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EXECUTIVE SUMMARY

This report describes some results of the project “More reliable wireless communications through po-
lar codes,” funded in fiscal year 2015 by the Naval Innovative Science and Engineering (NISE) program at
SSC Pacific.

OBJECTIVE

The purpose of the project is to determine if polar codes can outperform the forward error correction
(FEC) currently used in Navy wireless communication systems. The project team has implemented an ad-
vanced decoding method called cyclic redundancy check (CRC)-aided list decoding.

RESULTS

Our simulation results show that polar coding can produce results very similar to the FEC used in the
Digital Video Broadcasting - Satellite - Second Generation (DVB-S2) standard, and can provide up to 15
percent higher throughput by using code rates not provided in the DVB-S2 standard.

RECOMMENDATIONS

In any application for which the DVB-S2 FEC is considered, polar coding with CRC-aided list decod-
ing with N = 65536 should also be considered.
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1. INTRODUCTION

Polar codes are a new type of forward error correction (FEC) codes, introduced by Arikan in [1], in
which he proved that they can achieve the capacity of any binary memoryless symmetric channel with effi-
cient encoding and decoding.

In fiscal years (FY) 2014 and 2015, SSC Pacific’s Naval Innovative Science and Engineering (NISE)
program funded the project “More Reliable Wireless Communications Through Polar Codes” to study
polar codes and determine if they can outperform the forward error correction (FEC) currently used in
Navy wireless communication systems. The project’s FY 2014 results are described in [2]. In FY 2015
the project team has implemented an advanced decoding method called cyclic redundancy check (CRC)-
aided list decoding, and simulated its performance in a wide variety of cases. This report documents the
results of those simulations. The project’s other FY 2015 work will be published separately.

Section 2 describes the basics of polar coding. CRC-aided list decoding is described in Section 3. Sec-
tion 4 describes the scope of our study, and Section 5 presents the results. Section 6 gives details of how
we implemented the decoder. Finally, Section 7 concludes the report.
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2. POLAR CODING

Several versions of polar coding have been published. This section is intended to indicate which ver-
sion is used in this work. For background and motivation of this material, see our previous technical report
[2].

For any n > 0, we can specify a polar code of length N = 2n by choosing a subset A ⊂ {1, . . . , N}.
If A has K elements, we get an (N,K) block code. A must be chosen well for good error-correction per-
formance. We used the method of [3].

The polar encoder uses a row vector u of length N . Let uA be the subvector containing elements
whose indices are in A, and let uAC be the subvector containing the remaining N −K elements of u. The
encoder constructs u by filling uA with K information bits, and setting uAC to predetermined values, usu-
ally all 0’s. These predetermined values are called frozen bits. The encoder outputs x = uGN where GN

is the N by N matrix F⊗nΠN , where F =

[
1 0
1 1

]
, F⊗n is its nth tensor power, and ΠN is a permutation

matrix called the bit-reversal operator, defined in Section VII of [1]. This encoder can be implemented
with complexity O(N logN).

Arikan showed in [1] that polar codes can achieve capacity using a successive cancellation (SC) de-
coder. This decoder computes estimates û1, . . . , ûN , one at a time, in order, with complexity O(N logN).

2.1 SYSTEMATIC POLAR CODING

Systematic polar coding was introduced in [4]. The systematic polar encoder also computes x =
uF⊗nΠN , but the information bits are found in x rather than in u. Specifically, [4] showed that for any
vector of K information bits, there is a unique u such that uAC is all 0’s and wA is the specified informa-
tion bits, where w = uF⊗n.

The systematic SC decoder computes the estimate û in the same way as the non-systematic decoder,
and also computes ŵ = ûF⊗n. Then ŵA is the desired estimate of the information bits.

Arikan proved in [4] that systematic polar coding has the same frame error rate (FER)1 as non-systematic
polar coding. Arikan also provided simulation results showing that systematic polar coding has a lower bit
error rate (BER) than non-systematic. This result has been replicated, but to our knowledge it has never
been proven.

1Also known as block error rate.
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3. LIST DECODING

Recall from Section 2 that the SC decoder estimates û1, . . . , ûN , one at a time, in order. For conve-
nience, we introduce some non-standard notation. For any k ≤ N and any sequence of bits b1, b2, . . . , bk,
let P̂ (b1, b2, . . . , bk) be the decoder’s estimate of the probability that u begins with (b1, b2, . . . , bk).
P̂ (b1, b2, . . . , bk) depends on the decoder’s input, but to make the notation simpler we do not include the
decoder’s input in the expression.2

The decoder’s decisions can be viewed as choosing a path down a binary tree of height N , with 2N

leaves representing all possible decodings of a block. Figure 1 shows an example of the first four choices.

Figure 1. SC decoding tree.

This diagram shows that the decoder chose û1 = 0, û2 = 1, û3 = 0, and û4 = 1.

The SC decoder has a simple rule for choosing each bit. When choosing ûi, if the ith bit is frozen, it
chooses the known value of ui. Otherwise, it computes the ratio

P̂ (û1, û2, . . . , ûi−1, 0)

P̂ (û1, û2, . . . , ûi−1, 1)
.

It chooses ûi = 0 if this ratio is greater than 1, and ûi = 1 if this ratio is less than 1.

One major disadvantage of this method is that the decoder cannot correct an error made earlier in the
process. In [5], Tal and Vardy introduced list decoding, also called successive cancellation list decoding

2P̂ (b1, b2, . . . , bk) is computed using an efficient recursive formula, but the true probability cannot be computed efficiently.
The estimate differs from the true probability because the recursive formula does not take into account the knowledge of frozen
indices > k.
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(SCL), to mitigate this problem. They found that list decoder’s error correction performance was signifi-
cantly better than SC, at the cost of higher computational complexity.

The list decoder follows multiple paths down the decoding tree. Figure 2 shows an example of a list
decoder estimating u1 through u4.

Figure 2. List decoding tree with L = 4.

For convenience, assume that none of the first four indices are frozen.3 Instead of choosing if û1 is
0 or 1, the list decoder chooses both, and likewise for û2. In this way, it generates a list of candidate de-
codings. After two steps, the list contains four candidates: (0, 0), (0, 1), (1, 0), and (1, 1). After each non-
frozen bit, the number of candidates doubles until it exceeds a predetermined maximum. This maximum is
called the list size, and is represented by the symbol L.

Figure 2 shows an example with L = 4. In the third step, the decoder computes probability estimates
for all eight possibilities: P̂ (0, 0, 0), P̂ (0, 0, 1), P̂ (0, 1, 0), P̂ (0, 1, 1), P̂ (1, 0, 0), P̂ (1, 0, 1), P̂ (1, 1, 0),
and P̂ (1, 1, 1). It retains in the list the L candidates with the largest probability estimates. In the example,
these are (0, 0, 1), (0, 1, 0), (0, 1, 1), and (1, 0, 0).

After the list has been pruned, the decoder does not compute probability estimates for all possibilities,
but only the 2L possibilities that are extensions of the candidates in the list. In the example shown in 2, it
computes P̂ (0, 0, 1, 0), P̂ (0, 0, 1, 1), P̂ (0, 1, 0, 0), P̂ (0, 1, 0, 1), P̂ (0, 1, 1, 0), P̂ (0, 1, 1, 1), P̂ (1, 0, 0, 0),
and P̂ (1, 0, 0, 1). Again, the L candidates with the largest probability estimates are maintained in the list.
The computational complexity of the list decoder is roughly L times that of an SC decoder.

After N steps, the decoder has a list L candidates that each include N bits, and it has a probability for
each one. It chooses û to be the most probable candidate.

3In most practical polar codes, the first four indices are all frozen.
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Tal and Vardy experimented with list decoding a (2048, 1024) polar code and found that list decoding
with small to moderate list sizes could match the FER of a maximum likelihood decoder.4 The lower the
Eb/N0, the larger list size is needed: with L = 2 the list decoder matches the maximum likelihood decoder
for Eb/N0 ≥ 2.75 decibels (dB), and with L = 32 it matches for Eb/N0 ≥ 1.75 dB. However, even
with the improvement caused by list decoding, the error-correction performance of polar codes is poor
compared to turbo and low-density parity check (LDPC) codes.

3.1 CRC-AIDED LIST DECODING

Tal and Vardy [5] found that a slight change could yield even better results, outperforming the LDPC
code used in the WiMax standard. They ran simulations of list decoding and found that when the decoder
produces the wrong answer, often the correct answer is in the list. Therefore, instead of always choosing
the most probable candidate, it would help to be able to pick the correct answer out of this list. The use of
a CRC helps to achieve this goal.

A CRC is an error detection code. It is specified by a binary polynomial of degree d, where d can be
any positive integer. The CRC takes as input an information bit vector of any length, and outputs a binary
vector of length d, called the check bits or the parity bits. Both the information bits and the check bits are
sent to a receiver. The receiver applies the same CRC to the received information bits, and checks if the
result matches the received check bits. If they do not match, an error has occurred. For a randomly chosen
bit vector, the probability of passing the CRC is 1

2d
. More details about CRC can be found in [7].

In polar coding with CRC-aided list decoding, we use an (N,K) polar code and a d-bit CRC. We start
with K − d information bits, and use the CRC to compute d check bits. We append the check bits to the
information bits, and input all K bits to the polar encoder. The encoder outputs N bits, which are sent to
the receiver. At the receiver, the list decoder works as described above until the last step. Instead of simply
choosing the most probable candidate, the decoder uses the CRC to test the candidates for errors. If one
or more candidates pass, the decoder outputs the most probable among those that pass. If none of the can-
didates pass, the decoder outputs the most probable candidate, and also outputs a flag indicating that the
result is incorrect.

The price we pay for using CRC is that we have K − d information bits instead of K. We can compen-
sate by increasing K. This means we have fewer frozen bits, so the error-correction capability of the polar
code is decreased, but in return we get additional error-correction capability from the CRC. If d is chosen
well, we receive a net gain.

For the rest of this report we will use the symbol Ki for the number of information bits per block. K
will always be the number of non-frozen bits in a polar code.

4A naive implementation of a maximum likelihood decoder would have to compute the probability of all 2K possibilities. In
[6] it was shown that this complexity can be reduced to roughly cubic, but this is still too high to be practical when N = 2048. Tal
and Vardy did not implement a maximum likelihood decoder, but they did compute a lower bound of its FER and found that the
list decoder came very close to this bound, close enough that the difference is not visible in a graph. The FER of the maximum
likelihood decoder is less that the FER of the list decoder, but greater than the lower bound, so all three of these values are very
close.
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4. PARAMETERS OF THE SIMULATIONS

The BER of CRC-aided list decoding depends on several parameters involving the channel, the polar
code, the CRC, and the decoder. The following subsections describe these parameters.

4.1 THE CHANNEL

In this report, the “channel” encompasses everything between the encoder output and the decoder in-
put. All channels used in this report are binary-input additive white Gaussian noise (AWGN) channels.
Such a channel is determined by a parameter σ. The channel input b can be 0 or 1, and the output is (−1)b+
n, where n is a sample from a normal distribution with mean 0 and standard deviation σ. Each time an-
other bit is sent, a new n is chosen, and all the n’s are independent.

An AWGN channel can also be described by the ratio of symbol energy (Es) to noise spectral den-
sity (N0). We have normalized the energy so that Es = 1 and N0 = 2σ2. We also frequently use the
ratio Eb/N0 where Eb is the bit energy, or more precisely, the energy per information bit. Thus, Eb/N0 =
(Es/N0)/r, where r is the code rate Ki/N . Both Es/N0 and Eb/N0 are usually expressed in decibels.

Most FEC literature uses AWGN channels, so we did also, making it easier for us to compare our re-
sults to previous results on polar codes and other FEC.

4.2 THE POLAR CODE

For any N that is a power of 2 and any K < N , an (N,K) polar code can be specified by choosing a
K-element subset of {1, . . . , N}.5 This subset is normally chosen to optimize the performance of the code
for a particular channel. We constructed polar codes using the method of Tal and Vardy [3]. All the codes
used in this report were optimized for AWGN channels of various Es/N0 values. The Tal/Vardy method
requires specifying a fidelity parameter µ; we used µ = 512.

The Tal/Vardy method, like most polar code construction methods, is designed to minimize the FER of
an SC decoder. In the process, it computes an upper bound for this FER. In our previous work, we found
that if µ ≥ 256 and FER ≤ 10−3, then this upper bound is very close to the true FER. In contrast, there
is no method known to predict the performance of a list decoder except running a large number of trials.
Thus, a code that is optimal for SC decoding in a given AWGN channel may not be optimal for list decod-
ing, and a code designed for a different AWGN channel might perform better.

4.3 THE CRC

The CRC polynomial can be any polynomial with coefficients in {0, 1} such that the constant term is
1. The number d of check bits equals the degree of the polynomial. Although d is determined by the poly-
nomial, we treated them as two separate parameters: we can compare CRC lengths, or compare different
polynomials at the same length. It is impossible to compare different lengths at the same polynomial.

5It is also possible to change the code by specifying the N − K frozen bits. We follow the usual convention that all frozen bits
are 0.
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4.4 THE DECODER

After specifying the above parameters, there are two things left to vary, the list size and the decoder’s
knowledge of the channel. When the decoder receives a channel output y, it must compute the likelihoods:
if a 0 is transmitted, what is the probability of receiving y? If a 1 is transmitted, what is the probability
of receiving y? If the decoder knows that the channel is an AWGN channel, and knows the Es/N0 of the
channel, it can compute the correct probabilities. If the decoder uses a channel model that differs from the
true channel, it will compute different probabilities, which could degrade its performance. In our simula-
tions, the decoder always used a channel model that exactly matched the channel.

4.5 SUMMARY OF PARAMETERS VARIED

We varied seven different parameters:

1. The Es/N0 of the AWGN channel ranged from -5.5 to 3.8 dB.

2. The block size N ranged from 512 to 65536.

3. The code rate r = Ki/N ranged from 0.25 to 0.9.

4. The Es/N0 that the code was designed for ranged from 3 dB below to 3 dB above the Es/N0

of the channel.

5. The CRC length d ranged from 4 to 24.

6. The CRC polynomial: we used four different polynomials with d = 16, and one polynomial for
each other length tested. All of these polynomials were taken from [8] or [9].

7. The list size L ranged from 1 to 64. Note that the list size can be any positive integer, but all
the list sizes we have seen in the literature were powers of two. We also have tested only pow-
ers of 2.

We specify an FEC system by choosing values for parameters 2 through 7, and we test the system by com-
puting the BER as a function of Eb/N0.

Coding theorists typically compare FEC systems by specifying a target BER or FER, and finding the
Eb/N0 at which each system achieves the target. The difference between two such Eb/N0’s is called cod-
ing gain. For most of our tests, we used the target BER = 10−5, because this is the target BER specified in
some Department of Defense specifications, such as in Table XVI of [10]. An expert at SSC Pacific told us
that for TCP/IP transmissions, the target BER is 10−8. However, it takes a large number of trials to mea-
sure a BER this low, and we could only do this for a few cases.

In practice, N , r, and L must be chosen for the requirements of a particular system because they have
a large effect on throughput, delay, and complexity. In contrast, the CRC length, CRC polynomial, and
code design Es/N0 have little effect on throughput, delay, and complexity. Therefore, for any given com-
bination of N , r, L, and target BER, there is a best combination of CRC length, CRC polynomial, and
code design Es/N0: the combination that achieves the target BER at the lowest Eb/N0.
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5. RESULTS

The starting point for our investigation of CRC-aided list decoding was the example shown at the be-
ginning of [5]: N = 2048, code rate = 1/2, code design Es/N0 = -1.01 dB, CRC length = 16, and list size
= 32. The authors of [5] did not specify what CRC polynomial they used. We started with the polynomial
x16 + x15 + x2 + 1, called “CRC-16-IBM” in [8].

Preliminary tests suggested that code design Es/N0 could be varied over a wide range without much
effect on BER performance. As a result, we were not always careful in choosing the code design Es/N0. 6

5.1 EFFECT OF VARYING LIST SIZE

Figure 3 shows the effect of changing the list size. All of these tests were performed using N = 2048,
code rate = 1/2, code design Es/N0 = -1.01 dB, and the CRC polynomial x16 + x15 + x2 + 1, except that
the test with L = 1 used no CRC. (With L = 1, a CRC cannot help correct errors.)

Figure 3. BER vs. Eb/N0 for N = 2048, rate = 1/2, and varying list sizes.

6The results in this section are not listed in the order they were obtained. For some of these tests, the choice of code design
Es/N0 was influenced by the results shown in Section 5.6.
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The figure shows significant improvement as list size is increased from 1 to 4, and rapidly diminishing
improvements as list size is increased further. We chose to use L = 4 for most of our subsequent experi-
ments.

5.2 EFFECT OF VARYING BLOCK SIZE

Figure 4 shows the effect of changing the block size. All of these tests were performed using L = 4,
code rate = 1/2, code design Es/N0 = -1.01 dB, and the CRC polynomial x16 + x15 + x2 + 1.

Figure 4. BER vs. Eb/N0 for L = 4, rate = 1/2, and varying block sizes.

Again we see diminishing improvement with each doubling of the block size.

5.3 EFFECT OF VARYING CODE RATE

For this set of tests, we selected various combinations of block size and code rate, and determined the
Eb/N0 at which the BER is 10−5. All of these tests were done with L = 4 and the CRC polynomial x16 +
x15+x2+1. The code design Es/N0 was chosen to be close to the Es/N0 at which we expected to achieve
BER = 10−5.

The previous figures showed BER over a range of Eb/N0 values, but Figure 5 shows only the Eb/N0

needed to achieve BER = 10−5. Although Eb/N0 is still on the horizontal axis, it is now the dependent
variable, with code rate as the independent variable. The same curve tells us, for a given Eb/N0, what is
the highest code rate we can use while keeping the BER below 10−5.

9



Figure 5. Eb/N0 needed to achieve BER = 10−5 for various block sizes and code rates.

As suggested by an expert at SSC Pacific, we compared the results to the performance of the FEC code
used in the DVB-S2 standard. In Figure 5, the DVB-S2 points are not connected because these points cor-
respond to all 11 code rates in the standard. In contrast, the code rate of the polar codes can be adjusted in
increments of 1/N .

Ideally, we should see a smooth curve for each polar block size. We believe the jaggedness is mostly
caused by inconsistency in how the code design Es/N0’s were chosen.

We did not compute error bars for this graph. For each polar code data point, we estimated the re-
quired Eb/N0 by interpolating the BER between two Eb/N0 values that we tested. The interpolation was
linear when viewed on a log-log scale. This produces some error because the BER curve is not perfectly
linear, and the points we interpolated between were affected by sampling error. To limit the error, we sim-
ulated at least 105 blocks for each point, and the Eb/N0’s we interpolated between were at most 0.25 dB
apart.

BER performance of the DVB-S2 FEC is hard to find, because within the standard the relevant metric
is packet error rate (PER), not BER. We estimated the DVB-S2 points using Figures 4 and 22 of [11]. We
assumed that a BER of 10−5 corresponds approximately to a PER of 10−3. This should not make much
difference because the PER curves shown in Figure 4 of [11] are very steep. We believe these points are
correct within 0.05 dB.

Figure 6 shows the same data as Figure 5, but with Es/N0 on the horizontal axis instead of Eb/N0.
This is useful because, from a code design perspective, the Es/N0 is given,7 but the Eb/N0 can be changed
by changing r. Recall these are related by Eb/N0 = (Es/N0)/r.

7In a broader RF design perspective, the Es/N0 can be changed in several ways, such as changing the transmit power or the
symbol duration.
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Figure 6. Es/N0 needed to achieve BER = 10−5 for various block sizes and code rates

The DVB-S2 results form a stairstep curve due to the limited choice of code rates. For example, sup-
pose the Es/N0 is -2.1 dB and we are required to maintain BER ≤ 10−5. Using DVB-S2, we can achieve
a code rate of 0.5. Now suppose the Es/N0 increases to -1.3 dB. This is not high enough to use a higher-
rate DVB-S2 code, so a DVB-S2 user would continue to use rate 0.5. In contrast, using a polar code of
approximately the same length, at -1.3 dB we could use rate 0.54. In the range -2 dB < Es/N0 < -0.9 dB,
polar codes of length 65536 can provide up to 15% more throughput than DVB-S2 codes.

5.4 EFFECT OF VARYING CRC POLYNOMIAL

We compared four different polynomials of length 16:

1. The previously mentioned CRC-16-IBM.

2. x16 + x14 + x13 + x12 + x10 + x8 + x6 + x4 + x3 + x1 + 1, from Table 3 of [9]. We refer to this
polynomial as “Koopman”.

3. x16 + x12 + x5 + 1, called “CRC-16-CCITT” in [8].

4. x16 + x15 + x14 + x11 + x6 + x5 + x2 + x1 + 1, called “CRC-16-CDMA2000” in [8].

Figure 7 shows the results of using these four polynomials with N = 2048, r = 1/2, list size 4, and design
Es/N0 -1.01 dB. Figure 8 shows the results of using these four polynomials with N = 2048, r = 1/2, list
size 32, and design Es/N0 -1.25 dB. In both cases, the design Es/N0 was chosen to be approximately the
Es/N0 at which the BER is 10−5.
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Figure 7. Comparison of 16-bit CRCs with list size 4.

Figure 8. Comparison of 16-bit CRCs with list size 32.

The effect of changing the polynomial is smaller than the measurement error, and too small to matter.
For each of the eight systems tested, we interpolated to find the Eb/N0 at which the BER is 10−5. For both
L = 4 and L = 32, CRC-16-IBM was best, but the difference between best and worst was 0.005 dB and
0.013 dB, respectively. We decided it was not necessary to do further comparisons of polynomials with the
same length.

5.5 EFFECT OF VARYING CRC LENGTH

We tested CRC-aided list decoding using the CRC lengths and polynomials shown in Table 1.

As mentioned in Section 4.5, the best CRC length may depend on N , the code rate, the list size, and
the target BER. We ran tests to determine the best length in a few different cases.
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Table 1. CRC polynomials tested.

CRC length Polynomial Source
4 x4 + x+ 1 CRC-4-ITU from [8]
6 x6 + x+ 1 CRC-6-ITU from [8]
8 x8 + x7 + x6 + x4 + x2 + 1 CRC-8 from [8]
10 x10 + x9 + x5 + x4 + x+ 1 CRC-10 from [8]
12 x12 + x11 + x3 + x2 + x+ 1 CRC-12 from [8]
14 x14 + x9 + x8 + x7 + x6 + x4 + 1 from Table 3 of [9]
16 x16 + x15 + x2 + 1 CRC-16-IBM from [8]

24
x24 + x22 + x20 + x19 + x18 + x16 + x14 + x13

+x11 + x10 + x8 + x7 + x6 + x3 + x+ 1
CRC-24 from [8]

5.5.1 Preliminary Test

In this test we compared CRC lengths d = 8, 12, 16, and 24. For all four lengths, we used L = 4 and
the same polar code, with N = 2048 and K = 1040, designed for Es/N0 -1.01 dB. We tested them at
Eb/N0 2.1 and 2.2 dB. The results are shown in Figure 9.

Figure 9. Comparison of CRC lengths with N = 2048, K = 1040, and list size 4.

We can see that length 8 is better than the others. This result may be confusing. In all four cases, the
frozen bits were the same, providing the same error correction, and the longer CRCs are better at filtering
out incorrect answers on the list, so how can the shorter CRC win? The reason is that we tested them at
the same Eb/N0, not at the same Es/N0. The code rate was r = 1040−d

2048 , so a larger d meant a smaller r
and lower Es/N0, i.e., more noise. The effect of the longer CRC was not enough to compensate for more
noise.

This was not exactly a fair test. In this test, the 8-bit CRC was used with rate 1032/2048, and the
longer CRCs were used with lower rates. As shown in Section 5.3, using a lower code rate normally pro-
duces a coding gain. Therefore, if we repeated the test with all four lengths at rate 1032/2048, the longer
lengths would have performed even worse.
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In subsequent tests, we always compared codes with the same length and rate.

5.5.2 Baseline Test

Since the lengths d ≥ 12 performed poorly in the preliminary test, in the baseline test we compared
CRC lengths 4, 6, 8, and 10. In all four cases, we used N = 2048, r = 1/2, design Es/N0 = -0.91 dB, and
list size 4. We tested them at Eb/N0 2.05, 2.15, and 2.25 dB. The results are shown in Figure 10.

Figure 10. Comparison of CRC lengths with N = 2048, r = 1/2, and list size 4.

The 8-bit CRC appears to be best of the four, with the lowest BER at both 2.05 and 2.15 dB. The 6-bit
CRC performed slightly better at 2.25 dB, but the difference is well within measurement error.
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5.5.3 Test With a Different List Size

For this test, we used list size 32, N = 2048, r = 1/2, and design Es/N0 = -1.36 dB. With a larger
size, there is a higher probability that the list will include an incorrect codeword that passes the CRC. Intu-
itively, it makes sense to mitigate this by using a longer CRC. That is why we chose to test a longer CRC
in this test than in the baseline test. We compared CRC lengths 4, 8, 10, and 12. We tested them at Eb/N0

1.7, 1.8, and 1.9 dB. The results are shown in Figure 11.

Figure 11. Comparison of CRC lengths with N = 2048, r = 1/2, and list size 32.

The 10-bit CRC appears to be best of the four, with the lowest BER at both 1.8 and 1.9 dB. The 8-bit
CRC performed slightly better at 1.7 dB, but the difference is well within measurement error.

5.5.4 Test With a Different Code Rate

For this test, we used r = 0.7, N = 2048, list size 4, and design Es/N0 = 0.9 dB. We compared CRC
lengths 6, 8, and 10. We tested them at Eb/N0 2.9, 3.0, and 3.1 dB. The results are shown in Figure 12.

The 8-bit CRC appears to be best, with the lowest BER at both 3.0 and 3.1 dB. The 6-bit CRC per-
formed slightly better at 2.9 dB, but the difference is well within measurement error.
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Figure 12. Comparison of CRC lengths with N = 2048, r = 0.7, and list size 4.

5.5.5 Test With a Different Block Size

For this test, we used N = 32768, r = 1/2, list size 8, and design Es/N0 = -2.25 dB. We compared
CRC lengths 6, 8, and 10. We tested them at Eb/N0 1.05 and 1.15 dB. The results are shown in Figure 13.

Figure 13. Comparison of CRC lengths with N = 32768, r = 1/2, and list size 8.

The 8-bit CRC appears to be best, with the lowest BER at both 1.05 and 1.15 dB.
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5.5.6 Test With a Different Target BER

For this test, we used N = 2048, r = 1/2, design Es/N0 = -0.91 dB, and list size 4, which are the
same parameters used in the baseline test. We tested CRC lengths 6, 8, 10, and 12 at Eb/N0 2.6 dB, and
lengths 6, 8, 10, 12, 14, and 16 at Eb/N0 2.7 dB. The results are shown in Figure 14.

Figure 14. Comparison of CRC lengths with N = 2048, r = 1/2, and list size 4.

Recall that in the baseline test, length 8 was best for a target BER of 10−5. It appears that length 10 is
best for a target BER of 10−7, and length 14 is best for a target BER of 4 · 10−8. It appears that, in general,
a lower target BER means a larger optimal CRC length. One previously published result supports this hy-
pothesis: Figure 3 of [12] shows a comparison between CRC lengths 8 and 32, with N = 1024, r = 0.84,
and list size 128 8, with Eb/N0 ranging from 2 to 5 dB. Both achieve BER approximately 10−5 at Eb/N0

4 dB. For lower Eb/N0 (equivalently, for higher target BER), length 8 outperforms length 32, while for
Eb/N0 > 4 dB (target BER < 10−5), length 32 outperforms length 8, with a coding gain of about 0.5 dB
at BER = 10−7. We do not recall seeing any other published results comparing two different CRC lengths.

5.5.7 CRC Length Summary

For a list size of 4 and a target BER of 10−5, use an 8-bit CRC. The ideal CRC length increases if the
list size is increased or the target BER is decreased.

5.6 EFFECT OF VARYING CODE DESIGN ES/N0

We would like to have a rule that when the channel Es/N0 is x dB, we should use a code designed
for Es/N0 x + δ dB. The ideal δ may depend on N , r, L, and Es/N0, but we hope to find a δ that will be
near-optimal in a wide range of cases.

For this test, we used N = 2048, r = 1/2, a 16-bit CRC, and list size 4. The δ values we tested were
-3, -2, -1, -0.5, 0, 0.5, 1, 2, and 3, and we tested all of these at Eb/N0 2.1 and 2.2 dB (equivalently, Es/N0

8No polar code construction method is specified in [12]; in particular, no design Es/N0 is specified. It is possible that the
results in Figure 3 of [12] were obtained using multiple design Es/N0’s to match the Es/N0’s tested.
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-0.91 and -0.81 dB). Thus, we tested a total of 18 different codes. The results are shown in Figure 15. We
obtained the best results with δ = −0.5.

Figure 15. Comparison of design Es/N0’s with N = 2048, r = 1/2, 16 bit CRC, and list size 4.

We have not had time to repeat this test with different parameters, but we did use this result with N =
65536 and several different code rates, to improve the results shown in Figure 5. Several points on the N =
65536 curve appeared to be too far to the right relative to the others. We recomputed these points using a δ
near -0.5, and these points moved significantly to the left. As a result, other points now appear to be too far
right.
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6. IMPLEMENTATION DETAILS

Our decoder software is written in C++. It is based on the pseudocode in [5], which is designed to be
used with a systematic polar encoder. Unlike most decoders described in the polar coding literature, this
decoder does not use the logarithmic domain for probabilities. We used type long double for the prob-
abilities.9

We made only four changes to the pseudocode from [5]. First, we corrected a mistake in algorithm
15: lines 1 and 2 are misplaced; they belong after “continue”. The same correction recently appeared in a
later version of the paper [13]. Second, we found that Algorithm 12 did not work as written. The indices
in pathIndexToArrayIndex are used both in arrayPointer_P, to point to float arrays, and in
arrayPointer_C, to point to bit arrays. We found that when a float array is copied, the corresponding
bit array must also be copied, and vice versa, so that the indexing remains consistent.

The third change is necessary because the pseudocode in [5] is for a non-CRC-aided decoder. The
CRC-checking part of the algorithm is described in the text, but no pseudocode is provided. We modified
the findMostProbablePath algorithm to implement CRC-checking.

Before calling findMostProbablePath, the decoder computes L candidate codewords x̂0 through
x̂L−1 and a probability pl for each one. The function findMostProbablePath keeps track of four
variables:

• pPrime, the highest probability found so far

• lPrime, the index where pPrime was found

• pPrimeCrc, the highest probability found so far among codewords that pass CRC

• lPrimeCrc, the index where pPrimeCrc was found

lPrimeCrc is initialized to -1, which is invalid, and the other three are initialized to 0.

findMostProbablePath has a loop where the index l ranges from 0 to L − 1. If pl > pPrime,
the function updates pPrime and lPrime. Then if pl > pPrimeCrc, the function checks to see if x̂l

passes CRC. If it passes, the function updates pPrimeCrc and lPrimeCrc. At the end of the loop, it
computes the flag passedCrc = (lPrimeCrc > −1). If the flag is true, it returns lPrimeCrc as the most
probable path index, otherwise it returns lPrime. Note that it is usually not necessary to check CRC for
every codeword in the list. passedCrc is also returned via pointer.

Checking the CRC is a three-step process. findMostProbablePath must first call a bit-reversal
function to compute ŵl = ΠN x̂l, then copy some of the entries to form (ŵl)A, before it can compute the
CRC.

The final change we made is that in [5], the decoder outputs the entire N -bit codeword x̂, but our de-
coder outputs its estimate of the K-bit input to the polar encoder. This output is via pointer, and the return
value is passedCrc.

To test the decoder, we repeatedly generate Ki random bits, encode them, simulate transmission through
an AWGN channel, decode the channel output, and compare the random bits to the first Ki bits output by
the decoder. We did not count errors in the CRC bits.

9We used two different compilers. This type was 16 bytes in one compiler and 12 bytes in the other.
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6.1 DECODING SPEED

Reference [13] shows that the list decoder requires O(LN logN) operations. With N = 65536, r =
1/2, and L = 4, our decoder runs in 0.3 seconds on one core of an Intel R© Xeon R© X7560 processor. This
speed enables throughput of up to 100 kbps.

Our decoder is designed to be as simple as possible. Other CRC-aided list decoder designs have been
proposed to run much faster, both in software and hardware. Almost all such results concern block sizes
512, 1024, or 2048. For example, [12] showed that a list decoder with N = 2048, r = 0.84, and L = 32
could run in 433 ms, with throughput 33 Mbps. We have not seen any results that combined high speed
with the error-correction performance that we achieved with N = 65536. The closest is [14], which de-
scribes a decoder with N = 32768, r = 0.9, and L = 32, but the speed of this decoder is not given. It achieves
BER 10−5 at Eb/N0 4.2 dB, which is 0.3 dB worse than what we achieved at the same code rate with N =
65536 and L = 4. We have not seen any other examples of CRC-aided list decoding with N > 2048 in the
existing literature.

If we assume that the decoder of [12] can be scaled up to N = 65536 with runtime proportional to
O(N logN), it would run in 0.02 seconds, with throughput up to 23 Mbps, and would probably provide
a small coding gain over our decoder.
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7. CONCLUSION

In any application for which the DVB-S2 FEC is considered, polar coding with CRC-aided list de-
coding with N = 65536 should also be considered. With L = 4 in an AWGN channel it approximates the
DVB-S2 results when compared at the same data rate, and can provide up to 15% higher throughput by us-
ing code rates not provided in the DVB-S2 standard. The current runtime of 0.3 s may be fast enough for
some applications up to 100 kbps. Higher speed can be achieved using techniques in the existing literature.
Further work is needed to accomplish the following:

• Incorporate these techniques into our software

• Test both polar coding and DVB-S2 coding with BER target 10−8

• Test both polar coding and DVB-S2 coding in more complex channel models such as Nakagami fad-
ing
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