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Chapter 1

Literature review

1.1 Quantum dots, their physical properties

and applications

Quantum physics is progressing rapidly. Quantization and spin were discov-

ered through optical studies, as were other fundamental atomic properties.

With the advent of the laser, physicists learned how to manipulate atomic

wavefunctions by applying coherent optical fields. More discoveries followed.

Now, at the beginning of the new century, optical techniques are being used

to explore a new scientific frontier: the atom-like entities known as quantum

dots.

A quantum dot is a nanocrystal made of semiconductor materials that are

small enough to exhibit quantum mechanical properties, as shound in (fig1),

semiconductor structures in which the electron wavefunction is confined in

all three dimensions by the potential energy barriers that form the quantum

dots boundaries [4, 3]. A quantum dots electronic response, like that of a

single atom, is manifest in its discrete energy spectrum, which appears when

electron-hole pairs are excited. Although the wavefunction of a quantum dot

electron, and its corresponding hole, extends over many thousands of lat-

tice atoms, the pair–termed an exciton–behaves in a quantized and coherent

fashion.

The coherence is relatively easy to detect and control optically - for

1
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Figure 1.1: AFM micrographs of: (a) 1 µm x 1µm surface imaging of InAs
quantum dots on GaAs/InP , (inset) a single InAs quantum dot.

two reasons. First, the superposition of the ground and excited states de-

phases more slowly in quantum dots than in higher-dimensional semiconduc-

tor structures. Second, quantum dots have large dipole moments (50-100

times larger than those of atoms). Thanks to these advantages, it is possible

to probe and manipulate the wavefunction of a single quantum [9].

How can one understand the excited electronic states of a nanometer sized

semiconductor crystallite, given that the crystallite structure is simply that

of an excised fragment of the bulk lattice? This question is motivated by

recent experiments on chemically synthesized ”quantum crystallites,” some-

times called ”quantum dots,” in which it is observed that the optical spectra

are quite sensitive to size. For example, bulk crystalline CdSe is a semicon-

ductor with an optical bandgap at 690nm, and continuous optical absorption

at shorter wavelengths. However, 3540−diameter CdSe crystallites contain-

ing some 1500 atoms exhibit a series of discrete excited states with a lowest

excited state at 530nm (1-3). With increasing size, these states shift red and

merge to form the optical absorption of the bulk crystal. Electron microscopy
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and BraggX-ray scattering measurements show that these crystallites have

the same structure and unit cell as the bulk semiconductor. Such changes

have now been observed in the spectra of many different semiconductors.This

phenomenon is a ”quantum size effect” related to the development of the

band structure with increasing crystallite size. Smaller crystallites behave

like large molecules (e.g. polycyclic aromatic hydrocarbons) their spectro-

scopic and photophysical properties. They are true ”clusters”that do not

exhibit bulk semiconductor electronic properties.

Quantum dots possess another attractive property. Their size, shape,

and composition can all be ailored to create a variety of desired properties.

These ”artificial atoms” can, in turn, be positioned and assembled into com-

plexes that serve as new materials. Many types of quantum dot materials

have already been developed. In the early 1980s that papers in the Russian

literature, by Ekimov and Efros, gave the first experimental and theoreti-

cal description of 3D quantum confinement with semiconductor nanocrystals

[10, 11].

There are discovered quantum dots in a glass matrix (they are developed

a growth technique of the semiconductor microcrystals in a glassy dielec-

tric matrix. This technique permits to vary the size of the grown micro-

crystals in a controlled manner from some tens to thousands of angstroms)

and in colloidal solutions by Louis E.Brus [12]. The term ”quantum dot”

was coined by M. Reed.[6] (The approach he used to produce quantum

dot nanostructures suitable for electronic transport studies was to confine

resonant-tunneling heterostructures laterally with a fabrication-imposed po-

tential. This approach embeds a quasibound quantum dot between two quan-

tum wire contact.) Among them are quantum dots formed by electrostatic

gates. Researchers study these quantum dots with far-infrared spectroscopy

and with transport techniques, such as conductance measurements. Great

advances have been made with electrostatic quantum dots, but this type of

quantum dot does not interact strongly with light because the electrostatic

gates separate the electrons and holes, severely reducing the quantum dots

dipole moment.

Fortunately, some types of quantum dots do interact strongly with light
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Figure 1.2: Colloidal quantum dots general schematic

and are being studied in detail, even at the single quantum dot level. Grown

as part of a larger crystalline structure,epitaxial quantum dots form spon-

taneously in molecular beam epitaxy [13]. Epitaxial quantum dots are es-

pecially attractive to researchers because they lack the defects caused by

etching, regrowth, and other processing steps. Another advantage of epitax-

ial quantum dots is that they lie far beneath the surface of the surround-

ing material whose associated states are potentially meddlesome. Colloidal

chemistry provides yet another way of growing quantum dots.

Colloidal quantum dots - semiconductor nanocrystals with a size in the

range 10 - 20nm consisting of 103-105 atoms that are based on inorganic

semiconductor materials, covered with a monolayer of the stabilizer (”coat” of

organic molecules). Colloidal quantum dots combined physical and chemical

properties of molecules with optoelectronic properties of semiconductors (fig2

).

Colloidal semiconductor nanocrystals are synthesized from precursor com-

pounds dissolved in solutions, much like traditional chemical processes. The

synthesis of colloidal quantum dots is done by using precursors, organic

surfactants, and solvents. Heating the solution at high temperature, the

precursors decompose forming monomers which then nucleate and generate

nanocrystals. The temperature during the synthetic process is a critical fac-

tor in determining optimal conditions for the nanocrystal growth. It must

be high enough to allow for rearrangement and annealing of atoms during
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the synthesis process while being low enough to promote crystal growth. The

concentration of monomers is another critical factor that has to be stringently

controlled during nanocrystal growth. The growth process of nanocrystals

can occur in two different regimes, ”focusing” and ”defocusing”. At high

monomer concentrations, the critical size (the size where nanocrystals nei-

ther grow nor shrink) is relatively small, resulting in growth of nearly all

particles. In this regime, smaller particles grow faster than large ones (since

larger crystals need more atoms to grow than small crystals) resulting in

”focusing” of the size distribution to yield nearly mono-disperse particles.

The size focusing is optimal when the monomer concentration is kept such

that the average nanocrystal size present is always slightly larger than the

critical size. Over time, the monomer concentration diminishes, the criti-

cal size becomes larger than the average size present, and the distribution

”defocuses”.

There are colloidal methods to produce many different semiconductors.

Typical dots are made of binary alloys such as cadmium selenide, cadmium

sulfide, indium arsenide, and indium phosphide. Dots may also be made

from ternary alloys such as cadmium selenide sulfide. These quantum dots

can contain as few as 100 to 100,000 atoms within the quantum dot volume,

with a diameter of 10 to 50 atoms. This corresponds to about 2 - 10nm, and

at 10nm in diameter, nearly 3 million quantum dots could be lined up end

to end and fit within the width of a human thumb.

Large batches of quantum dots may be synthesized via colloidal synthesis.

Due to this scalability and the convenience of benchtop conditions, colloidal

synthetic methods are promising for commercial applications. It is acknowl-

edged to be the least toxic of all the different forms of synthesis.

In a semiconductor crystallite whose diameter is smaller than the size

of its exciton Bohr radius, the excitons are squeezed, leading to quantum

confinement. The energy levels can then be modeled using the particle in a

box model in which the energy of different states is dependent on the length

of the box. Quantum dots are said to be in the weak confinement regime

if their radii are on the order of the exciton Bohr radius; quantum dots are

said to be in the ’strong confinement regime’ if their radii are smaller than
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Figure 1.3: Exciton energy levels

the exciton Bohr radius. If the size of the quantum dot is small enough

that the quantum confinement effects dominate (typically less than 10nm),

the electronic and optical properties are highly tunable (fig4) [reference].

Fluorescence occurs when an excited electron relaxes to the ground state

and combines with the hole. In a simplified model, the energy of the emitted

photon can be understood as the sum of the band gap energy between the

occupied level and the unoccupied energy level, the confinement energies of

the hole and the excited electron, and the bound energy of the exciton (the

electron-hole pair).

The band gap can become larger in the strong confinement regime where

the size of the quantum dot is smaller than the Exciton Bohr radius ab∗ as

the energy levels split up. where ab∗is the Bohr radius rB = 0.053nm, m is

the mass.This results in the increase in the total emission energy (the sum of

the energy levels in the smaller band gaps in the strong confinement regime

is larger than the energy levels in the band gaps of the original levels in the

weak confinement regime) and the emission at various wavelengths; which is

precisely what happens in the sun, where the quantum confinement effects

are completely dominant and the energy levels split up to the degree that

the energy spectrum is almost continuous, thus emitting white light.

The exciton entity can be modeled using the particle in the box. The

electron and the hole can be seen as hydrogen in the Bohr model with the
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Valence

band

Conduction

band

Figure 1.4: Splitting of energy levels for small quantum dots due to the
quantum confinement effect. The horizontal axis is the radius, or the size, of
the quantum dots and ab∗ is the Exciton Bohr radius.

hydrogen nucleus replaced by the hole of positive charge and negative elec-

tron mass. Then the energy levels of the exciton can be represented as the

solution to the particle in a box at the ground level (n = 1) with the mass

replaced by the reduced mass. Thus by varying the size of the quantum dot,

the confinement energy of the exciton can be controlled. There is Coulomb

attraction between the negatively charged electron and the positively charged

hole. The negative energy involved in the attraction is proportional to Ry-

dberg’s energy and inversely proportional to square of the size-dependent

dielectric constant [15] of the semiconductor. When the size of the semi-

conductor crystal is smaller than the Exciton Bohr radius, the Coulomb

interaction must be modified to fit the situation.

Although the above equations were derived using simplifying assump-

tions, the implications are clear; the energy of the quantum dots is dependent

on their size due to the quantum confinement effects, which dominate below

the critical size leading to changes in the optical properties. This effect of

quantum confinement on the quantum dots has been experimentally verified

[16] and is a key feature of many emerging electronic structures [17]. Besides

confinement in all three dimensions (i.e., a quantum dot), other quantum con-
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Figure 1.5: Colloidal quantum dots general schematics.

fined semiconductors include:Quantum wires, which confine electrons or holes

in two spatial dimensions and allow free propagation in the third.Quantum

wells, which confine electrons or holes in one dimension and allow free prop-

agation in two dimensions.

Quantum size effects play a key role in the optoelectronic properties of

quantum dots. The energy spectrum of the quantum dot is fundamentally

different from the bulk semiconductor . Electron in a nanocrystal behaves

like a three -dimensional potential well. There are several stationary energy

levels for electron and a hole with a characteristic distance between them.

The energy spectrum of the quantum dot depends on its size . Similarly,

the transition between the transition energy in the atom , the transition of

charge carriers between the energy levels in the quantum dot can be emitted

or absorbed photon. Transition frequencies , i.e long wave absorption or

luminescence easily manage changing the dimensions of the quantum dots.

Therefore, quantum dots are sometimes called ”artificial points .” In terms of

semiconductor materials that can be called the ability to control the effective

band gap.

There is another fundamental property distinguishing colloidal quantum

dots of semiconductor materials - the possible existence in the form of solu-

tions. (Fig.5). Synthesis of colloidal quantum dots is wide as possible to ob-

tain the quantum dots on the basis of various semiconductors and the prepa-

ration of quantum dots with different geometry (shape). Colloidal quantum
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dots are characterized by: the composition, size and shape. Exsist many

forms of quantum dots spherical, ellipsoidal, nanocrystals with complex ge-

ometry, multi-quantum dots [9].

The various types of quantum dots each have their advantages and dis-

advantages and allhave served as useful models in research aimed at gaining

a better understanding of theoretical properties of quantum dots.

Researchers have studied applications for quantum dots in transistors,

solar cells, LEDs, and diode lasers. They have also investigated quantum dots

as agents for medical imaging and as possible qubits in quantum computing.

The first commercial release of a product utilizing quantum dots was the

Sony XBR X900A series of flat panel televisions released in 2013.

Quantum dots are particularly significant for optical applications due to

their high extinction coefficient. In electronic applications they have been

proven to operate like a single electron transistor and show the Coulomb

blockade effect. Quantum dots have also been suggested as implementations

of qubits for quantum information processing.

The ability to tune the size of quantum dots is advantageous for many

applications. For instance, larger quantum dots have a greater spectrum-shift

towards red compared to smaller dots, and exhibit less pronounced quantum

properties. Conversely, the smaller particles allow one to take advantage of

more subtle quantum effects.

Being zero-dimensional, quantum dots have a sharper density of states

than higher-dimensional structures. As a result, they have superior trans-

port and optical properties, and are being researched for use in diode lasers,

amplifiers, and biological sensors. Quantum dots may be excited within a lo-

cally enhanced electromagnetic field produced by gold nanoparticles, which

can then be observed from the surface plasmon resonance in the photolu-

minescent excitation spectrum of (CdSe) ZnS nanocrystals. High-quality

quantum dots are well suited for optical encoding and multiplexing applica-

tions due to their broad excitation profiles and narrow/symmetric emission

spectra. The new generations of quantum dots have far-reaching potential

for the study of intracellular processes at the single-molecule level, high-

resolution cellular imaging, long-term in vivo observation of cell trafficking,
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tumor targeting, and diagnostics.

Quantum dot technology is one of the most promising candidates for

use in solid-state quantum computation. By applying small voltages to the

leads, the flow of electrons through the quantum dot can be controlled and

thereby precise measurements of the spin and other properties therein can

be made. With several entangled quantum dots, or qubits, plus a way of

performing operations, quantum calculations and the computers that would

perform them might be possible.

Quantum dots may be able to increase the efficiency and reduce the cost

of today’s typical silicon photovoltaic cells. According to an experimental

proof from 2004, quantum dots of lead selenide can produce more than one

exciton from one high energy photon via the process of carrier multiplication

or multiple exciton generation (MEG). This compares favorably to today’s

photovoltaic cells which can only manage one exciton per high-energy photon,

with high kinetic energy carriers losing their energy as heat. Quantum dot

photovoltaics would theoretically be cheaper to manufacture, as they can be

made ”using simple chemical reactions.”

There are several inquiries into using quantum dots as light-emitting

diodes to make displays and other light sources, such as ”QD-LED” dis-

plays, and ”QD-WLED” (White LED). In June 2006, QD Vision announced

technical success in making a proof-of-concept quantum dot display and show

a bright emission in the visible and near infra-red region of the spectrum.

Quantum dots are valued for displays, because they emit light in very specific

gaussian distributions. This can result in a display that more accurately ren-

ders the colors that the human eye can perceive. Quantum dots also require

very little power since they are not color filtered. Additionally, since the dis-

covery of ”white-light emitting” QD, general solid-state lighting applications

appear closer than ever. A color liquid crystal display (LCD), for example,

is usually backlit by fluorescent lamps (CCFLs) or conventional white LEDs

that are color filtered to produce red, green, and blue pixels. A better solu-

tion is using a conventional blue-emitting LED as light source and converting

part of the emitted light into pure green and red light by the appropriate

quantum dots placed in front of the blue LED. This type of white light as
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backlight of an LCD panel allows for the best color gamut at lower cost than

a RGB LED combination using three LEDs.

Quantum dot displays that intrinsically produce monochromatic light can

be more efficient, since more of the light produced reaches the eye.QD-LEDs

can be fabricated on a silicon substrate, which allows integration of light

sources onto silicon-based integrated circuits or microelectromechanical sys-

tems. A QD-LED integrated at a scanning microscopy tip was used to demon-

strate fluorescence near-field scanning optical microscopy (NSOM) imaging.

Quantum dot photodetectors (QDPs) can be fabricated either via solution-

processing, or from conventional single-crystalline semiconductors. Conven-

tional single-crystalline semiconductor QDPs are precluded from integration

with flexible organic electronics due to the incompatibility of their growth

conditions with the process windows required by organic semiconductors. On

the other hand, solution-processed QDPs can be readily integrated with an

almost infinite variety of substrates, and also postprocessed atop other inte-

grated circuits. Such colloidal QDPs have potential applications in surveil-

lance, machine vision, industrial inspection, spectroscopy, and fluorescent

biomedical imaging.

A variety of theoretical frameworks exist to model optical, electronic, and

structural properties of quantum dots. These may be broadly divided into

quantum mechanical, semiclassical, and classical.

1.2 Quantum bound states in classically un-

bound regions

Advances in fine-line lithography allow creation of devices which conduct

along two-dimensional surfaces, or quantum wires, with nanoscale width,

which allow electrons to propagate in the channels formed by these surfaces,

but require the electron wave function to vanish on the boundary of the

surface [1, 27]. Quantum wires have been used extensively to investigate

quantum interference effects [28, 29, 30, 31, 32, 33]. Quantum-mechanical

coherence in disordered metals and the associated interference phenomena are
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at the heart of many topics which have generated intense interest, including

localization, resonant tunneling, and universal conductance fluctuations [29].

Figure 1.6: Schematic diagram of the potential formed by the crossed wires.

Schult et. al reported in Ref. [1] calculations designed to determine

whether an electron can be trapped at the intersection of the perpendicularly

aligned quantum wires, due to a quantum effects. The presence of such

trapped electrons could modify considerably the operation of devices made

of these wires. It should be noted that, as such surfaces have no “classically

forbiden” region (a classical particle could roll freely through such a system),

the discovery by Schult et. al [1] (and earlier by Lenz et. al [34]) that

such systems possess a bound state was rather surprising. It shows the

quantum binding of a classically unbound system, and thus complements the

phenomenon of the decay of a classically bound stte by quantum tunneling.

Goldstone and Jaffe [35, 36] (and Exner [37, 38]) then proved the remarkable

result that at least one bound state exists for all two-dimensional surfaces of

constant width (except surfaces of constant curvature, which have no bound

state).

The authors of [1] asserted that the detailed shape of the potential which
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confines the electron to the channel is not important in determining the

qualitative fact of the presence of a bound state at the intersection. For an

initial wave function which is odd about the x and y center lines and even

about the x = y line, the energy is E2 = 3.72Et. No bound states are found

which are od about the x = y line. The main disadvantage of this mesh-

point method is, that it gives only the lowest state of each symmetry class.

Possible higher-energy bound states would be inaccessible. For these the

Authors of Ref. [1] reported their second method which uses an expansion

in a complete set of solutions of the differential equation ∆Ψ = −k
2Ψ (for a

trial value of k2) in each of the five large rectangular regions shown in Fig.

(2.1). The coefficients in this expansion should be chosen to match Ψ and its

derivatives at the boundaries between these regions. One of the advantages

of this method is that it can be extended to energies above the propagation

threshold. Also it can be easily extended to any geometry composed of

rectangles, open or closed, with equal of different width. For a tight-binding

approach to such problems, see [40]. This method may be used to investigate

the importance of the sharp corners in forming the bound state, and the

amount of bend required to form a bound state of the bent wire.

As is well known (see [41]), a “bulge” in a two-dimensional surface can

be mapped into one dimension; the transverse bulge then appears as an ef-

fective local attraction, which in one dimension always produces a bound

state. However, it was surprising to find that a bend produces an effective

attraction similar to a bulge. The existence of these bound states can be

understood qualitatively. In Refs. [42, 43] Carini et. al examined the prop-

erties of systems containing a single bend. The Authors examined in Ref.

[43] bent waveguides which support several bound states. They investigated

this question from both theoretical and experimental perspectives, by cal-

culating energies and fields for such states in bent waveguides (such as in

Fig. (1.8), constructing such waveguides, and comparing their experimental

properties with the theoretical predictions. In [41] Carini et. al examine the

case of a system with two right-angle bends as shown in Fig. 1.7. The width

of the straight sections is W and the height of the bend is H. First they

consider the case where the straight sections of the wire are infinitely long.
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The wave function for the electron satisfies the equation

(∇2 + k
2)ψ(x, y) = 0, ψ|S = 0, (1.1)

where the wave number k is related to the energy E by k
2 = 2m∗

E/�2.
In either straight section the requirement that the wave function vanish on

the boundary, and separability of the Hamiltonian, forces the y dependence

of the wave function to be of the form sin(nπy/W ) for integer n. This

transverse quantization condition produces an energy threshold; the lowest

energy allowed for free propagation is Ethr = (�π)2/(2m∗
W

2). Both the

extra space in the bend(s) of the wire, and the bending itself, produce an

effective attraction which supports electron bound state(s) in the region of

the bend(s). The wire of Fig. 1.7 will have one or two bound states, which

appear as isolated states with energy below the threshold energy Ethr. The

bound state wave functions will be largest in the vicinity of the bend, and

fall off exponentially with distance from the bend region.

Figure 1.7: (From Ref. [41]) Simplified model for bent quantum wire. In-
finitely long wire with two right-angle bends, the width arbitrarily normalized
to 1 and the aspect ratio (height/width ratio) R. (a) the aspect ratio R > 2
is the “quantum bend discontinuity” case of Ref. [48]. For the purpose of
calculations the wire is divided into three sections labeled I, II, and III, re-
spectively. (b) The aspect ratio 1 < R < 2 is he “quantum bend continuity”
case. the wire is divided into sections labeled I and II, respectively.
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Thus, bent quantum wires are examples of quantum systems whose bound

states do not arise from the “traditional” picture, where a binding potential

creates classically allowed and forbidden regions. Here the boundary condi-

tions (vanishing of the wave function on the boundaries of the wire) give rise

to transverse quantization conditions which produce a minimum threshold

energy for continuum solutions. Localized bends or bulges in these wires

then produce effective local attractive forces which give rise to bound states.

As the effective attraction in a bent wire is (to lowest order) proportional to

the square of the curvature of the wire,[35, 36] the magnitude of the binding

energy increases as the curvature increases.

The analogy of bent two-dimensional systems and rectangular waveguides

is considered in Refs. [42, 43]. Suppose, one has some two-dimensional curve

σ in the xy plane, which possesses a scalar field ψ satisfying the Helmholtz

(or Schrödinger) equation [∇2 + k
2]ψ = 0, with ψ|S = 0 on the boundary S

of the curve, then one can produce a rectangular waveguide by translating

the curve σ normally in the z direction. E and B fields can be constructed

from ψ as follows:

E(x, y) = ikẑψ(x, y), B(x, y) = −ẑ×∇ψ (1.2)

The E and B fields of this equation will satisfy Maxwell’s equations and

boundary conditions for TE modes in the waveguide (see e.g. [44]), where

the electron wave number k is related to the frequency f = ω/2π by

k →
2π

√
µ�f

c
. (1.3)

Therefore if there exist bound states of the Schrödinger equation for particles

moving in the two-dimensional curve σ (i.e., solutions of the wave equation

below the minimum energy for free propagation of waves in the wire), there

will be analogous confined TE modes (solutions of E and B fields with fre-

quencies below the cutoff frequency for the waveguide), and the confined E

field of Eq. (1.2) will be described by the same scalar function ψ which con-

stitutes the bound state wave function of the electron in the quantum wire,
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in Eq. (1.1)

Having shown correspondence between wave functions for the electrons

moving freely in a quantum wire, and the electric field for TE modes in a

rectangular waveguide (see also [37, 38, 27, 28, 29, 45, 42]), Carini et. al

[41] constructed waveguides of corresponding shape, and demonstrated the

location of the confined states by measuring the ratio of reflected to incident

power R(f) as a function of frequency f for microwaves. By understanding

the properties of the waveguides, one can gain information about the quan-

tum channels or wires. They have shown that theoretical calculations give

very good agreement with experiments of confined electromagnetic fields in

bent waveguides. They showed that the number of confined electric field

modes, and their location, are determined by the geometry of the waveguide.

Figure 1.8: Sharply bent two-dimensional surface.

Experimental studies have been carried out for quantum wires with two

bends by Wu and collaborators [46, 47]. Wang and collaborators [48] carried

out theoretical calculations of the conductance for electrons in this geometry,

and compared it to these experimental results.

Obviously, the considered cross-shaped region received application in the

field of connected wave guides [21]. Trapped quantum modes in complex

three-dimensional systems were addressed in [22]. The eigenstates of an elec-

tron in an infinite quantum waveguide (e.g., a bent strip or a twisted tube)

are often trapped or localized in a bounded region that prohibits the elec-

tron transmission through the waveguide at the corresponding energies. We
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revisit this statement for resonators with long but finite branches that is

called finite waveguides. Although the Laplace operator in bounded domains

has no continuous spectrum and all eigenfunctions have finite L2 norm, the

trapping of an eigenfunction can be understood as its exponential decay

inside the branches. We describe a general variational formalism for detect-

ing trapped modes in such resonators. For finite waveguides with general

cylindrical branches, we obtain a sufficient condition which determines the

minimal length of branches for getting a trapped eigenmode. Varying the

branch lengths may switch certain eigenmodes from non-trapped to trapped

or, equivalently, the waveguide state from conducting to insulating. These

concepts are illustrated for several typical waveguides (L-shape, bent strip,

crossing of two strips, etc.). It was also concluded that the well-established

theory of trapping in infinite waveguides may be incomplete and require fur-

ther development for applications to finite-size microscopic quantum devices.

1.2.1 Connected curved waveguides, mesoscopic sys-

tems

One could consider a pair of parallel straight quantum waveguides coupled

laterally through a window of a width l in the common boundary. The

authors of [21] showed that such a system has at least one bound state.

We find the corresponding eigenvalues and eigenfunctions numerically using

the modematching method, and discuss their behavior in several situations.

They also discussed the scattering problem in this setup, in particular, the

turbulent behavior of the probability flow associated with resonances. The

level and phaseshift spacing statistics shows that in distinction to closed

pseudointegrable billiards, the present system is essentially nonchaotic.

A strong motivation to study such bound states and related resonance

effects comes from recent developments in semiconductor physics, because

they can be used as models of electron motion in socalled quantum wires,

i.e., tiny strips of a very pure semiconductor material, and similar structures.

Let us briefly recall key features of such systems. Characteristic properties of

the semiconductor microstructures under consideration are small size, typi-
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cally from tens to hundreds of nm, high purity, which means that the electron

mean free path can be a few µm or even larger, and crystallic structure. In

addition, boundaries of the microstructures consist usually of an interface

between two different semiconductor materials; the electron wavefuction are

known to be suppressed there. Behavior of an electron in such a mesoscopic

system structure is, of course, governed by the manybody Schródinger equa-

tion describing its interaction with the lattice atoms including the bound-

ary, external fields, and possible impurities. The mentioned properties allow,

however, to adopt several simplifying assumptions. As we have said the mean

free path is typically two or three orders of magnitude greater than the size

of the structure; hence the electron motion can be assumed in a reasonable

approximation as ballistic, i.e., undisturbed by impurity scattering.

1.2.2 Bound states in twisting tubes

Here we should also add a paper by J. Goldstone and R. L. Jaffe [23]. It is

easy to see that the uncertainty principle can pro- vide binding in quantum

systems. Consider, for example, an infinite cylindrical tube with a bulge

in the middle. A particle constrained to move in this tube can have lower

transverse momentum and therefore lower transverse energy within the bulge,

where it is less severely confined. A bound state results because the quantum

particle would have to squeeze into the cylindrical section of the tube in order

to propagate away to infinity. Such a system a straight tube with a slowly

changing radius can be mapped into a one-dimensional problem in which the

changing radius appears as a changing potential. A bulge corresponds to

attraction, and in one dimension an attraction, no matter how weak, suffices

to produce binding.

The object of this paper is to demonstrate that bends do as well as bulges.

It has been proved that an infinite tube with a constant normal cross section

always has a bound state if it bends. Apparently, a bend provides a region in

which the quantum particle can relax, lowering its momentum in comparison

with straight regions, though this is not as obvious as it is for bulges.
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1.2.3 Kirchhoffs Rule for Quantum Wires

One particle quantum scattering theory on an arbitrary finite graph with n

open ends and where we define the Hamiltonian to be (minus) the Laplace

operator with general boundary conditions at the vertices. This results in a

scattering theory with n channels has been observed in [24]. The correspond-

ing on-shell S-matrix formed by the reflection and transmission amplitudes

for incoming plane waves of a negative energy explicitly was given in terms of

the boundary conditions and the lengths of the internal lines. It appears to

be unitary, which may be viewed as the quantum version of Kirchhoffs law.

The system exhibits covariance and symmetry properties. It is symmetric

if the boundary conditions are real. Also there is a duality transformation

on the set of boundary conditions and the lengths of the internal lines such

that the low energy behavior of one theory gives the high energy behavior of

the transformed theory. Finally we provide a composition rule by which the

on-shell S-matrix of a graph is factorizable in terms of the S-matrices of its

subgraphs. All proofs only use known facts from the theory of self-adjoint

extensions, standard linear algebra, complex function theory and elementary

arguments from the theory of Hermitian symplectic forms.

1.3 Novel numerical methods development

Recently this problem has given a boost to the development of a number of

novel numerical methods [25], where the autohers surveyed various numerical

methods for finding solutions of quantum confined states, especially consid-

ering states in two-dimensional (2D) tubes, or 2D surfaces that are confined

in the transverse direction but are unconfined in the longitudinal direction.

We first review existence proofs for bound states in long 2-D tubes. They

also reviewed various methods for finding such states and we discuss the

significance of these eigenstates.

When inventing problems for introductory courses in quantum mechanics,

it is common for instructors to avoid the complications of space-dependent

potentials by dealing with motion in a region with constant (i.e., zero) po-
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tential, bounded by hard walls. By doing so, one can focus on the effects

of the boundary conditions on the solutions. Thus, the student typically

begins with a one-dimensional box, after which he/she can study a box in

two or three dimensions. As we will show in this article, solutions on two-

dimensional surfaces exhibit a number of interesting quantum properties,

symmetries, and degeneracies. In this paper, we consider a number of simple

two-dimensional (2D) hard-wall geometries, which can be straightforwardly

solved numerically by undergraduates, and we give examples of the types of

solutions that can be demonstrated for such systems. One example of a 2D

system that has been widely investigated is a 2D region where a particle is

confined to a cavity. Such systems have a direct analog with electromagnetic

waves in a 2D cavity. For electrons moving in a 2D cavity in a quantum

heterostructure, such a state is commonly referred to as a quantum dot.1 In

this paper, our emphasis will be on particles moving in long tubes or chan-

nels, where the particle is confined in the transverse direction but can move

freely in the longitudinal direction. Such states for electrons in quantum

heterostructures are referred to as quantum wires or electron waveguides”.

It has been relatively recently understood that under a rather general set

of conditions, confined modes will exist in these 2D tubes, despite the fact

that confined modes would not exist for classical particles in such a system.2

As we will show, any localized bulge or bend in an otherwise straight chan-

nel or quantum wire will give rise to a stationary state which has a lower

energy than the threshold energy for free motion down the channel; the cor-

responding wave function is thus localized. Two popular textbooks have

posed problems dealing with these states, but the approaches used in these

problems involved variational methods or limiting cases, which are sufficient

to demonstrate the existence of a confined mode but which can give a rather

poor value for the energy. In this paper we discuss various numerical meth-

ods by which one can obtain accurate answers, and in certain cases extremely

precise values, for the eigenstates in simple geometries.
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Statement of the problem

2.1 S-type skew symmetric cross-wire system:

motivation and reasoning

With the advance of fine-line lithography, devices can now be made which

conduct along two-dimensional surfaces shaped into channels the width of

which can be as narrow as 75nm. Configured in four terminal junctions,

such quantum wires are used to investigate quantum interference effects.

We introduce a skew-symmetric quantum wire intersection, as shown in

Fig.[2.1], such that one of the two wires is straight, whereas the other one

is curved. This system is more likely to posses a quantum bound state,

compared to the other types of geometry.

Since for the configurations we consider there is no trapping classically,

the presence of a localized quantum mechanical state is not an obvious phe-

nomenon. It shows the quantum binding of a classically unbound system,

and thus complements the phenomenon of the decay of a classically bound

state by quantum tunneling. The problem is distinct from open geometries

explored previously, such as that where the conducting region is contained by

hyperbolas x
2
y
2 = const. Because of the ”pinched-off” arms of that shape,

there are an infinity of classical periodic orbits, so that the presence there of

quantum bound states is not surprising. We return to this point later. We

believe that the detailed shape of the potential which confines the electron

21
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Figure 2.1: Schematic diagram of the potential formed by the crossed wires.

to the channel is not important in determining the qualitative fact of the

presence of a bound state at the intersection. We take a potential which is

zero inside the channels and infinite outside, so that the Hamiltonian is

H =
p
2

2m∗ (2.1)

inside the well, with the boundary condition that the electron’s wave function

goes to zero on the sides of the channel. We have used two methods to

calculate the bound-state energy and wave function and describe them in

the following paragraphs. One of these methods is also suitable for extension

to the propagating case, and we show results from such calculations.

We also are looking for a different type of solution in the ”arms“ or

”sleeves” away from the central square. Once the influence of the other

arm is negligible, the problem becomes identical to one-dimensional infinite

potential well with well known sin(πx/(2a)). Thus we seek the solution with a

parabolic profile which provides a better description of the realistic quantum

state compared to the ”‘trianlge” shape.
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There could be two basic methods to calculate numerically the bound-

state energy and wave function and describe them in the following para-

graphs. One of these methods is also suitable for extension to the propagating

case, and we show results from such calculations. We conclude with some

remarks on other configurations, and on the two-electron case. Schematic

diagram of the potential formed by the crossed wires is the following: The

hatched area, together with symmetry statements, is sufficient to display in-

formation about the bound-state wave functions and is the area shown in

Fig. 2. The regions I through V are used in our function expansion method.

The origin of the x and y axes is taken to be located at the lower left corner

of region V . The system obviously possesses four-fold rotational symmetry.

The wave function goes to zero on the sides of the channel (see Fig. 2.1).

Two methods are used to calculate the bound-state energy and wave function.

The first model is a mesh point method in which the Authors replace the

Schrödinger equation

Hψ = Eψ (2.2)

by a difference equation for the wave function evaluated on a rectangular

mesh of points in the plane of wires with discrete evolution in a “pseudotime”

variable, t [39]. This equation is the discretized version of the differential

equation

δΨ/δt = ∆Ψ, (2.3)

where ∆ is the Laplacian operator. Then the difference equation is given,

which was iterated until Ψ becomes an eigenfunction of the discretized ∆

operator. When the initial wave function is taken to be symmetric about

the center lines in the x and y directions and about the diagonal line x = y,

the eigenvalue found below the propagation threshold with the corresponding

energy E = 0.66Et, where Et = �2(π/w)2/(2m∗) is the threshold energy, w

is the width of the channel.
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2.2 Variational principle and formalism

Variational principle, or Rayleigh-Ritz principle, is an approximation method

of calculations of the one-particle eigenvalues (mostly, the ground state), dif-

ferent from the perturbation method [26].

Let |Ψn� be the eigenstate of H. We introduce some normalized nearby

state |Ψ�

|Ψ� = |Ψn�+ |δΨ� (2.4)

so that �Ψ|Ψ� = 1. This means that if |Ψn� is a complete orthonormal set of

the eigenstates of H, then

|Ψ� = |Ψn�+ |δΨ� = N |Ψ�+
�

n �=m

�m|Ψm� (2.5)

for some small numbers �m. Let E be the expectation value of H in |Ψ�. The

main idea of the variational method is that the change of E due to the �m

vanishes in the first order:

δE = �Ψ|H|Ψ� − �Ψn|H|Ψn� = �Ψn|H|δΨ�+ �δΨ|H|Ψn�+ �δΨ|H|δΨ� (2.6)

The sate is normalized, �Ψ|Ψ� = 1. Therefore,

�δΨ|Ψ�+ �Ψ|δΨ� = δ�Ψ|Ψ� = 0. (2.7)

Ground state is the most important case. Let |Ψ0� - ground state and it

is not degenerate. Then H|Ψ� = E
0
1 |Ψ0�.

�Ψ|H|Ψ� =
�

n

En|�Ψ|Ψn�|
2
≥

�

n

E
0
1 |�Ψ|Ψn�|

2 = E
0
1�Ψ|Ψ� = E

0
1 (2.8)

The ground state is a true minimum. Our solution is based on this fact.
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2.3 Existence of a quantum bound state in a

rectangular crossed-wire system

Now we present a solution to a simpler considered problem, originally sug-

gested by Krishna Rajagopal in 1974. The ground state energy is below the

lowest possible propagating state energy, therefore the existence of a quan-

tum bound state is confirmed. We demonstrate the existing solution of the

cross-shaped infinite region based on [2].

2.3.1 Previously used trial function by K.Rajagopal

We start with Schródinger equation for the considered geometry:

−
�2
2m

�
∂
2Ψ(x, y)

∂x2
+

∂
2Ψ(x, y)

∂y2

�
= EΨ(x, y) (2.9)

Following the variable separation procedure, we look for the solution in the

following form:

Ψ(x, y) = X(x)Y(y) . (2.10)

This results in the following expression:

Y∂
2X
∂x2

+ X∂
2Y
∂y2

= −
2mE
�2 XY , (2.11)

being split into two separate equations:

d
2X
dx2

= −k
2
xX (2.12)

d
2Y
dy2

= −k
2
yY (2.13)

with k
2
x + k

2
y = 2mE

�2 . The general solution to Eq.2.13 is Y(y) = C1 cos kyy +

C2 sin kyy, and, in order to satisfy the boundary conditions Y(±a) = 0, we

need to assume ky = n
π
2a with its minimal value ky = π

2a . Therefore, the
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propagating particle energy must satisfy

E ≥
�2
2m

�
k
2
x +

π
2

4a2

�
(2.14)

We conclude that every state with its energy eigenvalues being less then the

critical energy :

Ecr =
π
2�2

8ma2
(2.15)

represent a bound state.

Here we address a trial function for our problem, first suggested by Kr-

ishna Rajagopal in 1974 [2]:






�
1− xy

a2

�
e−α |x| < a&& |y| < a

�
1− x

a

�
e−α|y| |x| < a&& |y| > a

�
1− y

a

�
e−α|x| |x| > a&& |y| < a

0 otherwise

(2.16)

Obviously, the function is continuous and drops to zero in the boundaries,

and therefore satisfies all the requirements for a wave function. However, the

first derivative of this trial function is broken along certain lines, referred to

as roof lines.

2.3.2 Solution based on variational principle

Here we briefly review the solution for the ground state energy corresponding

to the previously considered K.Rajagopal trial function.

We note that generally the solution consists of three parts - normalization

of the wave function, bulk integration as well as the roof lines integration.

While the first two steps are rather straightforward, the roof-line part requires

special integration techniques, involving generalized function properties. We

are going to develop general integration method, leading to the roof-line

integrals for both Rajagopal and S-type trial functions. This method will be

elaborated in details in Appendix A. As for now, we will just summarize the
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results, as it was presented in [2].

First, we not that the whole interior of the cross-shaped region consists of

8 pairs of distinct regions, triangular 1/8 symmetric cut of the central square

and a half of each sleeve (this parts will be referred to as ”1“ and ”2“ ). The

normalization condition could be now presented as:

8 (I1 + I2) = 1 (2.17)

with the probability density evaluated as follows:

Part ”1“:

I1 =
1

2
A

2

a�

x=0

a�

y=0

�
1−

x y

a2

�2
e−2γ

dxdy =
11

36
A

2
a
2e2γ (2.18)

and Part ”2“:

I2 = A
2

∞�

x=a

a�

y=0

�
1−

x

a

�2
e−2γx/a

dxdy = A
2
a
2e

−2γ

6γ
. (2.19)

These equations lead to the following normalization condition:

8

�
A2

a
2

6γ
e−2γ +

11

36
A

2
a
2e−2γ

�
= 1 (2.20)

and, finally,

A =

�
9γ

2a2
e2γ

6 + 11γ
(2.21)

Now we calculate the ground state (average kinetic) energy:

�H� = −
�2
2m

�Ψ(x, y)|
∂
2

∂x2
+

∂
2

∂y2
|Ψ(x, y)� = −8

�2
2m

(J1 + J2) , (2.22)
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where J1 vanishes:

J1 =
1

2
A

2

a�

0

�
1−

xy

a2

��
∂
2

∂x2
+

∂
2

∂y2

��
1−

xy

a2

�
e−γ

dxdy = 0 . (2.23)

In contrast, J2 term is as follows:

J2 = A
2

∞�

x=a

a�

y=0

�
1−

y

a
e−γx/a

��
∂
2

∂x2
+

∂
2

∂y2
[= 0]

�
(2.24)

�
1−

y

a
e−γx/a

�
dxdy =

1

6
A

2
γe2γ

We add up all the results, and without the roof lines the ground state energy

is:

�H� − −
2

3
A

2�2γ
m

e−2γ (2.25)

Now we summarize the results for the roof line integration.

The roof lines in this case are classified as follows:

• right arm central symmety line (×8) K1 ;

• central square symmetry lines - K2 ;

• central square boundary lines - K1 ;

After the applying generalized funciton properties, the integration results are

as follows:

K1 =
2�2
mγ

e−2γ
A

2 (2.26)

K2 =
2�2
m

e−2γ
A

2 (2.27)

K3 =
2�2
2m

(3γ − 1)A2 (2.28)

Finally, after taking into account all the required components and the
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proper normalization, the

�H� =
3�2
ma2

γ
2 + 2γ + 3

6 + 11γ
(2.29)

Consequently, we are looking to the variational parameter γ value, minimiz-

ing the ground state energy:

d�H�

dγ
= 0 . (2.30)

Here we are obviously looking for a minimum, the maximum does not exist.

This minimum condition (Eq.2.30) results in

(6 + 11γ)(2γ + 2) = 11(γ2 + γ + 3) (2.31)

and

γ =
−6 +

√
36 + 21

11
γ = 0.940 (2.32)

and the corresponding energy is

E0 = �H� =
3�2
ma2

3(γ + 1)

11
=

6

11

�2
mγ2

(γ + 1) = 1.058
�2
ma2

(2.33)

This result is obviously an approximation. The true value of the ground

state energy is less than E0. However, the obtained energy values is below

the threshold energy obtained in the previous section:

Ecr =
π
2

8

�2
ma2

= 1.2337
�2
ma2

(2.34)

Consequently, the existence of a quantum bound state is proved. As

the next step, we will present a novel trial wave function, leading to a lower

ground state energy value.
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S-type skew symmetric crossed

wires: ground state

In this Chapter, the calculations are discussed to determine whether quantum

effects can cause the trapping of an electron at the intersection of S-type skew

symmetric cross-wire system. The sketch of the system is shown in Fig.3.1.

Such electron trapping could modify considerably the operation of devices

made of these wires by changing their transport and optical properties, such

as electron mobility and localization parameters, that are important for op-

tical sensing in particular.

The principle problem here is to develop a new trial function that would

lead to a lower value of the ground state energy, and then to calculate the

corresponding bound state energy of the system. Obviously, the wave func-

tion must be smooth (the function itself and its first derivative must both be

continuous), otherwise quantum current can not be defined correctly. The

point is that one or a few spatial derivatives (the gradient components) of

the wave function is an essential and necessary part of the current definition

in Quantum Mechanics. Consequently, the current cannot be calculated if

the wave function is not smooth due to the non-existence of the wave func-

tion first derivatives in some directions. However we consider a stationary

states calculations with no current here and so in our trial wave function

there could be lines of discontinuity of the first derivative. The latter will

30
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be referred to as ”roof lines” in what follows. Roof lines, or lines with the

discontinuous spatial derivative of the wave function, are the central point

here. The system behavior along these lines is clearly unphysical since the

first derivative of the wave function does not exist. In principle this leads

to singularities (non-standard behavior) of a quantum current, but this does

not affect the bound state calculations with no current we are interested in.

Also such regions (or lines) are normally associated with δ-function (infinite)

type of potential, which has nothing to do with the potential profile of our

problem on the wave function spatial domain.

We do try to minimize the number and the impact of the roof lines in our

variational model. To this end, we are looking for a better type of solution in

the arms (or sleeves) away from the central square (see Fig.3.1), where the

influence of the other arm is negligible and so, the problem becomes identical

to one-dimensional infinite potential well with the well-known ground state

wave function solution of the form
�

1/a sin[x/(2a)] (2a is the sleeve width).

The simplest wave function profile to mimic this behavior is the parabolic

profile which we chose over here to provide a better description to the realistic

quantum state.

3.1 The trial wave function

First, we specify all regions, where the wave function is specified by a separate

formula (see Fig.3.1):

R1 (central curved rhombus)

The region of the highest probability density is as follows;






(|x|− a)2 + (|y|− a)2 > a
2

|x| < a

|y| < a

with the constant wave function
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Figure 3.1: General schematics and geometry of the problem with finite incli-
nation angle α. The regions of the different wave function spatial dependence
are specified by different colors.

Ψ1(x, y) = Ne−γ = const , (3.1)

Since the region is considerably larger compared to the case of Rajagopal

wave function, our present normalization constant is expected to exceed the

previously established normalization:

N
Rj =

�
9γ

2a2
e2γ

11γ + 6
(3.2)

R2 (four quarter-circles)

The remaining part of the central square could be specified as






(|x|− a)2 + (|y|− a)2 < a
2

|x| < a

|y| < a

(3.3)



CHAPTER 3. S-TYPE SKEW SYMMETRIC CROSSEDWIRES: GROUND STATE33

Figure 3.2: Roof line, representing the beginning of the exponential decay.
The wave function is demonstrated for x of the range from −0.92 a to 0.92 a,
and y - from 0 to 2.24 a. The wave function is presented as a density plot using
Temperature colormap, in which the red color corresponds to the highest
probability density and the blue one - to the lowest. This convention is
adopted for all the density plots in the present Thesis.

with another wave function

Ψ2(x, y) = N

�
1−

�
1−

∆

a

�2
�
e−γ (3.4)

∆ =
�

(a− |x|)2 + (a− |y|)2 (3.5)

so the wave function depends only on the distance from the adjoining ver-

tex of the central square. Obviously, the function is isotropic (no angular

dependence) in the translated coordinates.

R3 (two circular segments)

• The upper circular segment (C.S.) is located in the following region:






y > a

y < −Tx+ a(1 + T )

(x− a)2 + (y − a)2 < (2a)2 ,

(3.6)



CHAPTER 3. S-TYPE SKEW SYMMETRIC CROSSEDWIRES: GROUND STATE34

• the lower one: 




y < −a

y > −Tx− a(1 + T )

(x+ a)2 + (y + a)2 < (2a)2
(3.7)

where T = tanα and C = 1/T = cotα. The corresponding wave function is

given as:

Ψ3(x, y) = N

�
1−

�
1−

∆�

a

�2
�
e−γ (3.8)

∆� =
�

(a∓ x)2 + (a∓ y)2 , (3.9)

where the ∓ sign correspond to the upper and lower regions respectively, so

that the corresponding vertices of the central square are {a, a} and {−a,−a}.

The dependence is very similar to that of R2 region, however the wave func-

tion is equal to zero for both ∆� = 0 and ∆� = 2a to ensure zero probability

density at all boundaries (on the both sides).

R4 (Eight semi-infinite rectangles - ”sleeves”)

At this point we need to account for the difference between the horizontal

(R4,{3,4,5,6}) and inclined vertical (R4,{1,2,7,8}) sleeves.

The region R4 consists of the lower inclined sleeve:






y < −Tx− a(1 + T )

y < cx− a(1− c)

y > cx− a(1− c+ 2
√
1 + c2)

(3.10)

and the upper one:






y > −Tx+ a(1 + T )

y > cx+ a(1− c)

y < cx+ a(1− c+ 2
√
1 + c2)

(3.11)

We write the wave function in such way that the equations would rep-

resent similar coordinate dependence in the slanted {ξ, η} local coordinate
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Figure 3.3: Spherical trial function with strong attenuation.

systems for each sleeve, presented at Fig.1:

R4,{1,2} ⇒ Ψ4,� = N

�
1−

�
ξ

a

�2
�
e−γ(1+η/a) (3.12)

ξ =
|− cx+ y − a(1− c+

√
1 + c2)|

√
1 + c2

(3.13)

η =
|Tx+ y − a(1 + T )|

√
1 + T 2

(3.14)

and, in a similar manner:

R4,{7,8} ⇒ Ψ4,� = N

�
1−

�
ξ

a

�2
�
e−γ(1+η/a) (3.15)

ξ =
|− cx+ y + a(1− c+

√
1 + c2)|

√
1 + c2

(3.16)

η =
|Tx+ y + a(1 + T )|

√
1 + T 2

(3.17)

In the case of a symmetric quantum dot (α = 0):

R4,v ⇒ Ψ4,v = N

�
1−

�
x

a

�2
�
e−γ|y|/a (3.18)
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According to our model, only inclined vertical sleeves R4,{1,2,7,8} alter with

angle α, whereas the horizontal sleeves R4,{3,4,5,6} are not modified (as well

as the central square):

R4,h ⇒ Ψ4,h = N

�
1−

�
y

a

�2
�
e−γ|x|/a (3.19)

One can easily verify that for α = 0 the circular segments R3 disappear

Figure 3.4: Density plot of the trial function for finite values of the inclination
angle α. The plots are presented for three different angles α = 300, 500

and 700 and for two values of the decay constant - γ = 0.4 and γ = 0.7,
corresponding to the variational minimum of the Hamiltonian expectation
value.

and the inclined vertical sleeves wave functions (3.12),(3.15) tend to the

expression of the wave function in the vertical sleeve (3.18). These wave

functions are different from the one obtained by Ragajopal as predicted.
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Figure 3.5: Roof line, representing the beginning of the exponential decay.
The wave function is demonstrated for x of the range from −0.92 a to 0.92 a,
and y - from 0 to 2.24 a.

3.2 Variational approach to the expectation

values

In order to obtain the new normalization coefficient, we perform the integra-

tion of the probability density |Ψi(x, y)|2.

R1. The wave function Ψ1(x, y) is constant in the central curved rhombus.

First, we need to obtain the area of R1

A1 = (2a)2 − 4

�
1

4
πa

2

�
= (4− π)a2 � 0.858a2 (3.20)

and the corresponding probability density:

Ψ1(x, y) = Ne−γ
⇒ |Ψ1(x, y)|

2 = N
2e−2γ (3.21)

I1 =

�
dx

�

R1

dy |Ψ1(x, y)|
2 = N

2
A1e

−2γ = (4− π)N 2
a
2e−2γ

.

R2. Region R2 consists of four equivalent quarter-circles. We demon-

strate the result for the quarter-circle with the center at {a, a}, so that the

contribution from R2 region is expected to be 4I2. Correspondingly, we find
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Figure 3.6: 3D plots of the new trial wave function.

the wave function integral:

Ψ2(x, y) = N

�
1−

�
1−

r

a

�2
�
e−γ (3.22)

I2 = N
2

a�

0

rdr

π/2�

0

dφ

�
1−

�
1−

r

a

�2
�2

e−2γ = N
211

60
πa

2e−2γ
,
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where r is the distance from {a, a}-vertex of the central square to the point

of observation for our choice of the sample region.

Region R3 vanishes for α = 0.

R4. We consider a sample horizontal sleeve and keep in mind that the

actual contribution of this region comes as 4I4

Ψ4(x, y) = N

�
1−

y

a

��
1 +

y

a

�
e−γ|x|/a (3.23)

I4 =

a�

−a

dy

� ∞

a

dx |Ψ4(x, y)|
2 = N

2

a�

−a

dy

� ∞

a

dx

�
1−

�
y

a

�2
�2

e−2γx/a =

= N
28a

2e−2γ

15γ
.

The total integral now could be written as:

I = I1 + 4I2 + 4I4 = N
2

�
(4− π)a2e−2γ +

11

15
πa

2e−2γ +
32a2e−2γ

15γ

�
= 1

N
2 =

15γ

4a2
e2γ

8 + (15− π)γ
=

3.75

8 + 11.86γ

γ e2γ

a2
.

Obviously, our normalization coefficient is expected to be considerably smaller

than N
Rj. For γ = 0.94, leading to the variational minimum of the Hamilto-

nian expectation value for ΨRj(x, y), the normalization coefficient would be

N 2 = 1.207/a2 in comparison to (NRj)2 = 1.697/a2.

3.2.1 Bulk Integration

Now we are at position to evaluate the expectation value of the Hamiltonian

everywhere inside the cross. As a matter of fact, we need to account only for

two different integrals B2 and B4, corresponding to R2 and R4 regions. The

actual expression is as follows:

�H�b = −
�2
2m

�
Ψ(x,y)|

∂
2

∂x2
+

∂
2

∂y2
|Ψ(x,y)

�
= −4

�2
2m

(B2 + B4) (3.24)

Important. First, we note that the bulk integral B1 = 0, since the wave
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function is constant in region R1 (central rhombus). In spite of the fact that

the components of the gradient (spatial derivatives) are not equivalent, the

general convex-concave symmetry is not broken. In the case of Rajagopal

trial function the situation is similar.

In each case we need to evaluate the following quantity:

Bi =

�

Ri

dx dyΨi(x, y)

�
∂
2Ψi(x, y)

∂x2
+

∂
2Ψi(x, y)

∂y2

�
(3.25)

since the wave function is always real. The latter statement also leads to the

fact that any quantum-mechanical current for the suggested trial function is

equal to zero everywhere in the system.

B2 - quarter-circles

Since the wave function Ψ2(r) has only radial dependence, it is advisable to

take its Laplacian as well as the spatial integral in polar coordinates:

Ψ2(r) = N

�
1−

�
1−

r

a

�2
�
e−γ (3.26)

∇
2Ψ2(r) =

∂
2Ψ(r)

∂r2
+

1

r

∂Ψ(r)

∂r
= N

2

a2

�
a

r
− 2

�
e−γ

B2 =

a�

0

rdr

π/2�

0

dφ∇
2Ψ2(r)Ψ2(r) = −

1

6
N

2
πe−2γ

B4 - semi-infinite rectangles (sleeves)

First, we evaluate the Laplacian of the trial function, considering one model

upper vertical sleeve with y > a

∇
2Ψ4(x, y) = N ∇

2

��
1−

x
2

a2

�
e−γy/a

�
= N

(γ2 − 2)a2 − x
2
γ
2

a4
e−γy/a

.

(3.27)

Here we first encounter the situation, where both x− and y− second deriva-

tives are non-zero, namely, while the ∂
2
/∂y

2 is the result of the exponential

decay (derivatives of all orders are non-zero); ∂2
/∂x

2 reflects the parabolic
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transversal profile of the wave function. The situation was not encountered

with the Rajagopal trial function.

Consequently, the integral is in the form of

B4 =

a�

−a

dx

∞�

a

dyΨ4(x, y)∇
2Ψ4(x, y) = 4N 2

�
2γ

15
−

1

3γ

�
e−2γ (3.28)

Also it is interesting to mention that here in contrast to ΨRj(x, y), the pure

term (without normalization) B4/N
2 → ∞ for γ → 0, which corresponds

to the infinite region of finite concavity of the sleeves. The singularity is

compensated by the similar behavior of the wave function normalization.

Now we can summarize the results of the bulk integration:

�H� = −
�2
2m

�
Ψ(x,y)|

∂
2

∂x2
+

∂
2

∂y2
|Ψ(x,y)

�
= −4

�2
2m

(B2 + B4) =(3.29)

= −N
2 �2
15γm

�
16γ2

− 5πγ − 40
�
e−2γ

So far we just note that for γRj = 0.94 we would obtain �H� = +0.440N �2/m,

whereas for ΨRj(x, y) this term is purely negative for any value of γ.

3.2.2 Roof Line Integration

One of the most important features of the new trial wave function is minimal

number and complexity of the roof lines. In fact, there is only one type of

such line L1, associated with the beginning of the exponential decay in the

sleeves.

We recall the analytic expressions of the function Ψ2(x, y) in the close

vicinity of L1

Ψ2(x, y) = N
�
1− (1−∆/a)2

�
e−γ

∆ =
�

(a− |x|)2 + (a− |y|)2 , (3.30)
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so we can expand it in terms of the small x−displacement from L1, namely

δx = (a− x)/a

Ψx<a(x, y) = N

��
1−

�
y

a

�2
�
+

y

a− y
δ
2
x

�
e−γ

, (3.31)

Obviously the expansion is not valid at y = ±a. The physical reason to that

is that both components of the wave function gradient (spatial derivative)

are not continuous However, the vertices of the central square do not give any

contribution to any of the integrals since the wave function Ψi(±a,±a) = 0.

Now the generic wave function next to L1 is presented as:

F0(x, y) = N

��
1−

�
y

a

�2
�
θx>a +

��
1−

�
y

a

�2
�
+

y

a− y
δ
2

�
θx<a

�

×exp
�
−γ

�
θx<a +

x

a
θx>a

��
.

Anzats. Since the only source of non-smooth C
0-type behavior is the

beginning of the exponential decay, and we are collecting only δ-function

terms, the sought second derivative could be written:

N

��
1−

�
y

a

�2
�
θx>a +

��
1−

�
y

a

�2
�
+

y

a− y
δ
2
x

�
θx<a

�
×

exp
�
−γ

�
θx>a +

x

a
θx<a

��
×

∂
2

∂x2

�
−γ

�
θx>a +

x

a
θx<a

��

F0(x, y) = N

��
1−

�
y

a

�2
�
θx>a +

��
1−

�
y

a

�2
�
+

y

a− y
δ
2
x

�
θx<a

�
×

× exp
�
−γ

�
θx<a +

x

a
θx>a

��

F0(x → a, y) = N

�
1−

�
y

a

�2
�
e−γ

The function is smooth (no roof lines) for γ → 0, so we can write

∂
2Ψ

∂x2
= −N

�
1−

�
y

a

�2
�

γe−γ

a
δ(x− a) (3.32)
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a�

−a

dy

�
1−

�
y

a

�2
�2

=
16a

15
(3.33)

The roof line integral could be expressed in the final form:

L = 4 ·

�
−

�2
2m

�
N

2

a�

−a

dy

a+��

a−�

dxΨ(x → a, y)
∂
2Ψ(x → a, y)

∂x2
(3.34)

L =
2�2
m

N
2

a�

−a

dy

�
1−

�
y

a

�2
�2

γe−2γ

a
=

32

15

�2
m
N

2
γe−2γ (3.35)

3.3 Hamiltonian Expectation Values

3.3.1 Zero inclination angle

Now we find the Hamiltonian average as the sum of the bulk and the roof

integrals:

B =

�
−

�2
2m

�
4 (B2 + B2) = −

�2
15γm

N
2
�
16γ2

− 5πγ − 40
�
e−2γ (3.36)

and

L =
32�2
15m

N
2
γe−2γ (3.37)

so that the expectation value:

�H� = B + L =
�2
m
N

2e
−2γ

15γ

�
16γ2 + 5πγ + 40

�
. (3.38)

Taking into account the normalization constant

N
2 =

15γ

4a2
e2γ

8 + (15− π)γ
=

3.75

8 + 11.86γ

γ e2γ

a2
, (3.39)

we finally obtain

�H� =
�2
ma2

16γ2 + 5πγ + 40

60γ − 4πγ + 32
(3.40)
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Applying the variational principle, we find the values of the exponential de-

cay constant ”gamma”, corresponding to the minimum of the ground state

energy. This results in γ = 0.840 and E = 0.898�2/(ma
2).
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Figure 3.7: Energy expectation value as a function of the exponential decay
γ, which is chosen as the variational parameter.

3.3.2 Finite non-zero inclination angle.

As we already mentioned, the number and the type of the roof lines are not

altered in the case of y-asymmetric quantum dot. Correspondingly, we need

to supplement the normalization with term 2× I3, and bulk integrals - with

B3 from region R3:

Ψ3(x, y) = N

�
1−

�
1−

∆�

a

�2
�
e−γ

, (3.41)

∆� =
�

(a∓ x)2 + (a∓ y)2 , (3.42)
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so that the integrals

I3 = N
2

α�

0

dφ

2a�

0

rdr |Ψ3(r)|
2 = αe−2γ

2a�

0

�
1−

�
1−

r

a

�2
�2

rdr ,(3.43)

I3 = N
216

15
αa

2e−2γ

and

∇
2Ψ3(r) =

∂
2Ψ3(r)

∂r2
+

1

r

∂Ψ3(r)

∂r
= N

2

a2

�
a

r
− 2

�
e−γ (3.44)

2a�

a

rdr

�
1−

�
1−

r

a

�2
�

2

a2

�
a

r
− 2

�
= −

8

3
(3.45)

B3 =

a�

0

rdr

α�

0

dφΨ2(r)∇
2Ψ2(r) = −N

28

3
αe−2γ (3.46)

and, finally,

−
�2
2m

B3 = +
4

3

�2
m
N

2
α e−2γ (3.47)

Now we summarize all the terms,

I1 = N
2(4− π)a2e−2γ (3.48)

I2 = N
211

60
πa

2e−2γ (3.49)

I3 = N
216

15
αa

2e−2γ (3.50)

I4 = N
2 8

15γ
a
2e−2γ (3.51)

so that

I =
�

λ

Iλ = 1 (3.52)

1

N 2
= I1 + I2 + I3 + I4 =

4a2

15γ
(8 + γ(15− π + 8α)) e−2γ (3.53)

The normalization constant N is, therefore, equal to:
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Figure 3.8: Ground state energy for the skew symmetric cross-wired system.
The upper panel shows how the variational minimum for the decay coefficient
γ depends on the inclination angle α and the lower two plots represent the
angular dependence of the ground state energy and the bound state energy
respectively.
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N =

√
15γ

2a
eγ (8 + γ(15− π + 8α))−1/2 (3.54)

The bulk and roof line integrals, therefore, give:

�H� = −
�2
2m

N
2 1

15

�
5π + 8

�
5α +

5

γ
+ 2γ

��
e−2γ (3.55)

which result in the following final equation to determine the ground state

energy :

�H� =
�2

4ma2

5πγ + 8(5 + 5αγ + 2γ2)

8 + γ(15− π + 8α)
(3.56)

Now we are looking for the angular dependence of the variational minimum

of the ground state energy. Since we chose the exponential decay coefficient

γ to be that variational parameter, its angular dependence is now obtained

by simple differentiation:
d�H(α)�

dγ
= 0 (3.57)

This results in the following angular dependence of γ:

γ =
−32−

�
1024− 4(10π − 75)(30− 2π + 16α)

2(30− 2π + 6α)
(3.58)

Equation (3.58) provides the result for the exponential decay coefficient γ for

an arbitrary value of the inclination angle α. These values of γ correspond

to the variational minimum of the energy as a function of α. The obtained

dependence, being one of our main results, is presented in Fig.3.8.

Having obtained all the relevant numerical results, we are at position to

discuss its physical properties.

First, we can conclude that a finite inclination angle α leads to an increase

of both inverse normalization constant N due to an extra finite region of

non-zero wave function (see Fig.3.1) and the bulk integral term since another

piece of a finite curvature is added. These regions were previously denoted

as R3 (upper and lower). Apart from that, here we are dealing with a new

situation, where the variational minimum of the exponential decay coefficient

γ varies with changing α. Correspondingly, in order to apply the variational
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procedure, we re-derive the value of γ for each individual value of angle angle

α.

The variational results for bound state energy are shown in Fig 3.8 at the

two lower panels. We define the corresponding bound state energy as the

difference between the obtained ground state energy and the minimal energy

of a propagating state. According to our previous discussions, this critical

energy is equal to �treshold = 1.234�2/(ma
2) (see Eq.(2.15)). We see that

the ground state energy increases with the inclination α. This increase is

finite, limited and does not reveal any singularities. Analyzing our results, we

conclude that the binding energy decreases to approximately 2/3 of it initial

value. It does not completely disappear, making the bound state possible for

all values of the inclination angle. The obtained property makes the S-type

skew symmetric system distinguished from the standard X-type.

3.4 Concluding remarks

Finalizing this thesis, I would like to emphasize the uniqueness and impor-

tance of the studied system. Indeed, there are very few structures, demon-

strating quantum bound states in classically unbound systems. In this re-

spect the problem definitely presents substantial interest from the theoret-

ical point of view. Apart from that, simple two-channel geometry enables

relatively accessible fabrication of tunable sensors based on the electronic,

transport and optical properties of the S-type skew symmetric cross-wired

system.

In this thesis, we have analyzed the angular dependence of the lowest

energy bound state for an electron trapped at the intersection of two identical

narrow channels (quantum wires) crossed at an arbitrary angle in such a way

that the channel intersection area forms the square. When the channels are

perpendicular, this is an unbound system, classically, that is known to possess

a purely quantum single electron bound state [1]. Our task was to investigate

the bound state energy as a function of the wire intersection angle, in order

to find out whether the electron trapped state is still there for a non-zero

inclination angle, and then to calculate the functional behavior of the bound
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state energy as the channel intersection angle varies.

The very first main step we have done was to find a right trial function

that solves the problem by means of the variational approach. Specifically, an

analytical expression for the trial function was found and tested. The func-

tion is supposed to be smooth in the bulk, and it must drop down to zero at

the boundaries. In addition, the so-called roof lines, the lines of discontinu-

ous derivatives, have been found and characterized, and their contributions

have been calculated using a special set of recipes.

Using the variational principle and the trial function established, the

ground state energy of the problem has been calculated. This includes:

• finding the proper normalization constant of the accepted trial wave

function,

• calculating the contributions to what of the bulk integrals and those of

the roof lines. We used the exponential attenuation coefficient γ as the

variational parameter, resulting in the lowest value of the ground state

energy for any inclination angle α.

The bound state is present for any inclination angle α. The binding energy

decreases with the increasing inclination angle α. However, the bound state

persists for all accessible values of α, which is known not to be the case for

other types of the wire intersection geometry. This is the central result of

our work.

Our results have been compared with those obtained by using other (sim-

pler) trial functions available in quantum mechanics texts. A qualitative

agreement is demonstrated. The results of this thesis were presented with

success at the annual American Physical Society meeting in Denver, CO, in

March 2014 [49].

3.5 Research outlook

This is mostly a theoretical work, although it maintains certain approaches

and patterns of numerical experiment, including visualizations and simula-

tions using the Mathematica package.
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The trial function found was then tested by using it in numerical sim-

ulations. It was demonstrated to result in the lowest possible ground state

energy expectation value.

I would like to summarize briefly and to discuss the importance of the

present thesis work, and also to point out its applications and possible future

research directions. They are:

• This thesis work describes an important example of a quantum system,

which is unbound in a classical sense, but yet it does possess a purely

quantum bound state. The results are unique in that they give the

angular dependence of the binding energy of the electron trapped at

the skew-symmetric quantum channel intersection. This is something

that was not reported before in the literature.

• The data and simulations, presented in this work, will be useful for

the correct interpretation of electron transport peculiarities in realistic

quantum systems such as semiconductor nanowire films and carbon

nanotube bundles.

• The results obtained provide new useful information of relevance to the

properties of semiconductor quantum dot-like systems and other de-

vices of confined geometries. Understanding the properties of quantum

confined systems is important for the development of a variety of ap-

plications in modern nanotechnology. For example, a bound quantum

state in an S-type skew symmetric cross-wire system could potentially

be used to control electron transport on the nanoscale, or as an optical

sensor, or as a switch.

• Also, this thesis work presents an important educational example that

is worth of including into laboratory assignments for advanced physics

courses. Just to mention, a simpler version of the trial function for the

same problem (after Krishna Rajagopal) is included in the second edi-

tion of the Introductory Quantum Mechanics textbook by D.J.Griffith

(Pearson, 2005). My trial function that has been developed in this the-

sis, has an advantage over Rajagopal’s since it is specifically designed
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to minimize and simplify the roof-line system, and so it may serve as a

pedagogical example for the critical development of textbook material

for students.



Appendix A. General approach

to roof lines

The mechanism of roof-line integration is the following: we find all the exist-

ing lines, where the wave function exhibits C0
2D-type behavior, which means

that the function is obviously continuous, but the first derivative has a finite

discontinuity (Heaviside step). Consequently, the second derivative across

the roof line represents a δ-function, thus must be taken into account in the

integration.

We consider a generic function in the form of

F (x) = f(x)e−γg(x) (4.1)

and take its second derivative, yeilding

F
��(x) =

�
f
��(x)− 2γf �(x)g�(x) + f(x)

�
γ
2 (g�(x))2 − γg

��(x)
��

e−γg(x) (4.2)

The most general idea is to find and use only the terms, which could poten-

tially give a δ function and will contribute to infinitesimally small x-integral
a+��
a−�

.

Let us now consider Rajagopal wave function in the vicinity of the line

where the exponential decay begins. This is the only relevant roof line in our

52
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Figure 4.1: (Color online). Roof line schematics.

case. For ΨRj we have:

f(x) = 1−
y

a

�
θ(x− a) +

x

a
θ(a− x)

�
, (4.3)

g(x) = θ(a− x) +
x

a
θ(x− a)

with the second derivatives:

f(x)�� =
y

a2
δ(x− a) , (4.4)

g(x)�� =
1

a
δ(x− a) ,

We collect only terms containing second derivatives of f(x) and g(x):

∂
2Ψb(x, y)

∂x2
|x→a = (f ��(x)− γf(x)g��) e−γ = −

1

a
δ(x− a)

�
γ

�
1−

y

a

�
−

y

a

�
e−γ

The result is equivalent to that of the ”canonical” solutions, provided in

the textbooks. Obviously, f and g are functions of both spatial variables



CHAPTER 4. APPENDIX A. GENERAL APPROACH TO ROOF LINES54

{x, y}, however at this derivation we were particularly interested in the

x−dependence.

Figure 4.2: (Color online). Roof line schematics.

For our wave function the only relevant term is:

−γf(x)g��(x)e−γf(x) (4.5)

g
��(x) =

1

a
δ(x− a) (4.6)

f(x → a, y) = N

�
1−

�
y

a

�2
�

(4.7)

∂
2Ψb(x → a, y)

∂x2
= −N

γ

a

�
1−

�
y

a

�2
�
δ(x− a)e−γ

, (4.8)

which confirms our results.



Bibliography

[1] Schult, R. L. and Ravenhall, D. G. and Wyld, H. W., Phys. Rev. B, 39,

8, 5476-5479 (1989); DOI: 10.1103/PhysRevB.39.5476.

[2] D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed. (Pearson

Prentice-Hall, Upper Saddle River, 2005).

[3] Ledentsov, N. N., et al. ”Quantum dot heterostructures: Fabrication,

properties, lasers (Review).” Semiconductors 32.4 (1998): 343-365.

[4] Petroff, Pierre M., Axel Lorke, and Atac Imamoglu. ”Epitaxially self-

assembled quantum dots.” Physics Today 54.5 (2001): 46-52.

[5] Jamieson, Timothy, et al. ”Biological applications of quantum dots.” Bio-

materials 28.31 (2007): 4717-4732.

[6] Osika, E. N., B. Szafran, and M. P. Nowak. ”Simulations of electric-dipole

spin resonance for spin-orbit coupled quantum dots in the Overhauser field:

Fractional resonances and selection rules.” Physical Review B 88.16 (2013):

165302.

[7] Loss, Daniel, and David P. DiVincenzo. ”Quantum computation with

quantum dots.” Physical Review A 57.1 (1998): 120.

55



CHAPTER 5. BIBLIOGRAPHY 56

[8] Nozik, Arthur J., et al. ”Semiconductor quantum dots and quantum dot

arrays and applications of multiple exciton generation to third-generation

photovoltaic solar cells.” Chemical reviews 110.11 (2010): 6873-6890.

[9] Bonadeo, Nicolas H., et al. ”Coherent optical control of the quantum

state of a single quantum dot.” Science 282.5393 (1998): 1473-1476.

[10] A.I. Ekimov, A.I., Onushchenko, A.A., JETP Lett. 34 (1981) 345349.

[11] Efros, A., Efros, L., Soviet Phys. SemiconductorsUSSR 16 (1982)

772775.

[12] Brus, L. E. ”A simple model for the ionization potential, electron affinity,

and aqueous redox potentials of small semiconductor crystallites.” The

Journal of chemical physics 79.11 (1983): 5566-5571, APA.

[13] Gammon, Daniel, and Duncan G. Steel. Optical studies of single quan-

tum dots. NAVAL RESEARCH LAB WASHINGTON DC, 2002.

[14] Reed, M. A. and Randall, J. N. and Aggarwal, R. J. and Matyi, R. J.

and Moore, T. M. and Wetsel, A. E., Phys. Rev. Lett., 60, 6, 535-537

(1988).

[15] Leonard, D., et al. ”Direct formation of quantum?sized dots from uni-

form coherent islands of InGaAs on GaAs surfaces.” Applied Physics Let-

ters 63.23 (1993): 3203-3205.

[16] P. Guyot-Sionnest C. R. Physique 9 (2008) 777787

[17] Delerue, M., Lannoo. A., Springer. p.47, (2004).

[18] M. L. Roukes, A. Scherer, S. J. Allen, Jr., H. G. Craighead, R. M.

Ruthen, E.D.Beebe,and J.P.Harbison, Phys.Rev.Lett, 59, 26 (1987).

[19] G. Timp, H. U. Baranger, P. deVegvar, J. E. Cunningham, R. E.

Howard, R. Behringer, and P. M. Mankiewich, Phys.Rev.Lett, 60, 20

(1987).



CHAPTER 5. BIBLIOGRAPHY 57

[20] Harold U. Baranger, A. Douglas Stone, David P. DiVincenzo,

Phys.Rev.B: RC, 37, 11 (1988).

[21] Exner, P., et al. ”Bound states and scattering in quantum waveguides

coupled laterally through a boundary window.” Journal of Mathematical

Physics 37.10 (1996): 4867-4887.

[22] A.L. Delitsyn, B.T. Nguyen, and D.S. Grebenkov, Eur. Phys. J. B (2012)

85: 176.

[23] J. Goldstone, R. L. Jaffe, Phys. Rev. B, 45, 24 (1992).

[24] V. Kostrykin, ArXiv:math-ph/9806013, v.2, 15, (1999).

[25] Londergan, J. T., and D. P. Murdock. ”Confined modes in two-

dimensional tubes.” American Journal of Physics 80.12 (2012): 1085-1093.

[26] Ernest S. Abers, Quantum Mechanics, University of California, Los An-

geles, 2004.

[27] J. P. Carini, J. T. Londergan, D. P. Murdock, D. Trinkle, and C. S.

Yung, Phys. Rev. B 55, 9842 (1997).

[28] M. L. Roukes, A. Scherer, S. J. Allen, H. G. Craighead, R. M. Ruthen,

E. D. Beebe, and J. P. Harbison, Phys. Rev. Lett.59, 3011 (1987).

[29] G. Timp, H. U. Baranger, P. deVegvar, J. E. Cunningham, R. E.

Howard, R. Behringer, and P. M. Mankiewich, Phys.Rev. Lett. 60, 2081

(1988).

[30] F. M. Peeters, Phys. Rev. Lett. 61, 589 (1988).

[31] F. M. Peeters, Superlattices and Microstructures 6, 217 (1989), ISSN

0749-6036.

[32] H. U. Baranger, A. D. Stone, and D. P. DiVincenzo, Phys. Rev. B 37,

6521 (1988).

[33] M. A. Reed, Sci. Am. 268, 118 (1993).



CHAPTER 5. BIBLIOGRAPHY 58

[34] F. Lenz, J. Londergan, E. Moniz, R. Rosenfelder, M. Stingl, and K.

Yazaki, Annals of Physics 170, 65 (1986), ISSN 0003-4916.

[35] J. Goldstone and R. L. Jaffe, Phys. Rev. B 45, 14100 (1992).

[36] G. Dunne and R. Jaffe, Annals of Physics 223, 180 (1993), ISSN 0003-

4916.

[37] P. Exner and P. Seba, Journal of Mathematical Physics 30, 2574 (1989).

[38] P. Exner, Physics Letters A 141, 213 (1989).

[39] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,

Numerical recipes (Cambridge Univ. Press, 1986).

[40] F. Sols, M. Macucci, U. Ravaioli, and K. Hess, Applied Physics Letters

54, 350 (1989).

[41] J. P. Carini, J. T. Londergan, K. Mullen, and D. P. Murdock, Phys.

Rev. B 46, 15538 (1992).

[42] J. P. Carini, J. T. Londergan, K. Mullen, and D. P. Murdock, Phys.

Rev. B 48, 4503 (1993).

[43] C.-K. Wang, Semiconductor Science and Technology 10, 1131 (1995).

[44] L. Lewin, Theory of Waveguides (Newnes-Butterworth, London, 1975).

[45] F. Sols and M. Macucci, Phys. Rev. B 41, 11887 (1990).

[46] J. C. Wu, M. N. Wybourne, W. Yindeepol, A. Weisshaar, and S. M.

Goodnick, Applied Physics Letters 59, 102 (1991).

[47] W. Yindeepol, A. Chin, A. Weisshaar, S. Goodnick, J. Wu, and M.

Wybourne, in Nanostructures and Mesoscopic Systems,edited by W. P.

Kirk and M. A. Reed (Academic Press, Boston, 1992), pp. 139149, ISBN

978-0-12-409660-8.

[48] C.-K. Wang, K.-F. Berggren, and Z.-L. Ji, Journal of Applied Physics

77, 2564 (1995)



CHAPTER 5. BIBLIOGRAPHY 59

[49] S. Nepal, L Zhemchuzhna, A Meliksetyan and I.V.Bondarev, Bound

electron states in skew-symmetric quantum wire intersections, Bulletin of

the American Physical society, 59, H1.00149 (2014).




