

 ARL-CR-0777 ● SEP 2015

 US Army Research Laboratory

High-Bandwidth Tactical-Network Data
Analysis in a High-Performance-Computing
(HPC) Environment: HPC Data Reduction
Framework

prepared by Brian Panneton
Technical and Project Engineering, LLC
Alexandria, VA

James Adametz
QED Systems, LLC
Aberdeen, MD

under contract W91CRB-11-D-0007

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-CR-0777 ● SEP 2015

 US Army Research Laboratory

High-Bandwidth Tactical-Network Data
Analysis in a High-Performance-Computing
(HPC) Environment: HPC Data Reduction
Framework

prepared by Brian Panneton
Technical and Project Engineering, LLC
Alexandria, VA

James Adametz
QED Systems, LLC
Aberdeen, MD

under contract W91CRB-11-D-0007

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

July 2012–December 2014
4. TITLE AND SUBTITLE

High-Bandwidth Tactical-Network Data Analysis in a High-Performance-
Computing (HPC) Environment: HPC Data Reduction Framework

5a. CONTRACT NUMBER

W91CRB-11-D-0007
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Brian Panneton and James Adametz
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Technical and Project Engineering, LLC QED Systems, LLC
Alexandria, VA Aberdeen, MD

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIH-C
Aberdeen Proving Ground, MD 21005

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

ARL-CR-0777

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the data reduction framework developed through the collaboration of the US Army Research
Laboratory’s Computational and Informational Sciences Directorate and the Army Test and Evaluation Center's Aberdeen
Test Center.

15. SUBJECT TERMS

tactical networks, data reduction, high-performance computing, data analysis, big data

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Kenneth Renard
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-4678
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. Design Choices 1

3. Hardware and Limitations 2

4. Framework Structure 2

4.1 Process Stage 4

4.1.1 File Parsers 4

4.1.2 Cut Modules 5

4.1.3 Worker Responsibilities 6

4.1.4 Receiver Responsibilities 6

4.2 Crunch Stage 7

4.2.1 Worker Responsibilities 7

4.2.2 Receiver Responsibilities 8

4.3 Phases 8

5. Conclusion 9

6. References 10

List of Symbols, Abbreviations, and Acronyms 11

Distribution List 12

iv

List of Figures

Fig. 1 High-level flow of HPC reduction ...3

Fig. 2 High-level flow of Phases ..4

Fig. 3 Process stage interactions within a Worker ...5

Fig. 4 PCAP file layout showing cuts ..5

Fig. 5 Data flow of Receiver ..7

Fig. 6 Dependencies between Phases ...8

1

1. Introduction

The purpose of the data reduction framework is to be an adaptive, scalable
framework that uses high-performance-computing (HPC) clusters to minimize the
computational reduction time of high-bandwidth tactical networking event test
data. Such events can produce anywhere between several gigabytes to over 1 TB of
raw collected data per day, requiring parsing, correlations, and aggregations to
create meaningful products for network analysts. Additionally, the data product
requirements can change drastically depending on the goals of the network test
event. The diverse nature of these events inspired a framework that allows quick
and easy development without the need for in-depth knowledge of the underlying
structure or parallel programming concepts. This report describes the data reduction
framework developed through the collaboration of the US Army Research
Laboratory’s (ARL’s) Computational and Informational Sciences Directorate and
the Army Test and Evaluation Center’s Aberdeen Test Center (ATC).

2. Design Choices

An important design choice for the reduction framework was to use the Python
programming language because of its portability, robust libraries, reasonable
performance, and knowledgeable support community. Python is an interpreted
language with a simple syntax, facilitating faster development and debugging.
These characteristics reduced development times and resulted in code that is easy
to update to meet new requirements.

To communicate between processes and exploit parallel processing, Message
Passing Interface (MPI) implementations were used via the Python package
mpi4py. Though MPI can be used to pass large amounts of data from one process
to another, the reduction framework primarily uses MPI for process flow control.

Because of the hardware where the reduction framework would generally run, a
design choice was to optimize more for data input and output (IO) than
computation. The reduction calculations tend to be less computationally intense and
more of a reorganization of the data.

The combination of these choices allows the code to be executed on any computer
or cluster with a shared file system. This flexibility allows developers to run small
instances of the framework locally on any operating system, including Linux and
Windows. However, the framework design choices intend it to be run on large
clusters.

2

3. Hardware and Limitations

The DoD Supercomputing Resource Center’s HPC machines at ARL allow the user
to parallelize the reduction to a great extent. Each machine generally consists of
hundreds of nodes networked by extremely fast interconnects, such as infiniband,1
and each node has between 8 and 16 CPU cores, depending on the system. This
architecture allows for computation jobs to be distributed across cores on multiple
nodes to achieve a high level of parallelization.

The nodes also employ a high-performance shared storage file system, such as the
Panasas File System or the General Purpose File System. These file systems allow
programs to ignore disk boundaries between nodes when accessing data. This
drastically simplifies file sharing between nodes and supports the design decision
to optimize for IO.

Each node is limited by the amount of runtime memory available to the processes
running on it. Since the nodes are set up to use the shared file systems, they lack
local disk storage, thus eliminating the possibility of swap space.2 If the total
runtime memory being used is about to exceed what can be stored in random access
memory, the node avoids crashing by terminating the program since it cannot page
out to swap. Because of this, special care must to be taken to limit memory usage
that grows with the size of the raw data.

4. Framework Structure

This section will explain each of the pieces of the framework followed by how they
fit together. The data reduction framework is structured to follow the map-reduce
paradigm augmented with a process pool for increased flexibility.

When a data reduction job is initiated, a set of running processes are assigned to the
job. Each process is supplied with the full set of code as well as a unique identifier
referred to as its “rank”. These ranks are used by the processes to determine which
parts of the code they are meant to execute. Within the data reduction framework,
the portions of code are segmented according to 3 roles: Master, Worker, and
Receiver. Each running process assumes one of these 3 roles.

Figure 1 depicts each of the 3 roles and their high-level responsibilities. The Master
controls the flow of the reduction through communication with the Workers and
Receivers. The Master is in charge of reading from the configuration file and
directing the execution of the job. In addition, the Master initiates barriers to
maintain the flow of the reduction and prevent race conditions.

3

Fig. 1 High-level flow of HPC reduction

There are 2 stages that occur during a phase of reduction: the Process stage and the
Crunch stage. During the Process stage, the Worker processes files provided by the
Master, producing a reduced set of results that gets sent to the Receiver. The
Receiver further reduces these results as they are received.

When the Master signals the switch from the Process stage to the Crunch stage, the
responsibilities of the Worker and Receiver change. The Receiver takes the
intermediate results and again reduces them, forming a data product. While this
occurs, the Worker may perform additional tasks that the Master provides.

An iteration of Process and Crunch is called a Phase, as shown in Fig. 2. Phases
can be chained together to form a large-scale reduction. Master calculates Phase
dependencies and moderates the transition between Phases. At the start of each
Phase, Workers and Receivers have their roles reassigned depending on the work
required. The following sections describe each role’s responsibilities during these
Phases.

4

Fig. 2 High-level flow of Phases

4.1 Process Stage

During the Process stage, the Master distributes the files read from the
configuration to the Workers. There are modules that can break up files into
smaller, more manageable chunks, as well as other modules that can consume
similar cuts and reduce the associated data. These are file parsers and cut modules,
respectively. Workers use these modules and then send the resulting data to the
Receivers.

4.1.1 File Parsers

A file parser takes a file as input and produces subsets of data, called a “cut”, as
well as some metadata from the file that may be used in processing. This is shown
on the left side of Fig. 3. A file parser can produce cuts of various types as it iterates
over the file. A simple example of a file with only one type of cut is a packet capture
file (PCAP). The PCAP file parser produces cuts that each contain a single network
packet. The PCAP file parser would also provide file-level metadata, such as the
file name and the capturing interface. This would look similar to Fig. 4.

5

Fig. 3 Process stage interactions within a Worker

Fig. 4 PCAP file layout showing cuts

4.1.2 Cut Modules

A cut module subscribes to one or more cut types and does some form of reduction
to the data it receives. This is shown on the right side of Fig. 3. The reduction action
could be either a restructuring or cataloging of the data, or it could be some kind of
calculation using the data as input. Based on the metadata that the cut module
receives from the file being parsed, the module can organize the data in more logical
ways. For example, a cut-counting cut module could receive data from both a PCAP
file parser and a comma-separated value (CSV) file parser. By observing the
metadata from each file, the cut module is able to keep count of each cut type it saw
from each source.

6

4.1.3 Worker Responsibilities

Workers are members of the process pool and perform tasks assigned to them by
the Master. These tasks can vary, but in general, during the Process stage the task
is to process a file. A Worker is in charge of controlling the interactions between
File Parsers and Cut Modules, as depicted in Fig. 3.

Workers get the list of available file parsers and cut modules from the Master based
on the configuration file set by the user. File parsers with no subscribed cut modules
are removed as well as cut modules with no file parsers to subscribe to. Figure 3
describes the interactions between a selected file parser and one of the cut modules,
with the individual interaction steps designated by yellow stars. During the Process
stage (Fig. 3, Step 1), Workers are provided with files to parse and associate an
available file parser with each one. The first file parser to claim the file will assume
responsibility for processing it, meaning no other file parsers can process the file.

Each Worker also loads all of the subscribed cut modules and passes the provided
file’s metadata to prepare the cut modules for the file (Fig. 3, Step 2). As a Worker’s
file parser iterates through the file and produces cuts, the cuts are shared with each
cut module that requests that cut type (Fig. 3, Step 3). After each cut module
consumes the cut, the file parser produces the next one. Eventually, all the file’s cuts
have been consumed, and the Worker is given a final chance to reduce and reorganize
the data. Once the data are in the final state (Fig. 3, Step 4), the Worker can store the
data on the file system or send the data to a Receiver. The file parser then gets a
chance to clean up and return memory back to the Worker (Fig. 3, Step 5).

4.1.4 Receiver Responsibilities

During the Process stage, Receivers accumulate all of the partially reduced data
from the cut modules being used. This is depicted in the top half of Fig. 5. In
general, there is one Receiver assigned to each cut module, but the framework also
allows for one Receiver to collect from multiple modules.

Each Worker knows which Receiver requires data from which cut modules and can
potentially send one message for each file to each Receiver. However, depending
on the size of the data, this could become a bottleneck. Thus, partially reduced data
are commonly written to temporary files, and only the location of the file is sent to
the Receiver. For each message received, the Receiver has the ability to reduce or
organize the data further. It continues this process until the Master sends a control
message to begin the Crunch stage.

7

Fig. 5 Data flow of Receiver

4.2 Crunch Stage

Once all files have been processed and all Workers have completed their tasks, the
Master can initiate the Crunch stage by sending a signal to each of the Receivers.
The crunch stage allows further data reduction or organization per Receiver and is
shown on the bottom half of Fig. 5.

4.2.1 Worker Responsibilities

When the Process stage ends and crunching begins, all Workers enter an idle state
and begin waiting for tasks. Tasks are processing requests made by Receivers
composed of a function and required data. They are initiated while a Receiver is
crunching and provide an opportunity to use the processing power of the Workers.
Each task is sent from the Receiver to the Master and forwarded to the next
available Worker. Once a Worker completes a task, it sends a message to the
initiating Receiver followed by a message to the Master requesting more work.

8

4.2.2 Receiver Responsibilities

In the Crunch stage, the Receiver further reduces the data it collected during the
Process stage. The Receiver has the opportunity to divvy out this work to the
waiting Workers. The operation of assigning computation tasks to a pool of
Workers is referred to as an Offload and can be viewed as a dynamic map-reduce
algorithm tailored to the needs of the Cut Module. In the event that a result needs
to be returned, a Receiver can Tag the Offload. Tagging an Offload tells the
offloading Worker that it must also transmit the result back to the Receiver.

As an Offload is occurring, the Receiver is free to do other computations. Once it
is ready for data returned from a Tagged Offload, the Receiver must explicitly ask
for it. If this request occurs before the Offload is complete, the Receiver will wait
until the Offloading Worker responds. The Receiver must make sure all of its
Offloads, Tagged or Untagged, have been accounted for before completion. As its
final output, the Receiver produces the final data product of the reduction job or an
intermediate data structure to be used in an upcoming Phase. Once all of the
Receivers complete the Crunch stage, the Master will continue to the next Phase
and the cycle will repeat.

4.3 Phases

As previously mentioned, Phases are sets of cut modules that are grouped based on
their dependencies on one another. Dependency lists are defined within each
module, and the reduction framework uses those lists to automatically include any
required modules. Because of this, it is only necessary for the configuration file to
specify the cut modules that the user is interested in rather than determine the
dependencies on their own. The number of Phases a reduction job has will be the
maximum length of a single cut module’s dependency chain, as shown in Fig. 6,
where the number of Phases is 2.

Fig. 6 Dependencies between Phases

9

Each Phase is set up to run both the Process stage and Crunch stage. Since each
Phase maps files to Workers during the Process stage, some files could be processed
multiple times. To avoid extraneous work, the framework can determine per Phase
whether the Process stage is necessary. In the instance that a cut module requests
no cut types or there are no file parsers available to produce the requested cut types,
the Process stage is skipped. In Fig. 6, the GPSRange cut module depends on the
GPS cut module. The GPS cut module produces an intermediate set of files that are
used as input to the GPSRange module, as depicted in the blue arrow in Fig. 6. The
GPSRange module requires no cuts and knows the structure of the GPS
intermediate files. Thus, it can skip the Process stage and go directly to Crunch
where it loads those files.

5. Conclusion

The design decisions of the reduction framework allow a developer to quickly
design a parallelized data reduction procedure that is both robust and flexible.
Combining the benefits of a process pool with those of a map-reduce-style
paradigm, the framework is able to scale well on large distributed computing
clusters. As previously mentioned in Feight et al.,3 the use of the reduction
framework during ATC’s High-Bandwidth Tactical Network test events has
significantly reduced the turnaround time for producing data products.

10

6. References

1. Infiniband Trade Association. About InfiniBand. Beaverton (OR): Infiniband
Trade Association; n.d. [accessed 2015 Jan 15].
http://www.infinibandta.org/content/pages.php?pg=about_us_infiniband.

2. Sims G. All about Linux swap space. San Francisco (CA): Linux.com; 2007
Sep 07. http://www.linux.com/news/software/applications/8208-all-about-
linux-swap-space [accessed 2015 Jan 15].

3. Renard KD, Feight JR, Amabile M, Adametz J. High-bandwidth tactical-
network data analysis in an HPC environment: introduction. Aberdeen Proving
Ground (MD): Army Research Laboratory (US); 2015 Sep. Report No.: ARL-
TR-7409.

11

List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

ATC US Army Aberdeen Test Center

HPC High-Performance Computing

IO input and output

MPI Message Passing Interface

PCAP packet capture

12

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

1 TECH AND PROJ ENGR LLC
 (PDF) B PANNETON

1 QED SYSTEMS LLC
 (PDF) J ADAMETZ

 1 DIR USARL
 (PDF) RDRL CIH C
 K RENARD

	List of Figures
	1. Introduction
	2. Design Choices
	3. Hardware and Limitations
	4. Framework Structure
	4.1 Process Stage
	4.1.1 File Parsers
	4.1.2 Cut Modules
	4.1.3 Worker Responsibilities
	4.1.4 Receiver Responsibilities

	4.2 Crunch Stage
	4.2.1 Worker Responsibilities
	4.2.2 Receiver Responsibilities

	4.3 Phases

	5. Conclusion
	6. References
	List of Symbols, Abbreviations, and Acronyms

