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1. Introduction 

The purpose of the data reduction framework is to be an adaptive, scalable 
framework that uses high-performance-computing (HPC) clusters to minimize the 
computational reduction time of high-bandwidth tactical networking event test 
data. Such events can produce anywhere between several gigabytes to over 1 TB of 
raw collected data per day, requiring parsing, correlations, and aggregations to 
create meaningful products for network analysts. Additionally, the data product 
requirements can change drastically depending on the goals of the network test 
event. The diverse nature of these events inspired a framework that allows quick 
and easy development without the need for in-depth knowledge of the underlying 
structure or parallel programming concepts. This report describes the data reduction 
framework developed through the collaboration of the US Army Research 
Laboratory’s (ARL’s) Computational and Informational Sciences Directorate and 
the Army Test and Evaluation Center’s Aberdeen Test Center (ATC). 

2. Design Choices 

An important design choice for the reduction framework was to use the Python 
programming language because of its portability, robust libraries, reasonable 
performance, and knowledgeable support community. Python is an interpreted 
language with a simple syntax, facilitating faster development and debugging. 
These characteristics reduced development times and resulted in code that is easy 
to update to meet new requirements.  

To communicate between processes and exploit parallel processing, Message 
Passing Interface (MPI) implementations were used via the Python package 
mpi4py. Though MPI can be used to pass large amounts of data from one process 
to another, the reduction framework primarily uses MPI for process flow control.  

Because of the hardware where the reduction framework would generally run, a 
design choice was to optimize more for data input and output (IO) than 
computation. The reduction calculations tend to be less computationally intense and 
more of a reorganization of the data. 

The combination of these choices allows the code to be executed on any computer 
or cluster with a shared file system. This flexibility allows developers to run small 
instances of the framework locally on any operating system, including Linux and 
Windows. However, the framework design choices intend it to be run on large 
clusters. 
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3. Hardware and Limitations 

The DoD Supercomputing Resource Center’s HPC machines at ARL allow the user 
to parallelize the reduction to a great extent. Each machine generally consists of 
hundreds of nodes networked by extremely fast interconnects, such as infiniband,1 
and each node has between 8 and 16 CPU cores, depending on the system. This 
architecture allows for computation jobs to be distributed across cores on multiple 
nodes to achieve a high level of parallelization. 

The nodes also employ a high-performance shared storage file system, such as the 
Panasas File System or the General Purpose File System. These file systems allow 
programs to ignore disk boundaries between nodes when accessing data. This 
drastically simplifies file sharing between nodes and supports the design decision 
to optimize for IO. 

Each node is limited by the amount of runtime memory available to the processes 
running on it. Since the nodes are set up to use the shared file systems, they lack 
local disk storage, thus eliminating the possibility of swap space.2 If the total 
runtime memory being used is about to exceed what can be stored in random access 
memory, the node avoids crashing by terminating the program since it cannot page 
out to swap. Because of this, special care must to be taken to limit memory usage 
that grows with the size of the raw data. 

4. Framework Structure 

This section will explain each of the pieces of the framework followed by how they 
fit together. The data reduction framework is structured to follow the map-reduce 
paradigm augmented with a process pool for increased flexibility.  

When a data reduction job is initiated, a set of running processes are assigned to the 
job. Each process is supplied with the full set of code as well as a unique identifier 
referred to as its “rank”. These ranks are used by the processes to determine which 
parts of the code they are meant to execute. Within the data reduction framework, 
the portions of code are segmented according to 3 roles: Master, Worker, and 
Receiver. Each running process assumes one of these 3 roles. 

Figure 1 depicts each of the 3 roles and their high-level responsibilities. The Master 
controls the flow of the reduction through communication with the Workers and 
Receivers. The Master is in charge of reading from the configuration file and 
directing the execution of the job. In addition, the Master initiates barriers to 
maintain the flow of the reduction and prevent race conditions. 
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Fig. 1 High-level flow of HPC reduction 

There are 2 stages that occur during a phase of reduction: the Process stage and the 
Crunch stage. During the Process stage, the Worker processes files provided by the 
Master, producing a reduced set of results that gets sent to the Receiver. The 
Receiver further reduces these results as they are received. 

When the Master signals the switch from the Process stage to the Crunch stage, the 
responsibilities of the Worker and Receiver change. The Receiver takes the 
intermediate results and again reduces them, forming a data product. While this 
occurs, the Worker may perform additional tasks that the Master provides. 

An iteration of Process and Crunch is called a Phase, as shown in Fig. 2. Phases 
can be chained together to form a large-scale reduction. Master calculates Phase 
dependencies and moderates the transition between Phases. At the start of each 
Phase, Workers and Receivers have their roles reassigned depending on the work 
required. The following sections describe each role’s responsibilities during these 
Phases. 
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Fig. 2 High-level flow of Phases 

4.1 Process Stage 

During the Process stage, the Master distributes the files read from the 
configuration to the Workers. There are modules that can break up files into 
smaller, more manageable chunks, as well as other modules that can consume 
similar cuts and reduce the associated data. These are file parsers and cut modules, 
respectively. Workers use these modules and then send the resulting data to the 
Receivers. 

4.1.1 File Parsers 

A file parser takes a file as input and produces subsets of data, called a “cut”, as 
well as some metadata from the file that may be used in processing. This is shown 
on the left side of Fig. 3. A file parser can produce cuts of various types as it iterates 
over the file. A simple example of a file with only one type of cut is a packet capture 
file (PCAP). The PCAP file parser produces cuts that each contain a single network 
packet. The PCAP file parser would also provide file-level metadata, such as the 
file name and the capturing interface. This would look similar to Fig. 4. 
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Fig. 3 Process stage interactions within a Worker 

 

Fig. 4 PCAP file layout showing cuts 

4.1.2 Cut Modules 

A cut module subscribes to one or more cut types and does some form of reduction 
to the data it receives. This is shown on the right side of Fig. 3. The reduction action 
could be either a restructuring or cataloging of the data, or it could be some kind of 
calculation using the data as input. Based on the metadata that the cut module 
receives from the file being parsed, the module can organize the data in more logical 
ways. For example, a cut-counting cut module could receive data from both a PCAP 
file parser and a comma-separated value (CSV) file parser. By observing the 
metadata from each file, the cut module is able to keep count of each cut type it saw 
from each source. 
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4.1.3 Worker Responsibilities 

Workers are members of the process pool and perform tasks assigned to them by 
the Master. These tasks can vary, but in general, during the Process stage the task 
is to process a file. A Worker is in charge of controlling the interactions between 
File Parsers and Cut Modules, as depicted in Fig. 3. 

Workers get the list of available file parsers and cut modules from the Master based 
on the configuration file set by the user. File parsers with no subscribed cut modules 
are removed as well as cut modules with no file parsers to subscribe to. Figure 3 
describes the interactions between a selected file parser and one of the cut modules, 
with the individual interaction steps designated by yellow stars. During the Process 
stage (Fig. 3, Step 1), Workers are provided with files to parse and associate an 
available file parser with each one. The first file parser to claim the file will assume 
responsibility for processing it, meaning no other file parsers can process the file. 

Each Worker also loads all of the subscribed cut modules and passes the provided 
file’s metadata to prepare the cut modules for the file (Fig. 3, Step 2). As a Worker’s 
file parser iterates through the file and produces cuts, the cuts are shared with each 
cut module that requests that cut type (Fig. 3, Step 3). After each cut module 
consumes the cut, the file parser produces the next one. Eventually, all the file’s cuts 
have been consumed, and the Worker is given a final chance to reduce and reorganize 
the data. Once the data are in the final state (Fig. 3, Step 4), the Worker can store the 
data on the file system or send the data to a Receiver. The file parser then gets a 
chance to clean up and return memory back to the Worker (Fig. 3, Step 5). 

4.1.4 Receiver Responsibilities 

During the Process stage, Receivers accumulate all of the partially reduced data 
from the cut modules being used. This is depicted in the top half of Fig. 5. In 
general, there is one Receiver assigned to each cut module, but the framework also 
allows for one Receiver to collect from multiple modules.  

Each Worker knows which Receiver requires data from which cut modules and can 
potentially send one message for each file to each Receiver. However, depending 
on the size of the data, this could become a bottleneck. Thus, partially reduced data 
are commonly written to temporary files, and only the location of the file is sent to 
the Receiver. For each message received, the Receiver has the ability to reduce or 
organize the data further. It continues this process until the Master sends a control 
message to begin the Crunch stage. 
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Fig. 5 Data flow of Receiver 

4.2 Crunch Stage 

Once all files have been processed and all Workers have completed their tasks, the 
Master can initiate the Crunch stage by sending a signal to each of the Receivers. 
The crunch stage allows further data reduction or organization per Receiver and is 
shown on the bottom half of Fig. 5. 

4.2.1 Worker Responsibilities 

When the Process stage ends and crunching begins, all Workers enter an idle state 
and begin waiting for tasks. Tasks are processing requests made by Receivers 
composed of a function and required data. They are initiated while a Receiver is 
crunching and provide an opportunity to use the processing power of the Workers. 
Each task is sent from the Receiver to the Master and forwarded to the next 
available Worker. Once a Worker completes a task, it sends a message to the 
initiating Receiver followed by a message to the Master requesting more work.  
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4.2.2 Receiver Responsibilities 

In the Crunch stage, the Receiver further reduces the data it collected during the 
Process stage. The Receiver has the opportunity to divvy out this work to the 
waiting Workers. The operation of assigning computation tasks to a pool of 
Workers is referred to as an Offload and can be viewed as a dynamic map-reduce 
algorithm tailored to the needs of the Cut Module. In the event that a result needs 
to be returned, a Receiver can Tag the Offload. Tagging an Offload tells the 
offloading Worker that it must also transmit the result back to the Receiver. 

As an Offload is occurring, the Receiver is free to do other computations. Once it 
is ready for data returned from a Tagged Offload, the Receiver must explicitly ask 
for it. If this request occurs before the Offload is complete, the Receiver will wait 
until the Offloading Worker responds. The Receiver must make sure all of its 
Offloads, Tagged or Untagged, have been accounted for before completion. As its 
final output, the Receiver produces the final data product of the reduction job or an 
intermediate data structure to be used in an upcoming Phase. Once all of the 
Receivers complete the Crunch stage, the Master will continue to the next Phase 
and the cycle will repeat. 

4.3 Phases 

As previously mentioned, Phases are sets of cut modules that are grouped based on 
their dependencies on one another. Dependency lists are defined within each 
module, and the reduction framework uses those lists to automatically include any 
required modules. Because of this, it is only necessary for the configuration file to 
specify the cut modules that the user is interested in rather than determine the 
dependencies on their own. The number of Phases a reduction job has will be the 
maximum length of a single cut module’s dependency chain, as shown in Fig. 6, 
where the number of Phases is 2. 

 
Fig. 6 Dependencies between Phases 
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Each Phase is set up to run both the Process stage and Crunch stage. Since each 
Phase maps files to Workers during the Process stage, some files could be processed 
multiple times. To avoid extraneous work, the framework can determine per Phase 
whether the Process stage is necessary. In the instance that a cut module requests 
no cut types or there are no file parsers available to produce the requested cut types, 
the Process stage is skipped. In Fig. 6, the GPSRange cut module depends on the 
GPS cut module. The GPS cut module produces an intermediate set of files that are 
used as input to the GPSRange module, as depicted in the blue arrow in Fig. 6. The 
GPSRange module requires no cuts and knows the structure of the GPS 
intermediate files. Thus, it can skip the Process stage and go directly to Crunch 
where it loads those files. 

5. Conclusion 

The design decisions of the reduction framework allow a developer to quickly 
design a parallelized data reduction procedure that is both robust and flexible. 
Combining the benefits of a process pool with those of a map-reduce-style 
paradigm, the framework is able to scale well on large distributed computing 
clusters. As previously mentioned in Feight et al.,3 the use of the reduction 
framework during ATC’s High-Bandwidth Tactical Network test events has 
significantly reduced the turnaround time for producing data products. 
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