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Determination of Minimised Kt Values and Boundary Shapes 
for a Class of Quasi-Rectangular Holes in Infinite Plates 

Executive Summary 

Aerospace Division is extensively involved in developing technologies that reduce the cost of 

ownership of aircraft in service with the Royal Australian Air Force (RAAF) by extending the 

fatigue lives of airframe structural components. A shape optimisation technology, based on 

iterative finite element analysis techniques, has been developed and used by Aerospace 

Division to determine optimal repair profiles that can be applied to areas where stress 

concentrations have caused a location to become fatigue critical. Such optimal shapes 

produce significant reductions in peak stress as compared to typical non-optimal circular 

holes. However, iterative numerical analysis to determine optimal shapes is very 

computationally intensive and time consuming. A need therefore exists to have at hand sets 

of stress-minimised shapes that can be easily and rapidly used in repair applications.  

Transferable solutions for stress-minimised quasi-rectangular holes in a two-dimensional 

infinite plate have been determined for a number of remote loading conditions and a wide 

range of hole aspect ratios. These include uniaxial, equibiaxial and reversed biaxial loading 

cases. The analytical shape and tangential stress equations for these quasi-rectangular holes 

can readily be used to obtain solutions for other specific biaxial loading cases that are of 

interest. The equation for the radius of curvature for these shapes has also been derived. 

Tables and plots of shape parameters and stress concentration factors are provided, enabling 

the stress-minimised quasi-rectangular hole shapes to be easily and rapidly applied by 

designers. These shapes produce peak stresses that are often within 10% of those obtained by 

free-form shape optimisation, and they can serve as initial shapes for subsequent free-form 

shape optimisation analyses. The source code for the program that was used to determine 

the stress-minimised quasi-rectangular hole shapes as a function of hole aspect ratio is 

provided, as is a set of functions that are suitable for use in spreadsheets. For the first time, 

these tools provide an automated procedure that enables a designer to set up a biaxial 

loading condition of interest and then determine sets of stress-minimised quasi-rectangular 

hole shapes that vary as a function of hole aspect ratio. 

The families of quasi-rectangular hole shapes that have been developed in this report 

provide additional valuable insights into stress-minimised rework hole shapes. They also 

facilitate an improved capability for rapidly designing such rework shapes for use in RAAF 

structural repairs while significantly reducing the amplitudes of peak stresses that can lead 

to early fatigue failures. The parametric shape studies that were conducted here have 

increased the knowledge about the effectiveness of various hole shapes to significantly 

enhance the fatigue lives of RAAF airframe structural components. Structural engineers who 

are working on implementing lightening holes to create lightweight, structurally-efficient 

designs can also easily apply these shapes to improve the performance characteristics of their 

structures. 
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Nomenclature 

a length of semimajor axis of ellipse 

b length of semiminor axis of ellipse 

Kt stress concentration factor 

Ktmax maximum stress concentration factor 

Ktmin minimum stress concentration factor 

l length of hole in plate 

r corner radius of square-like hole in plate 

w width of hole in plate 

W width of plate 

x rectangular Cartesian x-coordinate of hole boundary 

𝑥̇ first derivative with respect to  of x-coordinate of hole boundary 

𝑥̈ second derivative with respect to  of x-coordinate of hole boundary 

y rectangular Cartesian y-coordinate of hole boundary 

𝑦̇ first derivative with respect to  of y-coordinate of hole boundary 

𝑦̈ second derivative with respect to  of y-coordinate of hole boundary 

 shape parameter associated with quasi-rectangular hole 

β load axis misalignment angle 

 shape parameter associated with quasi-rectangular hole 

 parametric polar angle 

 aspect ratio of hole, = l/w 

ξ angle of applied remote tension stress at infinity 

 radius of curvature 

min minimum radius of curvature 

max maximum radius of curvature 

 applied remote tension stress at infinity 

x applied remote direct stress in the x-direction 

y applied remote direct stress in the y-direction 

 tangential stress around boundary of hole 

x’ transformed applied remote direct stress 

y’ transformed applied remote direct stress 

x’y’ transformed applied remote shear stress 

 geometric polar angle of a point on hole boundary 
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1. Introduction 

Holes are a common feature in aircraft and other engineering structures, and they are often 

prone to fatigue damage because of the stress concentrations that they introduce. 

Considerable prior work has been undertaken by Aerospace Division of Defence Science and 

Technology Group (DST Group) to determine precise optimal rework shapes to minimise the 

peak stresses occurring at existing holes and other stress concentrations in ageing aircraft 

structures, leading to substantial increases in fatigue life. The shapes were computed using 

finite element analysis (FEA) in conjunction with a custom-written FORTRAN program that 

implemented a fully-automated iterative gradientless shape optimisation algorithm (Heller et 

al. 1999), which has subsequently been significantly enhanced over many years (Waldman et 

al. 2001, Heller et al. 2002, Burchill and Heller 2004a, Burchill and Heller 2004b, McDonald 

and Heller 2004). It now includes features such as radius-of-curvature geometric constraints 

(Waldman et al. 2002), as well as the ability to simultaneously minimise multiple stress peaks 

(Waldman and Heller 2006, Waldman and Heller 2015). 

The shapes that result from application of the DST Group gradientless shape optimisation 

method are fully free form in nature and do not rely on analytical functions to represent the 

boundary shape. However, they are generally computationally expensive to determine and, 

as a result, it is somewhat difficult and time consuming to perform parametric studies to 

obtain a better understanding of the parameters that are of importance for particular loading 

conditions. The shape optimisation process for holes also requires an initial “kick-off” shape, 

which is usually based on simple circular or elliptical hole shapes, or whatever hole 

geometry is originally present in the structural component under consideration. For some 

problems of interest, it is desirable to be able to define an initial hole shape that already bears 

some resemblance to an optimal hole, preferably based on analytical equations, as this can 

lead to more rapid convergence to the optimal solution, as well as smoother boundaries 

when the optimal shape is determined. 

The topic of stress-minimising optimal holes in plates has been of considerable research 

interest for many decades. Even so, extremely few general analytical solutions exist, and 

those that do are only for some very specific loading cases. Durelli and Murray (1943) 

determined that an elliptical hole of aspect ratio length:width = l:w in a biaxial stress field of 

x:y = l:w (where x  y) produces a uniform distribution of tangential stress around the 

hole boundary equal to (l/w+1)x (as long as the two combined stresses are of the same sign). 

Under these conditions, the value of the uniform stress is much less than the maximum peak 

stress produced by a circular hole for the same loading, (3l/w1)x, unless x:y = 1:1, in 

which case the values are equal. 

Some experimental and numerical analysis work has been carried on square-like holes to 

determine minimised values of stress concentration factor. Brock (1958) presented an exact 

analytical solution for the stresses around square holes with rounded corners of arbitrary 

corner radius, r, for the case of simple uniform uniaxial loading and a range of corner radius 

to hole width ratios, r/w. A minimum stress concentration factor of about 2.8 (7% lower than 

for a circular hole) was obtained for r/w ≈ 3/8. A small number of experimentally-

determined quasi-square hole shapes for a range of loadings were reported by Durelli and 

Rajaiah (1979, 1980, 1981), which had been obtained using photoelastic analysis techniques. 
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For the finite-width plates that were tested, the best reported hole shape produced a stress 

concentration factor of 2.54 for a hole width to plate width ratio of w/W = 0.14. Using the 

inverse of a finite-width correction for holes in plates obtained from Pilkey (2008), this stress 

concentration factor is reduced to 2.49 for the equivalent infinite plate case. Dhir (1981) 

developed an analytical/numerical procedure that enabled a class of square-like hole 

geometries to be studied for uniaxially-loaded or biaxially-loaded infinite plates, but yet 

again little transferable hole shape data was provided. For the case of uniaxial loading, Dhir 

(1981) obtained a minimum stress concentration factor of 2.47, which is about 1% lower than 

that which was obtained by Durelli and Rajaiah (1981). 

Vigdergauz and Cherkayev (1986) studied single holes in an elastic plate loaded at infinity 

by mutually perpendicular tensile and compressive stresses (xy < 0), for which they 

determined values of stress concentration factors using a numerical method. They proposed 

a condition of optimality that the absolute magnitude of the tangential stress be constant 

almost everywhere around the boundary of the hole. They determined that the optimal hole 

shapes are almost rectangular, having curved sides with corners of a definite included angle, 

with the ratio of the sides and the included angles being dependent on the applied loading. 

As the stress fields near the corners were considerably distorted, they determined the stress 

concentration factors only for segments of the boundary lying near the middle of the sides. 

They did not present shape coefficients for their optimal hole shapes, except for one 

comparison with an existing solution, nor were any distributions of tangential stress 

provided. 

Rajaiah and Naik (1983) have studied hole shapes with minimum stress concentration in 

infinite isotropic plates under in-plane loading conditions. They utilised well-known 

conformal transformation techniques to determine a set of closed-form analytical equations 

used for calculating the distribution of tangential stress around the boundary of quasi-

rectangular holes (see Figure 1). These holes could be subjected to tension and/or 

compression loadings aligned with the major or minor axes of the hole, thus enabling many 

different uniaxial and biaxial loading scenarios to be easily investigated. Their solutions do 

not have any sharp corners, unlike those described by Vigdergauz and Cherkayev (1986), 

and thus are quite amenable to being manufactured. As a result of the rounded corners, they 

are also expected to be relatively robust if small variations from the assumed loading 

conditions occur. 

The expressions derived by Rajaiah and Naik (1983) are compact in nature, as well as being 

exact for the geometry that is under consideration. The hole shapes are specified through the 

use of two independent parameters, and the stress-minimised shapes offer worthwhile 

reductions in stress concentration compared to traditional circular and elliptical shapes. 

Their analytical formulation is therefore highly suitable for use in obtaining data on families 

of easily-computed transferable hole shapes that provide minimised values of stress 

concentration. 

Section 2 describes the analytical equations that can be used for computing hole shapes and 

their associated distributions of tangential stress. In a new development, closed-form 

equations for the radius of curvature are also given. In order to validate the equations, 

Section 3 presents some comparisons with the results obtained from other known solutions. 
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In Section 4, the method used to compute the families of shapes is outlined, and sets of 

results obtained for a wide range of typical uniaxial and biaxial loading cases that are of 

engineering interest are provided. These include the shape parameters and the associated Kt 

values. Finally, the conclusion is given in Section 5. 

2. Analytical equations for a class of quasi-rectangular 
holes in 2D plates 

As mentioned previously, Rajaiah and Naik (1983) have derived a set of equations for 

computing the tangential stress distribution around the boundary of quasi-rectangular holes 

in infinite two-dimensional plates under general biaxial in-plane remote loading conditions. 

Their formulation will be used here to conduct a series of parametric studies to determine 

the variation in stress concentration factor, Kt, for quasi-rectangular holes of different aspect 

ratios under a variety of uniaxial and biaxial loading conditions. 

2.1 Equations for shape of hole boundary 

Consider a general quasi-rectangular hole in a biaxially-loaded infinite plate, where the 

idealised geometry is as shown in Figure 1. The boundary contour of the hole is given by the 

following two equations: 

 x = a (cos +  cos3) (1) 

 y = a ( sin   sin3) (2) 

where  is the polar angle that changes from 0° to 360° when going around the boundary of 

the hole,  and  are hole shape parameters that can take on values in the range 0 <  ≤ 1 

and 0.12 ≤  ≤ 0, and a is the semimajor axis of the hole. For general values of  and , the 

opening is elongated in the x-direction. When  = 1 and  = 0, a circular hole of radius a is 

obtained. An elliptical hole shape results when the value of  = 0 and  < 1 (and in this 

instance the aspect ratio of the elliptical holes is 1/). 

2.2 Equations for tangential stress around hole boundary 

When the plate is subjected to a remote tension stress x aligned with the x-axis (see Figure 

1), which is the major axis of the opening, Rajaiah and Naik (1983) have determined that the 

tangential stress around the hole boundary due to this load, x, is given by the equation: 

 x = {(B2/C2) + (1/C2){(–Acos + 2Bsin) 

  – [4Acos/(1+) – 3Acos3 + 2B(–2sin/(1+) + 3sin3)] (3)

  – 82
(Acos – Bsin)/(1+)2}}x 

Similarly, when the plate is subjected to a remote tension stress y aligned with the y-axis 

(see Figure 1), which is the minor axis of the opening, the tangential stress around the hole 

boundary due to this load, y, is given by the following equation: 
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 y = {(A2/C2) + (1/C2){2Acos – Bsin 

  + [2A(2cos/(1+) + 3cos3) – 4Bsin/(1+) – 3Bsin3] (4)

  + 82(Acos – Bsin)/(1+)2}}y 

where 

 A = cos – 3cos3 

 B = sin + 3sin3 

 C2 = A2 + B2 

The total tangential stress around the hole boundary, , due to the independent action of the 

remote stresses x and y, is therefore given by the following equation: 

  = x + y (5) 

2.3 Equation for radius of curvature around hole boundary 

In order to assist in the assessment of the machinability of quasi-rectangular hole shapes, it is 

useful to be able to compute the radius of curvature around the boundary of such holes. The 

radius of curvature  corresponding to the boundary shape defined by the expressions in 

Equations (1) and (2) can be easily computed using the following equation: 

 () =|
(𝑥̇2+𝑦̇2)3/2

𝑥̇𝑦̈ − 𝑦̇𝑥̈
| (6) 

where 

 𝑥̇ = a (–sin – 3sin3) 

 𝑥̈ = a (–cos – 9cos3) 

 𝑦̇ = a (cos – 3cos3) 

 𝑦̈ = a (–sin + 9sin3) 

For an ellipse with a major axis of length l = 2a and a minor axis of width of w = 2b, the 

minimum and maximum radii of curvature, min and max, are: 

 min = b2/a    at the vertices of the major axis (7) 

 max = a2/b    at the vertices of the minor axis (8) 

For an ellipse, we also have that  = b/a. Hence, the normalised minimum and maximum 

radii of curvature are given by the following two expressions: 

 min/w = /2 (9) 

 max/w = 1/(22) (10) 
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3. Comparison with other solutions 

The previously described formulas for the boundary shape of the quasi-rectangular hole and 

the tangential stress , from which Kt values may be readily calculated, have been 

implemented in a Microsoft Excel spreadsheet using the Visual Basic for Applications (VBA) 

programming language. The source code listing of the various functions is provided in 

Appendix A, and the spreadsheet can be requested from the author if desired. In the three 

following subsections, the Kt results computed by using these formulas have been compared 

to some other known solutions for particular cases, as well as against results obtained by an 

alternative general-purpose numerical analysis technique. 

3.1 Original results from Rajaiah and Naik (1983) 

As an initial check on the correctness of the programming of the equations for the quasi-

rectangular hole, Kt results were computed for the various loading and geometry cases that 

had previously been analysed by Rajaiah and Naik (1983). Table 1 shows the results obtained 

from the present work, as well as those originally published by Rajaiah and Naik. It is seen 

that the results from the present implementation are in excellent agreement with those of 

Rajaiah and Naik for all of the cases that they originally considered. 

3.2 Tangential stress around circular holes 

The formula for the distribution of tangential stress  around a circular hole due to a biaxial 

stress field consisting of remote stresses x and y is well known, and is given here as 

  = [1 – 2cos2]x + [1 – 2cos2(–/2)]y (11) 

By substituting  = 1 and  = 0 into Equations (3) and (4), after a little algebraic manipulation 

it can be shown that we obtain Equation (11). 

Figure 2 shows the results obtained for the Kt distribution around one-quarter of the 

boundary of a circular hole in a plate with a biaxial loading x:y = 1:–1, using the equations 

for the circular hole and the quasi-rectangular hole with shape parameters  = 0 and  = 1. 

This demonstrates the expected exact agreement between the two sets of results. 

3.3 Tangential stress around elliptical holes 

Consider the stretching of an infinite plate containing an elliptical hole that is free from 

external stresses. The stress state at infinity is a tension stress whose magnitude is  in a 

direction forming an angle ξ with the x-axis. Muskhelishvili (1953) has obtained the 

following compact expression for the tangential stress  around the boundary of the ellipse 

  =  
1−𝑚2+2𝑚 cos 2ξ−2 cos 2(θ−ξ)

1−2𝑚 cos 2θ+𝑚2
  (12) 

where 

 𝑚 =
𝑎−𝑏
𝑎+𝑏

=
𝑙−𝑤
𝑙+𝑤

=
𝑙/𝑤−1
𝑙/𝑤+1

 (13) 
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and a is the length of the semimajor axis of the ellipse aligned in the x-direction, b is the 

length of semiminor axis of the ellipse aligned in the y-direction, l = 2a is the length of the 

ellipse, and w = 2b is the width of the ellipse. Here the (x, y) coordinates defining the shape of 

the ellipse can be determined from the expressions x = a cos  and y = b sin . It is noted that if 

m = 0 (when a = b) then the shape becomes a circle. Alternative solutions to this problem 

have also been obtained by Inglis (1913), Durelli and Murray (1943), Brown (1977) and Gao 

(1996). The analytical solutions obtained by Brown (1977) and Gao (1996) also permit the 

calculation of the full-field elastic stresses and displacements around an elliptical hole. 

For the case of a stress field consisting of the remote direct stresses x and y and a remote 

shear stress xy, it is possible to obtain the solution for the tangential stress by summation. 

The contribution that is due to x is obtained by substituting  = x and ξ = 0 into Equation 

(12), while the contribution due to y is obtained by substituting  = y and ξ = /2, and the 

contributions due to xy are obtained by substituting  = xy and ξ = /4 and also  = –xy and 

ξ = 3/4. Performing the summation leads to the following expression for the total tangential 

stress around the boundary of the ellipse 

  =  
1+2𝑚−𝑚2−2 cos 2θ

1−2𝑚 cos 2θ+𝑚2
 x  +  

1−2𝑚−𝑚2+2 cos 2θ

1−2𝑚 cos 2θ+𝑚2
 y  –  

4 sin 2θ

1−2𝑚 cos 2θ+𝑚2
 xy (14) 

For elliptical holes, there are some relatively simple test cases that can be conveniently 

analysed. Under tensile biaxial loading conditions x:y (xy = 0), the optimal stress-

minimising ellipse has a corresponding aspect ratio of l:w = x:y, and the stress 

concentration factor is constant around the entire boundary of the ellipse and is given by Kt = 

(1+l/w). When these combinations of loading and ellipse geometry were utilised, the results 

obtained when using Equations (3) and (4) were in complete agreement with those obtained 

when using Equation (14). 

Figure 3 shows the tangential stress distribution for an elliptical hole with aspect ratio l:w = 

5:2 and biaxial loading x:y = 2:1 (xy = 0), and compares the results that were computed 

using Equations (3) and (4) with those obtained using Equation (14). The two sets of results 

are in complete agreement. 

3.4 Tangential stress around quasi-rectangular holes 

Although the Sections 3.3 and 3.3 were helpful in establishing the correctness of the 

equations used for characterising the shape and tangential stress distribution for quasi-

rectangular holes, they were somewhat limited in their scope because they utilised  = 0 

exclusively. It is therefore desirable to check the accuracy of the equations using a test case 

where   0. This can be done by setting up and analysing a finite element model of the 

chosen geometry and loading. This would require approximating the infinite plate solution 

by utilising a very large plate in order to minimise finite-width effects on the solution. 

A boundary element analysis code that was originally developed by Chang and Mear (1995) 

has the ability to deal with infinite domains as part of its formulation. This code has been 

provided to DST Group by Newman et al. (2006) in a computer program called FADD2D that 

runs under the 32-bit edition of Microsoft Windows XP. The FADD2D code was used to 



UNCLASSIFIED 
DST Group-TR-3125 

7 
UNCLASSIFIED 

perform an independent analysis of a test case involving a quasi-rectangular hole with 

geometry parameters  = 0.0876 and  = 0.5269 for a remote biaxial loading of x:y = 1:1. 

In order to do this, Equations (1) and (2) were used to compute a series of points along the 

boundary of the quasi-rectangular hole. These points were then used to create a FADD2D 

input deck (see Appendix A) in which the hole geometry was specified using a total of 36 

parabolic segments. Each of these parabolic segments was defined using three sequential 

points, and each segment was itself subdivided into two boundary elements. The shape of 

the quasi-rectangular hole that was studied is shown in Figure 4a. 

A comparison between the two sets of Kt distributions around one-quarter of the hole 

boundary is shown in Figure 4b. It is evident that there is excellent agreement between the 

results produced by the FADD2D boundary element analysis code and the equations 

developed by Rajaiah and Naik (1983). The FADD2D code computed values of Ktmax = 2.846 

and Ktmin = 3.712, while the equations produced Ktmax = 2.849 and Ktmin = 3.718. In both 

cases the differences here are less than 0.2%. 

If desired, it is also possible to check the robustness of the quasi-rectangular hole designs to 

small amounts of loading misalignment. This can be achieved in the FADD2D code by 

specifying appropriate combinations of remote direct stress and shear stress in order to 

simulate the desired angular amount of loading misalignment, while keeping the orientation 

of the hole geometry constant. Consider again a system of remote direct stresses defined by 

x and y (see Figure 1). If we wish to rotate the original applied loading by an angle β in the 

clockwise direction, then the new equivalent remote loading consisting of the transformed 

direct stresses x’ and y’ and shear stress x’y’ can be determined by using the expressions 

 x’ = x cos2β + y sin2β (15) 

 y’ = x sin2β + y cos2β (16) 

 x’y’ = (y – x) sinβ cosβ (17) 

3.5 Free-form gradientless shape optimisation solutions 

A number of solutions for holes are available that were obtained using the DST Group free-

form shape optimisation method that utilises iterative finite element analysis (Burchill and 

Heller 2004b, Waldman and Heller 2006, Waldman and Heller 2015). The equivalent load 

cases and geometries were analysed using the quasi-rectangular hole formulation proposed 

by Rajaiah and Naik (1983) in order to determine the stress concentration factors, and the 

results are presented in Table 2. It is evident that stress-minimised quasi-rectangular hole 

solutions can often produce peak Kt values that are quite close in value to those obtained 

through FEA-based free-form shape optimisation, often to within 10% or less. 

In general, the Kt values determined using quasi-rectangular holes are somewhat greater in 

magnitude. This is to be expected, as the geometric form of a quasi-rectangular hole is 

constrained by its shape equations, whereas the FEA-based shape optimisation method has 

no such restrictions because it is free-form in nature, other than possible user-applied 

minimum radius of curvature constraints. 
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Looking at the results in Table 2 for the uniaxial loading case (x:y = 1:0), as the shape of the 

holes becomes more elongated in the direction of the applied load, it is evident that the 

stress-minimised quasi-rectangular holes produce Kt values that get progressively closer to 

those from the free-form FEA solutions. When  = 1, the quasi-rectangular hole has a Kt that 

is 13.3% higher, but by  = 5 the difference has reduced to 1.8%. Even by  = 2, the difference 

is only 8.1%. This trend in the quasi-rectangular hole results is also evident in the other 

loading cases that are presented in Table 2. 

Figure 5 shows the shapes and Kt distributions for two square-like hole designs obtained for 

the uniaxial remote loading of x:y = 0:1 and hole aspect ratios of  ≈ 1. One of the holes was 

determined using the method of Rajaiah and Naik (1983). Its aspect ratio is  = 1, and the 

computed shape parameters are  = 0.0545 and  = 1, and it has peak Kt values of 2.469 and 

–0.911 and min/w = 0.248. The other hole was determined using the free-form FEA-based 

multiple stress peak shape optimisation method of Waldman and Heller (2015). Its aspect 

ratio is  = 0.9803 (it is slightly higher than it is wide), and it has peak Kt values of 2.259 

and 0.836 and min/w = 0.143 (a geometric restriction that was set for this selected shape 

optimisation case). 

Looking at Figure 5a, it is clear that the two shapes are quite different. The shape obtained 

using the method of Rajaiah and Naik (1983) is much more circular and entirely concave, and 

has a larger minimum radius of curvature as a result of the geometric restrictions imposed 

on it by Equations (1) and (2). On the other hand, the FEA-obtained optimal shape has much 

tighter corner radii, and is convex in shape at the top and bottom where the stresses are 

compressive. Looking at Figure 5b, it is noted that the optimal shape obtained using FEA-

based shape optimisation has much longer and more uniform regions of Kt, in both the 

tensile and compressive regions. Nonetheless, the two shapes both offer a significant 

reduction of the peak tensile Kt value versus that produced by a standard circular hole. 

4. Computation of the minimum Kt and the hole shape 

Using Equations (1) to (4), a FORTRAN program was written to numerically determine the 

values of  and  for stress-minimised quasi-rectangular holes under general biaxial remote 

loading conditions of x:y (see Appendix C). A set of holes with aspect ratios  = l/w 

varying over the range  = 1, 1.25, 1.5, … 4 were studied. We note that the value of the 

parameter  of each such hole is approximately equal to the reciprocal of the aspect ratio,   

1/. By utilising this feature, it is therefore possible to set up a search of the  and  

parameter space, involving computing the boundary coordinates (and hence the true aspect 

ratio of the hole, ) and the minimum and maximum Kt values, Ktmin and Ktmax, for each 

associated shape. Quarter-symmetry conditions were taken advantage of in order to help 

minimise the computational load, and values of  = 0°, 0.125°, 0.250°, … 90° were used to 

produce a fine angular resolution of 0.125° when determining the peak Kt values. The shape 

parameter  was varied incrementally and covered the range of values  = 0, 0.0001, 0.002, 

… 0.1200. Similarly, the shape parameter  was varied incrementally, covering the range 

0.90/ ≤  ≤ 1.10/ in steps of 0.0001. In the event that the value of the upper limit exceeded 

1, the range 0.80/ ≤  ≤ 1/ was used instead. From the computed results, it was then 

possible to determine the values of  and  that produce a minimum value of 

Max(|Ktmin|,|Ktmax|) for each desired hole aspect ratio . 



UNCLASSIFIED 
DST Group-TR-3125 

9 
UNCLASSIFIED 

4.1 Computed values of  and  for remote loading of x:y = 1:0 

Table 3 presents the computed Kt values for stress-minimised quasi-rectangular hole shapes 

and standard elliptical hole shapes in an infinite plate under a uniaxial remote loading of 

x:y = 1:0 for the selected range of aspect ratios . The values of the two shape parameters  

and  for each optimal solution are also given, allowing the user to easily compute the hole 

shape using Equations (1)–(2), as well as the distribution of tangential stress  around the 

hole boundary using Equations (3)–(5). For the dual purposes of completeness and ease of 

comparison with the optimal values, the  values for the equivalent elliptical shapes have 

also been provided. 

Figure 6a plots the variation in Kt with increasing hole aspect ratio for the stress-minimised 

quasi-rectangular and the elliptical hole shapes in an infinite plate under a uniaxial remote 

loading of x:y = 1:0. For this loading condition, the Kt decreases with increasing aspect ratio 

. Figure 6b shows the corresponding behaviour of the shape parameters  and  for the 

stress-minimised quasi-rectangular holes. These curves can be used to determine with good 

accuracy the Kt values and shape parameters of stress-minimised quasi-rectangular holes for 

hole aspect ratios in the range 1 ≤  ≤ 4. Figure 6a also shows two results obtained using the 

gradientless multi-peak shape optimisation method of Waldman and Heller (2006), and it is 

evident that the quasi-rectangular shapes have produced higher Kt values. 

Figure 7 shows the shapes and Kt distributions for two stress-minimised quasi-rectangular 

holes for the uniaxial remote loading of x:y = 1:0 and hole aspect ratios of  = 1 and 2. The 

shape with aspect ratio  = 2 produces a zone where the stress is quite uniform in the region 

55° ≤  ≤ 90°. For the case of a hole geometry with an aspect ratio of  = 1, the quasi-square 

hole with rounded corners ( = 0.0544 and  = 0.9996) offers a useful stress reduction of 

17.7% compared to the circular hole. This hole shape also produces a zone where the stress is 

relatively uniform in the region 60° ≤  ≤ 90°, although there is a clearly defined peak in Kt 

that occurs at  = 66.5° which is 5.0% greater than the value at  = 90°. 

4.2 Computed values of  and  for remote loading of x:y = 0:1 

In a similar manner, Table 4 presents the computed Kt values for stress-minimised quasi-

rectangular hole shapes and standard elliptical hole shapes in an infinite plate under a 

uniaxial remote loading of x:y = 0:1, together with the values of the two shape parameters  

and  for each optimal solution. This loading is in a direction perpendicular to the major axis 

of the hole. Figure 8a plots the variation in Kt with increasing hole aspect ratio  for both the 

stress-minimised quasi-rectangular holes and the elliptical holes. For this loading condition, 

the Kt increases with increasing aspect ratio. Figure 8b shows the corresponding behaviour of 

the shape parameters  and  for the stress-minimised quasi-rectangular holes. 

Figure 9 shows the shapes and Kt distributions for two stress-minimised quasi-rectangular 

holes for the uniaxial remote loading of x:y = 0:1 and hole aspect ratios of  = 1 and 2. The 

shape with aspect ratio  = 2 produces a zone of relatively uniform positive stress in the 

region 0° ≤  ≤ 32°. 
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4.3 Computed values of  and  for remote loading of x:y = 1:1 

Table 5 presents the computed Kt values for stress-minimised quasi-rectangular hole shapes 

and standard elliptical hole shapes in an infinite plate under a biaxial remote loading of x:y 

= 1:1, together with the values of the two shape parameters  and  for each optimal solution. 

Figure 10a plots the variation in Kt with increasing hole aspect ratio  for both the stress-

minimised quasi-rectangular holes and the elliptical holes. For this loading condition, the Kt 

increases with increasing aspect ratio. Figure 10b shows the corresponding behaviour of the 

shape parameters  and  for the stress-minimised quasi-rectangular holes. 

Figure 11 shows the shapes and Kt distributions for two stress-minimised quasi-rectangular 

holes for the biaxial remote loading of x:y = 1:1 and hole aspect ratios of  = 1 and 2. The 

shape with aspect ratio  = 1 produces a zone where the stress is completely uniform over 

the entire hole boundary, which corresponds to the region 0° ≤  ≤ 90° in the plot. In 

comparison, the zone of nominally uniform stress for the hole with aspect ratio  = 2 is 

considerably shorter, extending over the region 0° ≤  ≤ 32° in the plot. 

4.4 Computed values of  and  for remote loading of x:y = 1:–1 

Table 6 presents the computed Kt values for stress-minimised quasi-rectangular hole shapes 

and standard elliptical hole shapes in an infinite plate under a reversed biaxial remote 

loading of x:y = 1:1, together with the values of the two shape parameters  and  for each 

optimal solution. Figure 12a plots the variation in Kt with increasing hole aspect ratio  for 

both the stress-minimised quasi-rectangular holes and the elliptical holes. For this loading 

condition, the Kt increases with increasing aspect ratio . Figure 12b shows the 

corresponding behaviour of the shape parameters  and  for the stress-minimised quasi-

rectangular holes. 

It is noted that the curve for the  shape parameter in Figure 12b has a distinctly undulating 

nature, a feature that is absent from the results for the other loading conditions. The reason 

for this is not entirely understood, but it could be something to do with a relative 

insensitivity of the Kt values to small changes in , as in this instance the  parameter covers a 

relatively small range of values, 0.0906 <  < 0.0850. For example, using the computational 

results provided in Table 4, consider the data point (Ktmax, Ktmin, , , ) = (2.9481, 3.2548, 

1.250, 0.8184, 0.0906). If we change the value of  from 0.0906 to 0.0894, so that it lies 

midway between the adjacent two points on the curve, we obtain (Ktmax, Ktmin, , , ) = 

(2.9432, 3.2547, 1.249, 0.8184, 0.0894). This small but noticeable change in  has produced a 

negligible change in Ktmin of around 0.003%, with a very small (0.08%) change in the value of 

the aspect ratio . On that basis, these two results can be regarded as being essentially the 

same, even though the relative change in  was about 1.3%. Hence, it appears that the 

undulations in the  curve can be neglected for our purposes. 

Figure 13 shows the shapes and Kt distributions for two stress-minimised quasi-rectangular 

holes for the reversed biaxial remote loading of x:y = 1:1 and hole aspect ratios of  = 1 

and 2. The shape with aspect ratio  = 1 produces a zone where the tensile portion of the 

tangential stress distribution is relatively uniform over a small section of the hole boundary, 

corresponding to the region 60° ≤  ≤ 90° in the plot. 
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4.5 Computed values of  and  for remote loading of x:y = –1:1 

Table 7 presents the computed Kt values for stress-minimised quasi-rectangular hole shapes 

and standard elliptical hole shapes in an infinite plate under a reversed biaxial remote 

loading of x:y = 1:1, together with the values of the two shape parameters  and  for each 

optimal solution. Figure 14a plots the variation in Kt with increasing hole aspect ratio  for 

both the stress-minimised quasi-rectangular holes and the elliptical holes. For this loading 

condition, the Kt increases with increasing aspect ratio . Figure 14b shows the 

corresponding behaviour of the shape parameters  and  for the stress-minimised quasi-

rectangular holes. Figure 14a also shows the result obtained using the DST Group 

gradientless multi-peak free-form FEA shape optimisation method of Waldman and Heller 

(2006) for  = 1, and it is evident that the quasi-rectangular shape has produced a slightly 

higher Kt value. 

Figure 15 shows the shapes and Kt distributions for two stress-minimised quasi-rectangular 

holes for the biaxial remote loading of x:y = 1:1 and hole aspect ratios of  = 1 and 2. The 

hole shape with aspect ratio  = 1 produces a zone where the tensile portion of the tangential 

stress distribution is relatively uniform over a small section of the hole boundary, 

corresponding to the region 0° ≤  ≤ 30° in the plot. For this case, the quasi-square hole with 

rounded corners ( = 0. 0.0896 and  = 1) offers a useful stress reduction of 23.2% compared 

to the circular hole. 

4.6 Computed values of  and  for remote loading of x:y = 2:1 

Table 8 presents the computed Kt values for stress-minimised quasi-rectangular holes shapes 

and standard elliptical hole shapes in an infinite plate under a biaxial remote loading of x:y 

= 2:1, together with the values of the two shape parameters  and  for each optimal solution. 

Figure 16a plots the variation in Kt with increasing hole aspect ratio  for both the stress-

minimised quasi-rectangular holes and the elliptical holes. For this loading condition, the Kt 

value first decreases with increasing hole aspect ratio until an aspect ratio of  = 2.0 is 

reached, which corresponds to the well-known optimal condition of minimum Kt. As the 

aspect ratio continues to increase, the Kt value then increases as well. Figure 16b shows the 

corresponding behaviour of the shape parameters  and  for the stress-minimised quasi-

rectangular holes. It is noted that when the Kt is at its minimum value then  = 0, and the 

optimal hole shape is that of an l:w = 2:1 ellipse. 

Figure 17 shows the shapes and Kt distributions for two stress-minimised quasi-rectangular 

holes for the biaxial remote loading of x:y = 2:1 and hole aspect ratios of  = 1 and 3. For 

the hole geometry with aspect ratio  = 1, the quasi-square hole with rounded corners ( 

= 0.0287 and  = 0.9996) offers a useful reduction in peak stress of 11.3% compared to the 

peak stress produced by the circular hole. The shape with aspect ratio  = 3 produces a zone 

where the tensile portion of the tangential stress distribution is relatively uniform over a 

small section of the hole boundary, corresponding to the region 0° ≤  ≤ 30° in the plot. For 

this particular loading, Durelli and Murray (1943) have shown that the optimal solution is an 

ellipse with an aspect ratio of  = 2 (also see Figure 16), which produces a constant Kt = 3 

around the entire boundary of the ellipse. From the plots of the Kt distributions in Figure 17b, 
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it is evident that the lines showing the variation in the Kt values straddle a line of constant Kt 

= 3, with their maxima and minima falling either side of Kt = 3. 

5. Conclusion 

Using the formulation developed by Rajaiah and Naik (1983), extensive sets of transferable 

solutions for a single stress-minimised quasi-rectangular hole in an infinite plate have now 

been determined. These were obtained for a number of commonly-analysed biaxial remote 

loading conditions and a wide range of hole aspect ratios, 1 ≤  ≤ 4. The equation for the 

radius of curvature around the hole boundary was also derived in this study. As the 

equations for the quasi-rectangular holes are applicable to general biaxial remote loadings, 

they can be readily used to obtain solutions for specific loading cases that may also be of 

interest. The quasi-rectangular hole formulation as implemented here was in excellent 

agreement with other known analytical solutions for circular and elliptical holes, as well as 

solutions obtained using other numerical techniques, so it can be used with confidence. 

Comprehensive tables and plots of the hole shape parameters,  and , as well as the 

resulting Kt values, have been provided. These enable the quasi-rectangular hole shapes to be 

easily used by designers, with particular applicability to lightening holes used in the creation 

of lightweight, structurally-efficient designs. These stress-minimised shapes can also serve as 

initial shapes for subsequent free-form shape optimisation analyses, using methods such as 

the DST Group iterative FEA-based shape optimisation method, to obtain more accurate 

optimal solutions minimising the peak stresses around the hole boundary. For hole aspect 

ratios close to  = 1, the quasi-rectangular shapes determined here produce peak stresses that 

are often within 10–15% of those obtained by free-form shape optimisation. For holes having 

larger aspect ratios, this improves to 5% or so. 

To aid in the transferability of the work and results that have been presented in this report, 

the source code for a set of functions written in Visual Basic for Applications and suitable for 

use in Excel spreadsheets is listed in an Appendix. The source code for the FORTRAN 90 

program used to determine the stress-minimised quasi-rectangular hole shapes as a function 

of aspect ratio is also provided in another Appendix. This program can be used to determine 

stress-minimised quasi-rectangular shapes for additional specific loading cases not studied 

here. 
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Table 1: Kt values for quasi-rectangular holes in an infinite plate subject to various uniaxial and 
biaxial remote loading conditions. Comparison of present work with the original results 
from Rajaiah and Naik (1983). 

    Kt  

Loading Case 

x:y 
  

Present 
Work 

Rajaiah & Naik 
(1983) 

Elliptical Hole 

( = 0) 

1:1
1
 1.000 0.0 2.0000 2.00 2.0000 

1:0 1.000 –0.055 2.4689 2.47 3.0000 

1:–1 1.000 –0.09 3.0739 3.06 4.0000 

1:0 0.537 –0.02 1.9017 1.90 2.0740 

0:1 0.537 –0.07 3.2435 3.23 4.7244 

1:1 0.537 –0.03 2.9774 2.97 3.7244 

1:–1 0.537 –0.10 –3.7184 –3.69 –5.7244 
1
 Exact stress-minimised optimal shape is a circular hole with Kt = 2. 

 
 
Table 2: Minimised Kt values for quasi-rectangular holes in an infinite plate subject to various 

uniaxial and biaxial remote loading conditions. Comparison of present work with that of 
DST Group free-form gradientless FEA shape optimisation method. 

   Present Work  

Elliptical 
Hole 

( = 0) 

 
DST Group 

FEA Method 
 

Present 
Work c.f. 

DST Group 
FEA 

Method 

Loading 
Case 

x:y 

Aspect 
Ratio 

 

   Kt ρmin/w  Kt  Kt ρmin/w  Difference 

1:0 1  0.9996 –0.0544 2.468 0.249  3.000  2.178 0.075  +13.3% 

1:0 2  0.5098 –0.0198 1.862 0.387  2.000  1.722 0.075  +8.1% 

1:0 3  0.3401 –0.0102 1.607 0.229  1.667  1.534 0.075  +4.8% 

1:0 4  0.2547 –0.0063 1.467 0.160  1.500  1.427 0.075  +2.8% 

1:0 5  0.2032 –0.0040 1.380 0.121  1.400  1.356 0.075  +1.8% 

1:–1 1  1.0000 –0.0898 3.074 0.163  4.000  2.912 0.100  +5.6% 

1.377:–1 1  0.9996 –0.0822 2.895 0.178  3.726  2.707 0.050  +6.9% 

1.377:–1 1.329  0.7701 –0.0713 2.686 0.157  5.035  2.525 0.050  +6.4% 

1.377:–1 2  0.5232 –0.0933 3.947 0.154  6.377  3.020 0.111  +30.7% 

2:1 1  0.9996 –0.0287 4.437 0.342  5.000  3.993 0.000  +11.1% 

 2:1
1
 2  0.5000  0.0000 3.000 0.250  3.000  2.991 0.000  +0.3% 

3:1 1  0.9996 –0.0377 6.894 0.305  8.000  6.096 0.000  +13.1% 

3:1 2  0.5034 –0.0070 4.858 0.293  5.000  4.644 0.000  +4.6% 

 3:1
2
 3  0.3333  0.0000 4.000 0.167  4.000  4.000 0.000  0.0% 

4:1 1  0.9996 –0.0420 9.357 0.289  11.000  8.295 0.075  +12.8% 

4:1 2  0.5098 –0.0198 6.718 0.321  7.000  6.360 0.075  +5.6% 
1
 Exact stress-minimised optimal shape is an elliptical hole of aspect ratio  = 2 with Kt = 3. 

2
 Exact stress-minimised optimal shape is an elliptical hole of aspect ratio  = 3 with Kt = 4. 
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Table 3: Shape parameters  and  and Kt values for stress-minimised quasi-rectangular holes and 
elliptical hole shapes of various aspect ratios in an infinite plate under a uniaxial remote 

loading of x:y = 1:0. 

Aspect
Ratio 

 x:y = 1:0 

 Stress-Minimised Shapes  Elliptical Holes ( = 0) 

    Ktmax Ktmin min/w   Ktmax Ktmin min/w 

1.000  –0.0544 0.9996 2.4684 –0.9117 0.2489  1.0000 3.0000 –1.0000 0.5000 

1.250  –0.0400 0.8077 2.2500 –0.9264 0.3120  0.8000 2.6000 –1.0000 0.4000 

1.500  –0.0307 0.6767 2.0874 –0.9379 0.3631  0.6667 2.3333 –1.0000 0.3333 

1.750  –0.0241 0.5816 1.9616 –0.9474 0.3926  0.5714 2.1429 –1.0000 0.2857 

2.000  –0.0198 0.5098 1.8615 –0.9543 0.3870  0.5000 2.0000 –1.0000 0.2500 

2.250  –0.0161 0.4533 1.7800 –0.9608 0.3365  0.4444 1.8889 –1.0000 0.2222 

2.500  –0.0136 0.4081 1.7124 –0.9656 0.2910  0.4000 1.8000 –1.0000 0.2000 

2.750  –0.0118 0.3711 1.6555 –0.9691 0.2573  0.3636 1.7273 –1.0000 0.1818 

3.000  –0.0102 0.3401 1.6068 –0.9725 0.2293  0.3333 1.6667 –1.0000 0.1667 

3.250  –0.0086 0.3136 1.5648 –0.9761 0.2047  0.3077 1.6154 –1.0000 0.1538 

3.500  –0.0077 0.2912 1.5282 –0.9782 0.1872  0.2857 1.5714 –1.0000 0.1429 

3.750  –0.0069 0.2717 1.4959 –0.9801 0.1721  0.2667 1.5333 –1.0000 0.1333 

4.000  –0.0063 0.2547 1.4674 –0.9815 0.1597  0.2500 1.5000 –1.0000 0.1250 

 
 

Table 4: Shape parameters  and  and Kt values for stress-minimised quasi-rectangular holes and 
elliptical hole shapes of various aspect ratios in an infinite plate under a uniaxial remote 

loading of x:y = 0:1. 

Aspect
Ratio 

 x:y = 0:1 

 Stress-Minimised Shapes  Elliptical Holes ( = 0) 

    Ktmax Ktmin min/w   Ktmax Ktmin min/w 

1.000  –0.0544 1.0000 2.4688 –0.9116 0.2486  1.0000 3.0000 –1.0000 0.5000 

1.250  –0.0590 0.8121 2.7054 –0.8966 0.2434  0.8000 3.5000 –1.0000 0.4000 

1.500  –0.0619 0.6875 2.9099 –0.8853 0.2411  0.6667 4.0000 –1.0000 0.3333 

1.750  –0.0647 0.5993 3.0882 –0.8755 0.2384  0.5714 4.5000 –1.0000 0.2857 

2.000  –0.0656 0.5318 3.2482 –0.8693 0.2414  0.5000 5.0000 –1.0000 0.2500 

2.250  –0.0663 0.4767 3.3992 –0.8678 0.2441  0.4444 5.5000 –1.0000 0.2222 

2.500  –0.0666 0.4308 3.5425 –0.8706 0.2476  0.4000 6.0000 –1.0000 0.2000 

2.750  –0.0673 0.3916 3.6795 –0.8763 0.2488  0.3636 6.5000 –1.0000 0.1818 

3.000  –0.0679 0.3578 3.8108 –0.8841 0.2500  0.3333 7.0000 –1.0000 0.1667 

3.250  –0.0679 0.3286 3.9372 –0.8928 0.2534  0.3077 7.5000 –1.0000 0.1538 

3.500  –0.0683 0.3026 4.0591 –0.9030 0.2548  0.2857 8.0000 –1.0000 0.1429 

3.750  –0.0681 0.2799 4.1778 –0.9128 0.2589  0.2667 8.5000 –1.0000 0.1333 

4.000  –0.0692 0.2584 4.2916 –0.9263 0.2563  0.2500 9.0000 –1.0000 0.1250 
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Table 5: Shape parameters  and  and Kt values for stress-minimised quasi-rectangular holes and 
elliptical hole shapes of various aspect ratios in an infinite plate under an equibiaxial remote 

loading of x:y = 1:1. 

Aspect
Ratio 

 x:y = 1:1 

 Stress-Minimised Shapes  Elliptical Holes ( = 0) 

    Ktmax Ktmin min/w   Ktmax Ktmin min/w 

1.000    0.0000 1.0000 2.0000 2.0000 0.5000  1.0000 2.0000 2.0000 0.5000 

1.250  –0.0120 0.8027 2.3244 1.4851 0.4403  0.8000 2.5000 1.6000 0.4000 

1.500  –0.0208 0.6738 2.6006 1.1659 0.4044  0.6667 3.0000 1.3333 0.3333 

1.750  –0.0271 0.5832 2.8385 0.9538 0.3832  0.5714 3.5000 1.1429 0.2857 

2.000  –0.0320 0.5161 3.0456 0.8023 0.3699  0.5000 4.0000 1.0000 0.2500 

2.250  –0.0358 0.4644 3.2277 0.6897 0.3622  0.4444 4.5000 0.8889 0.2222 

2.500  –0.0389 0.4234 3.3890 0.6027 0.3579  0.4000 5.0000 0.8000 0.2000 

2.750  –0.0415 0.3901 3.5329 0.5333 0.3561  0.3636 5.5000 0.7273 0.1818 

3.000  –0.0434 0.3619 3.6644 0.4774 0.3567  0.3333 6.0000 0.6667 0.1667 

3.250  –0.0446 0.3366 3.7907 0.4306 0.3589  0.3077 6.5000 0.6154 0.1538 

3.500  –0.0459 0.3139 3.9130 0.3881 0.3600  0.2857 7.0000 0.5714 0.1429 

3.750  –0.0474 0.2933 4.0315 0.3486 0.3595  0.2667 7.5000 0.5333 0.1333 

4.000  –0.0481 0.2747 4.1460 0.3164 0.3618  0.2500 8.0000 0.5000 0.1250 

 
 

Table 6: Shape parameters  and  and Kt values for stress-minimised quasi-rectangular holes and 
elliptical hole shapes of various aspect ratios in an infinite plate under a reversed biaxial 

remote loading of x:y = 1:–1. 

Aspect
Ratio 

 x:y = 1:–1 

 Stress-Minimised Shapes  Elliptical Holes ( = 0) 

    Ktmax Ktmin min/w   Ktmax Ktmin min/w 

1.000  –0.0896 1.0000 3.0739 –3.0739 0.1626  1.0000 4.0000 –4.0000 0.5000 

1.250  –0.0906 0.8184 2.9482 –3.2548 0.1611  0.8000 3.6000 –4.5000 0.4000 

1.500  –0.0889 0.6938 2.8842 –3.4182 0.1657  0.6667 3.3333 –5.0000 0.3333 

1.750  –0.0883 0.6002 2.8578 –3.5720 0.1677  0.5714 3.1429 –5.5000 0.2857 

2.000  –0.0876 0.5269 2.8487 –3.7180 0.1700  0.5000 3.0000 –6.0000 0.2500 

2.250  –0.0870 0.4677 2.8511 –3.8573 0.1721  0.4444 2.8889 –6.5000 0.2222 

2.500  –0.0865 0.4187 2.8613 –3.9911 0.1739  0.4000 2.8000 –7.0000 0.2000 

2.750  –0.0861 0.3773 2.8772 –4.1200 0.1756  0.3636 2.7273 –7.5000 0.1818 

3.000  –0.0861 0.3415 2.9025 –4.2444 0.1759  0.3333 2.6667 –8.0000 0.1667 

3.250  –0.0853 0.3113 2.9155 –4.3650 0.1793  0.3077 2.6154 –8.5000 0.1538 

3.500  –0.0855 0.2837 2.9482 –4.4821 0.1788  0.2857 2.5714 –9.0000 0.1429 

3.750  –0.0850 0.2601 2.9677 –4.5960 0.1813  0.2667 2.5333 –9.5000 0.1333 

4.000  –0.0850 0.2384 2.9983 –4.7071 0.1817  0.2500 2.5000 –10.0000 0.1250 
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Table 7: Shape parameters  and  and Kt values for stress-minimised quasi-rectangular holes and 
elliptical hole shapes of various aspect ratios in an infinite plate under a reversed biaxial 

remote loading of x:y = –1:1. 

Aspect
Ratio 

 x:y = –1:1 

 Stress-Minimised Shapes  Elliptical Holes ( = 0) 

    Ktmax Ktmin min/w   Ktmax Ktmin min/w 

1.000  –0.0897 0.9996 3.0742 –3.0735 0.1624  1.0000 4.0000 –4.0000 0.5000 

1.250  –0.0724 0.8142 3.3096 –2.9089 0.2045  0.8000 4.5000 –3.6000 0.4000 

1.500  –0.0607 0.6867 3.6240 –2.7878 0.2451  0.6667 5.0000 –3.3333 0.3333 

1.750  –0.0523 0.5937 3.9861 –2.6951 0.2826  0.5714 5.5000 –3.1429 0.2857 

2.000  –0.0456 0.5227 4.3577 –2.6217 0.3173  0.5000 6.0000 –3.0000 0.2500 

2.250  –0.0404 0.4668 4.7294 –2.5624 0.3457  0.4444 6.5000 –2.8889 0.2222 

2.500  –0.0366 0.4219 5.0873 –2.5133 0.3653  0.4000 7.0000 –2.8000 0.2000 

2.750  –0.0332 0.3847 5.4573 –2.4721 0.3772  0.3636 7.5000 –2.7273 0.1818 

3.000  –0.0306 0.3537 5.8149 –2.4370 0.3788  0.3333 8.0000 –2.6667 0.1667 

3.250  –0.0282 0.3272 6.1836 –2.4067 0.3686  0.3077 8.5000 –2.6154 0.1538 

3.500  –0.0262 0.3044 6.5489 –2.3804 0.3450  0.2857 9.0000 –2.5714 0.1429 

3.750  –0.0245 0.2846 6.9113 –2.3572 0.3162  0.2667 9.5000 –2.5333 0.1333 

4.000  –0.0231 0.2673 7.2655 –2.3367 0.2929  0.2500 10.0000 –2.5000 0.1250 

 
 

Table 8: Shape parameters  and  and Kt values for stress-minimised quasi-rectangular holes and 
elliptical hole shapes of various aspect ratios in an infinite plate under a biaxial remote 

loading of x:y = 2:1. 

Aspect
Ratio 

 x:y = 2:1 

 Stress-Minimised Shapes  Elliptical Holes ( = 0) 

    Ktmax Ktmin min/w   Ktmax Ktmin min/w 

1.000  –0.0287 0.9996 4.4374 0.7348 0.3417  1.0000 5.0000 1.0000 0.5000 

1.250  –0.0160 0.8029 3.9227 1.2625 0.4230  0.8000 4.2000 1.5000 0.4000 

1.500  –0.0085 0.6693 3.5373 1.8150 0.3955  0.6667 3.6667 2.0000 0.3333 

1.750  –0.0033 0.5727 3.2381 2.4010 0.3072  0.5714 3.2857 2.5000 0.2857 

2.000  0.0000 0.5000 3.0000 3.0000 0.2500  0.5000 3.0000 3.0000 0.2500 

2.250  –0.0063 0.4480 3.2339 2.6863 0.2616  0.4444 3.5000 2.7778 0.2222 

2.500  –0.0114 0.4069 3.4400 2.4472 0.2741  0.4000 4.0000 2.6000 0.2000 

2.750  –0.0156 0.3736 3.6231 2.2595 0.2872  0.3636 4.5000 2.4546 0.1818 

3.000  –0.0191 0.3461 3.7869 2.1087 0.3005  0.3333 5.0000 2.3333 0.1667 

3.250  –0.0219 0.3229 3.9342 1.9867 0.3124  0.3077 5.5000 2.2308 0.1538 

3.500  –0.0243 0.3031 4.0678 1.8846 0.3245  0.2857 6.0000 2.1429 0.1429 

3.750  –0.0266 0.2862 4.1891 1.7960 0.3392  0.2667 6.5000 2.0667 0.1333 

4.000  –0.0285 0.2714 4.3001 1.7211 0.3524  0.2500 7.0000 2.0000 0.1250 
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Figure 1: Idealised geometry and loading for a quasi-rectangular hole of aspect ratio l:w in a 
biaxially-loaded infinite plate. 
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Figure 2: Kt distribution around one-quarter of boundary of a circular hole in a plate under remote 

biaxial loading x:y = 1:–1, using the equations for a circular hole and the quasi-

rectangular hole with shape parameters  = 0 and  = 1. 

 

 
Figure 3: Kt distribution around one-quarter of boundary of an elliptical hole of aspect ratio l:w = 5:2 

in a plate under remote biaxial loading x:y = –2:1, using the equations for an elliptical 

hole and the quasi-rectangular hole with shape parameters  = 0 and  = 0.4. 
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(a) 

 
(b) 

Figure 4: Quasi-rectangular hole with shape parameters  = –0.0876 and  = 0.5269 under a remote 

biaxial loading x:y = 1:–1. (a) Hole shape. (b) Comparison of Kt distribution around one-
quarter of the hole boundary, as computed by the method of Rajaiah and Naik (1983) and 
also by the FADD2D boundary element analysis code of Chang and Mear (1995). 
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(a) 

 
(b) 

Figure 5: Quasi-square 1:1 holes in a plate subject to remote uniaxial loading x:y = 0:1 obtained 

using method of Rajaiah and Naik (1983), with shape parameters  = –0.0545 and  = 1, 
and from free-form FEA-based multiple stress peak shape optimisation. (a) Hole shapes. 
(b) Kt distributions around one-quarter of hole boundary. 
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(a) 

 
(b) 

Figure 6: (a) Kt values for stress-minimised quasi-rectangular holes, elliptical holes and FEA-
optimised holes of various aspect ratios in an infinite plate under a uniaxial remote loading 

of x:y = 1:0. (b) Corresponding shape parameters  and  for the quasi-rectangular holes. 
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(a) 

 
(b) 

Figure 7: Example quasi-rectangular holes with minimised peak Kt for hole aspect ratios of  = 1 

(solid line) and  = 2 (dashed line) in an infinite plate under a uniaxial remote loading of 

x:y = 1:0. (a) Shapes. (b) Kt distributions around the hole boundaries. 
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(a) 

 
(b) 

Figure 8: (a) Kt values for stress-minimised quasi-rectangular holes and for elliptical holes of various 

hole aspect ratios in an infinite plate under a uniaxial remote loading of x:y = 0:1. (b) 

Corresponding shape parameters  and  for the quasi-rectangular holes. 
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(a) 

 
(b) 

Figure 9: Example quasi-rectangular holes with minimised peak Kt for hole aspect ratios of  = 1 

(solid line) and  = 2 (dashed line) in an infinite plate under a uniaxial remote loading of 

x:y = 0:1. (a) Shapes. (b) Kt distributions around the hole boundaries. 
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(a) 

 
(b) 

Figure 10: (a) Kt values for stress-minimised quasi-rectangular holes and for elliptical holes of various 

hole aspect ratios in an infinite plate under an equibiaxial remote loading of x:y = 1:1. 

(b) Corresponding shape parameters  and  for the quasi-rectangular holes. 
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(a) 

 
(b) 

Figure 11: Example quasi-rectangular holes with minimised peak Kt for hole aspect ratios of  = 1 

(solid line) and  = 2 (dashed line) in an infinite plate under a biaxial remote loading of 

x:y = 1:1. (a) Shapes. (b) Kt distributions around the hole boundaries. 



UNCLASSIFIED 
DST Group-TR-3125 

29 
UNCLASSIFIED 

 
(a) 

 
(b) 

Figure 12: (a) Kt values for stress-minimised quasi-rectangular holes and for elliptical holes of 

various hole aspect ratios in an infinite plate under a biaxial remote loading of x:y = 

1:1. (b) Corresponding shape parameters  and  for the quasi-rectangular holes. 
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(a) 

 
(b) 

Figure 13: Example quasi-rectangular holes with minimised peak Kt for hole aspect ratios of  = 1 

(solid line) and  = 2 (dashed line) in an infinite plate under a biaxial remote loading of 

x:y = 1:–1. (a) Shapes. (b) Kt distributions around the hole boundaries. 
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(a) 

 
(b) 

Figure 14: (a) Kt values for stress-minimised quasi-rectangular holes and for elliptical holes of 

various hole aspect ratios in an infinite plate under a biaxial remote loading of x:y 

= 1:1. (b) Corresponding shape parameters  and  for the quasi-rectangular holes. 
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(a) 

 
(b) 

Figure 15: Example quasi-rectangular holes with minimised peak Kt for hole aspect ratios of  = 1 

(solid line) and  = 2 (dashed line) in an infinite plate under a biaxial remote loading of 

x:y = –1:1. (a) Shapes. (b) Kt distributions around hole boundaries. 
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(a) 

 
(b) 

Figure 16: (a) Kt values for stress-minimised quasi-rectangular holes and for elliptical holes of 

various hole aspect ratios in an infinite plate under a biaxial remote loading of x:y = 2:1. 

(b) Corresponding shape parameters  and  for the quasi-rectangular holes. 
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(a) 

 
(b) 

Figure 17: Example quasi-rectangular holes with minimised peak Kt for hole aspect ratios of  = 1 

(solid line) and  = 3 (dashed line) in an infinite plate under a biaxial remote loading of 

x:y = 2:1. (a) Shapes. (b) Kt distributions around hole boundaries. 



UNCLASSIFIED 
DST Group-TR-3125 

35 
UNCLASSIFIED 

Appendix A:   
Functions for computing shapes and stress distributions 

for quasi-rectangular holes using Excel VBA 

What follows is the VBA source listing of the various functions that were used to implement 

the method of Rajaiah and Naik (1983) for computing shapes and distributions of tangential 

stress for quasi-rectangular holes in biaxially-loaded infinite plates. The functions associated 

with computing similar closed-form analytical solutions for circular and elliptical holes are 

also included for completeness, as they can provide useful points of comparison in some 

situations. It is hoped that others will find this small set of utility functions to be helpful in 

their own work. 

Option Explicit 
 
'===================================================================== 
 
Function RofC(r, eta, alpha, tdeg As Double) As Double 
 
' Compute the radius of curvature of the quasi-rectangular shape. 
 
Dim Pi, theta, x1, x2, y1, y2, t, sint, cost, sin3t, cos3t As Double 
Dim Numer, Denom As Double 
 
Pi = 4 * Atn(1) 
 
t = tdeg * Pi / 180 
sint = Sin(t) 
cost = Cos(t) 
sin3t = Sin(3 * t) 
cos3t = Cos(3 * t) 
 
x1 = r * (-sint - 3 * eta * sin3t) 
x2 = r * (-cost - 9 * eta * cos3t) 
y1 = r * (alpha * cost - 3 * eta * cos3t) 
y2 = r * (-alpha * sint + 9 * eta * sin3t) 
 
Numer = (x1 ^ 2 + y1 ^ 2) ^ 1.5 
Denom = x1 * y2 - y1 * x2 
 
If Denom = 0# Then 
  ' Prevent an infinite radius of curvature (straight line) 
  ' from affecting the calculations. 
  RofC = r * 1000000# 
Else 
  RofC = Abs(Numer / Denom) 
End If 
 
End Function 
 
'===================================================================== 
 
Function Xval(r, eta, alpha, thetadeg As Double) As Double 
 
' Compute X-coordinate of shape. 
 
Dim Pi, theta As Double 
 
Pi = 4 * Atn(1) 
 
theta = thetadeg * Pi / 180 
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Xval = r * (Cos(theta) + eta * Cos(3 * theta)) 
 
End Function 
 
'===================================================================== 
 
Function Yval(r, eta, alpha, thetadeg As Double) As Double 
 
' Compute Y-coordinate of shape. 
 
Dim theta, Pi As Double 
 
Pi = 4 * Atn(1) 
 
theta = thetadeg * Pi / 180 
 
Yval = r * (alpha * Sin(theta) - eta * Sin(3 * theta)) 
 
End Function 
 
'===================================================================== 
 
Function Kt(eta, alpha, Sx, Sy, thetadeg As Double) As Double 
 
' Tangential stress around hole boundary when the plate is subjected 
' to uniform tension stresses Sx and Sy. 
' 
' Rajaiah K, Naik NK. Hole shapes with minimum stress concentration 
' in infinite isotropic plates using conformal transformation. 
' ISME Journal of Engineering Design, Vol 1, No 1, April 1983, 
' pp 15-19. 
 
Dim Pi, theta, Ktx, Kty, a, b, C2 As Double 
Dim cost, sint, cos3t, sin3t, alphap1 As Double 
 
Pi = 4 * Atn(1) 
 
theta = thetadeg * Pi / 180 
 
cost = Cos(theta) 
sint = Sin(theta) 
cos3t = Cos(3 * theta) 
sin3t = Sin(3 * theta) 
alphap1 = alpha + 1 
 
a = alpha * cost - 3 * eta * cos3t 
b = sint + 3 * eta * sin3t 
 
C2 = a ^ 2 + b ^ 2 
 
' Tangential stress around hole for tension aligned with x-axis. 
 
Ktx = (b ^ 2 / C2) + (1 / C2) * (alpha * (-a * cost _ 
      + 2 * b * sint) - eta * (4 * a * alpha * cost / alphap1 _ 
      - 3 * a * cos3t + 2 * b * (-2 * alpha * sint / alphap1 _ 
      + 3 * sin3t)) _ 
      - 8 * eta ^ 2 * alpha / alphap1 ^ 2 * (a * cost - b * sint)) 
 
' Tangential stress around hole for tension aligned with y-axis. 
 
Kty = (a ^ 2 / C2) + (1 / C2) * (2 * a * cost _ 
      - b * sint + eta * (2 * a * (2 * cost / alphap1 _ 
      + 3 * cos3t) - 4 * b * sint / alphap1 _ 
      - 3 * b * sin3t) _ 
      + 8 * eta ^ 2 / alphap1 ^ 2 * (a * cost - b * sint)) 
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Kt = Ktx * Sx + Kty * Sy 
 
End Function 
 
'===================================================================== 
 
Function XvalCircle(r, thetadeg As Double) As Double 
 
' Compute X-coordinate of shape. 
 
Dim theta, Pi As Double 
 
Pi = 4 * Atn(1) 
 
theta = thetadeg * Pi / 180 
 
XvalCircle = r * (Cos(theta)) 
 
End Function 
 
'===================================================================== 
 
Function YvalCircle(r, thetadeg As Double) As Double 
 
' Compute Y-coordinate of shape. 
 
Dim theta, Pi As Double 
 
Pi = 4 * Atn(1) 
 
theta = thetadeg * Pi / 180 
 
YvalCircle = r * Sin(theta) 
 
End Function 
 
'===================================================================== 
 
Function KtCircle(Sx, Sy, thetadeg As Double) As Double 
 
' Tangential stress around boundary of a circular hole in a plate 
' when the plate is subjected to uniform tension stresses Sx and Sy. 
 
Dim Pi, theta, Ktx, Kty As Double 
 
Pi = 4 * Atn(1) 
 
theta = thetadeg * Pi / 180 
 
' Tangential stress around hole for tension aligned with x-axis. 
 
Ktx = (1 - 2 * Cos(2 * theta)) 
 
' Tangential stress around hole for tension aligned with y-axis. 
 
Kty = (1 - 2 * Cos(2 * (theta - Pi / 2))) 
 
KtCircle = Ktx * Sx + Kty * Sy 
 
End Function 
 
'===================================================================== 
 
Function KtEllipse(Sx, Sy, a, b, thetadeg As Double) As Double 
 
' Tangential stress around boundary of an elliptical hole in a plate 
' when the plate is subjected to uniform tension stresses Sx and Sy. 
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Dim Pi, theta, m, m2, cos2t, Ktx, Kty As Double 
 
Pi = 4 * Atn(1) 
 
theta = thetadeg * Pi / 180 
 
m = (a - b) / (a + b) 
m2 = m ^ 2 
cos2t = Cos(2 * theta) 
 
' Tangential stress around hole for tension aligned with x-axis. 
 
Ktx = (2 * m + 1 - 2 * cos2t - m2) / (m2 - 2 * m * cos2t + 1) 
 
' Tangential stress around hole for tension aligned with y-axis. 
 
Kty = (-2 * m + 1 + 2 * cos2t - m2) / (m2 - 2 * m * cos2t + 1) 
 
KtEllipse = Ktx * Sx + Kty * Sy 
 
End Function 
 
'===================================================================== 
 
Function XvalEllipse(a, thetadeg As Double) As Double 
 
' Compute X-coordinate of elliptical shape with semimajor axis 
' length a. 
 
Dim Pi, theta As Double 
 
Pi = 4 * Atn(1) 
 
theta = thetadeg * Pi / 180 
 
XvalEllipse = a * (Cos(theta)) 
 
End Function 
 
'===================================================================== 
 
Function YvalEllipse(b, thetadeg As Double) As Double 
 
' Compute Y-coordinate of elliptical shape with semiminor axis 
' length b. 
 
Dim Pi, theta As Double 
 
Pi = 4 * Atn(1) 
 
theta = thetadeg * Pi / 180 
 
YvalEllipse = b * Sin(theta) 
 
End Function 
 
'===================================================================== 
 
Function Stteum(a, b, S, thetadeg, gammadeg As Double) As Double 
 
' Compute tangential stress at the edge of an elliptical hole in an 
' infinite plate due to a remote uniaxial stress field of intensity 
' S acting at an angle gamma. 
' 
' NI Muskhelishvili. Some basic problems of the mathematical theory 
' of elasticity. Third Edition, 1953, P Noordhoff Ltd, Groningen, 
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' Holland. 
 
Dim Pi, theta, gamma, m As Double 
 
Pi = 4 * Atn(1) 
 
theta = thetadeg * Pi / 180 
gamma = gammadeg * Pi / 180 
 
m = (a - b) / (a + b) 
 
Stteum = S * (1 - m ^ 2 + 2 * m * Cos(2 * gamma) _ 
              - 2 * Cos(2 * (theta - gamma))) _ 
            / (1 - 2 * m * Cos(2 * theta) + m ^ 2) 
              
End Function 
 
'===================================================================== 
 
Function Sttebm(Sx, Sy, a, b, thetadeg As Double) As Double 
 
' Compute tangential stress around the edge of an elliptical hole in 
' an infinite plate due to a remote biaxial stress field of intensity 
' Sx and Sy. Muskhelishvili's equation is used. 
 
Dim Stteux, Stteuy As Double 
 
Stteux = Stteum(a, b, 1#, thetadeg, 0#) 
Stteuy = Stteum(a, b, 1#, thetadeg, 90#) 
 
Sttebm = Sx * Stteux + Sy * Stteuy 
 
End Function 
 
'===================================================================== 
 
Function Sttesm(a, b, T, thetadeg As Double) As Double 
 
' Compute tangential stress at the edge of an elliptical hole in an 
' infinite plate due to a remote shear stress field of intensity T. 
' Muskhelishvili's equation is used. 
 
Dim Pi, theta As Double 
Dim Stteu1, Stteu2 As Double 
 
Stteu1 = Stteum(a, b, 1#, thetadeg, 45#) 
Stteu2 = Stteum(a, b, 1#, thetadeg, 135#) 
 
Sttesm = T * (Stteu1 - Stteu2) 
 
End Function 
 
 
'===================================================================== 
 
Function Sttexytm(a, b, Sx, Sy, Txy, thetadeg As Double) As Double 
 
' Compute tangential stress at the edge of an elliptical hole in an 
' infinite plate due to remote direct stresses Sx and Sy and a 
' remote shear stress Txy. Muskhelishvili's equation is applied to 
' determine the equation. 
 
Dim pi, theta, denom, m, m2, cos2t, sin2t As Double 
Dim Sttx, Stty, Sttt As Double 
 
pi = 4 * Atn(1) 
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theta = thetadeg * pi / 180 
 
m = (a - b) / (a + b) 
m2 = m ^ 2 
cos2t = Cos(2 * theta) 
sin2t = Sin(2 * theta) 
 
Sttx = 1 - m2 + 2 * m - 2 * cos2t ' Component due to Sx 
Stty = 1 - m2 - 2 * m + 2 * cos2t ' Component due to Sy 
Sttt = -4 * sin2t                 ' Component due to Txy 
 
denom = 1 - 2 * m * cos2t + m2 
 
Sttexytm = (Sx * Sttx + Sy * Stty + Txy * Sttt) / denom 
 
End Function 
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Appendix B:  Listing of FADD2D input deck for stress 

analysis of a quasi-rectangular hole with  = –0.0876 and  
= 0.5269 

The following is a listing of the FADD2D input deck that was used to determine the stress 

distribution around a quasi-rectangular hole in an infinite plate in order to compare to the 

results produced by the equations published by Rajaiah and Naik (1983). In this particular 

instance, the shape parameters of the quasi-rectangular hole were  = –0.0876 and  = 0.5269, 

and a remote reversed biaxial loading of x = 100 MPa and y = –100 MPa was specified 

(corresponding to x:y = 1:–1). The geometry of the hole in the model was scaled in such a 

way that the maximum x-dimension of the hole was 91.240 mm and the maximum y-

dimension was 45.631 mm. The aspect ratio of the hole was therefore l:w = 1.9995:1  2:1. 

Note that at x = 0, the y-coordinates of the hole are ±43.930 mm, so the hole is narrower 

towards the middle section (see Figure 4a). 

FADD - Visual C++ Version 1.0 - 01/30/15 
Elongated Quasi-Rectangular Hole 
Infinite Domain Example 
------------------------------------------------------- 
Problem Type, No of Materials  
4 1 
Material, SigXX, SigYY, SigXY, Zx, Zy, 
1 100.000000 -100.000000 0.000000 0.000000 0.000000 
Materials, Elastic modulus, and Poisson's ratio 
1 70000.000000 0.330000 
Material, Cracks, Boundaries, and Point loads  
1 0 1 0 
 Input echo, Boundary Stresses, and Displacements 
1 1 1 
   
------------------------------------------------------- 
Definition of Boundary 
 
1 1 
0 0 36 
   
01 1 2 
   0.91240000E+2  0.00000000E+2 -1 0.000000 -1 0.000000 0 
   0.91157960E+2  0.06859491E+2 -1 0.000000 -1 0.000000 0 
   0.90894393E+2  0.13529522E+2 -1 0.000000 -1 0.000000 0 
 
02 1 2 
   0.90894393E+2  0.13529522E+2 -1 0.000000 -1 0.000000 0 
   0.90398327E+2  0.19831431E+2 -1 0.000000 -1 0.000000 0 
   0.89589262E+2  0.25607424E+2 -1 0.000000 -1 0.000000 0 
 
03 1 2 
   0.89589262E+2  0.25607424E+2 -1 0.000000 -1 0.000000 0 
   0.88363524E+2  0.30729266E+2 -1 0.000000 -1 0.000000 0 
   0.86602540E+2  0.35105000E+2 -1 0.000000 -1 0.000000 0 
 
04 1 2 
   0.86602540E+2  0.35105000E+2 -1 0.000000 -1 0.000000 0 
   0.84182459E+2  0.38683253E+2 -1 0.000000 -1 0.000000 0 
   0.80984444E+2  0.41454862E+2 -1 0.000000 -1 0.000000 0 
 
05 1 2 
   0.80984444E+2  0.41454862E+2 -1 0.000000 -1 0.000000 0 
   0.76904934E+2  0.43451712E+2 -1 0.000000 -1 0.000000 0 
   0.71865144E+2  0.44742882E+2 -1 0.000000 -1 0.000000 0 
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06 1 2 
   0.71865144E+2  0.44742882E+2 -1 0.000000 -1 0.000000 0 
   0.65819154E+2  0.45428376E+2 -1 0.000000 -1 0.000000 0 
   0.58760000E+2  0.45630879E+2 -1 0.000000 -1 0.000000 0 
 
07 1 2 
   0.58760000E+2  0.45630879E+2 -1 0.000000 -1 0.000000 0 
   0.50723336E+2  0.45486102E+2 -1 0.000000 -1 0.000000 0 
   0.41788397E+2  0.45132404E+2 -1 0.000000 -1 0.000000 0 
 
08 1 2 
   0.41788397E+2  0.45132404E+2 -1 0.000000 -1 0.000000 0 
   0.32076160E+2  0.44700376E+2 -1 0.000000 -1 0.000000 0 
   0.21744818E+2  0.44303138E+2 -1 0.000000 -1 0.000000 0 
 
09 1 2 
   0.21744818E+2  0.44303138E+2 -1 0.000000 -1 0.000000 0 
   0.10982829E+2  0.44027988E+2 -1 0.000000 -1 0.000000 0 
   0.00000000E+2  0.43930000E+2 -1 0.000000 -1 0.000000 0 
 
10 1 2 
   0.00000000E+2  0.43930000E+2 -1 0.000000 -1 0.000000 0 
  -0.10982829E+2  0.44027988E+2 -1 0.000000 -1 0.000000 0 
  -0.21744818E+2  0.44303138E+2 -1 0.000000 -1 0.000000 0 
 
11 1 2 
  -0.21744818E+2  0.44303138E+2 -1 0.000000 -1 0.000000 0 
  -0.32076160E+2  0.44700376E+2 -1 0.000000 -1 0.000000 0 
  -0.41788397E+2  0.45132404E+2 -1 0.000000 -1 0.000000 0 
 
12 1 2 
  -0.41788397E+2  0.45132404E+2 -1 0.000000 -1 0.000000 0 
  -0.50723336E+2  0.45486102E+2 -1 0.000000 -1 0.000000 0 
  -0.58760000E+2  0.45630879E+2 -1 0.000000 -1 0.000000 0 
 
13 1 2 
  -0.58760000E+2  0.45630879E+2 -1 0.000000 -1 0.000000 0 
  -0.65819154E+2  0.45428376E+2 -1 0.000000 -1 0.000000 0 
  -0.71865144E+2  0.44742882E+2 -1 0.000000 -1 0.000000 0 
 
14 1 2 
  -0.71865144E+2  0.44742882E+2 -1 0.000000 -1 0.000000 0 
  -0.76904934E+2  0.43451712E+2 -1 0.000000 -1 0.000000 0 
  -0.80984444E+2  0.41454862E+2 -1 0.000000 -1 0.000000 0 
 
15 1 2 
  -0.80984444E+2  0.41454862E+2 -1 0.000000 -1 0.000000 0 
  -0.84182459E+2  0.38683253E+2 -1 0.000000 -1 0.000000 0 
  -0.86602540E+2  0.35105000E+2 -1 0.000000 -1 0.000000 0 
 
16 1 2 
  -0.86602540E+2  0.35105000E+2 -1 0.000000 -1 0.000000 0 
  -0.88363524E+2  0.30729266E+2 -1 0.000000 -1 0.000000 0 
  -0.89589262E+2  0.25607424E+2 -1 0.000000 -1 0.000000 0 
 
17 1 2 
  -0.89589262E+2  0.25607424E+2 -1 0.000000 -1 0.000000 0 
  -0.90398327E+2  0.19831431E+2 -1 0.000000 -1 0.000000 0 
  -0.90894393E+2  0.13529522E+2 -1 0.000000 -1 0.000000 0 
 
18 1 2 
  -0.90894393E+2  0.13529522E+2 -1 0.000000 -1 0.000000 0 
  -0.91157960E+2  0.06859491E+2 -1 0.000000 -1 0.000000 0 
  -0.91240000E+2  0.00000000E+2 -1 0.000000 -1 0.000000 0 
 
19 1 2 
  -0.91240000E+2  0.00000000E+2 -1 0.000000 -1 0.000000 0 
  -0.91157960E+2 -0.06859491E+2 -1 0.000000 -1 0.000000 0 
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  -0.90894393E+2 -0.13529522E+2 -1 0.000000 -1 0.000000 0 
 
20 1 2 
  -0.90894393E+2 -0.13529522E+2 -1 0.000000 -1 0.000000 0 
  -0.90398327E+2 -0.19831431E+2 -1 0.000000 -1 0.000000 0 
  -0.89589262E+2 -0.25607424E+2 -1 0.000000 -1 0.000000 0 
 
21 1 2 
  -0.89589262E+2 -0.25607424E+2 -1 0.000000 -1 0.000000 0 
  -0.88363524E+2 -0.30729266E+2 -1 0.000000 -1 0.000000 0 
  -0.86602540E+2 -0.35105000E+2 -1 0.000000 -1 0.000000 0 
 
22 1 2 
  -0.86602540E+2 -0.35105000E+2 -1 0.000000 -1 0.000000 0 
  -0.84182459E+2 -0.38683253E+2 -1 0.000000 -1 0.000000 0 
  -0.80984444E+2 -0.41454862E+2 -1 0.000000 -1 0.000000 0 
 
23 1 2 
  -0.80984444E+2 -0.41454862E+2 -1 0.000000 -1 0.000000 0 
  -0.76904934E+2 -0.43451712E+2 -1 0.000000 -1 0.000000 0 
  -0.71865144E+2 -0.44742882E+2 -1 0.000000 -1 0.000000 0 
 
24 1 2 
  -0.71865144E+2 -0.44742882E+2 -1 0.000000 -1 0.000000 0 
  -0.65819154E+2 -0.45428376E+2 -1 0.000000 -1 0.000000 0 
  -0.58760000E+2 -0.45630879E+2 -1 0.000000 -1 0.000000 0 
 
25 1 2 
  -0.58760000E+2 -0.45630879E+2 -1 0.000000 -1 0.000000 0 
  -0.50723336E+2 -0.45486102E+2 -1 0.000000 -1 0.000000 0 
  -0.41788397E+2 -0.45132404E+2 -1 0.000000 -1 0.000000 0 
 
26 1 2 
  -0.41788397E+2 -0.45132404E+2 -1 0.000000 -1 0.000000 0 
  -0.32076160E+2 -0.44700376E+2 -1 0.000000 -1 0.000000 0 
  -0.21744818E+2 -0.44303138E+2 -1 0.000000 -1 0.000000 0 
 
27 1 2 
  -0.21744818E+2 -0.44303138E+2 -1 0.000000 -1 0.000000 0 
  -0.10982829E+2 -0.44027988E+2 -1 0.000000 -1 0.000000 0 
   0.00000000E+2 -0.43930000E+2 -1 0.000000 -1 0.000000 0 
 
28 1 2 
   0.00000000E+2 -0.43930000E+2 -1 0.000000 -1 0.000000 0 
   0.10982829E+2 -0.44027988E+2 -1 0.000000 -1 0.000000 0 
   0.21744818E+2 -0.44303138E+2 -1 0.000000 -1 0.000000 0 
 
29 1 2 
   0.21744818E+2 -0.44303138E+2 -1 0.000000 -1 0.000000 0 
   0.32076160E+2 -0.44700376E+2 -1 0.000000 -1 0.000000 0 
   0.41788397E+2 -0.45132404E+2 -1 0.000000 -1 0.000000 0 
 
30 1 2 
   0.41788397E+2 -0.45132404E+2 -1 0.000000 -1 0.000000 0 
   0.50723336E+2 -0.45486102E+2 -1 0.000000 -1 0.000000 0 
   0.58760000E+2 -0.45630879E+2 -1 0.000000 -1 0.000000 0 
 
31 1 2 
   0.58760000E+2 -0.45630879E+2 -1 0.000000 -1 0.000000 0 
   0.65819154E+2 -0.45428376E+2 -1 0.000000 -1 0.000000 0 
   0.71865144E+2 -0.44742882E+2 -1 0.000000 -1 0.000000 0 
 
32 1 2 
   0.71865144E+2 -0.44742882E+2 -1 0.000000 -1 0.000000 0 
   0.76904934E+2 -0.43451712E+2 -1 0.000000 -1 0.000000 0 
   0.80984444E+2 -0.41454862E+2 -1 0.000000 -1 0.000000 0 
 
33 1 2 
   0.80984444E+2 -0.41454862E+2 -1 0.000000 -1 0.000000 0 
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   0.84182459E+2 -0.38683253E+2 -1 0.000000 -1 0.000000 0 
   0.86602540E+2 -0.35105000E+2 -1 0.000000 -1 0.000000 0 
 
34 1 2 
   0.86602540E+2 -0.35105000E+2 -1 0.000000 -1 0.000000 0 
   0.88363524E+2 -0.30729266E+2 -1 0.000000 -1 0.000000 0 
   0.89589262E+2 -0.25607424E+2 -1 0.000000 -1 0.000000 0 
 
35 1 2 
   0.89589262E+2 -0.25607424E+2 -1 0.000000 -1 0.000000 0 
   0.90398327E+2 -0.19831431E+2 -1 0.000000 -1 0.000000 0 
   0.90894393E+2 -0.13529522E+2 -1 0.000000 -1 0.000000 0 
 
36 1 2 
   0.90894393E+2 -0.13529522E+2 -1 0.000000 -1 0.000000 0 
   0.91157960E+2 -0.06859491E+2 -1 0.000000 -1 0.000000 0 
   0.91240000E+2  0.00000000E+2 -1 0.000000 -1 0.000000 0 
    
------------------------------------------------------- 
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Appendix C:   
Fortran program for computing stress-minimised quasi-

rectangular hole shapes under biaxial loading 

C.1. Description 

The following program is written in FORTRAN 90. It can be used to calculate sets of tables of 

stress-minimised quasi-rectangular holes which are a function of the aspect ratio of the hole. 

The equations used for computing the stress distribution around a quasi-rectangular hole are 

based on the publication by Rajaiah and Naik (1983). An additional equation has been 

implemented to enable the direct analytical computation of the radius of curvature around 

the hole boundary. 

The output file quasirecttables.out stores the results tables corresponding to each 

specific biaxial loading case that is specified in the program. Each line in these tables contains 

the values of the shape parameters  (eps) and  (alpha) for each stress-minimised quasi-

rectangular hole determined for the selected values of hole aspect ratio, as well as the 

maximum and minimum Kt values, the maximum x- and y-values for the shape, the 

minimum and maximum radius-of-curvature values, and the ratio of the minimum radius-

of-curvature to the width w of the hole. Each line also includes data for an elliptical hole with 

the same aspect ratio. Note that the format of the tables produced by quasirecttables.out 

is similar to that which is used in Tables 3–8 in this document. The layout of the tables is also 

designed to make them amenable to pasting into a spreadsheet for the purpose of plotting 

out the results. 

C.2. Source code listing 

!======================================================================================== 
 
program StressMinimiseQuasiRectangle 
 
real timebeg,timeend 
 
call cpu_time(timebeg) 
 
call ComputeQuasiRectTables 
 
write(*,*) 
 
call cpu_time(timeend) 
 
write(*,'(a,f10.2,a)') 'CPU Time = ',(timeend-timebeg)/60.0d0, ' minutes' 
 
write(*,*) 
 
stop 
end 
 
!======================================================================================== 
 
subroutine StQuasiRect(r,eps,alpha,sx,sy,theta,d,thetaxy,x,y,st,stx,sty,radcurv) 
 
! Tangential stress around boundary of a quasi-rectangular hole when the 
! plate is subjected to uniform tension stresses of Sx and Sy. 
! 
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! Rajaiah K, Naik NK. Hole shapes with minimum stress concentration in  
! infinite isotropic plates using conformal transformation. ISME Journal  
! of Engineering Design, Vol 1, No 1, April 1983, pp 15-19. 
 
implicit none 
 
real(8) r,eps,alpha,theta,sx,sy,d,thetaxy,x,y,st,stx,sty,radcurv 
 
real(8) a,b,c2,cost,sint,cos3t,sin3t,alphap1 
 
real(8) ROC 
 
cost  = cosd(theta) 
sint  = sind(theta) 
cos3t = cosd(3.0d0*theta) 
sin3t = sind(3.0d0*theta) 
 
x = r*(      cost+eps*cos3t) 
y = r*(alpha*sint-eps*sin3t) 
 
a = alpha*cost-3.0d0*eps*cos3t 
b =       sint+3.0d0*eps*sin3t 
 
c2 = a**2+b**2 
 
alphap1 = 1.0d0+alpha 
 
! Tangential stress around hole for tension aligned with x-axis. 
 
stx = (b**2/c2)+(1.0d0/c2)*(alpha*(-a*cost                            & 
      +2.0d0*b*sint)-eps*(4.0d0*a*alpha*cost/alphap1                  & 
      -3.0d0*a*cos3t+2.0d0*b*(-2.0d0*alpha*sint/alphap1+3.0d0*sin3t)) & 
      -8.0d0*eps**2*alpha/alphap1**2*(a*cost-b*sint)) 
 
! Tangential stress around hole for tension aligned with y-axis. 
 
sty = (a**2/c2)+(1.0d0/c2)*(2.0d0*a*cost                  & 
      -b*sint+eps*(2.0d0*a*(2.0d0*cost/alphap1            & 
      +3.0d0*cos3t)-4.0d0*b*sint/alphap1-3.0d0*b*sin3t)   & 
      +8.0d0*eps**2/alphap1**2*(a*cost-b*sint)) 
 
st = stx*sx + sty*sy 
 
! Compute the actual geometric theta from the (x,y) coordinates. 
 
thetaxy = atan2d(y,x) 
 
d = sqrt(x**2+y**2) 
 
! Compute the local radius of curvature of the shape. 
 
radcurv = ROC(r,eps,alpha,theta) 
 
return 
end 
 
!======================================================================================== 
 
real(8) function ROC(r,eps,alpha,tdeg) 
 
! Compute the radius of curvature of the quasi-rectangular shape. 
 
implicit none 
 
real(8) r,eps,alpha,tdeg 
real(8) xd1,xd2,yd1,yd2,sint,cost,sin3t,cos3t 
 
sint  = sind(tdeg) 
cost  = cosd(tdeg) 
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sin3t = sind(3.0d0*tdeg) 
cos3t = cosd(3.0d0*tdeg) 
 
xd1 = r*(-sint - 3.0d0*eps*sin3t) 
xd2 = r*(-cost - 9.0d0*eps*cos3t) 
yd1 = r*( alpha*cost - 3.0d0*eps*cos3t) 
yd2 = r*(-alpha*sint + 9.0d0*eps*sin3t) 
 
ROC = abs((xd1**2 + yd1**2)**1.5d0/(xd1*yd2 - yd1*xd2)) 
 
return 
end 
 
 
!======================================================================================== 
 
subroutine ComputeSt(r,eps,alpha,sx,sy,thetabeg,thetaend,n,stmin,thetamin, & 
                     stmax,thetamax,xmax,ymax,s,rcmin,rcmax,rcminonw) 
 
! Compute the minimum and maximum tangential stresses occurring around the  
! boundary of the quasi-rectangular hole. Also compute the locations of  
! those stresses, as well as the minimum and maximum radius of curvature  
! values. 
 
integer n 
real(8) r,eps,alpha,sx,sy,thetabeg,thetaend 
real(8) stmin,thetamin,stmax,thetamax,xmax,ymax,s,rcmin,rcmax,rcminonw 
 
real(8) st,stx,sty,theta,dtheta,thetaxy,x,y,d,xold,yold,rc 
integer i 
 
dtheta=(thetaend-thetabeg)/(n-1) 
 
do i=1,n 
 
  if (i==1) then 
    theta=thetabeg 
  else if (i==n) then 
    theta=thetaend 
  else 
    theta=thetabeg+(i-1)*dtheta 
  endif 
 
  call StQuasiRect(r,eps,alpha,sx,sy,theta,d,thetaxy,x,y,st,stx,sty,rc) 
 
  if (i==1) then 
    stmin    = st 
    stmax    = st 
    xmax     = abs(x) 
    ymax     = abs(y) 
    thetamin = theta 
    thetamax = theta 
    rcmin    = rc 
    rcmax    = rc 
  endif 
 
  if (st>stmax) then 
    stmax=st 
    thetamax=theta 
  endif 
 
  if (st<stmin) then 
    stmin=st 
    thetamin=theta 
  endif 
 
  xmax=max(abs(x),xmax) 
  ymax=max(abs(y),ymax) 
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  rcmin = min(rc,rcmin) 
  rcmax = max(rc,rcmax) 
   
  if (i==1) then 
    s=0.0d0 
    xold=x 
    yold=y 
  else 
    s=s+sqrt((x-xold)**2+(y-yold)**2) 
    xold=x 
    yold=y 
  endif 
 
enddo 
 
rcminonw = rcmin/(2.0d0*ymax) 
 
return 
end 
   
!======================================================================================== 
     
subroutine ComputeQuasiRectTables 
 
implicit none 
 
integer, parameter:: luo1=10 
integer, parameter:: luo2=11 
integer, parameter:: maxcases=20 
 
real(8)   r,eps,alpha,thetabeg,thetaend 
real(8)   s,els,xmax,ymax,elxmax,elymax 
real(8)   thetamin,thetamax,stmin,stmax,xmaxonymax,ratio 
real(8)   elthetamin,elthetamax,elstmin,elstmax,elrcminonw 
real(8)   xmaxonymax0,eps0,alpha0,stmax0,stmin0,xmax0,ymax0 
real(8)   eleps0,elalpha0,elstmax0,elstmin0,elxmax0,elymax0 
real(8)   rcmin,rcmax,rcminonw,rcmin0,rcmax0,rcminonw0 
real(8)   elrcmin0,elrcmax0,elrcminonw0 
real(8)   alpha1,alpha2 
real(8)   sx(maxcases),sy(maxcases) 
integer   i,ncases,iratio,ieps,ialpha 
integer   ipeak(maxcases),np(maxcases) 
 
open(unit=luo1,file='quasirectlocate.out',status='unknown') 
open(unit=luo2,file='quasirecttables.out',status='unknown') 
 
! Define the biaxial loading cases below, taking care not to have 
! more than maxcases. 
 
i=0; 
 
i=i+1; ipeak(i) = 2; sx(i) = +1.0000d0; sy(i) =  0.0000d0; np(i)=721 
i=i+1; ipeak(i) = 2; sx(i) =  0.0000d0; sy(i) = +1.0000d0; np(i)=721 
i=i+1; ipeak(i) = 1; sx(i) = +1.0000d0; sy(i) = -1.0000d0; np(i)=721 
i=i+1; ipeak(i) = 1; sx(i) = -1.0000d0; sy(i) = +1.0000d0; np(i)=721 
i=i+1; ipeak(i) = 2; sx(i) = +1.3770d0; sy(i) = -1.0000d0; np(i)=721 
i=i+1; ipeak(i) = 2; sx(i) = +1.0000d0; sy(i) = +1.0000d0; np(i)=721 
i=i+1; ipeak(i) = 2; sx(i) = +2.0000d0; sy(i) = +1.0000d0; np(i)=721 
i=i+1; ipeak(i) = 2; sx(i) = +3.0000d0; sy(i) = +1.0000d0; np(i)=721 
i=i+1; ipeak(i) = 2; sx(i) = +4.0000d0; sy(i) = +1.0000d0; np(i)=721 
 
ncases = i 
 
r        =  1.0d0 
thetabeg =  0.0d0 
thetaend = 90.0d0 
 
do i = 1,ncases 
  write(*,'(2(a,f8.4))') 'Computing results for: Sx = ',sx(i),' Sy = ',sy(i) 



UNCLASSIFIED 
DST Group-TR-3125 

49 
UNCLASSIFIED 

  write(*,*) 
  write(*,'(10a15)') 'Xmax/Ymax','eps','alpha','Stmax','Stmin','Xmax','Ymax', & 
                     'ROCmin','ROCmax','ROCmin/w' 
  write(luo2,'(a)') & 
    '--------------------------------------------------------------------------' 
  write(luo2,*) 
  write(luo2,'(a,f8.4)') 'Sx = ',sx(i) 
  write(luo2,'(a,f8.4)') 'Sy = ',sy(i) 
  write(luo2,*) 
  write(luo2,'(20a15)') 'Xmax/Ymax','eps','alpha','Stmax','Stmin','Xmax','Ymax',      & 
                        'ROCmin','ROCmax','ROCmin/w','ElXmax/Ymax','Eleps','Elalpha', & 
                        'ElStmax','ElStmin','ElXmax','ElYmax','ElROCmin','ElROCmax',  & 
                        'ElROCmin/w' 
  do iratio = 100,500,25 
    ratio = iratio/100.0d0 
    write(luo1,'(a)') & 
      '--------------------------------------------------------------------------' 
    write(luo1,*) 
    write(luo1,'(a,f8.4)') 'Aspect Ratio = ',ratio 
    write(luo1,'(a,f8.4)') 'Sx           = ',sx(i) 
    write(luo1,'(a,f8.4)') 'Sy           = ',sy(i) 
    write(luo1,*) 
    write(luo1,'(10a15)') 'Xmax/Ymax','eps','alpha','Stmax','Stmin','Xmax','Ymax', & 
                          'ROCmin','ROCmax','ROCmin/w' 
    stmax0 = +1.0d99 
    stmin0 = -1.0d99 
    do ieps=0,-1200,-1 
      eps=ieps/10000.0d0 
      alpha1 = 0.90d0/ratio 
      alpha2 = 1.10d0/ratio 
      if (alpha2>1.0d0) then 
        alpha2 = 1.0d0 
        alpha1 = 0.80d0/ratio 
      endif 
      do ialpha=nint(alpha1*10000.0d0),nint(alpha2*10000.0d0),1 
        alpha=ialpha/10000.0d0 
        call ComputeSt(r,eps,alpha,sx(i),sy(i),thetabeg,thetaend,np(i),stmin,thetamin, & 
                       stmax,thetamax,xmax,ymax,s,rcmin,rcmax,rcminonw) 
        xmaxonymax=xmax/ymax 
        if (abs(xmaxonymax-ratio)<0.0005d0) then 
          write(luo1,'(9f15.5)') xmaxonymax,eps,alpha,stmax,stmin,xmax,ymax,rcmin,rcmax 
          if (ipeak(i)==2) then 
            if (max(abs(stmax),abs(stmin))<max(abs(stmax0),abs(stmin0))) then 
              stmax0      = stmax 
              stmin0      = stmin 
              xmaxonymax0 = xmaxonymax 
              eps0        = eps 
              alpha0      = alpha 
              rcmin0      = rcmin 
              rcmax0      = rcmax 
              xmax0       = xmax 
              ymax0       = ymax 
              rcminonw0   = rcminonw 
            endif 
          else if (ipeak(i)==1) then 
            if (abs(stmin)<abs(stmin0)) then 
              stmax0      = stmax 
              stmin0      = stmin 
              xmaxonymax0 = xmaxonymax 
              eps0        = eps 
              alpha0      = alpha 
              rcmin0      = rcmin 
              rcmax0      = rcmax 
              xmax0       = xmax 
              ymax0       = ymax 
              rcminonw0   = rcminonw 
            endif 
          else 
            stop 'Invalid value of ipeak.' 
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          endif 
        endif 
      enddo 
    enddo 
    write(luo1,*) 
    write(luo1,*) 'Values at minimum St:' 
    write(luo1,*) 
    write(luo1,'(10f15.5)') xmaxonymax0,eps0,alpha0,stmax0,stmin0,xmax0,ymax0, & 
                            rcmin0,rcmax0,rcminonw0 
    write(*,'(10f15.5,a)') xmaxonymax0,eps0,alpha0,stmax0,stmin0, & 
                           xmax0,ymax0,rcmin0,rcmax0,rcminonw0,' -- optimal shape' 
    eleps0   = 0.0d0 
    elalpha0 = 1.0d0/ratio 
    call ComputeSt(r,eleps0,elalpha0,sx(i),sy(i),thetabeg,thetaend,np(i), & 
                   elstmin0,elthetamin,elstmax0,elthetamax,elxmax,elymax, & 
                   els,elrcmin0,elrcmax0,elrcminonw0) 
    write(*,'(10f15.5,a)') elxmax/elymax,eleps0,elalpha0,elstmax0,elstmin0, & 
                           elxmax,elymax,elrcmin0,elrcmax0,elrcminonw0,     & 
                           ' -- elliptical shape' 
    write(luo1,*) 
    write(luo1,*) 'Values for elliptical shape:' 
    write(luo1,*) 
    write(luo1,'(10f15.5)') elxmax/elymax,eleps0,elalpha0,elstmax0,elstmin0, & 
                            elxmax,elymax,elrcmin0,elrcmax0,elrcminonw 
    write(luo1,*) 
    write(luo2,'(20f15.5)') xmaxonymax0,eps0,alpha0,stmax0,stmin0,xmax0,ymax0,rcmin0, & 
                            rcmax0,rcminonw0,elxmax/elymax,eleps0,elalpha0,elstmax0,  & 
                            elstmin0,elxmax,elymax,elrcmin0,elrcmax0,elrcminonw0 
  enddo 
  write(*,*) 
  write(luo2,*) 
enddo 
 
close(luo1) 
close(luo2) 
 
return 
end 
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