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1 SUMMARY 

To provide video-to-text association to enable enhanced annotated video products, IFT team 
has developed a prototype (Figure 1), which fuses hard (video) and soft (text, voice chat) 
information to generate a video with annotation that can be easily used by future human or 
machine users. The tracking results following the required format (.kw18) will also be output in a 
separated file for interfacing with other modules in the E2AT system integration. 

Figure 1: System Diagram 

Specifically, IFT has: 

1. Implemented various tracking algorithms such as L1 tracker, on-line adaboost (OAB),
tracking-learning-detection tracker (TLD), online multiple instance learning tracker
(MIL), visual tracking decomposition (VTD), likelihood of features tracker (Loft),
compressive tracker (CT), and clustered set of structured uniformly dense robust
features tracker (CSURF);

2. Compared these trackers on VIRAT dataset and a Skybox video;
3. Integrated tracking algorithms with the Kitware vsPlay software;
4. Investigated the motion detection, target classification and event detection;
5. Developed a cloud computing prototype for image registration and tracking;
6. Design and implement a hard-soft information fusion approach to improve the

tracking accuracy.
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2 INTRODUCTION 

2.1 Problem Statement 

The primary focus E2T is to provide video-to-text association to enable enhanced annotated 
video products. Using current imagery exploitation tools such as FMV and Wide Area Motion 
Imagery (WAMI), the outputs (e.g., target features and track results) need to be presented in a 
format for textual association to enable hard (e.g., video) and soft (e.g., text) information fusion. 
As the operator calls out information in the video, the content must be transcribed in order to 
enable text extraction. Solutions proposed for the hard (video exploitation) and soft (text 
extraction) fusion require methods in metadata (e.g., time stamps) development for association, 
features (e.g., words and pixels) analysis for correlation, and contemporary processing 
techniques (e.g., track reports) for estimation. The secondary focus is to improve the persistent 
need to process and generate searchable content through the annotation, tagging, marking, and 
augmenting Image Intelligence (IMINT) data to better describe video products. Finally, the third 
focus is on automated interactive approaches between the operator, FMV data streams, and 
multi-media content to support FMV exploitation, access, annotation, indexing, storage, and 
linking of IMINT products (e.g. Geographical, moving, signals) to non-IMINT data products 
(e.g., open source, human, and communications) to enable reasoning (e.g., patterns of life). The 
three elements of FMVE include developments in (1) video-exploitation associated to text-
extraction for annotated video outputs, (2) content-based image and textual retrieval, processing, 
and dissemination, and (3) interactive visual analytics for advanced operator reasoning. 

The problems call for enhanced solutions to support operator video exploitation. For 
example, while the human viewer monitors the video feeds to recognize any significant content, 
their observations must be automatically translated into searchable display content as either 
textual and/or graphical products. The general FMVE developments would be physics-based 
(e.g., video) analysis to enable text-based (e.g., transcribed call-outs) hard-soft fusion. The 
FMVE operational advancements should leverage established technical tools and capabilities, 
build innovative image-to-analyst annotation functionality, and have a measureable evaluation of 
performance improvements.  

2.2 Example Scenarios 

To illustrate the objectives of the proposal, we give several application scenarios blow: 

(1) Drug Dealer Scenario: In the scenario, there is a set of hard (a video from CLIF) and soft 
(Text in Figure 2 right) information covering a spatial and temporal window. From the text, we 
extract the key words (e.g., Criminal, Drug dealer, J Street, Truck, etc., highlighted in Figure 2, 
right) and match the keywords to the targets detected, identified and tracked in the video to 
generate the desired product – a video with annotation coming from the text file (Figure 2, left 
two). 
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Figure 2: A Drug Dealer Tracking Scenario with Video Output and Text Input 

 

(2) Joint Semantic and Appearance Retrieval: In this scenario, an operator aims to finding all 
images in a WAMI dataset containing environment images similar to an input one while having 
certain traffic pattern (e.g., two-way, heavy traffic). This will trigger the joint appearance-based 
(color and texture) and semantic-based retrieval.  An illustration is shown in Figure 3. In the left 
of Figure 3, the operator provides an image query and the semantic query; in the right, the 
systems returns images resemble the query image and have the two-way heavy traffic as queried. 

 

Figure 3: Joint semantic and appearance query. 

 

As shown in Figure 4, video tools include basic WAMI and FMV analysis (image registration 
and stitching, background modeling, cloud processing, target and context detection [1]) and 
situation awareness (target identification, L1-BPR tracking [2], [3], [8], simultaneous tracking 
and identification [4], Likelihood of Features Tracking (LOFT) using adaptive appearance 
models [18] - [22], multiple target tracking, scene parsing and activity recognition).  For text 
exploration, we will use Penn. State U’s SYNCOIN and IFT’s experience on text processing to 
extract key words that will be used for video annotation from text or chat (use CMU Sphinx to 
convert chat to text). The key words include: What/Thing/Who, Where/Place and When/Time. 
For hard-soft information fusion, we will enhance the multi-parameter correlation/association in 
[14] to associate the hard (video with identified targets) and soft (key words extracted from text) 
information. 
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Figure 4: Video Tools 
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Visual Trackers 
3.1.1 L1 tracker 

L1 tracker is one of the state-of-the-art trackers that achieve good performance in tracking. It 
takes advantages of the sparse representation and compressive sensing techniques. L1 tracker 
also proves to be good in blur videos. L1 tracker used to be very slow due to the intensive 
computation of L1 solutions. But several techniques are applied to speed up the process, it now 
can be solved in real time. 

3.1.1.1 L1 tracker framework 

The particle filter provides an estimate of posterior distribution of random variables related to 
Markov chain. In visual tracking, it gives an important tool for estimating the target of next 
frame without knowing the concrete observation probability. It consists of two steps: prediction 
and update. Specially, at the frame t, denote xt which describes the location and the shape of the 
target, y1:t−1={y1,y2,···,yt−1} denotes the observation of the target from the first frame to the frame 
t−1. Particle filter precedes two steps with following two probabilities: 

𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦1:𝑡𝑡−1) = ∫𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1)𝑝𝑝(𝑥𝑥𝑡𝑡−1|𝑦𝑦1:𝑡𝑡−1)𝑑𝑑𝑥𝑥𝑡𝑡−1, (1) 

𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦1:𝑡𝑡) = 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡)𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦1:𝑡𝑡−1)
𝑝𝑝(𝑦𝑦𝑡𝑡|𝑦𝑦1:𝑡𝑡−1) . (2) 

The optimal state for the frame t is obtained according to the maximal approximate posterior 
probability: x∗t =arg maxxp(x|y1:t). 

The posterior probability is approximated by using finite samples St ={x1
t,x2

t,···,xN
t } with 

different weights W={w1
t,w2

t,···,wN
t } where N is the number of samples. The samples are 

generated by sequential importance distribution Π(xt|y1:t,x1:t−1) and weights are updated by:  

𝑤𝑤𝑡𝑡
𝑖𝑖 ∝ 𝑤𝑤𝑡𝑡−1

𝑖𝑖 𝑝𝑝�𝑦𝑦𝑡𝑡�𝑥𝑥𝑡𝑡
𝑖𝑖�𝑝𝑝�𝑥𝑥𝑡𝑡

𝑖𝑖�𝑥𝑥𝑡𝑡−1
𝑖𝑖 �

∏(𝑥𝑥𝑡𝑡|𝑦𝑦1:𝑡𝑡,𝑥𝑥1:𝑡𝑡−1)
. (3) 

In the case of  Π(xt|y1:t,x1:t−1)=p(xt|xt−1), the above equation has a simple form 𝑤𝑤𝑡𝑡
𝑖𝑖  ∝

𝑤𝑤𝑡𝑡−1
𝑖𝑖 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡𝑖𝑖). Then, the weights of some particles maybe keep increasing and fall into the 

degeneracy case. To avoid such a case, in each step, samples are re-sampled to generate new 
sample set with equal weights according to their weights distribution. 

The sparse representation model aims at calculating the observation likelihood for sample state 
xt, i.e. p(zt|xt). At the frame t, given the target template set Tt=[t1

t,t2
t,···,tnt], let St ={x1

t,x2
t,···,xN

t} 
denote the sampled states and let Ot ={y1

t,y2
t,···,yN

t} denote the corresponding candidate target 
patch in target template space. The sparse representation model is then: 

𝑦𝑦𝑡𝑡𝑖𝑖 = 𝑇𝑇𝑡𝑡𝑎𝑎𝑇𝑇𝑖𝑖 +  𝐼𝐼𝑎𝑎𝐼𝐼𝑖𝑖 ,∀𝑦𝑦𝑡𝑡𝑖𝑖 ∈ 𝑂𝑂𝑡𝑡, (4) 
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where I is the trivial template set (identity matrix) and ai
t=[ai

T;ai
I] is sparse. Additionally, 

nonnegative constraints are imposed on ai
T for the robustness of the L1 tracker. Consequently, for 

each candidate target patch yi
t, the sparse representation of yi

t can be found via solving the 
following L1-norm related minimization with nonnegative constraints: 

min𝑎𝑎
1
2
�𝑦𝑦𝑡𝑡𝑖𝑖 − 𝐴𝐴𝑎𝑎�

2
2

+ 𝜆𝜆‖𝑎𝑎‖1,𝑎𝑎 ≽ 0,                                           (5) 

where A=[Tt,I,−I]. 

 Finally, the observation likelihood of state xi
t is given as: 

𝑝𝑝�𝑧𝑧𝑡𝑡�𝑥𝑥𝑡𝑡𝑖𝑖� = 1
Γ

exp �−𝑎𝑎�𝑦𝑦𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑡𝑡𝑐𝑐𝑇𝑇𝑖𝑖 �2
2
�,                                         (6) 

where α is a constant controlling the shape of the Gaussian kernel, Γ is a normal factor and ci
T is 

the minimizer of the L1-norm minimization restricted to Tt. Then, the optimal state x∗t of frame t 
is obtained by: 

𝑥𝑥𝑡𝑡∗ = 𝑎𝑎𝑎𝑎𝑎𝑎max𝑥𝑥𝑡𝑡𝑖𝑖∈𝑆𝑆𝑡𝑡 𝑝𝑝�𝑧𝑧𝑡𝑡�𝑥𝑥𝑡𝑡
𝑖𝑖�.                                                (7) 

In addition, a template update scheme is adopted to overcome pose and illumination changes. 

There are two types of templates in the template dictionary: target templates and trivial 
templates. The target templates are updated dynamically for representing target objects during 
the tracking process. The trivial templates (identity matrix I) is for representing occlusions, 
background and noise. However, since parts of objects may also be represented by the trivial 
templates, the region detected by the original tracker sometimes does not fit the target very 
accurately. 

We take a modified version for improving tracking accuracy. The new model is based on the 
following observation. When there are no occlusions, the target in the next frame should be well 
approximated by a sparse linear combination of target templates with a small residual. Thus, the 
energy of the coefficients in a associate with trivial templates, named trivial coefficients, should 
be small. On the other hand, when there exist noticeable occlusions, the target in the next frame 
cannot be well approximation by any sparse linear combination of target templates, the large 
residual (corresponding to occlusions, background and noise in an ideal situation) will be 
compensated by the part from the trivial templates, which leads to a large energy of the trivial 
coefficients. The minimization is obviously not optimal since it does not differentiate these two 
cases. 

In other words, to optimize the usage of the trivial templates in the tracking, we need to 
adaptively control the energy of the trivial coefficients. That is, when occlusions are negligible, 
the energy associated with trivial templates should be small. When there are noticeable 
occlusions, the energy should be allowed to be large. This motivation leads to the following 
minimization model for L1 tracker: 
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min𝑎𝑎
1
2
‖𝑦𝑦 − 𝐴𝐴′𝑎𝑎‖22 + 𝜆𝜆‖𝑎𝑎‖1 + 𝜇𝜇𝑡𝑡

2
‖𝑎𝑎𝐼𝐼‖22, 𝑠𝑠. 𝑡𝑡.𝑎𝑎𝑇𝑇 ≽ 0,                           (8) 

where A'=[Tt,I],a=[aT;aI] are the coefficients associated with target templates and trivial 
templates respectively, and the parameter μt is a parameter to control the energy in trivial 
templates. In our implementation, the value of μt for each state is automatically adjusted using 
the occlusion detection method. That is, if occlusions are detected, μt =0; otherwise μt is set as 
some pre-defined constant. The benefit of the additional L2 norm regularization term is that the 
trivial templates coefficients from minimization are small and lead to better tracking results. 

A minimal error bounding method is proposed to reduce the number of needed L1 
minimizations. Actually, the method is based on the following observation: 

‖𝑇𝑇𝑡𝑡𝑎𝑎 − 𝑦𝑦‖22 ≥ ‖𝑇𝑇𝑡𝑡𝑎𝑎� − 𝑦𝑦‖22,∀𝑎𝑎 ∈ ℝ𝑁𝑁 , (9) 

where 

𝑎𝑎� = 𝑎𝑎𝑎𝑎𝑎𝑎min𝑎𝑎‖𝑇𝑇𝑡𝑡𝑎𝑎 − 𝑦𝑦‖22. (10) 

Consequently, for any samples xi
t, its observation likelihood has the following upper bound: 

𝑝𝑝�𝑧𝑧𝑡𝑡�𝑥𝑥𝑡𝑡𝑖𝑖� = 1
Γ

exp �−𝑎𝑎�𝑦𝑦𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑡𝑡𝑐𝑐𝑇𝑇𝑖𝑖 �2
2
� ≜ 𝑞𝑞�𝑧𝑧𝑡𝑡�𝑥𝑥𝑡𝑡𝑖𝑖�, (11) 

where q(yi
t|xi

t) is the probability upper bound for state xi
t. It is seen that if 𝑞𝑞(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) <

1
2𝑁𝑁
∑ 𝑝𝑝(𝑖𝑖−1
𝑗𝑗=1 𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡

𝑗𝑗), then the sample xi
t will not appear in the resample set. In other words, xi

t can
be discarded without being processed. Thus, a two stage resample method is used to significantly 
reduce the number of samples needed in tracking. 

The APG method is originally designed for solving the unconstrained minimization. Thus, we 
need to convert the constrained minimization model into an unconstrained problem. Let 1 ∈ 𝑅𝑅𝑁𝑁
denote the vector with all entries are equal to 1 and let 1R

N+(a) denote the indicator function 
defined by: 

1ℝ+𝑁𝑁(𝑎𝑎) = � 0, 𝑎𝑎 ≽ 0;
+∞, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑎𝑎𝑤𝑤𝑒𝑒𝑠𝑠𝑒𝑒. (12) 

So, the minimization equation in the modified version is equivalent to the following 
minimization problem: 

arg min𝑎𝑎
1
2
‖𝑦𝑦 − 𝐴𝐴′𝑎𝑎‖22 + 𝜆𝜆‖𝑎𝑎‖1 + 𝜇𝜇𝑡𝑡

2
‖𝑎𝑎𝐼𝐼‖22 + 1ℝ+𝑁𝑁(𝑎𝑎𝑇𝑇). (13) 

Then, the APG model will be: 

min𝐹𝐹(𝑎𝑎) + 𝐺𝐺(𝑎𝑎), (14) 
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𝐹𝐹(𝑎𝑎) = 1
2
‖𝑦𝑦 − 𝐴𝐴′𝑎𝑎‖22 + 𝜆𝜆1𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇 + 𝜇𝜇𝑡𝑡

2
‖𝑎𝑎𝐼𝐼‖22,                            (15) 

𝐺𝐺(𝑎𝑎) = ‖𝑎𝑎𝐼𝐼‖1 + 1ℝ+𝑁𝑁(𝑎𝑎𝑇𝑇).                                          (16) 

To solve the above optimization problem, we could use the following algorithm: 

 

Then, our final APG-L1 tracker algorithm will be as follows: 

Algorithm 1: Real Time Numerical algorithm for solving the 
minimization 
————————————————————————— 
(i) Set 𝑎𝑎0 = 𝑎𝑎−1 = 0 ∈ ℝ𝑁𝑁 𝑎𝑎𝑎𝑎𝑑𝑑 𝑠𝑠𝑒𝑒𝑡𝑡 𝑡𝑡0 = 𝑡𝑡−1 = 1. 
(ii) For k=0,1..., iterate until convergence 
 𝛽𝛽𝑘𝑘+1 ≔ 𝛼𝛼𝑘𝑘 + 𝑡𝑡𝑘𝑘−1−1

𝑡𝑡𝑘𝑘
(𝛼𝛼𝑘𝑘 − 𝛼𝛼𝑘𝑘−1); 

 𝑎𝑎𝑘𝑘+1|𝑇𝑇 ≔ 𝛽𝛽𝑘𝑘+1|𝑇𝑇 − �𝐴𝐴′𝑇𝑇(𝐴𝐴′𝛽𝛽𝑘𝑘+1 − 𝑦𝑦)� |𝑇𝑇/𝐿𝐿 − 𝜆𝜆1𝑇𝑇; 

 𝑎𝑎𝑘𝑘+1|𝐼𝐼 ≔ 𝛽𝛽𝑘𝑘+1|𝐼𝐼 − �𝐴𝐴′𝑇𝑇(𝐴𝐴𝛽𝛽𝑘𝑘+1 − 𝑦𝑦)� |𝐼𝐼/𝐿𝐿 −
𝜇𝜇𝛽𝛽𝑘𝑘+1|𝐼𝐼/𝐿𝐿; 
  𝛼𝛼𝑘𝑘+1|𝑇𝑇 ≔ max(0,𝑎𝑎𝑘𝑘+1|𝑇𝑇); 
 𝛼𝛼𝑘𝑘+1|𝐼𝐼 ≔  ∑ �𝑎𝑎𝑘𝑘+1|𝐼𝐼�;𝜆𝜆/𝐿𝐿  
 𝑡𝑡𝑘𝑘+1 ≔ (1 + �1 + 4𝑡𝑡𝑘𝑘2)/2. 
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3.1.2 Other Trackers --- Review 
3.1.2.1 Compressive Tracker (CT) 

Compressive tracking is a low computational complexity model based on features extracted 
in the compressed domain. By applying these feature extracted in preprocessing, the surrounding 
background is separated from the target object via a naive Bayes classifier. In the appearance 
model, features are selected by an information-preserving and non-adaptive dimensionality 
reduction from the multi-scale image feature space based on compressive sensing theories. The 
framework of compressive tracker is presented in table below. 

Algorithm 3. Compressive Tracking 
Input: video frames 

1.Sample a set of image patches, 𝐷𝐷𝛾𝛾 = {𝐳𝐳|‖𝐥𝐥(𝐳𝐳) − 𝐥𝐥𝑡𝑡−1‖ < 𝛾𝛾} where 𝐥𝐥𝑡𝑡−1is the
tracking location at the (t-1)-th frame, and extract the features with low 

Algorithm 2:  APG-L1 Tracker 
————————————————————————— 
1: Input: 
2: Current frame Ft; 
3: Sample Set 𝑺𝑺𝑡𝑡−1 = {𝒙𝒙𝑡𝑡−1𝑖𝑖 }𝑖𝑖=1𝑁𝑁 ; 
4: Template set 𝑻𝑻 = {𝒕𝒕𝑖𝑖}𝑖𝑖=1𝑛𝑛 ; 
5: for i=1 to N do 
6:    Drawing the new sample 𝒙𝒙𝑡𝑡𝑖𝑖  from 𝒙𝒙𝑡𝑡−1𝑖𝑖 ; 
7:    Preparing the candidate patch 𝒚𝒚𝑡𝑡𝑖𝑖  in template space; 
8:    Solving the least square problem; 
9:    Computing qi ; 
10:end for 
11: Sorting the samples in descent order according to q; 
12: Setting i=1 and τ=0; 
13: while i<N and qi ≥ τ do 
14:    Solving the minimization via Algorithm 1; 
15:    Computing the observation likelihood pi; 
16:    𝜏𝜏 = 𝜏𝜏 + 1

2𝑁𝑁
𝑝𝑝𝑖𝑖; 

17:    i = i + 1; 
18: end while 
19: Set 𝑝𝑝𝑗𝑗 = 0,∀𝑗𝑗 ≥ 𝑒𝑒. 
20: Output: 
21: Finding the 𝒙𝒙𝑡𝑡∗; 
22: Detecting the occlusion and update μ; 
23: Updating the template set Tt-1 ; 
24: Updating the sample set St-1 with p. 
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dimensionality. 

2.Use classifier B to each feature vector v(z) and find the tracking location 𝐥𝐥𝑡𝑡 with
the maximal classifier response. 

3.Sample two sets of image patches 𝐷𝐷𝛼𝛼 = {𝐳𝐳|‖𝐥𝐥(𝐳𝐳) − 𝐥𝐥𝑡𝑡‖ < 𝛼𝛼} and 𝐷𝐷𝜁𝜁,𝛽𝛽 = {𝐳𝐳|𝜁𝜁 <
‖𝐥𝐥(𝐳𝐳) − 𝐥𝐥𝑡𝑡‖ < 𝛽𝛽} with 𝛼𝛼 < 𝜁𝜁 < 𝛽𝛽. (𝛾𝛾,𝛼𝛼, 𝜁𝜁 and 𝛽𝛽 are search radius of the set to detect 
the object location). 

4.Extract the features with these two sets of samples and update the classifier
parameters. 

Output: Tracking location 𝐥𝐥𝑡𝑡  and classifier parameters. 

 A random matrix R projects data from high dimensional image space 𝐱𝐱 ∈ ℝ𝑚𝑚 to a low 
dimensional space 𝐯𝐯 ∈ ℝ𝑛𝑛: 𝐯𝐯 = 𝑅𝑅𝐱𝐱, where n<<m. For each sample 𝐳𝐳 ∈ ℝ𝑚𝑚, its low-dimensional 
representation is 𝐯𝐯 = (𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛)⊺ ∈ ℝ𝑛𝑛. All elements in v are independently distributed and a 
naive Bayes classifier is modeled: 

𝐵𝐵(𝐯𝐯) = log �∏ 𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦=1)𝑝𝑝(𝑦𝑦=1)𝑛𝑛
𝑖𝑖=1

∏ 𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦=0)𝑝𝑝(𝑦𝑦=0)𝑛𝑛
𝑖𝑖=1

� = ∑ log (𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦=1)
𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦=0)

)𝑛𝑛
𝑖𝑖=1  (17) 

where the uniform prior us assumed 𝑝𝑝(𝑦𝑦 = 1) = 𝑝𝑝(𝑦𝑦 = 0), and 𝑦𝑦 ∈ {0,1} is a binary 
variable which represents the labels of the samples. The conditional distribution 𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦 = 1) and 
𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦 = 0) in the classifier 𝐵𝐵(𝐯𝐯) are assumed to be Gaussian distributed with four parameters 
𝜇𝜇𝑖𝑖1,𝜎𝜎𝑖𝑖1, 𝜇𝜇𝑖𝑖0,𝜎𝜎𝑖𝑖0 where 

𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦 = 1)~𝑁𝑁(𝜇𝜇𝑖𝑖1,𝜎𝜎𝑖𝑖1), 𝑝𝑝(𝑣𝑣𝑖𝑖|𝑦𝑦 = 0)~𝑁𝑁(𝜇𝜇𝑖𝑖0,𝜎𝜎𝑖𝑖0) (18) 

The scalar parameter above are incrementally updated 

𝜇𝜇𝑖𝑖1 ← 𝜆𝜆𝜇𝜇𝑖𝑖1 + (1 − 𝜆𝜆)𝜇𝜇1 

𝜎𝜎𝑖𝑖1 ← �𝜆𝜆(𝜎𝜎𝑖𝑖1)2 + (1 − 𝜆𝜆)(𝜎𝜎1)2 + 𝜆𝜆(1 − 𝜆𝜆)(𝜇𝜇𝑖𝑖1 − 𝜇𝜇1)2, (19) 

where 𝜆𝜆 > 0 is a learning parameter, 𝜎𝜎1 = �1
𝑛𝑛
∑ (𝑣𝑣𝑖𝑖(𝑘𝑘) − 𝑢𝑢1)2𝑛𝑛−1
𝑘𝑘=0|𝑦𝑦=1  and 𝜇𝜇1 =

1
𝑛𝑛
∑ 𝑣𝑣𝑖𝑖(𝑘𝑘)𝑛𝑛−1
𝑘𝑘=0|𝑦𝑦=1 . The above equations can be easily derived by maximal likelihood estimation. 
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3.1.2.2 Tracking-Learning-Detection Tracker (TLD) 

TLD tracker is a framework designed for long-term tracking of an unknown object in a video 
stream. Its block diagram is shown in Figure 5. The components of the framework are 
characterized as follows: Tracker estimates the object's motion between consecutive frames 
under the assumption that the frame-to-frame motion is limited and the object is visible. The 
tracker is likely to fail and never recover is the object moves out of the camera view. Detectors 
treat every frame as independent and perform full scanning of the image to localize all 
appearances that have been observed and learned in the past. As any other detector, the detector 
makes two types of errors: false positive and false negative. Learning observes performance of 
both, tracker and detector, estimates detector's errors and generates training examples to avoid 
these errors in the future. The learning component assumes that both the tracker and the detector 
can fail. By virtue of the learning, the detector generalizes to more object appearances and 
discriminates against background. 

                           

Figure 5: The block diagram of the TLD framework 

 

3.1.2.3 Online Multiple Instance Learning Tracker (MIL) 

MIL framework allows users to update the appearance model with a set of image patches, even 
though it is not known which image patch precisely captures the object of interest. This leads to 
more robust tracking results with fewer parameter tweaks. Weak classifiers are chosen 
sequentially to optimize the following criteria: (𝐡𝐡𝑘𝑘,𝛼𝛼𝑘𝑘) = argmax𝐡𝐡∈𝓗𝓗,α𝐽𝐽(𝐇𝐇𝑘𝑘−1 + α𝐡𝐡) where 

Learning 

Tracking Detection 
Re-initialization 
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𝐇𝐇𝑘𝑘−1 is the strong classifier made up of the first (k-1) weak classifiers, and 𝓗𝓗 is the set of all 
possible weak classifiers. In batch boosting algorithms, the objective function J is computed over 
the entire training dataset. 

  Algorithm 4. On-line MILBoost 
Input: Dataset {𝑋𝑋𝑖𝑖,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑁𝑁 , where 𝑋𝑋𝑖𝑖 = {𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2,⋯ },𝑦𝑦𝑖𝑖 ∈ {0,1} 
1.Update all M weak classifier in the pool with data �𝑥𝑥𝑖𝑖𝑗𝑗 ,𝑦𝑦𝑖𝑖�.
2.Initialize 𝐻𝐻𝑖𝑖𝑗𝑗 = 0 for all i, j
3.for k = 1to K do
4. for m=1 to M do
5. 𝑝𝑝𝑖𝑖𝑗𝑗𝑚𝑚 = 𝜎𝜎(𝐻𝐻𝑖𝑖𝑗𝑗 + ℎ𝑚𝑚(𝑥𝑥𝑖𝑖𝑗𝑗))
6. 𝑝𝑝𝑖𝑖𝑚𝑚 = 1 −∏ (1 − 𝑝𝑝𝑖𝑖𝑗𝑗𝑚𝑚)𝑗𝑗  
7. ℒ𝑚𝑚 = ∑ (𝑦𝑦𝑖𝑖 log(𝑝𝑝𝑖𝑖𝑚𝑚) + (1 − 𝑦𝑦𝑖𝑖)log (1 − 𝑝𝑝𝑖𝑖𝑚𝑚))𝑖𝑖
8. end for
9. 𝑚𝑚∗ = argmax𝑚𝑚ℒ𝑚𝑚
10. 𝐡𝐡𝑘𝑘(𝑥𝑥) ← ℎ𝑚𝑚∗(𝑥𝑥)
11. 𝐻𝐻𝑖𝑖𝑗𝑗 = 𝐻𝐻𝑖𝑖𝑗𝑗 + 𝐡𝐡𝑘𝑘(𝑥𝑥)
12.end for
Output: Classifier 𝐇𝐇(𝑥𝑥) = ∑ 𝐡𝐡𝑘𝑘(𝑥𝑥)𝑘𝑘 , where 𝑝𝑝(𝑦𝑦|𝑥𝑥) = 𝜎𝜎(𝐇𝐇(𝑥𝑥)) 

For the current video frame, a training dataset {(𝑋𝑋1,𝑦𝑦1), ((𝑋𝑋2,𝑦𝑦2)⋯ }, where 𝑋𝑋𝑖𝑖 = {𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2,⋯ }. 
The estimate of 𝑝𝑝(𝑦𝑦|𝑥𝑥) is updated to maximize the log likelihood of the data. Thus the instance 
probability as 𝑝𝑝(𝑦𝑦|𝑥𝑥) = 𝜎𝜎(𝐇𝐇(𝑥𝑥)) where 𝜎𝜎(𝑥𝑥) = 1

1+𝑒𝑒−𝑥𝑥
is the sigmoid function: the bag 

probabilities  𝑝𝑝(𝑦𝑦|𝑋𝑋) are modeled using the NOR model. 

3.1.2.4 Online AdaBoost (OAB) 

Boost tracker is a novel on-line AdaBoost feature selection algorithm for tracking. The distinct 
advantage of the method is its capability of on-line training. This allows adapt the classifier 
while tracking the object. Therefore appearance changes of the object (e.g. out of plane rotation, 
illumination changes) are handled quite naturally. Moreover, depending on the background the 
algorithm selects the most discriminating features for tracking resulting in stable tracking results. 
By using fast computable features (e.g. Haar-like wavelets, orientation histograms, local binary 
patterns) the algorithm runs in real-time. 

The main idea of on-line boosting is the introduction of the selectors. They are randomly 
initialized and each of them holds a separate feature pool of weak classifiers. When a new 
training sample arrives the weak classifiers of each selector are updated. The best weak classifier 
(having the lowest error) is selected by the selector where the error of the weak classifier is 
estimated from samples seen so far. The complexity is determined by the number of selectors. 

The part which requires most of the processing time is the updating of weak classifiers. In order 
to speed up this process, we propose as a modification to use a single "global weak classifier" 
pool (see Figure 6) which is shared by all selectors instead of single pools for each of them. The 
advantage of this modification is that now for each sample that arrives, all weak classifiers need 
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to be updated only once. Then the selectors sequentially switch to the best weak classifiers need 
to be updated only once. Then the selectors sequentially switch to the best weak classifier with 
respect to the current estimated 𝜆𝜆 and the importance weight is passed on to the next selector. 
This procedure is repeated until all selectors are updated. Finally, at each time step an updated 
strong classifier is available. In order to increase the diversity of the weak classifiers and to allow 
changes in the environment, the worst weak classifier of the shared feature pool is replaced with 
a new randomly chosen one. 

Figure 6: Principle of on-line boosting for feature selection 

3.1.2.5 Visual Tracking Decomposition (VTD) 

 VTD is a novel tracking algorithm that can work robustly in a challenging scenario such that 
several kinds of appearance and motion changes of an object occur at the same time. The 
algorithm is based on a visual tracking decomposition scheme for the efficient design of 
observation and motion models as well as trackers.  The observation model is decomposed into 
multiple basic observation models that are constructed by sparse principal component analysis 
(SPCA) of a set of feature templates. Each basic observation model covers a specific appearance 
of the object. The motion model is also represented by the combination of multiple basic motion 
models, each of which covers a different type of motion. Then the multiple basic trackers are 
designed by associating the basic observation models and the basic motion models, so that each 
specific tracker takes charge of a certain change in the object. All basic trackers are then 
integrated into one compound tracker through an interactive Markov Chain Monte Carlo 
(IMCMC) framework in which the basic trackers communicate with one another interactively 
while run in parallel. By exchanging information with others, each tracker further improves its 
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performance, which results in increasing the whole performance of tracking.  Figure 7 shows the 
processes of observation model and tracking model decomposition.    

Figure 7: The process of observation model decomposition and the process of tracker 
decomposition [81]. 

3.1.2.6 Likelihood of Features Tracker (LoFT) 

The likelihood of features tracking (LoFT) system is based on fusing multiple sources of 
information about the target and its environment akin to a track-before-detect approach. LoFT 
uses image-based feature likelihood maps derived from a template-based target model, object 
and motion saliency, track prediction and management, combined with a novel adaptive 
appearance target update model.  

LoFT uses a recognition-based target localization approach using the maximum likelihood of 
the target being within the search region conditioned on a feature. A likelihood map is estimated 
for each feature by comparing feature histograms of the target within the search region using a 
sliding window based approach (see Fig. 8). Each pixel in the likelihood map indicates the 
posterior probability of that pixel belonging to the target. Fusing features enables adaptation of 
the tracker to dynamic environment changes and target appearance variabilities. Using a track-
before-detect approach provides more robust localization especially for cluttered dense 
environments. Feature adaptation uses a weighted sum Bayes fusion rule that tends to perform 
better than other methods such as the product rule.  The critical aspect in weighted sum fusion is 
the relative importance of feature maps. Each feature performs differently depending on the 
target characteristic and environmental situations during tracking. Equally weighted fusion of 
likelihood maps can decrease performance, when some of the features are not informative in that 
environment.  The importance assigned to each feature can be adapted to the changes in target 
pose and the surrounding background. Temporal feature weight adaptation can improve 
performance under changes that are not explicitly modeled by the tracker.  
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Figure 8: Likelihood of Features Tracking (LoFT) processing 
pipeline.  

Fig. 8 shows major components including feature extraction, feature likelihood map estimation 
by combining with the template, vehicle detection using support vector machine (SVM) 
classification, fusion module that also incorporates prediction based motion and background 
subtraction based motion, to produce a fused likelihood for target localization after track 
extension. The track management includes termination module, prediction with or without 
multiple hypothesis tracking (MHT) and object appearance updating for adaptive target modeling 
[82]. 

3.1.2.7 Likelihood of Features Tracker (LoFT) Clustered Set of Structured Uniformly Dense 
Robust features tracker (CSURF) 

Visual object tracking for surveillance applications poses challenges due to many factors 
such as the distractor objects in the scene, changing imaging conditions (e.g. illumination, 
viewpoint), scale, blur and appearance change. Many trackers in the literature utilize adaptive 
models to keep up with the dynamic appearance of objects. While some trackers utilize adaptive 
templates, others utilize keypoint based models (e.g. visual bags of words). Keypoint based 
tracking methods usually rely on a keypoint detector and descriptor in order to detect points on 
an object that can be robustly and repeatably detected in the subsequent frames and describe the 
regions around them with a robust descriptor. For objects with enough support (large scale) this 
approach works well, but it suffers from the lack of good feature points in aerial surveillance 
videos. CSURF [34] opts for detection based tracking, but propose a different approach using a 
clustered set of structured uniformly dense robust features (CSURF) to describe regions rather 
than finding interest points. The choice of descriptors is the Speeded-Up Robust Feature (SURF) 
descriptors but other robust descriptors of several features can be also employed. Based on these 
considerations, CSURF model consists of a collection of 64 dimensional SURF descriptors with 
structural information that represent the local image patches around regularly spaced points on 
the support of the object at a fixed scale. 
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3.2 Tracking System and Integration 

3.2.1 Video Frame Registration 

In this section, we present the video registration step. For the camera motion, we need to 
stabilize the video frames for moving target detection by frames registration. We stabilizes the 
video with respect a base frame in the video sequence over a short time period of about one 
second or 30 frames.  This registration is accomplished by identifying prominent Beltrami color 
metric tensor features, which are a metric extension of structure tensor features that are matched 
between frames using a block matching approach. We call the combination of feature extraction 
with local region/block matching hybrid prominent feature-block matching. Once the features are 
available, a RANSAC approach is used to remap one frame into the coordinate system of the 
base video frame within the chunk of 30 frames. The homography model assumes that a single 
plane is sufficient to model the 3D scene which may not be valid for complex video sequences. 
Once the frame homographies are available, the flux tensor motion detection can be applied to 
detect moving target.  

3.2.1.1 Necessity of video registration 

Applications of unmanned aerial vehicles (UAVs) for surveillance, monitoring, situation 
awareness and resource management have steadily increased in recent years. Most UAVs have an 
onboard vision sub-system designed to acquire, preprocess, and transmit video images as they y 
over an area of interest. The large amount of video data and effects due to camera motion make it 
less suitable for direct analysis by human operators. There are a number of interesting challenges 
and opportunities to automate certain subtasks and assist the human analysts to improve the 
overall performance of such systems. One of the key challenges is due to the inherent camera 
motion - inevitable since the UAV is a moving platform. It is often impractical to assume that 
geo-location and orientation of the camera will be available at a resolution and robustness 
required by other algorithms. Effects due to occlusion and atmospheric conditions such as 
illumination, cloud motion, rain, etc, compound the challenge. As a result, detecting, locating, 
monitoring and tracking of objects in videos become severely hampered, and sometimes 
impossible. A number of interesting papers have appeared recently designed to address specific 
bottlenecks in the video analysis chain. The scope of these papers varies vastly with regard to 
assumptions on the range of motion and complexity of objects and their relative geospatial 
manifests.  

Video registration is an essential task designed to deal with the effects caused by camera 
motion [83, 84] egomotion estimation is an alternative approach which we do not discuss in this 
paper. In this context, registration refers to the process of determining corresponding points or 
regions between two frames of a potentially dynamic scene taken at different times from 
different viewpoints by a mobile camera or other sensors. Both the vantage and time vary 
between the two images. Although image registration has been extensively addressed in the 
literature over the last three decades [85,86], a typical image pair that forms the basis of analysis 
has changed significantly over the years, including sensor configuration and scene dynamics that 
constitute the central disparity between frames. The set of assumptions used to simplify 
tractability issues and meet required (onboard) performance constraints are also forced to change 
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with sensor technology. Although many methods have been proposed for airborne video 
registration [83, 84, 87, 88], it is still an open problem.  

Our method uses edges and corners in each block of the image with certain confidence to 
extract the control points. The proposed technique shows good results and low error for image 
registration. Unmanned aerial vehicle have become important for gathering information and 
assessing a remote situation in many different applications. Although visual information is rich 
and discriminative it is usually difficult to analyze by computer. Another component of 
complexity consists in the unstable camera is due to the UAV motion. This generates many 
difficulties for motion analysis and object tracking. Therefore the registration becomes essential 
preliminary task to eliminate the errors caused by the camera displacement. 

3.2.1.2 Prominent Feature Block-based Region Selection 

The first step in registration is to detect salient or prominent features (PF) that are preserved 
under geometric image transformations. Spatial manifests such as corners, edges, contours, and 
regions prove to be effective in grouping pixels within an image, and establishing a basis for 
registration across a pair of images. These features are generally represented by points (corner, 
center of gravity and line intersection), lines (Hough transform) or areas (window), and facilitate 
registration when the correspondence between such features (drawn from two images) is 
established by some means. A set of corresponding PF block regions is the most desired baseline 
since it can be directly used to determine the parameters of the transformation function. Complex 
techniques do exist, which could be suitably adopted to exploit oriented properties of the spatial 
features, e.g. slope of line-segments, or inclusive angle associated to a corner etc. Such 
techniques would invariably involve fusing limited knowledge about the scene in terms of the 
parametric models used relating the oriented attributes of a selected feature across two instances. 
Depending on the context, the analysis may seek a balance between constancy and saliency of 
such attributes. We look at the distribution of feature point attributes within a PF block and use 
the cancroids for displacement vectors. The tensor representation of edges and corners provide 
consistent characteristics since they are related to the image structure. 

3.2.1.3 Beltrami Color Metric Tensor 

Many first and second derivative feature detectors and descriptors are available in the literature.7 
We use the 2D color structure tensor defined in terms of the outer product of spatial gradients in 
each channel is given in Eq.1 with 𝐶𝐶𝑖𝑖 representing image channels (𝑒𝑒 =  3 for RGB color), and 
further described in [90, 91]. The 2D grayscale structure tensor matrix is also referred to as the 
second moment or autocorrelation matrix [89].  

Local descriptors based on the two eigenvalues of the structure tensor provide information 
about the signal in orthogonal directions. Small eigenvalues are indicative of noise so the trace of 
𝐉𝐉C can filter these locations. 
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(20) 

The eigenvalues of JC are correlated with the local image properties of edgeness and cornerness, 
defined as 𝜆𝜆1 ≫ 0, 𝜆𝜆2 ≈ 0 and 𝜆𝜆1 ≈ 𝜆𝜆2 ≫ 0, respectively. For a 2D multi-spectral image, the 
Beltrami operator defines a metric on a two-dimensional manifold 
(𝑥𝑥,𝑦𝑦,𝐶𝐶1(𝑥𝑥,𝑦𝑦),𝐶𝐶2(𝑥𝑥,𝑦𝑦),𝐶𝐶3(𝑥𝑥, 𝑦𝑦)), in the five-dimensional spatial-color space (𝑥𝑥,𝑦𝑦,𝐶𝐶1,𝐶𝐶2,𝐶𝐶3): 

(21) 

The determinant is the appropriate generalization of the gradient magnitude of intensity images 
to multispectral image gradients. In order to evaluate the color tensor matrix JC two (convolution) 
scale factors are required - one for the spatial derivative (gradient) filters and one for integration 
(summation) filters. Fig. 9 shows an example of the 2D color structure (or Beltrami) tensor 
response. Each block containing high values of tensor magnitude responses is considered to be a 
PF macroblock and selected for the matching process described next. Reducing the total number 
of PF macroblocks reduces computational cost. 

        (a) Original frame (b) Beltrami tensor response 

Figure 9: Thresholded output of the 2D Beltrami tensor applied to the image shown.  

The gird shows correspondence between location of salient features and non-overlapping 
macroblocks.  
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3.2.1.4 PF Block Region-Correspondences 

Once the prominent feature (PF) macroblocks are selected based on an efficient evaluation and 
thresholding of Eq. 21, the next step is displacement or region correspondence matching. The 
matching process uses a PF block in the source image and searches for the best matching or most 
similar overlapping block contained with a search zone/window in the target image; each PF 
block is compared to all shifted overlapped areas by sliding the source PF block by one pixel. 
Two standard measures of similarity are the Euclidean distance and Normalized Cross 
Correlation (NCC). The 𝐿𝐿1 approximation (referred to as sum of absolute differences (SAD)) of 
the 𝐿𝐿2 Euclidean metric is used to reduce computation complexity. The NCC measure is less 
sensitive to absolute intensity changes between the source and target images due to the 
normalization terms in the denominator but is much more expensive to compute than SAD. Both 
were considered. The minimum of the SAD measure can be defined as, 

(22) 

The NCC between target (or reference) image 𝐈𝐈(X, t − k) and source (or template) image 𝐈𝐈(X, t) 
is defined as, 

           (23) 

where 𝜇𝜇𝑡𝑡−𝑘𝑘  = 〈𝐈𝐈(𝑋𝑋 + ∆𝑋𝑋, 𝑡𝑡 − 𝑘𝑘)〉 and 𝜇𝜇𝑡𝑡  = 〈𝐈𝐈(𝑋𝑋, 𝑡𝑡)〉 are the local intensity means (averages) in 
the target and template image regions respectively and the denominator is the product of the local 
variances. The NCC for vector images (RGB color) can be appropriately extended. 

We want to find the translation or displacement ∆𝑋𝑋 that maximizes the NCC measure, 

(24) 

The NCC can also be interpreted as the cosine of the angle between the two mean corrected 
region blocks. If we represent the mean subtracted pixels in the target and source windows as the 
vectors 𝑊𝑊𝑇𝑇������⃗ , 𝑊𝑊𝑆𝑆�����⃗ , respectively, then, 𝑁𝑁𝐶𝐶𝐶𝐶 ≡ 𝛾𝛾(∆𝑋𝑋) = �𝑊𝑊𝑇𝑇������⃗ ∙ 𝑊𝑊𝑆𝑆�����⃗ �/��𝑊𝑊𝑇𝑇������⃗ � ∙ �𝑊𝑊𝑆𝑆�����⃗ ��. 

3.2.1.5 Filtering Motion Blocks 

Figure 10 shows an example of the region-correspondences between two frames from a video 
sequence. The matching process is performed in the (grayscale or color) intensity space. There 
are two types of control points: those belonging to moving objects and those from the 
background. PF blocks containing moving objects are not suitable for homography since they 
introduce error due to the object motion between the two timesteps. Therefore it is more robust to 
use only points of the background, and discard those from the moving foreground objects using 
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some type of motion filtering. The motion filtering consists of separating the displacement 
caused by camera motion from the displacement due to the moving objects in the scene. For this 
purpose we use the motion field statistics to determine which points belong to the background or 
foreground motion. Figure 11(a) shows an example of the displacement of the points of interest 
obtained by matching prominent blocks as described in previous section. We notice that the 
background has a dominant motion direction different from the foreground objects (cars). In 
general, in UAV-video, the number of prominent features due to moving objects in the scene will 
be small compared to the number of PF macroblocks in the background. Under this assumption 
the direction histogram of the motion field vectors can be used to detect the dominant 
displacement direction due to camera motion. We choose the maximum population of directions. 
Points that do not belong to this population are discarded from the set of control point 
macroblocks as shown in Figure 11 (b). 

 

Figure 10: Region correspondences based on SAD matching. 

 

  

           (a) Displacement vectors                      (b) After motion filtering 

Figure 11: (a) PF block-based region correspondence vectors show the high quality of 
the matches. (b) Object motion blocks marked by red points are discarded, 

green ones kept. 
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3.2.1.6 Projective Transformation Estimation 

Once region-based block correspondences are established, we need to compute the homography 
relating the two coordinate systems. This enables image 𝐈𝐈(X, t) to be mapped into the coordinate 
system of the base frame for a given video segment I(X, t − k). Note that we are interested in 
finding a good solution for the homography, and not on finding the unique solution for the true 
3D camera motion, as our goal is mainly to compensate for and remove the effects of the 
background or (dominant) ground plane motion. Since UAV imagery can have significant 
perspective effects a projective mapping is more accurate than a single global affine 
transformation. Other approaches include multiple local affine projections [92] and non-rigid 
transformations [93]. The projective mapping function or homography uses the coordinates of 
the corresponding PF block centroids (control points) to find a weighted least squares solution 
for the transformation matrix coefficients. The homography is used to warp the image at time t 
into the coordinate system of the base frame at time (𝑡𝑡 − 𝑘𝑘). The two images, 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡) and 
𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡 − 𝑘𝑘) can be related by a projective transformation (or homography) when the scene 
points are approximately planar. Let the image coordinates of the same scene point lying on the 
plane 𝜋𝜋 be 𝑃𝑃(𝑥𝑥,𝑦𝑦) and 𝑃𝑃′(𝑥𝑥′,𝑦𝑦′), in the view at time t and (t - k) respectively. The two views can 
be related by the following homogeneous relationships: 

                                                         (25)  

                                                       (26) 

The homography can be written in matrix notation as: 

                                           (27) 

                                                           (28) 

This transforms position P observed at time t, to position P0 in the coordinate system at time 
(𝑡𝑡 −  𝑘𝑘) via the projective transformation matrix (a backward transformation from time t to time 
(𝑡𝑡 −  𝑘𝑘)). Usually we assume 𝑤𝑤 =  1 in matrix A. 

 Suppose we are given three images, 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡 − 2), 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡 − 1), 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡) with 
corresponding planar points, 𝑃𝑃", 𝑃𝑃′, 𝑃𝑃 and homography transformation matrices 𝐀𝐀(𝑡𝑡 − 1, 𝑡𝑡) and 
𝐀𝐀(𝑡𝑡 − 2, 𝑡𝑡 − 1) that projectively maps t to (t - 1) (i.e., Frame 2 to Frame 1) and (t-1) to (t-2) (i.e., 
Frame 1 to Frame 0), respectively. Without loss of generality we assume, for simplicity of 
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notation, that the images are sequentially sampled at one unit time intervals, t, (t - 1), and (t - 2). 
We can then write the two respective projective transformations as, 

                       (29) 

and the composite or cumulative projective transformation relating pixels in frame t to pixels in 
frame (t-2) (i.e., pixels in Frame 2 to pixels in Frame 0), as the product of two homographies or 
projective maps/transformations: 

                                    (30) 

In the general case, mapping pixel positions from frame t to corresponding pixel positions in the 
coordinate system of frame (t - k), we have 

                                           (31) 

               (32) 

We also need to specify the coordinate system in which we reference or measure a pixel's 
position. Since the prime notation is limited, 𝑃𝑃(𝑡𝑡 − 𝑘𝑘, 𝑡𝑡) denotes pixel position/geometry from 
image 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡) mapped to the coordinate system of image frame 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡 − 𝑘𝑘) and 𝑃𝑃(𝑡𝑡, 𝑡𝑡) is the 
pixel position measured in its original coordinate system 𝐈𝐈(𝑥𝑥,𝑦𝑦, 𝑡𝑡). The elements of matrix A in 
Eq. 27 and 28 can be solved using weighted least squares, robust statistics such as LMedS or 
combinatorial methods such as RANSAC. Each pair of corresponding points provides three 
linear constraints that can be written in a matrix form 𝐁𝐁𝑖𝑖𝐚𝐚 =  0 as shown below, 

 

                 (33) 

where 𝐚𝐚𝑖𝑖𝑇𝑇 is the 𝑒𝑒𝑡𝑡ℎ  row of A in Eq. 27.  This above equation, 𝐁𝐁𝑖𝑖𝐚𝐚 =  0, is an equation linear in 
the unknown vector a. The matrix 𝐁𝐁𝑖𝑖 is a 3 × 9 matrix, and a is a 9 × 1-vector made up of the 
entries of the matrix A, 

                            (34) 

Notice that there are three equations in (33), however just two of them are linearly independent 
since the third row is obtained up to scale. Therefore each point correspondence provides two 
equations in the entries of A.  
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Based on this, (33) can be written as, 

                          (35) 

where 𝐁𝐁𝑖𝑖 is the 2 × 9 matrix shown in Eq. (35). We solve Eq. (35) for 𝐚𝐚 with 9 unknown 
elements using the normalized Direct Linear Transformation (DLT) approach given in Alg. 6. 
DLT provides for improved numerical stability and accuracy when solving for A. 

Notice that for improving the accuracy of the results in the DLT algorithm, a normalization 
process (Alg. 5) has to be applied beforehand. This step is very important for less well 
conditioned problems such as DLT. Apart from improved accuracy of results, normalizing data 
has one more advantage, namely that an algorithm which incorporates an initial data 
normalization step will be invariant with respect to arbitrary choices of the scale and coordinate 
origin. As mentioned in [94] this is because the normalization step cancels out the effect of 
reference frame changes, by effectively choosing a canonical coordinate system for the 
measurement data. Therefore, algebraic minimization is carried out in a fixed canonical frame, 
and the DLT algorithm practically becomes invariant to similarity transformations. In order to 
give an idea of the importance of the normalization step in homography estimation using DLT, 
we performed a simulation using perturbed synthetic feature points. 
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Figure 12: Simulated results to demonstrate the importance of using normalization step 
in DLT homography estimation algorithm.  

Figure 12 shows a set of 100 points x that were randomly generated representing some feature 
points in the first image (𝐈𝐈1). The blue-cross and black-cross marks in the right figure indicate 
the transformed points from I1 to I2 using non-normalized and normalized cases, respectively. 
The actual feature points in I2 are drawn in red-circles. For this experiment, we measured 25:75 
average pixels error for the non-normalized case and 16:53 for the normalized case. The 
assumption is that there are no matching errors and the noise is equal additive Gaussian added to 
both I1 and I2. 

Then a homography matrix A, 

                            (36) 

is randomly generated which maps x in I1 to x0 = Ax in the second image I2. The image size is 
considered to be standard definition size of 640×480 pixels. Some noise (white Gaussian noise 
with zero mean and standard deviation two) are added to the feature points in both images as 
shown in Fig. 12. Then the homography transformation between the perturbed points in I1 and I2 
has been estimated using the DLT algorithm, once using normalized points and the other without 
normalization. The geometric errors are computed using the estimated homography for both 
cases. For this experiment, we got 25:75 average pixels error for the non-normalized one and 
16:53 for the normalized one. The estimated homography matrices in two cases of directly 
applying DLT or using a normalization method before DLT are as following, respectively: 
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                             (37) 

                       (38) 

As can be seen, the estimated homography after applying a normalization step numerically is 
very close to the original used homography and moreover gives a better result. A similar 
experiment has been done for a case where just the points in I1 are perturbed and the points and 
homography is the same as the previous experiment. For this case we got 7:60 average pixels 
error for the non-normalized one and 6:40 for the normalized one. The estimated homography 
matrices in two cases of directly applying DLT or using a normalization method before DLT are 
as following, respectively: 

                             (39) 

                       (40) 

To demonstrate the necessity of taking the normalization step before applying DLT, another 
homography matrix 

                          (41) 

was randomly generated which maps x in 𝐈𝐈1 to x′ =  𝐴𝐴x in the second image 𝐈𝐈2 and then 
Gaussian noise with zero mean and standard deviation of two are added to the feature points in 
both images. Like the previous example, the homography transformation between the perturbed 
points in 𝐈𝐈1 and 𝐈𝐈2 has been estimated using the DLT algorithm, once using normalized points 
and the other without normalization. The geometric errors are computed using the estimated 
homography for both cases. For this experiment, we got 17:14 average pixels error for the non-
normalized one and 12:26 for the normalized one. The estimated homography matrices in two 
cases of directly applying DLT or using a normalization method before DLT were tested for the 
second example. Figure 13 shows another simulation where the corresponding homography 
matrices were as follows: 
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                                  (42) 

                             (43) 

  

Figure 13: Simulated results to demonstrate the importance of using normalization 
step in DLT homography estimation algorithm.  

The blue-cross and black-cross marks in the right figure indicate the transformed points from I1 
to I2 using non-normalized and normalized cases, respectively. The actual feature points in I2 are 
drawn in red-circles. For this experiment, we measured 17:14 average pixels error for the non-
normalized one and 12:26 for the normalized one. The assumption is that there are no matching 
errors and the noise is equal additive Gaussian added to both I1 and I2. 

The DLT method, described in Algorithm 6, is used to solve Eq. 33. The DLT method is robust 
only if the dominant source of the noise is in the location measurement of corresponding feature 
points. The DLT method is not appropriate when there are mismatches corresponding to two 
putative features. For this purpose we use a method, based on RANSAC (Random Sample 
Consensus), to robustify the estimate with respect to false matches. The RANSAC-based 
homography estimation incorporating normalized DLT is described in Algorithm 7. 
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The performance of RANSAC-based homography estimation using Algorithm 8 depends 
on the proportion of inliers and the number of iterations. The probability that after N iterations of 
RANSAC we have not picked a set of inliers is given by (1 − 𝑎𝑎4)𝑁𝑁, with g = m/n being the 
proportion of the inliers; the behavior of this curve is shown in Figure 14 for three values of N 
(N = 10, 100, 1000). For the RANSAC iteration, the initial value of N in Algorithm 7 is 
initialized with a large value that is then adaptively updated in iteration using the Equation in 
Step 15 as shown in Figure 15. 

An alternative to RANSAC is Least Median of Squares (LMedS) estimation, in which the 
model is selected using the median of the distances of all points in the dataset (whereas in 
RANSAC a minimum sized set of samples are randomly selected). As indicated in [94] LMS has 
the advantage of not requiring any threshold; however it fails if more than 50% of the data are 
outliers. There are other variations of RANSAC such as Adaptive-Scale Kernel Consensus 
(ASKC) which can be used as alternative robust estimators [95]. Alternatively some other 
methods which consider the hohomraphy estimated by Alg. 7 as an initialization and then 
iteratively try to minimize the error using Levenberg-Marquardt method in order to optimize the 
initial estimation [94]. 
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Figure 14: Evaluation of the robustness of the proposed RANSAC-based homography 
estimation in Alg. 7.  

The horizontal axis indicates the proportion of inliers (g = m/n) and the vertical axis shows the 
probability that after N RANSAC iterations we have not picked a sufficient set of inliers based 

on the function (1 − 𝑎𝑎4)𝑁𝑁 for three values of N. 

Figure 15: Plot of 𝑵𝑵 = 𝐥𝐥𝐥𝐥𝐥𝐥 (𝟏𝟏−𝒑𝒑)
𝐥𝐥𝐥𝐥𝐥𝐥 (𝐚𝐚−(𝟏𝟏−𝐥𝐥)𝟒𝟒)

,

Figure 15 gives an update for the number of iterations in Algorithm 7. N is adaptively 
determined in Step 15 of Algorithm 7. The horizontal axis indicates the inlier percentage. Plots 
for different values of 𝑝𝑝 (see Step 4) that is related to the quality of the estimate is shown in 
different colors. For higher values of p more iteration are needed. 
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3.2.2 Motion Detection 

In this section, we present how to detect moving target using flux tensor motion detection 
method. Motion blob detection is performed using our novel flux tensor method which is an 
extension to 3D grayscale structure tensor. Both the grayscale structure tensor and the proposed 
flux tensor use spatial-temporal consistency more efficiently, thus produce less noisy and more 
spatially coherent motion segmentation results compared to classical optical flow methods [96]. 
The flux tensor is more efficient in comparison to the 3D grayscale structure tensor since motion 
information is more directly incorporated in the flux calculation which is less expensive than 
computing eigenvalue decompositions as with the 3D grayscale structure tensor. 

3.2.2.1 3D Structure Tensors 

Structure tensors are a matrix representation of partial derivative information. As they allow both 
orientation estimation and image structure analysis they have many applications in image 
processing and computer vision. 2D structure tensors have been widely used in edge/corner 
detection and texture analysis, 3D structure tensors have been used in low-level motion 
estimation and segmentation [96, 97]. 

Under the constant illumination model, the optic-flow (OF) equation of a spatiotemporal 
image volume 𝐈𝐈(x) centered at location 𝑥𝑥 =  [𝑥𝑥,𝑦𝑦, 𝑡𝑡] is given by Eq. 44 [98] where, v(x)  =
 [𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦, 𝑣𝑣𝑡𝑡] is the optic-flow vector at x, I doing like this. 

(44) 

𝐯𝐯(𝐱𝐱) is estimated by minimizing Eq. 44 over a local 3D image patch 𝛀𝛀(𝑥𝑥,𝑦𝑦), centered at x. Note 
that 𝑣𝑣𝑡𝑡 is not 1 since spatial-temporal orientation vectors will be computed. Using Lagrange 
multipliers, a corresponding error functional 𝑒𝑒𝑙𝑙𝑙𝑙(x) to minimize Eq. 44 using a least-squares 
error measure can be written as Eq. 45 where W(x, y) is a spatially invariant weighting function 
(e.g., Gaussian) that emphasizes the image gradients near the central pixel [97]. 

(45) 

Assuming a constant v(x) within the neighborhood Ω(x, y) and differentiating 𝑒𝑒𝑙𝑙𝑙𝑙(x) to find the 
minimum, leads to the standard eigenvalue problem (Eq. 46) for solving v�(x) the best estimate of 
v(x). 

(46) 
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The 3D structure tensor matrix 𝐉𝐉(𝐱𝐱,𝐖𝐖) for the spatiotemporal volume centered at x can be 
written in expanded matrix form, without the spatial filter W(x, y) and the positional terms 
shown for clarity, as Eq. 47. 

(47) 

A typical approach in motion detection is to threshold 𝐭𝐭𝐭𝐭𝐚𝐚𝐭𝐭𝐭𝐭(𝐉𝐉) (Eq. 48); but this results in 
ambiguities in distinguishing responses arising from stationary versus moving features (e.g., 
edges and junctions with and without motion), since 𝐭𝐭𝐭𝐭𝐚𝐚𝐭𝐭𝐭𝐭(𝐉𝐉) incorporates total gradient change 
information but fails to capture the nature of these gradient changes (i.e., spatial only versus 
temporal). 

(48) 

To resolve this ambiguity and to classify the video regions experiencing motion, the eigenvalues 
and the associated eigenvectors of J are usually analyzed [99, 100]. However eigenvalue 
decomposition at every pixel is computationally expensive especially if real time performance is 
required. 

3.2.2.2 Flux Tensors 

In order to reliably detect only the moving structures without performing expensive eigenvalue 
decompositions, the concept of the flux tensor is proposed. Flux tensor is the temporal variations 
of the optical flow field within the local 3D spatiotemporal volume. Computing the second 
derivative of Eq. 44 with respect to 𝑡𝑡, Eq. 49 is obtained where, 𝐚𝐚(𝐱𝐱)  =  [𝑎𝑎𝑥𝑥,𝑎𝑎𝑦𝑦,𝑎𝑎𝑡𝑡] is the 
acceleration of the image brightness located at x. 

(49) 

which can be written in vector notation as, 

(50) 
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Using the same approach for deriving the classic 3D structure, minimizing Eq. 49 assuming a 
constant velocity model and subject to the normalization constraint ‖𝐯𝐯(𝐱𝐱)‖  =  1 leads to Eq. 51, 

(51) 

Assuming a constant velocity model in the neighborhood Ω(𝑥𝑥,𝑦𝑦), results in the acceleration 
experienced by the brightness pattern in the neighborhood (x, y) to be zero at every pixel. As 
with its 3D structure tensor counterpart J in Eq. 47, the 3D flux tensor JF using Eq. 51 can be 
written as 

(52) 

and in expanded matrix form as Eq. 53. 

(53) 

As seen from Eq. 53, the elements of the flux tensor incorporate information about temporal 
gradient changes which leads to efficient discrimination between stationary and moving image 
features. Thus the trace of the flux tensor matrix which can be compactly written and computed 
as 

, (54) 

and can be directly used to classify moving and non-moving regions without the need for 
expensive eigenvalues decompositions. If motion vectors are needed then Eq. 51 can be 
minimized to get ^v(x) using 

(55) 

In this approach the eigenvectors need to be calculated at just moving feature points. 
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3.2.3 Blur-Resilient Tracking Using Group Sparsity 

A Blur Resilient target Tracking algorithm (BReT) is developed by modeling target appearance 
by a groupwise sparse approximation over a template set. Since blur templates of different 
directions are added to the template set to accommodate motion blur, there is a natural group 
structure among the templates. In order to enforce the solution of the sparse approximation 
problem to have group structure, we employ the mixed 211 / +  norm to regularize the model
coefficients. Having observed the similarity of gradient distributions in the blur templates of the 
same direction, we further boost the tracking robustness by including gradient histograms in the 
appearance model. Then, we use an accelerated proximal gradient scheme to develop an efficient 
algorithm for the non-smooth optimization resulted from the representation. After that, blur 
estimation is performed by investigating the energy of the coefficients, and when the estimated 
target can be well approximated by the normal templates, we dynamically update the template set 
to reduce the drifting problem. Experimental results show that the proposed BReT algorithm 
outperforms state-of-the-art trackers on blurred sequences.  

3.2.3.1 Motivation and Background 

In our previous experiments we found that blur effect often challenges visual tracking algorithms 
and such effect appears frequently in arial videos due to fast camera motion. For this reason, we 
plan to develop a blur resilient visual tracking algorithm. Unlike other challenges in visual 
tracking, blur effect has not been seriously addressed in tracking algorithms except in a few 
recent studies. In particular, on our previous work, a blur driven tracker using sparse 
representation is proposed, which incorporates blur templates of different directions into the 
template space to model blur degradations. However, though the enhanced appearance space is 
more expressive, ambiguity also increases. For example, a target candidate that belongs to the 
background might be well represented by some blur templates. Also, the templates of the blur 
driven tracker are fixed, therefore when the appearance of the target changes significantly, the 
tracker is susceptible to drifting. 

To address these issues, we propose a robust blurred target tracking algorithm using group 
sparse representation under a particle filter framework with enhanced template space. Three 
components distinguish our work from previous ones: (1) since blur templates of different 
directions are added to the template space and the motion blur of the target always tends only one 
direction in a frame, there is a natural group structure among the templates, i.e., the blur 
templates of one direction belong to the same group. In order to enforce the solution of the sparse 
representation of a target candidate to have group structure, we adopt a structured sparsity 
inducing norm which is a combination of 1  norm and a sum of 2  norms over groups of 
variables; (2) to account for the increase of ambiguity in the template space after enhancing it 
with blur templates, based on the observation that blur templates of the same direction have 
much more similar gradient histograms than blur templates in different directions, we use a 
combination of the reconstruction error and a sum of weighted distances between gradient 
histograms of a target candidate and each of the non-trivial templates as loss function. The 
resulting non-smooth convex optimization problem is solved using an accelerated proximal 
gradient method that guarantees fast convergence; and (3) in order to capture the appearance 
changes of the target and reduce the drifting problem, we perform blur detection by investigating 
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the energy of the reconstruction coefficients. The template set is updated dynamically when two 
criteria based on the coefficients associated with templates are satisfied. Figure 16 illustrates the 
intution of the developed BReT tracker. 

Figure 16:  Intution of the BReT tracker 

Top left: The tracking results of BReT with and without gradient information, indicated by red 
box and blue box respectively. Bottom left: the reconstruction error of the two candidates 
measured by 2

2||||0.5 yTc −  using different tracking approaches. Right: The group sparse 
representation of the two candidates using BReT with gradient information, the L1 distance 
between the gradient histograms of the estimated target and each of the selected templates are 
also given. 

3.2.3.2 Review of the Blur-driven Tracker (BLUT) 

The particle filter is a Bayesian sequential importance sampling technique for estimating the 
posterior distribution of state variables characterizing a dynamic system. It uses finite set of 
weighted samples to approximate the posterior distribution regardless of the underlying 
distribution. For visual tracking, we use tx  as the state variable to describe the location and 
shape of the target at time t . Given all available observations },,,{= 21:1 tt yyyy 2  up to time t , 
the posterior )|( :1 ttp yx  is approximated by a set of N  samples N

it 1=}{x  with importance weights 
i
tw . The optimal tx  is obtained by maximizing the approximate posterior probability: 

)|(= :1 tt pmaxarg yxx x
∗ . 

In order to model the blur degradations, blur templates are incorporated into the appearance 
space. The appearance of the tracking target dR∈y  is represented by templates ],,[= ITTT ηba , 
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0,s.t.,=̂],,[= ±Tba cTc
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η (56) 

where and

ana
×∈R],,[= 1 ttT  contains an normal templates, 

bnd

lnnnlnb
×∈R],,,,,,[= ,,11,1,1 θθ

ttttT  contains bn  blur templates, I  is the dd ×  identity 

matrix containing the trivial templates used for modeling image corruption, η  is used to control 

the weight of the trivial templates. Accordingly, an

anaaa R∈Τ),,,(= 21 a , and bn
R∈b  are called 

normal coefficients and blur coefficients respectively, Τ),,,(= 21 deee e is called trivial 
coefficients, ΤΤΤΤ ],,[= ebac  and ΤΤΤ ],[= bacT . 

The first normal template 1t  is obtained from the unblurred object patch of the target in the 
first frame, which is usually selected manually or by detection algorithms, other templates are 
shifted from it. Given a blur free patch I  of the target, different blurred versions bI  of the target 
can be modeled as convolving I  with different kernels. In our framework, jiji ,1, = ktt ⊗  is the 

thji ),(  blur template, where ji,k  is a Gaussian kernel that represents a 2D motion toward 
direction iθ  with magnitude jl , where },,{= 1 θ

θθθ ni Θ∈ , and },,{= 1 lnj lll L∈ . 

Consequently, we have lb nnn ×θ=  blur templates. Based on the directions of the blur kernels, 

we have bn
n R∈ΤΤΤ ],,[= 1 θ

bbb  , where ln

lniiii bbb R∈Τ),,,(= ,,2,1 b  are the coefficients for the 

blur templates toward thi  direction. 

To use the estimated motion information from the sparse representation to guide the particle 
sampling process, estimated motion information from different sources are integrated into the 
proposal distribution, which is a combination of the first-order Markov transition )|( 1−ttp xx , the 
second-order Markov transition ),|( 21 −− tttp xxx , and ),|( 11 −− tttiq yxx  based on the blur motion 
estimation along direction iθ . 

3.2.3.3 Loss Function with Gradient Information 

Incorporating blur templates into the appearance space allows for a more expressive 
appearance space to model blur degradations. However, with the augmented template space, 
ambiguity also increases, and some background might be well represented by some blur 
templates, especially when only grayscale information is used, as shown in Figure 16. In order to 
make the tracking algorithm more robust, based on the observation that though motion blur 
significantly changes the statistics of the gradients of the templates, the blur templates in the 
same direction have much more similar gradient histograms than blur templates of different 
directions, we propose to use the combination of the reconstruction error and a sum of weighted 
distances between the target candidate and each of the non-trivial templates as loss function. 
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For each template of ],[ ba TT , we calculate its gradient histogram by letting each pixel vote 

for an gradient histogram channel, and get )(
21 ],,,[= bnanh

bnan
+×

+ ∈RdddD  , where h  is the 

number of bins of the gradient histogram; and for the target candidate, we calculate its gradient 
histogram hR∈g . Since we don’t consider the trivial templates when calculating the sum of 

weighted distances, we let )(
11211 ,0],0,||||,,||||,||[||= dbnan

bnan
++

+ ∈−−− R gdgdgdd  indicate 

the distance between g  and the gradient histogram of each element in T . 2
2|||| dc  is used to 

measure the sum of the weighted distances, and  

2
2

2
2 ||||||||

2
1 dcyTc β+− (57) 

 is used as the loss function. 

3.2.3.4 Group Sparsity via /1 1 2+    Mixed Norm 

For the augmented template set with blur templates of different directions, since the motion blur 
of the target is always toward only one direction at time t , there is a natural group structure 
among the templates. The representation of the target candidate should not only be sparse, but 
also have group structure, i.e., the coefficients should also be sparse at the group level. In our 
tracking framework, we divide the templates into 1= ++ dnng θ  groups },,,{= 121 ++dnGGG

θ
G  

using the following scheme: the normal templates are in one group; the blur templates in the 
same direction forms a group; and each trivial template is an individual group. In order to 
capture the group information among the templates and achieve sparsity at the same time, we 
employ a structured sparsity inducing norm which combines the 1  norm and a sum of 2  norms 
over groups of variables. The mixed norm is known as “sparse group Lasso". 

Combining the loss function (57) and the 211 / +  mixed norm results in the following
non-smooth convex optimization problem:  

0 s.t.   

,
2
1min

21=
211

2

2

2

2

≥

+++− ∑
T

iG

gn

i
c

ccdcyTc
c

λλβ  (58) 

where 
iGc  are coefficients associated with iG . 

Once (58) is solved, the observation likelihood can be derived from the reconstruction error 
of y  as }||||{exp)|( 2

2yTcxy −−∝ αttp , where α  is a constant used to control the shape of the 
Gaussian kernel. 
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3.2.3.5 Solve Eq. (58) by Accelerated Proximal Gradient 

To solve the non-smooth convex optimization problem in Eq.(58), we adopt the accelerated 

proximal gradient method FISTA which has convergence rate of )1( 2k
O , where k  is the number 

of iterations. FISTA is designed for solving the following unconstrained optimization problem:  
)()(=)(min zzz

z
gfF +  (59) 

where f  is a smooth convex function with Lipschitz continuous gradient, and g  is a continuous 
convex function which is possibly non-smooth. 

In order to solve Eq.(58) with FISTA, we let Τ
++ ],,,[= 21 dbnanzzz z  and make the 

substitution Τ
+++++ ],,,,,,[= 1

22
2

2
1 dbnanbnanbnan zzzzz c , and solve the following optimization 

problem:  

21=
211

2

2

2

22
1min

iG

gn

i
zzdcyTc

z ∑+++− λλβ (60) 

where 
iGz  is associated with group iG . Then, Eq.(60) can be re-expressed as Eq.(59), where 

2
2

2
2 ||||||||

2
1=)( dcyTcz β+−f  and 21=211 ||||||||=)(

iG
gn

i
g zzz ∑+λλ .

To develop a proximal gradient method, the following quadratic approximation of )(zF  at a 
given point )(kz is considered, for 0>L   

)(
2

)(,)(=),(
2

2

)(

)()()()(

zzz

zzzzzz

gL
ffQ

k

kkkk
L

+−+

〉∇−〈+
(61) 

where )( )(kf z∇  is the gradient function of )(⋅f  at point )(kz . 

Lemma 1 Let f  be a continuously differentiable function with Lipschitz continuous gradient 
and Lipschitz constant )( fL . Then, for any )( fLL ≥ ,  

),()( )(k
LQF zzz ≤

 According to Lemma 1, given )( fLL ≥ , a unique solution of )(zF  can be obtained by 
minimizing ),( )(k

LQ zz ,  

)(1||ˆ||
2
1=)( )( zzzz z g

L
minargp k

L +− (62) 

where )(1=ˆ )()( kk f
L

zzz ∇− , and 

dcdwyTTcTwz ΤΤΤ +−∇ )(diag2))((diag=)( βf  (63) 

where dbnan

bnanzzz ++
+ ∈R,1],1,,2,,2[2= 21 w . Alg. 8 describes FISTA with backtracking. 

Algorithms 8 FISTA with backtracking 
Input: 0>0L , 1>τ , (0)(1) = zv , 1=1t  
1: for k=1,2,..., iterate until convergence do 
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2:  set 1= −kLL ,
3:  while )),((>))(( )()()( kk

LL
k

L pQpF vvv  do 
4:   LL τ=  
5:  end while 
6:  set LLk = and update 
7:  )(= )()( k

kL
k p vz , 

8:  
2

411
=

2

1
k

k

t
t

++
+ , 

9:  ))(1(= 1)()(

1

)(1)( −

+

+ −
−

+ kk

k

kkk

t
t zzzv  

10: end for 

A critical step is to solve Eq.(62) efficiently. Since the 211 / + -norm is a special case of
the tree structured group Lasso, Eq.(62) can be converted to  

2
1=0=

)( ||||||ˆ||
2
1=)( i

jG
i
j

in

j

m

i

k
L wminargp zzzz z ∑∑+− (64) 

 where m  is the depth of the index tree, in  is the number of groups at depth i , 
),1,2,=,,0,1,=0( i

i
j njmiw ≥  is the pre-defined weight for group i

jG . We apply the 

tgLassoMY  algorithm to solve Eq.(64) efficiently. tgLassoMY  algorithm maintains a working variable 
u  initialized with ẑ , then it traverses the index tree in the reverse breadth-first order to update u  

with )/(0,1max= 11 ++ − i
i
jG

i
j

i
i
jG

i
i
jG

w uuu . 

The time complexity of tgLassoMY  algorithm is )(mnO , where n  is the dimension of z . 
After converting Eq.(62) to Eq.(64), the index tree has a constant depth 2, so the time complexity 
for solving Eq.(62) is )(nO , where dnnn ba ++= . 

3.2.3.6 Template Update with Blur Detection 

In order to capture the appearance variations of the target caused by illumination or pose 
changes, the template set needs to be updated during tracking. Since the appearance of the target 
is corrupted when heavy blur appears, updating the template set with heavily blurred target 
cannot capture the appearance changes of the target. So we propose to perform blur detection of 
the tracking result before updating the template set. 

To detect blur, we investigate the response of both normal coefficients and blur coefficients 
obtained from solving the optimization problem Eq.(58). If the target is not blurred, the energy of 
the normal coefficients will be dominant. One criterion for updating the template set is 

0.9>
)()(

)(
ba

a
EE

E
+

, where )(⋅E  represents the energy associated with the corresponding coefficients. 

Also, trivial templates are activated when the target cannot be well approximated by the template 
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set. In order to avoid contaminating the template set, another criterion for updating template set 
is 0.1<

)()()(
)(

eba
e

EEE
E

++
. When the target is not similar to any of the normal templates, and both of 

the above two criteria are satisfied, we replace the normal template having lowest response with 
the target template. 

 

3.2.4 Cloud Implementation of Registration and Tracking 
3.2.4.1 Application Component 

Considering the nature of the tracking procedure, we divided the tracking application into 
three types of basic components: registers, trackers and plotters, described as follows. 

• Registers carry the most computation task in the application, hence is the bottleneck of 
the performance. A straightforward way to improve the processing frame rate is to assign 
the registration calculation of multiple workers and merge their result together. These 
workers can calculate the H matrix simultaneously. Ideally, the more workers we use, the 
more speedup we can get from the computing power of the Cloud.  

• A Tracker is dedicated to track a target in the video sequence. The computation of tracker 
task is pretty lightweight and we don’t need to further distribute the tracker to multiple 
workers. 

• The Plotter provides a web interface between the users and the tracking system. Users 
can see the real time tracking result through the plotter. It combines data sent by the 
register and tracker and plot the tail of the targets. See the “Web-based GUI” section for 
more details of this web interface.  

Based on the above analysis, we implement a prototype in our Cloud environment. The 
prototype consists of a register, tracker and plotter, each of which runs on a separate virtual 
machine in the Cloud.  In practical application, there will be large amount of video sequence and 
targets, each of these three VM can be easily duplicated to scale up the application's capability. 
We can also use container based virtualization technology such as OpenVZ to securely convert 
each VM to a container.  

3.2.4.2 Synchronization 

Since the register, tracker and plotter are distributed in the Cloud, the synchronization 
becomes a problem when the data from the register and tracker does not come in the same order. 
To counter this problem, the plotter will wait until all necessary data arrive before a new frame is 
produced and displayed to the user.  
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The communication between the three VMs uses TCP/IP socket for reliable data 
transmission. 

3.2.4.3 Web-based GUI 

The Web-based GUI is hosted as an HTTP server on the same VM as the plotter. To display 
the tracking result in real time, the HTTP server will need different web technologies. In our 
implementation, we choose HTML + PHP + JQuery to write the web GUI. HTML provides the 
framework of the webpage. PHP is used to pass parameters between the user and the server. 
JQuery plays the most important role to display the result in real time. Figure 10 shows the 
screenshot of the tracking result display through the web GUI. 

Figure 17: Web service based GUI showing the input video (left) and the tracking 
results (right). 
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3.2.5 Integration with GATER Framework and Kitware VsPlay 
3.2.5.1 GATER Introduction 

Government Algorithms for Tracking Exploitation Research (GATER) is a suite of data 
exploitation tools designed to support research and development for government purposes. These 
tools include front end processing, target detection, tracking, visualization, metrics, and various 
utilities such as tracking tuning tools. While GATER was first developed for image exploitation, 
much of the functionality will support any sensor type. 

The overall objective of the GATER project is to develop software tools to provide an in-
house data exploitation capability for both simple and complex problems. These tools must be 
open source and extensible for use by government employees and approved government 
contractors. As such, the software is developed with Government Purpose Rights (GPR) as the 
most restrictive data rights assertion. Furthermore, a DoD Community Source Agreement is tied 
to the software (see appendix for details), meaning that all development tied to GATER becomes 
the property of the DoD. This does not preclude individual contractors from asserting GPR for 
newly developed tools they deliver as part of GATER. 

The following figure 18 illustrates the anatomy of a multiple target tracking system. While 
other architectures exist, the GATER tracker will utilize this basic framework. This approach 
supports an open architecture that allows various components to be interchanged for 
development and evaluation. The discussion that follows introduces each component. 

Figure 18: The system architecture of GATER 
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3.2.5.2 Building and Installing GATER in Windows 

In this project, we install and build the GATER system in windows 8 64bit with Microsoft 
Visual Studio 2013. Figure 19 shows a successful build. The installation instruction is listed as 
follows.  

 

Figure 19: The successful build of GATER in windows 8.1 with VC 2013. 
 
Building Boost for Windows 
Download Boost from http://sourceforge.net/projects/boost/files/boost/.  After downloading 

Boost (we used version 1.55.0), extract it to a directory of your choice (e.g. 
C:\libraries\boost_1_55_0).  Open a visual studio command prompt window and change to this 
directory.  

Execute the following commands to build and install boost (commands are described in more 
detail below): 

1. bootstrap.bat 
2. bjam -j4 --toolset=msvc-10.0 --build-type=complete address-model=64 --prefix=PREFIX 

install 
 
Description: 
1. Builds the Boost Build engine called bjam.  PREFIX should be replaced with the path 

to the directory where you want to install boost headers and shared libraries. 
2. Builds 64-bit Boost static libraries.  In order to build 32-bit libraries, change address-

model=64 to address-model=32. 
3. Installs the static libraries and headers to a directory of your choice.  Make sure to 

replace PREFIX with the desired directory (e.g. bjam install -prefix=C:\boost).  Note 
that the bjam install command allows multiple versions and variants of boost to be 
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installed without conflict. 
4. Execute bjam --help or bjam --help--options to see additional options.

Building COIN Osi Clp for Windows 
Download COIN Osi Clp from http://www.coin-or.org/download/source/Clp/. After downloading 
Clp, extract it and navigate to the Clp-<version>\Clp\MSVisualStudio\v10 directory.  If a v10 
directory does not exist, just copy the v9 directory and rename it to v10.  Open Clp.sln in the v10 
directory.  (complete the Visual Studio Conversion Wizard if necessary) 
Once the solution is opened in Visual Studio, make sure the build configuration is set to 
"Release" and "x64" (“Win32” for a 32-bit build) using the menu bar at the top.  Right click 
Solution “Clp” and select Build Solution or hit F7.  The compiled libraries and executables will 
be placed in “v10\Release”.  If you have any issues building the test libraries, disable building 
them through the build configuration settings. 

See https://projects.coin-or.org/MSVisualStudio for additional compilation info. 
Do the following to install COIN Osi Clp: 

1. Save the following into a file e.g. “CopyLibs.bat” stored in the main Clp-<version>
folder, then execute the file: (note: replace x64 with Win32 for 32-bit builds)

xcopy Clp\MSVisualStudio\v10\x64\Release lib /exclude:Exclusions.txt 
2. Save the following into a file e.g. “CopyHeaders.bat” stored in the main Clp-<version>

folder:
xcopy Osi\src include\coin /exclude:Exclusions.txt /Y 
xcopy Osi\src\Osi include\coin /exclude:Exclusions.txt /Y 
xcopy Clp\src include\coin /exclude:Exclusions.txt /Y 
xcopy Clp\src\OsiClp include\coin /exclude:Exclusions.txt /Y 
xcopy Buildtools\headers include\coin /exclude:Exclusions.txt /Y 
xcopy CoinUtils\src include\coin /exclude:Exclusions.txt /Y 

3. Save the following into a file named “Exclusions.txt” stored in the main Clp-<version>
folder:

.obj 

.am 

.cpp 

.in 

.exe 
4. Execute the two batch files.  COIN-OSI is now installed.

Building FFmpeg for Windows 
1. download:

a. mingw64-w64 msys (http://sourceforge.net/projects/mingw-
w64/files/External%20binary%20packages%20%28Win64%20hosted%29/MSYS
%20%2832-bit%29/)

b. c99 to c89
c. msinttypes
d. pkg-config-lite for msys

http://www.coin-or.org/download/source/Clp/
https://projects.coin-or.org/MSVisualStudio
http://sourceforge.net/projects/mingw-w64/files/External%20binary%20packages%20%28Win64%20hosted%29/MSYS%20%2832-bit%29
http://sourceforge.net/projects/mingw-w64/files/External%20binary%20packages%20%28Win64%20hosted%29/MSYS%20%2832-bit%29
http://sourceforge.net/projects/mingw-w64/files/External%20binary%20packages%20%28Win64%20hosted%29/MSYS%20%2832-bit%29
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e. yasm 
2. Place makedef, c99wrap.exe, c99conv.exe, pkg-config.exe, and yasm.exe somewhere in 

your PATH. 
3. Next, make sure inttypes.h (don’t include stdint.h) and any other headers and libs you 

want to use are located in a spot that the compiler can see.  Note that additional headers 
and libs are only necessary when building non-default ffmpeg features and are not used at 
this time. 

a. Do so by modifying the LIB and INCLUDE environment variables to include the 
Windows paths to these directories.  Note that a semi-colon is used as the path 
delimiter. 

i. set INCLUDE=%INCLUDE%;<new path> 
ii. set LIB=%LIB%;<new path> 

4. Don't forget to rename /msys/bin/link.exe to something different (e.g. link.exe_) to avoid 
shadowing msvc linker. 

5. To set up a proper environment in MSYS, you need to run msys.bat from the Visual 
Studio or Intel Compiler command prompt.  This will open a MINGW32 window. 

6. Compile release and debug versions of the using the following commands in the 
MINGW32 window: 

a. ./configure --toolchain=msvc --prefix=build --extra-cflags="-MD" --extra-
ldflags="-DEBUG" 

b. make –j <number of cores to use> 
c. make install 
d. make clean 
e. ./configure –toolchain=msvc –prefix=build2 --extra-cflags=”-MDd” –extra-

ldflags=”-DEBUG” 
f. make –j <number of cores to use> 
g. make install 

7. Rename all the libraries under the build2/lib directory such that their names end with a d 
(e.g. libavcodec.lib becomes libavcodecd.lib) 

8. Copy all the libraries under the build2/lib directory to the build/lib directory 
9. Copy the contents of the build directory to where you want FFMPEG installed 

a. If you are using the GATER_DEPENDENCIES_DIR, you would place the 
contents in to an ffmpeg folder in that directory 

 
Building and installing GDAL for Windows 

1. Open nmake.opt in top level GDAL directory and modify the following options: 
a. Set MSVC_VER to your corresponding MSVC version (e.g. 1700 for MSVC 

11.0/2012) 
b. Uncomment  the line reading “WIN64=YES”to compile for 64-bit 
c. Set GDAL_HOME to the directory where you want GDAL to be installed 

2. Open a Visual Studio 2010 x64 command prompt 
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3. nmake /f makefile.vc
4. nmake /f makefile.vc devinstall

Building and installing gflags for Windows 
1. Open the gflags Visual Studio solution file
2. If building for 64-bit, add an x64 configuration

a. Open Configuration Manager
b. Select new configuration and copy settings from Win32 configuration
c. Ensure the appropriate Platform Toolset is selected
d. Set the build configuration to “x64”

3. Configure the libgflags project to build a static library
4. Add the following preprocessor definitions: “GFLAGS_DLL_DECLARE_FLAG=”

“GFLAGS_DLL_DEFINE_FLAG=” “GFLAGS_DLL_DECL=”
5. Ensure that the libgflags project uses the Multi-Threaded DLL and Multi-Threaded

Debug DLL for runtime libraries for Release and Debug modes, respectively.
6. Build the libgflags project in Release and Debug modes
The CMake file will take care of moving the libraries and include files to an appropriate 
location 

Building and installing glog for Windows 
1. Open the google-glog Visual Studio solution file
2. If building for 64-bit, add an x64 configuration

a. Open Configuration Manager
b. Select new configuration and copy settings from Win32 configuration
c. Ensure the appropriate Platform Toolset is selected
d. Set the build configuration to “x64”

3. Open the project properties for the libglog_static project
a. Add the path to the gflags include directory to the project’s “Additional Include

Directories”
b. Add the following preprocessor definitions:

“GFLAGS_DLL_DECLARE_FLAG=” “GFLAGS_DLL_DEFINE_FLAG=”
“GFLAGS_DLL_DECL=” “HAVE_LIB_GFLAGS”

4. Open the “config.h” file in the libglog_static project
a. Comment out the line “#undef HAVE_LIB_GFLAGS” (line 22)

5. Open the “logging.h” file in the libglog_static project
a. Change the line “#if 0” (line 88) before the line “#include <gflags/gflags.h>” to

“#ifdef HAVE_LIB_GFLAGS”
6. Open the “logging.cc” file in the libglog_statis project

a. Change the line “_asm int 3” (line 1442) to “__debugbreak();”
7. Ensure that the libglog_static project uses the Multi-Threaded DLL and Multi-Threaded

Debug DLL for runtime libraries for Release and Debug modes, respectively.
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8. Build the libglog_static project in Release and Debug modes
The CMake file will take care of moving the libraries and include files to an appropriate 
location 

Building and installing gstreamer for Windows 
1. Install with all optional components:

a. gstreamer-sdk-devel-x86_64-<version>.msi
b. gstreamer-sdk-x86_64-<version>.msi

2. Compile fluendo mpeg demuxer:
a. Perform svn checkout of fluendo mpeg demuxer from

https://core.fluendo.com/gstreamer/svn/trunk/gst-fluendo-mpegdemux
b. Apply patch from

https://subversion.vdl.afrl.af.mil/gater/branches/old_interface/MGS/FMVOT/3rdp
arty/gstreamer/gst-fluendo-mpegdemux.patch to top level gst-fluendo-
mpegdemux directory.  TortoiseSVN is capable of applying this patch.

c. Compile Visual Studio project in gst-fluendo-
mpegdemux/win32/vs10/libgstflumpegdemux_sdk.vcxproj

3. Verify install (optional):
a. gst-inspect (in the gstreamer bin dir)

i. verify that flutsdemux and ffdec_h264 elements are reported
ii. if gstreamer fails to find any elements, make sure that all required dlls are

available on the system PATH and that GST_PLUGIN_PATH is set
correctly

Building and installing gtest for Windows 
1. Open the gtest-md solution under the “msvc” directory
2. If building for 64-bit, add an x64 configuration

a. Open Configuration Manager
b. Select new configuration and copy settings from Win32 configuration
c. Ensure the appropriate Platform Toolset is selected
a. Set the build configuration to “x64”

3. If you’re building using Visual Studio 2012, add the following preprocessor definition to
both projects for all configurations: “_VARIADIC_MAX=10”

4. Build the gtest and gtest_main projects for both Debug and Release configurations

Building and installing MGS for Windows 
MGS is currently a required dependency of GATER. Use the following instructions to build 
MGS: 

1. Obtain and if necessary build required dependencies. (Boost, GDAL, OpenCV)
2. Obtain and if necessary build optional dependencies.
3. Set up any necessary environment variables.

https://core.fluendo.com/gstreamer/svn/trunk/gst-fluendo-mpegdemux
https://subversion.vdl.afrl.af.mil/gater/branches/old_interface/MGS/FMVOT/3rdparty/gstreamer/gst-fluendo-mpegdemux.patch
https://subversion.vdl.afrl.af.mil/gater/branches/old_interface/MGS/FMVOT/3rdparty/gstreamer/gst-fluendo-mpegdemux.patch
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4. Open MGS directory containing CMakeLists.txt in CMake. 
a. The SVN url for this directory is 

https://subversion.vdl.afrl.af.mil/gater/trunk/MGS 
5. Run configure. 
6. Modify CMake variables as needed.  Some useful variables are: 

a. WITH_GSTREAMER – enable if GStreamer support is needed. 
b. WITH_FFMPEG – enable if FFmpeg support is needed. 

7. Run configure. 
8. Fill in any remaining unpopulated fields if any and run configure again if necessary.  

Repeat this step until all necessary variables are populated. 
9. Run generate. 
10. Open the Visual Studio solution and build/install. 

 
Building and installing OpenCV for Windows 

1. Obtain the OpenCV installer for Windows 
2. Open the installer to extract the files to the desired location 
3. Delete the extracted build folder under the main opencv directory 
4. Configure OpenCV with CMake 

a. Set the source code directory to the extracted opencv directory 
b. Set the build directory to a “build” directory in the extracted opencv folder 
c. Press the Configure button 
d. Allow the build directory to be created 
e. Select the appropriate generator for your version of Visual Studio 
f. Uncheck the WITH_DSHOW and WITH_FFMPEG options 
g. Check the WITH_TBB option 
h. Press the Configure button 
i. Set TBB_INCLUDE_DIRS to the location of the TBB include directory 
j. Set EIGEN_INCLUDE_PATH to the location of the eigen directory 
k. Press the Configure button 
l. Press the Generate button 

5. Open the generated OpenCV.sln with Visual Studio  
6. If you are using Visual Studio 2012 

a. Open the project properties for opencv_stitching 
b. Under Configuration Properties->C/C++/All Options add “/Zm130” to the end of 

the “Additional Options” field 
7. Build the solution in both Release and Debug configurations 

 
Building and installing protobuf for Windows 

1. Open the protobuf Visual Studio solution file (Located under vsprojects) 
2. If building for 64-bit, add an x64 configuration 

a. Open Configuration Manager 

https://subversion.vdl.afrl.af.mil/gater/trunk/MGS
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b. Select new configuration and copy settings from Win32 configuration 
c. Ensure the appropriate Platform Toolset is selected 
d. Set the build configuration to “Release” and “x64” 

3. Build the libprotobuf, libprotobuf-lite, libprotoc, and protoc projects 
 
Building and installing Qt for Windows 

1. Download Qt and install to desired location. 
2. Open a Visual Studio 2010 x64 command prompt. 
3. Edit your PATH to include your Qt bin directory. 
4. Create an environment variable called QTDIR pointing to your Qt top level directory. 
5. Navigate to your Qt top level directory and issue the following commands: 

a. configure -debug-and-release -no-qt3support -no-webkit -opensource  
b. Build using either jom (recommended) or nmake 

i. Using jom 
1. Unzip jom.zip to your top level Qt directory 
2. jom.exe –j <cores_to_use> (e.g. “jom.exe –j 4”) 

ii. Using NMake 
1. nmake 

 
Building and installing ZMQ for Windows 

1. Unzip the ZMQ source code 
2. Open the appropriate solution file in the builds/msvc folder 
3. Build Debug and Release versions of ZMQ 

 

3.2.5.3 Kitware VsPlay 

The vsPlay user interface is designed for full motion video exploitation.  There are three primary 
modules:  manual event identification, change detection and moving target tracker. The change 
detection, tracking, and associated database functions are provided as part of a system capability. 
This document will focus on the capabilities of vsPlay as the primary user interface.  In addition, 
there are exploitation aides such as tripwire, selector, and filtering.  Basic FMV exploitation 
functions such as pause, play, fast-forward, rewind are also available.  For general exploitation 
functions there are capabilities to measure distance, magnify and change polarity. 

The screen layout (Fig. 20) for vsPlay includes a row of tabs, which contain drop down menu 
functions at the top of the screen. These drop down menus include a number of icon functions 
and provide additional capabilities for the user to interact with the screen display layout and 
video based upon tab selection. To provide maximum situational awareness of activity occurring 
within the FMV feed an analyst should set their screen layout to display the tracks pane (by 
selecting the show track list from the drop down menu), events pane (by selecting the show 
events list from the drop down menu), and the change detections pane (by selecting the 
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Descriptors tab and ensuring the show alert list is activated).  Each screen layout tab is described 
below: 

• Video Tab - Controls the FMV feed such as start, stop, decrease speed; 
• Tracks Tab – Provides on screen displays for the MTT such as track ID’s, entity 

bounding boxes, PVO scores; 
• Events Tab – Displays events that correlate with the FMV feed such as show all 

person/vehicle events; 
• Descriptors Tab – Works with alerts to activate/deactivate or shows alerts; 
• Regions Tab – Supports analyst ability to create/select/de-select or display regions of 

interest for activity or non-activity within the FMV feed;  
• Tools Tab – Provides report generation, measuring/ruler, display change detection list 

functions.  
 

 

Figure 20: vsPlay screen layout 
 

 

3.2.5.4  Integration with GATER and Kitware VsPlay 

To integrate with GATER and vsPlay, we designed the system flowchart in Fig. 21.  
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Figure 21: A flowchart for the integration with GATER and 
VsPlay 

There are three major parts:  

1. ZeroMQPubSubUtility will send the video data (virat dataset) to GATER and VsPlay via 
the zeromq and protobuf    

2. GATER with various trackers will process the frame messages and run the pipeline. The 
outputs (track of GATER will send to VsPlay.  

3. The Kitware VsPlay will receive both and frame messages and track messages. The video 
and tracking results will be displayed in VsPlay.  
 

Figure 22 shows the running results of the integration. The left upper corn shows that the 
ZEROMQPUBSUBUtility is broadcasting the Kitware VIRAT dataset. The left bottom corn 
shows the GATER pipeline is running to process the video data. The tracker will be called by 
GATER pipeline, whose setup is specified by XML files:  

<param> 
 <include>param/detector.xml</include> 
 <include>param/meas.xml</include> 
 <include>param/frame.xml</include> 
 <include>param/tracker.xml</include> 
 <include>param/sequential_registration.xml</include> 
 <include>param/nonsequential_registration.xml</include> 
 <include>param/frontend.xml</include> 
 <include>param/backend.xml</include> 
 <include>param/tbd.xml</include> 
 <include>param/gater.xml</include> 
 <!-- sequence of modules to run -->  
 <moduleSequence>VideoFrontend,SequentialFrameRegistrationFREAK,No
nsequentialFrameRegistrationFREAK,VideoDetector,SHT,FrameProtoBackend 
      </moduleSequence> 
</param>    

 
 

VsPlay
(Kitware)

ZeroMQPubSubUtility
(Virat Dataset)

GATER
(Various trackers)

FrameMessage
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Figure 22: The screen shot of a demo run with Virat data, GATER, and 
VsPlay 

3.3 Hard and Soft Data Fusion 

3.3.1 CMU Sphinx for Speech Recognition  
3.3.1.1 CMU Sphinx Setup 

CMU Sphix is a complete state-of-the-art hidden Markov model (HMM) based open source 
speech recognition system. Designed at Carnegie Mellon University, SPHINX is one of the best 
and most versatile recognition systems in the world today. An HMM-based system, like all other 
speech recognition systems, functions by first learning the characteristics (or parameters) of a set 
of sound units, and then using what it has learned about the units to find the most probable 
sequence of sound units for a given speech signal. The process of learning about the sound units 
is called training. The process of using the knowledge acquired to deduce the most probable 
sequence of units in a given signal is called decoding, or simply recognition. 

Accordingly, we will need those components of the SPHINX system that we can use for 
training and for recognition. In other words, we will need the SPHINX trainer and a SPHINX 
decoder.  In this resarch period, we set up and tested the speech recogintion system. Some 
primitive results are obtained. 

CMU Sphinx toolkit has a number of packages for different tasks and applications. It's 
sometimes confusing what to choose. To cleanup, here is the list 

• Pocketsphinx — recognizer library written in C.
• Sphinxtrain — acoustic model training tools
• Sphinxbase — support library required by Pocketsphinx and Sphinxtrain
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• Sphinx4 — adjustable, modifiable recognizer written in Java 
• CMUclmtk — language model tools 

 
In this project, we will use Sphinxbase, Sphinxtrain, and Pocketsphinx. We downloaded latest 
available releases from the following links: 
 
http://sourceforge.net/projects/cmusphinx/files/sphinxbase/0.8/sphinxbase-0.8-
win32.zip/download 
 
http://sourceforge.net/projects/cmusphinx/files/pocketsphinx/0.8/pocketsphinx-0.8-
win32.zip/download 
 
http://sourceforge.net/projects/cmusphinx/files/sphinxtrain/1.0.8/sphinxtrain-1.0.8-
win32.zip/download 
 
The setup and test prodecures are:  

• Make subdirectory CMUSphinx, for an example,  C:\Users\dshen\Desktop\CMUSphinx 
• Decompress the three downloaded zips into seperated folders. 

The folder struct of CMUSphinx is shown in Figure 
23Error! Reference source not found.. 

• Running pocketsphnix to obtain transcrift from an audio file 
o Generate or record a message [we selected the 

following message: “1 white pick-up truck, turns left, 
travels north,  center of screen”], the audio file can be 
downloaded from 
https://www.dropbox.com/s/j6x7g0vk8nvblva/chat1.w
av] 

o Copy (or download and copy) “chat1.wav” to 
“C:\Users\Dan\Desktop\V2T\CMUSphinx\pocketsphi
nx-0.8-win32\bin\Release” 

o In the same folder, create a new text file and rename it 
“argFile.txt”, add the following lines to the file (this 
step specify the HMM, language model, and 
dictionary):  
 -hmm ../../model/hmm/en_US/hub4wsj_sc_8k 
 -lm ../../model/lm/en_US/hub4.5000.DMP 
 -dict ../../model/lm/en_US/cmu07a.dic 

o In the same folder, create a new text file and rename it “ctlFile.txt”, add the 
following line to the file (this step specify the audio file to be processed): 
 chat1  

o Create a bat file, runme.bat, and add the following file to the file: 
 pocketsphinx_batch.exe -argfile argFile.txt  -cepdir  ./ -ctl ctlFile.txt -

cepext .wav -adcin true -hyp out.txt 
o Run the runme.bat and will get a out.txt file in the same folder. In this example, it 

shows: 
 “one like pick up truck turns left troubles north center of screen (chat1 -

 
Figure 23: The folder 

structure of 
CUMSphinx 

http://sourceforge.net/projects/cmusphinx/files/sphinxbase/0.8/sphinxbase-0.8-win32.zip/download
http://sourceforge.net/projects/cmusphinx/files/sphinxbase/0.8/sphinxbase-0.8-win32.zip/download
http://sourceforge.net/projects/cmusphinx/files/pocketsphinx/0.8/pocketsphinx-0.8-win32.zip/download
http://sourceforge.net/projects/cmusphinx/files/pocketsphinx/0.8/pocketsphinx-0.8-win32.zip/download
http://sourceforge.net/projects/cmusphinx/files/sphinxtrain/1.0.8/sphinxtrain-1.0.8-win32.zip/download
http://sourceforge.net/projects/cmusphinx/files/sphinxtrain/1.0.8/sphinxtrain-1.0.8-win32.zip/download
https://www.dropbox.com/s/j6x7g0vk8nvblva/chat1.wav
https://www.dropbox.com/s/j6x7g0vk8nvblva/chat1.wav
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62894)” 
 
It seems the Sphix recoginze ‘white’ as ‘like’. Therefore we need to perform trainning to 
calibrate the speech recogination toolkit.  

3.3.1.2 Training Acoustic Model for CMU Sphinx   

CMUSphinx project comes with several high-quality acoustic models. There are US English 
acoustic models for microphone and broadcast speech as well as a model for speech over a 
telephone. Most command-and-control apps could use them directly as well as large vocabulary 
applications. 
 
Besides models, CMUSphinx provides ways for adaptation which is sufficient for most cases 
when more accuracy is required. Adaptation is known to work well when you are using different 
recording environments (close-distance or far microphone or telephone channel), or when a 
slightly different accent is present (UK English or even Indian English) or even another 
language. Adaptation, for example, works well if you need to quickly add support for some new 
language just by mapping acoustic model phoneset to target phoneset with the dictionary. 
 
There are, however, applications where the current models won't work. For example, the 
exmaple in section 3.3.1.1 In these cases, we need to train our own model.  
 
The trainer learns the parameters of the models of the sound units using a set of sample speech 
signals. This is called a training database. The database contains information required to extract 
statistics from the speech in form of the acoustic model. The trainer needs to be told which sound 
units you want it to learn the parameters of, and at least the sequence in which they occur in 
every speech signal in your training database. This information is provided to the trainer through 
a file called the transcript file, in which the sequence of words and non-speech sounds are written 
exactly as they occurred in a speech signal, followed by a tag which can be used to associate this 
sequence with the corresponding speech signal. 
 
The trainer then looks into a dictionary which maps every word to a sequence of sound units, to 
derive the sequence of sound units associated with each signal. Thus, in addition to the speech 
signals, you will also be given a set of transcripts for the database (in a single file) and two 
dictionaries, one in which legitimate words in the language are mapped sequences of sound units 
(or sub-word units), and another in which non-speech sounds are mapped to corresponding non-
speech or speech-like sound units. We will refer to the former as the language dictionary and the 
latter as the filler dictionary. 
 
After training, it's mandatory to run the decoder to check training results. The Decoder takes a 
model, tests part of the database and reference transcriptions and estimates the quality (WER) of 
the model. During the testing stage we use the language model with the description of the order 
of words in the language.  
 
Database should have enough speakers recording, variety of recording conditions, enough 
acoustic variations and all possible linguistic sentences. The size of the database depends on the 
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complexity of the task you want to handle as mentioned above. A Database should have the two 
parts mentioned above - training part and test part. Usually test part is about 1/10th of the full 
data size, but we don't recommend you to have test data more than 4 hours of recordings. 
The file structure for the database is: 

• etc 
o your_db.dic - Phonetic dictionary 
o your_db.phone - Phoneset file 
o your_db.lm.DMP - Language model 
o your_db.filler - List of fillers 
o your_db_train.fileids - List of files for training 
o your_db_train.transcription - Transcription for training 
o your_db_test.fileids - List of files for testing 
o your_db_test.transcription - Transcription for testing 

• wav 
o speaker_1 

 file_1.wav - Recording of speech utterance 
o speaker_2 

 file_2.wav 
 
It's critical to have audio files in a specific format. Sphinxtrain does support some variety of 
sample rates but by default it's configured to train from 16khz 16bit mono files in MS WAV 
format.  
 
To start the training change to the database folder and run the following commands: 
 

python ../sphinxtrain/scripts/sphinxtrain -t T1 setup 
 
where “T1” is the task name. 
 
This will copy all the required configuration files into etc subfolder of your database folder and 
prepare database for training, the structure will be: 
 
   etc 
   feat 
   logdir 
   model_parameters 
   model_architecture   
   wav 
 
After setup step only two folders of the above will be present, others will be created during the 
training process: 
  etc 
   wav 
 
After that, we need to edit the configuration files in etc folder, there are many variables but to get 
started we need to change only a few.  
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To start the training, run “python ../sphinxtrain/scripts/sphinxtrain run”  

3.3.2 Text Matching Based on Big Data Analysis   

Understanding open-end simple natural language requires huge amount of knowledge and a 
variety of reasoning skills. Natural language data typically include text [101]. For text 
classification, Information Extraction (IE) is applied from a chat message (i.e., microtext) or a 
document (e.g., using Sphinx or Apache NLP) as an automated approach [102]. Previous work in 
natural language full-text searching has demonstrated that significant improvements in model 
accuracy are possible by leveraging feature relations [103], including when modeling microtext. 
For analysts, the goal is to apply text analytics to provide semantic indications and warnings to 
video data [104]. 

Pattern matching in natural language are widely used in information fusion. Current trends in 
data fusion include machine analytics for big data [105], use of pattern matching for cloud 
computing applications of simultaneous target tracking and classification [106], and robotics 
control [107]. Techniques for big data analysis are needed imaging, text and cyber analysis 
which includes scalable and elastic learning methods. 

When the datasets are large, some information fusion algorithms might not scale up well. For 
example, if an algorithm needs to load data into memory constantly, the program may run out of 
memory for large datasets. One promising approach is to utilize and adapt MapReduce for some 
machine learning technologies to resolve these large-scale problems. Apache Mahout is a 
machine learning library for clustering, classification and filtering, implemented on top of 
Hadoop, the open source version of MapReduce. Although there are some machine learning 
algorithms implemented in Mahout, it is still helpful to study how to convert a machine learning 
algorithm to a Hadoop program and to optimize the algorithm scalability in large datasets. 

3.3.2.1 MapReduce   

The MapReduce framework has been used to process large datasets since the original paper 
[106] was published. Google’s clusters process more than 20 Petabytes of data every day by 
running one hundred thousand MapReduce jobs on average. Using this framework, programmers 
only need to focuson problem solving versus implementation. The MapReduce runtime system 
will take care of the underlining parallelization, fault tolerance, data distribution and load 
balance. Google file system (GFS) is a distributed file system that MapReduce uses for the 
storage of large amount of data across inexpensive hard drives. The availability and reliability of 
underlining unreliable hardware are provided by replicating file blocks and distributing them 
across different nodes. 

A MapReduce job consists of at least a map function and a reduce function, called mapper 
and reducer respectively. The mapper takes as input a pair of key/value and produces a set of 
key/value pairs. All key/value pairs are sorted by their keys and sent to different reducers, 
indexed by the key. Each reducer receives a key and a set of values that has the same key. This 
makes MapReduce an excellent tool for computations that need sorting or counting. The map and 
reduce functions are left to the user to implement their desired functionalities to process each 
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key/value pair. Hadoop2 is an open source implementation of the MapReduce framework that is 
commonly used by academic and industry for Big Data analysis. In the core of Hadoop are 
Hadoop MapReduce and Hadoop Distributed File System (HDFS), the open source counterpart 
of GFS. There are also a bundle of Hadoop-related projects supported by Apache Foundation, 
such as HBase (database), Hive (data warehouse), Pig (highlevel data-flow), Zookeeper (high-
performance coordination) and Mahout (scalable machine learning and data mining). Therefore, 
we choose Hadoop as the develop platform to study the scalability of Naive Bayes classifier. 

3.3.2.2 System Components  

As shown in the Figure 24, the system adds four modules on top of Hadoop: the work flow 
controller (WFC), the data parser, the user terminal and the result collector. This system is 
designed based on the need to generate different size of datasets and test the Hadoop program on 
them respectively. We also need to perform ten-fold cross validation for accuracy computation 
that requires calling the same program multiple times. The raw data comes from a microtext 
from an analyst. The data parser is responsible to produce the desired data format to assist the 
program to efficiently process each word. The user submits jobs through the user terminal. 
Experiment results are also accessible through the user terminal after the result collector finishes 
collection. 

 

Figure 24: A system of process data using Pattern matching on Hadoop. 
 
The work flow controller manages the work flow of the whole system, which includes: 

1) Instruct data parser of the format of input data and the desired output; 
2) Transmit source code to the name node and execute Hadoop jobs; 
3) Trigger the result collector to collect computing results once they are available on 

Hadoop Distributed File System (HDFS) 
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3.3.2.3 Overall Work Flow 

1) Preprocessing: The data parser first preprocesses all messages or sentences into a common 
format. After the processing, each message or sentence is one component in the dataset, with 
document ID prefixed. This is useful because by default MapReduce splits the input files by text 
into a mapper. To pre-process a raw sentence, unwanted context such as punctuation, special 
symbols and numbers is deleted. A lexicon or vocabulary is implemented to filter out 
meaningless words. Several prefixed key words tags were applied in the system: “red” and 
“white” refer to “color”, “turn” and “accelerate” refer to “behavior”, “left” and “right” refer to 
“direction”, “north” and “south” refer to “orientation”, “car” and “truck” refer to “object”. All 
pre-processed text are stored in the name node as a repository, waiting for further sampling. 

2) Preparing Input Datasets: The WFC and the data parser work together to prepare input 
datasets for all test trials. When the WFC requests a dataset with certain size, the data parser 
extracts from the repository the desired number of each key word. The result is an input dataset 
of several equal size classes of key words. After a dataset is generated, the data parser divides it 
into 10 subsets for the convenience of ten-fold cross validation. The WFC then moves them to 
the right locations in HDFS for every trial and calls the Hadoop matching program. 

3) Pattern Matching and Extracting using Hadoop: The pattern matching is the key step in the 
work flow. Figure 10 shows the job sequence of this step. Once the vocabulary and message data 
are ready in HDFS, the matching job combines the vocabulary and the message data, resulting 
message IDs and keyword pairs. Finally, the pattern extracting job sorts the messages with the 
pre-processed document ID according to the key words matching. 

4) Result Collection: After the extracting job finished, the result collector retrieves the 
vocabulary, intermediate table, matching results and statistics of the pattern from HDFS. 

3.3.2.4 Automatic Scheduling 

The WFC coordinates the automation of the whole system. All test messages are 
automatically scheduled by the WFC without supervision. This automatic scheduling method can 
be easily applied to other programs with minor change of the parameters. The cloud computing 
framework for the text processing is shown in Fig. 25.   
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Figure 25: Job sequence of Pattern Matching on Hadoop 
 

3.3.3 Hard-Soft Information Fusion   

It is not unusual that a tracker loses its target and assigns a new label to the newly established 
track of the same moving target. It happens more frequently when a video sequence consists of 
many discontinue shots of the same moving target (for example, zoom in/out), because the 
trackers do not have enough information to associate the newly detected target to one of the 
previously tracked targets. Fortunately, for reviewed video, soft information in terms of chat 
messages are usually available which may contain valuable information for connecting tracklets 
of the same moving target. By fusing the soft data (chat messages) into the hard data (video 
tracks), it is possible to link the originally separated tracks into a single track with unique label 
for each moving target. To tackle this problem, we propose a fusion scheme as shown in Figure 
26. 
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Figure 26: Workflow of the proposed fusion scheme for combining differently 
labeled tracklets of the same moving target into a single long-duration track with 

unique track ID 

In Figure 26, the workflow takes the raw video sequence, tracking results in KW18 format 
and chat messages as its input. The first step is to construct entities from both the hard and soft 
data. Once required information is extracted and entities are constructed, the next module will 
perform hard – soft entity association as well as fusion. The purpose of this module is to link 
each entity constructed from soft data with the entity constructed from its corresponding hard 
data and fuse the linked entities to generate entities with more complete information. The next 
module, hard – hard entity association is devised to associate each hard entity with a nearby hard 
entity which is supposed to be constructed from the closest and later track of the same moving 
target. The last module, hard – hard entity linkage, links the associated hard entities sequentially 
and aims at producing a single, long duration track for each moving target.  

In our implementation, each entity corresponds to one tracklet with a unique track ID. 
Following [109], each entity consists of two sets of attributes: common attributes and uncommon 
attributes. Common attributes are those which will not change over the lifetime of a target track 
like type and color of the target. Uncommon attributes are those changing over time like target 
location, direction, and activity. The same sets of attribute definitions are used for entities 

Hard-Hard fusion

Soft-Hard fusion

Video Data
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Entity extraction from hard data
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Soft – hard entity association 

Soft – hard entity fusion

Hard – hard entity association 
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constructed from both hard and soft data.  Details of each module are described in the following 
sections.   

3.3.3.1 Constructing entity from hard data 

Constructing entities from hard data is straightforward. No common attribute is obtained 
from hard data as such information is not contained in KW18 format. Figure 27 shows a sample 
entity constructed from the track with ID = 1 from Creech data. Note that the uncommon 
attribute grossLocation is derived from imageLoc by dividing each image frame into nine equal 
portions as described in [109]. 

 

Figure 27: A sample entity constructed from the track with ID = 1 from Creech 
data set.  

3.3.3.2 Constructing entity from soft data 

Constructing entities from soft data is more challenging as it involves reasoning over text 
(chat messages) to a certain extent. Similar to [109], we assume all chat messages follow a 
certain text structure/syntax and developed a structured text processing module to extract 
necessary information to construct the corresponding entities. In the future, this module will be 
replaced by a more general and powerful natural language processing (NLP) based module.  

The heart of the structured text processing module includes the following seven key word 
banks:  

        TypeBank = {'individule','vehicle','car',…}; 
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         vShapeBank = {'suv','pick-up','truck',…}; 
         pShapeBank = {'adult',’kid’,…}; 

          GenderBank = {'male','female'};  
          ColorBank = {'black','white',…}; 
          ActivityBank = {'travel',’turn’,’back’,…}; 
          DirectionBank = {'north','west','south',…}; 

Figure 28 shows a sample entity constructed from chat message with ID = 11 from Creech 
data. Note that this time, the uncommon attribute imageLoc  is derived from grossLocation by 
taking the center location of each value of the grossLocation attribute. 

 

 

Figure 28: A sample entity constructed from the chat message 
with ID = 3 from Creech data set.  

 

The message is “1 white pick-up truck turns left and parks under covered parking area north of 
runway center of screen”.  
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3.3.3.3 Soft-hard entity association 

Soft-hard entity association is the first step toward soft-hard information fusion and hard-
hard entity association is the first step toward linking tracklets of the same moving target. Both 
involve the calculation of the similarity between two given entities: soft-hard or hard-hard. 
Though it is not considered in this work, soft-soft entity association may bring some valuable 
information that can be exploited in one way or another. The approach of associating soft-soft 
entity and its benefit will be investigated in the future.   

The purpose of soft-hard entity association is to identify, for each chat message, the 
corresponding track when the message is being uttered. Since the reviewer uttered the call-out 
message when he/she observed the moving target of interest, there must be a significant overlap 
in time/frames between the entities constructed from the chat message and its corresponding 
track. The first step of this module is to filter out those hard entities which do not have 
significant overlap with the soft entity being processed. If a hard entity is determined to have 
significant overlap with the current soft entity, -6 to + 4 seconds from the time the message is 
called out in this work, a similarity score can be computed based on the common attributes as 
well as uncommon attributes. 

Similarity score for common attributes between a soft entity ES and a hard entity EH is given 
by 

𝑆𝑆𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑛𝑛(𝐸𝐸𝑙𝑙,𝐸𝐸𝐻𝐻) =  𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸𝑆𝑆. 𝑡𝑡𝑦𝑦𝑝𝑝𝑒𝑒,𝐸𝐸𝐻𝐻. 𝑡𝑡𝑦𝑦𝑝𝑝𝑒𝑒) ∙ 𝑊𝑊𝑡𝑡 

                     +𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸𝑆𝑆. 𝑠𝑠ℎ𝑎𝑎𝑝𝑝𝑒𝑒,𝐸𝐸𝐻𝐻 . 𝑠𝑠ℎ𝑎𝑎𝑝𝑝𝑒𝑒) ∙ 𝑊𝑊𝑙𝑙 

                            +𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸𝑆𝑆.𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎,𝐸𝐸𝐻𝐻 .𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎) ∙ 𝑊𝑊𝑔𝑔 

                                                        +𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻 . 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) ∙ 𝑊𝑊𝑐𝑐                    (65) 

Similarity score for uncommon attributes between two entities E_S and E_H is given by 

 

              𝑆𝑆𝑢𝑢𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑛𝑛(𝐸𝐸𝑙𝑙,𝐸𝐸𝐻𝐻)  =  𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆.𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦,𝐸𝐸𝐻𝐻. 𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦) ∙ 𝑊𝑊𝑎𝑎 

                                       +𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎) ∙ 𝑊𝑊𝑙𝑙                             (66) 

 

where  

   𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸𝑆𝑆.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒,𝐸𝐸𝐻𝐻. 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒) = �−1  𝑒𝑒𝑖𝑖 𝐸𝐸𝑆𝑆.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒 ≠  𝐸𝐸𝐻𝐻. 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒 
1          𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑎𝑎𝑤𝑤𝑒𝑒𝑠𝑠𝑒𝑒                  

                      (67) 
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𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒,𝐸𝐸𝐻𝐻 .𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒) is the likelihood that 𝐸𝐸𝑆𝑆.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒 and 𝐸𝐸𝐻𝐻 .𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒 are the same, and 
𝑊𝑊𝑡𝑡, 𝑊𝑊𝑙𝑙, 𝑊𝑊𝑔𝑔, 𝑊𝑊𝑐𝑐, 𝑊𝑊𝑎𝑎,𝑊𝑊𝑙𝑙, are predetermined weights associated with each attribute such that 
𝑊𝑊𝑡𝑡+ 𝑊𝑊𝑙𝑙 + 𝑊𝑊𝑔𝑔 + 𝑊𝑊𝑐𝑐 = 1 and 𝑊𝑊𝑎𝑎 + 𝑊𝑊𝑙𝑙 = 1. 

Note that (66) penalizes only mismatched attributes. If 𝐸𝐸𝐻𝐻.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒 is not determined, e.g. before 
soft-hard entity fusion, which is to be explained later, no penalty is given.    

The calculation of 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎), depending on the information available for 
𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎, consists of the following three cases:              

a. 𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 = 𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎   ,  𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) = 1. 
b. 𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 ≠ 𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎   ,  𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) = −1. 
c. 𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 is not determined, 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) = the likelihood that the 

HUE histogram of 𝐸𝐸𝐻𝐻 represents the color given by 𝐸𝐸𝑆𝑆. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎.  

The computation of 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆.𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦,𝐸𝐸𝐻𝐻. 𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦) is heuristically formulated 
depending on the value of  𝐸𝐸𝑆𝑆.𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦.  If 𝐸𝐸𝑆𝑆. 𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦 = ‘travel’, the velocity of 𝐸𝐸𝐻𝐻 should 
maintain the same direction during the overlapped time period. In this case, we have 

𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(′𝑡𝑡𝑎𝑎𝑎𝑎𝑣𝑣𝑒𝑒𝑙𝑙′,𝐸𝐸𝐻𝐻 .𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦) = 1
2
∙ (cos𝑑𝑑(⌈2 ∙ 𝑠𝑠𝑡𝑡𝑑𝑑(𝑑𝑑𝑒𝑒𝑎𝑎𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎)⌉)+1)           (68) 

Where direction is a vector of length equaling to the number of overlapped frames and each 
element is the direction of the moving target at that frame. The operator std stands for standard 
deviation and 

⌈𝑥𝑥⌉ =  �180 𝑒𝑒𝑖𝑖 𝑥𝑥 > 180
𝑥𝑥  𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑎𝑎𝑤𝑤𝑒𝑒𝑠𝑠𝑒𝑒

                                            (69) 

If 𝐸𝐸𝑆𝑆.𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦 = ‘turn’, the difference between the direction of 𝐸𝐸𝐻𝐻 obtained from the earlier 
frames of the overlapped duration and that obtained from the later frames of the overlapped 
duration should be about 90 degree. Therefore we have 

𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(′𝑡𝑡𝑢𝑢𝑎𝑎𝑎𝑎 𝑙𝑙𝑒𝑒𝑖𝑖𝑡𝑡′,𝐸𝐸𝐻𝐻.𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦) = 1
2
∙ (cosd(𝐷𝐷𝐼𝐼𝑅𝑅𝑏𝑏𝑒𝑒𝑔𝑔𝑖𝑖𝑛𝑛 −  𝐷𝐷𝐼𝐼𝑅𝑅𝑒𝑒𝑛𝑛𝑒𝑒 − 90) +1)        (70) 

and  

𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(′𝑡𝑡𝑢𝑢𝑎𝑎𝑎𝑎 𝑎𝑎𝑒𝑒𝑎𝑎ℎ𝑡𝑡′,𝐸𝐸𝐻𝐻.𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑡𝑡𝑦𝑦) = 1
2
∙ (cosd(𝐷𝐷𝐼𝐼𝑅𝑅𝑒𝑒𝑛𝑛𝑒𝑒 −  𝐷𝐷𝐼𝐼𝑅𝑅𝑏𝑏𝑒𝑒𝑔𝑔𝑖𝑖𝑛𝑛 − 90) +1)       (71) 

 

For 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻 . 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎), we first convert the grossLocation attribute of 𝐸𝐸𝑆𝑆 
into imageLoc attribute by taking the indices of the center point of grossLocation attribute which 
is a description like ‘center of screen’, ‘upper left of screen’.  Then we formulate it as: 
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𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸𝑆𝑆. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻 . 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎) =square(cos(norm(dist(𝐸𝐸𝑆𝑆. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎)))  

 

where dist(𝐸𝐸𝑆𝑆. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸𝐻𝐻 . 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎) is the mean Manhattan distance of entities  𝐸𝐸𝑆𝑆 and 𝐸𝐸𝐻𝐻 
calculated over the overlapped frames and norm is the normalization operator such that the 
resulting value is between 0 and 𝜋𝜋 2⁄  .  

Finally, the similarity between 𝐸𝐸𝑆𝑆 and 𝐸𝐸𝐻𝐻 is given by  

𝑆𝑆(𝐸𝐸𝑙𝑙,𝐸𝐸𝐻𝐻) =  𝑆𝑆𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑛𝑛(𝐸𝐸𝑙𝑙,𝐸𝐸𝐻𝐻) ∙ 𝑊𝑊𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 + 𝑆𝑆𝑢𝑢𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑛𝑛(𝐸𝐸𝑙𝑙,𝐸𝐸𝐻𝐻) ∙ 𝑊𝑊𝑢𝑢𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚       (72) 

with 𝑊𝑊𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 + 𝑊𝑊𝑢𝑢𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 = 1. 

3.3.3.4 Hard-hard entity association 

The purpose of hard-hard entity association is to identify, for each hard entity, the closest later 
hard entity that is constructed from the track of the same moving target. This step is essential for 
linking tracklets from the same moving target but with different track IDs. Two hard entities can 
be associated if and only if the two entities do not have any overlapped frames. Thus, the first 
step of this module is to filter out those hard entities which either come before, or have overlap 
with, the hard entity being processed. Next, a similarity score can be computed based on the 
common attributes and uncommon attributes among those qualified candidates.    

Similarity score for common attributes between two hard entities 𝐸𝐸1 and 𝐸𝐸2 is given by 

𝑆𝑆𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑛𝑛(𝐸𝐸1,𝐸𝐸2) =  𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸1. 𝑡𝑡𝑦𝑦𝑝𝑝𝑒𝑒,𝐸𝐸2. 𝑡𝑡𝑦𝑦𝑝𝑝𝑒𝑒) ∙ 𝑊𝑊𝑡𝑡 

                                     +𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸1. 𝑠𝑠ℎ𝑎𝑎𝑝𝑝𝑒𝑒,𝐸𝐸2. 𝑠𝑠ℎ𝑎𝑎𝑝𝑝𝑒𝑒) ∙ 𝑊𝑊𝑙𝑙 

                                             + 𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸1.𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎,𝐸𝐸2.𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎) ∙ 𝑊𝑊𝑔𝑔 

 +𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) ∙ 𝑊𝑊𝑐𝑐                     (73) 

which is very similar to eq.(65).   

Similarity score for uncommon attributes between two entities 𝐸𝐸1 and 𝐸𝐸2 is given by 

              𝑆𝑆𝑢𝑢𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑛𝑛(𝐸𝐸𝑙𝑙,𝐸𝐸𝐻𝐻)  =  𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎) ∙ 𝑊𝑊𝑙𝑙   

+𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑐𝑐𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠𝑎𝑎𝑒𝑒𝑠𝑠𝑠𝑠(𝐸𝐸1.𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑒𝑒𝑎𝑎𝑑𝑑,𝐸𝐸2. 𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡) ∙ 𝑊𝑊𝑓𝑓     (74) 

where 𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝐸𝐸1.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒,𝐸𝐸2.𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒) is given by eq. (67) and the calculation of 
𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎), depending on the available information for 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 and 
𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎, consists of the following four cases: 
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a. 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎, = 𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎   ,  𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) = 1. 
b. 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,≠ 𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎   ,  𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) = −1. 
c. Either 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 or 𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 is not determined. In this case, 

𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) = the likelihood that the HUE histogram of 
𝐸𝐸2 represents the color given by 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎. Here we assume that the attribute 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 is 
available and 𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 is not available.    

d. Both 𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 and 𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎 are not determined. In this case,  
𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑎𝑎) =𝑉𝑉𝐸𝐸1.𝐻𝐻𝐻𝐻𝐸𝐸��������� ∙ 𝑉𝑉𝐸𝐸2.𝐻𝐻𝐻𝐻𝐸𝐸��������� , where 𝑉𝑉𝐸𝐸1.𝐻𝐻𝐻𝐻𝐸𝐸���������  and 𝑉𝑉𝐸𝐸2.𝐻𝐻𝐻𝐻𝐸𝐸���������  are 
normalized HUE histogram of 𝐸𝐸1 and 𝐸𝐸2. 

The formula for 𝑙𝑙𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑(𝐸𝐸1. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎,𝐸𝐸2. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎) is very similar to the one given by eq. 
(71) except that now both 𝐸𝐸1. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎 and 𝐸𝐸2. 𝑙𝑙𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒𝑜𝑜𝑎𝑎 are given as imageLoc attributes.  

The term 𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑐𝑐𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠𝑎𝑎𝑒𝑒𝑠𝑠𝑠𝑠(𝐸𝐸1.𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑒𝑒𝑎𝑎𝑑𝑑,𝐸𝐸2. 𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡) is devised to estimate how 
likely the two hard entities can be sequentially linked in time. We simply take   

              𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑐𝑐𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠𝑎𝑎𝑒𝑒𝑠𝑠𝑠𝑠(𝐸𝐸1.𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑒𝑒𝑎𝑎𝑑𝑑,𝐸𝐸2.𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡) = 

                      ½ ∙ (cos(norm(𝐸𝐸2.𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒𝑙𝑙𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡 − 𝐸𝐸1. 𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑒𝑒_𝑒𝑒𝑎𝑎𝑑𝑑))+1)                (75) 

where norm is a normalization operator such that the resulting value is between 0 and 𝜋𝜋.  

Finally, the similarity between 𝐸𝐸1 and 𝐸𝐸2 is given by eq.(72).   

3.3.3.5 Hard-soft entity fusion 

Soft-hard entity fusion is realized by combining common attributes from both entities. 
Uncommon attributes are not combined in the present work. One changeling in combining 
uncommon attributes from soft and hard entities is that one need to be able to segment a track 
based on its activity at each frame. Though this information is accommodated by KW18 format, 
the field is always empty in the current Cheech data set.   

We want to note that soft-hard entity fusion is performed immediately after a soft entity is 
associated to a hard entity rather than being performed after the completion of soft-hard entity 
association as the fused hard entities will facilitate the remaining soft-hard entity association 
process.    

3.3.3.6 Hard-soft entity linkage 

Once all entities constructed from soft and hard data are associated and fused, we are ready to 
link the hard entities sequentially to generate a long-duration track for each moving target, which 
is the goal of this work. Figure 5 shows the proposed hard-hard entity linkage approach. In 
Figure 29, 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒_𝑡𝑡𝑚𝑚𝑝𝑝 is the hard entity satisfying the following three conditions: 

1. It is associated with 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒. 
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2. It can be concatenated to 𝐸𝐸𝑖𝑖. That is, 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒_𝑡𝑡𝑚𝑚𝑝𝑝 appears after 𝐸𝐸𝑖𝑖 and there is no overlapped 
frames between 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒_𝑡𝑡𝑚𝑚𝑝𝑝 and 𝐸𝐸𝑖𝑖. 

3. It is the closest one to 𝐸𝐸𝑖𝑖 if there are more than one hard entity satisfying 1 and 2. 

 

Figure 29: The proposed hard-hard entity linkage workflow. 

 

The approach described in this section has been prototyped as IFT’s V2T fusion software and 
graphical user interface (GUI) to be presented  in Section 4.    

 

3.4 Event Detection 

3.4.1 Introduction 

Human activity recognition is an important area of computer vision research. It has the 
history for several decades. The many applications in this area include surveillance systems, 
patient monitoring systems, and a variety of systems. Along with the development of personal 
mobile devices, nowadays these applications also involve interactions between persons and 
electronic devices such as human-computer interfaces. Most of these applications require an 
automated recognition of high-level activities, composed of multiple simple (or atomic) actions 
of persons. 

For each hard entity 𝐸𝐸𝑖𝑖, get its 
associated hard entity 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒

Is 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒
empty?

Yes

No

Set 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒 𝑎𝑎𝑠𝑠 the 
terminating entity. 

Find 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒_𝑡𝑡𝑚𝑚𝑝𝑝 . 

Is 
𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒_𝑡𝑡𝑚𝑚𝑝𝑝
empty?

YesSet 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒 𝑎𝑎𝑠𝑠 the linked 
hard entity of 𝐸𝐸𝑖𝑖

No Set 𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒 =
𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒_tmp
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Figure 30 provides a main idea of the overview of the tree-structured taxonomy that 
contains most popular approaches in human activity analysis. The space-time features under 
space-time approaches are the approach we use during solving event detection. 

The event detection is aiming at two main aspects. First, a single layered approach on 
space-time features judges the motion property of multiple identical targets. After the event 
detection, the status whether a target is running or not is output. The second aspect is human-
object interaction and group activities. All targets may interact during the process; the proposed 
framework should be able to detect any possible interaction. To be specific, the output of the 
event detection should be able to label whether a human target is getting into another target, a car 
or a building. 

3.4.2 Action Recognition based on spatial-temporal features 

We are using the space-time local features to build up our approach. The approach takes 
advantages of local features extracted from 3-dimensional (3-D) space-time volumes to represent 
and recognize activities. 

Figure 31 shows an example from the annotated data of clip 01. This figure gives a main 
idea of what is a 3-D space-time (3D-ST) space. The 6 images given in the time axis are 
following the time sequence. They are from data clip 01 frame 231 to frame 281. The targets in 
these frames are marked in blue and red rectangular, which can be found on the top right corner 
of each frame. The features we are using are the location of all these targets in this 3-D space. 
Their motion trend is clearly indicated by a curve in the space. 

Figure 30: The hierarchical approach-based 
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The motion trend of target in red rectangular is indicated by red curve. So do the other 
target. By analyzing these curves, we can get the motion property of a single target. In our 
implement, we have set a speed control threshold to judge whether a target is running or not. We 
manually choose this threshold according to the property of data clips, and this threshold can also 
be trained by machine learning strategy instead of by hand. If the moving distance of a target is 
larger than the preset threshold, then we mark this target the property of running as its event. 

3.4.3 Human-Object Interactions and Group Activities 

In order to recognize interactions between humans and objects, an integration of multiple 
components is required. The locations of both targets are required into one single interaction. 
Besides, the motion trend curves in 3D-ST space also indicate interactions in the real world. The 
identification of objects and motion involved in an activity as well as analysis of their interplay is 
essential for the reliable recognition of human activities involving humans and objects. 

Specifically, in our study we aim at the recognition of a human getting into a car. As shown 
in Figure 32. The trend of the motion from a human target in 3D-ST space is approaching an 
annotated car, which we call this a human-car-approaching request. The motion trend line in 3D-
ST space is indicated on the right image clip using a curved arrow. In our implementation, we 
have set a distance control threshold. This manually set threshold gives the criteria of judging the 
event of a human getting into a car. Under the circumstances that the motion trend meets the 
approaching request, the framework will mark a human is getting into a car when the distance 
between them is less than the threshold. 

time 

x-axis 

Figure 31: 3-D space-time annotation of multi targets 

y-axis 
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3.4.4 An event detection framework 

Figure 33 presents the main idea of the implemented framework. The whole system is built 
on an online strategy. In each step, the judgment that the system made only depends on the 
evidence given by the target tracking results (target locations) before the time point. The event 
detection is isolated from the main system framework. This makes it easy to modify these two 
function modules to adapt for alternative usage. 

  

x-axis 

time 

y-axis 

Figure 32: Interaction of a human and a car in a space-time 3D dimension 
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Figure 33: Algorithm Framework 
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3.4.5 Event Types   

In Virat data Release 2.0, 12 different types of events have been defined including:  

(1) Person loading an Object to a Vehicle  
Description: An object moving from a person to a vehicle. The act of 'carrying' should not be 

included in this event.  
Annotation: 'Person', 'Object' (optional), and 'Vehicle' should be annotated.  
Start: The event begins immediately when the cargo to be loaded is “extended” toward the 

vehicle (i.e., before one's posture changes from one of 'carrying', to one of 'loading.').  
End: The event ends after the cargo is placed in the vehicle and person-cargo contact is lost. In 

the event of an occlusion, it ends when the loss of contact is visible.  

(2) Person Unloading an Object from a Vehicle  
Description: An object moving from a vehicle to a person.  
Annotation: 'Person', 'Object' (optional), and 'Vehicle' should be annotated.  
Start: The event begins immediately when the cargo begins to move. If the start of the event is 

occluded, it begins when the cargo movement is first visible.  
End: The event ends after the cargo is released. If a person, while holding the cargo, begins to 

walk away from the vehicle, the event ends (at which time the person is 'carrying'). The 
event also ends if the vehicle drives away while the person is still in contact with the 
cargo; after the vehicle has been in motion for more than 2 seconds, the person is 
'carrying'.  

(3) Person Opening a Vehicle Trunk  
Description: A person opening a trunk. A trunk is defined as a container specifically designed to 

store nonhuman cargo on a vehicle. A trunk need not have a lid (i.e., the back of a pickup 
truck is a trunk), and it need not open from above (i.e., the back of a van, which opens via 
double doors, is also a trunk).  

Annotation: 'Person', and 'Vehicle' should be annotated with bounding boxes for as many frames 
as possible during the event duration. The box annotation of 'Trunk' is optional.  

Start: The event begins when the trunk starts to move.  
End: The event ends after the trunk has stopped moving.  

(4) Person Closing a Vehicle Trunk  
Description: A person closing a trunk.  
Annotation: 'Person', and 'Vehicle' should be annotated with bounding boxes for as many frames 

as possible during the event duration. The box annotation of 'Trunk' is optional.  
Start: The event begins when the trunk starts to move.  
End: The event ends after the trunk has stopped moving.  

(5) Person getting into a Vehicle  
Description: A person getting into, or mounting (e.g., a motorcycle), a vehicle.  
Annotation: 'Person', and 'Vehicle' should be annotated.  
Start: The event begins when the vehicle's door moves, or, if there is no door, 2 s  
before ½ of the person's body is inside the vehicle.  
End: The event ends when the person is in the vehicle. If the vehicle has a door, the event ends 

after the door is shut. If not, it ends when the person is in the seated position, or has been 
inside the vehicle for 2 seconds (whichever comes first).  
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(6) Person getting out of a Vehicle  
Description: A person getting out of, or dismounting, a vehicle.  
Annotation: 'Person', and 'Vehicle' should be annotated.  
Start: The event begins when the vehicle's door moves. If the vehicle does not have a door, it 

begins 2 s before ½ of the person's body is outside the vehicle.  
End: The event ends when standing, walking, or running begins.  

(7) Person gesturing  
Description: A person gesturing. Gesturing is defined as a movement, usually of the body or 

limbs, which expresses or emphasizes an idea, sentiment, or attitude. Examples of 
gesturing include pointing, waving, and sign language.  

Annotation: 'Person' should be annotated.  
Start: The event begins when the gesture is evident. For example, when waving, the gesture 

when the waver begins to raise their arm into the “waving position.”  
End: The event ends when the motion ends  

(8) Person digging (Note: not existing in Release 2.0)  
Description: A person digging. Digging may or may not involve the use of a tool (i.e., digging 

with one's hands is still considered 'digging'; hands are the tool).  
Annotation: 'Person' should be annotated.  
Start: The event begins when the tool makes contact with the ground.  
End: The event ends 5 s after the tool has been removed from the ground, or immediately if the 

digging tool is dropped.  

(9) Person Carrying an Object  
Description: A person carrying an object. The object may be carried in either hand, with both 

hands, or on one's back. Objects annotated by boxes are optional and subject to the 
difficulty.  

Annotation: 'Person', and 'Object' (optional) are annotated.  
Start: The event begins when the person who will carry the object, makes contact with the object. 

If someone is carrying an object that is initially occluded, the event begins when the 
object is visible.  

End: The event ends when the person is no longer supporting the object against gravity, and 
contact with the object is broken. In the event of an occlusion, it ends when the loss of 
contact is visible.  

(10) Person running  
Description: A person running for more than 2s.  
Annotation: 'Person' should be annotated.  
Start: When a person is visibly running.  
End: The event will end 2 s after the person is no longer running. If transitioning to Standing, 
Walking or Sitting the event will end after Standing, Walking or Sitting.  

(11) Person entering a facility  
Description: A person entering a facility  
Annotation: 'Person' should be annotated.  
Start: The event begins 2 s before that person crosses the facility‘s threshold.  
End: The event ends after the person has completely disappeared from view.  

(12) Person exiting a facility  
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Description: A person exiting a facility  
Annotation: 'Person' should be annotated.  
Start: The event begins as soon as the person is visible.  
End: The event ends 2 seconds after the person is completely out of the facility.  

3.4.6 Event Detection based on L1 Tracking Results 

In this project, we use the target tracking results provided by the L1 tracker to extract target 
activity and event. We obtain the tracked targets’ position and speed and then process the 
obtained targets position and speed to extract their activities and the corresponding events. In this 
VIRAT dataset, we can extract following events: 

(1) Person getting into a Vehicle;  
(2) Person running; and  
(3) Person entering a facility.  

Except the above event, we can also obtain 

(4) Person walking;  
(5) Person stop; and, 
(6) Car stop. 

In the selected video sequence, there is clearly camera movement and this movement leads to 
target position shift in consecutive video frames. Thus we add a static target in tracking to 
calibrate the camera movement when there is no desired static target (e.g., in Figure 34). In this 
compensation process, we assume camera movement is limited to linear in plane translation, 
without zoom in/out or rotation.  

 

Figure 34: Two person walking. 

Assuming the static target is at (𝑥𝑥𝑙𝑙,𝑛𝑛,𝑦𝑦𝑙𝑙,𝑛𝑛) in frame 𝑎𝑎, and due to the camera movement the 
static target is at (𝑥𝑥𝑙𝑙,𝑛𝑛+1,𝑦𝑦𝑙𝑙,𝑛𝑛+1) in frame 𝑎𝑎 + 1, then the camera movement compensation 
parameter is  



Approved for Public Release; Distribution Unlimited. 
73 

 

𝑥𝑥𝑐𝑐,𝑛𝑛+1 = 𝑥𝑥𝑙𝑙,𝑛𝑛+1 − 𝑥𝑥𝑙𝑙,𝑛𝑛, 𝑦𝑦𝑐𝑐,𝑛𝑛+1 = 𝑦𝑦𝑙𝑙,𝑛𝑛+1 − 𝑦𝑦𝑙𝑙,𝑛𝑛.                           (76)  

Assume the desired mobile target 1 location is at (𝑥𝑥𝑡𝑡1,𝑛𝑛+1,𝑦𝑦𝑡𝑡1,𝑛𝑛+1) in frame 𝑎𝑎 + 1, then the 
calibrated target 1 location in frame 𝑎𝑎 + 1 is  

  𝑥𝑥′𝑡𝑡1,𝑛𝑛+1 = 𝑥𝑥𝑡𝑡1,𝑛𝑛+1 − 𝑥𝑥𝑐𝑐,𝑛𝑛+1,  𝑦𝑦′𝑡𝑡1,𝑛𝑛+1 = 𝑦𝑦𝑡𝑡1,𝑛𝑛+1 − 𝑦𝑦𝑐𝑐,𝑛𝑛+1.                (77) 

The location obtained after compensation is the target 1’s position in the scene of the first frame. 
Thus we can calculate the target’s speed. Please note, with two reference object, we can calibrate 
both the camera linear movement and rotation.  

With the compensated target position in each frame, we calculate the target speed in x and y 
direction with  

𝑣𝑣𝑥𝑥,𝑡𝑡1,𝑛𝑛+1 = 𝑁𝑁�𝑥𝑥′𝑡𝑡1,𝑛𝑛+1 − 𝑥𝑥′𝑡𝑡1,𝑛𝑛�, 𝑣𝑣𝑦𝑦,𝑡𝑡1,𝑛𝑛+1 = 𝑁𝑁 �𝑦𝑦′𝑡𝑡1,𝑛𝑛+1 − 𝑦𝑦′𝑡𝑡1,𝑛𝑛�,               (78) 

where  N is the number of frames per second of the video. Please note that the speed is in pixels 
per second.  

There is no camera parameters provided with the video, so we use an object as reference in 
the video to obtain the approximate speed of the interested targets. We used person’s height in 
pixels as a reference, and calculate the target speed with respect to the reference and set a 
threshold to separate running and walking.  

The event, for example Person getting into a Vehicle or Person entering a facility is detected 
using the distance between the person and the vehicle (facility). The distance is calculated using 
the compensated target location. We also use the target histogram comparison to detect if the 
target is still in the scene to help the event detection.  
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4 RESULTS AND DISCUSSION 

4.1 Results of tracking and multi-target association  

We tested our algorithm on 3 different sequences obtained from Virat data named 
“09152008flight2tape1_5.mpg”, the first sequence with two people interacting on the road 
contains 600 frames, we are able to track it around 500 frames until a large movement from the 
camera causes a large blur. We obtained good results as shown in the following figures.  

 

 

 
Figure 35: Sequence 1 results. 
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Sequence 2 contains a moving vehicle, since it has neither big blur nor appearance change, 
we can track it perfectly. 

 
Figure 36: Sequence 2 results. 

However, the sequence 3 with several people interacting with cars and each other remains 
a challenge. The main reason is the big blur and the initial low image quality of the target. At the 
first trial, the low quality of the initialization yields an early failure. So we pick up a frame where 
the targets are stable and run the trial 2. It can track over 300 frames until again the large blur 
occurs. 
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Figure 37: Sequence 3 results trial 2, starting from frame 87. 
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From all these experiments, it shows that our algorithm could track the targets in most of the 
cases except when there is large motion blur. We will make further analysis to find the problem 
lies behind it and make updates accordingly. 

Figure 38: Association result on dataset 1 

Figure 39: Association result on dataset 3 
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Figure 40: Association result on dataset 2 
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4.2 Tracker Comparison 

4.2.1 Virat Dataset 

In the experiments, the platform of running all the trackers is Intel core i7-4500U 2.4GHz 
and 8 GB memory. To quantitatively compare robustness under challenging conditions, we 
manually annotated the target's bounding box in each frame for all the test sequences. The test 
sequences we selected are the classical sequences for video tracking "jogging" and "pole". Video 
"car" is a very challenging airborne video sequence in VIRAT Video Dataset. As can be seen in 
Figure 41, Tracker PF(pink) and S-BOOST(white) do not perform robustly under low-resolution 
and realistic conditions. As shown in Table 1 and Table 2, TLD and Compressive Trackers show 
their robustness in average tracking errors and tracking quality comparison respectively. 

Legend: PF(pink) FRAG(green) STRUCK(cyan) BOOST(black) S-BOOST(white) MIL(orange) 
TLD(red) CT(blue) 

Figure 41: Tracking results of different algorithms in video 
"car" 
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Table 1: The average tracking errors on Virat dataset 
PF FRAG STRUCK BOOST S-BOOST MIL TLD CT 

jogging 0.1885 0.6383 0.8526 0.0570 0.8916 0.8211 0.0056 0.0085 
pole 0.7520 0.0409 0.5728 0.0109 0.8591 0.0072 0.0068 0.0093 
car 6.9842 0.3216 0.4685 0.4169 4.2561 0.5714 0.2034 0.1026 

Average 2.6416 0.3336 0.6313 0.1616 2.0022 0.4665 0.0719 0.1204 

The error is measured using the Euclidean distance of two center points, which has been 
normalized by the size of the target from the ground truth. The last row is the average error for 
each tracker over all the test sequences. 

Table 2: The average tracking quality on Virat dataset 
PF FRAG STRUCK BOOST S-BOOST MIL TLD CT 

jogging 0.4141 0.1643 0.1339 0.1761 0.1294 0.5333 0.5369 0.6836 
pole 0.3063 0.2791 0.3524 0.3939 0.0176 0.3422 0.5449 0.5263 
car 0.0120 0.2941 0.2516 0.4224 0.0202 0.3618 0.4865 0.6572 

Average 0.2441 0.2458 0.2459 0.3308 0.0557 0.4124 0.5227 0.6223 

The quality is measured using the area coverage between the tracking box and the annotation. 

4.2.2 Skybox Dataset 

The video we used to evaluate the trackers is the “Skybox Imaging HD Video of Mining 
Activity in Uşak, Western Turkey”:  http://player.vimeo.com/video/95913805 

Figure 42: The screen shot of the Skybox Imaging HD Video 

http://player.vimeo.com/video/95913805
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The video is a full motion HD video from space of a gold mine in Uşak, Western Turkey. It 
was collected by SkySat-1 on March 23, 2014. 

In the experiments, the platform of running all the trackers is Intel core i7-4500U 2.4GHz and 8 
G memory. To quantitatively compare robustness under challenging conditions, we manually 
annotated the target's bounding box in each frame for all the test sequences. The test sequences 
we selected are a skybox image sequence filmed in Turkey. Vehicle 1 and 2 are selected as the 
objects of interests. 

As can be seen in Table 3 and 4, VTD and TLD(red) do not perform robustly under low-
resolution and realistic conditions. Also as shown in Table 1 and Table 2, OAB, L1 and CT 
tracker show their robustness in average tracking errors and tracking quality comparison 
respectively. 

Table 3: The average tracking errors (%) on a Skybox video 
CT TLD MIL OAB VTD L1 LOFT CSURF 

Vehicle1 0.0000 0.8703 0.0000 0.0000 0.9499 0.0000 0.3190 0.3580 
Vehicle2 0.5410 0.9165 0.4046 0.0000 0.9722 0.6510 0.2327 0.2977 
Average 0.2707 0.8934 0.2023 0.0000 0.9611 0.3255 0.2728 0.3279 

The error is measured using the Euclidean distance of two center points, which has been 
normalized by the size of the target from the ground truth. The last row is the average error for 
each tracker over all the test sequences. 

Table 4: The average tracking quality on a Skybox video 
CT TLD MIL OAB VTD L1 LOFT CSURF 

Vehicle1 0.8253 0.4143 0.3113 0.9117 0.2012 0.8953 0.62 0.6813 
Vehicle2 0.8442 0.2191 0.2535 0.8739 0.1501 0.9034 0.55 0.5673 
Average 0.8348 0.3166 0.2824 0.8928 0.1757 0.8994 0.585 0.6243 

Frame rate 
(frames/sec) 15.96 4.629 0.269 15.6 16.06 1.743 2.674 2.563 

The quality is measured using the area coverage between the tracking box and the annotation. 

Figure 43 shows tracking results of LOFT tracker on a Skybox video.  The screen layout for 
vsPlay includes a row of tabs, which contain drop down menu functions at the top of the screen. 
These drop down menus include a number of icon functions and provide additional capabilities 
for the user to interact with the screen display layout and video based upon tab selection. To 
provide maximum situational awareness of activity occurring within the FMV feed an analyst 
should set their screen layout to display the tracks pane (by selecting the show track list from the 
drop down menu), events pane (by selecting the show events list from the drop down menu), and 
the change detections pane (by selecting the Descriptors tab and ensuring the show alert list is 
activated).  Each screen layout tab is described below: 

• Video Tab - Controls the FMV feed such as start, stop, decrease speed;
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• Tracks Tab – Provides on screen displays for the MTT such as track ID’s, entity
bounding boxes, PVO scores;

• Events Tab – Displays events that correlate with the FMV feed such as show all
person/vehicle events;

• Descriptors Tab – Works with alerts to activate/deactivate or shows alerts;
• Regions Tab – Supports analyst ability to create/select/de-select or display regions of

interest for activity or non-activity within the FMV feed;
• Tools Tab – Provides report generation, measuring/ruler, display change detection list

functions.

Figure 43: The tracking results of LOFT tracker displayed in Kitware vsPlay 

4.3 Hard-Soft and Hard-Hard Fusion  
4.3.1 Software and GUI for Fusion 

Our software tool for hard-soft fusion can: 

1) Display tracked moving targets represented in KW18 format individually or collectively
on the screen.



Approved for Public Release; Distribution Unlimited. 
83 

2) Display soft messages synchronized with hard (video) data.
3) Associate soft messages with their corresponding tracks.
4) Link tracklets of the same moving target with different labels into a complete track with a

unique label.

Figure 44 shows the layout of the GUI. An overview of the GUI follows: 

 At the center of the screen is the main display of the video data with tracked targets. 

1. Once the tracks are loaded, they are displayed in Track List.
2. Current chat message is displayed in Chat message while the video is being played.
3. To perform soft-hard (chat messages and video tracks) and hard-hard (tracks and tracks)

data association, entities need to be extracted first. The results of these associations are
displayed in H-S association table and H-H association table.

4. After hard-hard data association, entities (each entity corresponds to a tracklet) can be
linked to produce a complete track of the same moving target. The linked entities are
listed in Linked Entities.

5. User is able to display each linked entity individually. When a linked entity is selected,
the concatenated tracklets (each corresponds to a hard entity) are displayed in Linked
tracks.

Figure 44: GUI layout of the developed video-to-text fusion software prototype 
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There are several steps to use IFT’s fusion software (GUI): 

1. Load data
IFT’s V2T Fusion System requires three sets of data to perform soft-hard data fusion. The
raw video data in terms of image sequence, the tracking results in kw18 format, and a text
file containing chat messages. To load in these data, click FileLoadImages,
FileLoadTracks, and FileLoadMessages as shown in Figure 8a.

2. Play data
Once all data are loaded, user is able to view the raw video data, the selected track one at
a time, or all tracks at once by click the Play menu item as shown in Figure 8b. All
loaded tracks are listed in Track List as shown in Figure 8c. Click on a track ID to select
the track to be played.  Note that PlaySelected Entity is used to display the final
concatenated track of each distinct entity after hard-hard association is performed. Figure
8d displays a screen shot of playing all tracks.

3. Entity generation
The first step of soft-hard data fusion is to construct entities from soft and hard data. This
is done through Entity GenerationFrom hard data and Entity GenerationFrom soft
data as shown in Figure 8e. After entities are constructed, user can create a XML file to
view the constructed entities. Figure 8f displays a small portion of the generated XML
file in XML Notepad.

4. Entity association

The next steps are soft-hard and hard-hard entity association and fusion. They are
accessed through Entity AssociationHard-Soft and Entity AssociationHard-Hard as
shown in Figure 9a.  The results of hard-soft association and hard-hard association are
displayed in H-S association and H-H association tables as shown in Figure 9b.    Hard-
soft entity fusion is automatically invoked during hard-soft entity association and hard-
hard entity linkage is automatically carried out after hard-hard association task is
finished. The result of hard-soft entity fusion is an entity with more attributes filled,
which can be viewed by generating the XML file as stated in 3 above. The result of hard-
hard entity linkage is a set of distinct entities listed in Distinct Entities listbox.

5. Concatenated tracks

The final product of this system is a set of concatenated tracks, each is from a distinct
entity listed in Distinct Entities listbox. To view the concatenated tracks, select a distinct
entity and click Play Selected Entity. This will display the concatenated tracks with a
unique track ID. While the tracks are being displayed, their original track IDs will be
highlighted in Linked tracks listbox under IFT logo.  Figure 10 displays the concatenated
tracks of entity 1. The left column shows the concatenated tracks of with a unique track
ID = 1. The right column is the original corresponding frames with original track IDs.
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4.3.2 Results 

There are two major moving targets being tracked in Creech data. Their labels are 5 and 6 
initially. During the course of tracking process, the checker failed to maintain the same label 
after the tracks were lost and picked up at a later time.  This resulted in a set of tracklets of the 
same moving target but each has a different ID label. Figure 45 shows a screen shot illustrating 
this issue. The same two moving targets are now labeled as 21 and 23 respectively. To evaluate 
the performance of the proposed fusion method in tackling this issue, we visually examined each 
track and concatenated them manually and produced the ground truth for the two main moving 
targets. They are used to evaluate the proposed soft-hard fusion scheme. In Table I, we list all the 
tracks obtained from the .kw18 file associated with the Creech data in the first column. The value 
in each parenthesis indicates the duration of the track in seconds. Based on the quality of each 
track, track IDs are colored coded in green, blue, and red. The color code is provided in Table 6.    

Figure 45: A screen shot illustrating the issue of the same target labeled differently 
during the course of tracking process. The targets with labels 21 and 23 

are originally labeled as 1 and 2. 

From Table 5, we observe the following: 
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1. For target 1, all good (green) tracks are picked up with zero false alarm rate (a good track 
from a wrong target is picked up) using the proposed soft-hard fusion scheme. This is 
compared to three good tracks (T15, T21, T 38) are missed out of 4 good tracks 
(T01,T15, T21, T 38) with 5 wrongly detected good tracks (T14, T18, T22, T26, and 
T40).   

2. For target 1, considering all tracks (including green, blue, and red ones), the total length 
from ground truth is 153.2 seconds. With the proposed soft-hard fusion scheme, the total 
length of the concatenated track is 160.2 seconds, within which, 147.8 seconds are 
overlapped with ground truth (92.3%). This is compared to 67.6% without resorting to 
soft-hard fusion.  

3. For target 2, 5 out of 6 good (green) tracks are picked up with zero false alarm rate using 
the proposed soft-hard fusion scheme. This is compared to three good tracks (T02, T17, 
T23) are missed out of 6 good tracks (T02,T14, T17, T19, T23, T40) with 3 wrongly 
detected good tracks ( T18, T22, T26).   

4. For target 2, considering all tracks (including green, blue, and red ones), the total length 
from ground truth is 173.0 second. With the proposed soft-hard fusion scheme, the total 
length of the concatenated track is 162.1 seconds, within which, 148.0 seconds are 
overlapped with ground truth (91.3%). This is compared to 14.3 % without resorting to 
soft-hard fusion.  

Table 5: Track IDs  

Track IDs of targets 1 (columns 2,3,4) and 2 (columns 5,6,7). Columns 2 and 5 are ground truths. 
Columns 3 and 6 are results with soft-hard fusion and columns 4 and 7 are results without 
resorting to soft-hard fusion.   

 Target 1 
Ground Truth 

With 

S-H fusion 

Without S-
H fusion 

Target 2 

Ground Truth 

With 

S-H fusion 

Without 

S-H fusion 
T01 (99.8) √ √ √   √ 
T02 (102.5)    √ √  
T03 (15.7)       
T04 (35.5)       
T05 (60.7)       
T06 (2.0)       
T07 (1.7)       
T08 (10.9)       
T09 (6.4)       
T10 (2.6) √ √ √   √ 
T11 (5.5) √ √ √   √ 
T12 (1.5)   √   √ 
T13 (2.8)   √ √  √ 
T14 (1.3)   √ √ √ √ 
T15 (6.6) √ √     
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T16 (1.4) √ √ √ 
T17 (4.8) √ √ 
T18 (4.5) √ √ 
T19 (6.5) √ 
T20 (3.4) 
T21 (13.7) √ √ 
T22 (11.0) √ √ 
T23 (19.0) √ √ 
T24 (7.0) 
T25 (14.1) 
T26 (5.6) √ √ 
T27 (3.8) 
T28 (4.0) 
T29 (4.9) 
T30 (9.3) √ 
T31 (3.1) √ 
T32 (3.2) √ √ 
T33 (1.5) √ √ 
T34 (4.1) √ √ √ 
T35 (1.3) √ 
T36 (1.3) 
T37 (17.0) 
T38 (19.6) √ √ 
T39 (7.9) 
T40 (20.4) √ √ √ √ 
T41 (1.6) 
T42 (1.2) 
T43 (10) √ √ √ 
T44 (6.5) 
T45 (1.5) √ 
T46 (5.5) √ √ 
T47 (7.5) 
T48 (1.3) √ √ √ 
T49 (10.8) √ √ √ 
T50 (2.2) √ √ √ √ 
T51 (2.3) √
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Table 6:  Color code used in Table 5. 
COLOR COMMENTS 
GREEN Good track 
BLUE Bounding boxes contain only a portion of the moving target, more than 

one moving target, or a significant fraction of tracks contains no moving 
target.   

RED Bounding boxes contains no valid moving target. 

Table 7 summarized this result. 

Table 7: Evaluation of proposed soft-hard fusion compared to without fusion 

CONSIDER GOOD 
TRACKS ONLY 

CONSIDER ALL TRACKS 

TARGET 1 
GROUND TRUTH TOTAL LENGTH 139.7 seconds 153.2 seconds 

WITH FUSION TOTAL LENGTH 139.7 seconds 160.2 seconds 
WITH FUSION CORRECTLY DETECTED 100% 92.3% 

WITH FUSION MISSED 0 % 3.5% 
WITHOUT FUSION TOTAL LENGTH 142.6 seconds 159.6 seconds 

WITHOUT FUSION CORRECTLY DETECTED 70.0% 67.6% 
WITHOUT FUSION MISSED 28.6% 26.0% 

TARGET 2 
GROUND TRUTH TOTAL LENGTH 154.5 seconds 173.0 seconds 

WITH FUSION TOTAL LENGTH 148.0 seconds 162.1 seconds 
WITH FUSION CORRECTLY DETECTED 100% 91.3% 

WITH FUSION MISSED 4.2% 11.9% 
WITHOUT FUSION TOTAL LENGTH 142.6 seconds 180.7 seconds 

WITHOUT FUSION CORRECTLY DETECTED 15.2% 14.3% 
WITHOUT FUSION MISSED 86.0% 82.4% 

4.4 Event Detection 

Following are example results achieved using the implemented event detection system 
(section 3.4). Discussions are made below figures to illustrate the capability of the system. 
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Figure 46: Multiple targets running event detection. 

The system can detect multiple running events happened at the same time. As we can see, on the 
right hand side, the two running events are both detected. Word 'running' under the bounding box 
demos the event detection. 

.
Figure 47: Non false detection of 'getting into car'. 

These two targets are very close to each other, and one of them has the motion trend towards the 
other target. But since in the system we have a function module checking target identity, thus it is 
not miss-detected as 'getting into car'. 
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Figure 48: 'getting into car' event. 

When a person target is within the distance control range of a vehicle target, it will be marked 
'getting into car'. As we can see from the figure, word 'getting into car' is on top of the red 
bounding box. 

Figure 49: Another successfully detected event 'getting into car'. 
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5 CONCLUSIONS 

The Phase I effort has resulted in a hard (video) and soft (text, voice chat) information fusion 
prototype to automatically generate videos with annotation that can be easily used by future 
human or machine users.  The tracking results following the standard format (.kw18) can also be 
output in a separated file for interfacing with other modules in the E2AT system integration. In 
our implementation, each entity corresponds to one tracklet with a unique track ID. Each entity 
consists of two sets of attributes: common attributes and uncommon attributes. Common 
attributes are those which will not change over the lifetime of a target track like type and color of 
the target. Uncommon attributes are those changing over time like target location, direction, and 
activity. The same sets of attribute definitions are used for entities constructed from both hard 
and soft data. The association, linkage, fusion, and concatenation can improve the visual tracking 
results. 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACRONYM Description 

AGP Accelerated Proximal Gradient 
BReT Blur Resilient Target Tracking 
CLIF Columbus Large Image Format 

CSURF Clustered set of Structured Uniformly dense Robust Features tracker 
CT Compressive Tracker 

E2AT Enhanced Exploitation and Analysis Tools 
FMV Full Motion Video 

GATER Government Algorithms for Tracking Exploitation Research 
GFS Google File System 
GPR Government Purpose Rights 
GUI Graphical User Interface 

HDFS Hadoop Distributed File System 
IFT Intelligent Fusion Technology, Inc 

IMINT Image Intelligence 
LoFT Likelihood of Features Tracker 
MHT Multiple Hypothesis Tracking 
MIL Multiple Instance Learning 
NLP Natural Language Processing 
OAB Online AdaBoost 

OF Optic Flow 
RANSAC Random sample consensus 

TLD Tracking-Learning-Detection 
WAMI Wide Area Motion Imagery 

WFC Work Flow Controller 
UAV Unmanned Aerial Vehicles 
VTD Visual Tracking Decomposition 
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