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1 SUMMARY 

The goal of this project was to investigate band structure engineering in infared detectors based 
on Type II superlattice detectors (T2SLs). The origin of high dark current levels in the 
InAs/In(Ga)Sb T2SL infrared (IR) photodetectors was to be investigated. The presence of 
Shockley-Read-Hall (SRH) centers degrade the minority carrier lifetime and have been identified 
as one of the major reasons for the high dark current of T2SL material. The ultimate goal of the 
program is to decrease the dark current and thereby increase the operating temperature of T2SL 
detectors through a systematic study involving the growth, fabrication and characterization of 
T2SL detectors.  

This was a very successful project with barrier engineering in interband cascade superlattice 
detectors and quantum dots in a well detector. The first interband cascade focal plane array 
(FPA) was reported as a result of this work. There were a total of seven publications that resulted 
from partial support from this work. 

     2   INTRODUCTION 

We report our experimental investigation on the influence of electron barriers (eBs) in mid-IR 
interband cascade photodetectors.  Even though earlier theoretical projection indicates that an eB 
with 2-pairs of GaSb/AlSb quantum wells (QWs) is sufficient to block electrons directly 
tunneling between stages, our experimental results show that a thicker electron barrier (with 6-
pairs of GaSb/AlSb QWs) could significantly reduce the device dark current, with little influence 
on the optical performance.  Interband cascade devices with a five stage absorber have 
demonstrated a dark current density of 8.32×10-7 A/cm2 (at -50 mV), which is within a factor of 2 
of the Rule 07 and a Johnson-limited D* of 1.81×1011 cmHz1/2/W (at 3.8 µm) at 150K. 

Antimony-based T2SLs are being recognized as a viable/competitive alternative to HgCdTe for 
high-performance IR imaging systems [1].  For the past several years, T2SL technology has 
received considerable amount of scientific and technological interest.  Owing to the great 
flexibility/versatility of energy band alignment in the nearly lattice-matched “6.1-Å-family” 
(InAs, GaSb, AlSb, and their alloys) [2], and reduced Auger recombination rate and heavier 
electron effective masses, various advanced T2SL-based photodetector architectures have been 
implemented, leading to significantly improved detector performances [3-10].  Among them are 
the double heterostructures with graded-gap W-structure [3] and M-structure [4], as well as 
unipolar-barrier detectors [5-6], complementary-barrier IR detectors [7], and interband cascade 
IR photodetectors (ICIPs) [8-10]. The interband cascade detector has three regions and the 
principle of operation is shown in Fig. 1. The first is the absorber region in which photo-excited 
carriers are generated, the second is a hole barrier (hB) that allows transport through electron 
relaxation and the third is an electron barrier (eB) that enables tunneling into the next stage [10]. 
The hB typically consists of coupled multi-quantum wells (MQWs), such that a series of stair-
case energy ladders is formed in the conduction band.  In our design, a type-II broken-gap band 
alignment between the hB and eB is adopted.  Such a design facilitates a fast carrier relaxation 
path for photo-generated electrons, leading to efficient collection of photo-generated carriers [9-
10].  As schematically shown in Fig. 1, due to the existence of the eB on one side (right) of the 
absorber, combined with the fast relaxation channel at the other side (left), such a preferential 
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electron transport path (left to right in Fig. 1) enables an interband cascade device to have a 
junction-like rectification behavior and photovoltaic operation [9-11].  The cascade (or multi-
junction) scheme has introduced an additional degree of freedom/flexibility for T2SL-based IR 
detector design, and could potentially open a new dimension for IR photodetector design.  While 
some preliminary experimental results have shown the promising prospect of interband cascade 
photodetectors, some of the fundamental device physics remains unclear.  In such a relatively 
complicated structure, understanding the underlying device physics as well as finding the 
optimized design parameters is critical.  

Figure 1.  Band diagram of a (simplified) mid-IR interband cascade photodetector relevant 
envelop wave-functions and their energy levels are also shown. 

Figure 1 also shows the structure has been modified for better presentation. The incoming 
photons are absorbed in the InAs/GaSb SL absorber, generating electron-hole pairs. The 
electrons will diffuse into the electron relaxation region, and then effectively transport into the 
valence band of the next stage, through fast longitudinal-optical-phonon-assisted, intraband 
relaxation and also interband tunneling.  
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        3  METHODS, ASSUMPTIONS, and PROCEDURES 
 
In this project, we examined the influence of electron barrier design on the electrical and optical 
performance of mid-IR interband cascade detectors.  As reported in Ref. 10, theoretical 
investigations based on a two-band kp model suggest that the estimated direct tunneling time 
across the double GaSb/AlSb QW is longer than 100 s.  Even though a substantially improved 
electrical performance was reported and mainly attributed to the “enhanced electron barrier”, no 
qualitative investigations or comparisons were made.  It is still unclear whether such a relatively 
thin electron barrier (~17 nm), as compared to typical unipolar barrier designs (~100-200 nm), is 
sufficient to block the carriers from passing through.  This is especially the case since other 
transport paths, such as trap-assist tunneling and thermionic emissions, were not included in the 
modeling.  Besides, whether a thicker eB would hinder the photo-carrier transport or would be 
helpful to properly implement the interband cascade photodetector design needs to be 
determined.  Here, we report our experimental investigation, on the influence of the thickness of 
the electron barrier on both the electrical and optical performances in mid-IR interband cascade 
detectors.  Devices with different electron barrier thicknesses were designed, grown, fabricated, 
characterized and analyzed in detail.  It was concluded that a thicker electron barrier was 
instrumental in reducing the dark current, while having no impact on the strength of the optical 
signal.  

 
The wafers were grown on Zn-doped 2” (001) GaSb substrates with a Veeco Gen-10 solid-
source molecular beam epitaxy system, equipped with group III sources and valved group V 
crackers.  The epi-structure starts with a 0.5 µm p-type GaSb buffer layer, followed by a 5-stage 
interband cascade structure with moderately thin InAs/GaSb T2SL as absorber, and terminated 
with a 45-nm-thick n-type InAs top contact layer.  Each cascade stage is composed of 30-periods 
(~140 nm) of non-intentionally doped InAs/GaSb [~6 ML/9 ML (ML = monolayer)] SL 
absorber, sandwiched between the electron-relaxation and the eB regions.  The electron-
relaxation region is composed of InAs/Al(In)Sb coupled MQWs to form a stair-case energy 
ladder in the conduction band, and the separation between adjacent energy levels is designed to 
be close to the longitudinal-optical-phonon energy [10].  As indicated in Fig. 1, the uppermost 
energy level in the first InAs QW is close to the conduction miniband in the InAs/GaSb SL, and 
the bottom energy-level in the final InAs well is positioned below the valence-band edge of the 
adjacent GaSb layer in the eB region, allowing the interband tunneling of extracted carriers into 
the next stage.  The eB consists of GaSb/AlSb MQWs, and the estimated barrier height in the 
conduction band is ~0.68 eV.  The other role of the GaSb/AlSb MQWs is also the need to 
facilitate hole transport (in the valence band) towards the type-II broken-gap interface.  Three 
samples with different eB thickness were implemented.  Their electron barriers consist of 2-pair, 
4-pair, and 6-pair of GaSb/AlSb QWs (the samples will be denoted as 2eB, 4eB, and 6eB 
hereafter), with each layer thicknesses slightly adjusted for smooth hole transport.  The nominal 
thicknesses of the eB layers are 17, 33 and 48 nm for the 2eB, 4eB and 6eB samples, 
respectively. 
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  4  RESULTS and DISCUSSION 

 
After growth, the epitaxial wafers were characterized by x-ray diffraction to monitor crystal 
quality and layer thicknesses.  The estimated InAs/GaSb SL periods are about 47.7 Å (2.1% 
thicker than designed), with full width half maximum of around 30 arc-seconds. The overall 
strain is controlled within 50 arc-seconds for all the samples. The three samples were then 
processed into deep-etched mesa-type photodiodes, by using standard contact ultraviolet 
lithography and wet-chemical etching.  The circular mesa-size ranged from 25 to 400 µm in 
diameter. A 200-nm-thick SiNx film was then deposited for sidewall passivation and isolation.  
Top and bottom contacts were formed by e-beam evaporated Ti/Au.  No anti-reflectance coating 
was applied on top of the mesa.  Devices were mounted on ceramic leadless chip carriers, and 
then mounted in the cryostat to characterize their optical and electrical properties. 

 
The electrical performances of the three ICIP devices are characterized over a wide range of 
temperatures.  The dark current densities at -50 mV are as low as 4.24 nA/cm2 at 80 K and 0.83 
µA/cm2 at 150 K which is comparable to the reported state-of-the-art values [12].  Note that the 
dark current at lower temperatures could be overestimated due to the setup limitation and 
imperfect cold shielding.  Figure 2 shows the dark current density of the three ICIP devices as a 
function of voltage at various temperatures.  As indicated in the figure, at lower temperatures, 
devices with thicker eB have significantly lower dark current, particularly under higher operating 
bias.  We believe that such a steeper slope with respect to the operation bias could be an 
indication that tunneling might be one of the primary dark current components in the thinner 
devices.  As the temperature increases, the difference becomes marginal, which could be an 
indication that the generation-recombination (G-R) or diffusion current is becoming dominate at 
higher temperatures.   
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Figure 2.  The dark current density of the mid-IR interband cascade detectors as functions 

of bias voltages at various temperatures.  Each of the operation temperatures is labeled 
near the J-V curves. 

 
Figure 3 shows the Arrhenius plot of dark current density at -50 mV as well as the dynamic 
resistance-area product (R0A) of three samples.  As one can see from Fig. 3, the sample with the 
thicker eB shows appreciable influence on the dark current density for temperatures up to 280 K, 
even under lower operating bias.  The dark current density is 9.27×10-9 A/cm2 for the 6eB 
sample at 100 K, and 4.35×10-8 A/cm2 for the 2eB sample. The R0A of the 6eB sample exceeds 
6.15×107 Ωcm2 at 100 K (42 times higher compared with the 2eB sample), and 2.10×104 Ωcm2 
at 150 K (over 3-times higher than the 2eB sample), which is also comparable to the reported 
state-of-the-art T2SL detectors [12].  The dark current is as low as 1.98×10-6 A/cm2 at 160 K, 
which is a factor of two greater than the dark current predicted for HgCdTe by “Rule 07” [13].  
At temperatures higher than 280 K, the device performances start to converge as the dark current 
is less sensitive to the eB thicknesses.  As stated earlier, the marginal difference attributed to the 
dark current is mostly due to G-R or diffusion components.  
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Figure 3.  The Arrhenius plots of the electrical performances of the ICIPs, the dark current 

density (measured at -50 mV) as well as zero-bias resistance-area-product under various 
temperatures are shown. 

 
The response spectra were obtained from a Fourier-transform IR spectrometer, and were 
calibrated by radiometric measurements with a black-body at 1000 K.  Figure 4a shows the 
calibrated optical responsivity spectra of samples under zero-bias at various temperatures.  The 
100% cut-off wavelength of the ICIPs is around 4.2 μm at 80 K, and 4.8 μm at 300 K.  The 
relatively low responsivity is attributed to the relatively thin absorber (the total thickness is 0.7 
µm) and the 1/N (N is the number of stages) photoconductive gain inherently due to the 
interband cascade scheme [9].  As seen in Fig. 4b, the responsivities of the ICIPs at zero-bias are 
around 0.10 A/W at 3.6 µm and 80 K, then gradually decrease down to 0.08 A/W around 160 K, 
and then ramp up to 0.13 A/W at temperatures up to 360 K.  The thin lines with smaller symbols 
in Fig. 4b are the responsivities of each of the devices at moderately high reverse bias where the 
response at 3.6 µm starts to saturate.  The saturation responsivity increased from ~0.11 A/W at 
80 K, which corresponds to an absorption quantum efficiency of 13.3%, to ~0.13 A/W at 200 K.  
It is believed that the decrease of zero-bias responsivity at moderate temperatures is due to the 
background carrier concentration change and p-type to n-type inversion [14].  Such change could 
introduce some band-bending, which would alter the band alignment and could produce 
unwanted carrier blocking barriers and deteriorate the zero-bias photo-carrier transport.  With the 
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assistance of a stronger reverse bias, more photo-carriers will be collected with the aid of drift, 
resulting in a monotonic increase in the saturated responsivity.  
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Figure 4.  Optical performances of the interband cascade devices under various operation 

temperatures. 
 
In Figure 4 (a) the response spectra measured at zero-bias at different temperatures and (b) the 
zero-bias responsivity at 3.6 and 4.0 µm as a function of operation temperature.  The saturated Ri 
at 3.6 µm at lower temperatures are also shown. 
 
In contrast to unipolar barrier detectors, which are typically operated at a slight reversed bias 
(around -0.1 to -0.3 V) for optimum signal-to-noise ratio (SNR), the efficient carrier extraction 
under zero-bias enables ICIPs to be operated at zero-bias.  As shown in Figure 5, even with the 
un-optimized design, where the signal under zero-bias is only 55-68% of its saturation value, the 
maximized SNR is obtained under zero-bias.  This could be advantageous for IR detection, 
especially for high temperature operations. 
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Figure 5.  Measured signal-to-noise ratio as a function of bias voltage at various 
temperatures. The detectors were illuminated using a 1000 K blackbody, the signal 

modulated by an optical chopper placed in front of the cryostat. 
 

Even with the relatively low responsivity, the improved electrical performances in the ICIP 
devices lead to improved values of the signal-to-noise ratio and detectivity.  Figure 6 is the 
Johnson-noise limited detectivity spectra for sample 6eB under various temperatures, extracted 
from the measured responsivity spectra and R0A.  The Johnson-noise limited D* reaches 
8.62×1012 Jones at 3.8 µm and 80 K, and 9.73×1010 Jones at 160 K.  Table 1 summarizes the 
optical and electrical performance of all samples at different temperatures.  The dark current 
density at -50 mV is 4.57×10-5 A/cm2 at 200 K, and the extracted R0A is 983 Ω cm2, 
corresponding to a Johnson-noise limited D* of 2.40×1010 Jones at 3.8 µm.  Preliminary attempts 
of 320 × 256 FPAs were made on the 4eB and 6eB samples.  The FPAs were operational at 
temperatures up to 150 K, with noise-equivalent temperature differences as low as 20 mK at 80 
K. Further investigations are underway and will be reported elsewhere.  
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Figure 6.  Johnson-noise limited D* spectra of sample 6eB at various temperatures.  The 
background-limited operation temperature is estimated to be around 150 K. 

 
 
 

Table. 1  Electrical and optical performances of the mid-wave ICIPs. 
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      5  CONCLUSIONS 

In summary, the influence of electron barrier design, on the electrical and optical properties of 
mid-IR interband cascade photodetectors, was evaluated.  Our experimental investigations 
showed that the further enhancement of the electron barrier will significantly reduce the device 
dark current, with little influence on optical performance.  Our results also indicate that a 
slightly-doped InAs/GaSb T2SL would reduce the influence of background carrier concentration 
variation with temperature, and would be preferential for consistent temperature behavior. 
Further investigation is required to find the optimum electron barrier designs.  The improvements 
in the electrical performance have led to substantial performance improvements.  An R0A of 
4990 Ωcm2 and Johnson-limited D* of 1.82×1011 cmHz1/2/W at 3.8 µm at 150 K were obtained. 
It is believed that the great versatility of the interband cascade photodetectors could be further 
explored for application-targeted optimization and high performance IR imaging applications. 
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LIST OF ACRONYMS 

 
eB   electron barrier 
 
FPA  Focal plane array 
 
G-R   generation-recombination 
 
hB   hole barrier 
 
ICIP   interband cascade infrared photodetectors 
 
IR  Infrared 
 
ML   monolayer 
 
MQW   multi-quantum well 
 
QW   quantum well 
 
SRH   Shockley-Read-Hall 
 
SNR   signal-to-noise ratio 
 
T2SL   type-II superlattice 
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