency of

the detector. Our simulation results indicate that a significant improvement in detector

efficiency is achieved when the tunneling rate exceeds the dissipation rate of the junction.

We find that for the bias point ∆U/~ωp = 1.7, the efficiency of the detector is about 84%

for a detection time around 9 ns. Finally, we analyze the efficiency of the detector to detect

single photons when the cavity is loaded with n > 1 photons. Generalizing the previous

case of a single photon in the cavity, the efficiency to detect a single microwave photon

in a cavity loaded with n photons is given by ηn = Pn(t) − P0(t). In Fig. 4.5, we plot

the efficiency at fixed bias point ∆U/~ωp = 2 and T1 = 10 ns for different numbers of
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Figure 4.5: Efficiency ηn to detect a photon vs. detection time for n = 1 (solid blue), 2
(dashed blue), and 3 (dash-dotted blue) photons in the cavity. The rest of the parameters
are as in Fig. 4.2. For three photons in the cavity, the efficiency to detect a photon is 85%.

photons in the cavity: n = 1 (solid blue), 2 (dashed blue), and 3 (dash-dotted blue). We

find that detection efficiency increases with the increasing number of photons in the cavity

and reaches 85% for three photons in the resonator. This result is consistent with previous

studies [93, 91] that reported a higher detection efficiency, for the same parameters as above,

when a continuous flux of photons was incident on the detector. For the case of a single

photon in the cavity, the detector returns to the ground state after the photon is absorbed

by the environment, and no further excitation of the junction is possible. However, when

multiple photons are present in the cavity, other photons are available to induce excitation

if the junction relaxes, thereby increasing the probability of photon detection. We note that

for multiple photons in the cavity, the measured efficiency η can also be used to estimate

the average number of photons in the cavity.

Recently, Peropadre et al. [94] proposed a phenomenological model for the JJ-based

microwave photon detector that fails to address specific microscopic details of experimen-

tally realized detectors [91]. Specifically: (1) Peropadre et al. treat tunneling from the
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excited state of the junction by a non-hermitian term in the junction Hamiltonian; this is

not consistent with the standard form of quantum tunneling. (2) These authors do not

consider tunneling from the low-energy state of the junction, which is responsible for dark

counts of the detector. (3) Finally, their model does not take into account the relatively

strong relaxation from the excited to the ground state of the junction. This relaxation cor-

responds to a T1 time of order of a few nanoseconds in present devices, which are strongly

coupled to a 50 Ω readout line, and is responsible for a significant suppression of detector

efficiency [91]. If the relaxation time were above 500 ns, the efficiency would reach nearly

100%, see Fig. 4(a).

4.5 Input-output theory and reflection coefficient

For practical realization of a photon detection scheme discussed in the previous section, it is

important to address several issues that one may encounter in a real experiment. One of such

concerns that directly impacts the detection efficiency is the power reflected by the detector.

Since our goal is to maximize the detection efficiency, it is crucial to minimize the power

reflected by the detector. In this section, we investigate the condition for minimizing the

power reflected by the photon detector. We apply input-output theory [103] to calculate the

reflection coefficient of the detector connected to a microwave source through a transmission

line, taking into account switching behavior of and/or dissipative effect in the junction.

Consider a Josephson junction (JJ) biased with a current I close to the critical current

I0. The Lagrangian of the junction is given by:

L[Φ̇,Φ] =
CJ
2

(∂Φ

∂t

)2
− U(Φ) , where U(Φ) = −EJ cos(2πΦ

Φ0
)− ΦI and Φ0 ≡ h/2e.

(4.8)

If we expand the potential function around the local minimum Φmin = Φ0
2π sin−1(I/I0), we

obtain

U(Φ) =
1

2LJ
(Φ− Φmin)2 + O(Φ3) . (4.9)
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Here CJ and LJ are the junction’s capacitance and inductance, respectively. We will assume

that the JJ is positioned at x = 0 and is connected to a transmission line (left) whose

characteristic impedance Zl =
√

Ll
Cl

, where Ll and Cl are the inductance and capacitance

per unit length of the transmission line. Similarly, we model the Ohmic loss in the junction

(tunneling in JJ can also be modeled this way) by connecting the junction in parallel to a

semi-infinite transmission line (right) whose characteristic impedance Zr =
√

Lr
Cr

, where Lr

and Cr are the inductance and capacitance per unit length of the right transmission line.

Far away from the junction (i. e., x > 0 or x < 0), the flux field Φl,r(x, t) in the left or

right transmission line satisfies the following wave equation:

∂2Φl,r(x, t)

∂t2
− v2

l,r

∂2Φl,r(x, t)

∂x2
= 0 , where the phase velocity vl,r ≡

√
1

Ll,rCl,r
. (4.10)

The solution to the wave equation is given by [104]

Φl,r(x, t) =

∫ ∞
0

√
~Zl,r

2

dω

2π
√
ω

[
ainl,r(ω)ei(±kl,rx−ωt) + aoutl,r (ω)ei(∓kl,rx−ωt) + h.c.

]
(4.11)

where |kl,r| = ω
vl,r

. The continuity of the flux field at x = 0 requires

Φl(0−, t) = Φr(0+, t) . (4.12)

The discontinuity in the derivative (w.r.t. x) of the flux field at x = 0 leads to the Kirchhoff’s

current law, which is equivalent to the Euler-Lagrange equation of motion derived from the

total Lagrangian density of the system (or Hamilton equation of motion in Hamiltonian

formulation):

1

Ll

∂Φl(0−, t)
∂x

− 1

Lr

∂Φr(0+, t)

∂x
+ CJ

∂2Φl(0, t)

∂t2
+

Φl(0, t)

LJ
= 0 . (4.13)

Plugging in the solution of the wave equation into the boundary conditions, Eqs. 4.12 and

4.13, we obtain:

√
Zla

out
l (ω)−

√
Zra

out
r (ω) = −

√
Zla

in
l (ω) +

√
Zra

in
r (ω)

Xaoutl (ω) + Y aoutr (ω) = −X∗ainl (ω) + Y ainr (ω) , where

X ≡

√
Zl
L2
Jω
−
√
C2
JZlω

3 − i
√
ω

Zl
and Y ≡ −i

√
ω

Zr
. (4.14)
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If we ignore the right input amplitude for a moment, we get aoutl (ω) = R(ω) ainl (ω), where

the reflection coefficient R(ω) is given by:

R(ω) = − ωpZlZr − ω
2CJZJZlZr + iω(ZJZr − ZJZl)

ωpZlZr − ω2CJZJZlZr − iω(ZJZr + ZJZl)
. (4.15)

Here ωp =
√

1/LJCJ and ZJ =
√
LJ/CJ are the plasma frequency and the impedance of

the junction, respectively. From the above expression for reflection coefficient, we see that

for Zl = Zr and ω = ωp, we have R = 0.

This calculation indicates that the power reflected by the detector is minimal when

the impedance of the transmission line is equal to the impedance due to tunneling or any

internal loss in the detector. It also requires a resonance condition, namely, ω = ωp.

4.6 Power absorbed by the detector

So far we only considered a detection model where the resonator was loaded with a fixed

number of photons, which were then detected by a detector that was capacitively coupled to

the resonator. Alternatively, in a more realistic setting, one can have a classical microwave

source directly connected to the detector, or a microwave driven resonator connected to the

detector. In this section, we present a rigorous method to compute the power absorbed

by the detector in these alternative set-ups. This is an important calculation since one

can show that the power absorbed by the detector is directly related to the efficiency of

the photon detector. The schematics of circuit diagrams of a microwave driven resonator

connected to a JJ and a microwave driven JJ are shown in Fig. 4.6.

Formalism

Here we present a formalism to compute the power absorbed by the detector in the presence

of decoherence. Since the photon detector we consider here switches from a supercurrent

state to the voltage state upon absorbing photons, we would like to characterize the wait

time between the reset of the junction and switching to the voltage state. The wait time is

often specified by a probability distribution which is known as the waiting time distribution.



49

S

Photon Detector

Microwave Source

s

Resonator

Photon Detector

Microwave Source

Figure 4.6: Schematic circuit diagram of JJ-based microwave photon detector (a) driven by
a classical microwave source, (b) coupled to a microwave driven resonator.

This distribution allows us to compute the average switching rate of the detector, which

is proportional to the power absorbed by the detector. In the following, we provide a

derivation for the waiting time distribution[105].

For the sake of generality, we will not specify the Hamiltonian explicitly and simply

denote it by Ĥsys, which can represent either of the detection schemes shown in the circuit

diagrams above. The time evolution of the density matrix of this system is characterized

by a Liouvillian superoperator L̂total,

dρ̂(t)

dt
= L̂total[ρ̂(t)] ≡ L̂0[ρ̂(t)] + Ĵe[ρ̂(t)] + Ĵg[ρ̂(t)] , where (4.16)

L̂0[ρ̂(t)] ≡ 1

i~
[Ĥsys, ρ̂(t)] + L̂dissip[ρ̂(t)] . (4.17)

Here L̂dissip is the Lindblad superoperator that characterizes the dissipation in system in

consideration and Ĵi is the tunneling jump operator of the JJ from the initial metastable

state |i ≡ g, e〉 (or supercurrent state) to the final voltage state |r〉 (or resistive state),

defined as

Ĵi[ρ̂(t)] = Γi ŝi ρ̂(t) ŝ†i , where ŝi ≡
∑

n |n, r〉〈n, i|. (4.18)

Γg,e are tunneling rates from the ground and exited states, respectively and n is the number

of photons in the resonator, if the resonator is present in the model. Since the tunneling

rate from the ground state, which contributes to the dark count of the detector, is orders

of magnitude smaller compared to the tunneling rate from the excited state, we neglect the
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tunneling rate from the ground state in the following discussion. With this simplification,

L̂0 can be re-defined in terms of effective non-Hermitian Hamiltonian by absorbing the

tunneling jump operator Ĵe into it in the following way:

L̂0[ρ̂(t)] =
1

i~

(
Ĥeff ρ̂(t)− ρ̂(t)Ĥ†eff

)
+ L̂dissip[ρ̂(t)] , where (4.19)

Ĥeff ≡ Ĥsys −
i~Γe

2
ŝ†e ŝe . (4.20)

For time-independent Liouvillian, the formal solution of the density matrix equation can

be written as

ρ̂(t) = eL̂0+Ĵe ρ̂in =

∞∑
n=0

∫ t

0
dtn

∫ tn

0
dtn−1 · · · · · ·

∫ t2

0
dt1 e

L̂0(t−tn) Ĵe eL̂0(tn−tn−1) Ĵe · · ·

· · · · · · Ĵe eL̂0(t2−t1) Ĵe eL̂0t1 ρ̂in . (4.21)

One can define a conditioned density matrix (un-normalized) as

ρ̂c({t1 · · · tn}) = eL̂0(t−tn) Ĵe eL̂0(tn−tn−1) Ĵe · · · Ĵe eL̂0(t2−t1) Ĵe eL̂0t1 ρ̂in . (4.22)

The normalized conditioned-density matrix is then given by

ρ̂cnorm =
Ĵe eL̂0τ ρ̂(0)

W (τ)
, where ρ̂(0) = |n, g〉〈n, g|. (4.23)

Here W (τ) is the normalizing factor and is also known as the waiting time distribution,

which is given by

W (τ) = Γe Tr[ŝe %̂(τ) ŝ†e] , and d%̂
dt = L̂0[%̂(t)] with %̂(0) = ρ̂(0). (4.24)

With this definition of waiting time distribution, we are now ready to compute the average

switching rate of the JJ, which is given by〈
1

τ

〉
=

∫ ∞
0

1

τ
W (τ)dτ . (4.25)

The average power absorbed by the detector can now be defined in terms of the switching

rate in the following way:

Pabs = ~ωeg

〈
1

τ

〉
. (4.26)

Here ωeg is the frequency of the photon absorbed by the detector, which is equal to the

characteristic frequency of the JJ.
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Figure 4.7: Waiting time distribution of a microwave driven resonator for 〈n〉 = 5, Ω/2π =
50 MHz, γ = 0.

Waiting time distribution

Below we compute and briefly discuss the waiting time distribution for two different detec-

tion schemes shown in the circuit diagrams above. The system Hamiltonian for Fig. [4.6]

(a) is given by

Ĥsys = ~∆egΠ̂e +
~f
2

(σ̂+ + σ̂−) , (4.27)

where ∆eg ≡ |ωd − ωeg| is the detuning between the drive frequency ωd and the JJ’s char-

acteristic frequency ωeg. Π̂e is the projection operator for the excited state of the junction,

Π̂e = |e〉〈e|, and f is the drive amplitude. We choose to write f =
√
〈n〉Ω, anticipating its

connection with an alternative detection scheme based on a microwave driven resonator, in

which case 〈n〉 is the average number of photons in the resonator and Ω is vacuum Rabi

frequency. However, for a JJ driven by a classical microwave source with drive amplitude

f , the quantity f also characterizes the Rabi frequency.

In Fig. 4.7, we plot the waiting time distribution of a microwave driven JJ. Here we
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Figure 4.8: Waiting time distribution of a microwave driven resonator for 〈n〉 = 5, Ω/2π =
200 MHz, γ = 100 MHz.

take 〈n〉 = 5,Ω/2π = 50 MHz and relaxation rate in the junction γ = 0 and Γe = 7.3× 107

s−1. The first peak on the waiting time distribution always occurs at half the Rabi period,

which is given by TR = 2π/f and the subsequent peaks are separated by a full Rabi period.

This is due to the fact that the junction is most likely to switch when it reaches the excited

state and it only takes half the Rabi period to reach the excited state for the first time,

but a full Rabi period in all future times. The number of peaks that appear on the waiting

time distribution are characteristics of the Rabi frequency. In addition, for non-zero γ,

these peaks are not well resolved, as shown in Fig. 4.8. In this figure, γ = 100 MHz and

Ω/2π = 200 MHz.

Next, we consider the waiting time distribution for a microwave driven resonator con-

nected to a JJ. Here the system Hamiltonian is given by

Ĥsys =
~f
2

(â+ â†) + ~∆r(â
†â+

1

2
) + ~∆egΠ̂e +

~Ω

2
(â† σ̂− + â σ+) , (4.28)

where the detuning ∆r = |ωd−ωr|, ωr is the resonance frequency of the resonator and Ω is

vacuum Rabi frequency. The drive amplitude f is given by f =
√
〈n〉(4∆2

r + κ2), where κ
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Figure 4.9: Waiting time distribution of a microwave driven resonator connected to a JJ
for two different input powers: 〈n〉 = 5 (solid red line) and 〈n〉 = 11 (dashed black line).
Other parameters are Ω/2π = 50 MHz, γ = 0 and κ = 1 MHz.

is the inverse lifetime of photons in the resonator.

In Fig. 4.9, we plot the waiting time distribution of a microwave driven resonator con-

nected to a JJ for two different input powers of the drive. We find that the waiting time

distribution for this detection scheme is very different from that of a microwave driven JJ.

For a coherent state in the resonator, we notice a far fewer oscillatory peaks on W (τ).

This is due to the beating between the Rabi oscillations with different frequencies, which is

caused due to different number of photons in the resonator.

Next, we compute the average switching rate of the detector. As shown in the previous

section, the average switching rate is given by〈
1

τ

〉
=

∫ ∞
0

dτ W (τ) =

∫ ∞
0

dτ
Γe
τ

Tr
[
ŝe e
L̂0τ %̂(0) ŝ†e

]
. (4.29)

We numerically diagonalize L̂0 and obtain the eigenvalues and eigenvectors, which can be

written compactly as

D L̂0 D−1 = Λ , (4.30)
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Figure 4.10: Average switching rates for two different detection schemes: a microwave
driven resonator connected to a JJ (red solid line) and a microwave driven JJ (solid black
line). Here Ω/2π = 50 MHz, γ = 0 and κ = 1 MHz.

where D is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues of L̂0 .

If we plug this into the expression for switching rate, we obtain〈
1

τ

〉
= Γe Tr

[
ŝe D

(∫ ∞
0

eΛτ

τ
dτ
)

D−1%̂(0) ŝ†e

]
. (4.31)

Since D D−1 = I, Tr
[
ŝe D D−1 %̂(0) ŝ†e

]
= Tr

[
ŝe %̂(0) ŝ†e

]
, which is precisely 0. We can

therefore introduce an exponent of an arbitrary complex number λ with a negative real

part in the time integrand, which allows us to perform the time integration analytically:∫ ∞
0

τ(eΛτ − eλτ )

τ2
dτ = − log[−Λ] + log[−λ] , where Re[Λ, λ] < 0 .

In Fig. 4.10, we plot the average switching rates for two different detection schemes.

We find that average switching rates for these detection schemes coincide as we increase

the number of photons in the resonator, as expected. The deviation in the switching rate

from the expected value for a large photon numbers is simply a numerical artifact due to

truncation of the full Hilbert space.
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4.7 Discussion

In conclusion, we have presented a model to determine the quantum efficiency of a microwave

photon detector based on a current-biased JJ. We have demonstrated that the efficiency

to detect a single photon loaded in a cavity has maximal value Γe/(Γe + γ). We have also

determined that the bandwidth of the detector is characterized by the sum of the vacuum

Rabi frequency and the broadening of the first excited state of the JJ due to tunneling and

relaxation processes. Our simulations indicate that for currently used JJ photon detectors,

the quantum efficiency is about 50% for the bias point ∆U/~ωp = 2 and about 85% for

∆U/~ωp = 1.7. We have finally investigated the probability to detect a photon in the

case of a multiphoton initial resonator state and have found that the detection efficiency

quickly approaches 100% as the initial number of photons increases, consistent with previous

studies [93, 91] of a continuous flux of photons incident on the detector.

We also considered alternative photon detection schemes and studied several issues that

are of importance for analyzing the efficiency of the detector based on such schemes. First,

we derived a condition to minimize the power reflected by the photon detector. We then

presented a rigorous method to accurately compute the power absorbed by the detector.
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Chapter 5

Effect of decoherence on the Berry

curvature

5.1 Introduction

Quantum computation based on geometric phases is another emerging paradigm that has

become increasingly popular due to its resilience against errors. Geometric phases emerge

naturally in quantum mechanics during the adiabatic evolution of the quantum mechanical

state for instance, the Berry phase [106]. Since the Berry phase depends on the evolution

path and not on the detailed dynamics, which suggests an inherent fault tolerance, it can

be a useful resource for quantum computation [107]. The past measurement technique

of the Berry phase in superconducting circuits was based on an interference experiment

wherein the drive parameter was changed adiabatically [29]. A recent approach towards

the detection of the Berry curvature (and hence the Berry phase) relies on the dynamical

response of the generalized force to quench velocity of the generalized displacement [30].

This approach is more feasible than previous approaches since it does not require a strict

adiabatic condition, which is hard to achieve in generic experimental settings. Although

quantum computation based on geometric phases is robust against error, the entanglement

of the qubit system with its environment makes it difficult to separate the geometric and
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dynamical contributions to quantum gates. Thus, it is necessary to analyze the behavior

of the Berry phase and curvature in the presence of decoherence. Here we present results

for the Berry curvature measurement in the presence of decoherence using density matrix

formalism within linear response theory. We also study the effect of the third level on the

measurement of the Berry curvature in phase or transmon qubits.

5.2 Berry phase and curvature

The Berry phase is defined as the phase accumulated by the wave function during the adi-

abatic evolution around a closed path in a parameter space defined by ~I(t). This geometric

phase γB can also be obtained by integrating the Berry connection ~A, which is analogous

to a vector potential in the parameter space, along a closed path P:

γB =

∮
P
~A · d~l , where (5.1)

~A = i
〈

Ψ(~I)|∇|Ψ(~I)
〉

and ∇ ≡ (∂Ix , ∂Iy , ∂Iz) . (5.2)

The curl of the Berry connection then gives the Berry curvature, which can be thought of

as a magnetic field in the parameter space:

Fµ ν = ∂µAν − ∂νAµ , where ∂µ ≡ ∂Ix, Iy , Iz . (5.3)

From the Stoke’s theorem, it then follows that the Berry phase is given by integrating the

Berry curvature over an area enclosed by the closed path, namely

γB =

∮
P
~A · d~l =

∫
S
Fµ ν dµ dν . (5.4)

One can also show that the Berry curvature is directly related to the geometric tensor χ, also

known as Fubini’s metric on quantum rays, which is often used to describe the manifolds

of adiabatically connected wave functions Ψ(~I) [108]:

χµ ν =
〈
∂µΨ(~I)

∣∣∂νΨ(~I)
〉
−
〈
∂µΨ(~I)

∣∣Ψ(~I)
〉〈

Ψ(~I)
∣∣∂νΨ(~I)

〉
. (5.5)
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It is straightforward to show that Fµ ν = −2 Imχµ ν . In this chapter we will only focus on

the Berry phase or curvature of the ground state Ψg of the system Hamiltonian Ĥ(~I), for

which the geometric tensor can be written as

χgµ ν =
∑
n6=g

〈
Ψg(~I)

∣∣∂µĤ∣∣Ψn(~I)
〉〈

Ψn(~I)
∣∣∂νĤ∣∣Ψg(~I)

〉
(Eg − En)2

. (5.6)

Here En is the energy eigenvalue of the nth eigenstate Ψn of the Hamiltonian Ĥ(~I). We

use this formula to compute the analytical Berry curvature for two-level and three-level

systems. We note that the drive field ~I(t) corresponds to the magnetic field in case of a

spin qubit and to the microwave drive in other solid-state charge qubits.

5.3 Berry curvature in a two-level system

The Hamiltonian of a spin-1/2 particle in the magnetic field ~I is given by :

Ĥ(t) = −~∆

2
~̂σ · ~I(t) , (5.7)

where ~I(t) = (Ix(t), Iy(t), Iz(t)) is a dimensionless field amplitude with Iz(t) ≡ 1 and Larmor

frequency ∆. For a non-zero magnetic field along the x-direction and a zero field along the

y-direction, we can write the Hamiltonian as

Ĥ(t) = −~∆

2

(
σ̂z + σ̂x Ix(t)

)
. (5.8)

The x-component of the magnetic field drive is set to 0 at t = 0, which is then ramped

quadratically with time while the y-component of the field is set to zero at all time, i.e.,

Ix(t) = 1/2 v2
x t

2 with Ix(T ) = 0.5 or any other value, and Iy(t) = 0. Here vx is the ramp

velocity of the x-component of the field at the end of the drive or sweep time T . This

quadratic protocol is slightly different from the linear quenching of the x-component of the

drive proposed in Ref. [30], where the quench velocity is held at a constant value. However,

for the quadratic protocol, the ramp velocity need not be held constant, a convenience that

makes this protocol more attractive experimentally.
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The response of the system to changing magnetic field drive in x-direction is obtained

by calculating the y-component of the magnetization (my =〈σy〉/2) for different ramp ve-

locities vx. Within the linear response regime, the slope of the curve my(vx) determines the

Berry curvature of the system [30]. The qubit is first prepared in the ground state of the

Hamiltonian H(t) at t = 0. Subsequently, the x-component of the drive is ramped quadrat-

ically with time. After time t = T , the y-component of the magnetization is computed from

the density matrix as my(T ) = Tr[σ̂ ρ̂(T )]/2 = Im ρ̂(T ).

Results

In order to calculate the magnetization, we first need to compute the time evolution of

density matrix of the qubit. First, we consider the evolution of the system in the absence

of environment and study the effect of decoherence later. The density matrix equation in

this case is simply:

dρ̂(t)

dt
=

1

i ~

[
Ĥ(t), ρ̂(t)

]
. (5.9)

We perform a transformation (rotation) of the two level system that follows the eigenstate

basis, which we refer to as “adiabatic frame”. When the field is in x−z plane, we can write

the unitary transformation as

ĤU (t) = U(t) Ĥ(t) Û†(t)− i~ Û(t)
d Û†(t)
dt

, where Û(t) = exp[i θ(t) σ̂y/2] , (5.10)

and θ(t) = arctan(Ix(t)/Iz) is the angle formed by the the x-component of the drive with

respect to the z-direction. In this basis, the Hamiltonian ĤU is given by

ĤU (t) = −~∆

2
I(t) σ̂z + N̂ (t) , where

N̂ (t) ≡ −~∆

2
θ̇(t) σ̂y = −~∆

2

(
Iz

(I2
z + I2

x(t))

dIx(t)

dt
σy

)
. (5.11)

The form of the equation of motion of the density matrix in the adiabatic frame remains

unchanged and is given by

dρ̂U (t)

dt
=

1

i~

[
ĤU (t) , ρ̂U (t)

]
. (5.12)
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Due to non-linear time-dependent nature of the rotation operator Û , the Hamiltonian picks

up an additional term N̂ (t) in the adiabatic frame. This term is negligibly small only in

the adiabatic limit, that is, when θ̇ � I(t). From this new expression for the Hamiltonian,

it is easy to see that the y-component of the magnetization is given by

〈σ̂y(t)〉 ≡ Tr
[
ρ̂U (t) σ̂y

]
=

[
Iz

2 I3(t)

]
dIx(t)

dt
, (5.13)

and the Berry curvature Fx y is given by the quantity inside the bracket evaluated at the

end of the drive time T , i.e., Fx y = Iz/2I
3(T ).

We now proceed to calculate the Berry phase by integrating the Berry curvature evalu-

ated at each point on a circular disk of radius Iρ(t) located Iz above the x− y plane in the

parameter space defined by ~I(t):

γB =

∫
s
Fx y dx dy =

∫ 2π

0
dφ

∫ Iρ(t)

0
dη

η Iz

2 (I2
z + η2(t))3/2

= π

(
1− Iz

I(t)

)
, (5.14)

where Iρ(t) is the radial component of the field, that is, Iρ(t) =
√
I2
x(t) + I2

y (t). This expres-

sion for the Berry phase is identical to a well known expression obtained from the adiabatic

measurement protocol [29, 109, 110], that is, γB = π(1 − cos(α)), where α is the angle

between ~I(t) and the z-axis in the parameter space and is given by α = tan−1(Iρ(t)/Iz).

Hence, γB can be viewed as the solid angle subtended by the circular disk of radius Iρ at

the origin in the parameter space.

The Berry curvature measurement discussed above requires measurement of the magne-

tization in the y-direction. However, experimentally, it is much more convenient to measure

the expectation value of 〈σ̂z〉. Therefore, we also consider the Berry curvature measure-

ment by first measuring the 〈σ̂z〉. In order to achieve this, we let the qubit or spin to freely

precess for time τ in the presence of a constant magnetic field by turning off the velocity.

We then measure the difference between the maximum and minimum values of 〈σ̂z(τ)〉 for

each ramp velocity and extract the Berry curvature. We find that the following relation

holds true:

δ〈σ̂z〉 ≡
1

2

[
max(〈σ̂z(τ)〉)−min(〈σ̂z(τ)〉)

]
=

sin θ Iz
2 I3(t)

dIx(t)

dt
. (5.15)
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Figure 5.1: The left panel is a free precession of 〈σ̂z〉 for two different ramp velocities:
vx = 0.00314 ns−1 (top) and vx = 0.0974 ns−1 (bottom). The right panel is the difference
between the maximum and minimum of 〈σ̂z(τ)〉 vs. the ramp velocity vx of a quadratic
drive with detuning ∆/2π = 100 MHz: analytical result without decoherence (red solid
line), and a full numerical solution (blue solid line) of the density matrix equation without
decoherence.

On the left panel of Fig. 5.1, we plot the time evolution of 〈σ̂z(τ)〉 for various ramp veloc-

ities. On the right panel, we plot the difference between the maximum and minimum of

those oscillations and find excellent agreement between the numerical and analytical results.

Using Eq. 5.15, the Berry curvature can then be extracted from the slope of this line.

Decoherence

Next we consider the effect of decoherence on the Berry curvature. We can naturally

introduce pure dephasing and relaxation mechanisms with the Lindblad superoperator in

the eigenbasis frame where the system Hamiltonian is diagonal. The adiabatic frame is

not suitable for this purpose since the Hamiltonian ĤU in this frame is not truly diagonal.

We note that the adiabatic frame would be a true eigenbasis frame if θ̇ � I(t). However,

this is not applicable in our case where θ̇/I(t) . 1. Therefore, we perform an additional

transformation such that the final Hamiltonian is truly diagonal or approximately diagonal

with error roughly O
((

θ̇(t)
I(t)

)2)
or O

(
θ̈(t)

)
, which we assume to be negligibly small. The
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unitary transformation is given by:

ĤD(t) = D̂(t) ĤU (t) D̂†(t)− i~ D̂(t)
d D̂†(t)
dt

, where D̂(t) = exp[−i β(t) σ̂x/2] , (5.16)

and β(t) = arctan(θ̇(t)/I(t)) is the angle of the x-component of the drive with respect to the

z-direction in the adiabatic frame. After the transformation, the Hamiltonian ĤD becomes

ĤD(t) = −~∆

2

√
I2(t) + θ̇2(t) σ̂z + Q̂(t) , (5.17)

where the “drag term” Q̂(t) is given by

Q̂(t) ≡ ~∆

2
β̇(t) σ̂x and β̇(t) =

[
Iz I(t) ∂

2Ix(t)
∂t2

− Iz
(
∂Ix(t)
∂t

)2]
[
I2(t) + I2

z

(
∂Ix(t)
∂t

)2] . (5.18)

Due to non-linear time-dependent nature of the rotation operator D̂(t), the Hamiltonian

picks up an additional term Q̂(t), which is negligibly small. However, for the sake of clarity,

we choose the following sinusoidal drive

Ix(t) = I sin(θ(t)) and Iz(t) = I cos(θ(t)) (5.19)

for which the rotation operator D̂ is truly time independent:

D̂ = exp
[
− i arctan(Ω/I)σx/2

]
. (5.20)

Here θ = Ω t and I is the amplitude of the sinusoidal drive, which, unlike in the case

of a quadratic drive, is time-independent. Consequently, β̇(t) = 0 and the Hamiltonian

becomes truly diagonal. In the eigenbasis frame, the evolution of the density matrix of the

qubit coupled to its environment is governed by the following master equation, which is

characterized by a phenomenological decay rate γ (T1 = 1/γ) and a pure dephasing rate γφ

(Tφ = 1/γφ) for the qubit:

dρ̂D(t)

dt
=

1

i~

[
ĤD(t) , ρ̂D(t)

]
+ L̂γ [ρ̂D(t)] + L̂γφ [ρ̂D(t)] , where

L̂γ [ρ̂D(t)] = γ

(
σ̂−ρ̂

Dσ̂+ −
1

2
{σ̂+σ̂−, ρ̂

D}
)

and

L̂γφ [ρ̂D(t)] = γφ

(
Π̂0 ρ̂

D Π̂†0 −
1

2
{Π̂†0 Π̂0, ρ̂

D}
)
,with Π̂0 = |0〉〈0| . (5.21)
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Figure 5.2: Magnetization 〈σ̂Dy (t)〉 in the eigenbasis frame vs. drive time (t) for a sinusoidal

drive with detuning ∆/2π = 100 MHz and amplitude I =
√

2: analytical magnetization at
the end of the drive time T in the absence of decoherence (red solid line) and a full numerical
solution (blue solid line) of the density matrix equation in the presence of decoherence with
rates γ = 1× 107 s−1 and γφ = 1× 108 s−1. Here three panels correspond to three different
drive velocities Ω = 0.00314 ns−1 (top), 0.053407 ns−1 (middle), and 0.8513 ns−1 (bottom).

We fist investigate the dynamics of the magnetization for several decoherence parameters.

The y-component of the magnetization in the eigenbasis frame is given by

〈σ̂Dy (t)〉 ≡ Tr
[
ρ̂D(t) D̂ σ̂y D̂

]
(5.22)

In Fig. 5.2, we plot the y-component of the magnetization in the eigenbasis frame as a

function of time for three different velocities of the sinusoidal drive. Here we choose the

amplitude of the drive to be I =
√

2 and the angle between the x-component of the drive

at the end of the drive and z-axis to be θ(T ) = π/4. For our choice of pure dephasing

and relaxation times of 10 ns and 100 ns, respectively, we observe rapid oscillations in

magnetization at timescales shorter than the pure dephasing time. Dephasing essentially
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Figure 5.3: Magnetization 〈σ̂Dy (T )〉 in the eigenbasis frame vs. the angular velocity Ω of a

sinusoidal drive with detuning ∆/2π = 100 MHz and amplitude I =
√

2: analytical result at
the end of the drive time T in the absence of decoherence (red solid line) and a full numerical
solution (blue solid line) of the density matrix equation in the presence of decoherence with
rates γ = 1× 107 s−1 and γφ = 1× 108 s−1. The plot in the inset is of the y-component of
the magnetization in the absence of decoherence.

suppresses these oscillations as time progresses while the relaxation forces the spin to return

to the ground state.

Next, we plot the y-component of the magnetization vs. the drive velocity of a sinu-

soidal drive in the eigenbasis frame, as shown in Fig. 5.3. Our numerical result indicates

that decoherence has negligible effect on the magnetization and hence the Berry curvature.

The inset in Fig. 5.3 displays the y-component of the magnetization in the absence of de-

coherence. Here we find that the response is not linear with respect to the drive velocity.

Thus, we conclude that decoherence is essential for the linear response of the magnetization

to the drive velocity, at least for a sinusoidal drive.

The effect of decoherence on the adiabatic response of a driven open quantum system was
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also previously studied by Avron et. al. [111]. They considered the effect of pure dephasing

on the Berry curvature in the adiabatic limit assuming that instantaneous stationary states

move continuously with the control parameter. With this assumption, they introduced the

Lindblad superoperator to take into account pure dephasing of the quantum system in the

adiabatic frame. However, it is important to note that the system Hamiltonian is not truly

diagonal in this frame. Nevertheless, it is possible to derive their result if we look for a

steady state solution of the density matrix in the adiabatic frame, in the following form:

ρ̂(t) = ρ̂0 + δρ̂(t) , where

ρ̂0 =
1

2
(1− σ̂z) and

δρ̂(t) = A(t) σ̂z +B(t) σ̂y + C(t) σ̂z . (5.23)

Here A,B and C are unknown coefficients whose first time derivatives are zero. In order

to simplify notations, here we dropped the superscript U and chose to use simply ρ̂ to

represent the density matrix in the adiabatic frame. We then plug the above ansatz into

the master equation and compare coefficients to obtain the following set of equations:

θ̇

2
−Aγφ −

Aγ

2
+ ~∆I(t)B − C θ̇ = 0

−~∆I(t)A−Bγφ −
Bγ

2
= 0

Aθ̇ − γ(C − 1) = 0 . (5.24)

We solve these equations for B and obtain the y-component of the magnetization:

〈σ̂y〉 ≡ Tr[ρ̂(t) σ̂y] =

{
∆2 I2(t)

[∆2 I2(t) + (γ/2 + γφ)2]

Iz
2 I3(t)

}
dIx(t)

dt
. (5.25)

From this, we can easily read off the Berry curvature, which is given by the quantity inside

the curly bracket in the above expression. We find that the correction due to the decoherence

on the Berry curvature of an ideal system is given by ∆2 I2(t)/[∆2 I2(t) + (γ/2 + γφ)2] ,

which is consistent with the result derived in Ref. [111] that used a different approach and

only considered the effect of pure dephasing.

In Fig. 5.4, we plot the y-component of the magnetization for different ramp velocities

of a quadratic drive Ix(t) = v2
x t

2/2. We find excellent agreement between numerical and
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Figure 5.4: Magnetization 〈σ̂y(T )〉 vs. the ramp velocity vx of a quadratic drive with
detuning ∆/2π = 100 MHz: analytical result in the absence of decoherence (red solid line),
analytical result with the relaxation rate γ = 1 GHz and the pure dephasing rate γφ = 1
GHz (black dashed line), and a full numerical solution (blue solid line) of the density matrix
equation in the presence of decoherence.

analytical results in the presence of decoherence. Nonetheless, we believe that the effect of

decoherence can be accurately described in the eigenbasis frame [112], where we discovered

that decoherence does not hinder the curvature measurement, but instead assists in the

linear response of the magnetization, in particular for the sinusoidal drive.

5.4 Berry curvature in superconducting qubits

In this section, we consider the Berry curvature measurement in superconducting qubits. In

real qubits like phase or transmon, the presence of the third level cannot be ignored and its

effect on the measurement of the Berry curvature should be carefully studied. Nonetheless,

the results presented in the previous section is also applicable to a three-level system with
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anharmonicity much larger than detuning. For definiteness, here we only consider a phase

qubit. The Hamiltonian of a flux-biased phase qubit Ĥq is written in terms of operators Q̂

and δ̂, the charge and phase difference of the JJ, respectively:

Ĥq =
Q̂2

2C
+

1

2L

(
Φb −

Φ0

2π
δ̂

)2

− I0Φ0

2π
cos δ̂ , (5.26)

where L (C) is loop inductance (junction capacitance), Φb is the external magnetic flux

applied to the phase qubit, I0 is the critical current of the JJ, and Φ0 = h/2e is the flux

quantum. The qubit is capacitively coupled to a microwave current source, which is used to

drive the qubit. This coupling introduces a time-dependent part in the qubit Hamiltonian:

P̂ (t) =
Φ0I(t)

2π
δ̂ . (5.27)

Here I(t) = Ix(t) cosωdt + Iy(t) sinωdt is the microwave current with frequency ωd. Total

Hamiltonian of the driven qubit is then given by Ĥ(t) = Ĥq + P̂ (t). We truncate the qubit

Hamiltonian Eq. 5.26, along with the time-dependent term Eq. 5.27, to three localized levels

and obtain the following Hamiltonian:

Ĥ(t) = ~
2∑
j=1

[
ωj−1Π̂j + a(t)λj σ̂

+
j + a(t)∗λj σ̂

−
j

]
+ Ĥnr , (5.28)

where Π̂j = |j〉〈j| is the projector for the jth level, σ̂+
j = |j〉〈j − 1| is the raising operator,

a(t) = (Ix(t) − iIy(t))eiωdt/2 is the amplitude of microwave drive, λj = Φ0〈j|δ̂|j − 1〉/2π~

is the matrix element of the phase operator, ωj = (εj+1 − ε0)/~, εj is an energy eigenvalue

of time-independent Hamiltonian and Ĥnr contains non-resonant terms, which we neglect.

We transform the Hamiltonian Eq. 5.28 to a frame rotating with frequency ωd with

respect to the laboratory frame and obtain:

ĤR(t) = ~
2∑
j=1

[
∆jΠ̂j +

Ix(t)

2
λj σ̂

x
j−1,j +

Iy(t)

2
λj σ̂

y
j−1,j

]
, (5.29)

where detuning ∆1 = ∆ = ω0 − ωd, ∆2 = δan + 2 ∆, and the anharmonicity parameter

δan ≡ ω1 − 2ω0. We define operators σ̂xj,k = |k〉〈j|+ |j〉〈k| and σ̂yj,k = i|k〉〈j| − i|j〉〈k|.

We consider a setup where the drive current Ix(t) increases quadratically with time.

Here Ix(t) = v2
x t

2/2 and we require that Ix(T ) = 0.5. The y-quadrature drive Iy(t) is set

to zero at all times.
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Figure 5.5: The difference between the maximum and minimum of 〈σ̂z(τ)〉 vs. the ramp ve-
locity vx of a quadratic drive with detuning ∆/2π = 100 MHz and anharmonicity δan/2π =
200 MHz (left panel) and 1000 MHz (right panel). The solid blue line is the result obtained
for a three-level system from a full numerical solution of the density matrix equation, the
solid red line is the analytical result for a strictly three-level system, and the black dashed
line on the left panel and black circles on the right panel correspond to the analytical result
for a strictly two-level system.

Results

For a three-level system, it is convenient experimentally to perform a direct measurement of

〈σ̂z〉 instead of the y-component of the magnetization, in part due to difficulty in performing

π/2-rotation in the presence of the third level. For the sake of simplicity, we do not consider

decoherence and focus on the effect of the third level on the Berry curvature measurement.

In Fig. 5.5, we plot the result obtained from 〈σ̂z〉 measurement as a function of ramp ve-

locities for two different anharmonicities. For comparison, we also plot the Berry curvature

obtained analytically for strictly two- and three-level systems. We find that as we increase

the anharmonicity δan, all three plots coincide, as expected. However, for anharmonicity

close to that of a transmon qubit, δan/2π = 200 MHz, we find a few percentage difference

between the result obtained from a full numerical simulation that takes the third level into

account and that of analytical results for a strictly two- or three-level system.
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5.5 Discussion

We have presented both theoretical and numerical analysis of the effect of decoherence on the

measurement of the Berry curvature in superconducting qubits. We find that decoherence

forces magnetization to respond linearly to the drive velocity in case of linear drives, thereby

assisting in the Berry curvature measurement. In addition, we presented a formula for the

correction due to dephasing and relaxation to the Berry curvature in a two-level system

in the adiabatic frame. This result is consistent with previous studies of the effect of pure

dephasing on the curvature. However, we clarified that the adiabatic frame is not well

suited for studying the effect of decoherence on the curvature. Furthermore, we studied the

effect of the third level on the Berry curvature measurement in phase or transmon qubits,

which are attractive candidates for experimental measurement of the Berry curvature.
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Chapter 6

Qubit relaxation from

evanescent-wave Johnson noise:

Dipole approximation

6.1 Introduction

So far in this thesis, we considered a phenomenological model of the noises and studied

their effect on fidelity of control and measurement in superconducting qubit devices. In

this chapter, we turn our attention to microscopic description of one of such noises that can

be a cause of concern in semiconducting qubit devices.

Semiconducting quantum dots are promising candidates for scalable quantum informa-

tion processing. Quantum dots are realized in a variety of experimental setups, including

a Si and GaAs two-dimensional electron gas [113, 114, 115], semiconductor nanowires [116]

and carbon nanotubes [117]. Several experiments performed on laterally coupled double

quantum dots (DQDs) have demonstrated precise and rapid control of the coupling be-

tween electronic charge states and coherent manipulation of trapped electrons, leading to

realization of a DQD as a qubit.

A schematic of the cross-section of such an architecture is shown in Fig. 6.1. These de-
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vices are fabricated from heterostructures of GaAs and AlGaAs grown by molecular beam

epitaxy. Free electrons are introduced by doping the AlGaAs layer with Si, which accumu-

late at the GaAs/AlGaAs interface, deep down in the minimum of the vertical potential,

that provides strong confinement of the electrons along the growth direction. However,

these electrons are free to move along the interface, where they form a two dimensional

electron gas (2DEG) and can have a high mobility due to a relatively low electron density.

The quantum dots are then defined by etching through the 2DEG or by depositing metallic

gates on top of the heterostructure. Applying a negative voltage on these gates will deplete

the 2DEG below them, leading to electron confinement in a desired location.

In almost all of these implementations, confinement and manipulation of an electron in

a quantum dot is achieved by applying an electrostatic potential through metallic gates.

While the metallic gates are crucial for qubit control, they can also act as a source of

decoherence during qubit operations. This creates a control – isolation dilemma: connec-

tions from the outside world are what make the devices useful, but they are also sources of

decoherence.

Several other decoherence mechanisms, such as hyperfine coupling of the trapped elec-

tron spin to host lattice nuclear spins in spin-based qubits [118] and electron coupling to

phonon modes [119, 120, 50] in charge-based qubits, have been previously studied in an effort

to identify the major source of decoherence in semiconductor qubits. A more recent study

investigated decoherence due to voltage fluctuations in the metallic gates using the lumped

circuit model of a DQD charge qubit [51]. In almost all of these studies, [119, 120, 50, 51]

the estimated energy relaxation rate is at least an order of magnitude smaller than the rate

observed experimentally [114, 113], suggesting that a different decoherence mechanism is

dominant in current experimental setups for charge qubits.

The relaxation of a charge or spin qubit can also be induced by the thermal and quantum

fluctuations of electromagnetic fields. The fluctuations of the electromagnetic fields are

greatly enhanced in the vicinity of conductors because of the evanescent waves [121, 122,

123, 124, 125, 126]. An illustration of the concept is shown in Fig. 6.2. This evanescent-wave
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Figure 6.1: Schematic of the cross-section of a quantum dot architecture with surface
metallic gates (green) and back gates (blue). Figure courtesy of Prof. Mark Eriksson’s
group.

Johnson noise (EWJN) has been shown, both theoretically [127] and experimentally [128],

to be an important source of decoherence for atomic qubits near the metallic walls of a

trap. In this work we investigate the effects of metallic device elements in solid-state qubit

architectures. Similar investigations have been carried out previously using lumped –circuit

calculations of Johnson noise [59, 129, 51]. Here we do the noise calculations taking into

account the detailed spatial dependence of the fields and the important effects of non-local

corrections to the electromagnetic response functions [130, 131].We focus particularly on

situations likely to be of interest to experimenters, such as an electron in a quantum dot

close to a gate electrode.

We pause here to mention that the EWJN originates from properties of the metal near

its surface. The expressions for the electromagnetic field fluctuations presented in this paper

are for a conducting half space. However, our treatment can be extended to calculate the

strength of EWJN in the vicinity of a conducting slab of finite thickness. In this case, the

electromagnetic fluctuations are independent of the thickness of the slab as long as this

thickness is significantly larger than the skin depth of the metal. As such, we anticipate

that EWJN may be alternatively interpreted as arising from overdamped surface plasmon

excitations which exist within a skin depth of the surface of the metal [126].
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Figure 6.2: An illustration of evanescent-waves leaking outside of a conducting surface.
This figure is adapted from Ref. [124].

6.2 Formalism

The interaction Hamiltonian between the fluctuating electric and magnetic fields and charge

or spin qubits within the dipole approximation, which we will assume throughout this

chapter, is given by :

Hint = −~d · ~E(~r, t) , (charge qubit) (6.1)

Hint = −~µ · ~B(~r, t) , (spin qubit) , (6.2)

where ~d and ~µ are electric and magnetic dipole moments, respectively. To describe the

decoherence of qubits resulting from the evanescent electromagnetic fields surrounding a

conducting gate, it is necessary to compute spectral densities Sij of the electric and magnetic
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field fluctuations, which are obtained from the cross-correlation tensor for the fields:

SEij (~r, ~r
′, ω) ≡ 1

2

∫ ∞
0

eiωτ
〈
{Ei (~r, τ) , Ej

(
~r ′, 0

)
}
〉
dτ (6.3)

SBij (~r, ~r
′, ω) ≡ 1

2

∫ ∞
0

eiωτ
〈
{Bi (~r, τ) , Bj

(
~r ′, 0

)
}
〉
dτ (6.4)

Fermi’s golden rule imply that the relaxation rate 1/T1,c,s of a (charge or spin, respectively)

qubit transition of a particular frequency will be proportional to the spectral densities

at that frequency, evaluated at coincident spatial arguments ~r = ~r ′ (within the dipole

approximation):

1

T1,c
=
d2

~2
SEii (~r, ~r, ω) (6.5)

1

T1,s
=
µ2

~2
SBii (~r, ~r, ω) (6.6)

These spectral densities are connected to the electric and magnetic susceptibilities or re-

sponse functions

χEij(~r, ~r
′, ω) ≡ i

~

∫ ∞
−∞

θ(τ) eiωτ
〈
[Ei (~r, τ) , Ej

(
~r ′, 0

)
]
〉
dτ (6.7)

χBij(~r, ~r
′, ω) ≡ i

~

∫ ∞
−∞

θ(τ) eiωτ
〈
[Bi (~r, τ) , Bj

(
~r ′, 0

)
]
〉
dτ (6.8)

by fluctuation dissipation theorem [132]:

SE,Bij (~r, ~r′, ω) = ~ coth
( ~ω

2kBT

)
ImχE,Bij (~r, ~r′, ω) . (6.9)

As a result, the relaxation time T1,c of a charge qubit with dipole moment ~d pointing in the

ith direction at position ~r and level separation ω will be given by

1

T1,c
=
d2

~
ImχEii (~r, ~r, ω) (1 +N(ω, T )) , (6.10)

and T1,s of a spin qubit with magnetic dipole moment ~µ in the ith direction at position ~r

and level separation ω will be given by

1

T1,s
=
µ2

~
ImχBii (~r, ~r, ω) (1 +N(ω, T )) , (6.11)

where N(ω, T ) = 1/[exp(~ω/kB T ) − 1] is the Planck’s function. We deal first with fields

that have been averaged over distances of the order of aatomic and lmean, where aatomic



75

is an interatomic distance and lmean is the mean free path in the metal. As a result the

dielectric function ε(~r, ω) may be treated as a local function of space. This approximation

breaks down in the near vicinity of the conducting surface, and the influence of a nonlocal

dielectric response on the electric and magnetic field fluctuations is addressed below. The

conducting electrodes in semiconductor qubit architectures are commonly constructed of

copper. Therefore, all numerical results presented here use the electronic properties of

copper near 0K. In this case, a local dielectric function may be used for distances much

larger than the Fermi wavelength λF =
√

4π2~2/mEF ≈ 0.4 nm. We work in a gauge

where the scalar potential φ = 0, so that for harmonic fields we have ~Eω = iω ~Aω.

The electric and magnetic susceptibilities can be shown [133, 126] to be directly related

to the equilibrium retarded photon Green’s function by the relations

χEij(~r, ~r
′, ω) =

ω2

ε0c2
Dij

(
~r, ~r ′, ω

)
(6.12a)

χBij(~r, ~r
′, ω) =

1

ε0c2
εikmεjnp∂k∂nDmp

(
~r, ~r ′, ω

)
(6.12b)

where i, j are Cartesian indices that run over x, y, z, and Dij satisfies[
−δij

(
∇2 +

ω2ε (~r, ω)

c2

)
+ ∂i∂j

]
Dik

(
~r, ~r ′

)
= δ3

(
~r − ~r ′

)
δjk . (6.13)

The geometry of a particular problem is expressed through the function ε (~r, ω). Eqs. 6.10

and 6.11 assume the charge or spin qubit can be adequately approximated as a point dipole.

The effect of a qubit with an extended spatial distribution will be considered in future work.

The task of computing Dij in a particular geometry is, in general, a complicated problem

in electrodynamics. In this chapter, we shall limit ourselves to the situation where the

separation of the qubit from the metal surface is much less than any radius of curvature of

the surface so that the surface can be thought of as flat.

Let z be the distance from the surface. The result for the spectral density of the electric

field for local electrodynamics has been obtained by Henkel et. al [127]:

χExx(z, z, ω) =
1

8πε0
Re

∫ ∞
0

pdp

q
e2iqz

(
ω2

c2
rs(p)− q2rp(p)

)
, (6.14a)
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χEzz(z, z, ω) =
1

4πε0
Re

∫ ∞
0

p3

q
dpe2iqzrp(p) , (6.14b)

where q =
√
ω2/c2 − p2 for p2 ≤ ω2/c2 and q = i

√
p2 − ω2/c2 for p2 > ω2/c2 is the z-

component of the wavevector, and p is the transverse component. Our notation follows

that of Ford and Weber [130].

rs (p) =
q −

√
ω2ε/c2 − p2

q +
√
ω2ε/c2 − p2

(6.15a)

and

rp (p) =
εq −

√
ω2ε/c2 − p2

εq +
√
ω2ε/c2 − p2

(6.15b)

are the Fresnel reflection coefficients. The corresponding expressions for the spectral den-

sities of the magnetic field are identical to Eqs. 6.14 if we multiply by 1/c2 and make the

replacement rs ↔ rp.

We are interested in separations that are sufficiently small so that retardation, and hence,

radiation of the electromagnetic field may be neglected. This is known as the quasistatic

approximation, and it is formally employed by taking the limit c→∞. This results in the

greatly simplified expressions

χEzz(z, z, ω) = 2χExx(z, z, ω) =
1

16πε0z3
Im

ε− 1

ε+ 1
, (6.16a)

χBzz(z, z, ω) = 2χBxx(z, z, ω) =
ω2

16πε0c4z
Im(ε− 1) . (6.16b)

Employing this approximation has eliminated the functional difference between the

transverse and longitudinal components of the field fluctuations. The quasistatic expres-

sions differ from the exact values by less than 1% when z < δ/10, where δ is the skin depth

of the metal. For copper near absolute zero, δ ∼ 3µm. Eqs. 6.16 diverge as z → 0, but

this divergence is not physical: it is an artifact of treating the dielectric function as local

at distances comparable to the interatomic spacing. In any differential equation satisfied

by the spatial Fourier components of Dij , a local dielectric function will be independent

of the wavevector while a nonlocal one will have a nontrivial wavevector dependence. It is

conventional to represent the spatial Fourier components of the nonlocal dielectric function
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as a tensor quantity in the form

εij(~k, ω) = εl(k, ω)
kikj
k2

+ εt(k, ω)

(
δij −

kikj
k2

)
, (6.17)

where we have separated the function into its longitudinal εl and transverse εt components.

Nonlocality in the dielectric function changes the reflection coefficients. In the qua-

sistatic approximation rp is [130]

rp =

1− 2p

π

∫ ∞
0

dκ
1

k2εl(k, ω)

1 +
2p

π

∫ ∞
0

dκ
1

k2εl(k, ω)

(6.18a)

and rs becomes

rs =
2ic2

πω

∫∞
0 dκ/{εt(k, ω)− c2 k2/ω2} − ω/q

2ic2

πω

∫∞
0 dκ/{εt(k, ω)− c2 k2/ω2} − ω/q

. (6.18b)

Here k2 = p2 + κ2,

εl(k, ω) = 1 +
3ω2

p

k2v2
F

(ω + iν)fl((ω + iν)/kvF )

ω + iνfl((ω + iν)/kvF )
(6.19a)

εt(k, ω) = 1−
ω2
p

ω(ω + iν)
ft((ω + iν)/kvF ) (6.19b)

fl(x) = 1− x

2
ln(x+ 1)/(x− 1) (6.20a)

ft(x) =
3

2
x2 − 3

2
x(x2 − 1) ln(x+ 1)/(x− 1), (6.20b)

ν is the electron collision frequency, ωp = (ne2/mε0)1/2 is the plasma frequency, and vF is

the Fermi velocity.

Although Eqs. 6.14 are derived assuming locality, it is a convenient fact [130] that these

equations are also valid in the nonlocal regime, as long as the nonlocal form of the Fresnel

coefficients Eqs. 6.18 are used.

6.3 Results

In Fig. 6.3, we present the zero-temperature results for the relaxation time T1 from EWJN

for a qubit with an electric dipole moment of magnitude |e|aB, where aB is the Bohr radius.
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Figure 6.3: Plot of the T1 time of a charge qubit computed from Eq. (1) using the local
approximation (dashed blue) and the full nonlocal theory (solid red). We used the values
EF = 7 eV, ω = 6π × 108 s−1, ν = π × 1013 s−1, and ωp = 1.6 × 1016 s−1, appropriate for
a copper surface and a device operating in the GHz range. The dipole moment is taken as
d = |e|aB, where |e| is minus the charge on the electron and aB is the Bohr radius. These
results are for zero temperature. The dashed horizontal line in the left figure represents the
strength of the electric field fluctuations inside the bulk of a uniform metal.

Both the local and nonlocal results are shown. It is seen that the correct nonlocal dielectric

function eliminates the unphysical divergence of 1/T1 at z = 0. For separations z ∼ λF , the

differences are very significant, while for z > lmean = vF /ν ≈ 200λF , the local and nonlocal

results nearly coincide. It is interesting to note that for the electric field fluctuations there

is a crossover region where the nonlocal result becomes larger than the local result in the

range λF < z < lmean (see Fig. 6.3), in alignment with the results of Volokitin et. al [125]

who showed an enhancement of the nonlocal result above the local result. We see that at

T = 0 and GHz operations, T1 from spontaneous emission is of the order of seconds at

separations z ∼ 30λF . These results are directly applicable to atomic qubits, but the rate

1/T1 is proportional to the square of the dipole moment, so rates for other charge qubits

are easily deduced.
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Figure 6.4: Plot of the T1 time vs. frequency ω of a charge qubit computed from Eq. (1)
at different temperatures (solid red at 0 K and dashed red at 25 mK) at fixed z = 30λF .
EF = 7 eV, ν = π × 1013 s−1, ωp = 1.6× 1016 s−1, and d = |e|aB, as in Fig. 6.3.

Fig. 6.4 shows that T1 falls off slowly at higher frequencies. The divergence of T1 as

ω → 0 is removed by including a small finite temperature. Fig. 6.4 is plotted using the

non-local expression for the z-component of the field fluctuations.

Fig. 6.5 gives the analogous results for magnetic EWJN on a spin qubit with a mag-

netic dipole moment of 1 Bohr magneton. Nonlocal corrections are somewhat stronger for

this case, and persist to larger distances. Interestingly, the falloff with distance of T1 is

slower for magnetic EWJN than for electric EWJN. However, magnetic relaxation times

are typically somewhat larger than electric relaxation times. The crossover of the local

and nonlocal results is not present in the magnetic case. Fig. 6.6 shows that the frequency

and temperature dependence of magnetic EWJN is similar to the electric EWJN shown in

Fig. 6.4. Brief mention should be made of the dip that is observed as ω → 0 in Fig. 6.6.

The reflection coefficients rs contribute to the magnetic field fluctuations. This contrasts

with the electric case, where only rp contributes to leading order in ω/c. The dip is a result
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Figure 6.5: Plot of T1 time for a spin qubit at zero temperature computed from Eq. (2) in
the local approximation (dashed blue) and the full nonlocal theory (solid red). EF = 7 eV,
ω = 6π×108 s−1, ν = π×1013 s−1, and ωp = 1.6×1016 s−1, appropriate for a copper surface
and a device operating in the GHz range. We have taken µ = gµB, appropriate for a single
electron, where the gyrometric factor of an electron g ≈ 2. The rate 1/T1 is proportional to
the square of µ, so rates for other local magnetic qubits can be easily deduced. The dashed
horizontal line in the left figure represents the strength of the magnetic field fluctuations
inside the bulk of a uniform metal.

of the contributions of rs to the field fluctuations. The rs term in χBii is linear in ω as ω → 0

and negative, while the rp term is cubic in ω as ω → 0 and positive. We should also mention

that for extremely small ω the factor of N(ω, T ) cancels out the linear ω dependence and

the dip flattens out as ω → 0 (not observable in the resolution of Fig. 6.6).

The limit of the nonlocal quasistatic field fluctuations as z → 0 should be of the same

order of magnitude as the value of these fluctuations inside the metal. To check this, we

calculate the electromagnetic Green’s function inside the bulk of a uniform metal using a

nonlocal dielectric function. The result is

Dij(~k, ω) =
1

ω2εt/c2 − k2

(
δij −

c2kikj
ω2εl

+
kikj
k2εl

(εt − εl)
)

(6.21)
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Figure 6.6: Plot of the T1 time vs. frequency of spin qubit computed at different tem-
peratures (solid red at 0 K and dashed red at 25 mK) at fixed z = 30λF . EF = 7 eV,
ν = π× 1013 s−1, and ωp = 1.6× 1016 s−1, appropriate for a copper surface. µ = gµB as in
Fig. 6.5.

Dij(~r − ~r ′, ω) =
1

(2π)3

∫
d3~kei

~k·(~r−~r ′)Dij(~k, ω) (6.22)

Numerical evaluation of Eq. 6.22 when ~r = ~r ′ gives (imaginary parts) Dxx = Dzz ∼

3 × 1019 m−1. An evaluation of the Green’s function outside the metal in the nonlocal

quasistatic regime for z → 0 gives (imaginary part) Dxx ∼ 1.25 × 1019 m−1 and Dzz ∼

2.47× 1019 m−1, slightly less than in the bulk of a uniform metal, as expected.

We see that there are three relevant distance regimes. For z < λF , a quasistatic approx-

imation to Henkel’s results 6.14 using the nonlocal expressions for rs and rp will accurately

describe the field fluctuations. For intermediate distances λF < z < lmean, there is a sig-

nificant enhancement in the electric field fluctuations of the nonlocal expression compared

to the local expression. For distances lmean < z < 10 δ, local forms Eq. 6.14 will accurately

describe the field fluctuations, while for z >> δ, retardation effects must also be taken into

account.
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Comparison of our results with experimental measurements of T1 times for spin relax-

ation in single-electron quantum dots supports the notion that relaxation from EWJN may

sometimes constitute the dominant relaxation mechanism in present semiconductor qubit

architectures. In particular, we reference the low B saturation of T1 for a single electron in

Fig. 6.6(d) of [134] by Xiao et. al. In their measurements, T1 saturates to ∼ 40 ms. Plug-

ging their values of z = 50 nm and ~ω = 0.4 meV into Eq. 6.16b gives a value of T1 ∼ 15

ms. That our expression gives a shorter relaxation time than what was measured can be

understood because we assume the gates constitute a conducting half-space, rather than

the more sparse gate geometry used in [134]. It is also instructive to compare our results

with the measurements of Elzerman et al. in [135]. They measured a T1 of 0.55 ms at a

magnetic field of 10T . Using their values of z = 90 nm and ~ω = 0.2 meV, our results

predict T1 ∼ 1 s. EWJN is clearly not the dominant relaxation mechanism in this situation.

Through a perusal of the literature, we have found generally that EWJN is insufficient to

describe the spin relaxation rate in experiments with a high external magnetic field.

6.4 Discussion

The density of photon states in a metal is very high owing to the large polarizability.

For blackbody radiation, this high density of states does not matter, since total internal

reflection reduces the outgoing radiation flux to its universal Stefan-Boltzmann value. In

contrast, the evanescent waves are strongly enhanced and the resultant electromagnetic

noise just outside the surface can be intense. This is a concern for quantum devices operating

close to metallic objects. This paper has concentrated on the frequency, temperature, and

distance dependence of the noise, and on the effects of assuming a local dielectric function.

We conclude that the effect is significant for charge qubits with large dipole moments such

as double quantum dots. The EWJN relaxation may be the limiting decoherence effect in

designs which involve close proximity to bulk metals. For magnetic qubits the effects are

smaller, but as can be seen by comparison to [134], they can still be significant. We found

that nonlocal effects are very important at short distances - indeed, local calculations can
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produce spurious divergences. At distances large compared to the Fermi wavelength of the

metal, local approximations work well.

We have not considered extended qubits for which the off-diagonal function Dii(~r, ~r
′)

at ~r 6= ~r ′ is required. The extended qubit geometries will be considered in detail in the

next chapter.
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Chapter 7

Qubit relaxation due to

evanescent-wave Johnson noise:

Beyond dipole approximation

7.1 Introduction

In this chapter, we continue our discussion about the decoherence in a quantum dot due

to electromagnetic field fluctuations near the metallic gates. In Fig. 7.1, we show the

schematic cross-section of the type of device we consider in this chapter [136]. The picture

of the actual device is shown on the right panel. The previous chapter 6, as well as other

theoretical estimates [127] of the effect of Johnson noise in atomic and quantum dot based

qubits, use the dipole approximation, which is a valid approximation if the distance from

the metallic gate to the qubit is much larger than the size of the qubit. However, it may be

necessary to go beyond the dipole approximation in the case of EWJN in a quantum dot.

Here we present our study of the energy relaxation of a single electron charge qubit

in a DQD system and a single electron spin qubit in a single quantum dot. We assume

that the primary source of field fluctuations are the metallic top gates of the quantum dot

architecture. Back gates are typically a distance on the order of a micron from the qubits,
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Figure 7.1: (a) Schematic cross-section of the device. (b) Scanning electron micrograph of
the actual device. Pictures reprinted with permission from Ref. [136]. Copyright 2011, AIP
Publishing LLC.

which is too far to experience significant EWJN enhancement. We consider the detailed

spatial variation of the electromagnetic field fluctuations and present results beyond the

dipole approximation which take into account the finite size of the quantum dot. We show

that this extension of the dipole approximation removes the unphysical divergence in the

relaxation rate at the metallic surface.

This chapter is organized as follows: In Section 7.2 we present our formalism for cal-

culating the relaxation rate of a charge qubit beyond dipole eapproximation. Results are

presented for a DQD geometry. Section 7.3 presents the formalism and results for the re-

laxation rate of a spin qubit in a single QD. In Section 7.4 we derive an enhancement of

the noise spectrum that results as the thickness of the metallic gate is decreased. Finally,

Section 7.5 summarizes our results. Our results indicate that EWJN is the dominant cause

of energy relaxation in some spin qubit experiments, particularly those performed in a small

external magnetic field, and is comparable in effect with previously studied noise sources

in charge qubits.
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7.2 Charge qubit

We consider a charge qubit realized in a gated lateral DQD in an AlGaAs/GaAs het-

erostructure where electron confinement along the z direction is much smaller than in the x

or y directions, so that we can safely decouple the dynamics along x and y directions from

the z direction 1. The total Hamiltonian of the charge qubit and its interaction with the

electromagnetic environment is given by

H = Hq +Hint (7.1)

where Hq is the Hamiltonian of the charge qubit in a DQD, which we model in the basis of

the localized charge states {|L〉, |R〉} as Hq = ε/2(|L〉〈L| − |R〉〈R|) + ∆/2(|L〉〈R|+ |R〉〈L|).

ε is the bias energy between the two dots, and ∆ is the tunneling amplitude. In the energy

eigenbasis this Hamiltonian reduces to

Hq =
~ω
2
σz (7.2)

where σz is the Pauli matrix, and ~ω =
√
ε2 + ∆2. For all our calculations except those

in Fig. 7.3, we will set ε = 0. The interaction Hamiltonian Hint may be expressed in this

same basis as

Hint = −
∫
d~r
[
σ̂x ~Mr(~r) + σ̂z ~Mφ(~r)

]
· ~A(~r, t) , (7.3)

where ~A(~r, t) is the vector potential of the fluctuating field. ~Mr and ~Mφ are associated with

energy relaxation and pure dephasing in the charge qubit, respectively and are defined as

~Mr(~r) ≡
e

m
ψ∗+(~r) ~pψ−(~r)− ie~

2m
ψ∗+(~r)ψ−(~r)∇ ,

~Mφ(~r) ≡ e

2m

[
ψ∗+(~r) ~pψ+(~r)− ψ∗−(~r) ~pψ−(~r)

]
− ie~

4m

[
ψ∗+(~r)ψ+(~r)∇− ψ∗−(~r)ψ−(~r)∇

]
.

Here m is the effective mass and ~p is the momentum operator of the trapped electron.

Because we are operating within the weak field limit, the term proportional to ~A2 has been

dropped from the interaction Hamiltonian. We choose the gauge where the scalar potential

1In the 1D case of a DQD realized in carbon nanotube [117], or semiconducting nanowire [116], we
assume the electron dynamics along the x direction are decoupled from that of the y and z directions.
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φ = 0 so that ~E = −∂t ~A. The expression for Hint derives from an interaction in terms of

operator quantities of the form

Hint = − e

2m

(
~A(~r, t) · ~p+ ~p · ~A(~r, t)

)
. (7.4)

This symmetrized version of the vector potential is not strictly necessary in our case since we

are only interested in the near-field contribution to the Greens function for which ∇· ~A = 0,

but we included it to keep our results more generally applicable. The relaxation rate

Γ1,c = 1/T1,c can be calculated using the following expression, which follows directly from

the Fermi golden rule:

Γ1,c =
1

~2

∑
ij

∫
d3~r

∫
d3~r ′M∗ir (~r)M j

r (~r ′)Sij(~r, ~r
′, ω) , (7.5)

where Sij is the spectral density of the vector potential:

Sij(~r, ~r
′, ω) ≡ 1

2

∫ ∞
0

eiωτ
〈
{Ai (~r, τ) , Aj

(
~r ′, 0

)
}
〉
dτ (7.6)

The spectral density is related to the response function or susceptibility of the vector po-

tential,

χij(~r, ~r
′, ω) ≡ i

~

∫ ∞
−∞

θ(τ) eiωτ
〈
[Ai (~r, τ) , Aj

(
~r ′, 0

)
]
〉
dτ , (7.7)

via fluctuation-dissipation theorem [132]:

Sij(~r, ~r
′, ω) = ~ coth

( ~ω
2kBT

)
χ
′′
ij(~r, ~r

′, ω) , (7.8)

where χ
′′
ij(~r, ~r

′, ω) is the imaginary part of the susceptibility and is given by

χ
′′
ij(~r, ~r

′, ω) ≡ Imχij(~r, ~r
′, ω) =

1

2~

∫ ∞
−∞

eiωτ
〈
[Ai (~r, τ) , Aj

(
~r ′, 0

)
]
〉
dτ . (7.9)

Combining the Fermi’s golden rule with fluctuation-dissipation theorem, the zero temper-

ature relaxation rate can be written as:

Γ1,c =
1

~
∑
ij

∫
d3~r

∫
d3~r ′M∗ir (~r)M j

r (~r ′) Imχij(~r, ~r
′, ω) , (7.10)
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At finite temperature, the emission (transition from excited to ground state) and absorption

(transition from ground to excited state) rates are given by

Γe1,c = (1 +N(ω, T ))Γ1,c ,

Γa1,c = N(ω, T )Γ1,c (7.11)

The Planck function N(ω, T ) = 1/[exp(~ω/kBT )− 1] gives the average occupation number

of environment modes with frequency ω at temperature T . The response function or sus-

ceptibility of the vector potential χij is related to the retarded photon Green’s function Dij

by [133]

χij
(
~r, ~r ′, ω

)
=

1

ε0c2
Dij

(
~r, ~r ′, ω

)
,

where i, j are Cartesian indices that run over x, y, z and the square brackets denote the

commutator. Dij is obtained by solving[
−δij

(
∇2 +

ω2ε (~r, ω)

c2

)
+ ∂i∂j

]
Dik

(
~r, ~r ′, ω

)
= δ3

(
~r − ~r ′

)
δjk. (7.12)

Here the relative permittivity ε(~r, ω) characterizes the geometry of a particular problem.

In this section, we shall limit ourselves to the case where the metallic top gate of the lateral

DQD is approximated by the half-space, z < 0. Then we can derive an analytical expression

for Dij [133, 122]

Dij(~r, ~r
′, ω) =

1

4π2

∫
ei
~k·~r‖D̃ij(~k, z, z

′, ω) d~k , (7.13)

D̃xx(~k, z, z′, ω) =
i

2q
eiq(z+z

′)

[
rs(k, ω) cos2 θ − q2c2

ω2
rp(k, ω) sin2 θ

]
, (7.14)

where rs and rp are Fresnel’s reflection coefficients given by

rp(k, ω) =
εq − q1

εq + q1
, rs(k, ω) =

q − q1

q + q1
.

Here ~k ≡ (kx, ky), ~r‖ ≡ ~r‖−~r ′‖ = (x−x′, y−y′), θ is the angle between ~k and the x-axis, and

q =
√
ω2/c2 − k2 and q1 =

√
εω2/c2 − k2 are the z-components of the photon wavevector

in the vacuum and the metal, respectively. All other components of D̃ij can be derived from
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D̃xx. [133] In this work we consider ε ≈ iσ/ωε0, where σ = 6× 107 S/m is the conductivity

of the copper gate.

We pause briefly to mention that typical models of the interaction of a DQD with the

electromagnetic field use the dipole interaction Hamiltonian

Hint = − ~E(~r) · ~d, (7.15)

which will result in a relaxation rate of

Γ1,c =
d2ω

8π~z3σ
(7.16)

in the quasistatic approximation, where ~d is the dipole moment of the qubit and ~E(~r) is

the strength of the fluctuating electric field evaluated at the location of the qubit. Here

we also assume that the dipole moment points along the z-direction. This expression

approximates that the electric field is uniform over the spatial extent of the qubit, which

is equivalent to treating the qubit as a point dipole. Here we also . As such, the qubit is

able to couple to arbitrarily small wavelengths of the electromagnetic spectrum, and the

relaxation rate is seen to diverge at shorter distances as ∼ 1/z3 if the conductor is modeled

with a local dielectric function [127, 33]. Using the complete electromagnetic interaction

Hamiltonian 7.4 accounts for fluctuations of the field over the spatial extent of the qubit.

If the wavelength of a particular Fourier component of the field fluctuations is smaller than

the length of the qubit in that direction, its influence on the electron will average out and

it will not contribute to qubit relaxation. The exact and dipole approximation forms of

the interaction Hamiltonian, Eqs. 7.4 and 7.15, converge when the distance from the gate

becomes larger than the spatial extent of the qubit.

We present calculations of the relaxation time for charge qubits that highlight the dif-

ferences between these two forms of the interaction. First we consider DQDs in a one

dimensional nanowire, which are realizable in semiconducting nanowires [117] or carbon

nanotubes [116]. In such a geometry, the wave functions of trapped electrons in quantum

dots have appreciable spatial extent in only one direction. We model the confining poten-

tial of the DQD as a symmetric double square well potential and compute the lowest two
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Figure 7.2: Energy relaxation time T1 vs. the distance from the metallic gate to the DQDs
z for dot geometry of d = 30 nm and l = 30 nm (dashed and dash-dotted blue lines) and 60
nm (solid and dashed black lines) at 0 K, ω/2π = 1 GHz, and ε = 0. Solid and dash-dotted
lines are T1 times for the exact form of the interaction Hamiltonian, whereas dashed lines
are for the dipole form of the interaction. The inset in the figure displays confining potential
of a typical DQD in a one dimensional nanowire and the corresponding symmetric ground
state and antisymmetric first excited state.

eigenenergies and wavefunctions. We then compute the relaxation rate between these two

lowest states which are separated by a fixed transition frequency ω/2π = 1 GHz. A plot of

the wave functions and the shape of the potential is shown in the inset of Fig. 7.2.

We plot the energy relaxation time T1 vs. the distance z from the metallic gate to the

DQD in Fig. 7.2. In this plot, we choose the size of the dot in the x-direction d = 30 nm and

half the separation between the dots l = 30 nm (dash-dotted and dashed blue lines) and

60 nm (solid and dashed black lines). The curves that are shown in solid and dash-dotted

lines are relaxation times for the exact form of the interaction Hamiltonian, whereas those
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three values of distances z from the metallic gate: 1 nm (solid blue line), 10 nm (dashed
red line) and 50 nm (dash-dotted black line), for a dot geometry of d = 30 nm and l = 30
nm at 0 K temperature.

shown in dashed lines are obtained using the dipole form of the interaction. The curves

show significant deviation of the exact relaxation rate from the dipole relaxation rate at

shorter distances and convergence of the two results at longer distances.

In Fig. 7.3, we present the ratio of T1 for a charge DQD qubit at bias ε to the T1

obtained at ε = 0 vs. the ratio ε/∆. An increase in bias increases the level splitting and

decreases the dipole moment of the DQD. Since the relaxation time T1 ∼ 1/ωd2, where

d = 2l sin (arctan (∆/ε)) is the dipole moment of the quantum dot, T1 increases for larger

bias.

Next, we present results from the relaxation rate calculation for a DQD in a two-

dimensional quantum well. In this treatment we label the z-axis as the vertical confinement
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Figure 7.4: Energy relaxation time T1 vs. the distance from the metallic gate to the DQDs
z for dot geometry of d = f = 30 nm and l = 30 nm (dashed and dash-dotted blue lines)
and 60 nm (solid and dashed black lines) at 0 K, ω/2π = 1 GHz, and ε = 0. Solid and
dash-dotted lines are T1 times for the exact form of the interaction Hamiltonian, whereas
dashed lines are for the dipole form of the interaction.

direction and do not consider excitations along the z-direction. We model the confining

potential by a symmetric double rectangular well in 2D and numerically compute the lowest

two eigenenergies and wavefunctions. We then compute the electron relaxation rate between

these two lowest states. The results are qualitatively similar to the one-dimensional case and

are shown in Fig. 7.4, where we plot the energy relaxation time T1 vs. the distance z from

the metallic gate to the DQD. In this plot, we choose the size of the dot in the x-direction

d = 30 nm, the size in the y-direction f = 30 nm and half the separation between the dots l

to be 30 nm (dashed and dash-dotted blue lines) and 60 nm (solid and dashed black lines).

We find that for l = 30 nm and z = 90 nm, T1 is 4µs while for l = 60 nm, T1 is roughly
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1.6µs. These relaxation times are somewhat longer than the experimentally reported value

of T1 = 20 ns in DQD-based charge qubits. [114, 137] We note that the relaxation rate for a

two-dimensional DQD is shorter than for a one-dimensional DQD of comparable geometry

by about a factor of 5. A two-dimensional DQD is able to couple to obliquely oriented

wavevectors in addition to those which point in the direction of separation between the

dots, and this can be reasonably expected to enhance relaxation by a geometric factor of

order unity.

7.3 Spin qubit

We now focus on the calculation of the relaxation rate for a single electron in a spin qubit

realized in a single quantum dot. Here the system Hs and the interaction Hint Hamiltonians

are given by

Hs = −gµB ~σ · ~B0/2 (7.17)

Hint = −gµB ~σ · ~B(~r, t) (7.18)

where ~σ is the vector of Pauli matrices, g is the gyrometric factor of the trapped electron in

a quantum dot, µB is the Bohr magneton, ~B0 is the externally applied magnetic field and

~B(~r, t) is the fluctuating EWJN field. The rate of spin flip from excited | ↑〉 to ground | ↓〉

at T = 0 K can be obtained from the Fermi golden rule

Γ1,s =
1

~

∫
d3~r

∫
d3~r ′Mr,s(~r)Mr,s(~r

′)εijkεij′k′ ImχBkk′(~r, ~r
′, ω)njnj′ , (7.19)

where repeated indices are summed over, and nj are the components of a unit vector n̂ in

the direction of ~B0. The effect of finite temperature on the transition rates is the same as

for charge qubits, as shown in Eq. 7.11. The magnetic response function or susceptibility

χBij and the matrix element Mr,s(~r) are

χBij(~r, ~r
′, ω) =

εikmεjnp
ε0c2

∂k∂nDmp(~r, ~r
′, ω) (7.20)

Mr,s(~r) ≡ gµB|ψ0(~r)|2 . (7.21)



94

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

z (nm)

T
1
 (

s
) 

 

 

    d = 60 nm

Figure 7.5: Energy relaxation time T1 vs. the distance from the metallic gate to quantum
dot z for spin qubit (in Si) single dot geometry of d = 60 nm at 0 K temperature and
gµBB0/2π~ = 50 GHz. The solid line represent T1 time for the exact form of the interaction
Hamiltonian, whereas the dashed line is for the dipole form of the interaction.

Here the spin qubit frequency ω = gµBB0/~ and ψ0(~r) is the spatial part of the the

ground state wave function of the spin qubit. Eq. 7.19 is a generalization beyond the dipole

approximation of the simpler expression[33]:

Γ1,s =
g3µ3

BσB0

16π~2ε20c
4z
, (7.22)

which has been obtained by using the quasistatic limit for the Green’s function 7.20, and

assuming it is constant over the spatial extent of the qubit. Eq. 7.22 also assumes the

external magnetic field ~B0 points in the z-direction.

A plot of energy relaxation time T1 vs. the distance from the metallic gate z for a spin

qubit is displayed in Fig. 7.5. Here we consider a single quantum dot of diameter d = 60
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nm and approximate the ground state spatial wave function of the spin qubit by the ground

state wave function of a harmonic potential. We assume the Zeeman splitting between spin

states is 50 GHz, typical of experiments in spin qubits. [135] The solid line is the T1 time

obtained using the non-local magnetic spectral density while the dotted line is obtained for

a local spectral density, which diverges as ∼ 1/z as one approaches the metallic gate. The

reason for saturation of the T1 time at smaller distances is similar to the case for charge

qubits. There is a slight distinction in that the spin case involves a spatially extended dipole

interaction, as opposed to the charge case which involves qenuine quadrupole and higher

multipole contributions. This distinction is largely technical, however, and a saturation of

T1 as z → 0 is observed in both cases.

We find that the T1 time for a spin qubit in a GaAs quantum dot with an external

magnetic field of 10 T and z = 90 nm is roughly 1 s which is larger than the experimentally

reported value [135] of 0.55 ms, and generally EWJN does not seem to be the dominant

source of decoherence for semiconductor devices in large magnetic fields. GaAs has a strong

spin-orbit interaction (SOI), which mixes the Zeeman-split spin states with orbitally excited

states. Spin relaxation can then occur via coupling of the qubit to piezoelectric phonon

noise in the 2DEG layer. The relaxation rate from this mechanism scales as B5 and is the

dominant pathway for spin relaxation at large external magnetic fields B > 1 T [138, 139].

Additionally, Marquardt and Abalmassov [129] calculate relaxation of spin qubits from

electric EWJN via the SOI. Again, mixing of the charge and spin states via the SOI allows

spin relaxation to be induced from electric field fluctuations. They estimate the power

spectrum of the Johnson noise using a lumped circuit model and found a B3 dependence

of the relaxation rate. Our treatment involves a direct coupling of the fluctuating magnetic

field from the top gates with the spin states, and our rate scales linearly with the magnetic

field. We therefore expect our relaxation pathway to dominate at low magnetic fields, and

indeed while we predict a much slower relaxation rate than measured by Amasha et. al [138]

for B ∼ 7 T, at B = 1 T our results predict T1 ∼ 5 s which is comparable to their measured

value of T1 = 1 s. Additionally, in Si quantum dots with a 2 T external magnetic field and



96

z = 50 nm, we predict a T1 time of 15 ms which is smaller than the experimentally reported

value of 40 ms [134]. However, it must be kept in mind that we have so far considered

the simpler top gate geometry of a conducting half-space rather than the thin layer of

finger gates used in these experiments. In the next section we address modifications to our

calculations that we expect from more realistic gate geometry.

7.4 Thin metallic gates

A conducting half-space is an analytically convenient gate geometry, but a poor approxi-

mation to the thin top gates commonly used in semiconductor devices. In this section we

present an exact treatment of the behavior of EWJN in the vicinity of a metallic film of

finite thickness. Changing the half-space to a thin film affects EWJN by modifying the

reflection coefficients rs and rp. The power spectrum of the resultant EWJN is obtained by

substituting these modified reflection coefficients into the photon Green’s function 7.14, and

the relaxation time of, e.g. a charge qubit, is obtained by plugging Eq. 7.14 into Eqs. 7.5

and 7.13. The modified reflection coefficients for a film of thickness a take the form

rp(k, ω, a) =
ε2q2 − q2

1

q2
1 + ε2q2 + 2iqq1ε cot(q1a)

(7.23)

rs(k, ω, a) =
q2 − q2

1

q2 + q2
1 + 2iqq1 cot(q1a)

. (7.24)

They differ significantly from the half-space result only when the thickness a is of the order

or smaller than the skin depth δ, and they reduce to the half-space result for a � δ. A

derivation of Eqs. 7.23 and 7.24 is given in the Appendix. Eqs. 7.23 and 7.24 are exact, but

for a good conductor they can be cast into a simpler approximate form

rp(k, ω, a) ≈
(

1 +
2q1

εk
cot (q1a)

)−1

(7.25)

rs(k, ω, a) ≈ −
(

1− 2c2q1k

εω2
cot(q1a)

)−1

. (7.26)

These expressions have been obtained by expanding Eqs. 7.23 and 7.24 for large imag-

inary ε and then taking the quasistatic approximation q → ik. The first approximation
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Figure 7.6: Ratio of energy relaxation time T1 from conducting film to T1 time from half-
space vs. thickness of the film a for a DQD charge qubit in one dimension with dot geometry
d = 30 nm and l = 60 nm at 0 K temperature. We take the exact form of the interaction
Hamiltonian. The distance z from the film or half-space is chosen as follows: z = 10 nm
(black dash-dotted line), z = 50 nm (blue dashed line) and z = 150 nm (solid red line).
Other parameters are the same as in Fig. 7.2.

is extremely accurate for copper near zero temperature and the second is accurate for all

distances z such that EWJN is appreciably enhanced above blackbody radiation [33]. The

remarkable feature of Eqs. 7.25 and 7.26 is that they show the strength of the fluctuating

fields outside the film are actually amplified relative to the half-space result. This can be

understood by analogy to the behavior of a particle trapped in a finite one-dimensional

potential well. For a given width of the well, the wavefunction will have an exponentially

decaying tail in the forbidden region. As the confinement is increased, the particle will

be squeezed and its wavefunction will leak farther into the forbidden region. It will be

interesting to see if this enhancement is observable in the Casimir attraction between 2 thin
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conducting plates.

Using the modified expression for the reflection coefficients, we compute the T1 time of

a DQD charge qubit in one dimension due to the metallic film. In Fig. 7.6, we plot the ratio

of the T1 time obtained for the film to the time computed for the metallic half-space as a

function of the film thickness. We take the exact form of the interaction Hamiltonian for

a variety of distances from the gate. We find that for distance z > a, the relaxation time

due to the film can be reduced by over an order of magnitude relative to the half-space. It

converges to the half-space result as z becomes smaller than the thickness of the film.

Common semiconductor qubit architectures employ thin finger-shaped top gates which

are more sparse than the films considered here. An exact treatment of EWJN from a

detailed finger gate geometry would be prohibitively difficult, but we expect to a reasonable

approximation that EWJN from finger gates will be reduced by a factor of the fraction of

the top gate layer that is not composed of metal. Our results should then overestimate

the relaxation rate by a geometric factor. We note however that newer accumulation-

mode architectures employ a second top gate above the confinement top gates [136]. These

accumulation gates are solid sheets and are typically around 100 nm from the qubit, so our

treatment should accurately describe their contribution to relaxation.

7.5 Discussion

In conclusion, we have presented a detailed study of the effect of evanescent-wave Johnson

noise on energy relaxation of quantum dots beyond the dipole approximation. We have

noted that previous studies of charge and spin qubits which use the dipole approximation

allow contribution from infinitely large components of the photon wavevector leading to

overestimation and divergence of the energy relaxation rate as z → 0. We have demon-

strated that it is possible to remedy this spurious divergence by taking into account the

finite size of the quantum dot. While a non-local permittivity of the surface metal will

remove the divergence in the field fluctuations at the boundary, we have shown that the

finite size of the dot provides an alternative normalization mechanism by enforcing a finite
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cutoff in the magnitude of the contributing wavevector. In addition, we have derived a novel

enhancement of the EWJN field fluctuations that occurs outside a metallic film, relative to

the field outside a metallic half-space.

This chapter has focused exclusively on relaxation, though we expect dephasing times

from EWJN to be of comparable magnitude. The power spectrum of EWJN is linear in

ω, and this will suppress contribution from the small frequency part of the electromagnetic

spectrum, which typically enhances dephasing rates. While the temperature dependence of

the relaxation rate is simply given by the Planck function, we do expect a more non-trivial

temperature dependence of the dephasing rate.

Of particular interest are experimental signatures of EWJN-induced relaxation. No-

tably, at zero temperature the charge relaxation rate scales linearly with the qubit transi-

tion frequency and as the inverse cubic power of the distance between the qubit and the

metallic top gates. The zero temperature spin relaxation rate scales linearly with the ex-

ternal magnetic field and inversely with the distance to the gates. Our results indicate

that EWJN from the metallic top gate is not a dominant source of relaxation in charge

qubits, but can be the dominant noise source for energy relaxation in spin qubits held at

low external magnetic field.
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Chapter 8

Conclusions

In this thesis, we have considered several aspects of superconducting and semiconducting

qubits, exploring mainly the effect of decoherence on these devices. In the second chap-

ter 2, we discuss different noise sources that plague semiconducting and superconducting

qubits and present different methods we can use to study the dynamics of open quantum

systems. In the third chapter 3, we investigate the effect of the Ohmic environment on

optimally controlled phase qubit. Here we compare possible choices of microwave pulses

for NOT gate operation. Specifically, we consider three options: single-quadrature pulses

and two-quadrature microwave (control) pulses with both variable and fixed frequency.

Two-quadrature pulses led to significant suppression of the gate error compared to single-

quadrature pulses. However, the presence of dissipative environment increased the gate

error even for two-quadrature pulses significantly above the required threshold for fault tol-

erant quantum computation in currently available phase qubits. We further investigate how

the environmental coupling strength affects the gate error and found that an improvement

of the qubit relaxation time is crucial for effectiveness of the DRAG pulses. We determine

that two-quadrature pulses with fixed driving frequency suppress the gate error below the

required threshold for a reasonable gate time of 7ns, but for qubits with the relaxation

time ten times longer than the currently observed relaxation time.

In chapter 4, we present a model to determine the quantum efficiency of a microwave
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photon detector based on a current-biased JJ. We demonstrate that the efficiency to detect

single photon loaded in a cavity is determined by relaxation and tunneling rates. We also

determine that the bandwidth of the detector is characterized by the sum of the vacuum

Rabi frequency and the broadening of the first excited state of the JJ due to tunneling and

relaxation processes. Our results indicate that for currently used JJ photon detectors, the

quantum efficiency of around 80% can be achieved even for modest junction parameters.

In addition, we present alternative schemes for photon detection and present a systematic

method to compute the power absorbed by the detector in such schemes.

In chapter 5, we discuss the effect of decoherence on the Berry curvature and present

results which demonstrate that the curvature is immune to decoherence in non-adiabatic

measurement protocols. Surprisingly, decoherence forces magnetization to respond linearly

to the drive velocity in case of the sinusoidal drive, thereby assisting in the measurement

of the Berry curvature. Furthermore, we analyze the prospect of measuring the Berry

curvature in superconducting qubits. Here we investigate the effect of the third level in

phase or transmon qubits on the measurement of the Berry curvature.

In the remaining chapters, we discuss the origin and effect of Johnson noise in semicon-

ducting qubits. In chapter 6, we identify evanescent wave Johnson noise as an important

source of decoherence in both spin and charge qubits. Here we carry out analysis within

the dipole approximation of the qubit-field interaction. Finally, in chapter 7, we continue

to discuss the effect of evanescent wave Johnson noise on extended qubit geometries. Here

we go beyond the dipole approximation and present result for relaxation rates for both spin

and charge qubits. We also consider the finite thickness nature of metallic gates and present

enhancement of electric evanescent-wave Johnson noise compared to field fluctuations from

extended gate geometry. These results serve as an important constraint on future device

architectures.
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Appendix A

Supplemental information for

chapter 3

A.1 Hamiltonian of a flux-biased phase qubit

In this appendix, we detail the derivation of the Hamiltonian of a flux-biased phase qubit

used in Eq. 3.2. The phase qubit consists of a superconducting loop interrupted by a

Josephson junction. The Josephson junction consists of an insulating barrier sandwiched

between two superconducting layers. In 1962, B.D. Josephson predicted that super current

would tunnel through the insulating barrier even in the absence of applied voltage [140].

He showed that magnitude of super current Is depends only on the phase difference δ

(Josephson phase) between the order parameters of two superconducting electrodes. This

is called the first Josephson equation which reads

Is = I0 sin δ , (A.1)

where I0 is the critical current of the junction. The second Josephson equation relates time

evolution of the Josephson phase with the voltage drop V across the junction, that is,

dδ

dt
= 2e

V

~
, (A.2)
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where h and e are Planck’s constant and electronic charge, respectively. The dynamics of

the phase qubit is best understood within a phenomenological resistively and capacitively

shunted junction model (RCSJ) of a Josephson junction [141]. In a flux-biased phase qubit,

biasing is done by coupling external flux to the superconducting loop, instead of directly

injecting the bias current. This technique helps prevent, to some extent, noise in the bias

circuitry to couple to the qubit.

Applying Kirchoff’s law to the RCSJ circuit model along with Josephson equations

and phase quantization condition in a superconductor, we obtain the following equation of

motion,

C

(
Φ0

2π

)2 d2δ

dt2
+

(
Φ0

2π

)2 1

R

dδ

dt
+

(
Φ0

2π

)
d

dδ

[
Φ0

4πL

(
δ − 2πΦb

Φ0

)2

− I0 cos δ

]
= 0 , (A.3)

where C, R and L are junction capacitance, shunt resistance and loop inductance, respec-

tively. The parameters Φb and Φ0 ≡ h
2e are external bias flux applied to the phase qubit

and superconducting flux quantum, respectively. Eq. A.3 represents the equation of motion

of a fictitious particle with mass C
(

Φ0
2π

)2
under the potential energy given by

U(δ) =
Φ0

2π

[
Φ0

4πL

(
δ − 2πΦb

Φ0

)2

− I0 cos δ

]
. (A.4)

The parameter Φb can be tuned into appropriately to change the potential energy landscape

of a flux-biased phase qubit. For instance, when Φb = Φ0, the potential energy takes the

shape of a symmetric double well. Typically, for the qubit operation, this parameter is

tuned in between 0.95 − 0.98 of Φc, where Φc is a critical flux of the qubit for which the

second minimum in U(δ) disappears. With this expression for the potential energy, the

Hamiltonian of a flux-biased phase qubit is given by:

Hq =
Q2

2C
+

Φ0

2π

[
Φ0

4πL

(
δ − 2πΦb

Φ0

)2

− I0 cos δ

]
. (A.5)

Here Q corresponds to charge across the Josephson junction. Until now, charge and phase

of the JJ were treated as classical variables. In order to study the quantum properties

of the phase qubit, these variables must be promoted to operators. Hence, for a phase

qubit, Q̂ and δ̂ are treated as a conjugate momentum and position operators, respectively
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that satisfy the commutation relationship
[
Q̂, δ̂

]
= i2e. In δ−representation, the operator

δ̂ → δ and Q̂→ −2ie ∂∂δ . Therefore, in this representation, time-independent Schrodinger’s

equation takes the following form:

−2e2

C

∂2ψ

∂δ2
+

Φ0

2π

[
Φ0

4πL

(
δ − 2πΦb

Φ0

)2

− I0 cos δ

]
ψ(δ) = Eψ(δ) . (A.6)

In the following section, we will outline a numerical method to solve this time-independent

Schrodinger’s equation.

A.2 Numerical solution of the Schrodinger’s equation

Here we will detail the algorithm used to obtain the numerical solution of the time-

independent Schrodinger’s equation. The Schrodinger’s equation is discretized over a one

dimensional spatial interval [δ0, δN ] of N+2 points such that δj = δ0+jε, where ε is the step

size, and j ∈ [0, N ]. The boundary conditions on wave functions over this interval are such

that ψn(δ0) = ψn(δN ) = 0. On the discretized interval, time-independent Schrodinger’s

equation of the qubit system can be written as

Aψ
′′
n(δj) + Ū(δj)ψn(δj) = Ēnψn(δj) , where (A.7)

Ū(δj) = A1

[
1

2

(
δj −

2πΦb

Φ0

)2

− βL cos(δj)

]
. (A.8)

Here, A = −1, Ēn = −En/A0, A0 = −2e2/C, A1 = − Φ2
0

4A0π2L
and βL = 2πI0L

Φ0
. We have

rescaled the potential and kinetic energy terms for numerical stability. The derivative in

Eq. A.7 is approximated using the finite differences scheme as follows:

ψ
′′
n(δj) ≈

−ψn(δj+2) + 16ψn(δj+1)− 30ψn(δj) + 16ψn(δj−1)− ψn(δj−2)

12ε2
(A.9)

The error in this approximation scheme is of the order of ε4. With this approximation for

the derivatives, evaluating Eq. A.7 at each discretized point, we obtain a system of N − 1

linear equations, which can be written in a matrix form. The eigen functions and eigenvalues

of this matrix are the desired energy eigenvalues and wave functions of the Schrodinger’s

equation.
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Appendix B

Supplemental information for

chapter 6

B.1 Derivation of Green’s tensor for half space

In this appendix, we will derive Green’s function for the metallic half space. We begin

by calculating Green’s function for parallel plate geometry in three spatial dimensions.

Our starting point for the calculation of Green’s function in the free space between two

conducting half spaces of relative permittivities ε1(~r, ω) and ε2(~r, ω) in three dimensions

will be: (
−δij

(
∇2 +

ω2ε(~r, ω)

c2

)
+ ∂i∂j

)
Dik(~r, ~r

′) = δ3(~r − ~r ′)δjk (B.1)

The dependence of Dik(~r, ~r
′) on ω is suppressed to simplify notation. We take the bound-

aries of the two conducting half spaces to be located at z = 0 and z = l, with vacuum for

0 < z < l. Because the geometry is translationally invariant in the x and y directions, we

expand Dik in a Fourier series for x− x′ and y − y′:

D̃ij(~k, z, z
′) =

∫
e−i

~k·~r‖D(~r, ~r ′)d2~r‖ (B.2)

D(~r, ~r ′) =
1

(2π)2

∫
ei
~k·~r‖D̃ij(~k, z, z

′)d2~k (B.3)
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Here ~r‖ ≡ ~r‖ − ~r′‖ ≡ (x − x′, y − y′). After B.3 is plugged into B.1, the resulting set of

differential equations will significantly decouple if we choose ~k to lie along the x-axis, i.e.,

choose ~k = (k, 0). Once this is done, B.1 reduces to(
∂2

∂z2
+
ω2ε

c2

)
D̃xj(k, z, z

′)− ik ∂
∂z
D̃zj(k, z, z

′) = δxjδ(z − z′) (B.4)(
−k2 +

ω2ε

c2

)
D̃zj(k, z, z

′)− ik ∂
∂z
D̃xj(k, z, z

′) = δzjδ(z − z′) (B.5)(
−k2 +

∂2

∂z2
+
ω2ε

c2

)
D̃yj(k, z, z

′) = δyjδ(z − z′) (B.6)

Where j = x, y, z. Combining these equations we arrive at(
∂2

∂z2
+ q2

)
D̃yy(k, z, z

′) = δ(z − z′) (B.7)(
∂2

∂z2
+ q2

)
D̃xx(k, z, z′) =

q2c2

ω2ε
δ(z − z′) (B.8)

D̃zx(k, z, z′) =
ik

q2

∂

∂z
D̃xx(k, z, z′) (B.9)

D̃zz(k, z, z
′) =

ik

q2

∂

∂z
D̃xz(k, z, z

′) +
1

q2
δ(z − z′) (B.10)

We solve first for D̃yy; its boundary value problem is

D̃yy(k, z, z
′) =


Ae−iq1z , z < 0

C1e
−iqz + C2e

iqz + 1
2 i qe

iq|z−z′| , 0 ≤ z < l

Beiq2(z−l) , l ≤ z

(B.11)

q2 ≡ ω2/c2 − k2, q2
1 ≡ ε1ω2/c2 − k2, q2

2 ≡ ε2ω2/c2 − k2 (B.12)

Since D̃yy and ∂D̃yy/∂z must be continuous at the interfaces at z = 0, l, we can now

determine the constants C1 and C2 to be

C1 =
i

2q4

(
eiqz

′
+
q + q1

q − q1
e−iqz

′
)

(B.13)

C2 =
i

2q4

(
e−iqz

′
+
q + q2

q − q2
eiq(z

′−2l)

)
(B.14)

4 ≡ 1− (q + q1)(q + q2)

(q − q1)(q − q2)
e−2iql (B.15)
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We plug these back into D̃yy and obtain

D̃yy(k, z, z
′) =

−ci
2ωv4

(
v +
√
ε1 − u2

v −
√
ε1 − u2

e−iωv(z+z′)/c +
v +
√
ε2 − u2

v −
√
ε2 − u2

eiωv(z+z′−2l)/c

)
+

ci

2ωv

(
2 cos(ωv[z − z′]/c)/4− eiωv|z−z′|/c

)
, (B.16)

where we have introduced the definitions q ≡ ω
√

1− u2/c ≡ ωv/c, u = ck/ω, and

v =


√

1− u2 , 0 < u < 1

i
√
u2 − 1 , u > 1

(B.17)

A similar calculation will yield D̃xx, although the boundary conditions for this problem are

D̃xx and ε/q2(∂D̃xx/∂z) continuous across the boundaries at z = 0, l. The result is

D̃xx(k, z, z′) =
civ

2ω41

(
ε1v +

√
ε1 − u2

ε1v −
√
ε1 − u2

e−iωv(z+z′)/c +
ε2v +

√
ε2 − u2

ε2v −
√
ε2 − u2

eiωv(z+z′−2l)/c

)
+
civ

2ω

(
2 cos(ωv[z − z′]/c)/41 − eiωv|z−z

′|/c
)

(B.18)

41 ≡ 1− (ε1v +
√
ε1 − u2)(ε2v +

√
ε2 − u2)

(ε1v −
√
ε1 − u2)(ε2v −

√
ε2 − u2)

e−2iωvl/c (B.19)

From Eqs. B.9 and B.10, D̃zz(k, z, z
′) is determined to be

D̃zz(k, z, z
′) = −k

2

q2
D̃xx(−k, z′, z) (B.20)

Next, we back Fourier transform to obtain these quantities in the real space. Eqs. B.16

and B.18 were obtained assuming that ~k lies entirely in the x direction. Because of spatial

invariance in the x− y plane, B.18 would be equal to D̃yy(k, z) if ~k were chosen to point in

the y-direction. Eqs. B.16 and B.18 are then the contributions into the kx and ky Fourier

components of Dyy(~r, ~r
′, ω), respectively. We can therefore construct

Dyy(~r‖, z, ω) = Dxx(~r‖, z, ω) =
1

(2π)2

∫
ei
~k·~r‖

(
D̃yy(k, z, ω) sin2 θ + D̃xx(k, z, ω) cos2 θ

)
d2~k

(B.21)

The exponential term vanishes in the limit ~r → ~r ′, and the angular integration simply gives

a factor of π. The trigonometric factors are squared because the Green’s function is related

to the expectation value of the square of the electric field.

Dyy(~r‖, z, ω) = Dxx(~r‖, z, ω) =
1

4π

∫ ∞
0

(
D̃yy(k, z, ω) + D̃xx(k, z, ω)

)
kdk (B.22)
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Meanwhile the integral expression for Dzz(~r‖, z, ω) may be trivially derived and is equal to

Dzz(~r‖, z, ω) =
1

2π

∫ ∞
0

k3

q2
D̃xx(k, z, z′)dk (B.23)

The case of a half space can be obtained from B.22 by taking the limit l → ∞ in the

evanescent range of q (when it is imaginary):

lim
l→∞

D̃yy(k, z) |k>ω/c =
ci

2ωv

(
v −
√
ε1 − u2

v +
√
ε1 − u2

e2iωvz/c + 1

)
(B.24)

lim
l→∞

D̃xx(k, z) |k>ω/c =
−civ
2ω

(
ε1v −

√
ε1 − u2

ε1v +
√
ε1 − u2

e2iωvz/c − 1

)
(B.25)

This leads to the following expression for Dhs
xx,yy:

D(hs)
yy (~r‖, z, ω) = D(hs)

xx (~r‖, z, ω) =
iω

8πc

∫ ∞
0

udu

v

(
e2iωvz/c

(
rs(u) + (u2 − 1)rp(u)

)
+ 2− u2

)
,

(B.26)

where we have introduced

rp (u) =
εv −

√
ε− u2

εv +
√
ε− u2

and rs (u) =
v −
√
ε− u2

v +
√
ε− u2

. (B.27)

rp is the reflection coefficient for the part of the electric field perpendicular to the plane of

incidence and rs is the reflection coefficient for the part of the electric field parallel to the

plane of incidence. The imaginary part of the response function (near-field only) is given

by

ImχExx(~r, ~r′, ω) =
ω2

ε0c2
ImD(hs)

xx (~r‖, z, ω)

=
ω3

8πε0c3
Re

∫ ∞
0

udu

v
e2iωvz/c

(
rs(u) + (u2 − 1)rp(u)

)
(B.28)
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Appendix C

Supplemental information for

chapter 7

C.1 Derivation of generalized Fermi’s golden rule

In this appendix, we will derive the generalized Fermi’s golden rule used in Eq. 7.5. Consider

a system-bath interaction Hamiltonian

HSB = − e

2m∗

(
~A(~r) · ~p+ ~p · ~A(~r)

)
. (C.1)

Since
[
~p, ~A(~r)

]
= −i~∇ · ~A(~r), the interaction Hamiltonian can be written as: HSB =

− e
m∗

~A(~r) · ~p + ie~
2m∗∇ · ~A(~r). The relaxation rate for |−〉 −→ |+〉 transition at zero tem-

perature can be calculated using the Fermi’s golden rule. To calculate the total relaxation

rate, we have to sum over all initial reservoir states weighted with the probability to find

these states and over all final reservoir states, namely :

Γ−→+ =
2πe2

m∗2~
∑
ij

∑
R′R

1

2

[
〈R′, ψ+|Ai(~r)pi − i~/2∂iAi(~r)|ψ−, R〉∗〈R′, ψ+|Aj(~r′)pj

− i~/2∂jAj(~r′)|ψ−, R〉+ i↔ j
]
P (R) δ(ε− + εR − ε+ − εR′) , (C.2)

where ε± are energies of |±〉 states, |R〉(|R′〉) are reservoir initial (final) states respectively,

and P (R) is the probability to find the reservoir in initial state R. Next, rewrite the delta
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function in terms of its Fourier transform

δ(ε− + εR − ε+ − εR′) =
1

2π~

∫
d(t− t′) eiω(t−t′) ei

εR−εR′
~ (t−t′), where ω ≡ (ε− − ε+)/~ ,

and introduce time-dependent Heisenberg operator ~A(~r, t) to obtain

Γ−→+ =
1

2

[ e2

m∗2~2

∑
ij

∫
d~r ψ+(~r) (i~)∂iψ

∗
−(~r)

∫
d~r′ ψ∗+(~r′) (−i~)∂jψ−(~r′)

×
∑
R′R

P (R)

∫
〈R′|Ai(~r, t)|R〉∗〈R′|Aj(~r′, t′)|R〉 eiω(t−t′) d(t− t′) +

e2

m∗2~2

∑
ij

∫
d~r ψ+(~r) (i~)∂iψ

∗
−(~r)

∫
d~r′ ψ∗+(~r′)ψ−(~r′)

× (−i~)∂j
∑
R′R

P (R)

∫
〈R′|Ai(~r, t)|R〉∗〈R′|Aj(~r′, t′)|R〉 eiω(t−t′) d(t− t′) +

e2~2

4m∗2~2

∑
ij

∫
d~r ψ+(~r)ψ∗−(~r)

∫
d~r′ ψ∗+(~r′)ψ−(~r′)

× ∂i∂j
∑
R′R

P (R)

∫
〈R′|Ai(~r, t)|R〉∗〈R′|Aj(~r′, t′)|R〉 eiω(t−t′) d(t− t′) + i↔ j

]
.

This expression can be simplified further by using the completeness relation for the reservoir

final states and the following definition of the equilibrium cross correlation function

〈{Ai(~r, t) , Aj(~r′, t′)}〉 =
∑
R

P (R)〈R|{Ai(~r, t) , Aj(~r′, t′)}|R〉 , and its Fourier transform∫
eiωτ

1

2
〈{Ai (~r, τ) , Aj

(
~r′, 0

)
}〉 dτ ≡ Sij

(
~r, ~r′, ω

)
, where { , } is anticommutator.

Here Sij is the spectral density of the vector potential. This simplifies the above expression

for the relaxation rate to

Γ−→+ =
e2

m∗2~2

∑
ij

∫
d~r ψ+(~r) (i~)∂iψ

∗
−(~r)

∫
d~r′ ψ∗+(~r′) (−i~)∂jψ−(~r′) Sij

(
~r, ~r′, ω

)
−

e2

m∗2~2

∑
ij

∫
d~r ψ+(~r) (i~)∂iψ

∗
−(~r)

∫
d~r′ ψ∗+(~r′)ψ−(~r′) (−i~)∂jSij

(
~r, ~r′, ω

)
−

e2~2

4m∗2~2

∑
ij

∫
d~r ψ+(~r)ψ∗−(~r)

∫
d~r′ ψ∗+(~r′)ψ−(~r′) ∂i∂jSij

(
~r, ~r′, ω

)
. (C.3)
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The above expression can also be written compactly as

Γ−→+ =
1

~2

∑
ij

∫
d~r

∫
d~r′M∗ir (~r)M j

r (~r′)Sij(~r, ~r′, ω) ,where ~Mr(~r) is defined as

~Mr(~r) ≡
e

m∗
ψ∗+(~r) ~pψ−(~r)− ie~

2m∗
ψ∗+(~r)ψ−(~r)∇ .

C.2 Derivation of Green’s tensor for a thin film

Here we present the calculation for the retarded photon Green’s tensor outside of a thin

conducting sheet of permittivity ε. Green’s function will satisfy Eq. B.1. Here ~r ′ is simply

a parameter for the purposes of solving this set of equations, and we take it to lie in the

vacuum outside the conducting sheet. We will suppress the dependence of Dik(~r, ~r
′, ω) on

~r ′ and ω to simplify the notation. The geometry of the problem is contained entirely in the

permittivity function ε (~r, ω). We take the boundaries of the conducting sheet to be located

at z = −a and z = 0, with vacuum outside. Because the geometry is still translationally

invariant in the x and y directions, we employ the same Fourier expansion of Eq. 7.13 as in

Section 7.2. Solving Eq. B.1 for a problem with planar symmetry is greatly simplified by

separately considering the Fourier components of Eq. 7.13 that are polarized in the x and

y directions. D̃yy(~r) may then be reconstructed as

Dyy(~r) =

∫
d2~k

(2π)2
ei
~k·~r‖

(
D̃yy,kx(k, z) cos2 θ + D̃yy,ky(k, z) sin2 θ

)
, (C.4)

where D̃yy,kx = D̃yy when ky = 0, and D̃yy,ky = D̃yy when kx = 0. The boundary value

problem for D̃yy,kx(k, z) then becomes

D̃yy,kx(k, z) =


Ae−iqz , z < −a

B1e
−iq1z +B2e

iq1z , −a ≤ z < 0

Ceiqz + 1
2 iqe

iq|z−z′| , z ≥ 0

(C.5)

Our interest lies in the behavior of the fields for z > 0, so we need only to calculate C.

Enforcing that Dyy,kx and ∂Dyy,kx/∂z are continuous across the boundaries results in

C =
i

2q
rs(k, ω, a)eiqz

′
, (C.6)
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where

rs(k, ω, a) ≡
(
q2 − q2

1

)
sin(q1a)(

q2
1 + q2

)
sin(q1a) + 2iqq1 cos(q1a)

= 2i sin q1a

(
eiq1a

q − q1

q + q1
− e−iq1a q + q1

q − q1

)−1

(C.7)

so that

D̃yy,kx(k, z) =
i

2q

(
rs(k, ω, a)eiq(z+z

′) + eiq|z−z
′|
)
. (C.8)

The term proportional to exp(iq|z − z′|) is the free photon contribution to the power spec-

trum. It will have an imaginary component and thus contribute to relaxation only in the

radiative regime, k ≤ ω/c. Within a skin depth of separation from the metal, evanescent

waves are orders of magnitude larger in field strength than these free photons. They may

be safely ignored in this context. A similar calculation yields the result for D̃yy,ky :

D̃yy,ky(k, z) = − ic
2q

2ω2

(
rp(k, ω, a)eiq(z+z

′) − eiq|z−z′|
)
, (C.9)

where

rp(k, ω, a) ≡
(
ε2q2 − q2

1

)
sin(q1a)(

q2
1 + ε2q2

)
sin(q1a) + 2iqq1ε cos(q1a)

= 2i sin q1a

(
eiq1a

εq − q1

εq + q1
− e−iq1a εq + q1

εq − q1

)−1

. (C.10)

A Taylor expansion of Eqs. C.7 and C.10 for large a in the evanescent range of wavevectors,

i.e., a Taylor expansion in powers of exp(−2|q1|a), gives a monotonically increasing function

of film thickness, a. However, a more careful treatment reveals that this is an error. The

naive expansions of C.7 and C.10 for large a neglect an enhancement of the field spectrum

that occurs for small k. In fact, EWJN is enhanced as the thickness is decreased for any

good conductor. Specifically, the enhancement is preserved for a particular spatial Fourier

component of the Green’s function as long as |2q1εk | < 1. EWJN will eventually vanish as

a → 0, but this does not occur until an unphysically small thickness is reached, on the

order of 10−14 m for copper at T = 0K which is well below the applicability of the local

permittivity model.
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and A. C. Gossard, “Electrical control of spin relaxation in a quantum dot,” Phys.
Rev. Lett., vol. 100, p. 046803, 2008.

[139] A. V. Khaetskii and Y. V. Nazarov, “Spin-flip transitions between zeeman sublevels
in semiconductor quantum dots,” Phys. Rev. B., vol. 64, p. 125316, 2001.

[140] B. D. Josephson, “Possible new effects in superconductive tunnelling,” Phys. Lett.,
vol. 1, p. 251, 1962.

[141] M. Tinkham, Introduction to Superconductivity. McGraw-Hill, Inc., 1980.




