
VIDEO TO TEXT (V2T) IN WIDE AREA MOTION IMAGERY

INTELLIGENT FUSION TECHNOLOGY, INC.

SEPTEMBER 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-215

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2015-215 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S /
 MICHAEL J. WESSING

 / S /
ERIC BLASCH
Work Unit Manager Deputy Chief, Information Intelligence

 Systems and Analysis Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

SEPTEMBER 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

JUN 2013 – JUL 2015
4. TITLE AND SUBTITLE

VIDEO TO TEXT (V2T) IN WIDE AREA MOTION IMAGERY

5a. CONTRACT NUMBER
FA8750-13-C-0110

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
63788F / 635322

6. AUTHOR(S)

Genshe Chen, Dan Shen, and Haibin Ling

5d. PROJECT NUMBER
E3FM

5e. TASK NUMBER
IF

5f. WORK UNIT NUMBER
T1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Prime Sub
Intelligent Fusion Technology, Inc. Temple University
20271 Goldenrod Lane, Suite 2066 Dept of Computer & Info Science
Germantown, MD 20876 382 SERC Building, 1925 N. 12th St.

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIEA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-215
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2015-4224
Date Cleared: 4 SEP 2015
13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this project, the Intelligent Fusion Technology, Inc. (IFT) team has developed a hard (video) and soft (text, voice chat)
information fusion approach to automatically generate videos with annotation that can be easily used by future human or
machine users. The tracking results following the standard format (.kw18) will also be output in a separated file for
interfacing with other modules in the E2AT system integration. In the implementation, each entity corresponds to one
tracklet with a unique track ID. Each entity consists of two sets of attributes: common attributes and uncommon
attributes. Common attributes are those which will not change over the lifetime of a target track like type and color of the
target. Uncommon attributes are those changing over time like target location, direction, and activity. The same sets of
attribute definitions are used for entities constructed from both hard and soft data. The association, linkage, fusion, and
concatenation can improve the visual tracking results through multi-intelligence information fusion.

15. SUBJECT TERMS
Visual tracking, Hard-soft fusion, automated video annotation, activity detection, event extraction, pattern of life, L1
tracker, cloud computing, deep learning.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
ERIK BLASCH

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

108 N/A

Philadelphia, PA 19122

i

TABLE OF CONTENTS

List of Figures .. iii
List of Tables ... v
Acknowledgments.. vi

1 Summary ... 1

2 Introduction ... 2

2.1 Problem Statement ... 2
2.2 Example Scenarios ... 2

3 Methods, Assumptions, and Procedures ... 5

3.1 Visual Trackers ... 5

3.1.1 L1 tracker .. 5
3.1.2 Other Trackers --- Review .. 9

3.2 Tracking System and Integration ... 16

3.2.1 Video Frame Registration ... 16
3.2.2 Motion Detection .. 29
3.2.3 Blur-Resilient Tracking Using Group Sparsity ... 32
3.2.4 Cloud Implementation of Registration and Tracking.. 38
3.2.5 Integration with GATER Framework and Kitware VsPlay 40

3.3 Hard and Soft Data Fusion ... 50

3.3.1 CMU Sphinx for Speech Recognition .. 50
3.3.2 Text Matching Based on Big Data Analysis ... 54
3.3.3 Hard-Soft Information Fusion... 57

3.4 Event Detection .. 65

3.4.1 Introduction ... 65
3.4.2 Action Recognition based on spatial-temporal features ... 66
3.4.3 Human-Object Interactions and Group Activities ... 67
3.4.4 An event detection framework .. 68
3.4.5 Event Types ... 70
3.4.6 Event Detection based on L1 Tracking Results .. 72

4 Results and Discussion ... 74

4.1 Results of tracking and multi-target association .. 74
4.2 Tracker Comparison ... 79

4.2.1 Virat Dataset .. 79
4.2.2 Skybox Dataset ... 80

4.3 Hard-Soft and Hard-Hard Fusion ... 82

4.3.1 Software and GUI for Fusion .. 82

ii

4.3.2 Results ... 85

4.4 Event Detection .. 88

5 Conclusions ... 91

6 References ... 92

List of Acronyms... 99

iii

LIST OF FIGURES

Figure 1: System Diagram .. 1
Figure 2: A Drug Dealer Tracking Scenario with Video Output and Text Input 3
Figure 3: Joint semantic and appearance query. ... 3
Figure 4: Video Tools .. 4
Figure 5: The block diagram of the TLD framework ..11
Figure 6: Principle of on-line boosting for feature selection .. 13
Figure 7: The process of observation model decomposition and the process of tracker
decomposition [81]. .. 14
Figure 8: Likelihood of Features Tracking (LoFT) processing pipeline....................................... 15
Figure 9: Thresholded output of the 2D Beltrami tensor applied to the image shown. 18
Figure 10: Region correspondences based on SAD matching. ... 20
Figure 11: (a) PF block-based region correspondence vectors show the high quality of the
matches. (b) Object motion blocks marked by red points are discarded, green ones kept. 20
Figure 12: Simulated results to demonstrate the importance of using normalization step in DLT
homography estimation algorithm. ... 24
Figure 13: Simulated results to demonstrate the importance of using normalization step in DLT
homography estimation algorithm. ... 26
Figure 14: Evaluation of the robustness of the proposed RANSAC-based homography estimation
in Alg. 7. .. 28
Figure 15: Plot of 𝑁𝑁 = log (1 − 𝑝𝑝)log (a − 1 − g4), ... 28
Figure 16: Intution of the BReT tracker .. 33
Figure 17: Web service based GUI showing the input video (left) and the tracking results (right).
... 39
Figure 18: The system architecture of GATER ... 40
Figure 19: The successful build of GATER in windows 8.1 with VC 2013. 41
Figure 20: vsPlay screen layout .. 48
Figure 21: A flowchart for the integration with GATER and VsPlay ... 49
Figure 22: The screen shot of a demo run with Virat data, GATER, and VsPlay 50
Figure 23: The folder structure of CUMSphinx.. 51
Figure 24: A system of process data using Pattern matching on Hadoop. 55
Figure 25: Job sequence of Pattern Matching on Hadoop .. 57
Figure 26: Workflow of the proposed fusion scheme for combining differently labeled tracklets
of the same moving target into a single long-duration track with unique track ID 58
Figure 27: A sample entity constructed from the track with ID = 1 from Creech data set. 59
Figure 28: A sample entity constructed from the chat message with ID = 3 from Creech data set.
... 60
Figure 29: The proposed hard-hard entity linkage workflow. .. 65
Figure 30: The hierarchical approach-based taxonomy of human activity analysis 66
Figure 31: 3-D space-time annotation of multi targets ... 67
Figure 32: Interaction of a human and a car in a space-time 3D dimension 68
Figure 33: Algorithm Framework ... 69
Figure 34: Two person walking. ... 72
Figure 35: Sequence 1 results. .. 74
Figure 36: Sequence 2 results. .. 75

iv

Figure 37: Sequence 3 results trial 2, starting from frame 87. .. 76
Figure 38: Association result on dataset 1 .. 77
Figure 39: Association result on dataset 3 .. 77
Figure 40: Association result on dataset 2 .. 78
Figure 41: Tracking results of different algorithms in video "car" ... 79
Figure 42: The screen shot of the Skybox Imaging HD Video ... 80
Figure 43: The tracking results of LOFT tracker displayed in Kitware vsPlay 82
Figure 44: GUI layout of the developed video-to-text fusion software prototype 83
Figure 45: A screen shot illustrating the issue of the same target labeled differently during the
course of tracking process. The targets with labels 21 and 23 are originally labeled as 1 and 2. . 85
Figure 46: Multiple targets running event detection. .. 89
Figure 47: Non false detection of 'getting into car'. .. 89
Figure 48: 'getting into car' event. ... 90
Figure 49: Another successfully detected event 'getting into car'. .. 90

v

LIST OF TABLES

Table 1: The average tracking errors on Virat dataset ... 80
Table 2: The average tracking quality on Virat dataset ... 80
Table 3: The average tracking errors (%) on a Skybox video ... 81
Table 4: The average tracking quality on a Skybox video .. 81
Table 5: Track IDs ... 86
Table 6: Color code used in Table 5. .. 88
Table 7: Evaluation of proposed soft-hard fusion compared to without fusion 88

vi

ACKNOWLEDGMENTS

The Authors thank Dr. Erik Blasch from Air Force Research Laboratory, Information Directorate
(AFRL/RIEA) for his technical guidance during the effort.

Approved for Public Release; Distribution Unlimited.
1

1 SUMMARY

To provide video-to-text association to enable enhanced annotated video products, IFT team
has developed a prototype (Figure 1), which fuses hard (video) and soft (text, voice chat)
information to generate a video with annotation that can be easily used by future human or
machine users. The tracking results following the required format (.kw18) will also be output in a
separated file for interfacing with other modules in the E2AT system integration.

Figure 1: System Diagram

Specifically, IFT has:

1. Implemented various tracking algorithms such as L1 tracker, on-line adaboost (OAB),
tracking-learning-detection tracker (TLD), online multiple instance learning tracker
(MIL), visual tracking decomposition (VTD), likelihood of features tracker (Loft),
compressive tracker (CT), and clustered set of structured uniformly dense robust
features tracker (CSURF);

2. Compared these trackers on VIRAT dataset and a Skybox video;
3. Integrated tracking algorithms with the Kitware vsPlay software;
4. Investigated the motion detection, target classification and event detection;
5. Developed a cloud computing prototype for image registration and tracking;
6. Design and implement a hard-soft information fusion approach to improve the

tracking accuracy.

Video output with searchable
and associated contents

Video Data

SYNCOIN
Dataset

Other
Related

Text Data

Textual Keyword
Extraction

FMV Analysis:
- Video Exploration
- Content-based Image

Retrieval
- Semantic analysis

Hard and Soft
Data fusionHard data

Call out
(Audio)

CMU
Sphinx

Field Relevance
Model Based

Textual Retrieval
Text Inputs Content

Extraction

Soft data

NASA World Wind and
Google Earth based
interactive visual
analytics

Approved for Public Release; Distribution Unlimited.
2

2 INTRODUCTION

2.1 Problem Statement

The primary focus E2T is to provide video-to-text association to enable enhanced annotated
video products. Using current imagery exploitation tools such as FMV and Wide Area Motion
Imagery (WAMI), the outputs (e.g., target features and track results) need to be presented in a
format for textual association to enable hard (e.g., video) and soft (e.g., text) information fusion.
As the operator calls out information in the video, the content must be transcribed in order to
enable text extraction. Solutions proposed for the hard (video exploitation) and soft (text
extraction) fusion require methods in metadata (e.g., time stamps) development for association,
features (e.g., words and pixels) analysis for correlation, and contemporary processing
techniques (e.g., track reports) for estimation. The secondary focus is to improve the persistent
need to process and generate searchable content through the annotation, tagging, marking, and
augmenting Image Intelligence (IMINT) data to better describe video products. Finally, the third
focus is on automated interactive approaches between the operator, FMV data streams, and
multi-media content to support FMV exploitation, access, annotation, indexing, storage, and
linking of IMINT products (e.g. Geographical, moving, signals) to non-IMINT data products
(e.g., open source, human, and communications) to enable reasoning (e.g., patterns of life). The
three elements of FMVE include developments in (1) video-exploitation associated to text-
extraction for annotated video outputs, (2) content-based image and textual retrieval, processing,
and dissemination, and (3) interactive visual analytics for advanced operator reasoning.

The problems call for enhanced solutions to support operator video exploitation. For
example, while the human viewer monitors the video feeds to recognize any significant content,
their observations must be automatically translated into searchable display content as either
textual and/or graphical products. The general FMVE developments would be physics-based
(e.g., video) analysis to enable text-based (e.g., transcribed call-outs) hard-soft fusion. The
FMVE operational advancements should leverage established technical tools and capabilities,
build innovative image-to-analyst annotation functionality, and have a measureable evaluation of
performance improvements.

2.2 Example Scenarios

To illustrate the objectives of the proposal, we give several application scenarios blow:

(1) Drug Dealer Scenario: In the scenario, there is a set of hard (a video from CLIF) and soft
(Text in Figure 2 right) information covering a spatial and temporal window. From the text, we
extract the key words (e.g., Criminal, Drug dealer, J Street, Truck, etc., highlighted in Figure 2,
right) and match the keywords to the targets detected, identified and tracked in the video to
generate the desired product – a video with annotation coming from the text file (Figure 2, left
two).

Approved for Public Release; Distribution Unlimited.
3

Figure 2: A Drug Dealer Tracking Scenario with Video Output and Text Input

(2) Joint Semantic and Appearance Retrieval: In this scenario, an operator aims to finding all
images in a WAMI dataset containing environment images similar to an input one while having
certain traffic pattern (e.g., two-way, heavy traffic). This will trigger the joint appearance-based
(color and texture) and semantic-based retrieval. An illustration is shown in Figure 3. In the left
of Figure 3, the operator provides an image query and the semantic query; in the right, the
systems returns images resemble the query image and have the two-way heavy traffic as queried.

Figure 3: Joint semantic and appearance query.

As shown in Figure 4, video tools include basic WAMI and FMV analysis (image registration
and stitching, background modeling, cloud processing, target and context detection [1]) and
situation awareness (target identification, L1-BPR tracking [2], [3], [8], simultaneous tracking
and identification [4], Likelihood of Features Tracking (LOFT) using adaptive appearance
models [18] - [22], multiple target tracking, scene parsing and activity recognition). For text
exploration, we will use Penn. State U’s SYNCOIN and IFT’s experience on text processing to
extract key words that will be used for video annotation from text or chat (use CMU Sphinx to
convert chat to text). The key words include: What/Thing/Who, Where/Place and When/Time.
For hard-soft information fusion, we will enhance the multi-parameter correlation/association in
[14] to associate the hard (video with identified targets) and soft (key words extracted from text)
information.

Approved for Public Release; Distribution Unlimited.
4

Figure 4: Video Tools

Approved for Public Release; Distribution Unlimited.
5

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Visual Trackers
3.1.1 L1 tracker

L1 tracker is one of the state-of-the-art trackers that achieve good performance in tracking. It
takes advantages of the sparse representation and compressive sensing techniques. L1 tracker
also proves to be good in blur videos. L1 tracker used to be very slow due to the intensive
computation of L1 solutions. But several techniques are applied to speed up the process, it now
can be solved in real time.

3.1.1.1 L1 tracker framework

The particle filter provides an estimate of posterior distribution of random variables related to
Markov chain. In visual tracking, it gives an important tool for estimating the target of next
frame without knowing the concrete observation probability. It consists of two steps: prediction
and update. Specially, at the frame t, denote xt which describes the location and the shape of the
target, y1:t−1={y1,y2,···,yt−1} denotes the observation of the target from the first frame to the frame
t−1. Particle filter precedes two steps with following two probabilities:

𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦1:𝑡𝑡−1) = ∫𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1)𝑝𝑝(𝑥𝑥𝑡𝑡−1|𝑦𝑦1:𝑡𝑡−1)𝑑𝑑𝑥𝑥𝑡𝑡−1, (1)

𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦1:𝑡𝑡) = 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡)𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦1:𝑡𝑡−1)
𝑝𝑝(𝑦𝑦𝑡𝑡|𝑦𝑦1:𝑡𝑡−1) . (2)

The optimal state for the frame t is obtained according to the maximal approximate posterior
probability: x∗t =arg maxxp(x|y1:t).

The posterior probability is approximated by using finite samples St ={x1
t,x2

t,···,xN
t } with

different weights W={w1
t,w2

t,···,wN
t } where N is the number of samples. The samples are

generated by sequential importance distribution Π(xt|y1:t,x1:t−1) and weights are updated by:

𝑤𝑤𝑡𝑡
𝑖𝑖 ∝ 𝑤𝑤𝑡𝑡−1

𝑖𝑖 𝑝𝑝�𝑦𝑦𝑡𝑡�𝑥𝑥𝑡𝑡
𝑖𝑖�𝑝𝑝�𝑥𝑥𝑡𝑡

𝑖𝑖�𝑥𝑥𝑡𝑡−1
𝑖𝑖 �

∏(𝑥𝑥𝑡𝑡|𝑦𝑦1:𝑡𝑡,𝑥𝑥1:𝑡𝑡−1)
. (3)

In the case of Π(xt|y1:t,x1:t−1)=p(xt|xt−1), the above equation has a simple form 𝑤𝑤𝑡𝑡
𝑖𝑖 ∝

𝑤𝑤𝑡𝑡−1
𝑖𝑖 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡𝑖𝑖). Then, the weights of some particles maybe keep increasing and fall into the

degeneracy case. To avoid such a case, in each step, samples are re-sampled to generate new
sample set with equal weights according to their weights distribution.

The sparse representation model aims at calculating the observation likelihood for sample state
xt, i.e. p(zt|xt). At the frame t, given the target template set Tt=[t1

t,t2
t,···,tnt], let St ={x1

t,x2
t,···,xN

t}
denote the sampled states and let Ot ={y1

t,y2
t,···,yN

t} denote the corresponding candidate target
patch in target template space. The sparse representation model is then:

𝑦𝑦𝑡𝑡𝑖𝑖 = 𝑇𝑇𝑡𝑡𝑎𝑎𝑇𝑇𝑖𝑖 + 𝐼𝐼𝑎𝑎𝐼𝐼𝑖𝑖 ,∀𝑦𝑦𝑡𝑡𝑖𝑖 ∈ 𝑂𝑂𝑡𝑡, (4)

Approved for Public Release; Distribution Unlimited.
6

where I is the trivial template set (identity matrix) and ai
t=[ai

T;ai
I] is sparse. Additionally,

nonnegative constraints are imposed on ai
T for the robustness of the L1 tracker. Consequently, for

each candidate target patch yi
t, the sparse representation of yi

t can be found via solving the
following L1-norm related minimization with nonnegative constraints:

min𝑎𝑎
1
2
�𝑦𝑦𝑡𝑡𝑖𝑖 − 𝐴𝐴𝑎𝑎�

2
2

+ 𝜆𝜆‖𝑎𝑎‖1,𝑎𝑎 ≽ 0, (5)

where A=[Tt,I,−I].

 Finally, the observation likelihood of state xi
t is given as:

𝑝𝑝�𝑧𝑧𝑡𝑡�𝑥𝑥𝑡𝑡𝑖𝑖� = 1
Γ

exp �−𝑎𝑎�𝑦𝑦𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑡𝑡𝑐𝑐𝑇𝑇𝑖𝑖 �2
2
�, (6)

where α is a constant controlling the shape of the Gaussian kernel, Γ is a normal factor and ci
T is

the minimizer of the L1-norm minimization restricted to Tt. Then, the optimal state x∗t of frame t
is obtained by:

𝑥𝑥𝑡𝑡∗ = 𝑎𝑎𝑎𝑎𝑎𝑎max𝑥𝑥𝑡𝑡𝑖𝑖∈𝑆𝑆𝑡𝑡 𝑝𝑝�𝑧𝑧𝑡𝑡�𝑥𝑥𝑡𝑡
𝑖𝑖�. (7)

In addition, a template update scheme is adopted to overcome pose and illumination changes.

There are two types of templates in the template dictionary: target templates and trivial
templates. The target templates are updated dynamically for representing target objects during
the tracking process. The trivial templates (identity matrix I) is for representing occlusions,
background and noise. However, since parts of objects may also be represented by the trivial
templates, the region detected by the original tracker sometimes does not fit the target very
accurately.

We take a modified version for improving tracking accuracy. The new model is based on the
following observation. When there are no occlusions, the target in the next frame should be well
approximated by a sparse linear combination of target templates with a small residual. Thus, the
energy of the coefficients in a associate with trivial templates, named trivial coefficients, should
be small. On the other hand, when there exist noticeable occlusions, the target in the next frame
cannot be well approximation by any sparse linear combination of target templates, the large
residual (corresponding to occlusions, background and noise in an ideal situation) will be
compensated by the part from the trivial templates, which leads to a large energy of the trivial
coefficients. The minimization is obviously not optimal since it does not differentiate these two
cases.

In other words, to optimize the usage of the trivial templates in the tracking, we need to
adaptively control the energy of the trivial coefficients. That is, when occlusions are negligible,
the energy associated with trivial templates should be small. When there are noticeable
occlusions, the energy should be allowed to be large. This motivation leads to the following
minimization model for L1 tracker:

Approved for Public Release; Distribution Unlimited.
7

min𝑎𝑎
1
2
‖𝑦𝑦 − 𝐴𝐴′𝑎𝑎‖22 + 𝜆𝜆‖𝑎𝑎‖1 + 𝜇𝜇𝑡𝑡

2
‖𝑎𝑎𝐼𝐼‖22, 𝑠𝑠. 𝑡𝑡.𝑎𝑎𝑇𝑇 ≽ 0, (8)

where A'=[Tt,I],a=[aT;aI] are the coefficients associated with target templates and trivial
templates respectively, and the parameter μt is a parameter to control the energy in trivial
templates. In our implementation, the value of μt for each state is automatically adjusted using
the occlusion detection method. That is, if occlusions are detected, μt =0; otherwise μt is set as
some pre-defined constant. The benefit of the additional L2 norm regularization term is that the
trivial templates coefficients from minimization are small and lead to better tracking results.

A minimal error bounding method is proposed to reduce the number of needed L1
minimizations. Actually, the method is based on the following observation:

‖𝑇𝑇𝑡𝑡𝑎𝑎 − 𝑦𝑦‖22 ≥ ‖𝑇𝑇𝑡𝑡𝑎𝑎� − 𝑦𝑦‖22,∀𝑎𝑎 ∈ ℝ𝑁𝑁 , (9)

where

𝑎𝑎� = 𝑎𝑎𝑎𝑎𝑎𝑎min𝑎𝑎‖𝑇𝑇𝑡𝑡𝑎𝑎 − 𝑦𝑦‖22. (10)

Consequently, for any samples xi
t, its observation likelihood has the following upper bound:

𝑝𝑝�𝑧𝑧𝑡𝑡�𝑥𝑥𝑡𝑡𝑖𝑖� = 1
Γ

exp �−𝑎𝑎�𝑦𝑦𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑡𝑡𝑐𝑐𝑇𝑇𝑖𝑖 �2
2
� ≜ 𝑞𝑞�𝑧𝑧𝑡𝑡�𝑥𝑥𝑡𝑡𝑖𝑖�, (11)

where q(yi
t|xi

t) is the probability upper bound for state xi
t. It is seen that if 𝑞𝑞(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) <

1
2𝑁𝑁
∑ 𝑝𝑝(𝑖𝑖−1
𝑗𝑗=1 𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡

𝑗𝑗), then the sample xi
t will not appear in the resample set. In other words, xi

t can
be discarded without being processed. Thus, a two stage resample method is used to significantly
reduce the number of samples needed in tracking.

The APG method is originally designed for solving the unconstrained minimization. Thus, we
need to convert the constrained minimization model into an unconstrained problem. Let 1 ∈ 𝑅𝑅𝑁𝑁
denote the vector with all entries are equal to 1 and let 1R

N+(a) denote the indicator function
defined by:

1ℝ+𝑁𝑁(𝑎𝑎) = � 0, 𝑎𝑎 ≽ 0;
+∞, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑎𝑎𝑤𝑤𝑒𝑒𝑠𝑠𝑒𝑒. (12)

So, the minimization equation in the modified version is equivalent to the following
minimization problem:

arg min𝑎𝑎
1
2
‖𝑦𝑦 − 𝐴𝐴′𝑎𝑎‖22 + 𝜆𝜆‖𝑎𝑎‖1 + 𝜇𝜇𝑡𝑡

2
‖𝑎𝑎𝐼𝐼‖22 + 1ℝ+𝑁𝑁(𝑎𝑎𝑇𝑇). (13)

Then, the APG model will be:

min𝐹𝐹(𝑎𝑎) + 𝐺𝐺(𝑎𝑎), (14)

Approved for Public Release; Distribution Unlimited.
8

𝐹𝐹(𝑎𝑎) = 1
2
‖𝑦𝑦 − 𝐴𝐴′𝑎𝑎‖22 + 𝜆𝜆1𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇 + 𝜇𝜇𝑡𝑡

2
‖𝑎𝑎𝐼𝐼‖22, (15)

𝐺𝐺(𝑎𝑎) = ‖𝑎𝑎𝐼𝐼‖1 + 1ℝ+𝑁𝑁(𝑎𝑎𝑇𝑇). (16)

To solve the above optimization problem, we could use the following algorithm:

Then, our final APG-L1 tracker algorithm will be as follows:

Algorithm 1: Real Time Numerical algorithm for solving the
minimization
—————————————————————————
(i) Set 𝑎𝑎0 = 𝑎𝑎−1 = 0 ∈ ℝ𝑁𝑁 𝑎𝑎𝑎𝑎𝑑𝑑 𝑠𝑠𝑒𝑒𝑡𝑡 𝑡𝑡0 = 𝑡𝑡−1 = 1.
(ii) For k=0,1..., iterate until convergence
 𝛽𝛽𝑘𝑘+1 ≔ 𝛼𝛼𝑘𝑘 + 𝑡𝑡𝑘𝑘−1−1

𝑡𝑡𝑘𝑘
(𝛼𝛼𝑘𝑘 − 𝛼𝛼𝑘𝑘−1);

 𝑎𝑎𝑘𝑘+1|𝑇𝑇 ≔ 𝛽𝛽𝑘𝑘+1|𝑇𝑇 − �𝐴𝐴′𝑇𝑇(𝐴𝐴′𝛽𝛽𝑘𝑘+1 − 𝑦𝑦)� |𝑇𝑇/𝐿𝐿 − 𝜆𝜆1𝑇𝑇;

 𝑎𝑎𝑘𝑘+1|𝐼𝐼 ≔ 𝛽𝛽𝑘𝑘+1|𝐼𝐼 − �𝐴𝐴′𝑇𝑇(𝐴𝐴𝛽𝛽𝑘𝑘+1 − 𝑦𝑦)� |𝐼𝐼/𝐿𝐿 −
𝜇𝜇𝛽𝛽𝑘𝑘+1|𝐼𝐼/𝐿𝐿;
 𝛼𝛼𝑘𝑘+1|𝑇𝑇 ≔ max(0,𝑎𝑎𝑘𝑘+1|𝑇𝑇);
 𝛼𝛼𝑘𝑘+1|𝐼𝐼 ≔ ∑ �𝑎𝑎𝑘𝑘+1|𝐼𝐼�;𝜆𝜆/𝐿𝐿
 𝑡𝑡𝑘𝑘+1 ≔ (1 + �1 + 4𝑡𝑡𝑘𝑘2)/2.

Approved for Public Release; Distribution Unlimited.
9

3.1.2 Other Trackers --- Review
3.1.2.1 Compressive Tracker (CT)

Compressive tracking is a low computational complexity model based on features extracted
in the compressed domain. By applying these feature extracted in preprocessing, the surrounding
background is separated from the target object via a naive Bayes classifier. In the appearance
model, features are selected by an information-preserving and non-adaptive dimensionality
reduction from the multi-scale image feature space based on compressive sensing theories. The
framework of compressive tracker is presented in table below.

Algorithm 3. Compressive Tracking
Input: video frames

1.Sample a set of image patches, 𝐷𝐷𝛾𝛾 = {𝐳𝐳|‖𝐥𝐥(𝐳𝐳) − 𝐥𝐥𝑡𝑡−1‖ < 𝛾𝛾} where 𝐥𝐥𝑡𝑡−1is the
tracking location at the (t-1)-th frame, and extract the features with low

Algorithm 2: APG-L1 Tracker
—————————————————————————
1: Input:
2: Current frame Ft;
3: Sample Set 𝑺𝑺𝑡𝑡−1 = {𝒙𝒙𝑡𝑡−1𝑖𝑖 }𝑖𝑖=1𝑁𝑁 ;
4: Template set 𝑻𝑻 = {𝒕𝒕𝑖𝑖}𝑖𝑖=1𝑛𝑛 ;
5: for i=1 to N do
6: Drawing the new sample 𝒙𝒙𝑡𝑡𝑖𝑖 from 𝒙𝒙𝑡𝑡−1𝑖𝑖 ;
7: Preparing the candidate patch 𝒚𝒚𝑡𝑡𝑖𝑖 in template space;
8: Solving the least square problem;
9: Computing qi ;
10:end for
11: Sorting the samples in descent order according to q;
12: Setting i=1 and τ=0;
13: while i<N and qi ≥ τ do
14: Solving the minimization via Algorithm 1;
15: Computing the observation likelihood pi;
16: 𝜏𝜏 = 𝜏𝜏 + 1

2𝑁𝑁
𝑝𝑝𝑖𝑖;

17: i = i + 1;
18: end while
19: Set 𝑝𝑝𝑗𝑗 = 0,∀𝑗𝑗 ≥ 𝑒𝑒.
20: Output:
21: Finding the 𝒙𝒙𝑡𝑡∗;
22: Detecting the occlusion and update μ;
23: Updating the template set Tt-1 ;
24: Updating the sample set St-1 with p.

Approved for Public Release; Distribution Unlimited.
10

dimensionality.

2.Use classifier B to each feature vector v(z) and find the tracking location 𝐥𝐥𝑡𝑡 with
the maximal classifier response.

3.Sample two sets of image patches 𝐷𝐷𝛼𝛼 = {𝐳𝐳|‖𝐥𝐥(𝐳𝐳) − 𝐥𝐥𝑡𝑡‖ < 𝛼𝛼} and 𝐷𝐷𝜁𝜁,𝛽𝛽 = {𝐳𝐳|𝜁𝜁 <
‖𝐥𝐥(𝐳𝐳) − 𝐥𝐥𝑡𝑡‖ < 𝛽𝛽} with 𝛼𝛼 < 𝜁𝜁 < 𝛽𝛽. (𝛾𝛾,𝛼𝛼, 𝜁𝜁 and 𝛽𝛽 are search radius of the set to detect
the object location).

4.Extract the features with these two sets of samples and update the classifier
parameters.

Output: Tracking location 𝐥𝐥𝑡𝑡 and classifier parameters.

 A random matrix R projects data from high dimensional image space 𝐱𝐱 ∈ ℝ𝑚𝑚 to a low
dimensional space 𝐯𝐯 ∈ ℝ𝑛𝑛: 𝐯𝐯 = 𝑅𝑅𝐱𝐱, where n<<m. For each sample 𝐳𝐳 ∈ ℝ𝑚𝑚, its low-dimensional
representation is 𝐯𝐯 = (𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛)⊺ ∈ ℝ𝑛𝑛. All elements in v are independently distributed and a
naive Bayes classifier is modeled:

𝐵𝐵(𝐯𝐯) = log �∏ 𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦=1)𝑝𝑝(𝑦𝑦=1)𝑛𝑛
𝑖𝑖=1

∏ 𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦=0)𝑝𝑝(𝑦𝑦=0)𝑛𝑛
𝑖𝑖=1

� = ∑ log (𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦=1)
𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦=0)

)𝑛𝑛
𝑖𝑖=1 (17)

where the uniform prior us assumed 𝑝𝑝(𝑦𝑦 = 1) = 𝑝𝑝(𝑦𝑦 = 0), and 𝑦𝑦 ∈ {0,1} is a binary
variable which represents the labels of the samples. The conditional distribution 𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦 = 1) and
𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦 = 0) in the classifier 𝐵𝐵(𝐯𝐯) are assumed to be Gaussian distributed with four parameters
𝜇𝜇𝑖𝑖1,𝜎𝜎𝑖𝑖1, 𝜇𝜇𝑖𝑖0,𝜎𝜎𝑖𝑖0 where

𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦 = 1)~𝑁𝑁(𝜇𝜇𝑖𝑖1,𝜎𝜎𝑖𝑖1), 𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦 = 0)~𝑁𝑁(𝜇𝜇𝑖𝑖0,𝜎𝜎𝑖𝑖0) (18)

The scalar parameter above are incrementally updated

𝜇𝜇𝑖𝑖1 ← 𝜆𝜆𝜇𝜇𝑖𝑖1 + (1 − 𝜆𝜆)𝜇𝜇1

𝜎𝜎𝑖𝑖1 ← �𝜆𝜆(𝜎𝜎𝑖𝑖1)2 + (1 − 𝜆𝜆)(𝜎𝜎1)2 + 𝜆𝜆(1 − 𝜆𝜆)(𝜇𝜇𝑖𝑖1 − 𝜇𝜇1)2, (19)

where 𝜆𝜆 > 0 is a learning parameter, 𝜎𝜎1 = �1
𝑛𝑛
∑ (𝑣𝑣𝑖𝑖(𝑘𝑘) − 𝑢𝑢1)2𝑛𝑛−1
𝑘𝑘=0|𝑦𝑦=1 and 𝜇𝜇1 =

1
𝑛𝑛
∑ 𝑣𝑣𝑖𝑖(𝑘𝑘)𝑛𝑛−1
𝑘𝑘=0|𝑦𝑦=1 . The above equations can be easily derived by maximal likelihood estimation.

Approved for Public Release; Distribution Unlimited.
11

3.1.2.2 Tracking-Learning-Detection Tracker (TLD)

TLD tracker is a framework designed for long-term tracking of an unknown object in a video
stream. Its block diagram is shown in Figure 5. The components of the framework are
characterized as follows: Tracker estimates the object's motion between consecutive frames
under the assumption that the frame-to-frame motion is limited and the object is visible. The
tracker is likely to fail and never recover is the object moves out of the camera view. Detectors
treat every frame as independent and perform full scanning of the image to localize all
appearances that have been observed and learned in the past. As any other detector, the detector
makes two types of errors: false positive and false negative. Learning observes performance of
both, tracker and detector, estimates detector's errors and generates training examples to avoid
these errors in the future. The learning component assumes that both the tracker and the detector
can fail. By virtue of the learning, the detector generalizes to more object appearances and
discriminates against background.

Figure 5: The block diagram of the TLD framework

3.1.2.3 Online Multiple Instance Learning Tracker (MIL)

MIL framework allows users to update the appearance model with a set of image patches, even
though it is not known which image patch precisely captures the object of interest. This leads to
more robust tracking results with fewer parameter tweaks. Weak classifiers are chosen
sequentially to optimize the following criteria: (𝐡𝐡𝑘𝑘,𝛼𝛼𝑘𝑘) = argmax𝐡𝐡∈𝓗𝓗,α𝐽𝐽(𝐇𝐇𝑘𝑘−1 + α𝐡𝐡) where

Learning

Tracking Detection
Re-initialization

Approved for Public Release; Distribution Unlimited.
12

𝐇𝐇𝑘𝑘−1 is the strong classifier made up of the first (k-1) weak classifiers, and 𝓗𝓗 is the set of all
possible weak classifiers. In batch boosting algorithms, the objective function J is computed over
the entire training dataset.

 Algorithm 4. On-line MILBoost
Input: Dataset {𝑋𝑋𝑖𝑖,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑁𝑁 , where 𝑋𝑋𝑖𝑖 = {𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2,⋯ },𝑦𝑦𝑖𝑖 ∈ {0,1}
1.Update all M weak classifier in the pool with data �𝑥𝑥𝑖𝑖𝑗𝑗 ,𝑦𝑦𝑖𝑖�.
2.Initialize 𝐻𝐻𝑖𝑖𝑗𝑗 = 0 for all i, j
3.for k = 1to K do
4. for m=1 to M do
5. 𝑝𝑝𝑖𝑖𝑗𝑗𝑚𝑚 = 𝜎𝜎(𝐻𝐻𝑖𝑖𝑗𝑗 + ℎ𝑚𝑚(𝑥𝑥𝑖𝑖𝑗𝑗))
6. 𝑝𝑝𝑖𝑖𝑚𝑚 = 1 −∏ (1 − 𝑝𝑝𝑖𝑖𝑗𝑗𝑚𝑚)𝑗𝑗
7. ℒ𝑚𝑚 = ∑ (𝑦𝑦𝑖𝑖 log(𝑝𝑝𝑖𝑖𝑚𝑚) + (1 − 𝑦𝑦𝑖𝑖)log (1 − 𝑝𝑝𝑖𝑖𝑚𝑚))𝑖𝑖
8. end for
9. 𝑚𝑚∗ = argmax𝑚𝑚ℒ𝑚𝑚
10. 𝐡𝐡𝑘𝑘(𝑥𝑥) ← ℎ𝑚𝑚∗(𝑥𝑥)
11. 𝐻𝐻𝑖𝑖𝑗𝑗 = 𝐻𝐻𝑖𝑖𝑗𝑗 + 𝐡𝐡𝑘𝑘(𝑥𝑥)
12.end for
Output: Classifier 𝐇𝐇(𝑥𝑥) = ∑ 𝐡𝐡𝑘𝑘(𝑥𝑥)𝑘𝑘 , where 𝑝𝑝(𝑦𝑦|𝑥𝑥) = 𝜎𝜎(𝐇𝐇(𝑥𝑥))

For the current video frame, a training dataset {(𝑋𝑋1,𝑦𝑦1), ((𝑋𝑋2,𝑦𝑦2)⋯ }, where 𝑋𝑋𝑖𝑖 = {𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2,⋯ }.
The estimate of 𝑝𝑝(𝑦𝑦|𝑥𝑥) is updated to maximize the log likelihood of the data. Thus the instance
probability as 𝑝𝑝(𝑦𝑦|𝑥𝑥) = 𝜎𝜎(𝐇𝐇(𝑥𝑥)) where 𝜎𝜎(𝑥𝑥) = 1

1+𝑒𝑒−𝑥𝑥
is the sigmoid function: the bag

probabilities 𝑝𝑝(𝑦𝑦|𝑋𝑋) are modeled using the NOR model.

3.1.2.4 Online AdaBoost (OAB)

Boost tracker is a novel on-line AdaBoost feature selection algorithm for tracking. The distinct
advantage of the method is its capability of on-line training. This allows adapt the classifier
while tracking the object. Therefore appearance changes of the object (e.g. out of plane rotation,
illumination changes) are handled quite naturally. Moreover, depending on the background the
algorithm selects the most discriminating features for tracking resulting in stable tracking results.
By using fast computable features (e.g. Haar-like wavelets, orientation histograms, local binary
patterns) the algorithm runs in real-time.

The main idea of on-line boosting is the introduction of the selectors. They are randomly
initialized and each of them holds a separate feature pool of weak classifiers. When a new
training sample arrives the weak classifiers of each selector are updated. The best weak classifier
(having the lowest error) is selected by the selector where the error of the weak classifier is
estimated from samples seen so far. The complexity is determined by the number of selectors.

The part which requires most of the processing time is the updating of weak classifiers. In order
to speed up this process, we propose as a modification to use a single "global weak classifier"
pool (see Figure 6) which is shared by all selectors instead of single pools for each of them. The
advantage of this modification is that now for each sample that arrives, all weak classifiers need

Approved for Public Release; Distribution Unlimited.
13

to be updated only once. Then the selectors sequentially switch to the best weak classifiers need
to be updated only once. Then the selectors sequentially switch to the best weak classifier with
respect to the current estimated 𝜆𝜆 and the importance weight is passed on to the next selector.
This procedure is repeated until all selectors are updated. Finally, at each time step an updated
strong classifier is available. In order to increase the diversity of the weak classifiers and to allow
changes in the environment, the worst weak classifier of the shared feature pool is replaced with
a new randomly chosen one.

Figure 6: Principle of on-line boosting for feature selection

3.1.2.5 Visual Tracking Decomposition (VTD)

 VTD is a novel tracking algorithm that can work robustly in a challenging scenario such that
several kinds of appearance and motion changes of an object occur at the same time. The
algorithm is based on a visual tracking decomposition scheme for the efficient design of
observation and motion models as well as trackers. The observation model is decomposed into
multiple basic observation models that are constructed by sparse principal component analysis
(SPCA) of a set of feature templates. Each basic observation model covers a specific appearance
of the object. The motion model is also represented by the combination of multiple basic motion
models, each of which covers a different type of motion. Then the multiple basic trackers are
designed by associating the basic observation models and the basic motion models, so that each
specific tracker takes charge of a certain change in the object. All basic trackers are then
integrated into one compound tracker through an interactive Markov Chain Monte Carlo
(IMCMC) framework in which the basic trackers communicate with one another interactively
while run in parallel. By exchanging information with others, each tracker further improves its

Approved for Public Release; Distribution Unlimited.
14

performance, which results in increasing the whole performance of tracking. Figure 7 shows the
processes of observation model and tracking model decomposition.

Figure 7: The process of observation model decomposition and the process of tracker
decomposition [81].

3.1.2.6 Likelihood of Features Tracker (LoFT)

The likelihood of features tracking (LoFT) system is based on fusing multiple sources of
information about the target and its environment akin to a track-before-detect approach. LoFT
uses image-based feature likelihood maps derived from a template-based target model, object
and motion saliency, track prediction and management, combined with a novel adaptive
appearance target update model.

LoFT uses a recognition-based target localization approach using the maximum likelihood of
the target being within the search region conditioned on a feature. A likelihood map is estimated
for each feature by comparing feature histograms of the target within the search region using a
sliding window based approach (see Fig. 8). Each pixel in the likelihood map indicates the
posterior probability of that pixel belonging to the target. Fusing features enables adaptation of
the tracker to dynamic environment changes and target appearance variabilities. Using a track-
before-detect approach provides more robust localization especially for cluttered dense
environments. Feature adaptation uses a weighted sum Bayes fusion rule that tends to perform
better than other methods such as the product rule. The critical aspect in weighted sum fusion is
the relative importance of feature maps. Each feature performs differently depending on the
target characteristic and environmental situations during tracking. Equally weighted fusion of
likelihood maps can decrease performance, when some of the features are not informative in that
environment. The importance assigned to each feature can be adapted to the changes in target
pose and the surrounding background. Temporal feature weight adaptation can improve
performance under changes that are not explicitly modeled by the tracker.

Approved for Public Release; Distribution Unlimited.
15

Figure 8: Likelihood of Features Tracking (LoFT) processing
pipeline.

Fig. 8 shows major components including feature extraction, feature likelihood map estimation
by combining with the template, vehicle detection using support vector machine (SVM)
classification, fusion module that also incorporates prediction based motion and background
subtraction based motion, to produce a fused likelihood for target localization after track
extension. The track management includes termination module, prediction with or without
multiple hypothesis tracking (MHT) and object appearance updating for adaptive target modeling
[82].

3.1.2.7 Likelihood of Features Tracker (LoFT) Clustered Set of Structured Uniformly Dense
Robust features tracker (CSURF)

Visual object tracking for surveillance applications poses challenges due to many factors
such as the distractor objects in the scene, changing imaging conditions (e.g. illumination,
viewpoint), scale, blur and appearance change. Many trackers in the literature utilize adaptive
models to keep up with the dynamic appearance of objects. While some trackers utilize adaptive
templates, others utilize keypoint based models (e.g. visual bags of words). Keypoint based
tracking methods usually rely on a keypoint detector and descriptor in order to detect points on
an object that can be robustly and repeatably detected in the subsequent frames and describe the
regions around them with a robust descriptor. For objects with enough support (large scale) this
approach works well, but it suffers from the lack of good feature points in aerial surveillance
videos. CSURF [34] opts for detection based tracking, but propose a different approach using a
clustered set of structured uniformly dense robust features (CSURF) to describe regions rather
than finding interest points. The choice of descriptors is the Speeded-Up Robust Feature (SURF)
descriptors but other robust descriptors of several features can be also employed. Based on these
considerations, CSURF model consists of a collection of 64 dimensional SURF descriptors with
structural information that represent the local image patches around regularly spaced points on
the support of the object at a fixed scale.

Approved for Public Release; Distribution Unlimited.
16

3.2 Tracking System and Integration

3.2.1 Video Frame Registration

In this section, we present the video registration step. For the camera motion, we need to
stabilize the video frames for moving target detection by frames registration. We stabilizes the
video with respect a base frame in the video sequence over a short time period of about one
second or 30 frames. This registration is accomplished by identifying prominent Beltrami color
metric tensor features, which are a metric extension of structure tensor features that are matched
between frames using a block matching approach. We call the combination of feature extraction
with local region/block matching hybrid prominent feature-block matching. Once the features are
available, a RANSAC approach is used to remap one frame into the coordinate system of the
base video frame within the chunk of 30 frames. The homography model assumes that a single
plane is sufficient to model the 3D scene which may not be valid for complex video sequences.
Once the frame homographies are available, the flux tensor motion detection can be applied to
detect moving target.

3.2.1.1 Necessity of video registration

Applications of unmanned aerial vehicles (UAVs) for surveillance, monitoring, situation
awareness and resource management have steadily increased in recent years. Most UAVs have an
onboard vision sub-system designed to acquire, preprocess, and transmit video images as they y
over an area of interest. The large amount of video data and effects due to camera motion make it
less suitable for direct analysis by human operators. There are a number of interesting challenges
and opportunities to automate certain subtasks and assist the human analysts to improve the
overall performance of such systems. One of the key challenges is due to the inherent camera
motion - inevitable since the UAV is a moving platform. It is often impractical to assume that
geo-location and orientation of the camera will be available at a resolution and robustness
required by other algorithms. Effects due to occlusion and atmospheric conditions such as
illumination, cloud motion, rain, etc, compound the challenge. As a result, detecting, locating,
monitoring and tracking of objects in videos become severely hampered, and sometimes
impossible. A number of interesting papers have appeared recently designed to address specific
bottlenecks in the video analysis chain. The scope of these papers varies vastly with regard to
assumptions on the range of motion and complexity of objects and their relative geospatial
manifests.

Video registration is an essential task designed to deal with the effects caused by camera
motion [83, 84] egomotion estimation is an alternative approach which we do not discuss in this
paper. In this context, registration refers to the process of determining corresponding points or
regions between two frames of a potentially dynamic scene taken at different times from
different viewpoints by a mobile camera or other sensors. Both the vantage and time vary
between the two images. Although image registration has been extensively addressed in the
literature over the last three decades [85,86], a typical image pair that forms the basis of analysis
has changed significantly over the years, including sensor configuration and scene dynamics that
constitute the central disparity between frames. The set of assumptions used to simplify
tractability issues and meet required (onboard) performance constraints are also forced to change

Approved for Public Release; Distribution Unlimited.
17

with sensor technology. Although many methods have been proposed for airborne video
registration [83, 84, 87, 88], it is still an open problem.

Our method uses edges and corners in each block of the image with certain confidence to
extract the control points. The proposed technique shows good results and low error for image
registration. Unmanned aerial vehicle have become important for gathering information and
assessing a remote situation in many different applications. Although visual information is rich
and discriminative it is usually difficult to analyze by computer. Another component of
complexity consists in the unstable camera is due to the UAV motion. This generates many
difficulties for motion analysis and object tracking. Therefore the registration becomes essential
preliminary task to eliminate the errors caused by the camera displacement.

3.2.1.2 Prominent Feature Block-based Region Selection

The first step in registration is to detect salient or prominent features (PF) that are preserved
under geometric image transformations. Spatial manifests such as corners, edges, contours, and
regions prove to be effective in grouping pixels within an image, and establishing a basis for
registration across a pair of images. These features are generally represented by points (corner,
center of gravity and line intersection), lines (Hough transform) or areas (window), and facilitate
registration when the correspondence between such features (drawn from two images) is
established by some means. A set of corresponding PF block regions is the most desired baseline
since it can be directly used to determine the parameters of the transformation function. Complex
techniques do exist, which could be suitably adopted to exploit oriented properties of the spatial
features, e.g. slope of line-segments, or inclusive angle associated to a corner etc. Such
techniques would invariably involve fusing limited knowledge about the scene in terms of the
parametric models used relating the oriented attributes of a selected feature across two instances.
Depending on the context, the analysis may seek a balance between constancy and saliency of
such attributes. We look at the distribution of feature point attributes within a PF block and use
the cancroids for displacement vectors. The tensor representation of edges and corners provide
consistent characteristics since they are related to the image structure.

3.2.1.3 Beltrami Color Metric Tensor

Many first and second derivative feature detectors and descriptors are available in the literature.7
We use the 2D color structure tensor defined in terms of the outer product of spatial gradients in
each channel is given in Eq.1 with 𝐶𝐶𝑖𝑖 representing image channels (𝑒𝑒 = 3 for RGB color), and
further described in [90, 91]. The 2D grayscale structure tensor matrix is also referred to as the
second moment or autocorrelation matrix [89].

Local descriptors based on the two eigenvalues of the structure tensor provide information
about the signal in orthogonal directions. Small eigenvalues are indicative of noise so the trace of
𝐉𝐉C can filter these locations.

Approved for Public Release; Distribution Unlimited.
18

(20)

The eigenvalues of JC are correlated with the local image properties of edgeness and cornerness,
defined as 𝜆𝜆1 ≫ 0, 𝜆𝜆2 ≈ 0 and 𝜆𝜆1 ≈ 𝜆𝜆2 ≫ 0, respectively. For a 2D multi-spectral image, the
Beltrami operator defines a metric on a two-dimensional manifold
(𝑥𝑥,𝑦𝑦,𝐶𝐶1(𝑥𝑥,𝑦𝑦),𝐶𝐶2(𝑥𝑥,𝑦𝑦),𝐶𝐶3(𝑥𝑥, 𝑦𝑦)), in the five-dimensional spatial-color space (𝑥𝑥,𝑦𝑦,𝐶𝐶1,𝐶𝐶2,𝐶𝐶3):

(21)

The determinant is the appropriate generalization of the gradient magnitude of intensity images
to multispectral image gradients. In order to evaluate the color tensor matrix JC two (convolution)
scale factors are required - one for the spatial derivative (gradient) filters and one for integration
(summation) filters. Fig. 9 shows an example of the 2D color structure (or Beltrami) tensor
response. Each block containing high values of tensor magnitude responses is considered to be a
PF macroblock and selected for the matching process described next. Reducing the total number
of PF macroblocks reduces computational cost.

 (a) Original frame (b) Beltrami tensor response

Figure 9: Thresholded output of the 2D Beltrami tensor applied to the image shown.

The gird shows correspondence between location of salient features and non-overlapping
macroblocks.

Approved for Public Release; Distribution Unlimited.
19

3.2.1.4 PF Block Region-Correspondences

Once the prominent feature (PF) macroblocks are selected based on an efficient evaluation and
thresholding of Eq. 21, the next step is displacement or region correspondence matching. The
matching process uses a PF block in the source image and searches for the best matching or most
similar overlapping block contained with a search zone/window in the target image; each PF
block is compared to all shifted overlapped areas by sliding the source PF block by one pixel.
Two standard measures of similarity are the Euclidean distance and Normalized Cross
Correlation (NCC). The 𝐿𝐿1 approximation (referred to as sum of absolute differences (SAD)) of
the 𝐿𝐿2 Euclidean metric is used to reduce computation complexity. The NCC measure is less
sensitive to absolute intensity changes between the source and target images due to the
normalization terms in the denominator but is much more expensive to compute than SAD. Both
were considered. The minimum of the SAD measure can be defined as,

(22)

The NCC between target (or reference) image 𝐈𝐈(X, t − k) and source (or template) image 𝐈𝐈(X, t)
is defined as,

 (23)

where 𝜇𝜇𝑡𝑡−𝑘𝑘 = 〈𝐈𝐈(𝑋𝑋 + ∆𝑋𝑋, 𝑡𝑡 − 𝑘𝑘)〉 and 𝜇𝜇𝑡𝑡 = 〈𝐈𝐈(𝑋𝑋, 𝑡𝑡)〉 are the local intensity means (averages) in
the target and template image regions respectively and the denominator is the product of the local
variances. The NCC for vector images (RGB color) can be appropriately extended.

We want to find the translation or displacement ∆𝑋𝑋 that maximizes the NCC measure,

(24)

The NCC can also be interpreted as the cosine of the angle between the two mean corrected
region blocks. If we represent the mean subtracted pixels in the target and source windows as the
vectors 𝑊𝑊𝑇𝑇������⃗ , 𝑊𝑊𝑆𝑆�����⃗ , respectively, then, 𝑁𝑁𝐶𝐶𝐶𝐶 ≡ 𝛾𝛾(∆𝑋𝑋) = �𝑊𝑊𝑇𝑇������⃗ ∙ 𝑊𝑊𝑆𝑆�����⃗ �/��𝑊𝑊𝑇𝑇������⃗ � ∙ �𝑊𝑊𝑆𝑆�����⃗ ��.

3.2.1.5 Filtering Motion Blocks

Figure 10 shows an example of the region-correspondences between two frames from a video
sequence. The matching process is performed in the (grayscale or color) intensity space. There
are two types of control points: those belonging to moving objects and those from the
background. PF blocks containing moving objects are not suitable for homography since they
introduce error due to the object motion between the two timesteps. Therefore it is more robust to
use only points of the background, and discard those from the moving foreground objects using

Approved for Public Release; Distribution Unlimited.
20

some type of motion filtering. The motion filtering consists of separating the displacement
caused by camera motion from the displacement due to the moving objects in the scene. For this
purpose we use the motion field statistics to determine which points belong to the background or
foreground motion. Figure 11(a) shows an example of the displacement of the points of interest
obtained by matching prominent blocks as described in previous section. We notice that the
background has a dominant motion direction different from the foreground objects (cars). In
general, in UAV-video, the number of prominent features due to moving objects in the scene will
be small compared to the number of PF macroblocks in the background. Under this assumption
the direction histogram of the motion field vectors can be used to detect the dominant
displacement direction due to camera motion. We choose the maximum population of directions.
Points that do not belong to this population are discarded from the set of control point
macroblocks as shown in Figure 11 (b).

Figure 10: Region correspondences based on SAD matching.

 (a) Displacement vectors (b) After motion filtering

Figure 11: (a) PF block-based region correspondence vectors show the high quality of
the matches. (b) Object motion blocks marked by red points are discarded,

green ones kept.

Approved for Public Release; Distribution Unlimited.
21

3.2.1.6 Projective Transformation Estimation

Once region-based block correspondences are established, we need to compute the homography
relating the two coordinate systems. This enables image 𝐈𝐈(X, t) to be mapped into the coordinate
system of the base frame for a given video segment I(X, t − k). Note that we are interested in
finding a good solution for the homography, and not on finding the unique solution for the true
3D camera motion, as our goal is mainly to compensate for and remove the effects of the
background or (dominant) ground plane motion. Since UAV imagery can have significant
perspective effects a projective mapping is more accurate than a single global affine
transformation. Other approaches include multiple local affine projections [92] and non-rigid
transformations [93]. The projective mapping function or homography uses the coordinates of
the corresponding PF block centroids (control points) to find a weighted least squares solution
for the transformation matrix coefficients. The homography is used to warp the image at time t
into the coordinate system of the base frame at time (𝑡𝑡 − 𝑘𝑘). The two images, 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡) and
𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡 − 𝑘𝑘) can be related by a projective transformation (or homography) when the scene
points are approximately planar. Let the image coordinates of the same scene point lying on the
plane 𝜋𝜋 be 𝑃𝑃(𝑥𝑥,𝑦𝑦) and 𝑃𝑃′(𝑥𝑥′,𝑦𝑦′), in the view at time t and (t - k) respectively. The two views can
be related by the following homogeneous relationships:

 (25)

 (26)

The homography can be written in matrix notation as:

 (27)

 (28)

This transforms position P observed at time t, to position P0 in the coordinate system at time
(𝑡𝑡 − 𝑘𝑘) via the projective transformation matrix (a backward transformation from time t to time
(𝑡𝑡 − 𝑘𝑘)). Usually we assume 𝑤𝑤 = 1 in matrix A.

 Suppose we are given three images, 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡 − 2), 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡 − 1), 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡) with
corresponding planar points, 𝑃𝑃", 𝑃𝑃′, 𝑃𝑃 and homography transformation matrices 𝐀𝐀(𝑡𝑡 − 1, 𝑡𝑡) and
𝐀𝐀(𝑡𝑡 − 2, 𝑡𝑡 − 1) that projectively maps t to (t - 1) (i.e., Frame 2 to Frame 1) and (t-1) to (t-2) (i.e.,
Frame 1 to Frame 0), respectively. Without loss of generality we assume, for simplicity of

Approved for Public Release; Distribution Unlimited.
22

notation, that the images are sequentially sampled at one unit time intervals, t, (t - 1), and (t - 2).
We can then write the two respective projective transformations as,

 (29)

and the composite or cumulative projective transformation relating pixels in frame t to pixels in
frame (t-2) (i.e., pixels in Frame 2 to pixels in Frame 0), as the product of two homographies or
projective maps/transformations:

 (30)

In the general case, mapping pixel positions from frame t to corresponding pixel positions in the
coordinate system of frame (t - k), we have

 (31)

 (32)

We also need to specify the coordinate system in which we reference or measure a pixel's
position. Since the prime notation is limited, 𝑃𝑃(𝑡𝑡 − 𝑘𝑘, 𝑡𝑡) denotes pixel position/geometry from
image 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡) mapped to the coordinate system of image frame 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡 − 𝑘𝑘) and 𝑃𝑃(𝑡𝑡, 𝑡𝑡) is the
pixel position measured in its original coordinate system 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡). The elements of matrix A in
Eq. 27 and 28 can be solved using weighted least squares, robust statistics such as LMedS or
combinatorial methods such as RANSAC. Each pair of corresponding points provides three
linear constraints that can be written in a matrix form 𝐁𝐁𝑖𝑖𝐚𝐚 = 0 as shown below,

 (33)

where 𝐚𝐚𝑖𝑖𝑇𝑇 is the 𝑒𝑒𝑡𝑡ℎ row of A in Eq. 27. This above equation, 𝐁𝐁𝑖𝑖𝐚𝐚 = 0, is an equation linear in
the unknown vector a. The matrix 𝐁𝐁𝑖𝑖 is a 3 × 9 matrix, and a is a 9 × 1-vector made up of the
entries of the matrix A,

 (34)

Notice that there are three equations in (33), however just two of them are linearly independent
since the third row is obtained up to scale. Therefore each point correspondence provides two
equations in the entries of A.

Approved for Public Release; Distribution Unlimited.
23

Based on this, (33) can be written as,

 (35)

where 𝐁𝐁𝑖𝑖 is the 2 × 9 matrix shown in Eq. (35). We solve Eq. (35) for 𝐚𝐚 with 9 unknown
elements using the normalized Direct Linear Transformation (DLT) approach given in Alg. 6.
DLT provides for improved numerical stability and accuracy when solving for A.

Notice that for improving the accuracy of the results in the DLT algorithm, a normalization
process (Alg. 5) has to be applied beforehand. This step is very important for less well
conditioned problems such as DLT. Apart from improved accuracy of results, normalizing data
has one more advantage, namely that an algorithm which incorporates an initial data
normalization step will be invariant with respect to arbitrary choices of the scale and coordinate
origin. As mentioned in [94] this is because the normalization step cancels out the effect of
reference frame changes, by effectively choosing a canonical coordinate system for the
measurement data. Therefore, algebraic minimization is carried out in a fixed canonical frame,
and the DLT algorithm practically becomes invariant to similarity transformations. In order to
give an idea of the importance of the normalization step in homography estimation using DLT,
we performed a simulation using perturbed synthetic feature points.

Approved for Public Release; Distribution Unlimited.
24

Figure 12: Simulated results to demonstrate the importance of using normalization step
in DLT homography estimation algorithm.

Figure 12 shows a set of 100 points x that were randomly generated representing some feature
points in the first image (𝐈𝐈1). The blue-cross and black-cross marks in the right figure indicate
the transformed points from I1 to I2 using non-normalized and normalized cases, respectively.
The actual feature points in I2 are drawn in red-circles. For this experiment, we measured 25:75
average pixels error for the non-normalized case and 16:53 for the normalized case. The
assumption is that there are no matching errors and the noise is equal additive Gaussian added to
both I1 and I2.

Then a homography matrix A,

 (36)

is randomly generated which maps x in I1 to x0 = Ax in the second image I2. The image size is
considered to be standard definition size of 640×480 pixels. Some noise (white Gaussian noise
with zero mean and standard deviation two) are added to the feature points in both images as
shown in Fig. 12. Then the homography transformation between the perturbed points in I1 and I2
has been estimated using the DLT algorithm, once using normalized points and the other without
normalization. The geometric errors are computed using the estimated homography for both
cases. For this experiment, we got 25:75 average pixels error for the non-normalized one and
16:53 for the normalized one. The estimated homography matrices in two cases of directly
applying DLT or using a normalization method before DLT are as following, respectively:

Approved for Public Release; Distribution Unlimited.
25

 (37)

 (38)

As can be seen, the estimated homography after applying a normalization step numerically is
very close to the original used homography and moreover gives a better result. A similar
experiment has been done for a case where just the points in I1 are perturbed and the points and
homography is the same as the previous experiment. For this case we got 7:60 average pixels
error for the non-normalized one and 6:40 for the normalized one. The estimated homography
matrices in two cases of directly applying DLT or using a normalization method before DLT are
as following, respectively:

 (39)

 (40)

To demonstrate the necessity of taking the normalization step before applying DLT, another
homography matrix

 (41)

was randomly generated which maps x in 𝐈𝐈1 to x′ = 𝐴𝐴x in the second image 𝐈𝐈2 and then
Gaussian noise with zero mean and standard deviation of two are added to the feature points in
both images. Like the previous example, the homography transformation between the perturbed
points in 𝐈𝐈1 and 𝐈𝐈2 has been estimated using the DLT algorithm, once using normalized points
and the other without normalization. The geometric errors are computed using the estimated
homography for both cases. For this experiment, we got 17:14 average pixels error for the non-
normalized one and 12:26 for the normalized one. The estimated homography matrices in two
cases of directly applying DLT or using a normalization method before DLT were tested for the
second example. Figure 13 shows another simulation where the corresponding homography
matrices were as follows:

Approved for Public Release; Distribution Unlimited.
26

 (42)

 (43)

Figure 13: Simulated results to demonstrate the importance of using normalization
step in DLT homography estimation algorithm.

The blue-cross and black-cross marks in the right figure indicate the transformed points from I1
to I2 using non-normalized and normalized cases, respectively. The actual feature points in I2 are
drawn in red-circles. For this experiment, we measured 17:14 average pixels error for the non-
normalized one and 12:26 for the normalized one. The assumption is that there are no matching
errors and the noise is equal additive Gaussian added to both I1 and I2.

The DLT method, described in Algorithm 6, is used to solve Eq. 33. The DLT method is robust
only if the dominant source of the noise is in the location measurement of corresponding feature
points. The DLT method is not appropriate when there are mismatches corresponding to two
putative features. For this purpose we use a method, based on RANSAC (Random Sample
Consensus), to robustify the estimate with respect to false matches. The RANSAC-based
homography estimation incorporating normalized DLT is described in Algorithm 7.

Approved for Public Release; Distribution Unlimited.
27

The performance of RANSAC-based homography estimation using Algorithm 8 depends
on the proportion of inliers and the number of iterations. The probability that after N iterations of
RANSAC we have not picked a set of inliers is given by (1 − 𝑎𝑎4)𝑁𝑁, with g = m/n being the
proportion of the inliers; the behavior of this curve is shown in Figure 14 for three values of N
(N = 10, 100, 1000). For the RANSAC iteration, the initial value of N in Algorithm 7 is
initialized with a large value that is then adaptively updated in iteration using the Equation in
Step 15 as shown in Figure 15.

An alternative to RANSAC is Least Median of Squares (LMedS) estimation, in which the
model is selected using the median of the distances of all points in the dataset (whereas in
RANSAC a minimum sized set of samples are randomly selected). As indicated in [94] LMS has
the advantage of not requiring any threshold; however it fails if more than 50% of the data are
outliers. There are other variations of RANSAC such as Adaptive-Scale Kernel Consensus
(ASKC) which can be used as alternative robust estimators [95]. Alternatively some other
methods which consider the hohomraphy estimated by Alg. 7 as an initialization and then
iteratively try to minimize the error using Levenberg-Marquardt method in order to optimize the
initial estimation [94].

Approved for Public Release; Distribution Unlimited.
28

Figure 14: Evaluation of the robustness of the proposed RANSAC-based homography
estimation in Alg. 7.

The horizontal axis indicates the proportion of inliers (g = m/n) and the vertical axis shows the
probability that after N RANSAC iterations we have not picked a sufficient set of inliers based

on the function (1 − 𝑎𝑎4)𝑁𝑁 for three values of N.

Figure 15: Plot of 𝑵𝑵 = 𝐥𝐥𝐥𝐥𝐥𝐥 (𝟏𝟏−𝒑𝒑)
𝐥𝐥𝐥𝐥𝐥𝐥 (𝐚𝐚−(𝟏𝟏−𝐥𝐥)𝟒𝟒)

,

Figure 15 gives an update for the number of iterations in Algorithm 7. N is adaptively
determined in Step 15 of Algorithm 7. The horizontal axis indicates the inlier percentage. Plots
for different values of 𝑝𝑝 (see Step 4) that is related to the quality of the estimate is shown in
different colors. For higher values of p more iteration are needed.

Approved for Public Release; Distribution Unlimited.
29

3.2.2 Motion Detection

In this section, we present how to detect moving target using flux tensor motion detection
method. Motion blob detection is performed using our novel flux tensor method which is an
extension to 3D grayscale structure tensor. Both the grayscale structure tensor and the proposed
flux tensor use spatial-temporal consistency more efficiently, thus produce less noisy and more
spatially coherent motion segmentation results compared to classical optical flow methods [96].
The flux tensor is more efficient in comparison to the 3D grayscale structure tensor since motion
information is more directly incorporated in the flux calculation which is less expensive than
computing eigenvalue decompositions as with the 3D grayscale structure tensor.

3.2.2.1 3D Structure Tensors

Structure tensors are a matrix representation of partial derivative information. As they allow both
orientation estimation and image structure analysis they have many applications in image
processing and computer vision. 2D structure tensors have been widely used in edge/corner
detection and texture analysis, 3D structure tensors have been used in low-level motion
estimation and segmentation [96, 97].

Under the constant illumination model, the optic-flow (OF) equation of a spatiotemporal
image volume 𝐈𝐈(x) centered at location 𝑥𝑥 = [𝑥𝑥,𝑦𝑦, 𝑡𝑡] is given by Eq. 44 [98] where, v(x) =
 [𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦, 𝑣𝑣𝑡𝑡] is the optic-flow vector at x, I doing like this.

(44)

𝐯𝐯(𝐱𝐱) is estimated by minimizing Eq. 44 over a local 3D image patch 𝛀𝛀(𝑥𝑥,𝑦𝑦), centered at x. Note
that 𝑣𝑣𝑡𝑡 is not 1 since spatial-temporal orientation vectors will be computed. Using Lagrange
multipliers, a corresponding error functional 𝑒𝑒𝑙𝑙𝑙𝑙(x) to minimize Eq. 44 using a least-squares
error measure can be written as Eq. 45 where W(x, y) is a spatially invariant weighting function
(e.g., Gaussian) that emphasizes the image gradients near the central pixel [97].

(45)

Assuming a constant v(x) within the neighborhood Ω(x, y) and differentiating 𝑒𝑒𝑙𝑙𝑙𝑙(x) to find the
minimum, leads to the standard eigenvalue problem (Eq. 46) for solving v�(x) the best estimate of
v(x).

(46)

Approved for Public Release; Distribution Unlimited.
30

The 3D structure tensor matrix 𝐉𝐉(𝐱𝐱,𝐖𝐖) for the spatiotemporal volume centered at x can be
written in expanded matrix form, without the spatial filter W(x, y) and the positional terms
shown for clarity, as Eq. 47.

(47)

A typical approach in motion detection is to threshold 𝐭𝐭𝐭𝐭𝐚𝐚𝐭𝐭𝐭𝐭(𝐉𝐉) (Eq. 48); but this results in
ambiguities in distinguishing responses arising from stationary versus moving features (e.g.,
edges and junctions with and without motion), since 𝐭𝐭𝐭𝐭𝐚𝐚𝐭𝐭𝐭𝐭(𝐉𝐉) incorporates total gradient change
information but fails to capture the nature of these gradient changes (i.e., spatial only versus
temporal).

(48)

To resolve this ambiguity and to classify the video regions experiencing motion, the eigenvalues
and the associated eigenvectors of J are usually analyzed [99, 100]. However eigenvalue
decomposition at every pixel is computationally expensive especially if real time performance is
required.

3.2.2.2 Flux Tensors

In order to reliably detect only the moving structures without performing expensive eigenvalue
decompositions, the concept of the flux tensor is proposed. Flux tensor is the temporal variations
of the optical flow field within the local 3D spatiotemporal volume. Computing the second
derivative of Eq. 44 with respect to 𝑡𝑡, Eq. 49 is obtained where, 𝐚𝐚(𝐱𝐱) = [𝑎𝑎𝑥𝑥,𝑎𝑎𝑦𝑦,𝑎𝑎𝑡𝑡] is the
acceleration of the image brightness located at x.

(49)

which can be written in vector notation as,

(50)

Approved for Public Release; Distribution Unlimited.
31

Using the same approach for deriving the classic 3D structure, minimizing Eq. 49 assuming a
constant velocity model and subject to the normalization constraint ‖𝐯𝐯(𝐱𝐱)‖ = 1 leads to Eq. 51,

(51)

Assuming a constant velocity model in the neighborhood Ω(𝑥𝑥,𝑦𝑦), results in the acceleration
experienced by the brightness pattern in the neighborhood (x, y) to be zero at every pixel. As
with its 3D structure tensor counterpart J in Eq. 47, the 3D flux tensor JF using Eq. 51 can be
written as

(52)

and in expanded matrix form as Eq. 53.

(53)

As seen from Eq. 53, the elements of the flux tensor incorporate information about temporal
gradient changes which leads to efficient discrimination between stationary and moving image
features. Thus the trace of the flux tensor matrix which can be compactly written and computed
as

, (54)

and can be directly used to classify moving and non-moving regions without the need for
expensive eigenvalues decompositions. If motion vectors are needed then Eq. 51 can be
minimized to get ^v(x) using

(55)

In this approach the eigenvectors need to be calculated at just moving feature points.

Approved for Public Release; Distribution Unlimited.
32

3.2.3 Blur-Resilient Tracking Using Group Sparsity

A Blur Resilient target Tracking algorithm (BReT) is developed by modeling target appearance
by a groupwise sparse approximation over a template set. Since blur templates of different
directions are added to the template set to accommodate motion blur, there is a natural group
structure among the templates. In order to enforce the solution of the sparse approximation
problem to have group structure, we employ the mixed 211 / + norm to regularize the model
coefficients. Having observed the similarity of gradient distributions in the blur templates of the
same direction, we further boost the tracking robustness by including gradient histograms in the
appearance model. Then, we use an accelerated proximal gradient scheme to develop an efficient
algorithm for the non-smooth optimization resulted from the representation. After that, blur
estimation is performed by investigating the energy of the coefficients, and when the estimated
target can be well approximated by the normal templates, we dynamically update the template set
to reduce the drifting problem. Experimental results show that the proposed BReT algorithm
outperforms state-of-the-art trackers on blurred sequences.

3.2.3.1 Motivation and Background

In our previous experiments we found that blur effect often challenges visual tracking algorithms
and such effect appears frequently in arial videos due to fast camera motion. For this reason, we
plan to develop a blur resilient visual tracking algorithm. Unlike other challenges in visual
tracking, blur effect has not been seriously addressed in tracking algorithms except in a few
recent studies. In particular, on our previous work, a blur driven tracker using sparse
representation is proposed, which incorporates blur templates of different directions into the
template space to model blur degradations. However, though the enhanced appearance space is
more expressive, ambiguity also increases. For example, a target candidate that belongs to the
background might be well represented by some blur templates. Also, the templates of the blur
driven tracker are fixed, therefore when the appearance of the target changes significantly, the
tracker is susceptible to drifting.

To address these issues, we propose a robust blurred target tracking algorithm using group
sparse representation under a particle filter framework with enhanced template space. Three
components distinguish our work from previous ones: (1) since blur templates of different
directions are added to the template space and the motion blur of the target always tends only one
direction in a frame, there is a natural group structure among the templates, i.e., the blur
templates of one direction belong to the same group. In order to enforce the solution of the sparse
representation of a target candidate to have group structure, we adopt a structured sparsity
inducing norm which is a combination of 1 norm and a sum of 2 norms over groups of
variables; (2) to account for the increase of ambiguity in the template space after enhancing it
with blur templates, based on the observation that blur templates of the same direction have
much more similar gradient histograms than blur templates in different directions, we use a
combination of the reconstruction error and a sum of weighted distances between gradient
histograms of a target candidate and each of the non-trivial templates as loss function. The
resulting non-smooth convex optimization problem is solved using an accelerated proximal
gradient method that guarantees fast convergence; and (3) in order to capture the appearance
changes of the target and reduce the drifting problem, we perform blur detection by investigating

Approved for Public Release; Distribution Unlimited.
33

the energy of the reconstruction coefficients. The template set is updated dynamically when two
criteria based on the coefficients associated with templates are satisfied. Figure 16 illustrates the
intution of the developed BReT tracker.

Figure 16: Intution of the BReT tracker

Top left: The tracking results of BReT with and without gradient information, indicated by red
box and blue box respectively. Bottom left: the reconstruction error of the two candidates
measured by 2

2||||0.5 yTc − using different tracking approaches. Right: The group sparse
representation of the two candidates using BReT with gradient information, the L1 distance
between the gradient histograms of the estimated target and each of the selected templates are
also given.

3.2.3.2 Review of the Blur-driven Tracker (BLUT)

The particle filter is a Bayesian sequential importance sampling technique for estimating the
posterior distribution of state variables characterizing a dynamic system. It uses finite set of
weighted samples to approximate the posterior distribution regardless of the underlying
distribution. For visual tracking, we use tx as the state variable to describe the location and
shape of the target at time t . Given all available observations },,,{= 21:1 tt yyyy 2 up to time t ,
the posterior)|(:1 ttp yx is approximated by a set of N samples N

it 1=}{x with importance weights
i
tw . The optimal tx is obtained by maximizing the approximate posterior probability:

)|(= :1 tt pmaxarg yxx x
∗ .

In order to model the blur degradations, blur templates are incorporated into the appearance
space. The appearance of the tracking target dR∈y is represented by templates],,[= ITTT ηba ,

Approved for Public Release; Distribution Unlimited.
34

0,s.t.,=̂],,[= ±Tba cTc
e
b
a

ITTy

η (56)

where and

ana
×∈R],,[= 1 ttT contains an normal templates,

bnd

lnnnlnb
×∈R],,,,,,[= ,,11,1,1 θθ

ttttT contains bn blur templates, I is the dd × identity

matrix containing the trivial templates used for modeling image corruption, η is used to control

the weight of the trivial templates. Accordingly, an

anaaa R∈Τ),,,(= 21 a , and bn
R∈b are called

normal coefficients and blur coefficients respectively, Τ),,,(= 21 deee e is called trivial
coefficients, ΤΤΤΤ],,[= ebac and ΤΤΤ],[= bacT .

The first normal template 1t is obtained from the unblurred object patch of the target in the
first frame, which is usually selected manually or by detection algorithms, other templates are
shifted from it. Given a blur free patch I of the target, different blurred versions bI of the target
can be modeled as convolving I with different kernels. In our framework, jiji ,1, = ktt ⊗ is the

thji),(blur template, where ji,k is a Gaussian kernel that represents a 2D motion toward
direction iθ with magnitude jl , where },,{= 1 θ

θθθ ni Θ∈ , and },,{= 1 lnj lll L∈ .

Consequently, we have lb nnn ×θ= blur templates. Based on the directions of the blur kernels,

we have bn
n R∈ΤΤΤ],,[= 1 θ

bbb , where ln

lniiii bbb R∈Τ),,,(= ,,2,1 b are the coefficients for the

blur templates toward thi direction.

To use the estimated motion information from the sparse representation to guide the particle
sampling process, estimated motion information from different sources are integrated into the
proposal distribution, which is a combination of the first-order Markov transition)|(1−ttp xx , the
second-order Markov transition),|(21 −− tttp xxx , and),|(11 −− tttiq yxx based on the blur motion
estimation along direction iθ .

3.2.3.3 Loss Function with Gradient Information

Incorporating blur templates into the appearance space allows for a more expressive
appearance space to model blur degradations. However, with the augmented template space,
ambiguity also increases, and some background might be well represented by some blur
templates, especially when only grayscale information is used, as shown in Figure 16. In order to
make the tracking algorithm more robust, based on the observation that though motion blur
significantly changes the statistics of the gradients of the templates, the blur templates in the
same direction have much more similar gradient histograms than blur templates of different
directions, we propose to use the combination of the reconstruction error and a sum of weighted
distances between the target candidate and each of the non-trivial templates as loss function.

Approved for Public Release; Distribution Unlimited.
35

For each template of],[ba TT , we calculate its gradient histogram by letting each pixel vote

for an gradient histogram channel, and get)(
21],,,[= bnanh

bnan
+×

+ ∈RdddD , where h is the

number of bins of the gradient histogram; and for the target candidate, we calculate its gradient
histogram hR∈g . Since we don’t consider the trivial templates when calculating the sum of

weighted distances, we let)(
11211 ,0],0,||||,,||||,||[||= dbnan

bnan
++

+ ∈−−− R gdgdgdd indicate

the distance between g and the gradient histogram of each element in T . 2
2|||| dc is used to

measure the sum of the weighted distances, and

2
2

2
2 ||||||||

2
1 dcyTc β+− (57)

 is used as the loss function.

3.2.3.4 Group Sparsity via /1 1 2+ Mixed Norm

For the augmented template set with blur templates of different directions, since the motion blur
of the target is always toward only one direction at time t , there is a natural group structure
among the templates. The representation of the target candidate should not only be sparse, but
also have group structure, i.e., the coefficients should also be sparse at the group level. In our
tracking framework, we divide the templates into 1= ++ dnng θ groups },,,{= 121 ++dnGGG

θ
G

using the following scheme: the normal templates are in one group; the blur templates in the
same direction forms a group; and each trivial template is an individual group. In order to
capture the group information among the templates and achieve sparsity at the same time, we
employ a structured sparsity inducing norm which combines the 1 norm and a sum of 2 norms
over groups of variables. The mixed norm is known as “sparse group Lasso".

Combining the loss function (57) and the 211 / + mixed norm results in the following
non-smooth convex optimization problem:

0 s.t.

,
2
1min

21=
211

2

2

2

2

≥

+++− ∑
T

iG

gn

i
c

ccdcyTc
c

λλβ (58)

where
iGc are coefficients associated with iG .

Once (58) is solved, the observation likelihood can be derived from the reconstruction error
of y as }||||{exp)|(2

2yTcxy −−∝ αttp , where α is a constant used to control the shape of the
Gaussian kernel.

Approved for Public Release; Distribution Unlimited.
36

3.2.3.5 Solve Eq. (58) by Accelerated Proximal Gradient

To solve the non-smooth convex optimization problem in Eq.(58), we adopt the accelerated

proximal gradient method FISTA which has convergence rate of)1(2k
O , where k is the number

of iterations. FISTA is designed for solving the following unconstrained optimization problem:
)()(=)(min zzz

z
gfF + (59)

where f is a smooth convex function with Lipschitz continuous gradient, and g is a continuous
convex function which is possibly non-smooth.

In order to solve Eq.(58) with FISTA, we let Τ
++],,,[= 21 dbnanzzz z and make the

substitution Τ
+++++],,,,,,[= 1

22
2

2
1 dbnanbnanbnan zzzzz c , and solve the following optimization

problem:

21=
211

2

2

2

22
1min

iG

gn

i
zzdcyTc

z ∑+++− λλβ (60)

where
iGz is associated with group iG . Then, Eq.(60) can be re-expressed as Eq.(59), where

2
2

2
2 ||||||||

2
1=)(dcyTcz β+−f and 21=211 ||||||||=)(

iG
gn

i
g zzz ∑+λλ .

To develop a proximal gradient method, the following quadratic approximation of)(zF at a
given point)(kz is considered, for 0>L

)(
2

)(,)(=),(
2

2

)(

)()()()(

zzz

zzzzzz

gL
ffQ

k

kkkk
L

+−+

〉∇−〈+
(61)

where)()(kf z∇ is the gradient function of)(⋅f at point)(kz .

Lemma 1 Let f be a continuously differentiable function with Lipschitz continuous gradient
and Lipschitz constant)(fL . Then, for any)(fLL ≥ ,

),()()(k
LQF zzz ≤

 According to Lemma 1, given)(fLL ≥ , a unique solution of)(zF can be obtained by
minimizing),()(k

LQ zz ,

)(1||ˆ||
2
1=)()(zzzz z g

L
minargp k

L +− (62)

where)(1=ˆ)()(kk f
L

zzz ∇− , and

dcdwyTTcTwz ΤΤΤ +−∇)(diag2))((diag=)(βf (63)

where dbnan

bnanzzz ++
+ ∈R,1],1,,2,,2[2= 21 w . Alg. 8 describes FISTA with backtracking.

Algorithms 8 FISTA with backtracking
Input: 0>0L , 1>τ , (0)(1) = zv , 1=1t
1: for k=1,2,..., iterate until convergence do

Approved for Public Release; Distribution Unlimited.
37

2: set 1= −kLL ,
3: while)),((>))(()()()(kk

LL
k

L pQpF vvv do
4: LL τ=
5: end while
6: set LLk = and update
7:)(=)()(k

kL
k p vz ,

8:
2

411
=

2

1
k

k

t
t

++
+ ,

9:))(1(= 1)()(

1

)(1)(−

+

+ −
−

+ kk

k

kkk

t
t zzzv

10: end for

A critical step is to solve Eq.(62) efficiently. Since the 211 / + -norm is a special case of
the tree structured group Lasso, Eq.(62) can be converted to

2
1=0=

)(||||||ˆ||
2
1=)(i

jG
i
j

in

j

m

i

k
L wminargp zzzz z ∑∑+− (64)

 where m is the depth of the index tree, in is the number of groups at depth i ,
),1,2,=,,0,1,=0(i

i
j njmiw ≥ is the pre-defined weight for group i

jG . We apply the

tgLassoMY algorithm to solve Eq.(64) efficiently. tgLassoMY algorithm maintains a working variable
u initialized with ẑ , then it traverses the index tree in the reverse breadth-first order to update u

with)/(0,1max= 11 ++ − i
i
jG

i
j

i
i
jG

i
i
jG

w uuu .

The time complexity of tgLassoMY algorithm is)(mnO , where n is the dimension of z .
After converting Eq.(62) to Eq.(64), the index tree has a constant depth 2, so the time complexity
for solving Eq.(62) is)(nO , where dnnn ba ++= .

3.2.3.6 Template Update with Blur Detection

In order to capture the appearance variations of the target caused by illumination or pose
changes, the template set needs to be updated during tracking. Since the appearance of the target
is corrupted when heavy blur appears, updating the template set with heavily blurred target
cannot capture the appearance changes of the target. So we propose to perform blur detection of
the tracking result before updating the template set.

To detect blur, we investigate the response of both normal coefficients and blur coefficients
obtained from solving the optimization problem Eq.(58). If the target is not blurred, the energy of
the normal coefficients will be dominant. One criterion for updating the template set is

0.9>
)()(

)(
ba

a
EE

E
+

, where)(⋅E represents the energy associated with the corresponding coefficients.

Also, trivial templates are activated when the target cannot be well approximated by the template

Approved for Public Release; Distribution Unlimited.
38

set. In order to avoid contaminating the template set, another criterion for updating template set
is 0.1<

)()()(
)(

eba
e

EEE
E

++
. When the target is not similar to any of the normal templates, and both of

the above two criteria are satisfied, we replace the normal template having lowest response with
the target template.

3.2.4 Cloud Implementation of Registration and Tracking
3.2.4.1 Application Component

Considering the nature of the tracking procedure, we divided the tracking application into
three types of basic components: registers, trackers and plotters, described as follows.

• Registers carry the most computation task in the application, hence is the bottleneck of
the performance. A straightforward way to improve the processing frame rate is to assign
the registration calculation of multiple workers and merge their result together. These
workers can calculate the H matrix simultaneously. Ideally, the more workers we use, the
more speedup we can get from the computing power of the Cloud.

• A Tracker is dedicated to track a target in the video sequence. The computation of tracker
task is pretty lightweight and we don’t need to further distribute the tracker to multiple
workers.

• The Plotter provides a web interface between the users and the tracking system. Users
can see the real time tracking result through the plotter. It combines data sent by the
register and tracker and plot the tail of the targets. See the “Web-based GUI” section for
more details of this web interface.

Based on the above analysis, we implement a prototype in our Cloud environment. The
prototype consists of a register, tracker and plotter, each of which runs on a separate virtual
machine in the Cloud. In practical application, there will be large amount of video sequence and
targets, each of these three VM can be easily duplicated to scale up the application's capability.
We can also use container based virtualization technology such as OpenVZ to securely convert
each VM to a container.

3.2.4.2 Synchronization

Since the register, tracker and plotter are distributed in the Cloud, the synchronization
becomes a problem when the data from the register and tracker does not come in the same order.
To counter this problem, the plotter will wait until all necessary data arrive before a new frame is
produced and displayed to the user.

Approved for Public Release; Distribution Unlimited.
39

The communication between the three VMs uses TCP/IP socket for reliable data
transmission.

3.2.4.3 Web-based GUI

The Web-based GUI is hosted as an HTTP server on the same VM as the plotter. To display
the tracking result in real time, the HTTP server will need different web technologies. In our
implementation, we choose HTML + PHP + JQuery to write the web GUI. HTML provides the
framework of the webpage. PHP is used to pass parameters between the user and the server.
JQuery plays the most important role to display the result in real time. Figure 10 shows the
screenshot of the tracking result display through the web GUI.

Figure 17: Web service based GUI showing the input video (left) and the tracking
results (right).

Approved for Public Release; Distribution Unlimited.
40

3.2.5 Integration with GATER Framework and Kitware VsPlay
3.2.5.1 GATER Introduction

Government Algorithms for Tracking Exploitation Research (GATER) is a suite of data
exploitation tools designed to support research and development for government purposes. These
tools include front end processing, target detection, tracking, visualization, metrics, and various
utilities such as tracking tuning tools. While GATER was first developed for image exploitation,
much of the functionality will support any sensor type.

The overall objective of the GATER project is to develop software tools to provide an in-
house data exploitation capability for both simple and complex problems. These tools must be
open source and extensible for use by government employees and approved government
contractors. As such, the software is developed with Government Purpose Rights (GPR) as the
most restrictive data rights assertion. Furthermore, a DoD Community Source Agreement is tied
to the software (see appendix for details), meaning that all development tied to GATER becomes
the property of the DoD. This does not preclude individual contractors from asserting GPR for
newly developed tools they deliver as part of GATER.

The following figure 18 illustrates the anatomy of a multiple target tracking system. While
other architectures exist, the GATER tracker will utilize this basic framework. This approach
supports an open architecture that allows various components to be interchanged for
development and evaluation. The discussion that follows introduces each component.

Figure 18: The system architecture of GATER

Approved for Public Release; Distribution Unlimited.
41

3.2.5.2 Building and Installing GATER in Windows

In this project, we install and build the GATER system in windows 8 64bit with Microsoft
Visual Studio 2013. Figure 19 shows a successful build. The installation instruction is listed as
follows.

Figure 19: The successful build of GATER in windows 8.1 with VC 2013.

Building Boost for Windows
Download Boost from http://sourceforge.net/projects/boost/files/boost/. After downloading

Boost (we used version 1.55.0), extract it to a directory of your choice (e.g.
C:\libraries\boost_1_55_0). Open a visual studio command prompt window and change to this
directory.

Execute the following commands to build and install boost (commands are described in more
detail below):

1. bootstrap.bat
2. bjam -j4 --toolset=msvc-10.0 --build-type=complete address-model=64 --prefix=PREFIX

install

Description:
1. Builds the Boost Build engine called bjam. PREFIX should be replaced with the path

to the directory where you want to install boost headers and shared libraries.
2. Builds 64-bit Boost static libraries. In order to build 32-bit libraries, change address-

model=64 to address-model=32.
3. Installs the static libraries and headers to a directory of your choice. Make sure to

replace PREFIX with the desired directory (e.g. bjam install -prefix=C:\boost). Note
that the bjam install command allows multiple versions and variants of boost to be

Approved for Public Release; Distribution Unlimited.
42

installed without conflict.
4. Execute bjam --help or bjam --help--options to see additional options.

Building COIN Osi Clp for Windows
Download COIN Osi Clp from http://www.coin-or.org/download/source/Clp/. After downloading
Clp, extract it and navigate to the Clp-<version>\Clp\MSVisualStudio\v10 directory. If a v10
directory does not exist, just copy the v9 directory and rename it to v10. Open Clp.sln in the v10
directory. (complete the Visual Studio Conversion Wizard if necessary)
Once the solution is opened in Visual Studio, make sure the build configuration is set to
"Release" and "x64" (“Win32” for a 32-bit build) using the menu bar at the top. Right click
Solution “Clp” and select Build Solution or hit F7. The compiled libraries and executables will
be placed in “v10\Release”. If you have any issues building the test libraries, disable building
them through the build configuration settings.

See https://projects.coin-or.org/MSVisualStudio for additional compilation info.
Do the following to install COIN Osi Clp:

1. Save the following into a file e.g. “CopyLibs.bat” stored in the main Clp-<version>
folder, then execute the file: (note: replace x64 with Win32 for 32-bit builds)

xcopy Clp\MSVisualStudio\v10\x64\Release lib /exclude:Exclusions.txt
2. Save the following into a file e.g. “CopyHeaders.bat” stored in the main Clp-<version>

folder:
xcopy Osi\src include\coin /exclude:Exclusions.txt /Y
xcopy Osi\src\Osi include\coin /exclude:Exclusions.txt /Y
xcopy Clp\src include\coin /exclude:Exclusions.txt /Y
xcopy Clp\src\OsiClp include\coin /exclude:Exclusions.txt /Y
xcopy Buildtools\headers include\coin /exclude:Exclusions.txt /Y
xcopy CoinUtils\src include\coin /exclude:Exclusions.txt /Y

3. Save the following into a file named “Exclusions.txt” stored in the main Clp-<version>
folder:

.obj

.am

.cpp

.in

.exe
4. Execute the two batch files. COIN-OSI is now installed.

Building FFmpeg for Windows
1. download:

a. mingw64-w64 msys (http://sourceforge.net/projects/mingw-
w64/files/External%20binary%20packages%20%28Win64%20hosted%29/MSYS
%20%2832-bit%29/)

b. c99 to c89
c. msinttypes
d. pkg-config-lite for msys

http://www.coin-or.org/download/source/Clp/
https://projects.coin-or.org/MSVisualStudio
http://sourceforge.net/projects/mingw-w64/files/External%20binary%20packages%20%28Win64%20hosted%29/MSYS%20%2832-bit%29
http://sourceforge.net/projects/mingw-w64/files/External%20binary%20packages%20%28Win64%20hosted%29/MSYS%20%2832-bit%29
http://sourceforge.net/projects/mingw-w64/files/External%20binary%20packages%20%28Win64%20hosted%29/MSYS%20%2832-bit%29

Approved for Public Release; Distribution Unlimited.
43

e. yasm
2. Place makedef, c99wrap.exe, c99conv.exe, pkg-config.exe, and yasm.exe somewhere in

your PATH.
3. Next, make sure inttypes.h (don’t include stdint.h) and any other headers and libs you

want to use are located in a spot that the compiler can see. Note that additional headers
and libs are only necessary when building non-default ffmpeg features and are not used at
this time.

a. Do so by modifying the LIB and INCLUDE environment variables to include the
Windows paths to these directories. Note that a semi-colon is used as the path
delimiter.

i. set INCLUDE=%INCLUDE%;<new path>
ii. set LIB=%LIB%;<new path>

4. Don't forget to rename /msys/bin/link.exe to something different (e.g. link.exe_) to avoid
shadowing msvc linker.

5. To set up a proper environment in MSYS, you need to run msys.bat from the Visual
Studio or Intel Compiler command prompt. This will open a MINGW32 window.

6. Compile release and debug versions of the using the following commands in the
MINGW32 window:

a. ./configure --toolchain=msvc --prefix=build --extra-cflags="-MD" --extra-
ldflags="-DEBUG"

b. make –j <number of cores to use>
c. make install
d. make clean
e. ./configure –toolchain=msvc –prefix=build2 --extra-cflags=”-MDd” –extra-

ldflags=”-DEBUG”
f. make –j <number of cores to use>
g. make install

7. Rename all the libraries under the build2/lib directory such that their names end with a d
(e.g. libavcodec.lib becomes libavcodecd.lib)

8. Copy all the libraries under the build2/lib directory to the build/lib directory
9. Copy the contents of the build directory to where you want FFMPEG installed

a. If you are using the GATER_DEPENDENCIES_DIR, you would place the
contents in to an ffmpeg folder in that directory

Building and installing GDAL for Windows

1. Open nmake.opt in top level GDAL directory and modify the following options:
a. Set MSVC_VER to your corresponding MSVC version (e.g. 1700 for MSVC

11.0/2012)
b. Uncomment the line reading “WIN64=YES”to compile for 64-bit
c. Set GDAL_HOME to the directory where you want GDAL to be installed

2. Open a Visual Studio 2010 x64 command prompt

Approved for Public Release; Distribution Unlimited.
44

3. nmake /f makefile.vc
4. nmake /f makefile.vc devinstall

Building and installing gflags for Windows
1. Open the gflags Visual Studio solution file
2. If building for 64-bit, add an x64 configuration

a. Open Configuration Manager
b. Select new configuration and copy settings from Win32 configuration
c. Ensure the appropriate Platform Toolset is selected
d. Set the build configuration to “x64”

3. Configure the libgflags project to build a static library
4. Add the following preprocessor definitions: “GFLAGS_DLL_DECLARE_FLAG=”

“GFLAGS_DLL_DEFINE_FLAG=” “GFLAGS_DLL_DECL=”
5. Ensure that the libgflags project uses the Multi-Threaded DLL and Multi-Threaded

Debug DLL for runtime libraries for Release and Debug modes, respectively.
6. Build the libgflags project in Release and Debug modes
The CMake file will take care of moving the libraries and include files to an appropriate
location

Building and installing glog for Windows
1. Open the google-glog Visual Studio solution file
2. If building for 64-bit, add an x64 configuration

a. Open Configuration Manager
b. Select new configuration and copy settings from Win32 configuration
c. Ensure the appropriate Platform Toolset is selected
d. Set the build configuration to “x64”

3. Open the project properties for the libglog_static project
a. Add the path to the gflags include directory to the project’s “Additional Include

Directories”
b. Add the following preprocessor definitions:

“GFLAGS_DLL_DECLARE_FLAG=” “GFLAGS_DLL_DEFINE_FLAG=”
“GFLAGS_DLL_DECL=” “HAVE_LIB_GFLAGS”

4. Open the “config.h” file in the libglog_static project
a. Comment out the line “#undef HAVE_LIB_GFLAGS” (line 22)

5. Open the “logging.h” file in the libglog_static project
a. Change the line “#if 0” (line 88) before the line “#include <gflags/gflags.h>” to

“#ifdef HAVE_LIB_GFLAGS”
6. Open the “logging.cc” file in the libglog_statis project

a. Change the line “_asm int 3” (line 1442) to “__debugbreak();”
7. Ensure that the libglog_static project uses the Multi-Threaded DLL and Multi-Threaded

Debug DLL for runtime libraries for Release and Debug modes, respectively.

Approved for Public Release; Distribution Unlimited.
45

8. Build the libglog_static project in Release and Debug modes
The CMake file will take care of moving the libraries and include files to an appropriate
location

Building and installing gstreamer for Windows
1. Install with all optional components:

a. gstreamer-sdk-devel-x86_64-<version>.msi
b. gstreamer-sdk-x86_64-<version>.msi

2. Compile fluendo mpeg demuxer:
a. Perform svn checkout of fluendo mpeg demuxer from

https://core.fluendo.com/gstreamer/svn/trunk/gst-fluendo-mpegdemux
b. Apply patch from

https://subversion.vdl.afrl.af.mil/gater/branches/old_interface/MGS/FMVOT/3rdp
arty/gstreamer/gst-fluendo-mpegdemux.patch to top level gst-fluendo-
mpegdemux directory. TortoiseSVN is capable of applying this patch.

c. Compile Visual Studio project in gst-fluendo-
mpegdemux/win32/vs10/libgstflumpegdemux_sdk.vcxproj

3. Verify install (optional):
a. gst-inspect (in the gstreamer bin dir)

i. verify that flutsdemux and ffdec_h264 elements are reported
ii. if gstreamer fails to find any elements, make sure that all required dlls are

available on the system PATH and that GST_PLUGIN_PATH is set
correctly

Building and installing gtest for Windows
1. Open the gtest-md solution under the “msvc” directory
2. If building for 64-bit, add an x64 configuration

a. Open Configuration Manager
b. Select new configuration and copy settings from Win32 configuration
c. Ensure the appropriate Platform Toolset is selected
a. Set the build configuration to “x64”

3. If you’re building using Visual Studio 2012, add the following preprocessor definition to
both projects for all configurations: “_VARIADIC_MAX=10”

4. Build the gtest and gtest_main projects for both Debug and Release configurations

Building and installing MGS for Windows
MGS is currently a required dependency of GATER. Use the following instructions to build
MGS:

1. Obtain and if necessary build required dependencies. (Boost, GDAL, OpenCV)
2. Obtain and if necessary build optional dependencies.
3. Set up any necessary environment variables.

https://core.fluendo.com/gstreamer/svn/trunk/gst-fluendo-mpegdemux
https://subversion.vdl.afrl.af.mil/gater/branches/old_interface/MGS/FMVOT/3rdparty/gstreamer/gst-fluendo-mpegdemux.patch
https://subversion.vdl.afrl.af.mil/gater/branches/old_interface/MGS/FMVOT/3rdparty/gstreamer/gst-fluendo-mpegdemux.patch

Approved for Public Release; Distribution Unlimited.
46

4. Open MGS directory containing CMakeLists.txt in CMake.
a. The SVN url for this directory is

https://subversion.vdl.afrl.af.mil/gater/trunk/MGS
5. Run configure.
6. Modify CMake variables as needed. Some useful variables are:

a. WITH_GSTREAMER – enable if GStreamer support is needed.
b. WITH_FFMPEG – enable if FFmpeg support is needed.

7. Run configure.
8. Fill in any remaining unpopulated fields if any and run configure again if necessary.

Repeat this step until all necessary variables are populated.
9. Run generate.
10. Open the Visual Studio solution and build/install.

Building and installing OpenCV for Windows

1. Obtain the OpenCV installer for Windows
2. Open the installer to extract the files to the desired location
3. Delete the extracted build folder under the main opencv directory
4. Configure OpenCV with CMake

a. Set the source code directory to the extracted opencv directory
b. Set the build directory to a “build” directory in the extracted opencv folder
c. Press the Configure button
d. Allow the build directory to be created
e. Select the appropriate generator for your version of Visual Studio
f. Uncheck the WITH_DSHOW and WITH_FFMPEG options
g. Check the WITH_TBB option
h. Press the Configure button
i. Set TBB_INCLUDE_DIRS to the location of the TBB include directory
j. Set EIGEN_INCLUDE_PATH to the location of the eigen directory
k. Press the Configure button
l. Press the Generate button

5. Open the generated OpenCV.sln with Visual Studio
6. If you are using Visual Studio 2012

a. Open the project properties for opencv_stitching
b. Under Configuration Properties->C/C++/All Options add “/Zm130” to the end of

the “Additional Options” field
7. Build the solution in both Release and Debug configurations

Building and installing protobuf for Windows

1. Open the protobuf Visual Studio solution file (Located under vsprojects)
2. If building for 64-bit, add an x64 configuration

a. Open Configuration Manager

https://subversion.vdl.afrl.af.mil/gater/trunk/MGS

Approved for Public Release; Distribution Unlimited.
47

b. Select new configuration and copy settings from Win32 configuration
c. Ensure the appropriate Platform Toolset is selected
d. Set the build configuration to “Release” and “x64”

3. Build the libprotobuf, libprotobuf-lite, libprotoc, and protoc projects

Building and installing Qt for Windows

1. Download Qt and install to desired location.
2. Open a Visual Studio 2010 x64 command prompt.
3. Edit your PATH to include your Qt bin directory.
4. Create an environment variable called QTDIR pointing to your Qt top level directory.
5. Navigate to your Qt top level directory and issue the following commands:

a. configure -debug-and-release -no-qt3support -no-webkit -opensource
b. Build using either jom (recommended) or nmake

i. Using jom
1. Unzip jom.zip to your top level Qt directory
2. jom.exe –j <cores_to_use> (e.g. “jom.exe –j 4”)

ii. Using NMake
1. nmake

Building and installing ZMQ for Windows

1. Unzip the ZMQ source code
2. Open the appropriate solution file in the builds/msvc folder
3. Build Debug and Release versions of ZMQ

3.2.5.3 Kitware VsPlay

The vsPlay user interface is designed for full motion video exploitation. There are three primary
modules: manual event identification, change detection and moving target tracker. The change
detection, tracking, and associated database functions are provided as part of a system capability.
This document will focus on the capabilities of vsPlay as the primary user interface. In addition,
there are exploitation aides such as tripwire, selector, and filtering. Basic FMV exploitation
functions such as pause, play, fast-forward, rewind are also available. For general exploitation
functions there are capabilities to measure distance, magnify and change polarity.

The screen layout (Fig. 20) for vsPlay includes a row of tabs, which contain drop down menu
functions at the top of the screen. These drop down menus include a number of icon functions
and provide additional capabilities for the user to interact with the screen display layout and
video based upon tab selection. To provide maximum situational awareness of activity occurring
within the FMV feed an analyst should set their screen layout to display the tracks pane (by
selecting the show track list from the drop down menu), events pane (by selecting the show
events list from the drop down menu), and the change detections pane (by selecting the

Approved for Public Release; Distribution Unlimited.
48

Descriptors tab and ensuring the show alert list is activated). Each screen layout tab is described
below:

• Video Tab - Controls the FMV feed such as start, stop, decrease speed;
• Tracks Tab – Provides on screen displays for the MTT such as track ID’s, entity

bounding boxes, PVO scores;
• Events Tab – Displays events that correlate with the FMV feed such as show all

person/vehicle events;
• Descriptors Tab – Works with alerts to activate/deactivate or shows alerts;
• Regions Tab – Supports analyst ability to create/select/de-select or display regions of

interest for activity or non-activity within the FMV feed;
• Tools Tab – Provides report generation, measuring/ruler, display change detection list

functions.

Figure 20: vsPlay screen layout

3.2.5.4 Integration with GATER and Kitware VsPlay

To integrate with GATER and vsPlay, we designed the system flowchart in Fig. 21.

Approved for Public Release; Distribution Unlimited.
49

Figure 21: A flowchart for the integration with GATER and
VsPlay

There are three major parts:

1. ZeroMQPubSubUtility will send the video data (virat dataset) to GATER and VsPlay via
the zeromq and protobuf

2. GATER with various trackers will process the frame messages and run the pipeline. The
outputs (track of GATER will send to VsPlay.

3. The Kitware VsPlay will receive both and frame messages and track messages. The video
and tracking results will be displayed in VsPlay.

Figure 22 shows the running results of the integration. The left upper corn shows that the
ZEROMQPUBSUBUtility is broadcasting the Kitware VIRAT dataset. The left bottom corn
shows the GATER pipeline is running to process the video data. The tracker will be called by
GATER pipeline, whose setup is specified by XML files:

<param>
 <include>param/detector.xml</include>
 <include>param/meas.xml</include>
 <include>param/frame.xml</include>
 <include>param/tracker.xml</include>
 <include>param/sequential_registration.xml</include>
 <include>param/nonsequential_registration.xml</include>
 <include>param/frontend.xml</include>
 <include>param/backend.xml</include>
 <include>param/tbd.xml</include>
 <include>param/gater.xml</include>
 <!-- sequence of modules to run -->
 <moduleSequence>VideoFrontend,SequentialFrameRegistrationFREAK,No
nsequentialFrameRegistrationFREAK,VideoDetector,SHT,FrameProtoBackend
 </moduleSequence>
</param>

VsPlay
(Kitware)

ZeroMQPubSubUtility
(Virat Dataset)

GATER
(Various trackers)

FrameMessage

Approved for Public Release; Distribution Unlimited.
50

Figure 22: The screen shot of a demo run with Virat data, GATER, and
VsPlay

3.3 Hard and Soft Data Fusion

3.3.1 CMU Sphinx for Speech Recognition
3.3.1.1 CMU Sphinx Setup

CMU Sphix is a complete state-of-the-art hidden Markov model (HMM) based open source
speech recognition system. Designed at Carnegie Mellon University, SPHINX is one of the best
and most versatile recognition systems in the world today. An HMM-based system, like all other
speech recognition systems, functions by first learning the characteristics (or parameters) of a set
of sound units, and then using what it has learned about the units to find the most probable
sequence of sound units for a given speech signal. The process of learning about the sound units
is called training. The process of using the knowledge acquired to deduce the most probable
sequence of units in a given signal is called decoding, or simply recognition.

Accordingly, we will need those components of the SPHINX system that we can use for
training and for recognition. In other words, we will need the SPHINX trainer and a SPHINX
decoder. In this resarch period, we set up and tested the speech recogintion system. Some
primitive results are obtained.

CMU Sphinx toolkit has a number of packages for different tasks and applications. It's
sometimes confusing what to choose. To cleanup, here is the list

• Pocketsphinx — recognizer library written in C.
• Sphinxtrain — acoustic model training tools
• Sphinxbase — support library required by Pocketsphinx and Sphinxtrain

Approved for Public Release; Distribution Unlimited.
51

• Sphinx4 — adjustable, modifiable recognizer written in Java
• CMUclmtk — language model tools

In this project, we will use Sphinxbase, Sphinxtrain, and Pocketsphinx. We downloaded latest
available releases from the following links:

http://sourceforge.net/projects/cmusphinx/files/sphinxbase/0.8/sphinxbase-0.8-
win32.zip/download

http://sourceforge.net/projects/cmusphinx/files/pocketsphinx/0.8/pocketsphinx-0.8-
win32.zip/download

http://sourceforge.net/projects/cmusphinx/files/sphinxtrain/1.0.8/sphinxtrain-1.0.8-
win32.zip/download

The setup and test prodecures are:

• Make subdirectory CMUSphinx, for an example, C:\Users\dshen\Desktop\CMUSphinx
• Decompress the three downloaded zips into seperated folders.

The folder struct of CMUSphinx is shown in Figure
23Error! Reference source not found..

• Running pocketsphnix to obtain transcrift from an audio file
o Generate or record a message [we selected the

following message: “1 white pick-up truck, turns left,
travels north, center of screen”], the audio file can be
downloaded from
https://www.dropbox.com/s/j6x7g0vk8nvblva/chat1.w
av]

o Copy (or download and copy) “chat1.wav” to
“C:\Users\Dan\Desktop\V2T\CMUSphinx\pocketsphi
nx-0.8-win32\bin\Release”

o In the same folder, create a new text file and rename it
“argFile.txt”, add the following lines to the file (this
step specify the HMM, language model, and
dictionary):
 -hmm ../../model/hmm/en_US/hub4wsj_sc_8k
 -lm ../../model/lm/en_US/hub4.5000.DMP
 -dict ../../model/lm/en_US/cmu07a.dic

o In the same folder, create a new text file and rename it “ctlFile.txt”, add the
following line to the file (this step specify the audio file to be processed):
 chat1

o Create a bat file, runme.bat, and add the following file to the file:
 pocketsphinx_batch.exe -argfile argFile.txt -cepdir ./ -ctl ctlFile.txt -

cepext .wav -adcin true -hyp out.txt
o Run the runme.bat and will get a out.txt file in the same folder. In this example, it

shows:
 “one like pick up truck turns left troubles north center of screen (chat1 -

Figure 23: The folder

structure of
CUMSphinx

http://sourceforge.net/projects/cmusphinx/files/sphinxbase/0.8/sphinxbase-0.8-win32.zip/download
http://sourceforge.net/projects/cmusphinx/files/sphinxbase/0.8/sphinxbase-0.8-win32.zip/download
http://sourceforge.net/projects/cmusphinx/files/pocketsphinx/0.8/pocketsphinx-0.8-win32.zip/download
http://sourceforge.net/projects/cmusphinx/files/pocketsphinx/0.8/pocketsphinx-0.8-win32.zip/download
http://sourceforge.net/projects/cmusphinx/files/sphinxtrain/1.0.8/sphinxtrain-1.0.8-win32.zip/download
http://sourceforge.net/projects/cmusphinx/files/sphinxtrain/1.0.8/sphinxtrain-1.0.8-win32.zip/download
https://www.dropbox.com/s/j6x7g0vk8nvblva/chat1.wav
https://www.dropbox.com/s/j6x7g0vk8nvblva/chat1.wav

Approved for Public Release; Distribution Unlimited.
52

62894)”

It seems the Sphix recoginze ‘white’ as ‘like’. Therefore we need to perform trainning to
calibrate the speech recogination toolkit.

3.3.1.2 Training Acoustic Model for CMU Sphinx

CMUSphinx project comes with several high-quality acoustic models. There are US English
acoustic models for microphone and broadcast speech as well as a model for speech over a
telephone. Most command-and-control apps could use them directly as well as large vocabulary
applications.

Besides models, CMUSphinx provides ways for adaptation which is sufficient for most cases
when more accuracy is required. Adaptation is known to work well when you are using different
recording environments (close-distance or far microphone or telephone channel), or when a
slightly different accent is present (UK English or even Indian English) or even another
language. Adaptation, for example, works well if you need to quickly add support for some new
language just by mapping acoustic model phoneset to target phoneset with the dictionary.

There are, however, applications where the current models won't work. For example, the
exmaple in section 3.3.1.1 In these cases, we need to train our own model.

The trainer learns the parameters of the models of the sound units using a set of sample speech
signals. This is called a training database. The database contains information required to extract
statistics from the speech in form of the acoustic model. The trainer needs to be told which sound
units you want it to learn the parameters of, and at least the sequence in which they occur in
every speech signal in your training database. This information is provided to the trainer through
a file called the transcript file, in which the sequence of words and non-speech sounds are written
exactly as they occurred in a speech signal, followed by a tag which can be used to associate this
sequence with the corresponding speech signal.

The trainer then looks into a dictionary which maps every word to a sequence of sound units, to
derive the sequence of sound units associated with each signal. Thus, in addition to the speech
signals, you will also be given a set of transcripts for the database (in a single file) and two
dictionaries, one in which legitimate words in the language are mapped sequences of sound units
(or sub-word units), and another in which non-speech sounds are mapped to corresponding non-
speech or speech-like sound units. We will refer to the former as the language dictionary and the
latter as the filler dictionary.

After training, it's mandatory to run the decoder to check training results. The Decoder takes a
model, tests part of the database and reference transcriptions and estimates the quality (WER) of
the model. During the testing stage we use the language model with the description of the order
of words in the language.

Database should have enough speakers recording, variety of recording conditions, enough
acoustic variations and all possible linguistic sentences. The size of the database depends on the

Approved for Public Release; Distribution Unlimited.
53

complexity of the task you want to handle as mentioned above. A Database should have the two
parts mentioned above - training part and test part. Usually test part is about 1/10th of the full
data size, but we don't recommend you to have test data more than 4 hours of recordings.
The file structure for the database is:

• etc
o your_db.dic - Phonetic dictionary
o your_db.phone - Phoneset file
o your_db.lm.DMP - Language model
o your_db.filler - List of fillers
o your_db_train.fileids - List of files for training
o your_db_train.transcription - Transcription for training
o your_db_test.fileids - List of files for testing
o your_db_test.transcription - Transcription for testing

• wav
o speaker_1

 file_1.wav - Recording of speech utterance
o speaker_2

 file_2.wav

It's critical to have audio files in a specific format. Sphinxtrain does support some variety of
sample rates but by default it's configured to train from 16khz 16bit mono files in MS WAV
format.

To start the training change to the database folder and run the following commands:

python ../sphinxtrain/scripts/sphinxtrain -t T1 setup

where “T1” is the task name.

This will copy all the required configuration files into etc subfolder of your database folder and
prepare database for training, the structure will be:

 etc
 feat
 logdir
 model_parameters
 model_architecture
 wav

After setup step only two folders of the above will be present, others will be created during the
training process:
 etc
 wav

After that, we need to edit the configuration files in etc folder, there are many variables but to get
started we need to change only a few.

Approved for Public Release; Distribution Unlimited.
54

To start the training, run “python ../sphinxtrain/scripts/sphinxtrain run”

3.3.2 Text Matching Based on Big Data Analysis

Understanding open-end simple natural language requires huge amount of knowledge and a
variety of reasoning skills. Natural language data typically include text [101]. For text
classification, Information Extraction (IE) is applied from a chat message (i.e., microtext) or a
document (e.g., using Sphinx or Apache NLP) as an automated approach [102]. Previous work in
natural language full-text searching has demonstrated that significant improvements in model
accuracy are possible by leveraging feature relations [103], including when modeling microtext.
For analysts, the goal is to apply text analytics to provide semantic indications and warnings to
video data [104].

Pattern matching in natural language are widely used in information fusion. Current trends in
data fusion include machine analytics for big data [105], use of pattern matching for cloud
computing applications of simultaneous target tracking and classification [106], and robotics
control [107]. Techniques for big data analysis are needed imaging, text and cyber analysis
which includes scalable and elastic learning methods.

When the datasets are large, some information fusion algorithms might not scale up well. For
example, if an algorithm needs to load data into memory constantly, the program may run out of
memory for large datasets. One promising approach is to utilize and adapt MapReduce for some
machine learning technologies to resolve these large-scale problems. Apache Mahout is a
machine learning library for clustering, classification and filtering, implemented on top of
Hadoop, the open source version of MapReduce. Although there are some machine learning
algorithms implemented in Mahout, it is still helpful to study how to convert a machine learning
algorithm to a Hadoop program and to optimize the algorithm scalability in large datasets.

3.3.2.1 MapReduce

The MapReduce framework has been used to process large datasets since the original paper
[106] was published. Google’s clusters process more than 20 Petabytes of data every day by
running one hundred thousand MapReduce jobs on average. Using this framework, programmers
only need to focuson problem solving versus implementation. The MapReduce runtime system
will take care of the underlining parallelization, fault tolerance, data distribution and load
balance. Google file system (GFS) is a distributed file system that MapReduce uses for the
storage of large amount of data across inexpensive hard drives. The availability and reliability of
underlining unreliable hardware are provided by replicating file blocks and distributing them
across different nodes.

A MapReduce job consists of at least a map function and a reduce function, called mapper
and reducer respectively. The mapper takes as input a pair of key/value and produces a set of
key/value pairs. All key/value pairs are sorted by their keys and sent to different reducers,
indexed by the key. Each reducer receives a key and a set of values that has the same key. This
makes MapReduce an excellent tool for computations that need sorting or counting. The map and
reduce functions are left to the user to implement their desired functionalities to process each

Approved for Public Release; Distribution Unlimited.
55

key/value pair. Hadoop2 is an open source implementation of the MapReduce framework that is
commonly used by academic and industry for Big Data analysis. In the core of Hadoop are
Hadoop MapReduce and Hadoop Distributed File System (HDFS), the open source counterpart
of GFS. There are also a bundle of Hadoop-related projects supported by Apache Foundation,
such as HBase (database), Hive (data warehouse), Pig (highlevel data-flow), Zookeeper (high-
performance coordination) and Mahout (scalable machine learning and data mining). Therefore,
we choose Hadoop as the develop platform to study the scalability of Naive Bayes classifier.

3.3.2.2 System Components

As shown in the Figure 24, the system adds four modules on top of Hadoop: the work flow
controller (WFC), the data parser, the user terminal and the result collector. This system is
designed based on the need to generate different size of datasets and test the Hadoop program on
them respectively. We also need to perform ten-fold cross validation for accuracy computation
that requires calling the same program multiple times. The raw data comes from a microtext
from an analyst. The data parser is responsible to produce the desired data format to assist the
program to efficiently process each word. The user submits jobs through the user terminal.
Experiment results are also accessible through the user terminal after the result collector finishes
collection.

Figure 24: A system of process data using Pattern matching on Hadoop.

The work flow controller manages the work flow of the whole system, which includes:

1) Instruct data parser of the format of input data and the desired output;
2) Transmit source code to the name node and execute Hadoop jobs;
3) Trigger the result collector to collect computing results once they are available on

Hadoop Distributed File System (HDFS)

Approved for Public Release; Distribution Unlimited.
56

3.3.2.3 Overall Work Flow

1) Preprocessing: The data parser first preprocesses all messages or sentences into a common
format. After the processing, each message or sentence is one component in the dataset, with
document ID prefixed. This is useful because by default MapReduce splits the input files by text
into a mapper. To pre-process a raw sentence, unwanted context such as punctuation, special
symbols and numbers is deleted. A lexicon or vocabulary is implemented to filter out
meaningless words. Several prefixed key words tags were applied in the system: “red” and
“white” refer to “color”, “turn” and “accelerate” refer to “behavior”, “left” and “right” refer to
“direction”, “north” and “south” refer to “orientation”, “car” and “truck” refer to “object”. All
pre-processed text are stored in the name node as a repository, waiting for further sampling.

2) Preparing Input Datasets: The WFC and the data parser work together to prepare input
datasets for all test trials. When the WFC requests a dataset with certain size, the data parser
extracts from the repository the desired number of each key word. The result is an input dataset
of several equal size classes of key words. After a dataset is generated, the data parser divides it
into 10 subsets for the convenience of ten-fold cross validation. The WFC then moves them to
the right locations in HDFS for every trial and calls the Hadoop matching program.

3) Pattern Matching and Extracting using Hadoop: The pattern matching is the key step in the
work flow. Figure 10 shows the job sequence of this step. Once the vocabulary and message data
are ready in HDFS, the matching job combines the vocabulary and the message data, resulting
message IDs and keyword pairs. Finally, the pattern extracting job sorts the messages with the
pre-processed document ID according to the key words matching.

4) Result Collection: After the extracting job finished, the result collector retrieves the
vocabulary, intermediate table, matching results and statistics of the pattern from HDFS.

3.3.2.4 Automatic Scheduling

The WFC coordinates the automation of the whole system. All test messages are
automatically scheduled by the WFC without supervision. This automatic scheduling method can
be easily applied to other programs with minor change of the parameters. The cloud computing
framework for the text processing is shown in Fig. 25.

Approved for Public Release; Distribution Unlimited.
57

Figure 25: Job sequence of Pattern Matching on Hadoop

3.3.3 Hard-Soft Information Fusion

It is not unusual that a tracker loses its target and assigns a new label to the newly established
track of the same moving target. It happens more frequently when a video sequence consists of
many discontinue shots of the same moving target (for example, zoom in/out), because the
trackers do not have enough information to associate the newly detected target to one of the
previously tracked targets. Fortunately, for reviewed video, soft information in terms of chat
messages are usually available which may contain valuable information for connecting tracklets
of the same moving target. By fusing the soft data (chat messages) into the hard data (video
tracks), it is possible to link the originally separated tracks into a single track with unique label
for each moving target. To tackle this problem, we propose a fusion scheme as shown in Figure
26.

Approved for Public Release; Distribution Unlimited.
58

Figure 26: Workflow of the proposed fusion scheme for combining differently
labeled tracklets of the same moving target into a single long-duration track with

unique track ID

In Figure 26, the workflow takes the raw video sequence, tracking results in KW18 format
and chat messages as its input. The first step is to construct entities from both the hard and soft
data. Once required information is extracted and entities are constructed, the next module will
perform hard – soft entity association as well as fusion. The purpose of this module is to link
each entity constructed from soft data with the entity constructed from its corresponding hard
data and fuse the linked entities to generate entities with more complete information. The next
module, hard – hard entity association is devised to associate each hard entity with a nearby hard
entity which is supposed to be constructed from the closest and later track of the same moving
target. The last module, hard – hard entity linkage, links the associated hard entities sequentially
and aims at producing a single, long duration track for each moving target.

In our implementation, each entity corresponds to one tracklet with a unique track ID.
Following [109], each entity consists of two sets of attributes: common attributes and uncommon
attributes. Common attributes are those which will not change over the lifetime of a target track
like type and color of the target. Uncommon attributes are those changing over time like target
location, direction, and activity. The same sets of attribute definitions are used for entities

Hard-Hard fusion

Soft-Hard fusion

Video Data
KW18

Soft Messages

Entity extraction from hard data
Entity extraction from soft data

Soft – hard entity association

Soft – hard entity fusion

Hard – hard entity association

Hard – hard entity linkage

Unique track for
each moving target

Approved for Public Release; Distribution Unlimited.
59

constructed from both hard and soft data. Details of each module are described in the following
sections.

3.3.3.1 Constructing entity from hard data

Constructing entities from hard data is straightforward. No common attribute is obtained
from hard data as such information is not contained in KW18 format. Figure 27 shows a sample
entity constructed from the track with ID = 1 from Creech data. Note that the uncommon
attribute grossLocation is derived from imageLoc by dividing each image frame into nine equal
portions as described in [109].

Figure 27: A sample entity constructed from the track with ID = 1 from Creech
data set.

3.3.3.2 Constructing entity from soft data

Constructing entities from soft data is more challenging as it involves reasoning over text
(chat messages) to a certain extent. Similar to [109], we assume all chat messages follow a
certain text structure/syntax and developed a structured text processing module to extract
necessary information to construct the corresponding entities. In the future, this module will be
replaced by a more general and powerful natural language processing (NLP) based module.

The heart of the structured text processing module includes the following seven key word
banks:

 TypeBank = {'individule','vehicle','car',…};

Approved for Public Release; Distribution Unlimited.
60

 vShapeBank = {'suv','pick-up','truck',…};
 pShapeBank = {'adult',’kid’,…};

 GenderBank = {'male','female'};
 ColorBank = {'black','white',…};
 ActivityBank = {'travel',’turn’,’back’,…};
 DirectionBank = {'north','west','south',…};

Figure 28 shows a sample entity constructed from chat message with ID = 11 from Creech
data. Note that this time, the uncommon attribute imageLoc is derived from grossLocation by
taking the center location of each value of the grossLocation attribute.

Figure 28: A sample entity constructed from the chat message
with ID = 3 from Creech data set.

The message is “1 white pick-up truck turns left and parks under covered parking area north of
runway center of screen”.

Approved for Public Release; Distribution Unlimited.
61

3.3.3.3 Soft-hard entity association

Soft-hard entity association is the first step toward soft-hard information fusion and hard-
hard entity association is the first step toward linking tracklets of the same moving target. Both
involve the calculation of the similarity between two given entities: soft-hard or hard-hard.
Though it is not considered in this work, soft-soft entity association may bring some valuable
information that can be exploited in one way or another. The approach of associating soft-soft
entity and its benefit will be investigated in the future.

The purpose of soft-hard entity association is to identify, for each chat message, the
corresponding track when the message is being uttered. Since the reviewer uttered the call-out
message when he/she observed the moving target of interest, there must be a significant overlap
in time/frames between the entities constructed from the chat message and its corresponding
track. The first step of this module is to filter out those hard entities which do not have
significant overlap with the soft entity being processed. If a hard entity is determined to have
significant overlap with the current soft entity, -6 to + 4 seconds from the time the message is
called out in this work, a similarity score can be computed based on the common attributes as
well as uncommon attributes.

Similarity score for common attributes between a soft entity ES and a hard entity EH is given
by

𝑆𝑆𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑛𝑛(𝐸𝐸𝑙𝑙,𝐸𝐸𝐻𝐻) = 𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸𝑆𝑆. 𝑡𝑡𝑦𝑦𝑝𝑝𝑒𝑒,𝐸𝐸𝐻𝐻. 𝑡𝑡𝑦𝑦𝑝𝑝𝑒𝑒) ∙ 𝑊𝑊𝑡𝑡

 +𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸𝑆𝑆. 𝑠𝑠ℎ𝑎𝑎𝑝𝑝𝑒𝑒,𝐸𝐸𝐻𝐻 . 𝑠𝑠ℎ𝑎𝑎𝑝𝑝𝑒𝑒) ∙ 𝑊𝑊𝑙𝑙

 +𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸𝑆𝑆.𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎,𝐸𝐸𝐻𝐻 .𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎) ∙ 𝑊𝑊𝑔𝑔

 +𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻 . 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) ∙ 𝑊𝑊𝑐𝑐 (65)

Similarity score for uncommon attributes between two entities E_S and E_H is given by

 𝑆𝑆𝑢𝑢𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑛𝑛(𝐸𝐸𝑙𝑙,𝐸𝐸𝐻𝐻) = 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆.𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦,𝐸𝐸𝐻𝐻. 𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦) ∙ 𝑊𝑊𝑎𝑎

 +𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎) ∙ 𝑊𝑊𝑙𝑙 (66)

where

 𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸𝑆𝑆.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒,𝐸𝐸𝐻𝐻. 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒) = �−1 𝑒𝑒𝑖𝑖 𝐸𝐸𝑆𝑆.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒 ≠ 𝐸𝐸𝐻𝐻. 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒
1 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑎𝑎𝑤𝑤𝑒𝑒𝑠𝑠𝑒𝑒

 (67)

Approved for Public Release; Distribution Unlimited.
62

𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒,𝐸𝐸𝐻𝐻 .𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒) is the likelihood that 𝐸𝐸𝑆𝑆.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒 and 𝐸𝐸𝐻𝐻 .𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒 are the same, and
𝑊𝑊𝑡𝑡, 𝑊𝑊𝑙𝑙, 𝑊𝑊𝑔𝑔, 𝑊𝑊𝑐𝑐, 𝑊𝑊𝑎𝑎,𝑊𝑊𝑙𝑙, are predetermined weights associated with each attribute such that
𝑊𝑊𝑡𝑡+ 𝑊𝑊𝑙𝑙 + 𝑊𝑊𝑔𝑔 + 𝑊𝑊𝑐𝑐 = 1 and 𝑊𝑊𝑎𝑎 + 𝑊𝑊𝑙𝑙 = 1.

Note that (66) penalizes only mismatched attributes. If 𝐸𝐸𝐻𝐻.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒 is not determined, e.g. before
soft-hard entity fusion, which is to be explained later, no penalty is given.

The calculation of 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎), depending on the information available for
𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎, consists of the following three cases:

a. 𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 = 𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 , 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) = 1.
b. 𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 ≠ 𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 , 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) = −1.
c. 𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 is not determined, 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) = the likelihood that the

HUE histogram of 𝐸𝐸𝐻𝐻 represents the color given by 𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎.

The computation of 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆.𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦,𝐸𝐸𝐻𝐻. 𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦) is heuristically formulated
depending on the value of 𝐸𝐸𝑆𝑆.𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦. If 𝐸𝐸𝑆𝑆. 𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦 = ‘travel’, the velocity of 𝐸𝐸𝐻𝐻 should
maintain the same direction during the overlapped time period. In this case, we have

𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(′𝑡𝑡𝑎𝑎𝑎𝑎𝑣𝑣𝑒𝑒𝑙𝑙′,𝐸𝐸𝐻𝐻 .𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦) = 1
2
∙ (cos𝑑𝑑(⌈2 ∙ 𝑠𝑠𝑡𝑡𝑑𝑑(𝑑𝑑𝑒𝑒𝑎𝑎𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎)⌉)+1) (68)

Where direction is a vector of length equaling to the number of overlapped frames and each
element is the direction of the moving target at that frame. The operator std stands for standard
deviation and

⌈𝑥𝑥⌉ = �180 𝑒𝑒𝑖𝑖 𝑥𝑥 > 180
𝑥𝑥 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑎𝑎𝑤𝑤𝑒𝑒𝑠𝑠𝑒𝑒

 (69)

If 𝐸𝐸𝑆𝑆.𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦 = ‘turn’, the difference between the direction of 𝐸𝐸𝐻𝐻 obtained from the earlier
frames of the overlapped duration and that obtained from the later frames of the overlapped
duration should be about 90 degree. Therefore we have

𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(′𝑡𝑡𝑢𝑢𝑎𝑎𝑎𝑎 𝑙𝑙𝑒𝑒𝑖𝑖𝑡𝑡′,𝐸𝐸𝐻𝐻.𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦) = 1
2
∙ (cosd(𝐷𝐷𝐼𝐼𝑅𝑅𝑏𝑏𝑒𝑒𝑔𝑔𝑖𝑖𝑛𝑛 − 𝐷𝐷𝐼𝐼𝑅𝑅𝑒𝑒𝑛𝑛𝑒𝑒 − 90) +1) (70)

and

𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(′𝑡𝑡𝑢𝑢𝑎𝑎𝑎𝑎 𝑎𝑎𝑒𝑒𝑎𝑎ℎ𝑡𝑡′,𝐸𝐸𝐻𝐻.𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦) = 1
2
∙ (cosd(𝐷𝐷𝐼𝐼𝑅𝑅𝑒𝑒𝑛𝑛𝑒𝑒 − 𝐷𝐷𝐼𝐼𝑅𝑅𝑏𝑏𝑒𝑒𝑔𝑔𝑖𝑖𝑛𝑛 − 90) +1) (71)

For 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻 . 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎), we first convert the grossLocation attribute of 𝐸𝐸𝑆𝑆
into imageLoc attribute by taking the indices of the center point of grossLocation attribute which
is a description like ‘center of screen’, ‘upper left of screen’. Then we formulate it as:

Approved for Public Release; Distribution Unlimited.
63

𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻 . 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎) =square(cos(norm(dist(𝐸𝐸𝑆𝑆. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎)))

where dist(𝐸𝐸𝑆𝑆. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻 . 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎) is the mean Manhattan distance of entities 𝐸𝐸𝑆𝑆 and 𝐸𝐸𝐻𝐻
calculated over the overlapped frames and norm is the normalization operator such that the
resulting value is between 0 and 𝜋𝜋 2⁄ .

Finally, the similarity between 𝐸𝐸𝑆𝑆 and 𝐸𝐸𝐻𝐻 is given by

𝑆𝑆(𝐸𝐸𝑙𝑙,𝐸𝐸𝐻𝐻) = 𝑆𝑆𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑛𝑛(𝐸𝐸𝑙𝑙,𝐸𝐸𝐻𝐻) ∙ 𝑊𝑊𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 + 𝑆𝑆𝑢𝑢𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑛𝑛(𝐸𝐸𝑙𝑙,𝐸𝐸𝐻𝐻) ∙ 𝑊𝑊𝑢𝑢𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 (72)

with 𝑊𝑊𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 + 𝑊𝑊𝑢𝑢𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 = 1.

3.3.3.4 Hard-hard entity association

The purpose of hard-hard entity association is to identify, for each hard entity, the closest later
hard entity that is constructed from the track of the same moving target. This step is essential for
linking tracklets from the same moving target but with different track IDs. Two hard entities can
be associated if and only if the two entities do not have any overlapped frames. Thus, the first
step of this module is to filter out those hard entities which either come before, or have overlap
with, the hard entity being processed. Next, a similarity score can be computed based on the
common attributes and uncommon attributes among those qualified candidates.

Similarity score for common attributes between two hard entities 𝐸𝐸1 and 𝐸𝐸2 is given by

𝑆𝑆𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑛𝑛(𝐸𝐸1,𝐸𝐸2) = 𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸1. 𝑡𝑡𝑦𝑦𝑝𝑝𝑒𝑒,𝐸𝐸2. 𝑡𝑡𝑦𝑦𝑝𝑝𝑒𝑒) ∙ 𝑊𝑊𝑡𝑡

 +𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸1. 𝑠𝑠ℎ𝑎𝑎𝑝𝑝𝑒𝑒,𝐸𝐸2. 𝑠𝑠ℎ𝑎𝑎𝑝𝑝𝑒𝑒) ∙ 𝑊𝑊𝑙𝑙

 + 𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸1.𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎,𝐸𝐸2.𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎) ∙ 𝑊𝑊𝑔𝑔

 +𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) ∙ 𝑊𝑊𝑐𝑐 (73)

which is very similar to eq.(65).

Similarity score for uncommon attributes between two entities 𝐸𝐸1 and 𝐸𝐸2 is given by

 𝑆𝑆𝑢𝑢𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑛𝑛(𝐸𝐸𝑙𝑙,𝐸𝐸𝐻𝐻) = 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎) ∙ 𝑊𝑊𝑙𝑙

+𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑐𝑐𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠𝑎𝑎𝑒𝑒𝑠𝑠𝑠𝑠(𝐸𝐸1.𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑒𝑒𝑎𝑎𝑑𝑑,𝐸𝐸2. 𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡) ∙ 𝑊𝑊𝑓𝑓 (74)

where 𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸1.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒,𝐸𝐸2.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒) is given by eq. (67) and the calculation of
𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎), depending on the available information for 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 and
𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎, consists of the following four cases:

Approved for Public Release; Distribution Unlimited.
64

a. 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎, = 𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 , 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) = 1.
b. 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,≠ 𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 , 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) = −1.
c. Either 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 or 𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 is not determined. In this case,

𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) = the likelihood that the HUE histogram of
𝐸𝐸2 represents the color given by 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎. Here we assume that the attribute 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 is
available and 𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 is not available.

d. Both 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 and 𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 are not determined. In this case,
𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) =𝑉𝑉𝐸𝐸1.𝐻𝐻𝐻𝐻𝐸𝐸��������� ∙ 𝑉𝑉𝐸𝐸2.𝐻𝐻𝐻𝐻𝐸𝐸��������� , where 𝑉𝑉𝐸𝐸1.𝐻𝐻𝐻𝐻𝐸𝐸��������� and 𝑉𝑉𝐸𝐸2.𝐻𝐻𝐻𝐻𝐸𝐸��������� are
normalized HUE histogram of 𝐸𝐸1 and 𝐸𝐸2.

The formula for 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎) is very similar to the one given by eq.
(71) except that now both 𝐸𝐸1. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎 and 𝐸𝐸2. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎 are given as imageLoc attributes.

The term 𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑐𝑐𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠𝑎𝑎𝑒𝑒𝑠𝑠𝑠𝑠(𝐸𝐸1.𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑒𝑒𝑎𝑎𝑑𝑑,𝐸𝐸2. 𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡) is devised to estimate how
likely the two hard entities can be sequentially linked in time. We simply take

 𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑐𝑐𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠𝑎𝑎𝑒𝑒𝑠𝑠𝑠𝑠(𝐸𝐸1.𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑒𝑒𝑎𝑎𝑑𝑑,𝐸𝐸2.𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡) =

 ½ ∙ (cos(norm(𝐸𝐸2.𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒𝑙𝑙𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡 − 𝐸𝐸1. 𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑒𝑒𝑎𝑎𝑑𝑑))+1) (75)

where norm is a normalization operator such that the resulting value is between 0 and 𝜋𝜋.

Finally, the similarity between 𝐸𝐸1 and 𝐸𝐸2 is given by eq.(72).

3.3.3.5 Hard-soft entity fusion

Soft-hard entity fusion is realized by combining common attributes from both entities.
Uncommon attributes are not combined in the present work. One changeling in combining
uncommon attributes from soft and hard entities is that one need to be able to segment a track
based on its activity at each frame. Though this information is accommodated by KW18 format,
the field is always empty in the current Cheech data set.

We want to note that soft-hard entity fusion is performed immediately after a soft entity is
associated to a hard entity rather than being performed after the completion of soft-hard entity
association as the fused hard entities will facilitate the remaining soft-hard entity association
process.

3.3.3.6 Hard-soft entity linkage

Once all entities constructed from soft and hard data are associated and fused, we are ready to
link the hard entities sequentially to generate a long-duration track for each moving target, which
is the goal of this work. Figure 5 shows the proposed hard-hard entity linkage approach. In
Figure 29, 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒_𝑡𝑡𝑚𝑚𝑝𝑝 is the hard entity satisfying the following three conditions:

1. It is associated with 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒.

Approved for Public Release; Distribution Unlimited.
65

2. It can be concatenated to 𝐸𝐸𝑖𝑖. That is, 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒_𝑡𝑡𝑚𝑚𝑝𝑝 appears after 𝐸𝐸𝑖𝑖 and there is no overlapped
frames between 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒_𝑡𝑡𝑚𝑚𝑝𝑝 and 𝐸𝐸𝑖𝑖.

3. It is the closest one to 𝐸𝐸𝑖𝑖 if there are more than one hard entity satisfying 1 and 2.

Figure 29: The proposed hard-hard entity linkage workflow.

The approach described in this section has been prototyped as IFT’s V2T fusion software and
graphical user interface (GUI) to be presented in Section 4.

3.4 Event Detection

3.4.1 Introduction

Human activity recognition is an important area of computer vision research. It has the
history for several decades. The many applications in this area include surveillance systems,
patient monitoring systems, and a variety of systems. Along with the development of personal
mobile devices, nowadays these applications also involve interactions between persons and
electronic devices such as human-computer interfaces. Most of these applications require an
automated recognition of high-level activities, composed of multiple simple (or atomic) actions
of persons.

For each hard entity 𝐸𝐸𝑖𝑖, get its
associated hard entity 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒

Is 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒
empty?

Yes

No

Set 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒 𝑎𝑎𝑠𝑠 the
terminating entity.

Find 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒_𝑡𝑡𝑚𝑚𝑝𝑝 .

Is
𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒_𝑡𝑡𝑚𝑚𝑝𝑝
empty?

YesSet 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒 𝑎𝑎𝑠𝑠 the linked
hard entity of 𝐸𝐸𝑖𝑖

No Set 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒 =
𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒_tmp

Approved for Public Release; Distribution Unlimited.
66

Figure 30 provides a main idea of the overview of the tree-structured taxonomy that
contains most popular approaches in human activity analysis. The space-time features under
space-time approaches are the approach we use during solving event detection.

The event detection is aiming at two main aspects. First, a single layered approach on
space-time features judges the motion property of multiple identical targets. After the event
detection, the status whether a target is running or not is output. The second aspect is human-
object interaction and group activities. All targets may interact during the process; the proposed
framework should be able to detect any possible interaction. To be specific, the output of the
event detection should be able to label whether a human target is getting into another target, a car
or a building.

3.4.2 Action Recognition based on spatial-temporal features

We are using the space-time local features to build up our approach. The approach takes
advantages of local features extracted from 3-dimensional (3-D) space-time volumes to represent
and recognize activities.

Figure 31 shows an example from the annotated data of clip 01. This figure gives a main
idea of what is a 3-D space-time (3D-ST) space. The 6 images given in the time axis are
following the time sequence. They are from data clip 01 frame 231 to frame 281. The targets in
these frames are marked in blue and red rectangular, which can be found on the top right corner
of each frame. The features we are using are the location of all these targets in this 3-D space.
Their motion trend is clearly indicated by a curve in the space.

Figure 30: The hierarchical approach-based

Approved for Public Release; Distribution Unlimited.
67

The motion trend of target in red rectangular is indicated by red curve. So do the other
target. By analyzing these curves, we can get the motion property of a single target. In our
implement, we have set a speed control threshold to judge whether a target is running or not. We
manually choose this threshold according to the property of data clips, and this threshold can also
be trained by machine learning strategy instead of by hand. If the moving distance of a target is
larger than the preset threshold, then we mark this target the property of running as its event.

3.4.3 Human-Object Interactions and Group Activities

In order to recognize interactions between humans and objects, an integration of multiple
components is required. The locations of both targets are required into one single interaction.
Besides, the motion trend curves in 3D-ST space also indicate interactions in the real world. The
identification of objects and motion involved in an activity as well as analysis of their interplay is
essential for the reliable recognition of human activities involving humans and objects.

Specifically, in our study we aim at the recognition of a human getting into a car. As shown
in Figure 32. The trend of the motion from a human target in 3D-ST space is approaching an
annotated car, which we call this a human-car-approaching request. The motion trend line in 3D-
ST space is indicated on the right image clip using a curved arrow. In our implementation, we
have set a distance control threshold. This manually set threshold gives the criteria of judging the
event of a human getting into a car. Under the circumstances that the motion trend meets the
approaching request, the framework will mark a human is getting into a car when the distance
between them is less than the threshold.

time

x-axis

Figure 31: 3-D space-time annotation of multi targets

y-axis

Approved for Public Release; Distribution Unlimited.
68

3.4.4 An event detection framework

Figure 33 presents the main idea of the implemented framework. The whole system is built
on an online strategy. In each step, the judgment that the system made only depends on the
evidence given by the target tracking results (target locations) before the time point. The event
detection is isolated from the main system framework. This makes it easy to modify these two
function modules to adapt for alternative usage.

x-axis

time

y-axis

Figure 32: Interaction of a human and a car in a space-time 3D dimension

Approved for Public Release; Distribution Unlimited.
69

Import annotated data

Build motion trend of
all targets

Event detection of running
on a single target

Approaching
another target

Check identity
of the other

Event detection of
getting into a car

Update event
information

Finish event detection
on all targets

Check identity
of the primal

target

Human

Car

Car

Human

No

Yes

Yes

No

Store results to files in
kw18 format

Pick up one target

Figure 33: Algorithm Framework

Approved for Public Release; Distribution Unlimited.
70

3.4.5 Event Types

In Virat data Release 2.0, 12 different types of events have been defined including:

(1) Person loading an Object to a Vehicle
Description: An object moving from a person to a vehicle. The act of 'carrying' should not be

included in this event.
Annotation: 'Person', 'Object' (optional), and 'Vehicle' should be annotated.
Start: The event begins immediately when the cargo to be loaded is “extended” toward the

vehicle (i.e., before one's posture changes from one of 'carrying', to one of 'loading.').
End: The event ends after the cargo is placed in the vehicle and person-cargo contact is lost. In

the event of an occlusion, it ends when the loss of contact is visible.

(2) Person Unloading an Object from a Vehicle
Description: An object moving from a vehicle to a person.
Annotation: 'Person', 'Object' (optional), and 'Vehicle' should be annotated.
Start: The event begins immediately when the cargo begins to move. If the start of the event is

occluded, it begins when the cargo movement is first visible.
End: The event ends after the cargo is released. If a person, while holding the cargo, begins to

walk away from the vehicle, the event ends (at which time the person is 'carrying'). The
event also ends if the vehicle drives away while the person is still in contact with the
cargo; after the vehicle has been in motion for more than 2 seconds, the person is
'carrying'.

(3) Person Opening a Vehicle Trunk
Description: A person opening a trunk. A trunk is defined as a container specifically designed to

store nonhuman cargo on a vehicle. A trunk need not have a lid (i.e., the back of a pickup
truck is a trunk), and it need not open from above (i.e., the back of a van, which opens via
double doors, is also a trunk).

Annotation: 'Person', and 'Vehicle' should be annotated with bounding boxes for as many frames
as possible during the event duration. The box annotation of 'Trunk' is optional.

Start: The event begins when the trunk starts to move.
End: The event ends after the trunk has stopped moving.

(4) Person Closing a Vehicle Trunk
Description: A person closing a trunk.
Annotation: 'Person', and 'Vehicle' should be annotated with bounding boxes for as many frames

as possible during the event duration. The box annotation of 'Trunk' is optional.
Start: The event begins when the trunk starts to move.
End: The event ends after the trunk has stopped moving.

(5) Person getting into a Vehicle
Description: A person getting into, or mounting (e.g., a motorcycle), a vehicle.
Annotation: 'Person', and 'Vehicle' should be annotated.
Start: The event begins when the vehicle's door moves, or, if there is no door, 2 s
before ½ of the person's body is inside the vehicle.
End: The event ends when the person is in the vehicle. If the vehicle has a door, the event ends

after the door is shut. If not, it ends when the person is in the seated position, or has been
inside the vehicle for 2 seconds (whichever comes first).

Approved for Public Release; Distribution Unlimited.
71

(6) Person getting out of a Vehicle
Description: A person getting out of, or dismounting, a vehicle.
Annotation: 'Person', and 'Vehicle' should be annotated.
Start: The event begins when the vehicle's door moves. If the vehicle does not have a door, it

begins 2 s before ½ of the person's body is outside the vehicle.
End: The event ends when standing, walking, or running begins.

(7) Person gesturing
Description: A person gesturing. Gesturing is defined as a movement, usually of the body or

limbs, which expresses or emphasizes an idea, sentiment, or attitude. Examples of
gesturing include pointing, waving, and sign language.

Annotation: 'Person' should be annotated.
Start: The event begins when the gesture is evident. For example, when waving, the gesture

when the waver begins to raise their arm into the “waving position.”
End: The event ends when the motion ends

(8) Person digging (Note: not existing in Release 2.0)
Description: A person digging. Digging may or may not involve the use of a tool (i.e., digging

with one's hands is still considered 'digging'; hands are the tool).
Annotation: 'Person' should be annotated.
Start: The event begins when the tool makes contact with the ground.
End: The event ends 5 s after the tool has been removed from the ground, or immediately if the

digging tool is dropped.

(9) Person Carrying an Object
Description: A person carrying an object. The object may be carried in either hand, with both

hands, or on one's back. Objects annotated by boxes are optional and subject to the
difficulty.

Annotation: 'Person', and 'Object' (optional) are annotated.
Start: The event begins when the person who will carry the object, makes contact with the object.

If someone is carrying an object that is initially occluded, the event begins when the
object is visible.

End: The event ends when the person is no longer supporting the object against gravity, and
contact with the object is broken. In the event of an occlusion, it ends when the loss of
contact is visible.

(10) Person running
Description: A person running for more than 2s.
Annotation: 'Person' should be annotated.
Start: When a person is visibly running.
End: The event will end 2 s after the person is no longer running. If transitioning to Standing,
Walking or Sitting the event will end after Standing, Walking or Sitting.

(11) Person entering a facility
Description: A person entering a facility
Annotation: 'Person' should be annotated.
Start: The event begins 2 s before that person crosses the facility‘s threshold.
End: The event ends after the person has completely disappeared from view.

(12) Person exiting a facility

Approved for Public Release; Distribution Unlimited.
72

Description: A person exiting a facility
Annotation: 'Person' should be annotated.
Start: The event begins as soon as the person is visible.
End: The event ends 2 seconds after the person is completely out of the facility.

3.4.6 Event Detection based on L1 Tracking Results

In this project, we use the target tracking results provided by the L1 tracker to extract target
activity and event. We obtain the tracked targets’ position and speed and then process the
obtained targets position and speed to extract their activities and the corresponding events. In this
VIRAT dataset, we can extract following events:

(1) Person getting into a Vehicle;
(2) Person running; and
(3) Person entering a facility.

Except the above event, we can also obtain

(4) Person walking;
(5) Person stop; and,
(6) Car stop.

In the selected video sequence, there is clearly camera movement and this movement leads to
target position shift in consecutive video frames. Thus we add a static target in tracking to
calibrate the camera movement when there is no desired static target (e.g., in Figure 34). In this
compensation process, we assume camera movement is limited to linear in plane translation,
without zoom in/out or rotation.

Figure 34: Two person walking.

Assuming the static target is at (𝑥𝑥𝑙𝑙,𝑛𝑛,𝑦𝑦𝑙𝑙,𝑛𝑛) in frame 𝑎𝑎, and due to the camera movement the
static target is at (𝑥𝑥𝑙𝑙,𝑛𝑛+1,𝑦𝑦𝑙𝑙,𝑛𝑛+1) in frame 𝑎𝑎 + 1, then the camera movement compensation
parameter is

Approved for Public Release; Distribution Unlimited.
73

𝑥𝑥𝑐𝑐,𝑛𝑛+1 = 𝑥𝑥𝑙𝑙,𝑛𝑛+1 − 𝑥𝑥𝑙𝑙,𝑛𝑛, 𝑦𝑦𝑐𝑐,𝑛𝑛+1 = 𝑦𝑦𝑙𝑙,𝑛𝑛+1 − 𝑦𝑦𝑙𝑙,𝑛𝑛. (76)

Assume the desired mobile target 1 location is at (𝑥𝑥𝑡𝑡1,𝑛𝑛+1,𝑦𝑦𝑡𝑡1,𝑛𝑛+1) in frame 𝑎𝑎 + 1, then the
calibrated target 1 location in frame 𝑎𝑎 + 1 is

 𝑥𝑥′𝑡𝑡1,𝑛𝑛+1 = 𝑥𝑥𝑡𝑡1,𝑛𝑛+1 − 𝑥𝑥𝑐𝑐,𝑛𝑛+1, 𝑦𝑦′𝑡𝑡1,𝑛𝑛+1 = 𝑦𝑦𝑡𝑡1,𝑛𝑛+1 − 𝑦𝑦𝑐𝑐,𝑛𝑛+1. (77)

The location obtained after compensation is the target 1’s position in the scene of the first frame.
Thus we can calculate the target’s speed. Please note, with two reference object, we can calibrate
both the camera linear movement and rotation.

With the compensated target position in each frame, we calculate the target speed in x and y
direction with

𝑣𝑣𝑥𝑥,𝑡𝑡1,𝑛𝑛+1 = 𝑁𝑁�𝑥𝑥′𝑡𝑡1,𝑛𝑛+1 − 𝑥𝑥′𝑡𝑡1,𝑛𝑛�, 𝑣𝑣𝑦𝑦,𝑡𝑡1,𝑛𝑛+1 = 𝑁𝑁 �𝑦𝑦′𝑡𝑡1,𝑛𝑛+1 − 𝑦𝑦′𝑡𝑡1,𝑛𝑛�, (78)

where N is the number of frames per second of the video. Please note that the speed is in pixels
per second.

There is no camera parameters provided with the video, so we use an object as reference in
the video to obtain the approximate speed of the interested targets. We used person’s height in
pixels as a reference, and calculate the target speed with respect to the reference and set a
threshold to separate running and walking.

The event, for example Person getting into a Vehicle or Person entering a facility is detected
using the distance between the person and the vehicle (facility). The distance is calculated using
the compensated target location. We also use the target histogram comparison to detect if the
target is still in the scene to help the event detection.

Approved for Public Release; Distribution Unlimited.
74

4 RESULTS AND DISCUSSION

4.1 Results of tracking and multi-target association

We tested our algorithm on 3 different sequences obtained from Virat data named
“09152008flight2tape1_5.mpg”, the first sequence with two people interacting on the road
contains 600 frames, we are able to track it around 500 frames until a large movement from the
camera causes a large blur. We obtained good results as shown in the following figures.

Figure 35: Sequence 1 results.

Approved for Public Release; Distribution Unlimited.
75

Sequence 2 contains a moving vehicle, since it has neither big blur nor appearance change,
we can track it perfectly.

Figure 36: Sequence 2 results.

However, the sequence 3 with several people interacting with cars and each other remains
a challenge. The main reason is the big blur and the initial low image quality of the target. At the
first trial, the low quality of the initialization yields an early failure. So we pick up a frame where
the targets are stable and run the trial 2. It can track over 300 frames until again the large blur
occurs.

Approved for Public Release; Distribution Unlimited.
76

Figure 37: Sequence 3 results trial 2, starting from frame 87.

Approved for Public Release; Distribution Unlimited.
77

From all these experiments, it shows that our algorithm could track the targets in most of the
cases except when there is large motion blur. We will make further analysis to find the problem
lies behind it and make updates accordingly.

Figure 38: Association result on dataset 1

Figure 39: Association result on dataset 3

Approved for Public Release; Distribution Unlimited.
78

Figure 40: Association result on dataset 2

Approved for Public Release; Distribution Unlimited.
79

4.2 Tracker Comparison

4.2.1 Virat Dataset

In the experiments, the platform of running all the trackers is Intel core i7-4500U 2.4GHz
and 8 GB memory. To quantitatively compare robustness under challenging conditions, we
manually annotated the target's bounding box in each frame for all the test sequences. The test
sequences we selected are the classical sequences for video tracking "jogging" and "pole". Video
"car" is a very challenging airborne video sequence in VIRAT Video Dataset. As can be seen in
Figure 41, Tracker PF(pink) and S-BOOST(white) do not perform robustly under low-resolution
and realistic conditions. As shown in Table 1 and Table 2, TLD and Compressive Trackers show
their robustness in average tracking errors and tracking quality comparison respectively.

Legend: PF(pink) FRAG(green) STRUCK(cyan) BOOST(black) S-BOOST(white) MIL(orange)
TLD(red) CT(blue)

Figure 41: Tracking results of different algorithms in video
"car"

Approved for Public Release; Distribution Unlimited.
80

Table 1: The average tracking errors on Virat dataset
PF FRAG STRUCK BOOST S-BOOST MIL TLD CT

jogging 0.1885 0.6383 0.8526 0.0570 0.8916 0.8211 0.0056 0.0085
pole 0.7520 0.0409 0.5728 0.0109 0.8591 0.0072 0.0068 0.0093
car 6.9842 0.3216 0.4685 0.4169 4.2561 0.5714 0.2034 0.1026

Average 2.6416 0.3336 0.6313 0.1616 2.0022 0.4665 0.0719 0.1204

The error is measured using the Euclidean distance of two center points, which has been
normalized by the size of the target from the ground truth. The last row is the average error for
each tracker over all the test sequences.

Table 2: The average tracking quality on Virat dataset
PF FRAG STRUCK BOOST S-BOOST MIL TLD CT

jogging 0.4141 0.1643 0.1339 0.1761 0.1294 0.5333 0.5369 0.6836
pole 0.3063 0.2791 0.3524 0.3939 0.0176 0.3422 0.5449 0.5263
car 0.0120 0.2941 0.2516 0.4224 0.0202 0.3618 0.4865 0.6572

Average 0.2441 0.2458 0.2459 0.3308 0.0557 0.4124 0.5227 0.6223

The quality is measured using the area coverage between the tracking box and the annotation.

4.2.2 Skybox Dataset

The video we used to evaluate the trackers is the “Skybox Imaging HD Video of Mining
Activity in Uşak, Western Turkey”: http://player.vimeo.com/video/95913805

Figure 42: The screen shot of the Skybox Imaging HD Video

http://player.vimeo.com/video/95913805

Approved for Public Release; Distribution Unlimited.
81

The video is a full motion HD video from space of a gold mine in Uşak, Western Turkey. It
was collected by SkySat-1 on March 23, 2014.

In the experiments, the platform of running all the trackers is Intel core i7-4500U 2.4GHz and 8
G memory. To quantitatively compare robustness under challenging conditions, we manually
annotated the target's bounding box in each frame for all the test sequences. The test sequences
we selected are a skybox image sequence filmed in Turkey. Vehicle 1 and 2 are selected as the
objects of interests.

As can be seen in Table 3 and 4, VTD and TLD(red) do not perform robustly under low-
resolution and realistic conditions. Also as shown in Table 1 and Table 2, OAB, L1 and CT
tracker show their robustness in average tracking errors and tracking quality comparison
respectively.

Table 3: The average tracking errors (%) on a Skybox video
CT TLD MIL OAB VTD L1 LOFT CSURF

Vehicle1 0.0000 0.8703 0.0000 0.0000 0.9499 0.0000 0.3190 0.3580
Vehicle2 0.5410 0.9165 0.4046 0.0000 0.9722 0.6510 0.2327 0.2977
Average 0.2707 0.8934 0.2023 0.0000 0.9611 0.3255 0.2728 0.3279

The error is measured using the Euclidean distance of two center points, which has been
normalized by the size of the target from the ground truth. The last row is the average error for
each tracker over all the test sequences.

Table 4: The average tracking quality on a Skybox video
CT TLD MIL OAB VTD L1 LOFT CSURF

Vehicle1 0.8253 0.4143 0.3113 0.9117 0.2012 0.8953 0.62 0.6813
Vehicle2 0.8442 0.2191 0.2535 0.8739 0.1501 0.9034 0.55 0.5673
Average 0.8348 0.3166 0.2824 0.8928 0.1757 0.8994 0.585 0.6243

Frame rate
(frames/sec) 15.96 4.629 0.269 15.6 16.06 1.743 2.674 2.563

The quality is measured using the area coverage between the tracking box and the annotation.

Figure 43 shows tracking results of LOFT tracker on a Skybox video. The screen layout for
vsPlay includes a row of tabs, which contain drop down menu functions at the top of the screen.
These drop down menus include a number of icon functions and provide additional capabilities
for the user to interact with the screen display layout and video based upon tab selection. To
provide maximum situational awareness of activity occurring within the FMV feed an analyst
should set their screen layout to display the tracks pane (by selecting the show track list from the
drop down menu), events pane (by selecting the show events list from the drop down menu), and
the change detections pane (by selecting the Descriptors tab and ensuring the show alert list is
activated). Each screen layout tab is described below:

• Video Tab - Controls the FMV feed such as start, stop, decrease speed;

Approved for Public Release; Distribution Unlimited.
82

• Tracks Tab – Provides on screen displays for the MTT such as track ID’s, entity
bounding boxes, PVO scores;

• Events Tab – Displays events that correlate with the FMV feed such as show all
person/vehicle events;

• Descriptors Tab – Works with alerts to activate/deactivate or shows alerts;
• Regions Tab – Supports analyst ability to create/select/de-select or display regions of

interest for activity or non-activity within the FMV feed;
• Tools Tab – Provides report generation, measuring/ruler, display change detection list

functions.

Figure 43: The tracking results of LOFT tracker displayed in Kitware vsPlay

4.3 Hard-Soft and Hard-Hard Fusion
4.3.1 Software and GUI for Fusion

Our software tool for hard-soft fusion can:

1) Display tracked moving targets represented in KW18 format individually or collectively
on the screen.

Approved for Public Release; Distribution Unlimited.
83

2) Display soft messages synchronized with hard (video) data.
3) Associate soft messages with their corresponding tracks.
4) Link tracklets of the same moving target with different labels into a complete track with a

unique label.

Figure 44 shows the layout of the GUI. An overview of the GUI follows:

 At the center of the screen is the main display of the video data with tracked targets.

1. Once the tracks are loaded, they are displayed in Track List.
2. Current chat message is displayed in Chat message while the video is being played.
3. To perform soft-hard (chat messages and video tracks) and hard-hard (tracks and tracks)

data association, entities need to be extracted first. The results of these associations are
displayed in H-S association table and H-H association table.

4. After hard-hard data association, entities (each entity corresponds to a tracklet) can be
linked to produce a complete track of the same moving target. The linked entities are
listed in Linked Entities.

5. User is able to display each linked entity individually. When a linked entity is selected,
the concatenated tracklets (each corresponds to a hard entity) are displayed in Linked
tracks.

Figure 44: GUI layout of the developed video-to-text fusion software prototype

Approved for Public Release; Distribution Unlimited.
84

There are several steps to use IFT’s fusion software (GUI):

1. Load data
IFT’s V2T Fusion System requires three sets of data to perform soft-hard data fusion. The
raw video data in terms of image sequence, the tracking results in kw18 format, and a text
file containing chat messages. To load in these data, click FileLoadImages,
FileLoadTracks, and FileLoadMessages as shown in Figure 8a.

2. Play data
Once all data are loaded, user is able to view the raw video data, the selected track one at
a time, or all tracks at once by click the Play menu item as shown in Figure 8b. All
loaded tracks are listed in Track List as shown in Figure 8c. Click on a track ID to select
the track to be played. Note that PlaySelected Entity is used to display the final
concatenated track of each distinct entity after hard-hard association is performed. Figure
8d displays a screen shot of playing all tracks.

3. Entity generation
The first step of soft-hard data fusion is to construct entities from soft and hard data. This
is done through Entity GenerationFrom hard data and Entity GenerationFrom soft
data as shown in Figure 8e. After entities are constructed, user can create a XML file to
view the constructed entities. Figure 8f displays a small portion of the generated XML
file in XML Notepad.

4. Entity association

The next steps are soft-hard and hard-hard entity association and fusion. They are
accessed through Entity AssociationHard-Soft and Entity AssociationHard-Hard as
shown in Figure 9a. The results of hard-soft association and hard-hard association are
displayed in H-S association and H-H association tables as shown in Figure 9b. Hard-
soft entity fusion is automatically invoked during hard-soft entity association and hard-
hard entity linkage is automatically carried out after hard-hard association task is
finished. The result of hard-soft entity fusion is an entity with more attributes filled,
which can be viewed by generating the XML file as stated in 3 above. The result of hard-
hard entity linkage is a set of distinct entities listed in Distinct Entities listbox.

5. Concatenated tracks

The final product of this system is a set of concatenated tracks, each is from a distinct
entity listed in Distinct Entities listbox. To view the concatenated tracks, select a distinct
entity and click Play Selected Entity. This will display the concatenated tracks with a
unique track ID. While the tracks are being displayed, their original track IDs will be
highlighted in Linked tracks listbox under IFT logo. Figure 10 displays the concatenated
tracks of entity 1. The left column shows the concatenated tracks of with a unique track
ID = 1. The right column is the original corresponding frames with original track IDs.

Approved for Public Release; Distribution Unlimited.
85

4.3.2 Results

There are two major moving targets being tracked in Creech data. Their labels are 5 and 6
initially. During the course of tracking process, the checker failed to maintain the same label
after the tracks were lost and picked up at a later time. This resulted in a set of tracklets of the
same moving target but each has a different ID label. Figure 45 shows a screen shot illustrating
this issue. The same two moving targets are now labeled as 21 and 23 respectively. To evaluate
the performance of the proposed fusion method in tackling this issue, we visually examined each
track and concatenated them manually and produced the ground truth for the two main moving
targets. They are used to evaluate the proposed soft-hard fusion scheme. In Table I, we list all the
tracks obtained from the .kw18 file associated with the Creech data in the first column. The value
in each parenthesis indicates the duration of the track in seconds. Based on the quality of each
track, track IDs are colored coded in green, blue, and red. The color code is provided in Table 6.

Figure 45: A screen shot illustrating the issue of the same target labeled differently
during the course of tracking process. The targets with labels 21 and 23

are originally labeled as 1 and 2.

From Table 5, we observe the following:

Approved for Public Release; Distribution Unlimited.
86

1. For target 1, all good (green) tracks are picked up with zero false alarm rate (a good track
from a wrong target is picked up) using the proposed soft-hard fusion scheme. This is
compared to three good tracks (T15, T21, T 38) are missed out of 4 good tracks
(T01,T15, T21, T 38) with 5 wrongly detected good tracks (T14, T18, T22, T26, and
T40).

2. For target 1, considering all tracks (including green, blue, and red ones), the total length
from ground truth is 153.2 seconds. With the proposed soft-hard fusion scheme, the total
length of the concatenated track is 160.2 seconds, within which, 147.8 seconds are
overlapped with ground truth (92.3%). This is compared to 67.6% without resorting to
soft-hard fusion.

3. For target 2, 5 out of 6 good (green) tracks are picked up with zero false alarm rate using
the proposed soft-hard fusion scheme. This is compared to three good tracks (T02, T17,
T23) are missed out of 6 good tracks (T02,T14, T17, T19, T23, T40) with 3 wrongly
detected good tracks (T18, T22, T26).

4. For target 2, considering all tracks (including green, blue, and red ones), the total length
from ground truth is 173.0 second. With the proposed soft-hard fusion scheme, the total
length of the concatenated track is 162.1 seconds, within which, 148.0 seconds are
overlapped with ground truth (91.3%). This is compared to 14.3 % without resorting to
soft-hard fusion.

Table 5: Track IDs

Track IDs of targets 1 (columns 2,3,4) and 2 (columns 5,6,7). Columns 2 and 5 are ground truths.
Columns 3 and 6 are results with soft-hard fusion and columns 4 and 7 are results without
resorting to soft-hard fusion.

 Target 1
Ground Truth

With

S-H fusion

Without S-
H fusion

Target 2

Ground Truth

With

S-H fusion

Without

S-H fusion
T01 (99.8) √ √ √ √
T02 (102.5) √ √
T03 (15.7)
T04 (35.5)
T05 (60.7)
T06 (2.0)
T07 (1.7)
T08 (10.9)
T09 (6.4)
T10 (2.6) √ √ √ √
T11 (5.5) √ √ √ √
T12 (1.5) √ √
T13 (2.8) √ √ √
T14 (1.3) √ √ √ √
T15 (6.6) √ √

Approved for Public Release; Distribution Unlimited.
87

T16 (1.4) √ √ √
T17 (4.8) √ √
T18 (4.5) √ √
T19 (6.5) √
T20 (3.4)
T21 (13.7) √ √
T22 (11.0) √ √
T23 (19.0) √ √
T24 (7.0)
T25 (14.1)
T26 (5.6) √ √
T27 (3.8)
T28 (4.0)
T29 (4.9)
T30 (9.3) √
T31 (3.1) √
T32 (3.2) √ √
T33 (1.5) √ √
T34 (4.1) √ √ √
T35 (1.3) √
T36 (1.3)
T37 (17.0)
T38 (19.6) √ √
T39 (7.9)
T40 (20.4) √ √ √ √
T41 (1.6)
T42 (1.2)
T43 (10) √ √ √
T44 (6.5)
T45 (1.5) √
T46 (5.5) √ √
T47 (7.5)
T48 (1.3) √ √ √
T49 (10.8) √ √ √
T50 (2.2) √ √ √ √
T51 (2.3) √

Approved for Public Release; Distribution Unlimited.
88

Table 6: Color code used in Table 5.
COLOR COMMENTS
GREEN Good track
BLUE Bounding boxes contain only a portion of the moving target, more than

one moving target, or a significant fraction of tracks contains no moving
target.

RED Bounding boxes contains no valid moving target.

Table 7 summarized this result.

Table 7: Evaluation of proposed soft-hard fusion compared to without fusion

CONSIDER GOOD
TRACKS ONLY

CONSIDER ALL TRACKS

TARGET 1
GROUND TRUTH TOTAL LENGTH 139.7 seconds 153.2 seconds

WITH FUSION TOTAL LENGTH 139.7 seconds 160.2 seconds
WITH FUSION CORRECTLY DETECTED 100% 92.3%

WITH FUSION MISSED 0 % 3.5%
WITHOUT FUSION TOTAL LENGTH 142.6 seconds 159.6 seconds

WITHOUT FUSION CORRECTLY DETECTED 70.0% 67.6%
WITHOUT FUSION MISSED 28.6% 26.0%

TARGET 2
GROUND TRUTH TOTAL LENGTH 154.5 seconds 173.0 seconds

WITH FUSION TOTAL LENGTH 148.0 seconds 162.1 seconds
WITH FUSION CORRECTLY DETECTED 100% 91.3%

WITH FUSION MISSED 4.2% 11.9%
WITHOUT FUSION TOTAL LENGTH 142.6 seconds 180.7 seconds

WITHOUT FUSION CORRECTLY DETECTED 15.2% 14.3%
WITHOUT FUSION MISSED 86.0% 82.4%

4.4 Event Detection

Following are example results achieved using the implemented event detection system
(section 3.4). Discussions are made below figures to illustrate the capability of the system.

Approved for Public Release; Distribution Unlimited.
89

Figure 46: Multiple targets running event detection.

The system can detect multiple running events happened at the same time. As we can see, on the
right hand side, the two running events are both detected. Word 'running' under the bounding box
demos the event detection.

.
Figure 47: Non false detection of 'getting into car'.

These two targets are very close to each other, and one of them has the motion trend towards the
other target. But since in the system we have a function module checking target identity, thus it is
not miss-detected as 'getting into car'.

Approved for Public Release; Distribution Unlimited.
90

Figure 48: 'getting into car' event.

When a person target is within the distance control range of a vehicle target, it will be marked
'getting into car'. As we can see from the figure, word 'getting into car' is on top of the red
bounding box.

Figure 49: Another successfully detected event 'getting into car'.

Approved for Public Release; Distribution Unlimited.
91

5 CONCLUSIONS

The Phase I effort has resulted in a hard (video) and soft (text, voice chat) information fusion
prototype to automatically generate videos with annotation that can be easily used by future
human or machine users. The tracking results following the standard format (.kw18) can also be
output in a separated file for interfacing with other modules in the E2AT system integration. In
our implementation, each entity corresponds to one tracklet with a unique track ID. Each entity
consists of two sets of attributes: common attributes and uncommon attributes. Common
attributes are those which will not change over the lifetime of a target track like type and color of
the target. Uncommon attributes are those changing over time like target location, direction, and
activity. The same sets of attribute definitions are used for entities constructed from both hard
and soft data. The association, linkage, fusion, and concatenation can improve the visual tracking
results.

Approved for Public Release; Distribution Unlimited.
92

6 REFERENCES

[1] X. Shi, H. Ling, et al., “Context-Driven Moving Vehicle Detection in Wide Area Motion
Imagery,” In Proc. of the Int'l Conf. on Pattern Recognition (ICPR), 2012.

[2] Y. Wu, J. Cheng, J. Wang, H. Lu, J. Wang, H. Ling, et al., “Real-time Probabilistic
Covariance Tracking with Efficient Model Update,” IEEE Trans. on Image Processing (T-
IP), 21(5): 2824-2837, 2012.

[3] X. Mei, H. Ling, et al., “Minimum Error Bounded Efficient L1 Tracker with Occlusion
Detection,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
1257-1264, Colorado Springs, 2011.

[4] X. Mei and H. Ling, “Robust Visual Tracking and Vehicle Classification via Sparse
Representation,” IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI),
33(11): 2259-2272, 2011.

[5] Y. Wu, G. Chen, et al., “Feature-based background registration in wide-area motion
imagery," in SPIE Conf. on Defense Security+Sensing, 8402-8403, 2012.

[6] P. Liang, G. Teodoro, H. Ling, et al., “Multiple Kernel Learning for Vehicle Detection in
Wide Area Motion Imagery,” In Proc. of the Int'l Conf. on Information Fusion (FUSION),
2012.

[7] K. Palaniappan, et al., “Wide-Area Persistent Airborne Video: Architecture and
Challenges,” in Distributed Video Sensor Networks, B. Bhanu, et al (eds), 2011.

[8] R. Pelapur, et al., “Persistent Target Tracking Using Likelihood Fusion in Wide-Area and
Full Motion Video Sequences,” In Proc. of the Int'l Conf. on Information Fusion
(FUSION), 2012.

[9] J.L. Graham, et al., “A COIN-inspired synthetic dataset for qualitative evaluation of hard
and soft fusion systems,” Information Fusion (FUSION), 2011, pp. 1-8, 5-8, July 2011.

[10] G.L. Jacob, et al., “A synthetic dataset for evaluating soft and hard fusion algorithms,”
Proc. SPIE 8062, May 23, 2011.

[11] H. Ling, and K. Okada, “An Efficient Earth Mover's Distance Algorithm for Robust
Histogram Comparison,” IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI), 29(5): 840-853, 2007.

[12] N. Xie, H. Ling, et al., “Use Bin-Ratio Information for Category and Scene Classification,”
in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2313-
2319, 2010.

[13] J. Kim, et al., “A field relevance model for structured document retrieval,” Proceedings of
ECIR'12 Proceedings of the 34th European conference on Advances in Information
Retrieval, pp. 97-108, 2012.

[14] Gross, Geoff A., et al., “Towards hard+ soft data fusion: Processing architecture and
implementation for the joint fusion and analysis of hard and soft intelligence
data,” Information Fusion (FUSION), 2012 15th International Conference on. IEEE, 2012.

[15] J.L. Graham, et al., “SYNCOIN: A synthetic data set for evaluation of hard and soft fusion
systems,” Proc. of the 14th international conference on information fusion, 2011, Chicago,
IL.

[16] J.L. Graham, et al., “A new synthetic dataset for evaluating soft and hard fusion
algorithms,” SPIE proceedings, Fl, USA.

[17] M.S. Baran, et al., “Hard sensor fusion for COIN inspired situation awareness,” Proc. of
the 14th international conference on information fusion, 2011, Chicago, IL.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Graham,%20J.L..QT.&newsearch=partialPref
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.884042&Name=Jacob+L.+Graham
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=ArV74ZMAAAAJ&sortby=pubdate&citation_for_view=ArV74ZMAAAAJ:4X0JR2_MtJMC

Approved for Public Release; Distribution Unlimited.
93

[18] I. Ersoy, K. Palaniappan, et al., “Visual tracking with robust target localization,” IEEEInt.
Conf. Image Processing, 2012.

[19] S. Candemir, K. Palaniappan, et al., “Feature prominence-based weighting scheme for
video tracking,” ICVGIP, 2012.

[20] R. Pelapur, K. Palaniappan, et al., “Robust orientation and appearance adaptation for wide-
area large format video object tracking,” 9th IEEE Int. Conf. Advanced Video and Signal-
Based Surveillance (AVSS), 2012.

[21] I. Ersoy, K. Palaniappan, et al., “Interactive tracking for persistent wide-area surveillance,”
Proc. SPIE Conf. Geospatial InfoFusion II, SPIE Defense, Security and Sensing: Sensor
Data and Information Exploitation, Vol. 8396, April 2012.

[22] S. Candemir, K. Palaniappan, et al., “Feature fusion using ranking for object tracking in
aerial imagery,” Proc. SPIE Conf. Geospatial InfoFusion II, SPIE Defense, Security and
Sensing: Sensor Data and Information Exploitation, Vol. 8396, April 2012.

[23] http://cmusphinx.sourceforge.net/
[24] http://worldwind.arc.nasa.gov/java/
[25] AFRL: Columbus large image format (CLIF) 2006.

https://www.sdms.afrl.af.mil/index.php?collection=clif2006.
[26] L. Breiman. Random forests. Machine learning, 2001; 45(1): 5–32.
[27] Flickner, M.; Sawhney, H.; Niblack, W.; Ashley, J.; Huang, Q.; Dom, B.; Gorkani, M.;

Hafner, J.; Lee, D.; Petkovic, D.; Steele, D. & Yanker, P., “Query by Image and Video
Content: The QBIC System Computer,” IEEE Computer Society Press, 1995, 28, 23-32

[28] T. Hofmann, “Learning the Similarity of Documents: an information-geometric approach to
document retrieval and categorization,” Advances in Neural Information Processing
Systems 12, pp-914-920, MIT Press, 2000.

[29] H. Ling, Y. Wu, E. Blasch, G. Chen, H. Lang, and L. Bai. "Evaluation of Visual Tracking in
Extremely Low Frame Rate Wide Area Motion Imagery.'' In Proc. of the Int'l Conf. on
Information Fusion (FUSION), 2011.

[30] H. Ling and K. Okada, "Diffusion Distance for Histogram Comparison", in Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), I:246-253, New York,
NY, USA, June 2006.

[31] H. Ling, L. Bai, E. Blasch, and X. Mei, “Robust Infrared Vehicle Tracking across Target
Pose Change using L1 Regularization,” Proc. of the International Conference on
Information Fusion (FUSION), Edinburgh, UK, 2010.

[32] H. Ling and D.W. Jacobs, ``Shape Classification Using the Inner-Distance'', IEEE Trans.
on Pattern Analysis and Machine Intelligence (PAMI), 29(2):286-299, 2007.

[33] H. Ling, X. Yang, and L.J. Latecki. ``Balancing Deformability and Discriminability for
Shape Matching'', in ECCV, 2010.

[34] H. Ling and S. Soatto, ``Proximity Distribution Kernels for Geometric Context in Category
Recognition'', in ICCV, 2007.

[35] D.G. Lowe, "Distinctive image features from scale-invariant keypoints," International
Journal of Computer Vision, vol. 60, pp. 91-110, 2004.

[36] C. Lu, N. Adluru, H. Ling, G. Zhu, and L.J. Latecki. ``Contour Based Object Detection
Using Part-Bundles," Computer Vision and Image Understanding (CVIU), 114(7):827-834,
2010.

http://cmusphinx.sourceforge.net/
http://worldwind.arc.nasa.gov/java/

Approved for Public Release; Distribution Unlimited.
94

[37] C. Lu, L.J. Latecki, N. Adluru, X. Yang, and H. Ling, ``Shape Guided Contour Grouping
with Particle Filters", in Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV), pp.
2288-2295, 2009.

[38] R. Porter, D. Hush, and A. Fraser, "Narrowing the Semantic Gap in Wide Area Motion
Imagery", IEEE Signal Processing Magazine, 27(5): pp. 56-65, 2010.

[39] Rubner Y, Tomasi C, Guibas LJ. "The Earth Mover's Distance as a Metric for Image
Retrieval." Int. J. Comput. Vision, 40(42):99-121, 2000.

[40] X. Shi, X. Zhang, Y. Liu, W. Hu, and H. Ling. ``Multi-cue Based Multi-target Tracking
Using Online Random Forests," in Proc. Int'l Conf. on Acoustics, Speech and Signal
Processing (ICASSP), 2011.

[41] Q. Wei, X. Zhang, W. Hu, and H. Ling. ``Compact Visual Codebook for Action
Recognition." In Proc. of IEEE Int'l Conf. on Image Processing (ICIP), 3805--3808, Hong
Kong, China, 2010.

[42] Q. Wei, X. Zhang, Y. Kong, W. Hu, and H. Ling. ``Group Action Recognition Using Space-
Time Interest Points." In Proc. of the 5th Int'l Symposium on Visual Computing (ISVC), Vol.
2, pp. 757--766, 2009.

[43] G. Chen, D. Shen, C. Kwan, J. B. Cruz, Jr., M. Kruger, and E. Blasch, “Game Theoretic
Approach to Threat Prediction and Situation Awareness,” Journal of Advances in
Information Fusion, Vol. 2, No. 1, June 2007, pp. 35-48.

[44] L. S. Shapley, "Stochastic games," in Proceedings of the National Academy of Sciences of
the United States of America, vol. 39, pp. 1095-1100, 1953.

[45] H.K. SAWANT and DIPALI KADAM, “Context Based Approaches to Learn Text and
Image Association and Processing Semantics,”
www.ejournal.aessangli.in/ASEEJournals/IT17.doc.

[46] R. Yager (Machine Intelligence Institute, Iona College). Conditional Approach to
Possibility-Probability Fusion. 2011. 30p Report No.: MII-3021R.

[47] G. Gross, R. Nagi, and K. Sambhoos, “Soft information, dirty graphs and uncertainty
representation/processing for situation understanding,” The 13th International Conference
on Information Fusion. 2010: Edinburgh, Scotland.

[48] D. Shen, H. Xu, E. Blasch, K. Pham, Z. Wang, H. Ling, G. Chen, “A holistic image
segmentation framework for cloud detection and extraction,” To appear in SPIE Defense,
security and sensing, 2013.

[49] X. Shi, E. Blasch, W. Hu, and H. Ling. "Using Maximum Consistency Context for Multiple
Target Association in Wide Area Traffic Scenes", under review.

[50] F. Bunyak, K. Palaniappan, S. K. Nath, and G. Seetharaman,“Flux tensor constrained
geodesic active contours with sensorfusion for persistent object tracking,” J. Multimedia,
vol. 2, no.4, pp. 20–33, August 2007.

[51] K. Palaniappan, F. Bunyak, P. Kumar, I. Ersoy, S. Jaeger, K. Ganguli, A. Haridas, J. Fraser,
R. Rao, G. Seetharaman, “Efficient feature extraction and likelihood fusion for vehicle
tracking in low frame rate airborne video”, 13thInt. Conf. Information Fusion, Edinburgh,
UK, July 26-29, 2010

[52] K. Palaniappan, I. Ersoy, G. Seetharaman, S.R. Davis, P. Kumar, R. M. Rao, R. Linderman,
“Parallel flux tensor analysis for efficient moving object detection”,14thInt. Conf.
Information Fusion, Chicago, 2011.

http://www.ejournal.aessangli.in/ASEEJournals/IT17.doc

Approved for Public Release; Distribution Unlimited.
95

[53] R. Pelapur, S. Candemir, M. Poostchi, F. Bunyak, R. Wang, G. Seetharaman, K.
Palaniappan, “Persistent target tracking using likelihood fusion in wide-area and full
motion video sequences”, 15th Int. Conf. Information Fusion,Singapore, July 9-12, 2012.

[54] C.R. Shyu, M. Klaric, G. Scott, A. Barb, C. Davis, K. Palaniappan, “GeoIRIS: Geospatial
information retrieval and indexing system – Content mining, semantics, modeling, and
complex queries”, IEEE Trans. Geoscience and Remote Sensing, Vol. 45, No. 4, Apr 2007,
pp. 839-852. Special issue on Image Information Mining for Earth Observation Data.

[55] M. Klaric, G. Scott, C.R. Shyu, C. Davis, K. Palaniappan, “A framework for geospatial
satellite imagery retrieval systems”, IEEE Int. Geoscience and Remote Sensing Symposium,
Denver, CO, Jul 31- Aug 4, 2006, pp. 2457-2460.

[56] C. R. Shyu, G. Scott, M. Klaric, C. H. Davis, K. Palaniappan, “Automatic object extraction
from full differential morphological profile in urban imagery for efficient object indexing
and retrievals”, 3rd Int. Symposium on Remote Sensing and Data Fusion Over Urban Areas
(URBAN 2005), International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, Vol 36, No 8/W27, Tempe, AZ, Mar 14-16, 2005.

[57] D.Tuia, F. Pacifici, M. Kanevski, and W. J. Emery, Classification of Very High Spatial
Resolution Imagery Using Mathematical Morphology and Support Vector Machines, IEEE
Trans. Geoscience and Remote Sensing, 47(11): 3866-3879, Nov. 2009.

[58] Z. Wang, F. Wu, and Z. Hu. MSLD: A robust descriptor for line matching. Pattern
Recognition, 42: 941-953, 2009.

[59] Beril Sırmaçek, Cem Ünsalan, Urban Area Detection Using Local Feature Points and
Spatial Voting, IEEE Geoscience and Remote Sensing Letters, 7(1):146 - 150, 2010.

[60] A. Hafiane, G. Seetharaman, K. Palaniappan, B. Zavidovique, “Rotationally invariant
hashing of median binary patterns for texture classification”, Lecture Notes in Computer
Science (ICIAR), Vol. 5112, 2008, pp. 619-629.

[61] Z. Guo, L. Zhang, and D. Zhang, “A completed modeling of local binary pattern operator
for texture classification,” IEEE Trans. Image Processing, vol. 19, no. 6, pp. 1657–1663,
Jun 2010.

[62] S. Liao, M. W. K. Law, and A. C. S. Chung, “Dominant local binary patterns for texture
classification,” IEEE Trans. Image Processing, vol. 18, no. 5, pp. 1107–1118, May 2009.

[63] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture representation using local affine
regions,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1265–
1278, Aug 2005.

[64] M. Varma and A. Zisserman, “A statistical approach to material classification using image
patch exemplars.” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 11,
pp. 2032–2047, Nov 2009.

[65] J. Chen, S. Shan, C. He, G. Zhao, M. Pietikainen, X. Chen, and W. Gao, “WLD: A robust
local image descriptor,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32,
no. 9, pp. 1705–1720, Sep 2010.

[66] J. Peng, C. Barbu, G. Seetharaman, F. Wei, X. Wu, K. Palaniappan, “ShareBoost: Boosting
for multi-view learning with performance guarantees”, Lecture Notes in Computer Science
(ECML PKDD European Conf. of Machine Learning and Principles of Knowledge
Discovery in Databases), 2011.

[67] S. K. Nath, K. Palaniappan, “Fast graph partitioning active contours for image
segmentation using histograms”, EURASIP Journal on Image and Video Processing, 9p.,
2009.

Approved for Public Release; Distribution Unlimited.
96

[68] S. K. Nath, K. Palaniappan, F. Bunyak, “Accurate spatial neighborhood relationships for
arbitrarily-shaped objects using Hamilton-Jacobi GVD”, Lecture Notes in Computer
Science (SCIA), Vol. 4522, 2007, pp. 421-431.

[69] P. Matsakis, J. M. Keller, O. Sjahputera, and J. Marjamaa, “The use of force histograms for
affine-invariant relative position description,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
26, no. 1, pp. 1–18, Jan. 2004.

[70] L. Zebedin, J. Bauer, K. Karner, and H. Bischof. Fusion of feature- and area-based
information for urban buildings modeling from aerial imagery. In ECCV, 2008.

[71] D. Aiger, N. J. Mitra, and D. Cohen-Or. 4-Points congruent sets for robust pairwise surface
registration. ACM Trans. Graphics (Proceedings of SIGGRAPH), 2008.

[72] I. N. Junejo, H. Foroosh, GPS coordinates estimation and camera calibration from solar
shadows, CVIU, 114:991-1003, 2010.

[73] S. Gu, Y. Zheng and C. Tomasi, Critical Nets and Beta-Stable Features for Image Matching,
ECCV 2010.

[74] E. Blasch, G. Seetharaman, M. Talbert, K. Palaniappan, H. Ling, Key Elements to Support
Layered Sensing Dismount Tracking, NATO Workshop on Detection and Surveillance of
Dismounted Combatants from Airborne Platforms (SET-178), RTO-IST-086, Sept. 2011.

[75] A. Rice and J. Vasquez, “Context-Aided Tracking with an Adaptive Hyperspectral Sensor,”
Int. Conf. on Info Fusion - Fusion11, 2011.

[76] Y. Zhao, X. Zhou, K. Palaniappan, X. Zhuang, “Statistical modeling for improved land
cover classification”, SPIE Battlespace Digitization and Network-Centric Warfare II, Vol.
4741, Ed. Raja Suresh, W.E. Roper, Orlando, FL, Aug 2002, pp. 296-304.

[77] K. Palaniappan, F. Zhu, X. Zhuang, Y. Zhao, and A. Blanchard, “Enhanced binary tree
genetic algorithm for automatic land cover classification”, IEEE 2000 Int. Geoscience and
Remote Sensing Symposium (IGARSS), Honolulu, Hawaii, July 24-28, 2000, Vol. II, pp.
688-692.

[78] Y. Zhu, Y. Zhao, K. Palaniappan, X. Zhou, X. Zhuang, “Optimal Bayesian classifier for
land cover classification using Landsat TM data”, IEEE 2000 Int. Geoscience and Remote
Sensing Symposium (IGARSS), Honolulu, Hawaii, July 24-28, 2000, Vol. I, pp. 447-450.

[79] M. Poostchi, K. Palaniappan, F. Bunyak, MichelaBecchi, G.Seetharaman, “Realtime
motion detection based on the spatio-temporal median filter using GPU integral
histograms”, ICVGIP, Bombay, Dec 16-19, 2012.

[80] B. Z. Yao, X. Yang, L. Lin, M. W. Lee, S.C. Zhu, I2T: Image Parsing to Text Description,
Proc. IEEE, 98(8):1485-1508, 2010.

[81] Junseok Kwon and Kyoung Mu Lee, “Visual Tracking Decomposition,” IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) 2010.

[82] R. Pelapur, S. Candemir, F. Bunyak, M. Poostchi, G. Seetharaman and K. Palaniappan,
"Persistent target tracking using likelihood fusion in wide-area and full motion video
sequences", 15th International Conference on Information Fusion (FUSION), 2012.

[83] Y. Sheikh, S. Khan, M. Shah, and R. Cannata, “Geodetic alignment of aerial video frames,”
in Video Registration, Chapter 7, 2003.

[84] G. Zhou, C. Li, and P. Cheng, “Unmanned aerial vehicle (UAV) real-time video registration
for forest fire monitoring,” in IEEE Geoscience and Remote Sensing Symposium, pp. 1803
– 1806, 2005.

[85] L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24(4), pp.
325–376, 1992.

Approved for Public Release; Distribution Unlimited.
97

[86] B. Zitov and J. Flusser, “Image registration methods: A Survey,” Image and Vision
Computing 21(11), pp. 977–1000, 2003.

[87] F. Perlant and D. McKeown, “Scene registration in aerial image analysis,” PhEngRS 56(4),
pp. 481–493, 1990.

[88] C. Shekhar, “Semi-automatic video-to-site registration for aerial monitoring,” in ICPR’00:
Proceedings of the International Conference on Pattern Recognition, pp. 736–739, 2000.

[89] K. Mikolajczyk and et. al , “A comparison of affine region detectors,” Int. J. Computer
Vision 65(1/2), pp. 43–72, 2005.

[90] F. Bunyak, K. Palaniappan, S. Nath, and G. Seetharaman, “Geodesic active contour based
fusion of visible and infrared video for persistent object tracking,” in 8th IEEE Workshop
on Applications of Computer Vision (WACV 2007), p. Online, (Austin, TX), Feb. 2007.

[91] F. Bunyak, K. Palaniappan, S. Nath, and G. Seetharaman, “Fux tensor constrained geodesic
active contours with sensor fusion for persistent object tracking,” J. Multimedia 2, pp. 20–
33, August 2007.

[92] G. Seetharaman, G. Gasperas, and K. Palaniappan, “A piecewise affine model for image
registration in 3-d motion analysis,” in IEEE Int. Conf. On Image Processing, pp. 561–564,
(Vancouver, BC, Canada), Sep. 2000.

[93] L. Zhou, C. Kambhamettu, D. Goldgof, K. Palaniappan, and A. F. Hasler, “Tracking non-
rigid motion and structure from 2D satellite cloud images without correspondences,” IEEE
Trans. Pattern Analysis and Machine Intelligence 23, pp. 1330–1336, Nov. 2001.

[94] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge
University Press, 2000.

[95] H. Wang, D. Mirota, and G. Hager, “A generalized kernel consensus-based robust
estimator,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 32(1), pp.
178–184, 2010.

[96] S. Nath and K. Palaniappan, “Adaptive robust structure tensors for orientation estimation
and image segmentation,” in LNCS-3804: Proc. ISVC’05, pp. 445–453, (Lake Tahoe,
Nevada), Dec. 2005.

[97] H. Nagel and A. Gehrke, “Spatiotemporally adaptive estimation and segmentation of OF-
Fields,” in LNCS-1407: ECCV98, 2, pp. 86–102, Springer-Verlag, (Freiburg, Germany),
June 1998.

[98] B. Horn and B. Schunck, “Determining optical flow,” Artificial Intelligence 17, pp. 185–
203, Aug. 1981.

[99] K. Palaniappan, H. Jiang, and T. I. Baskin, “Non-rigid motion estimation using the robust
tensor method,” in IEEE Comp. Vision and Pattern Recog. Workshop on Articulated and
Nonrigid Motion, (Washington, DC), June 2004.

[100] J. Zhang, J. Gao, and W. Liu, “Image sequence segmentation using 3-D structure tensor and
curve evolution,” Circuits and Systems for Video Technology, IEEE Transactions on 11, pp.
629–641, May 2001.

[101] M. Pravia, O. Babko-Malaya, M. Schneider, J. White, C. Chong and A. Willsky, “Lessons
learned in the creation of a data set for hard/soft information fusion,” IEEE International
Conference on Information Fusion, pp.2114-2121, 2009.

[102] T. Wu and W. Pottenger, “A semi-supervised active learning algorithm for information
extraction from textual data: Research Articles,” Journal of the American Society for
Information Science and Technology - Intelligence and Security Informatics, vol. 56, no. 3,
pp. 258-271, 2005.

Approved for Public Release; Distribution Unlimited.
98

[103] B. Liu, E. Blasch, Y. Chen, D. Shen, G. Chen, “Scalable sentiment classification for Big
Data analysis using Naïve Bayes Classifier,” IEEE International Conference on Big Data,
pp.99-104, 2013.

[104] A. Preece, D. Pizzocaro, D. Braines, D. Mott, G. de Mel and P. Tien, “Integrating hard and
soft information sources for D2D using controlled natural language," International
Conference on Information Fusion, pp.1330-1337, 2012.

[105] E. Blasch, A. Steinberg, S. Das, J. Llinas, C. Chong, O. Kessler, E. Waltz, and F. White,
“Revisiting the JDL model for information exploitation,” International Conference on
Information Fusion, 2013.

[106] E. Blasch, Y. Chen, G. Chen, D. Shen, and R. Kohler, “Information fusion in a cloud-
enabled environment,” High Performance Semantic Cloud Auditing, Springer Publishing,
2013.

[107] B. Liu, Y. Chen, E. Blasch, K. Pham, D. Shen, and G. Chen, “A holistic cloud-enabled
robotics system for real-time video tracking application,” International Workshop on
Enhanced Cloud Fusion, in conjunction with Future Information Tech, 2013.

[108] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” in
Proceedings of the IEEE conference on Symposium on Operating Systems Design &
Implementation, vol.6, 2004 Tech, 2013.

[109] R. I. Hammoud, C. S Sahin, E. P. Blasch, B. J. Rhodes and T. Wang, “Automatic
association of chats and video tracks for activity learning and recognition in aerial video
surveillance, ” Sensors, 2014 Oct 22;14(10):19843-60.

Approved for Public Release; Distribution Unlimited.
99

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

ACRONYM Description

AGP Accelerated Proximal Gradient
BReT Blur Resilient Target Tracking
CLIF Columbus Large Image Format

CSURF Clustered set of Structured Uniformly dense Robust Features tracker
CT Compressive Tracker

E2AT Enhanced Exploitation and Analysis Tools
FMV Full Motion Video

GATER Government Algorithms for Tracking Exploitation Research
GFS Google File System
GPR Government Purpose Rights
GUI Graphical User Interface

HDFS Hadoop Distributed File System
IFT Intelligent Fusion Technology, Inc

IMINT Image Intelligence
LoFT Likelihood of Features Tracker
MHT Multiple Hypothesis Tracking
MIL Multiple Instance Learning
NLP Natural Language Processing
OAB Online AdaBoost

OF Optic Flow
RANSAC Random sample consensus

TLD Tracking-Learning-Detection
WAMI Wide Area Motion Imagery

WFC Work Flow Controller
UAV Unmanned Aerial Vehicles
VTD Visual Tracking Decomposition

	1 Summary
	2 Introduction
	2.1 Problem Statement
	2.2 Example Scenarios

	3 Methods, Assumptions, and Procedures
	3.1 Visual Trackers
	3.1.1 L1 tracker
	3.1.1.1 L1 tracker framework

	3.1.2 Other Trackers --- Review
	3.1.2.1 Compressive Tracker (CT)
	3.1.2.2 Tracking-Learning-Detection Tracker (TLD)
	3.1.2.3 Online Multiple Instance Learning Tracker (MIL)
	3.1.2.4 Online AdaBoost (OAB)
	3.1.2.5 Visual Tracking Decomposition (VTD)
	3.1.2.6 Likelihood of Features Tracker (LoFT)
	3.1.2.7 Likelihood of Features Tracker (LoFT) Clustered Set of Structured Uniformly Dense Robust features tracker (CSURF)

	3.2 Tracking System and Integration
	3.2.1 Video Frame Registration
	3.2.1.1 Necessity of video registration
	3.2.1.2 Prominent Feature Block-based Region Selection
	3.2.1.3 Beltrami Color Metric Tensor
	3.2.1.4 PF Block Region-Correspondences
	3.2.1.5 Filtering Motion Blocks
	3.2.1.6 Projective Transformation Estimation

	3.2.2 Motion Detection
	3.2.2.1 3D Structure Tensors
	3.2.2.2 Flux Tensors

	3.2.3 Blur-Resilient Tracking Using Group Sparsity
	3.2.3.1 Motivation and Background
	3.2.3.2 Review of the Blur-driven Tracker (BLUT)
	3.2.3.3 Loss Function with Gradient Information
	3.2.3.4 Group Sparsity via Mixed Norm
	3.2.3.5 Solve Eq. (58) by Accelerated Proximal Gradient
	3.2.3.6 Template Update with Blur Detection

	3.2.4 Cloud Implementation of Registration and Tracking
	3.2.4.1 Application Component
	3.2.4.2 Synchronization
	3.2.4.3 Web-based GUI

	3.2.5 Integration with GATER Framework and Kitware VsPlay
	3.2.5.1 GATER Introduction
	3.2.5.2 Building and Installing GATER in Windows
	Building COIN Osi Clp for Windows
	Building FFmpeg for Windows
	Building and installing GDAL for Windows
	Building and installing gflags for Windows
	Building and installing glog for Windows
	Building and installing gstreamer for Windows
	Building and installing gtest for Windows
	Building and installing MGS for Windows
	Building and installing OpenCV for Windows
	Building and installing protobuf for Windows
	Building and installing Qt for Windows
	Building and installing ZMQ for Windows
	3.2.5.3 Kitware VsPlay
	3.2.5.4 Integration with GATER and Kitware VsPlay

	3.3 Hard and Soft Data Fusion
	3.3.1 CMU Sphinx for Speech Recognition
	3.3.1.1 CMU Sphinx Setup
	3.3.1.2 Training Acoustic Model for CMU Sphinx

	3.3.2 Text Matching Based on Big Data Analysis
	3.3.2.1 MapReduce
	3.3.2.2 System Components
	3.3.2.3 Overall Work Flow
	3.3.2.4 Automatic Scheduling

	3.3.3 Hard-Soft Information Fusion
	3.3.3.1 Constructing entity from hard data
	3.3.3.2 Constructing entity from soft data
	3.3.3.3 Soft-hard entity association
	3.3.3.4 Hard-hard entity association
	3.3.3.5 Hard-soft entity fusion
	3.3.3.6 Hard-soft entity linkage

	3.4 Event Detection
	3.4.1 Introduction
	3.4.2 Action Recognition based on spatial-temporal features
	3.4.3 Human-Object Interactions and Group Activities
	3.4.4 An event detection framework
	3.4.5 Event Types
	3.4.6 Event Detection based on L1 Tracking Results

	4 Results and Discussion
	4.1 Results of tracking and multi-target association
	4.2 Tracker Comparison
	4.2.1 Virat Dataset
	4.2.2 Skybox Dataset

	4.3 Hard-Soft and Hard-Hard Fusion
	4.3.1 Software and GUI for Fusion
	4.3.2 Results

	4.4 Event Detection

	5 Conclusions
	6 References

