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ABSTRACT 

Aircraft structures typically contain large numbers of circular holes that are fitted with 
fasteners such as bolts or rivets. During the service life of aircraft, fatigue damage often 
occurs at such holes. The accurate analysis of stress distributions occurring around the 
boundary of holes in the presence of fasteners is therefore an important consideration during 
studies of fatigue life and test interpretation activities supporting full-scale fatigue test 
programs. In the present work, two-dimensional linear-elastic plane elasticity solutions for 
contact stresses caused by a circular disk inserted into a circular hole in an infinite plate 
undergoing remote loading have been implemented in a FORTRAN program. These were 
used to validate the contact stress distributions for a circular hole in an aluminium plate 
fitted with a titanium fastener that were computed using two-dimensional finite element 
contact analysis. By application of a finite-width correction factor, the analytical infinite-plate 
solutions were also used as a point of comparison with the results produced by subsequent 
two-dimensional and three-dimensional finite element contact analyses of a finite-width 
fatigue test coupon. The results obtained here are useful for aircraft structural integrity 
analysis work, and subsequent analyses of contact problems such as this one can be expected 
to be accurate so long as sufficiently refined finite element meshes are utilised. 
 

RELEASE LIMITATION 

Approved for public release 



UNCLASSIFIED 

UNCLASSIFIED 

Published by 
 
Aerospace Division 
Defence Science and Technology Group 
506 Lorimer St 
Fishermans Bend, Victoria 3207, Australia 
 
Telephone: 1300 333 362 
Fax: (03) 9626 7999 
 
© Commonwealth of Australia 2015 
AR-016-357 
July 2015 
 
 
 
 
APPROVED FOR PUBLIC RELEASE 

 



UNCLASSIFIED 
 

 
UNCLASSIFIED 

Linear-Elastic 2D and 3D Finite Element Contact 
Analysis of a Hole Containing a Circular Insert in a 

Fatigue Test Coupon 

Executive Summary 

Aerospace Division is presently comprehensively involved in developing and applying 
technologies that ensure the safety and enhance the availability of aircraft in service with the 
Royal Australian Air Force. Many of these aircraft structures typically contain large numbers 
of circular holes that are fitted with fasteners. Fatigue damage often occurs at such holes 
during the service life of aircraft. The accurate analysis of stress distributions occurring 
around the boundaries of holes in the presence of fasteners is therefore a very important 
consideration in fatigue life studies, many of which involve extensive and expensive 
experimental fatigue testing of structurally-representative coupons undergoing sequences of 
programmed loading. 

Prior two-dimensional linear-elastic plane elasticity solutions are available for computing 
contact stresses caused by a circular disk inserted into a circular hole in an infinite plate 
undergoing remote loading. One of the known available solutions is applicable to the 
commonly-occurring case where the plate material and the insert material have different 
elastic properties, which is relevant to the situation that typically occurs in aircraft structures. 
However, as originally formulated, the solutions do not take into account any finite-width or 
three-dimensional effects, both of which have an important influence on the stress 
distribution and hence the resulting fatigue life of the structure. 

In the present work, these linear-elastic analytical/numerical hole–insert contact solutions 
have been implemented in a custom-written FORTRAN program. They were then used to 
validate the contact stress distributions associated with a circular hole in an aluminium plate 
fitted with a titanium fastener that were computed using two-dimensional finite element 
contact analysis. By application of a finite-width correction factor, the infinite-plate solutions 
were also used as a point of comparison with the results produced by subsequent two-
dimensional and three-dimensional finite element contact analyses of an actual fatigue test 
coupon. The results obtained from the present three-dimensional analysis of the fatigue test 
coupon provide improved stress distribution data for use in the validation of test 
interpretation activities relating to full-scale fatigue testing of aircraft structures in service 
with the RAAF. These three-dimensional contact stress solutions have been extensively 
validated and are useful in aircraft structural integrity analysis work, and the methodology 
described here provides some guidance as to how to perform contact analysis with high 
accuracy. Any subsequent contact analyses of other configurations can be expected to be 
reliable and accurate so long as suitably refined finite element meshes are utilised. 
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Nomenclature 
D diameter of circular hole in plate 

E Young’s modulus 

E(k) complete elliptic integral of the second kind 

H height of plate 

k modulus of complete elliptic integral 

K(k) complete elliptic integral of the first kind 

Kt stress concentration factor 

Ktg gross-section stress concentration factor 

r distance away from stress singularity 

S remote stress 

Sx remote stress aligned with x-direction 

Sy remote stress aligned with y-direction 

t thickness of plate 

W width of plate 

x rectangular Cartesian x-coordinate 

y rectangular Cartesian y-coordinate 

z rectangular Cartesian z-coordinate 

θ polar angle 

η contact angle between plate and insert 

υ Poisson’s ratio 

sr radial stress 

st tangential stress 

∞ infinity 
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1. Introduction 
Aerospace Division designs and uses metallic fatigue testing coupons to aid in the fatigue life 
and aircraft structural integrity management of RAAF airframes. An aluminium coupon has 
been previously designed in support of the independent verification and validation of test 
results associated with the Lead-In Fighter (LIF) Hawk full-scale fatigue test being 
undertaken by BAE Systems for the RAAF. This coupon is known as the LIF Hawk Filled 
Hole Coupon (see Figure 1), and it is intended to be used in fatigue crack initiation and crack 
growth studies. 

The fatigue test coupon has been the subject of a previous detailed finite element analysis 
(FEA) to provide engineering data on the behaviour of the stress concentration factor (SCF), 
Kt, as a function of both the applied tension-only load and the diametral gap between the 
hole and a close-fit titanium fastener that was inserted in the hole. A reduction in Kt occurs 
because, upon contact of the hole edge with the fastener, load transfer between the fastener 
and the plate will occur in the transverse direction under a tensile load, thus propping open 
the hole. This report covers the work that has subsequently been carried out to validate the 
use of finite element analysis in analysing both two-dimensional (2D) and three-dimensional 
(3D) contact problems. 

When a fastener is inserted into the hole in the fatigue test coupon, prior work has indicated 
that the greatest reduction in Kt is obtained for the case of a neat-fit insert (i.e. one with a 
diametral gap of zero). Brombolich [1] noted that it has been experimentally verified that the 
fatigue life can be improved when close-tolerance fasteners are installed in holes. Hence, the 
present FEA study focusses on the neat-fit case, which serves to provide a lower bound for 
the reduced value of Kt, in conjunction with the upper bound provided by the open-hole 
case. The neat-fit case is an example of a conforming contact problem, as the boundary of the 
hole and the surface of the insert touch at multiple points before any deformation occurs. 

For 2D frictionless contact problems involving a smooth circular disk inserted into a circular 
hole in an infinite plate loaded at infinity, two sets of analytical solutions are known to be 
available. The first of these was obtained by Stippes, Wilson and Krull [2] for a plate being 
uniaxially-loaded in tension, where the plate and the disk have the same elastic material 
properties. The second solution was obtained by Wilson [3] and went beyond this, dealing 
with biaxial loading and a disk that had different elastic material properties than the plate. 
Both of these solutions provide valuable analytical results that have been utilised here as 
benchmarks for direct comparison with the FEA-based contact analysis solutions. 

Section 2 provides details of the geometry of the LIF Hawk Filled Hole Coupon and the 
elastic material properties of the coupon and the fastener. An exposition of the two available 
analytical solutions that are relevant to the coupon–fastener contact analysis is presented in 
Section 3. The general approach that was utilised in performing the contact analyses using 
the Abaqus FEA code is presented in Section 4. The 2D finite element contact analyses of an 
analytical benchmark problem and the LIF Hawk Filled Hole Coupon are described in 
Sections 5 and 6. The 3D contact analysis using different levels of mesh refinement is covered 
in detail in Section 7. Subsequently, a discussion of the 2D and 3D analysis results is 
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presented in Section 8. A summary of the key results is provided in Section 9. Some general 
conclusions are offered in Section 10. 

2. Geometry and material properties 
The general geometry and dimensions of the LIF Hawk Filled Hole Coupon are as shown in 
Figure 1. The coupon has the common “dog bone” shape, with a 2:1 narrowing at the centre 
section relative to the width at the two ends. The coupon plate thickness is t = 6 mm, and a 
hole of nominal diameter d = 6.35 mm is located in the centre of each coupon. In the 2D 
analysis work that follows, the origin of the x-y coordinate system is located at the centre of 
the hole in the coupon, as shown in Figure 1. For the 3D analyses, the origin of the x-y-z 
coordinate system is located at the centre of the hole in the coupon at the midplane of the 
plate, with the z-direction coming out of the page according to the right-hand rule. 

The coupon (plate) material is an aluminium alloy with a nominal yield strength of 405–450 
MPa, Young’s Modulus of E = 69.0 GPa, and Poisson’s ratio of υ = 0.33. The fastener (pin, 
insert, bolt) is made from a titanium alloy with a nominal yield strength of 880 MPa, E = 
113.8 GPa, and υ = 0.31. 

The results of the present work are valid up to the elastic limit of the material. Any results 
beyond this, although not entirely accurate, may be useful as an estimate for the general 
behaviour of the hole–pin contact interface at higher loads. 

3. 2D analytical solutions 
Consider the general geometrical configuration of an idealised infinite 2D elastic plate 
loaded by stresses Sx and Sy at infinity, as depicted in Figure 2. The origin of the x-y 
coordinate system is located at the centre of the circular hole, which is filled with a 
conforming neat-fit elastic circular disk insert. The contact angle between the plate and the 
insert is η, and the angle θ is the rotation from the x-axis (positive in the anti-clockwise 
direction). The Young’s modulus and Poisson’s ratio of the elastic plate are Ep and υp, and for 
the elastic disk insert they are Ei and υi. 

3.1 Plate and pin with identical elastic material properties 

In their 1962 conference paper, Stippes, Wilson and Krull [2] provided a 2D analytical 
solution to the frictionless contact problem of a smooth circular disk inserted into a circular 
hole in an infinite plate loaded in uniaxial tension (Sx = 0, Sy > 0) at infinity. Their solution 
applies to the case where the plate and the insert have the same elastic material properties 
(Ep = Ei and υp = υi), and the initial diameter of the disk is the same as the hole. The applied 
uniaxial stress results in partial separation between the surfaces of the plate and the disk, 
and under linear-elastic conditions the results are independent of load level. 

The contact angle η is obtained by iteratively finding the smallest root of a nonlinear 
equation involving trigonometric and logarithmic terms (using a method proposed by 
Shampine and Watts [4]), as well as the complete elliptic integrals of the first and second 
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kind, K(k) and E(k) (computed using a method proposed by Thatcher [5]), with modulus k = 
cos(η). The equation to be solved is: 

 ( ) ( ) 0)()ηln(cos)ηsin1(2ηsin2)()ηln(cos2ηsin4 222 =+++−+ kEkK  (1) 

Stippes, Wilson and Krull [2] evaluated the extent of the contact arc to be η = 19.62°, while in 
the present work it has been calculated to be η = 19.62506°, which is in excellent agreement. 

The equations for computing the radial stress along the contact arc, sr, as well as the 
tangential (circumferential) stress around the boundary of the hole, st, were obtained to be: 
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Note that the radial stress sr is non-zero only along the length of the contact arc, being zero 
elsewhere. In the equation for st, the first term corresponds to the well-known classical 
equation for the tangential stress around a circular hole in an infinite plate loaded uniaxially 
in tension [6], which produces a Kt of exactly 3 at θ = 0° and 180°, and a Kt of –1 at θ = ±90°. 

Being relatively compact and simple, the above expressions are amenable to being used in 
spreadsheet calculations, and in fact they have been successfully programmed as functions in 
Microsoft Excel (see Appendix A). Plots of the normalised radial and tangential stresses, 
sr/Sy and st/Sy, around the boundary of the hole are shown in Figure 3. The tangential stress 
for an empty circular hole is also shown there for comparison purposes, and the similarity to 
the results for the plate with an insert is clearly evident. It is seen that the radial stress sr/Sy 
peaks at a value of –0.6091 at θ = 0°, and monotonically reduces to zero at θ = η. At θ = 0° the 
tangential stress st/Sy = 2.5962, and it first dips slightly before it smoothly increases to a peak 
value of st/Sy = 2.7541 occurring at θ = η, after which it decreases to a minimum value of 
st/Sy = –0.7947 at θ = 0°. 

From these results, which are in excellent agreement with those determined by Stippes, 
Wilson and Krull [2], it is evident that the peak Kt of the plate with an insert fitted is 8.2% less 
than that for the plate with an empty hole. Hence, under an applied tensile load, the presence 
of the insert reduces the maximum tangential stress in the plate. Furthermore, it is expected 
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that cracking in the plate might tend to initiate on the hole boundary in close vicinity to the 
location of the peak in the tangential stress, which now occurs at θ = η, rather than at θ = 0° 
as is the case for an empty hole. 

It is worth noting that the gradient of st/Sy is discontinuous at θ = η, where its value 
abruptly changes sign from positive to negative, producing a very sharp peak. The 
behaviour of sr/Sy is such that the slope of the curve at θ = η is very steep, and appears to be 
approaching 90° to the horizontal, which produces a very rapid and step-like transition in 
the radial stress. If sharp and rapid changes such as these are to be accurately reproduced by 
an FEA model, then a highly refined mesh will need to be used in those particular regions. If 
this is not done, then a smoothing effect on the results can be expected, which will serve to 
act like a low-pass filter, removing any rapidly varying content that requires a high-density 
spatial mesh in order for it to be accurately resolved. 

3.2 Plate and pin with different elastic material properties 

In a subsequent conference paper that was published in 1964, Wilson [3] provided an 
analytical solution to the more general 2D contact problem of an infinite elastic plate loaded 
by stresses Sx and Sy at infinity and containing a smooth elastic circular insert of a different 
material. The solution method involved an iterative procedure and, although the solution 
was described as approximate, Wilson’s comparisons with known analytical solutions for 
some special cases appear to indicate that it is nonetheless quite accurate. 

Wilson [3] derived the following expressions for computing the radial and tangential 
stresses, sr and st, where Pk denotes the Legendre polynomial of degree k, once the contact 
angle η and the superposition constants A0, …, Ap have been determined. From his 
convergence studies of different test cases, it would appear that good results can be obtained 
with no more than five terms, corresponding to p = 4. 
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In order to be able to obtain a solution for the case of an aluminium plate and a titanium disk 
insert, a FORTRAN program was written that implemented the method described by Wilson 
[3]. A listing of the source code for this program can be found in Appendix B. The input 
parameters used by the program were the elastic material properties of the plate and insert, 
the stress components at infinity, and the number of terms to be used in the approximating 
series. The output quantities include the contact angle, the superposition constants A0, …, Ap 
in the series used to approximate the contact stress, and the radial and circumferential stress 
around the hole boundary and also at a selected set of boundary points. Once the contact 
angle and constants pertaining to any combination of materials and loading are determined, 
the stresses themselves are reasonably amenable to being calculated in a spreadsheet, should 
this be desired. 

The program required the use of the following numerical computations: a) Simpson’s Rule 
for numerical quadrature; b) solution of simultaneous equations (using the method proposed 
by Moler [7]); c) evaluation of Legendre Polynomials of arbitrary degree k; and d) 
computation of the smallest root of a nonlinear equation involving said Simpson’s Rule, 
simultaneous equations, and Legendre Polynomials in the function being solved (using a 
method proposed by Shampine and Watts [4]). The evaluation of one of the required 
integrals was complicated by the presence of singular terms, but fortunately it can be shown 
that these cancelled in the limit as θ→0 (see Appendix C for details of the mathematical 
derivation). This enabled the requisite integral to be easily computed using numerical 
quadrature. 

In his paper, Wilson [3] provided results for 8 test cases that involved different combinations 
of material properties and with the load applied exclusively in either the x-direction or the y-
direction, for cases where Sx and Sy were compressive and tensile in nature, respectively. For 
his chosen cases, he tabulated the values of the superposition constants A0, …, Ap, as well as 
giving the values of η, sr(0°), st(0°), st(η), and st(90°). For a subset of 4 out of those 8 cases, 
he also provided plots of sr and st. To verify the present program, the 8 test cases were run 
and the results compared to those provided by Wilson. In all cases the computed values of η 
and the 4 chosen stresses were in very good agreement, usually to at least three or four 
significant figures, sometimes more. The computed curves of sr and st appeared to also 
match with the published results. However, for Case #3, the present program produced 
superposition constants that were almost an order of magnitude greater than those obtained 
by Wilson. Nevertheless, the computed values of η, sr and st matched the published data 
very well. Investigation of this issue indicates that the symmetric matrix of simultaneous 
equations, which must be solved in order to obtain the superposition constants A0, …, Ap, is 
somewhat ill-conditioned, as judged from it having quite large condition numbers, especially 
as p increases in size. It seems that for Case #3 this resulted in greatly different superposition 
constants than those published, while still obtaining what appears to be a valid solution. 

For the case of an aluminium alloy plate with a titanium alloy insert, loaded uniaxially in 
tension (Sx = 0 and Sy > 0), plots of the normalised radial and tangential stresses, sr/Sy and 
st/Sy, around the boundary of the hole are shown in Figure 4. Using p = 4, the contact angle 
was computed to be η = 19.31°, and the superposition constants were A0 = 0.68763, A1 
= −0.82157, A2 = 0.59685, A3 = −0.21979, and A4 = 0.033940. The peak radial stress was sr/Sy 
= −0.7330 at θ = 0°, which is 20.3% greater in magnitude than if the titanium alloy insert had 
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instead been made from the aluminium alloy. The peak tangential stress was st/Sy = 2.8060 
at θ = η, and at θ = 0° the tangential stress was st/Sy = 2.5105. This indicates that the peak Kt 
is only 1.9% higher and the contact angle only 0.31° less than if the titanium alloy insert had 
instead been made from the aluminium alloy, even though the stiffness of the titanium alloy 
is 65% greater than that of the aluminium. Compared to the results shown in Figure 3, as a 
result of its much greater stiffness than the aluminium plate material, the titanium insert also 
produces a somewhat greater reduction in st along the contact arc relative to the peak stress 
in the distribution than did the aluminium insert, by approximately 5% or so. 

4. General finite element analysis approach 
The Abaqus 6.9-1 FEA code was used to perform the 2D and 3D analyses that are reported 
here, and Abaqus/CAE 6.9-1 was used as the pre- and post-processor. For the purposes of 
creating the geometry in Abaqus, an orthogonal right-handed x-y-z coordinate system was 
defined with its origin at the geometric centre of the coupon, as shown in Figure 1. The 
horizontal x-axis was aligned parallel to the transverse direction of the coupon, the vertical y-
axis was aligned parallel to the longitudinal direction of the coupon, and the z-axis was 
aligned parallel to the thickness direction of the coupon. This is represented by the idealised 
general 3D plate of height H and width W as shown in Figure 5, which has a uniaxial load S 
applied in the y-direction. To help reduce the size of each finite element model, and hence 
reduce the computation times, ¼-symmetry was utilised when creating a finite element mesh 
for the 2D problems, and ⅛-symmetry was used for the 3D problems. 

4.1 Considerations when analysing infinite-plate benchmark problems 

In this report, FEA techniques are being utilised with a view to performing contact analysis 
of 3D physical structures that have finite dimensions. As part of the verification process used 
to establish that the FEA solution techniques being used are giving good results, whenever 
possible it is highly desirable to be able to compare FEA results to known analytical 
solutions. A good match here will provide confidence that the FEA formulation is accurate 
and is also being correctly used. 

For the contact problem at hand, Section 3 described some 2D analytical solutions for infinite 
plates with inserts that were similar to that occurring for the coupon with a neat-fit fastener 
inserted in the hole in the coupon. 2D FEA techniques can be used to model these problems, 
with the limitation that a finite-width plate needs to be used of necessity. When computing 
SCFs for holes in plates, the finite-width nature of practical problems is well known, and 
indeed results are available that embody suitable correction factors [8, 9, 10]. However, for 
the contact problem presently under consideration here, no such finite-width corrections 
exist. 

In the present benchmarking work, the finite-width affected FEA solutions will need to be 
compared directly to the available infinite-plate contact solutions. In that case, it is necessary 
to choose the relative plate–hole dimensions so as to minimise the effects of finite plate width 
on the solution. Hence, a number of FEA simulations were conducted on a square plate, of 
width W, with a central circular hole of diameter D, loaded by a far-field uniaxial stress equal 
to Sy, in order to investigate the convergence of the Kt = st(0°)/Sy value to the theoretical 2D 



UNCLASSIFIED 
DST-Group-TR-3134 

7 
UNCLASSIFIED 

infinite-plate (W/D = ∞) solution value of Kt = 3 [6], where the equation for the tangential 
stress around the circumference of the hole is given by: 

 ( ) ( )θ)2cos(21θ +=s yt S  (6) 

For maximum accuracy, 8-noded quadratic elements were used in the FEA. Two different 
levels of mesh refinement were studied, one being a coarse-mesh model that used only 20 
equispaced elements around the ¼-circumference of the hole (see Figure 6), and the second 
being a fine-mesh model with 180 equispaced elements (see Figure 7). A range of plate–hole 
configurations with different W/D ratios were studied, and the results corresponding to 
these two levels of mesh refinement and W/D = 40 are presented in Table 1. The 180-element 
solution gave Kt = 3.00539, which is within 0.18% of the exact infinite-plate analytical 
solution. Even the 20-element mesh produces a Kt that is within 0.47% of the infinite-plate 
analytical solution. A comparison of the distribution of tangential stress calculated from the 
analytical solution as compared to the FEA results obtained for the 20-element and 180-
element cases is shown in Figure 8, and it is evident that excellent agreement has been 
attained with both levels of mesh refinement. 

When proceeding to analyse benchmark infinite-plate contact problems using FEA, it is 
therefore concluded that using a plate–hole configuration with W/D = 40 should serve to 
enable direct comparison of the FEA results with the analytical solution. This is because the 
finite-width effects in a quasi-infinite plate such as this with W/D = 40 are reduced to a very 
low level, well under 0.5% for even a relatively coarse mesh. Of course, for the contact 
problems of interest, as a result of the discontinuous behaviour of the radial and tangential 
stresses in the vicinity of the end of the contact arc at θ = η, the highly-refined 180-element 
mesh will better serve to reproduce with high fidelity the observed known behaviour. 

4.2 Contact modelling assumptions 

This is a mixed boundary condition problem with moving boundaries, where the surfaces of 
the insert and the hole in the plate can come into contact with each other. The broad 
assumptions that are used are: 

• Linear-elastic, isotropic, homogenous materials. 
• Zero friction. 
• Small sliding. 
• In-plane remote uniaxial tension loading applied to ends of the plate (35 kN load). 
• No pin loading. 
• No compression loading. 
• Both the pin and the hole can deform during contact. 
• Non-advancing contact behaviour (contact area does not vary with load). 
• Augmented Lagrange contact constraint enforcement method. 
• “Hard” contact pressure–overclosure relationship. 

The results of this work are valid up to the elastic limit of the material. Any results beyond 
the elastic limit of either the coupon or pin material, though not entirely accurate, may be 
useful as an estimate for the general behaviour of the coupon–pin combination at higher 
loads. 
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5. 2D FEA of analytical filled-hole contact problem 
In order to verify the ability of Abaqus to obtain accurate solutions to 2D contact problems, it 
was chosen to model a square aluminium plate of width W with a neat-fit titanium pin 
inserted into the hole of diameter D. The ratio of plate width to hole diameter, W/D, was 
chosen to be relatively large at W/D = 40 in an attempt to create a quasi-infinite plate to 
reduce finite-width effects to negligible levels. The 2D FEA model utilised ¼-symmetry, as 
well as two levels of mesh refinement to see what effect this might have on predictions of the 
stress distribution around the boundary of the hole, both on and beyond the contact arc. The 
frictionless surface-to-surface contact model available in Abaqus was used for analysing the 
hole–pin contact behaviour, and the Abaqus default analysis parameter settings were used. 

The coarse-mesh model that was created had 20 equispaced elements around the ¼-
circumference of the hole–pin boundary, while the fine-mesh model had 180 equispaced 
elements. Details of the two meshes in the vicinity of the hole–pin boundary are shown in 
Figure 9. The hole–pin interface is indicated there, with the finite elements for the pin being 
shown as shaded, and the origin of the global x-y coordinate system is located at the centre of 
the pin as shown. As 8-noded quadratic elements were used, the fine-mesh model has a 
nodal spacing interval of 0.25° around the hole boundary, which will assist in resolving fine 
details. On the other hand, the coarse-mesh model has a nodal spacing of 2.25°, which is 
expected to produce considerable smoothing around any rapid changes in the radial and 
tangential stresses. 

The 2D FEA results for the normalised radial and tangential stresses for the filled-hole case, 
sr/S and st/S, where S = Sy, are shown in Figure 10. The results obtained using the 2D 
analytical solution proposed by Wilson [3] are also shown, and the empty-hole analytical 
solution is also provided for reference. It is clear that the fine-mesh 2D quasi-infinite plate 
results are in excellent agreement with the 2D infinite-plate analytical contact solution. The 
peak st/S = 2.7957 is located at θ = 19.75° and is very well resolved with only a small degree 
of rounding evident. It is only 0.4% less than the analytical result of st/S = 2.8060 located at θ 
= 19.31°. The coarse-mesh results for st/S are also quite good, but the sharp peak in st/S has 
been smoothed over and shifted in location to θ = 20.25°, the value of st/S = 2.7332 being 
smaller in magnitude by about 2.6% compared to the analytical result. The coarse-mesh 
results for sr/S agree moderately well with the analytical solution, but the differences in the 
vicinity of θ = η are quite noticeable. Once the length of the contact arc is identified with a 
reasonable degree of precision, it would of course be possible to further refine the mesh 
around that location, and this would be expected to enhance the accuracy of the FEA results. 

6. 2D FEA of LIF Hawk Filled Hole Coupon contact 
problem 

Considering the experience gained from analysing the contact problem involving the quasi-
infinite plate, two 2D FEA models of the LIF Hawk Filled Hole Coupon were created using 
two levels of mesh refinement around the hole–pin contact boundary. As before, ¼-
symmetry and 8-noded quadratic elements were used. The coarse-mesh and fine-mesh 
models utilised 20 and 180 equispaced elements distributed around the ¼-circumference of 
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the hole–pin interface. The coarse-mesh model is shown in Figure 11a, where the full model 
is presented on the left and a detail view of the mesh around the contact boundary is on the 
right. Similarly, the fine-mesh model is shown in Figure 11b. The shaded finite elements 
correspond to those being used to model the titanium pin. Broadly speaking, these two 
meshes are equivalent to the ones that were used when analysing the quasi-infinite plate in 
the previous section. The analysis of the fine-mesh model was completed in about 15 
seconds. 

Plots of the variation in the normalised radial and tangential stresses, sr/S and st/S, are 
shown in Figure 12 for both the fine-mesh and coarse-mesh models, as well as the finite-
width-corrected results for the analytical infinite-plate solution. The finite-width correction 
(FWC) factor was arrived at by taking the ratio of the peak sr/S stress obtained from the 2D 
FEA of the coupon with an empty hole (no pin fitted) and the infinite-plate analytical 
solution. This gave a FWC factor of 3.1786/3 = 1.0595, which was then used to scale up the 
infinite-plate analytical results for this hole–pin configuration. For reference, Figure 12 also 
shows the variation of st/S for the empty-hole infinite-plate analytical solution as well as for 
the FEA of the empty-hole coupon. Selected values of sr/S and st/S at different values of θ 
around the hole boundary, including θ = η, are presented in Table 2. 

It is worth comparing the Kt of the empty-hole coupon, Kteh = 3.1786, with that obtained from 
handbook values. From the data presented in Chart 4.1 in Peterson’s Stress Concentration 
Factors [9] for a finite-width thin plate with a circular hole, the expression for Ktg in terms of 
plate width W and hole diameter D is: 
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Note that the above formula has a very small but finite error when D/W = 0, giving Ktg = 
3.004 instead of 3 for this limiting case. 

Pilkey [10] provides a similar formula in Table 6.1, with his formula giving the correct value 
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For the coupon geometry at the minimum cross-section, W = 30 mm and D = 6.35 mm (D/W 
= 0.2117), and Peterson’s formula gives Ktg = 3.168, while Pilkey’s formula gives Ktg = 3.153. 
Both of these results are slightly less than the 2D-FEA-computed value of 3.1786 for the 
empty-hole coupon, which is likely due to the fact that we are dealing with a dog bone–
shaped coupon rather than a simple straight-sided strip. The above formulas produce values 
of Ktg that are similar to those that were provided by Howland [11] for discrete values of 
D/W = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. 

From an inspection of Figure 12 and Table 2, it is clear that results produced by the fine-mesh 
and coarse-mesh FEA models of the coupon with pin fitted are in quite good agreement with 
each other. As anticipated, the coarse mesh once again produces a peak in st/S at θ = η that 
is smoothed out and lower in magnitude, as well as having a slightly higher value of η. It is 
also evident that the analytical infinite-plate solution with a FWC factor applied is also a 
good match for the fine-mesh coupon results. 

A number of stress contour plots have also been generated for an applied load of 35 kN, 
which corresponds to an applied stress of 194.44 MPa. Figure 13a shows the results for radial 
stress sr, Figure 13b shows the results for the tangential stress st, and Figure 14 shows the 
results for the Von Mises stress. As expected, the plots of the tangential and the Von Mises 
stresses clearly indicate the location of the hole–pin interface, as a result of the Young’s 
modulus of the pin and the plate being so different. Also as expected, the plot of the radial 
stress shows continuity of stress across the hole–pin interface. Looking at Figure 14, it 
appears to be likely that a significant degree of plasticity could be expected in the aluminium 
plate along the entire contact arc, as at this 35 kN load level there is a large region of material 
where the Von Mises stress has exceeded the yield strength of the aluminium alloy material 
(which is approximately 400 MPa). However, an elasto–plastic analysis of this behaviour will 
not be performed here, but will be left for a subsequent separate investigation. 

7. 3D FEA of LIF Hawk Filled Hole Coupon contact 
problem 

As was done when analysing the 2D contact problem using FEA, it was decided to model the 
3D coupon using a coarse mesh as well as a fine mesh, with a view to obtaining some 
insights into the quality of results that could be achieved. However, because the 
computational complexity of 3D FEA models is much greater than that of 2D models, owing 
to the greatly increased number of degrees of freedom that need to be solved for, the level of 
mesh refinement that can usefully be utilised is considerably less than what is typically 
possible with 2D models. Nonetheless, it was decided to attempt to use a very refined mesh 
in order to try to very accurately resolve the sharp transitions in tangential and radial stress 
that were evident in the 2D analysis, and which were therefore expected to also appear in the 
3D analysis. 

As in the 2D analyses, the frictionless surface-to-surface contact model available in Abaqus 
was used for analysing the hole–pin contact behaviour, and the Abaqus default parameter 
settings were used. The Abaqus documentation recommends that the master contact surface 
consist of the more rigid and/or more highly refined surface. Hence, as the mesh densities 
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used on the pin and the hole were quite similar, the master surface was defined to be the pin, 
which is made from titanium and is about 65% stiffer than the aluminium material from 
which the coupon is manufactured. The slave contact surface was defined to be the surface of 
the hole. 

7.1 3D coarse-mesh finite element model 

7.1.1 Meshing considerations 

The coarse-mesh FEA model that was created for analysing the aluminium coupon and 
titanium pin (bolt) combination is shown in Figure 15. The upper picture shows the general 
mesh of the entire ⅛-symmetry model, and the lower picture shows a detail of the mesh in 
the immediate vicinity of the hole. The pin is nominally modelled as a hand-tightened loose-
fit bolt in a hole, without any of the restraints that normally would apply to a bolt head and 
nut combination in a fully torqued-up bolt. In the FEA model, the pin extends 1 mm beyond 
each of the outer longitudinal surfaces of the plate. To some degree, this is anticipated to 
simulate the presence of the additional material that is associated with the bolt at the head 
and nut ends. 

The coarse-mesh model was predominantly composed of 20-noded quadratic C3D20 
hexahedral brick elements. Some 15-noded quadratic C3D15 elements were also present. In 
developing the mesh, the coupon was partitioned into subregions, and use was made of 
structured as well automated swept meshing. There were 12 equispaced elements distributed 
over the half-thickness of the plate (4 elements per mm). The hole had 16 elements 
distributed around the ¼-circumference of its boundary, and a 3:1 mesh bias was used to 
provide some mesh refinement in the region where the peak stress occurs. A total of 6592 
elements were defined using 23266 nodes. There were 61386 variables present in the model. 
The 35 kN load was applied as a uniform pressure of 194.44 MPa over the faces of the solid 
elements located along the bottom of the coupon mesh. 

7.1.2 Computed stress distributions 

The stress contour plots for the tangential and radial stresses in the vicinity of the hole in the 
coupon are shown in Figure 16, where the stresses are presented in MPa. The tangential 
stresses are highest at the midplane of the coupon, and reduce progressively towards the free 
surface of the coupon. This is not unexpected, as it is relatively well known [12, 13, 14, 15, 16] 
that the through-thickness tangential stress monotonically decays along the bore of an empty 
hole in a uniaxially-loaded plate for D/t > 0.5 (for our coupon D/t = 1.0583). In contrast to 
this behaviour, at the location where the free surface of the coupon meets the pin, there was a 
high stress concentration evident in the radial stresses (see Figure 16b). Upon closer 
examination, this appeared to indicate the presence of a stress singularity. Phenomena such 
as this, where a singular stress field is developed at the vertex of an elastic plane indenter of 
various angles that is compressing another elastic plane, have been the focus of extensive 
work by many authors. That work has included analytical studies [17, 18, 19, 20], 
experimental studies using photoelasticity [21, 22, 23, 24], and FEA studies [24, 25, 26, 27]. 
The singularity appears to have a strength that is approximately of the order of r/1 . 
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7.1.3 Additional meshing considerations due to presence of stress singularity 

Having identified that the 3D elastic coupon–pin contact problem involves a singularity, it is 
evident that the coarse-mesh model will not be able to provide sufficiently accurate estimates 
of the stress in the singularity-affected region. Sinclair et al. [26] provide some guidance as to 
why the singular stress field should be accurately represented, using the following example: 

“… we observe that it should not be thought that the smoothing of stress gradients which 
accompanies plastic flow obviates the stress analyst from accurately resolving elastic 
stress fields if accurate elasto–plastic stresses are sought. Basically this is because elastic 
response physically precedes and triggers elasto–plastic. To explain further, using the fine 
submodel grid, local first yielding for the dovetail without friction is predicted to occur 
when loads attain 58 percent of the maximum value used here (based on a Tresca yield 
criterion). Using just the coarse global grid, this event is not predicted to occur until 
loads reach 84 percent of their maximum value. Clearly a significant erroneous delay 
results from using a finite element mesh of insufficient refinement.” 

By choosing a suitable level of mesh refinement, it is anticipated that the accuracy of the 
present elastic analysis will be enhanced. It is also considered that any subsequent elasto–
plastic analysis of the coupon–pin combination will more accurately simulate the 
development of the plastic zone with increasing load. In an empirical study, Whitcomb, Raju, 
and Goree [28] concluded that finite element solutions are accurate everywhere except very 
near a stress discontinuity or singularity, and that the region of inaccuracy is limited to about 
two elements in the immediate vicinity thereof. This region of inaccuracy can then be made 
very small by progressive mesh refinement, such that valid results can be obtained by FEA in 
the neighbourhood of stress discontinuities and singularities. As will be demonstrated later, 
the results of the present work appear to support this two-element accuracy rule of thumb. 

7.2 3D fine-mesh finite element model 

7.2.1 Meshing considerations 

A fine-mesh FEA model was created for analysing the aluminium coupon and titanium pin 
combination to provide a point of reference against which less refined meshes could 
compared. The fine-mesh model is shown in Figure 17, and it uses significantly more 
elements than does the coarse-mesh model. The upper picture shows the general mesh of the 
entire ⅛-symmetry model, and the lower picture shows a detail of the mesh in the immediate 
vicinity of the hole. There were 60 equispaced elements distributed over the half-thickness of 
the plate (15 elements per mm), and the hole had 90 equispaced elements distributed around 
the ¼-circumference of its boundary (18 elements per mm). Hence, the elements around the 
hole boundary were well-shaped, being of approximately of 1:1 aspect ratio, which helps to 
enhance the accuracy of the simulations. 

7.2.2 Computed stress distributions 

The stress contour plots for the tangential and radial stresses in the vicinity of the hole in the 
coupon are shown in Figure 18, where the stresses are presented in MPa. Although the fine-
mesh model appears to be quite capable of providing high-fidelity results, this model takes a 
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very long time to run, approximately 18 hours. It is therefore deemed to be impractical to use 
for any nonlinear plasticity analysis, which requires the use of multiple load increments and 
iterative plasticity solutions at any given load increment, on top of any contact iterations. On 
the other hand, the coarse-mesh model has been judged to be somewhat too coarse, 
especially in view of the fact that the radial stress in the hole exhibits a singularity where the 
outer surface of the plate meets the surface of the pin, at z/t = ±0.5. As a result of these 
considerations, it was decided to investigate the use of a graded mesh to maintain accuracy 
in the solution while reducing the run time. 

7.3 3D graded-mesh finite element model 

7.3.1 Meshing considerations 

A graded-mesh FEA model was created for analysing the aluminium coupon and titanium 
pin combination, where the degree of mesh refinement was somewhere between that of the 
fine-mesh and coarse-mesh models described earlier. The graded-mesh model is shown in 
Figure 19. The upper picture shows the general mesh of the entire ⅛-symmetry model, and 
the lower picture shows a detail of the mesh in the immediate vicinity of the hole. There 
were 14 elements distributed over the half-thickness of the plate, and the elements were 
made smaller towards the free surface of the plate, with the last two elements being 
equispaced. The hole had 20 elements distributed around the ¼-circumference of its 
boundary, and the mesh was graded so that it was finer at the two ends of the arc around the 
¼-circumference (at θ = 0°, 90°, 180° and 270° around the complete hole), and coarsest in the 
middle of that arc (at θ = 45°, 135°, 225°, and 315° around the complete hole). This refinement 
occurs in the regions where stresses will be high as a result of contact occurring under 
tension loading (the present case) and compression loading. 

7.3.2 Computed stress distributions 

The stress contour plots for the tangential and radial stresses in the vicinity of the hole in the 
coupon are shown in Figure 20, where the stresses are presented in MPa. The contour plot of 
Von Mises stress is shown in Figure 21. This model took approximately 15 minutes to run, 
and it appears to give similar results to the fine-mesh model. The singularity in the radial 
stress appears to be represented more accurately than was possible with the coarse-mesh 
model. It is worth noting that, although the radial stress at the free boundary in the contact 
region will be high, being radial and compressive in nature rather than tangential and tensile 
in nature, means that it will be of low significance from a fatigue cracking point of view. 
Furthermore, the effects of plastic flow at higher load levels can be expected to ameliorate the 
effects of the stress singularity; it is planned to study this at a later date in another report. 

8. Discussion of 2D and 3D FEA results 
8.1 Identification of region of substantial plasticity 

All of the different linear-elastic FEA results were obtained for a load level corresponding to 
an applied uniaxial load on the coupon of 35 kN. In order to put the magnitude of this 
applied load in perspective, consider that, at a 25 kN load level, local yielding of the open 
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hole is just starting to occur between 405–450 MPa. The average gross-section stress (hole 
excluded) is about 139 MPa and the average net-section stress (hole included) is about 
176 MPa. Loads above about 25 kN will produce strains beyond the material elastic limit for 
the aluminium alloy coupon. The contour plot of Von Mises stress shown obtained from a 
3D FEA is shown in Figure 21, and corresponds to the 35 kN linear-elastic load level. This 
indicates the existence of a plastic zone that will be developed over a large portion of the 
hole surface, and the size of this plastic zone includes all of the hole–pin contact interface 
(Von Mises stress contours above 405 MPa). 

8.2 Comparison of 2D and 3D FEA results with 2D analytical solution 

The variation in the radial and tangential stresses around the hole boundary, as obtained 
from the 3D and 2D Abaqus FEA fine-mesh midplane results and the 2D analytical infinite-
plate finite-width-corrected solution, is shown in Figure 22. For the radial stress, sr/S, 
determined at the midplane (z/t = 0.0), the 3D FEA results in Figure 22a match the 2D 
benchmarks very well at the point of peak stress at θ = 0°, but the agreement gets 
progressively worse as θ → η, although the general shapes of the curves are quite similar. 
The 3D FEA result for the angular length of the contact arc is η = 19.00°, which is about 0.75° 
less than the result obtained from the 2D FEA of the coupon. Turning now to the tangential 
stress, st/S, determined at the midplane, the 3D FEA results in Figure 22b are again in 
relatively good agreement with the 2D benchmarks, with the general shapes of the curves 
matching up quite well. The 3D FEA contact solution shows the distinct flat shelf in the st/S 
stress distribution in the range 0° ≤ θ ≤ 0.7η, followed by the characteristic rise and fall as θ 
approaches and then exceeds η in value. Comparing the results from the open-hole case with 
those from the contact case, the values of st/S are less than those for the open-hole case until 
about θ = 18° (≈ 0.95η). Beyond this point the tangential stress response curve is shifted to the 
right, resulting in the positive values of tangential stress being higher in value, and negative 
values being lower. The effect of contact has been to reduce the peak value of st/S from 3.347 
to 3.031, which is a significant reduction of 9.4%. 

8.3 Accuracy of graded-mesh finite element model 

The variation of the radial stress and tangential stress around the hole at both the midplane 
(z/t = 0.0) and the surface (z/t = 0.5) in the uniaxially-loaded aluminium coupon with a neat-
fit titanium pin inserted, as obtained from the 3D FEA, is shown in Figure 23a and Figure 
23b, respectively. These results compare the solutions obtained using the coarse-mesh, fine-
mesh and graded-mesh FEA models, where the graded mesh is itself only marginally more 
refined than is the coarse mesh. Using the fine-mesh model as the reference yardstick, it is 
evident that the graded-mesh model produces a much better match in the radial and 
tangential stresses than does the coarse-mesh model. This is particularly evident for the 
radial stresses that occur at the vertex formed by the free surface of the coupon where it 
meets the surface of the pin. As a result of the stress singularity that occurs there, which has 
been previously discussed, the values of st/S for the coarse-mesh model are significantly 
lower than the predictions from the fine-mesh model, while those for the graded-mesh 
model are much closer as a result of using a finer mesh near the free surface of the coupon. 



UNCLASSIFIED 
DST-Group-TR-3134 

15 
UNCLASSIFIED 

Looking at Figure 23b, it is quite apparent that neither the graded-mesh nor the coarse-mesh 
models can reproduce the sharp peak in the st/S distribution that normally occurs at θ = η. 
This occurs because their meshes are simply too coarse to resolve the fine details in a region 
where there is a very rapid change in sign in the slope of the curve at θ = η, resulting instead 
in a very smoothed approximation of what is in actuality a quite sharp and pointy peak. 
Even the fine-mesh model struggles somewhat in this regard, producing some rounding of 
the peak. When compared to the coarse-mesh model, the graded-mesh model exhibits an 
interesting step-like change in st/S at the free surface in the region 0° ≤ θ ≤ 0.7η, producing 
results that are in good agreement with those from the fine-mesh model. Although this step-
like reduction is only of the order of 3% or so, it is nonetheless a very noticeable feature. 
Even though the radial contact pressure sr/S is orthogonal to the tangential stress st/S, the 
singular behaviour of sr/S nonetheless appears to have a noticeable effect on the tangential 
stress occurring on the free surface if a coarse mesh is utilised. 

8.4 Through-the-thickness stress distribution effects 

The variation of the radial stress and tangential stress along the bore of the hole in the 
aluminium coupon fitted with a neat-fit titanium pin is shown in Figure 24. These results 
were obtained from the 3D FEA along a line of constant θ = 0° over the interval 0 ≤ z/t ≤ 0.5. 
It is apparent that the radial stress increases from the midplane (z/t = 0) towards the outer 
free surface of the coupon (z/t = 0.5), while the tangential stresses do the opposite, 
decreasing in value from the midplane to the free surface. As mentioned previously, the peak 
tangential stress is known to vary along the bore of an empty hole in a thick uniaxially-
loaded plate [12, 13], and the variation is a function of the ratio of the hole diameter to the 
thickness of the plate, D/t, as well as Poisson’s ratio, υ. The results presented by Folias and 
Wang [12] indicate that, for ratios where D/t > 0.5, the peak tangential stress along the bore 
of an empty hole will decrease monotonically from the midplane to the outer free surface of 
the plate. For the present coupon, we have that D/t = 1.0583, and the tangential stress along 
the bore depicted in Figure 24b reduces in the manner commensurate with their predictions. 
It is expected that a similar trend would be present had a curved line down the bore 
corresponding to θ = η been used (i.e. corresponding to the peak in the tangential stress 
distribution), and this will be confirmed below. 

As shown in Figure 24, both the radial and tangential stress distributions exhibit a distinct 
step-like change in response between the results from the coarse-mesh and graded-mesh 
models. It seems reasonable to attribute this step change to the local refinement of the 
graded-mesh model in the vicinity of the stress singularity in sr/S that occurs at z/t = 0.5. It 
is interesting to see that the step change is active over the entire region, whereas the extra 
mesh refinement in the graded-mesh model is only over the last few percent of the thickness 
of the coupon. The stress predictions obtained from the graded-mesh model are in very good 
agreement with those from the fine-mesh model up to the final two elements terminating at 
z/t = 0.5, which supports the use of the two-element rule of thumb described earlier. 

Looking at Figure 24b, it is also interesting to note that the tangential stress st/S takes a 
rather sudden dip in the vicinity of the singularity in sr/S, dropping from a value of 2.529 at 
z/t = 0.4875 to 2.317 at z/t = 0.5, a reduction of about 8.3% in the space of Δt/t = 0.025 (2.5% 
of the plate thickness). No such sudden change was indicated by the work of Folias and 
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Wang [12] in determining the 3D stress field around a circular hole in an infinite plate of 
arbitrary thickness. Their results for a plate with υ = 0.33 and D/t = 1.0 are plotted in Figure 
25. Also shown there are the 3D FEA results for the coarse-mesh model of the coupon with 
an empty hole (no pin inserted), together with the analytical results modified by the 
application of the FWC factor of 1.0597 obtained from the 2D FEA of the empty-hole coupon. 
Here the peak tangential stress from the 3D FEA of the open-hole coupon is st/S = 3.347, and 
applying the inverse of the 2D FEA-computed FWC we obtain st/S = 3.158, which is 0.7% 
less than the value st/S = 3.18 obtained by Folias and Wang [12]. 

Considering that D/t = 1.0583 for the present coupon, while the analytical results pertain to 
D/t = 1, the 3D FEA and FWC-factored 2D analytical results are in quite good agreement. 
Better agreement would potentially have been obtained had the analytical solution 
corresponding to D/t = 1.0583 been available, as the data presented in Figure 6 of Folias and 
Wang [12] indicates that the peak Kt at z/t = 0 would be reduced a little, while the minimum 
Kt at z/t = 0.5 would be increased a little, for that particular case. 

The 3D FEA results obtained for the radial and tangential stresses at selected angles around 
the hole–pin contact interface at the midplane and surface faces of the coupon for different 
levels of mesh refinement are presented in Table 3. It is also noted here that η varies along 
the bore of the hole. For the fine-mesh FEA results, the value of η is smallest at the midplane 
(η = 19.0°), swinging around by about 2.5° (to η = 22.5°) as the free surface of the coupon is 
approached. This general behaviour is also evident in the coarse-mesh and graded-mesh 
results. 

8.5 Comparison of midplane and free surface stress distributions 

Looking at the midplane and free surface tangential stress distributions computed using 3D 
FEA and shown in Figure 23 and Figure 24, it is evident that the midplane results are the 
ones that are in best agreement with the 2D analytical solution. This interesting behaviour 
warrants further elaboration here. For 2D plane elasticity problems, the in-plane stresses 
associated with states of plane stress and plane strain are in fact identical. This feature was 
utilised by Sternberg and Sadowsky [13], who developed an approximate 3D solution for the 
stress distribution around a circular cylindrical hole in an infinite plate of arbitrary thickness. 
They did this by obtaining correction terms to the underlying 2D equations of plane stress 
that are independent of plate thickness, noting that their correction terms may be regarded as 
3D corrections characterising the departure from plane stress owing to t/D ≠ 0. In the limit as 
t/D → 0, their solution correctly reduces to the plane-stress solution. We note here that, 
using the data for θ = 0° and θ = η from Table 3, the 3D FEA tangential stress results at the 
free surface face are nominally about 15% less than those at the midplane face. 

8.6 Accuracy of results surrounding the sharp peak in tangential stress 

A major feature of the contact problem being considered here is that a very sharp peak in the 
tangential stress develops at the end of the contact arc. It is possible to obtain accurate stress 
results in this region, but only if a sufficiently high level of mesh refinement is utilised. The 
best results in this regard were obtained using an element spacing of one element for every 
0.25° of arc when solving 2D problems. However, this spacing is too fine for use on typical 



UNCLASSIFIED 
DST-Group-TR-3134 

17 
UNCLASSIFIED 

3D problems, as it results in models with very large numbers of elements that take tens of 
hours to solve for just one linear-elastic load case. A graded mesh, comprised of 20 elements 
distributed around the ¼-circumference of the hole, and refined near the tension and 
compression stress peaks, can be used with good results. It offers more modest solution 
times that would enable elasto–plastic analyses to be conducted in a reasonable time. 
However, as a result of the coarseness of the mesh relative to the significant stress features, 
some smoothing of the main peak in the tangential stress will occur, with a small reduction 
in the predicted value of the peak stress, as well as a small shift in its location. 

9. Summary of key results 
The key achievements of the present work are summarised below: 

a. The 2D analytical solution by Stippes, Wilson and Krull [2] for computing the radial 
and tangential stresses around a hole in a plate containing a circular insert with the 
same elastic material properties has been identified. The equations for the tangential 
and radial boundary stresses have been coded up into VBA Excel spreadsheet 
functions (see Appendix A), which are now available for future use in providing 
initial estimates of contact stresses for applicable two-dimensional contact problems. 

b. The approximate 2D analytical/numerical solution by Wilson [3] for determining the 
radial and tangential stresses around a hole in a plate containing a circular insert 
with different elastic material properties has been identified. A FORTRAN program 
for computing the equations for the boundary stresses using general user-supplied 
elastic material properties (Young’s modulus and Poisson’s ratio) has been written 
(see Appendix C). It is available for future use in providing initial estimates of 
contact stresses for any applicable two-dimensional contact problems. 

c. The use of the Abaqus FEA code for solving 2D hole–insert contact problems using 
quadratic 8-noded elements has been verified by benchmarking against a known 2D 
analytical/numerical solution by Wilson [3]. The results indicate that FEA can be 
used to accurately solve problems involving contact between the boundary of a hole 
and an insert in a plate loaded uniaxially in tension. 

d. The use of the Abaqus FEA code for solving 3D hole–insert contact problems has 
also been verified by benchmarking the FEA solution against a known approximate 
2D analytical/numerical solution by Wilson [3]. The geometry and aluminium and 
titanium elastic material properties representative of a fatigue test coupon were 
used. Both coarse-mesh and fine-mesh solutions were investigated, with the latter 
producing better, more accurate results, just as expected. As expected, the 3D 
midplane results from the FEA provided the best match with the 2D solution. This is 
because the state of stress at the central plane of the present finite-thickness plate 
(D/t = 1.0583) approaches one that corresponds to plane strain conditions [13]. 

e. A computationally-efficient and accurate graded-mesh 3D FEA model of the fatigue 
test coupon and fastener combination has been created. As reported here, tension-
only loadings have been studied, but the graded-mesh model was designed to also 
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be suitable for the analysis of compressive loadings, which will be of interest in any 
potential follow-on elasto–plastic contact analysis studies that may be undertaken. 

f. A mesh refinement strategy to ameliorate the effects of the radial stress singularity 
on the results has been identified for use in 3D FEA of hole–insert contact problems. 
The singularity occurs where the surface of the insert meets the free outer surfaces of 
the plate. The strategy makes use of the “2-element rule”, where the FEA stress 
predictions are accurate up to the last two elements that are placed in the immediate 
vicinity of the stress singularity [28], and it requires that a high level of local mesh 
refinement be used at the stress singularity. 

g. The radial and tangential contact stresses both include stress discontinuities at the 
end of the contact arc (at θ = η). The accuracy with which the stresses in these 
transition regions can be represented is highly dependent on the level of mesh 
refinement that is used. When using quadratic elements, a node-to-node spacing of 
0.25° (720 elements) around the full boundary of the hole has been found to give 
very good results. Such a choice allows the value of η to be accurately determined to 
the nearest 0.25° or so, as well as allowing the sharp peak in the tangential stress 
distribution to be accurately reproduced, together with the sudden drop to zero in 
the radial stress distribution. 

h. The 3D coarse-mesh and graded-mesh models both produce reasonably accurate 
stress results at the midplane of the plate, even though the node-to-node spacing 
when quadratic elements are used is about 2.25° (80 elements) around the full 
boundary of the hole. However, there is considerable smoothing of the peak in the 
tangential stress distribution, which is usually accompanied by a reduction in the 
peak value by 2–3%, as well as a small shift in its predicted location of about 1° or so. 

i. For a neat-fit titanium insert and an aluminium coupon combination undergoing 
predominantly tensile loading, it is envisaged that cracking in the coupon is likely to 
occur on the hole boundary in close vicinity to the location of the peak in the 
tangential stress, which occurs at θ = η ≈ 19° (¼-symmetry assumed), rather than at θ 
= 0° as is the case for an empty hole. However, the location of any cracking will still 
be greatly influenced by where the worst initial discontinuity or manufacturing flaw 
is present. 

j. During the fatigue testing program, the maximum load applied to the coupon is 
35 kN. The linear-elastic FEA work performed here indicates that significant plastic 
deformation can be expected around the hole boundary, as the computed Von Mises 
stress levels exceed the yield point of the aluminium alloy from which the coupon is 
manufactured. Hence, an elasto–plastic contact analysis needs to be undertaken in 
order to ascertain the effects of plasticity on the stress concentration behaviour of the 
hole when it is fitted with the titanium pin. 
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10. Conclusion 
A series of 2D and 3D contact analysis models of a plate with a circular hole fitted with a 
neat-fit circular insert, where the plate is loaded in uniaxial tension only, have been analysed 
in order to check the accuracy of FEA results versus a solution computed using a known 
analytical/numerical technique provided by Wilson [3]. The radial and tangential stresses 
around the hole boundary resulting from contact between the surfaces of the hole and the 
insert were determined, and the FEA models utilised various degrees of mesh refinement to 
help ascertain the effect on the accuracy of the FEA predictions. 

The results show that FEA is well suited to the solution of both 2D and 3D contact problems 
involving materials with different elastic material properties. It is capable of producing 
accurate stress distributions for these types of problems, as long as a suitable level of mesh 
refinement is used in order to capture some of the rapid variations in stress that occur as a 
result of hole–insert contact interactions. 

The results from the analysis of the fatigue test coupon reported here provide a body of 
improved stress distribution data for use in the validation of test interpretation activities 
relating to full-scale fatigue testing of aircraft structures in service with the RAAF. As it has 
been determined that the peak stresses around the hole considerably exceed the yield point 
of the aluminium alloy coupon material, it is recommended that an elasto–plastic finite 
element contact analysis be undertaken. This would help to quantify the effects of local 
plasticity on the stress concentration factor, as the effects of plastic flow can be anticipated to 
have a significant effect on fatigue life. 
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Table 1: Comparison of the peak tensile and peak compressive Kt values for a hole in a uniaxially-
loaded plate obtained using the 2D analytical solution for an infinite plate (W/D = ∞) and 
2D FEA of a square finite plate with W/D = 40 with two levels of mesh refinement. 

 Analytical 
Solution 
Infinite 

Plate 
W/D = ∞ 

FEA With Coarse Mesh 
(20 equispaced elements 
around hole boundary) 

Square Finite Plate 
W/D = 40 

FEA With Fine Mesh 
(180 equispaced elements 
around hole boundary) 

Square Finite Plate 
W/D = 40 

 Kt Kt Error Kt Error 

Tensile peak 3.00000 3.01415 +0.472% 3.00539 +0.180% 

Compressive peak 1.00000 1.01009 +1.009% 1.00425 +0.425% 

Table 2: Radial and tangential stresses at selected angles around the hole–pin contact interface 
obtained from 2D FEA and the finite-width-corrected 2D analytical infinite-plate solution 
for an aluminium coupon and titanium pin. 

 2D FEA of Coupon 2D Analytical 
Infinite-Plate 

Solution With Finite-
Width Correction  Coarse Mesh Fine Mesh 

η 20.25° 19.75° 19.31° 

sr/S at θ = 0° 0.7778 0.7836 0.7766 

st/S at θ = 0° 2.6228 2.6190 2.6599 

st/S at θ = η 2.8628 2.9197 2.9731 

st/S at θ = 90° –0.8001 –0.7978 –0.8015 

Table 3: Radial and tangential stresses at selected angles around the hole–pin contact interface at the 
midplane (z/t = 0) and surface (z/t = 0.5) faces of the coupon for the aluminium coupon 
and titanium pin using 3D FEA with different levels of mesh refinement. 

 Fine Mesh Coarse Mesh Graded Mesh 

 Midplane Surface Midplane Surface Midplane Surface 

η 19.00° 22.50° 20.08° 22.29° 20.50° 22.79° 

sr/S at θ = 0° 0.7757 1.7033 0.7558 1.3114 0.7720 1.5986 

st/S at θ = 0° 2.7005 2.3173 2.7164 2.4433 2.7042 2.3534 

st/S at θ = η 3.0310 2.6120 2.9668 2.5494 2.9543 2.5514 

st/S at θ = 90° –0.9203 –0.4917 –0.9304 –0.4887 –0.9222 –0.4918 
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Figure 1: Drawing showing dimensions of LIF Hawk Filled Hole Coupon to be used in fatigue testing, 
including the location of the origin of the x-y coordinate system. 
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Figure 2: Geometrical configuration of an infinite 2D plate loaded by stresses Sx and Sy at infinity 
showing the contact angle η between the plate and the circular disk insert. 
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(a) 

 
(b) 

Figure 3: Stress distribution around boundary of a circular hole with a circular disk insert of the same 
material, in a 2D infinite uniaxially-loaded plate. (a) Radial stress. (b) Tangential stress. 
The stress around an empty circular hole in an infinite plate is also shown for comparison. 
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(a) 

 
(b) 

Figure 4: Stress distribution around the boundary of a circular hole with a titanium circular disk 
insert, in a 2D infinite uniaxially-loaded aluminium plate. (a) Radial stress. (b) Tangential 
stress. Stresses for an infinite plate with an empty circular hole also shown for comparison. 
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Figure 5: Geometrical configuration of a 3D plate of height H and width W and thickness t with a 

central circular hole of diameter D. 
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(a) 

 

 
(b) 

Figure 6: 2D ¼-symmetry Abaqus coarse-mesh finite element model of a uniaxially-loaded square 
plate with a circular hole (W/D = 40), with 20 elements around ¼-circumference of hole. 
(a) Entire plate. (b) Detail of mesh in vicinity of hole. 
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(a) 

 

 
(b) 

Figure 7: 2D ¼-symmetry Abaqus fine-mesh finite element model of a uniaxially-loaded square plate 
with a circular hole (W/D = 40), with 180 elements around ¼-circumference of hole. 
(a) Entire plate. (b) Detail of mesh in vicinity of hole. 
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Figure 8: Comparison between the analytical and FEA solutions for the distribution of normalised 

tangential stress around the boundary of a hole in a uniaxially-loaded square plate. Coarse-
mesh FEA case corresponds to 20 equispaced elements around the ¼-circumference of the 
hole boundary, while fine-mesh FEA case uses 180 equispaced elements. 
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(a) 

 

 
(b) 

Figure 9: Details of 2D ¼-symmetry Abaqus models of a uniaxially-loaded square plate with a 
circular hole (W/D = 40) and a titanium pin in vicinity of the hole–pin contact interface. 
(a) Coarse-mesh model with 20 equispaced elements around ¼-circumference of hole. 
(b) Fine-mesh model with 180 equispaced elements around ¼-circumference of hole. 



UNCLASSIFIED 
DST-Group-TR-3134 

32 
UNCLASSIFIED 

 
(a) 

 
(b) 

Figure 10: Variation of stress around a hole in a uniaxially-loaded square aluminium plate with a 
neat-fit titanium pin. Results obtained from Abaqus 2D fine-mesh and coarse-mesh FEA 
for a quasi-infinite plate with W/D = 40 and an analytical infinite-plate solution. 
(a) Radial stress. (b) Tangential stress. 
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(a) 

 

 
(b) 

Figure 11: Abaqus 2D ¼-symmetry finite element mesh used to model the aluminium coupon and the 
neat-fit titanium pin. (a) Coarse-mesh model with 20 equispaced elements around the ¼-
circumference of the hole–pin boundary. (b) Fine-mesh model with 180 equispaced 
elements around the ¼-circumference of the hole–pin boundary. 
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(a) 

 
(b) 

Figure 12: Variation of stress around a hole in uniaxially-loaded aluminium coupon with a neat-fit 
titanium pin. Results from Abaqus 2D FEA fine-mesh and coarse-mesh models, as well as 
the finite-width-corrected analytical infinite-plate solution. (a) Radial stress. 
(b) Tangential stress. 
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(a) 

 

 
(b) 

Figure 13: Stress contours for Abaqus 2D fine-mesh finite element model of aluminium coupon and 
neat-fit titanium pin. (a) Radial stress. (b) Tangential stress.  
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Figure 14: Von Mises stress contours for Abaqus 2D fine-mesh finite element model of aluminium 

coupon and neat-fit titanium pin. 
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(a) 

 

 
(b) 

Figure 15: Abaqus 3D coarse-mesh finite element model of the aluminium coupon and the neat-fit 
titanium pin. (a) Complete ⅛-symmetry model (midplane surface is on the left). (b) Detail 
of finite element mesh in vicinity of hole in the coupon, including the pin. 
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(a) 

 

 
(b) 

Figure 16: Stress contours in the vicinity of the hole for the aluminium coupon with neat-fit titanium 
pin for the 3D coarse finite element mesh. The midplane surface of the coupon is on the left, 
and the outer (free) surface is on the right. (a) Tangential stress. (b) Radial stress. 
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(a) 

 

 
(b) 

Figure 17: Abaqus 3D fine-mesh finite element model of the aluminium coupon and the neat-fit 
titanium pin, with 90 elements around the ¼-circumference of the hole–pin boundary. 
(a) Complete ⅛-symmetry model (midplane surface is on the right). (b) Detail of finite 
element mesh in vicinity of hole in the coupon, including the pin. 



UNCLASSIFIED 
DST-Group-TR-3134 

40 
UNCLASSIFIED 

 
(a) 

 

 
(b) 

Figure 18: Stress contours in the vicinity of the hole for the aluminium coupon with neat-fit titanium 
pin for the 3D fine finite element mesh. The midplane surface of the coupon is on the right, 
and the outer (free) surface is on the left. (a) Tangential stress. (b) Radial stress 
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 (a) (b) 
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Figure 19: Abaqus 3D graded-mesh finite element model of the aluminium coupon and the neat-fit 
titanium pin. (a) Complete ⅛-symmetry model (midplane surface is on the right). (b) Side-
on view of plate and pin mesh showing grading around hole–pin boundary. (c) Detail of 
finite element mesh in vicinity of hole–pin interface. 
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(a) 

 

 
(b) 

Figure 20: Stress contours in the vicinity of the hole for the aluminium coupon with neat-fit titanium 
pin for the 3D graded finite element mesh. The midplane surface of the coupon is on the 
right, and the outer (free) surface is on the left. (a) Tangential stress. (b) Radial stress. 
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Figure 21: Von Mises stress contours in the vicinity of the hole for the aluminium coupon with neat-

fit titanium pin for the 3D graded finite element mesh, for a 35 kN linear-elastic load level. 
The midplane surface of the coupon is on the right, and the outer (free) surface is on the 
left. 
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(a) 

 
(b) 

Figure 22: Variation of stress around a hole in the uniaxially-loaded aluminium coupon with a neat-
fit titanium pin, from Abaqus 2D and 3D FEA midplane (z/t = 0) fine-mesh results and 
the finite-width-corrected (FWC) analytical infinite-plate solution. (a) Radial stress. 
(b) Tangential stress. 
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(a) 

 

 
(b) 

Figure 23: Variation of stress around the hole in uniaxially-loaded aluminium coupon with a neat-fit 
titanium pin, showing Abaqus 3D coarse-mesh, fine-mesh and graded-mesh FEA results at 
the midplane (z/t = 0.0) and at the free surface (z/t = 0.5) of the coupon. (a) Radial stress. 
(b) Tangential stress. 
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(a) 

 
(b) 

Figure 24: Variation of stress along the bore of the hole in the aluminium coupon with a neat-fit 
titanium pin, from Abaqus 3D FEA results taken along a line of constant θ = 0°. 
(a) Radial stress. (b) Tangential stress. 
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Figure 25: Stress concentration factor (normalised peak tangential stress, st/S) along the bore of the 

hole for the aluminium coupon with an empty hole with the coupon loaded in uniaxial 
tension. Results obtained from Abaqus 3D FEA and a 3D analytical solution [12]. 
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Appendix A:  VBA functions for computing the contact 
stress distribution around a circular hole containing a 

circular disk insert 

Stippes, Wilson and Krull [2] solved the plane elasticity problem pertaining to the contact 
between a circular disk and a circular hole in an infinite plate that has a uniaxial stress 
applied at infinity. The diameter of the disk and the hole are identical in the unstressed state, 
and the material properties of the disk and the insert are the same. The following two VBA 
functions are an implementation of their analytical solution, and they can be used to 
compute the stresses around the hole as a function of angular position. The function 
CircularInsertN is used to compute the radial stress, and the function CircularInsertStt is 
used to compute the tangential stress. 

‘===================================================================== 
 
Function CircularInsertN(ThetaDeg) As Double 
 
Dim A, Pi, EtaDeg, Eta, Theta, N As Double 
 
Application.Volatile 
 
EtaDeg = 19.62506 
 
If ThetaDeg >= EtaDeg Then 
  N = 0# 
Else 
  Pi = 4 * Atn(1) 
  Eta = EtaDeg / 180 * Pi 
  Theta = ThetaDeg / 180 * Pi 
  A = -(2 + 3 * Sin(Eta) ^ 2) / (2 * (2 + Log(Cos(Eta)))) 
  N = -(-3 / 2 * Cos(Theta) * Sqr(Cos(Theta) ^ 2 – Cos(Eta) ^ 2) + _ 
  A / 2 * Log((Cos(Theta) + _ 
  Sqr(Cos(Theta) ^ 2 – Cos(Eta) ^ 2)) / Cos(Eta))) 
End If 
 
CircularInsertN = N 
 
End Function 
 
‘===================================================================== 
 
Function CircularInsertStt(ThetaDeg) As Double 
 
Dim A, EtaDeg, Eta, Theta, N, Stt As Double 
 
Application.Volatile 
 
EtaDeg = 19.62506 
Pi = 4 * Atn(1) 
Eta = EtaDeg / 180 * Pi 
Theta = ThetaDeg / 180 * Pi 
A = -(2 + 3 * Sin(Eta) ^ 2) / (2 * (2 + Log(Cos(Eta)))) 
 
If ThetaDeg >= EtaDeg Then 
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  N = 0# 
Else 
  N = -(-3 / 2 * Cos(Theta) * Sqr(Cos(Theta) ^ 2 – Cos(Eta) ^ 2) + _ 
  A / 2 * Log((Cos(Theta) + _ 
  Sqr(Cos(Theta) ^ 2 – Cos(Eta) ^ 2)) / Cos(Eta))) 
End If 
 
Stt = -N – 2 * A + 2 * Cos(2 * Theta) 
 
CircularInsertStt = Stt 
 
End Function 
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Appendix B:  FORTRAN 90 program for two-dimensional 
contact analysis of a hole containing a circular insert 

The following FORTRAN 90 program is an implementation of the solutions to two-
dimensional contact problems based on the formulations derived by Stippes, Wilson and 
Krull [2] and Wilson [3]. The program was created using the Intel Visual FORTRAN 
Compiler Professional Edition 11.1, and some compiler directives specific to this compiler 
were used. Apart from the use of the Intel-supplied LAPACK library of numerical 
subroutines, the program is entirely self-contained. If access to the LAPACK subroutine 
library is not available, then the compiler directive symbol UseLAPACK can be set equal to 0 
(i.e. UseLAPACK == 0) in order to cause the Intel compiler to selectively bypass the small 
amount of code that relies on calls to some subroutines that are found in LAPACK. 

!======================================================================= 
 
program PlateInsertContactSolutions 
 
! References: 
! 
! H. B. Wilson, Jr. Approximate Determination of Contact Stresses in 
! an Infinite Plate With a Smooth Circular Insert. Proceedings of the 
! 2nd Southeastern Conference on Theoretical and Applied Mechanics, 
! 5–6 March 1964, Atlanta, Georgia, USA. 
! 
! M. Stippes, H. B. Wilson, Jr., and F. N. Krull. A contact stress 
! problem for a smooth disk in an infinite plate. Proceedings of the 
! Fourth US National Congress of Applied Mechanics, Volume 2, 
! pages 799–806, 1962. 
 
implicit none 
 
integer   ichoice,lu,iss,p,nOut 
character fn*80 
real*8    Sx,Sy,E0,E1,nu0,nu1 
 
lu   = 1 
fn   = ‘PlateInsertContactSolutions.txt’ 
nOut = 360 
 
open(lu,file=fn,status=’unknown’) 
 
ichoice = 1 
 
do while (ichoice /= 0) 
  write(*,’(a)’) & 
  ‘====================================================================’ 
  write(*,’(a)’) & 
  ‘Approximate contact stresses in an infinite plate with smooth insert’ 
  write(*,’(a)’) & 
  ‘====================================================================’ 
  write(*,’(a)’) 
  write(*,’(a)’) & 
  ‘Results are written to the file “’//fn(1:len_trim(fn))//’”.’ 
  write(*,’(a)’) & 
  ‘If a prior version of this file exists, then it is overwritten when’ 
  write(*,’(a)’) & 
  ‘this program starts up.’ 
  write(*,’(a)’) 
  write(*,’(a)’) & 
  ‘1 Compute solution constants using Wilson’’s eta for Cases 1-8’ 
  write(*,’(a)’) & 
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  ‘2 Compute full solutions for Wilson’’s Cases 1-8’ 
  write(*,’(a)’) & 
  ‘3 Compute solution for user-defined load and material case’ 
  write(*,’(a)’) & 
  ‘4 Compute results using data from Stippes, Wilson and Krull’ 
  write(*,’(a)’) & 
  ‘5 Compute results using data from Wilson’’s Cases 1-8’ 
  write(*,’(a)’) & 
  ‘6 Compute results for unfilled circular hole’ 
  write(*,’(a)’) & 
  ‘7 Compute convergence study for Wilson’’s eta for Cases 1-8’ 
  write(*,’(a,i0,a,i0,a)’) & 
  ‘8 Input new number of intervals for stress output ‘// & 
  ‘(current n = ‘,nOut,’)’ 
  write(*,’(a)’) & 
  ‘0 Exit’ 
  write(*,’(a)’) 
  write(*,’(a)’,ADVANCE=’NO’) & 
  ‘Input choice: ‘ 
  read(*,*) ichoice 
  if (ichoice == 1 .or. ichoice == 2 .or. & 
      ichoice == 4 .or. ichoice == 5 .or. & 
      ichoice == 6                        ) then 
    write(*,’(a)’) 
    write(*,’(a)’) & 
    ‘Computing results and saving to file ‘//fn(1:len_trim(fn))//’...’ 
    write(*,’(a)’) 
  end if 
  select case (ichoice) 
    case (1) 
      call CheckWilsonCoefficients(lu) 
    case (2) 
      call ComputeShowWilsonEta(lu,nOut) 
    case (3) 
      write(*,’(a)’) 
      write(*,’(a)’) & 
      ‘Input the following parameters:’ 
      write(*,’(a)’) 
      write(*,’(a)’) & 
      ‘iss = stress state (0 = plane stress, 1 = plane strain)’ 
      write(*,’(a)’) & 
      ‘p   = maximum index of constants (A0...Ap, p <= 10)’ 
      write(*,’(a)’) & 
      ‘Sy  = applied stress in y-direction (+ve tension)’ 
      write(*,’(a)’) & 
      ‘Sx  = applied stress in x-direction (+ve tension)’ 
      write(*,’(a)’) & 
      ‘E0  = Young’’s Modulus of insert’ 
      write(*,’(a)’) & 
      ‘E1  = Young’’s Modulus of plate’ 
      write(*,’(a)’) & 
      ‘nu0 = Poisson’’s Ratio of insert’ 
      write(*,’(a)’) & 
      ‘nu0 = Poisson’’s Ratio of plate’ 
      write(*,’(a)’) 
      write(*,’(a)’, ADVANCE=’NO’) & 
      ‘Input iss, p, Sy, Sx, E0, E1, nu0, nu1: ‘ 
      read(*,*) iss, p, Sy, Sx, E0, E1, nu0, nu1 
      write(*,’(a)’) 
      write(*,’(a)’) & 
      ‘Computing results and saving to file ‘//fn(1:len_trim(fn))//’...’ 
      write(*,’(a)’) 
      p = max(min(p,10),0) 
      call ComputeShowWilsonUD(lu,nOut,iss,p,Sx,Sy,E0,E1,nu0,nu1) 
    case (4) 
      call ComputeShowSWK(lu,nOut) 
    case (5) 
      call ComputeWilsonCases1to8(lu,nOut) 
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    case (6) 
      call ComputeShowEmptyHole(lu,nOut) 
    case (7) 
      call WilsonEtaConvergence(lu) 
    case (8) 
      write(*,’(a)’) 
      write(*,’(a,i0,a)’,ADVANCE=’NO’) & 
      ‘Number of intervals for computing stresses (current nOut = ‘, & 
      nOut,’) = ‘ 
      read(*,*) nOut 
      nOut = max(nOut,20) 
  end select 
  write(*,’(a)’) 
end do 
 
close(lu) 
 
stop 
end 
 
!======================================================================= 
 
subroutine ComputeShowEmptyHole(lu,nOut) 
 
implicit none 
 
integer lu,nOut 
 
integer i 
real*8  thetadeg 
 
real*8  FuncSttHole 
 
write(lu,*) 
write(lu,’(a,i1)’) ‘NORMALISED HOOP STRESS FOR CIRCULAR HOLE IN A PLATE’ 
write(lu,’(a)’   ) ‘===================================================’ 
write(lu,*) 
write(lu,’(2a15)’) ‘Theta_deg’,’Stt’ 
do I = 0,nOut 
  thetadeg = i*90.0d0/nOut 
  write(lu,’(f15.6,f15.8)’) thetadeg,FuncSttHole(thetadeg) 
end do 
 
return 
end subroutine 
 
!======================================================================= 
 
real*8 function FuncSttHole(thetadeg) 
 
implicit none 
 
real*8 thetadeg 
 
FuncSttHole = 1.0d0 – 2.0d0*cosd(2.0d0*(thetadeg+90.0d0)) 
 
return 
end function 
 
!======================================================================= 
 
real*8 function SWKFuncEqn45(etadeg) 
 
implicit none 
 
real*8  etadeg 
 
real*8  EIK,EIE,k,LHS,RHS,m 
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k = cosd(etadeg) 
m = k**2 
 
call CompleteEllipticIntegrals12(m,EIK,EIE) 
 
LHS = 4.0d0*sind(etadeg)**2*(2.0d0+log(cosd(etadeg)))*EIK 
 
RHS = (2.0d0+sind(etadeg)**2 + & 
       2.0d0*(1.0d0+sind(etadeg)**2)*log(cosd(etadeg)))*EIE 
 
SWKFuncEqn45 = LHS – RHS 
 
return 
end function 
 
!======================================================================= 
 
subroutine ComputeShowSWK(lu,nOut) 
 
implicit none 
 
integer lu,nOut 
real*8  Sy 
 
integer I,iflag 
real*8  etadeg,thetadeg,thetanext 
real*8  b,c,r,re,ae,resb,resc 
 
real*8  SWKFuncNtt, SWKFuncStt, SWKFuncEqn45 
 
r  = 1.0d0 
re = 1.0d-07 
ae = 0.0d0 
 
! The residual function typically has multiple zeros in the range 
! [0°, 90°]. It is necessary to look for the smallest value of eta 
! within this range. Here we start scanning for a change in sign 
! from eta = 1.0 using 1-degree steps. The lowest value of eta 
! will then lie in the range [b, c]. 
 
b    = 1.0d0 
resb = SWKFuncEqn45(b) 
do c = 2.0d0, 90.0d0, 1.0d0 
  resc = SWKFuncEqn45(c) 
  if (nint(sign(1.0d0,resb)) == nint(sign(1.0d0,resc))) then 
    b    = c 
    resb = resc 
  else 
    exit 
  end if 
end do 
 
call DFZERO(SWKFuncEqn45, b, c, r, re, ae, iflag) 
 
etadeg = b 
 
Sy = 1.0d0 
 
write(lu,*) 
write(lu,’(a,i1)’) & 
‘ANALYTICAL CONTACT STRESSES FOR PLATE WITH SMOOTH CIRCULAR INSERT’ 
write(lu,’(a)’   ) & 
‘=================================================================’ 
write(lu,*) 
write(lu,’(a)’   ) & 
‘Analytical solution by Stippes, Wilson and Krull (1962) for the’ 
write(lu,’(a)’   ) & 
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‘case of a uniaxially loaded plate with an insert made from the’ 
write(lu,’(a)’   ) & 
‘same material as that of the plate.’ 
write(lu,*) 
write(lu,’(a,es14.06)’) ‘Sy  = ‘,1.0 
write(lu,’(a,es14.06)’) ‘Sx  = ‘,0.0 
write(lu,’(a,es14.06)’) ‘E0  = E1’ 
write(lu,’(a, f14.10)’) ‘nu0 = nu1’ 
write(lu,*) 
write(lu,’(a,f14.10)’) ‘Eta         = ‘,etadeg 
write(lu,’(a,f14.10)’) ‘Residual    = ‘,SWKFuncEqn45(etadeg) 
write(lu,’(a,i14   )’) ‘DFZERO flag = ‘,iflag 
write(lu,*) 
write(lu,’(a,f14.10)’) ‘Ntt(  0)    = ‘,SWKFuncNtt( 0.0d0,etadeg,Sy) 
write(lu,’(a,f14.10)’) ‘Stt(  0)    = ‘,SWKFuncStt( 0.0d0,etadeg,Sy) 
write(lu,’(a,f14.10)’) ‘Stt(Eta)    = ‘,SWKFuncStt(etadeg,etadeg,Sy) 
write(lu,’(a,f14.10)’) ‘Stt( 90)    = ‘,SWKFuncStt(90.0d0,etadeg,Sy) 
 
if (nOut > 0) then 
  write(lu,*) 
  write(lu,’(3a15)’) ‘Theta_deg’,’Stt’,’Ntt’ 
  do I = 0,nOut 
    thetadeg = i*90.0d0/nOut 
    write(lu,’(f15.6,2f15.8)’) thetadeg, & 
      SWKFuncStt(thetadeg,etadeg,Sy), SWKFuncNtt(thetadeg,etadeg,Sy) 
    thetanext = (i+1)*90.0d0/nOut 
    if (etadeg > thetadeg .and. etadeg < thetanext) then 
      write(lu,’(f15.6,2f15.8)’) etadeg, & 
        SWKFuncStt(etadeg,etadeg,Sy), SWKFuncNtt(etadeg,etadeg,Sy) 
    end if 
  end do 
end if 
 
return 
end subroutine 
 
!======================================================================= 
 
real*8 function SWKFuncNtt(ThetaDeg,EtaDeg,Sy) 
 
implicit none 
 
real*8  ThetaDeg,EtaDeg,Sy 
 
real*8  Ntt,sc2tmc2e,A 
 
if (ThetaDeg < EtaDeg) then 
  A = -Sy*(2.0d0+3.0d0*sind(EtaDeg)**2)/(2.0d0*(2.0d0+log(cosd(EtaDeg)))) 
  sc2tmc2e = sqrt(cosd(ThetaDeg)**2-cosd(EtaDeg)**2) 
  Ntt = -3.0d0/2.0d0*Sy*cosd(ThetaDeg)*sc2tmc2e + & 
        A/2.0d0*log((cosd(ThetaDeg)+sc2tmc2e)/cosd(EtaDeg)) 
else 
  Ntt = 0.0d0 
end if 
 
SWKFuncNtt = Ntt 
 
return 
end function 
 
!======================================================================= 
 
real*8 function SWKFuncB(EtaDeg,Sy) 
 
implicit none 
 
real*8  EtaDeg,Sy 
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real*8  A,B 
 
A = -Sy*(2.0d0+3.0d0*sind(EtaDeg)**2)/(2.0d0*(2.0d0+log(cosd(EtaDeg)))) 
 
B = -1.0d0/2.0d0*(A+Sy/2.0d0) 
 
SWKFuncB = B 
 
return 
end function 
 
!======================================================================= 
 
real*8 function SWKFuncStt(ThetaDeg, EtaDeg, Sy) 
 
implicit none 
 
real*8  ThetaDeg, EtaDeg, Sy 
 
real*8  Ntt, Stt, B 
 
real*8 SWKFuncNtt, SWKFuncB 
 
Ntt = SWKFuncNtt(ThetaDeg, EtaDeg, Sy) 
B   = SWKFuncB(EtaDeg,Sy) 
Stt = Ntt + 4.0d0*B + Sy + 2.0d0*Sy*cosd(2.0d0*ThetaDeg) 
 
SWKFuncStt = Stt 
 
return 
end function 
 
!======================================================================= 
 
subroutine ComputeShowWilsonUD(lu,nOut,iss,p,Sx,Sy,E0,E1,nu0,nu1) 
 
implicit none 
 
integer   lu,iss,p,nOut 
real*8    Sx,Sy,E0,E1,nu0,nu1 
 
integer   I,iflag 
real*8    A(0:p),etadeg,etarad,pi,Stt,Ntt 
real*8    b,c,r,re,ae,resb,resc,thetadeg,rcond,thetanext 
character istr*2 
 
real*8    FuncNtt 
real*8    FuncStt 
real*8    FuncEqn35 
 
external  FuncEqn35 
 
real*8  cmn_Sx,cmn_Sy,cmn_nu0,cmn_nu1,cmn_E0,cmn_E1 
integer cmn_p,cmn_iss 
 
common /cmn_FuncEqn35/ cmn_Sx,cmn_Sy,cmn_nu0,cmn_nu1, & 
                       cmn_E0,cmn_E1,cmn_p,cmn_iss 
 
cmn_Sx  = Sx 
cmn_Sy  = Sy 
cmn_nu0 = nu0 
cmn_nu1 = nu1 
cmn_E0  = E0 
cmn_E1  = E1 
cmn_p   = p 
cmn_iss = iss 
 
pi = 4.0d0*atan(1.0d0) 
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r  =  1.0d0 
re =  1.0d-08 
ae =  0.0d0 
 
! The residual function typically has multiple zeros in the range 
! [0°, 90°]. It is necessary to look for the smallest value of eta 
! within this range. Here we start scanning for a change in sign 
! from eta = 1.0 using 1-degree steps. The lowest value of eta 
! will then lie in the range [b, c]. 
 
b    = 1.0d0 
resb = FuncEqn35(b) 
do c = 2.0d0, 90.0d0, 1.0d0 
  resc = FuncEqn35(c) 
  if (nint(sign(1.0d0,resb)) == nint(sign(1.0d0,resc))) then 
    b    = c 
    resb = resc 
  else 
    exit 
  end if 
end do 
 
call DFZERO(FuncEqn35, b, c, r, re, ae, iflag) 
 
etadeg = b 
etarad = etadeg/180.0d0*pi 
 
call GetA0toAp(p,iss,etarad,Sx,Sy,nu0,nu1,E0,E1,A,rcond) 
 
write(lu,*) 
write(lu,’(a,i1)’) & 
‘APPROXIMATE CONTACT STRESSES FOR PLATE WITH SMOOTH CIRCULAR INSERT’ 
write(lu,’(a)’   ) & 
‘==================================================================’ 
write(lu,*) 
if (iss == 0) then 
  write(lu,’(a,i14,a)’) ‘iss          = ‘,iss,’ (plane stress)’ 
else 
  write(lu,’(a,i14,a)’) ‘iss          = ‘,iss,’ (plane strain)’ 
endif 
write(lu,’(a,es14.06)’) ‘Sy           = ‘,Sy 
write(lu,’(a,es14.06)’) ‘Sx           = ‘,Sx 
write(lu,’(a,es14.06)’) ‘E0           = ‘,E0 
write(lu,’(a,es14.06)’) ‘E1           = ‘,E1 
write(lu,’(a, f14.10)’) ‘nu0          = ‘,nu0 
write(lu,’(a, f14.10)’) ‘nu1          = ‘,nu1 
write(lu,*) 
write(lu,’(a, f14.10)’) ‘Eta          = ‘,etadeg 
write(lu,’(a, f14.10)’) ‘Residual     = ‘,FuncEqn35(etadeg) 
write(lu,’(a, i14   )’) ‘DFZERO flag  = ‘,iflag 
write(lu,’(a,es14.03)’) ‘Matrix rcond = ‘,rcond 
write(lu,*) 
do I = 0, p 
  write(istr,’(i2)’) i 
  if (istr(1:1) == ‘ ‘) istr = istr(2:2) 
  write(lu,’(a,a,a,f14.10)’) ‘A’,istr,’         = ‘,A(i) 
end do 
write(lu,*) 
write(lu,’(a,f14.10)’) ‘Ntt(  0)     = ‘,FuncNtt( 0.0d0,etadeg,p,A) 
write(lu,’(a,f14.10)’) ‘Stt(  0)     = ‘,FuncStt( 0.0d0,etadeg,Sx,Sy,p,A) 
write(lu,’(a,f14.10)’) ‘Stt(Eta)     = ‘,FuncStt(EtaDeg,etadeg,Sx,Sy,p,A) 
write(lu,’(a,f14.10)’) ‘Stt( 90)     = ‘,FuncStt(90.0d0,etadeg,Sx,Sy,p,A) 
 
if (nOut > 0) then 
  write(lu,*) 
  write(lu,’(3a15)’) ‘Theta_deg’,’Stt’,’Ntt’ 
  do I = 0,nOut 



UNCLASSIFIED 
DST-Group-TR-3134 

57 
UNCLASSIFIED 

    thetadeg = i*90.0d0/nOut 
    Stt = FuncStt(thetadeg,etadeg,Sx,Sy,p,A) 
    Ntt = FuncNtt(thetadeg,etadeg,p,A) 
    write(lu,’(f15.6,2f15.8)’) thetadeg, Stt, Ntt 
    thetanext = (i+1)*90.0d0/nOut 
    if (etadeg > thetadeg .and. etadeg < thetanext) then 
      Stt = FuncStt(etadeg,etadeg,Sx,Sy,p,A) 
      Ntt = FuncNtt(etadeg,etadeg,p,A) 
      write(lu,’(f15.6,2f15.8)’) etadeg, Stt, Ntt 
    end if 
  end do 
end if 
 
return 
end subroutine 
 
!======================================================================= 
 
subroutine WilsonEtaConvergence(lu) 
 
implicit none 
 
integer   lu 
 
integer   pmax 
 
parameter (pmax = 10) 
 
integer   iss,I,iflag,caseno,p,pwilson 
real*8    Sx,Sy,nu0,nu1,E0,E1,A(0:pmax),etadeg,etarad,etawilson,pi 
real*8    b,c,r,re,ae,resb,resc,rcond 
 
real*8    FuncEqn35 
 
external  FuncEqn35 
 
common /cmn_FuncEqn35/ Sx,Sy,nu0,nu1,E0,E1,p,iss 
 
pi = 4.0d0*atan(1.0d0) 
 
write(*,*) 
 
! Compute coefficients for Wilson’s Cases 1 to 8. 
 
do caseno = 1, 8 
 
  write(*,’(a,i1.0,a,/)’) & 
    ‘Computing eta convergence study for Wilson’’s Case ‘,caseno,’...’ 
 
  write(lu,*) 
  write(lu,’(a,i1)’) ‘ETA CONVERGENCE FOR WILSON’’S CASE ‘,caseno 
  write(lu,’(a)’   ) ‘===================================’ 
  write(lu,*) 
  write(lu,’(a4,a17,a11,a10,<pmax+1>(a12,i2.2))’) & 
    ‘p’,’EtaDeg’,’Residual’,’rcond’,(‘A’,I,i=0,pmax) 
 
  do p = 0,pmax 
 
    write(*,’(a,i4)’) ‘  Doing p =’,p 
 
    call GetWilsonData(caseno,pwilson,iss,etawilson,Sx,Sy,nu0,nu1,E0,E1) 
 
    r  =  1.0d0 
    re =  1.0d-08 
    ae =  0.0d0 
 
    ! The residual function typically has multiple zeros in the range 
    ! [0°, 90°]. It is necessary to look for the smallest value of eta 
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    ! within this range. Here we start scanning for a change in sign 
    ! from eta = 1.0 using 1-degree steps. The lowest value of eta 
    ! will then lie in the range [b, c]. 
 
    b    = 1.0d0 
    resb = FuncEqn35(b) 
    do c = 2.0d0, 90.0d0, 1.0d0 
      resc = FuncEqn35(c) 
      if (nint(sign(1.0d0,resb)) == nint(sign(1.0d0,resc))) then 
        b    = c 
        resb = resc 
      else 
        exit 
      end if 
    end do 
 
    call DFZERO(FuncEqn35, b, c, r, re, ae, iflag) 
 
    etadeg = b 
    etarad = etadeg/180.0d0*pi 
 
    call GetA0toAp(p,iss,etarad,Sx,Sy,nu0,nu1,E0,E1,A,rcond) 
 
    write(lu,’(i4,f17.12,es11.2,es10.2,<pmax+1>es14.6)’) & 
      p,etadeg,FuncEqn35(etadeg),rcond,(A(i),i=0,p) 
 
  end do 
 
  write(*,*) 
 
end do 
 
return 
end subroutine 
 
!======================================================================= 
 
subroutine ComputeShowWilsonEta(lu,nOut) 
 
implicit none 
 
integer   lu,nOut 
 
integer   pmax 
 
parameter (pmax = 10) 
 
integer   iss,I,iflag,caseno,p 
real*8    Sx,Sy,nu0,nu1,E0,E1,A(0:pmax),etadeg,etarad,etawilson,pi 
real*8    b,c,r,re,ae,resb,resc,thetadeg,rcond,thetanext,Stt,Ntt 
character istr*2 
 
real*8    FuncNtt 
real*8    FuncStt 
real*8    FuncEqn35 
 
external  FuncEqn35 
 
common /cmn_FuncEqn35/ Sx,Sy,nu0,nu1,E0,E1,p,iss 
 
pi = 4.0d0*atan(1.0d0) 
 
! Compute coefficients for Wilson’s Cases 1 to 8. 
 
do caseno = 1, 8 
 
  write(*,’(a,i1.0,a)’) ‘Computing Wilson’’s Case ‘,caseno,’...’ 
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  call GetWilsonData(caseno,p,iss,etawilson,Sx,Sy,nu0,nu1,E0,E1) 
 
  r  =  1.0d0 
  re =  1.0d-08 
  ae =  0.0d0 
 
  ! The residual function typically has multiple zeros in the range 
  ! [0°, 90°]. It is necessary to look for the smallest value of eta 
  ! within this range. Here we start scanning for a change in sign 
  ! from eta = 1.0 using 1-degree steps. The lowest value of eta 
  ! will then lie in the range [b, c]. 
 
  b    = 1.0d0 
  resb = FuncEqn35(b) 
  do c = 2.0d0, 90.0d0, 1.0d0 
    resc = FuncEqn35(c) 
    if (nint(sign(1.0d0,resb)) == nint(sign(1.0d0,resc))) then 
      b    = c 
      resb = resc 
    else 
      exit 
    end if 
  end do 
 
  call DFZERO(FuncEqn35, b, c, r, re, ae, iflag) 
 
  etadeg = b 
  etarad = etadeg/180.0d0*pi 
 
  call GetA0toAp(p,iss,etarad,Sx,Sy,nu0,nu1,E0,E1,A,rcond) 
 
  write(lu,*) 
  write(lu,’(a,i1)’) ‘COMPUTED RESULTS FOR WILSON’’S CASE ‘,caseno 
  write(lu,’(a)’   ) ‘====================================’ 
  write(lu,*) 
  if (iss == 0) then 
    write(lu,’(a,i14,a)’) ‘iss          = ‘,iss,’ (plane stress)’ 
  else 
    write(lu,’(a,i14,a)’) ‘iss          = ‘,iss,’ (plane strain)’ 
  endif 
  write(lu,’(a,es14.06)’) ‘Sy           = ‘,Sy 
  write(lu,’(a,es14.06)’) ‘Sx           = ‘,Sx 
  write(lu,’(a,es14.06)’) ‘E0           = ‘,E0 
  write(lu,’(a,es14.06)’) ‘E1           = ‘,E1 
  write(lu,’(a, f14.10)’) ‘nu0          = ‘,nu0 
  write(lu,’(a, f14.10)’) ‘nu1          = ‘,nu1 
  write(lu,*) 
  write(lu,’(a, f14.10)’) ‘Eta Present  = ‘,etadeg 
  write(lu,’(a, f14.10)’) ‘Eta Wilson   = ‘,etawilson 
  write(lu,’(a, f14.10)’) ‘Residual     = ‘,FuncEqn35(etadeg) 
  write(lu,’(a, i14   )’) ‘DFZERO flag  = ‘,iflag 
  write(lu,’(a,es14.03)’) ‘Matrix rcond = ‘,rcond 
  write(lu,*) 
  do I = 0, p 
    write(istr,’(i2)’) i 
    if (istr(1:1) == ‘ ‘) istr = istr(2:2) 
    write(lu,’(a,a,a,f14.10)’) ‘A’,istr,’          = ‘,A(i) 
  end do 
  write(lu,*) 
  write(lu,’(a,f14.10)’) ‘Ntt(  0)     = ‘, & 
    FuncNtt( 0.0d0,etadeg,p,A) 
  write(lu,’(a,f14.10)’) ‘Stt(  0)     = ‘, & 
    FuncStt( 0.0d0,etadeg,Sx,Sy,p,A) 
  write(lu,’(a,f14.10)’) ‘Stt(Eta)     = ‘, & 
    FuncStt(EtaDeg,etadeg,Sx,Sy,p,A) 
  write(lu,’(a,f14.10)’) ‘Stt( 90)     = ‘, & 
    FuncStt(90.0d0,etadeg,Sx,Sy,p,A) 
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  if (nOut > 0) then 
    write(lu,*) 
    write(lu,’(3a15)’) ‘Theta_deg’,’Stt’,’Ntt’ 
    do I = 0,nOut 
      thetadeg = i*90.0d0/nOut 
      Stt = FuncStt(thetadeg,etadeg,Sx,Sy,p,A) 
      Ntt = FuncNtt(thetadeg,etadeg,p,A) 
      write(lu,’(f15.6,2f15.8)’) thetadeg, Stt, Ntt 
      thetanext = (i+1)*90.0d0/nOut 
      if (etadeg > thetadeg .and. etadeg < thetanext) then 
        Stt = FuncStt(etadeg,etadeg,Sx,Sy,p,A) 
        Ntt = FuncNtt(etadeg,etadeg,p,A) 
        write(lu,’(f15.6,2f15.8)’) etadeg, Stt, Ntt 
      end if 
    end do 
  end if 
 
end do 
 
return 
end subroutine 
 
!======================================================================= 
 
real*8 function FuncEqn35(x) 
 
implicit none 
 
real*8 x 
 
integer p,iss,n 
real*8  Sx,Sy,nu0,nu1,E0,E1 
real*8  A(0:p),lhs,rhs,eta,k1,k2,k3,pi,rcond 
 
real*8   Eneta,Fneta,Dstarnp1 
external Eneta,Fneta,Dstarnp1 
 
common /cmn_FuncEqn35/ Sx,Sy,nu0,nu1,E0,E1,p,iss 
 
pi = 4.0d0*atan(1.0d0) 
 
eta = x/180.0d0*pi 
 
call GetA0toAp(p,iss,eta,Sx,Sy,nu0,nu1,E0,E1,A,rcond) 
 
call Computek1k2k3(k1,k2,k3,iss,nu0,nu1,E0,E1) 
 
lhs = 0.0d0 
do n = 0, p 
  lhs = lhs + & 
        (k1*Eneta(n,eta) + k2*Fneta(n,eta) – k3*Dstarnp1(n,eta))*A(n) 
end do 
 
rhs = Sy – 3.0d0*Sx 
 
FuncEqn35 = lhs – rhs 
 
return 
end function 
 
!======================================================================= 
 
real*8 function WilsonFuncEqn35(x,iss,Sx,Sy,nu0,nu1,E0,E1,p,A) 
 
implicit none 
 
real*8   x 
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integer  p,iss,n 
real*8   Sx,Sy,nu0,nu1,E0,E1 
real*8   A(0:p),lhs,rhs,eta,k1,k2,k3,pi 
 
real*8   Eneta,Fneta,Dstarnp1 
external Eneta,Fneta,Dstarnp1 
 
pi = 4.0d0*atan(1.0d0) 
 
eta = x/180.0d0*pi 
 
call Computek1k2k3(k1,k2,k3,iss,nu0,nu1,E0,E1) 
 
rhs = Sy – 3.0d0*Sx 
 
lhs = 0.0d0 
do n = 0, p 
  lhs = lhs + & 
        (k1*Eneta(n,eta) + k2*Fneta(n,eta) – k3*Dstarnp1(n,eta))*A(n) 
end do 
 
WilsonFuncEqn35 = lhs – rhs 
 
return 
end function 
 
!======================================================================= 
 
subroutine Computek1k2k3(k1,k2,k3,iss,nu0,nu1,E0,E1) 
 
! iss  = 0 for plane stress 
! iss /= 0 for plane strain 
! 
! nu0 = Poisson’s Ratio for insert 
! nu1 = Poisson’s Ratio for plate 
! E0  = Young’s Modulus for insert 
! E1  = Young’s Modulus for plate 
 
implicit none 
 
real*8  k1,k2,k3,nu0,nu1,E0,E1 
integer iss 
 
real*8  N0,N1,mu0,mu1 
 
if (iss == 0) then 
  N0 = (3.0d0-nu0)/(1.0d0+nu0) 
  N1 = (3.0d0-nu1)/(1.0d0+nu1) 
else 
  N0 = 3.0d0-4.0d0*nu0 
  N1 = 3.0d0-4.0d0*nu1 
end if 
 
mu0 = E0/(2.0d0*(1+nu0)) 
mu1 = E1/(2.0d0*(1+nu1)) 
 
k1 = (2.0d0*(1.0d0-N0)*mu1-2.0d0*(1.0d0-N1)*mu0)/((1.0d0+N1)*mu0) 
k2 = (2.0d0*(1.0d0+N0)*mu1+2.0d0*(1.0d0+N1)*mu0)/((1.0d0+N1)*mu0) 
k3 = (4.0d0*(1.0d0+N0)*mu1)/((1.0d0+N1)*mu0) 
 
return 
end subroutine 
 
!======================================================================= 
 
subroutine ComputeShowWilson(lu,caseno,p,iss,etadeg,Sx,Sy,nu0,nu1,E0,E1) 
 
implicit none 
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integer   lu,caseno,p,iss 
real*8    etadeg,Sx,Sy,nu0,nu1,E0,E1 
 
real*8    A(0:4),eta,pi,rcond,zero,ninety 
integer   i 
character istr*2 
 
real*8    FuncNtt 
real*8    FuncStt 
 
pi     = 4.0d0*atan(1.0d0) 
zero   = 0.0d0 
ninety = 90.0d0 
 
eta = etadeg/180.0d0*pi 
 
call GetA0toAp(p,iss,eta,Sx,Sy,nu0,nu1,E0,E1,A,rcond) 
 
write(lu,*) 
write(lu,’(a,i1)’) & 
  ‘COMPUTED CONSTANTS USING WILSON’’S ETA FOR CASE ‘,caseno 
write(lu,’(a)’   ) & 
  ‘================================================’ 
write(lu,*) 
if (iss == 0) then 
  write(lu,’(a,i14,a)’) ‘iss = ‘,iss,’ (plane stress)’ 
else 
  write(lu,’(a,i14,a)’) ‘iss = ‘,iss,’ (plane strain)’ 
endif 
write(lu,’(a,es14.06)’) ‘Sy  = ‘,Sy 
write(lu,’(a,es14.06)’) ‘Sx  = ‘,Sx 
write(lu,’(a,es14.06)’) ‘E0  = ‘,E0 
write(lu,’(a,es14.06)’) ‘E1  = ‘,E1 
write(lu,’(a, f14.10)’) ‘nu0 = ‘,nu0 
write(lu,’(a, f14.10)’) ‘nu1 = ‘,nu1 
write(lu,*) 
write(lu,’(a,f10.6,a)’) ‘Eta          = ‘,etadeg,’ degrees’ 
write(lu,’(a,es10.03)’) ‘Matrix rcond = ‘,rcond 
write(lu,*) 
do I = 0, p 
  write(istr,’(i2)’) i 
  if (istr(1:1) == ‘ ‘) istr = istr(2:2) 
  write(lu,’(a,a,a,f10.6)’) ‘A’,istr,’      = ‘,A(i) 
end do 
write(lu,*) 
write(lu,’(a,f10.6)’) ‘Ntt(  0) = ‘,FuncNtt(  zero,EtaDeg,p,A) 
write(lu,’(a,f10.6)’) ‘Stt(  0) = ‘,FuncStt(  zero,EtaDeg,Sx,Sy,p,A) 
write(lu,’(a,f10.6)’) ‘Stt(Eta) = ‘,FuncStt(EtaDeg,EtaDeg,Sx,Sy,p,A) 
write(lu,’(a,f10.6)’) ‘Stt( 90) = ‘,FuncStt(ninety,EtaDeg,Sx,Sy,p,A) 
 
return 
end 
 
!======================================================================= 
 
subroutine GetWilsonData(caseno,p,iss,etadeg,Sx,Sy,nu0,nu1,E0,E1) 
 
integer caseno,p,iss 
real*8  etadeg,Sx,Sy,nu0,nu1,E0,E1 
 
select case (caseno) 
  case (1) 
    iss     =  1 
    p       =  3 
    etadeg  =  17.285975d0 
    Sx      =  0.0d0 
    Sy      = +1.0d0 
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    nu0     =  0.30d0 
    nu1     =  0.50d0 
    E0      =  70.0d9 
    E1      =  E0*1.0d-09 
  case (2) 
    iss     =  1 
    p       =  3 
    etadeg  =  19.625247d0 
    Sx      =  0.0d0 
    Sy      = +1.0d0 
    nu0     =  0.30d0 
    nu1     =  nu0 
    E0      =  70.0d9 
    E1      =  E0 
  case (3) 
    iss     =  1 
    p       =  4 
    etadeg  =  18.338752d0 
    Sx      =  0.0d0 
    Sy      = +1.0d0 
    nu0     =  0.30d0 
    nu1     =  0.30d0 
    E0      =  70.0d9 
    E1      =  E0*1.0d-09 
  case (4) 
    iss     =  1 
    p       =  3 
    etadeg  =  20.580669d0 
    Sx      =  0.0d0 
    Sy      = +1.0d0 
    nu0     =  0.33d0 
    nu1     =  0.29d0 
    E0      =  70.0d9 
    E1      =  E0*3.0d0 
  case (5) 
    iss     =  1 
    p       =  4 
    etadeg  =  40.472075d0 
    Sx      = -1.0d0 
    Sy      =  0.0d0 
    nu0     =  0.30d0 
    nu1     =  0.50d0 
    E0      =  70.0d9 
    E1      =  E0*1.0d-09 
  case (6) 
    iss     =  1 
    p       =  4 
    etadeg  =  56.973112d0 
    Sx      = -1.0d0 
    Sy      =  0.0d0 
    nu0     =  0.30d0 
    nu1     =  nu0 
    E0      =  70.0d9 
    E1      =  E0 
  case (7) 
    iss     =  1 
    p       =  4 
    etadeg  =  49.813774d0 
    Sx      = -1.0d0 
    Sy      =  0.0d0 
    nu0     =  0.30d0 
    nu1     =  0.30d0 
    E0      =  70.0d9 
    E1      =  E0*1.0d-09 
  case (8) 
    iss     =  1 
    p       =  3 
    etadeg  =  68.219578d0 
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    Sx      = -1.0d0 
    Sy      =  0.0d0 
    nu0     =  0.33d0 
    nu1     =  0.29d0 
    E0      =  70.0d9 
    E1      =  E0*3.0d0 
end select 
 
return 
end subroutine 
 
!======================================================================= 
 
subroutine CheckWilsonCoefficients(lu) 
 
! For each of the Cases studied in Wilson (1964), recalculate the 
! series coefficients to check the present programming of this 
! subsection of the overall solution procedure. 
! 
! The series coefficents An depend on the value of eta, the specified 
! material properties of the insert and the plate, as well as the 
! specified loading. 
 
implicit none 
 
integer lu 
 
integer caseno,p,iss 
real*8  Sx,Sy,nu0,nu1,E0,E1,etadeg 
 
do caseno = 1, 8 
  call GetWilsonData(caseno,p,iss,etadeg,Sx,Sy,nu0,nu1,E0,E1) 
  call ComputeShowWilson(lu,caseno,p,iss,etadeg,Sx,Sy,nu0,nu1,E0,E1) 
end do 
 
return 
end subroutine 
 
!======================================================================= 
 
real*8 function FuncNtt(ThetaDeg,EtaDeg,p,A) 
 
implicit none 
 
integer p 
real*8  ThetaDeg,EtaDeg,A(0:p) 
 
real*8  Theta,Eta,Pi,S,Ntt 
integer i 
 
Pi = 4.0d0*atan(1.0d0) 
 
Theta = ThetaDeg/180.0d0*Pi 
Eta   = EtaDeg/180.0d0*Pi 
 
S = 0.0d0 
do I = 0,p 
  S = S + A(i)*cos((2.0d0*i+1)*Theta) 
end do 
 
if (ThetaDeg >= EtaDeg) then 
  Ntt = 0.0d0 
else 
  Ntt = -8.0d0*sqrt(cos(Theta)**2 – cos(Eta)**2)*S 
end if 
 
FuncNtt = Ntt 
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return 
end function 
 
!======================================================================= 
 
real*8 function FuncB(EtaDeg,p,A) 
 
implicit none 
 
integer p 
real*8  EtaDeg, A(0:p) 
 
real*8  Delta(0:p), D(0:p+1), Dstar(1:p+1) 
real*8  Eta, Cos2Eta, Pi, B 
integer i 
 
real*8  Pleg 
 
Pi = 4.0d0*atan(1.0d0) 
 
Eta = EtaDeg/180.0d0*Pi 
 
Delta(0) = 1.0d0 
do I = 1,p 
  Delta(i) = 0.0d0 
end do 
 
Cos2Eta = cos(2*Eta) 
 
D(0) = 1.0d0 
D(1) = -Cos2Eta 
do I = 2,p+1 
  D(i) = (Cos2Eta*Pleg(i-1,Cos2Eta) – Pleg(I,Cos2Eta))/(i-1) 
end do 
 
do I = 1,p+1 
  Dstar(i) = Delta(i-1) + D(i) 
end do 
 
B = 0.0d0 
do I = 0,p 
  B = B + A(i)*Dstar(i+1) 
end do 
 
FuncB = B 
 
return 
end function 
 
!======================================================================= 
 
real*8 function FuncStt(ThetaDeg, EtaDeg, Sx, Sy, p, A) 
 
integer p 
real*8  ThetaDeg, EtaDeg, Sx, Sy, A(0:p) 
 
real*8  Theta, pi 
real*8  Ntt, Stt, B 
 
real*8 FuncNtt, FuncB 
 
Ntt = FuncNtt(ThetaDeg, EtaDeg, p, A) 
 
Pi = 4.0d0*atan(1.0d0) 
 
Theta = ThetaDeg/180.0d0*pi 
 
B = FuncB(EtaDeg,p,A) 
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Stt = Ntt + 4.0d0*B + (Sy+Sx) + 2.0d0*(Sy-Sx)*cos(2.0d0*Theta) 
 
FuncStt = Stt 
 
return 
end function 
 
!======================================================================= 
 
subroutine GetA0toAp(p,iss,eta,Sx,Sy,nu0,nu1,E0,E1,A,rcond) 
 
!DEC$ DEFINE UseLAPACK = 1   ! Set to 1 if using LAPACK library. 
 
implicit none 
 
integer p,iss 
real*8  eta,Sx,Sy,nu0,nu1,E0,E1,A(0:p),rcond 
 
real*8  zero,MtxLHS(0:p,0:p),VecRHS(0:p) 
integer I,j,n,k,numint,ipiv(0:p) 
 
!DEC$ IF (UseLAPACK == 1) 
real*8  work(4*(p+1)),anorm,s 
integer info,iwork(p+1) 
!DEC$ ELSE 
real*8  EigVal(0:p),EigVec(0:p,0:p),TL,MaxEigVal,MinEigVal 
!DEC$ ENDIF 
 
real*8  cmn_eta,cmn_Sx,cmn_Sy,cmn_nu0,cmn_nu1,cmn_E0,cmn_E1 
integer cmn_n,cmn_k,cmn_iss 
 
common /cmn_SimEqns/ cmn_eta,cmn_Sx,cmn_Sy,cmn_nu0,cmn_nu1, & 
                     cmn_E0,cmn_E1,cmn_n,cmn_k,cmn_iss 
 
external FuncRHS 
external FuncLHS 
real*8   FuncRHS 
real*8   FuncLHS 
 
if (eta <= 0.0d0) then 
  write(*,*) 
  write(*,*) ‘*** ERROR: Eta (radians) = ‘,eta 
  write(*,*) ‘***’ 
  write(*,*) ‘*** Eta must be greater than zero.’ 
  write(*,*) 
  stop 
end if 
 
cmn_iss = iss 
cmn_eta = eta 
cmn_Sx  = Sx 
cmn_Sy  = Sy 
cmn_nu0 = nu0 
cmn_nu1 = nu1 
cmn_E0  = E0 
cmn_E1  = E1 
 
! Zero the elements of the LHS matrix and RHS vector. 
 
do k = 0,p 
  VecRHS(k) = zero 
  do n = 0,p 
    MtxLHS(k,n) = zero 
  end do 
end do 
 
! Set up the system of simultaneous equations defined in Equation (34). 
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! Utilise symmetry when computing the matrix of coefficients. 
 
numint = 400 
 
do k = 0,p 
  cmn_k = k 
  zero  = 0.0d0 
  call SimpsonsRule(zero,eta,FuncRHS,numint,VecRHS(k)) 
  do n = k,p 
    cmn_n = n 
    call SimpsonsRule(zero,eta,FuncLHS,numint,MtxLHS(k,n)) 
    MtxLHS(n,k) = MtxLHS(k,n) 
  end do 
end do 
 
! Solve the system of simultaneous equations. 
 
!DEC$ IF (UseLAPACK == 1) 
  !DEC$ MESSAGE:’Solving simultaneous equations using LAPACK library.’ 
  ! The following procedures assume that the matrix is symmetric. 
  call dsytrf(‘U’,p+1,MtxLHS,p+1,ipiv,work,p+1,info) 
  anorm = 0.0d0 
  do j=0,p 
    s = 0.0d0 
    do i=0,p 
      s = s + abs(MtxLHS(I,j)) 
    end do 
    anorm = max(s,anorm) 
  end do 
  call dsycon(‘U’,p+1,MtxLHS,p+1,ipiv,anorm,rcond,work,iwork,info) 
  call dsytrs(‘U’,p+1,1,MtxLHS,p+1,ipiv,VecRHS,p+1,info) 
!DEC$ ELSE 
  !DEC$ MESSAGE:’Solving simultaneous equations using DECOMP and SOLVE.’ 
  TL = 20.0d0 
  call JACOBI(MtxLHS,EigVal,EigVec,p+1,TL) 
  MaxEigVal = EigVal(0) 
  MinEigVal = EigVal(0) 
  do I = 1,p 
    MaxEigVal = max(EigVal(i),MaxEigVal) 
    MinEigVal = min(EigVal(i),MinEigVal) 
  end do 
  if (MaxEigVal > 0.0d0) then 
    rcond = MinEigVal/MaxEigVal 
  else 
    rcond = 0.0d0 
  end if 
  call DECOMP(p+1,p+1,MtxLHS,ipiv) 
  call SOLVE(p+1,p+1,MtxLHS,VecRHS,ipiv) 
!DEC$ ENDIF 
 
do k = 0,p 
  A(k) = VecRHS(k) 
end do 
 
return 
end subroutine 
 
!======================================================================= 
 
real*8 function FuncRHS(theta) 
 
real*8  theta 
 
real*8  eta,Sx,Sy,nu0,nu1,E0,E1 
integer n,k,iss 
 
common /cmn_SimEqns/ eta,Sx,Sy,nu0,nu1,E0,E1,n,k,iss 
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real*8  Gntheta 
 
FuncRHS = -((Sy+Sx)+6.0d0*(Sy-Sx)*cos(2.0d0*theta))* & 
          Gntheta(k,theta,eta,iss,nu0,nu1,E0,E1) 
 
return 
end function 
 
!======================================================================= 
 
real*8 function FuncLHS(theta) 
 
real*8  theta 
 
real*8  eta,Sx,Sy,nu0,nu1,E0,E1 
integer n,k,iss 
 
common /cmn_SimEqns/ eta,Sx,Sy,nu0,nu1,E0,E1,n,k,iss 
 
real*8  Gntheta 
 
FuncLHS = Gntheta(n,theta,eta,iss,nu0,nu1,E0,E1)* & 
          Gntheta(k,theta,eta,iss,nu0,nu1,E0,E1) 
 
return 
end function 
 
!======================================================================= 
 
real*8 function Dstarnp1(n,eta) 
 
implicit none 
 
integer n 
real*8  eta 
 
real*8  Dketa 
 
if (n == 0) then 
  Dstarnp1 = 1.0d0 + Dketa(n+1,eta) 
else 
  Dstarnp1 = 0.0d0 + Dketa(n+1,eta) 
end if 
 
return 
end function 
 
!======================================================================= 
 
real*8 function Gntheta(n,theta,eta,iss,nu0,nu1,E0,E1) 
 
implicit none 
 
integer n 
integer iss 
real*8  theta,eta,nu0,nu1,E0,E1 
 
real*8  k1,k2,k3,Nn,In,Ds 
 
real*8  Nntheta,Intheta,Dstarnp1 
 
call Computek1k2k3(k1,k2,k3,iss,nu0,nu1,E0,E1) 
 
Nn = Nntheta(n,theta,eta) 
In = Intheta(n,theta,eta) 
Ds = Dstarnp1(n,eta) 
 
Gntheta = k1*Nn + k2*In + 4.0d0*Ds 
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return 
end function 
 
!======================================================================= 
 
subroutine SimpsonsRule(a, b, f, neven, v) 
 
! Integration of a function f(x) over the interval [a, b] using 
! Simpson’s Rule with neven intervals (neven is an even number). 
! The result is returned in v. 
 
implicit none 
 
real*8   a,b,v 
integer  neven 
external f 
real*8   f 
 
integer  i 
real*8   r,s 
 
s = (b-a)/dfloat(neven) 
v = (f(a)+f(b))/2.0d0 
 
do I = 1,neven-1 
  r = f(a+i*s) 
  if (mod(I,2).ne.0) then 
    v = v + 2.0d0*r 
  else 
    v = v + r 
  end if 
end do 
 
v = v*s*2.0d0/3.0d0 
 
return 
end subroutine 
 
!======================================================================= 
 
real*8 function FuncEnIntegral(theta) 
 
implicit none 
 
real*8  theta 
 
real*8  eta 
integer n 
 
common /cmn_FuncEnIntegral/ eta, n 
 
FuncEnIntegral = sin(theta)*cos((2*n+1)*theta)* & 
                 sqrt(abs(cos(theta)**2-cos(eta)**2)) 
 
return 
end function 
 
!======================================================================= 
 
real*8 function Eneta(n,eta) 
 
implicit none 
 
integer  n 
real*8   eta,zero 
 
real*8   EnIntegral 
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integer  numint 
 
external FuncEnIntegral 
real*8   FuncEnIntegral 
 
real*8   cmn_eta 
integer  cmn_n 
 
common /cmn_FuncEnIntegral/ cmn_eta, cmn_n 
 
cmn_n   = n 
cmn_eta = eta 
 
numint = 400 
zero   = 0.0d0 
 
call SimpsonsRule(zero,eta,FuncEnIntegral,numint,EnIntegral) 
 
Eneta = -8.0d0*EnIntegral 
 
return 
end function 
 
!======================================================================= 
 
subroutine Test_FuncFnIntegral 
 
implicit none 
 
real*8  eta,theta 
integer n,i 
 
common /cmn_FuncFnIntegral/ eta, n 
 
real*8   FuncFnIntegral 
 
eta = 0.10d0 
n   = 4 
 
write(*,’(2f25.20)’) 0.0d+00,FuncFnIntegral(0.0d+00) 
write(*,’(2f25.20)’) 1.0d-15,FuncFnIntegral(1.0d-15) 
write(*,’(2f25.20)’) 1.0d-14,FuncFnIntegral(1.0d-14) 
write(*,’(2f25.20)’) 1.0d-13,FuncFnIntegral(1.0d-13) 
write(*,’(2f25.20)’) 1.0d-12,FuncFnIntegral(1.0d-12) 
write(*,’(2f25.20)’) 1.0d-11,FuncFnIntegral(1.0d-11) 
write(*,’(2f25.20)’) 1.0d-10,FuncFnIntegral(1.0d-10) 
write(*,’(2f25.20)’) 1.0d-09,FuncFnIntegral(1.0d-09) 
write(*,’(2f25.20)’) 1.0d-08,FuncFnIntegral(1.0d-08) 
write(*,’(2f25.20)’) 1.0d-07,FuncFnIntegral(1.0d-07) 
do I = 1,10 
  theta = 0.000001d0*i 
  write(*,’(2f25.20)’) theta,FuncFnIntegral(theta) 
end do 
do I = 1,100 
  theta = eta*i/100 
  write(*,’(2f25.20)’) theta,FuncFnIntegral(theta) 
end do 
 
stop 
end subroutine 
 
!======================================================================= 
 
real*8 function FuncFnIntegral(theta) 
 
implicit none 
 
real*8  theta 
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real*8  eta 
integer n 
 
common /cmn_FuncFnIntegral/ eta, n 
 
if (theta < 1.0d-09) then 
  ! Special result that is applicable at theta = 0. 
  FuncFnIntegral = sin(eta)*log(2.0d0) 
else 
  FuncFnIntegral = cos(theta)*cos((2*n+1)*theta)*         & 
                   log(cotan(theta/2))*                   & 
                   sqrt(abs(cos(theta)**2-cos(eta)**2)) + & 
                   sin(eta)*log(theta) 
end if 
 
return 
end function 
 
!======================================================================= 
 
real*8 function Fneta(n,eta) 
 
implicit none 
 
integer  n 
real*8   eta 
 
real*8   zero,pi,FnIntegral 
integer  numint 
 
external FuncFnIntegral 
real*8   FuncFnIntegral 
 
real*8   cmn_eta 
integer  cmn_n 
 
common /cmn_FuncFnIntegral/ cmn_eta, cmn_n 
 
cmn_n   = n 
cmn_eta = eta 
 
numint = 400 
zero = 0.0d0 
 
call SimpsonsRule(zero,eta,FuncFnIntegral,numint,FnIntegral) 
 
pi   = 4.0d0*atan(1.0d0) 
 
Fneta = 16.0d0/pi*(FnIntegral + eta*sin(eta)*(1.0d0-log(eta))) 
 
return 
end function 
 
!======================================================================= 
 
real*8 function Nntheta(n,theta,eta) 
 
implicit none 
 
real*8  theta,eta 
integer n 
 
Nntheta = -8.0d0*cos((2*n+1)*theta)*sqrt(abs(cos(theta)**2-cos(eta)**2)) 
 
return 
end function 
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!======================================================================= 
 
real*8 function Intheta(n,theta,eta) 
 
implicit none 
 
real*8  theta,eta 
integer n 
 
integer k 
real*8  s 
 
real*8  Dketa 
 
s = 0.0d0 
do k = 0,n 
  s = s + (n+1-k)*Dketa(k,eta)*cos(2*(n+1-k)*theta) 
end do 
 
Intheta = -8.0d0*s 
 
return 
end function 
 
!======================================================================= 
 
real*8 function Dketa(k,eta) 
 
implicit none 
 
integer k 
real*8  eta 
 
real*8  Pleg 
 
if (k == 0) then 
  Dketa = 1 
else if (k == 1) then 
  Dketa = -cos(2.0d0*eta) 
else 
  Dketa = ( cos(2.0d0*eta)*Pleg(k-1,cos(2.0d0*eta)) - & 
            Pleg(k,cos(2.0d0*eta))                    )/(k-1) 
end if 
 
return 
end function 
 
!======================================================================= 
 
subroutine ComputeWilsonCases1to8(lu,nOut) 
 
implicit none 
 
integer lu,nOut 
 
integer CaseNo,i 
real*8  A0,A1,A2,A3,A4,EtaDeg,Sx,Sy,E1onE0,nu0,nu1 
real*8  ThetaDeg,Stt,Ntt,thetanext 
 
real*8  Wilson1964_Stt 
real*8  Wilson1964_Ntt 
 
do CaseNo = 1,8 
 
  call WilsonCaseData(CaseNo,A0,A1,A2,A3,A4,EtaDeg,Sx,Sy,E1onE0,nu0,nu1) 
 
  write(lu,*) 
  write(lu,’(a,i1   )’) ‘RESULTS USING DATA FROM WILSON’’S CASE ‘,CaseNo 
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  write(lu,’(a      )’) ‘=======================================’ 
  write(lu,*) 
  write(lu,’(a,f14.6)’) ‘Sy        = ‘,Sy 
  write(lu,’(a,f14.6)’) ‘Sx        = ‘,Sx 
  write(lu,’(a,f14.6)’) ‘E1/E0     = ‘,E1onE0 
  if (nu0 > 0.0d0) then 
    write(lu,’(a,f14.6)’) ‘nu0       = ‘,nu0 
  else 
    write(lu,’(a,a14  )’) ‘nu0       = ‘,’Arbitrary’ 
  endif 
  write(lu,’(a,f14.6)’) ‘nu1       = ‘,nu1 
  write(lu,*) 
  write(lu,’(a,f14.6)’) ‘Eta (deg) = ‘,EtaDeg 
  write(lu,*) 
  write(lu,’(a,f14.6)’) ‘A0        = ‘,A0 
  write(lu,’(a,f14.6)’) ‘A1        = ‘,A1 
  write(lu,’(a,f14.6)’) ‘A2        = ‘,A2 
  write(lu,’(a,f14.6)’) ‘A3        = ‘,A3 
  write(lu,’(a,f14.6)’) ‘A4        = ‘,A4 
  write(lu,*) 
  write(lu,’(a,f14.6)’) ‘Ntt(0)    = ‘,Wilson1964_Ntt( 0.0d0,CaseNo) 
  write(lu,’(a,f14.6)’) ‘Stt(0)    = ‘,Wilson1964_Stt( 0.0d0,CaseNo) 
  write(lu,’(a,f14.6)’) ‘Stt(Eta)  = ‘,Wilson1964_Stt(EtaDeg,CaseNo) 
  write(lu,’(a,f14.6)’) ‘Stt(90)   = ‘,Wilson1964_Stt(90.0d0,CaseNo) 
 
  write(lu,*) 
  write(lu,’(3a15)’) ‘Theta_deg’,’Stt’,’Ntt’ 
  do I = 0,nOut 
    ThetaDeg = 90.0d0*i/nOut 
    Stt = Wilson1964_Stt(ThetaDeg, CaseNo) 
    Ntt = Wilson1964_Ntt(ThetaDeg, CaseNo) 
    write(lu,’(f15.6,2f15.9)’) ThetaDeg,Stt,Ntt 
    thetanext = (i+1)*90.0d0/nOut 
    if (EtaDeg > Thetadeg .and. EtaDeg < thetanext) then 
      Stt = Wilson1964_Stt(EtaDeg, CaseNo) 
      Ntt = Wilson1964_Ntt(EtaDeg, CaseNo) 
      write(lu,’(f15.6,2f15.8)’) EtaDeg, Stt, Ntt 
    end if 
  end do 
 
end do 
 
return 
end subroutine 
 
!======================================================================= 
 
subroutine WilsonCaseData(CaseNo,A0,A1,A2,A3,A4,EtaDeg,Sx,Sy,E1onE0, & 
                          nu0,nu1) 
 
implicit none 
 
integer CaseNo 
real*8  A0,A1,A2,A3,A4,EtaDeg,Sx,Sy,E1onE0,nu0,nu1 
 
select case (CaseNo) 
  case (1) 
    EtaDeg = 17.285975d0 
    A0     =  0.485594d0 
    A1     = -0.032165d0 
    A2     =  0.008132d0 
    A3     = -0.001099d0 
    A4     =  0.0d0 
    Sx     =  0.0d0 
    Sy     =  1.0d0 
    E1onE0 =  0.0d0 
    nu0    =  0.00d0 
    nu1    =  0.50d0 



UNCLASSIFIED 
DST-Group-TR-3134 

74 
UNCLASSIFIED 

  case (2) 
    EtaDeg = 19.625247d0 
    A0     =  0.238485d0 
    A1     = -0.015260d0 
    A2     =  0.004035d0 
    A3     = -0.000575d0 
    A4     =  0.0d0 
    Sx     =  0.0d0 
    Sy     =  1.0d0 
    E1onE0 =  1.0d0 
    nu0    =  0.30d0 
    nu1    =  0.30d0 
  case (3) 
    EtaDeg = 18.338752d0 
    A0     =  0.720664d0 
    A1     = -0.492358d0 
    A2     =  0.231672d0 
    A3     = -0.026564d0 
    A4     = -0.007271d0 
    Sx     =  0.0d0 
    Sy     =  1.0d0 
    E1onE0 =  0.0d0 
    nu0    =  0.00d0 
    nu1    =  0.30d0 
  case (4) 
    EtaDeg = 20.580669d0 
    A0     =  0.100991d0 
    A1     =  0.034317d0 
    A2     = -0.021163d0 
    A3     =  0.004578d0 
    A4     =  0.0d0 
    Sx     =  0.0d0 
    Sy     =  1.0d0 
    E1onE0 =  3.0d0 
    nu0    =  0.33d0 
    nu1    =  0.29d0 
  case (5) 
    EtaDeg = 40.472075d0 
    A0     =  0.410995d0 
    A1     = -0.012116d0 
    A2     =  0.004066d0 
    A3     = -0.001023d0 
    A4     =  0.000140d0 
    Sx     = -1.0d0 
    Sy     =  0.0d0 
    E1onE0 =  0.0d0 
    nu0    =  0.00d0 
    nu1    =  0.50d0 
  case (6) 
    EtaDeg = 56.973112d0 
    A0     =  0.192362d0 
    A1     = -0.001886d0 
    A2     =  0.000772d0 
    A3     = -0.000261d0 
    A4     =  0.000055d0 
    Sx     = -1.0d0 
    Sy     =  0.0d0 
    E1onE0 =  1.0d0 
    nu0    =  0.30d0 
    nu1    =  0.30d0 
  case (7) 
    EtaDeg = 49.813774d0 
    A0     =  0.352945d0 
    A1     = -0.015537d0 
    A2     =  0.008636d0 
    A3     = -0.003458d0 
    A4     =  0.000763d0 
    Sx     = -1.0d0 
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    Sy     =  0.0d0 
    E1onE0 =  0.0d0 
    nu0    =  0.00d0 
    nu1    =  0.30d0 
  case (8) 
    EtaDeg = 68.219578d0 
    A0     =  0.101956d0 
    A1     = -0.000158d0 
    A2     =  0.000050d0 
    A3     = -0.000011d0 
    A4     =  0.0d0 
    Sx     = -1.0d0 
    Sy     =  0.0d0 
    E1onE0 =  3.0d0 
    nu0    =  0.33d0 
    nu1    =  0.29d0 
end select 
 
return 
end subroutine 
 
!======================================================================= 
 
real*8 function Wilson1964_B(CaseNo) 
 
implicit none 
 
integer CaseNo 
 
real*8  Delta00, Delta01, Delta02, Delta03, Delta04 
real*8  A0, A1, A2, A3, A4 
real*8  B0, B1, B2, B3, B4 
real*8  D0, D1, D2, D3, D4, D5 
real*8  Dstar1, Dstar2, Dstar3, Dstar4, Dstar5 
real*8  EtaDeg, Eta, Cos2Eta, Pi, Sx, Sy, E1onE0, nu0, nu1 
 
real*8  Pleg 
 
call WilsonCaseData(CaseNo,A0,A1,A2,A3,A4,EtaDeg,Sx,Sy,E1onE0,nu0,nu1) 
 
Pi = 4.0d0*atan(1.0d0) 
 
Eta = EtaDeg/180.0d0*Pi 
 
Delta00 = 1.0d0 
Delta01 = 0.0d0 
Delta02 = 0.0d0 
Delta03 = 0.0d0 
Delta04 = 0.0d0 
 
Cos2Eta = cos(2*Eta) 
 
D0 = 1.0d0 
D1 = -Cos2Eta 
D2 = (Cos2Eta*Pleg(2-1,Cos2Eta) – Pleg(2,Cos2Eta))/(2-1) 
D3 = (Cos2Eta*Pleg(3-1,Cos2Eta) – Pleg(3,Cos2Eta))/(3-1) 
D4 = (Cos2Eta*Pleg(4-1,Cos2Eta) – Pleg(4,Cos2Eta))/(4-1) 
D5 = (Cos2Eta*Pleg(5-1,Cos2Eta) – Pleg(5,Cos2Eta))/(5-1) 
 
Dstar1 = Delta00 + D1 
Dstar2 = Delta01 + D2 
Dstar3 = Delta02 + D3 
Dstar4 = Delta03 + D4 
Dstar5 = Delta04 + D5 
 
B0 = A0*Dstar1 
B1 = A1*Dstar2 
B2 = A2*Dstar3 
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B3 = A3*Dstar4 
B4 = A4*Dstar5 
 
Wilson1964_B = B0 + B1 + B2 + B3 + B4 
 
return 
end function 
 
!======================================================================= 
 
real*8 function Wilson1964_Ntt(ThetaDeg,CaseNo) 
 
implicit none 
 
real*8  ThetaDeg 
integer CaseNo 
 
real*8  Theta, EtaDeg, Eta, Pi 
real*8  A0, A1, A2, A3, A4 
real*8  S, Ntt, Sx, Sy, E1onE0, nu0, nu1 
 
call WilsonCaseData(CaseNo,A0,A1,A2,A3,A4,EtaDeg,Sx,Sy,E1onE0,nu0,nu1) 
 
Pi = 4.0d0*atan(1.0d0) 
 
Theta = ThetaDeg/180.0d0*Pi 
Eta   = EtaDeg/180.0d0*Pi 
 
S = 0.0d0 
S = S + A0*cos((2*0+1)*Theta) 
S = S + A1*cos((2*1+1)*Theta) 
S = S + A2*cos((2*2+1)*Theta) 
S = S + A3*cos((2*3+1)*Theta) 
S = S + A4*cos((2*4+1)*Theta) 
 
if (ThetaDeg >= EtaDeg) then 
  Ntt = 0.0d0 
else 
  Ntt = -8.0d0*sqrt(cos(Theta)**2 – cos(Eta)**2)*S 
end if 
 
Wilson1964_Ntt = Ntt 
 
return 
end function 
 
!======================================================================= 
 
real*8 function Wilson1964_Stt(ThetaDeg, CaseNo) 
 
real*8  ThetaDeg 
integer CaseNo 
 
real*8  EtaDeg, Theta, Pi 
real*8  A0, A1, A2, A3, A4 
real*8  Ntt, Stt, B 
real*8  Sx, Sy, E1onE0, nu0, nu1 
 
real*8 Wilson1964_Ntt, Wilson1964_B 
 
call WilsonCaseData(CaseNo,A0,A1,A2,A3,A4,EtaDeg,Sx,Sy,E1onE0,nu0,nu1) 
 
Ntt = Wilson1964_Ntt(ThetaDeg, CaseNo) 
 
Pi = 4.0d0*atan(1.0d0) 
 
Theta = ThetaDeg/180.0d0*Pi 
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B = Wilson1964_B(CaseNo) 
 
Stt = Ntt + 4.0d0*B + (Sy+Sx) + 2.0d0*(Sy-Sx)*cos(2*Theta) 
 
Wilson1964_Stt = Stt 
 
return 
end function 
 
!======================================================================= 
 
real*8 function Pleg(n,x) 
 
! Calculate the value of the Legendre polynomial Pn(x). 
! 
! Parameters: 
! 
!    n = degree of polynomial, n >= 0 
!    x = argument 
! 
! Result: 
! 
!    The value of the Legendre polynomial Pn at x 
! 
! Some test values taken from Abramowitz and Stegun are shown in {}. 
! 
! Pleg(0,0.3141592654d0) =  1.0000000000   { 1.0000000000} 
! Pleg(1,0.3141592654d0) =  0.3141592654   { 0.3141592654} 
! Pleg(2,0.3141592654d0) = -0.3519559339   {-0.3519559340} 
! Pleg(3,0.3141592654d0) = -0.3937232064   {-0.3937232064} 
! Pleg(4,0.3141592654d0) =  0.0475063122   { 0.0475063122} 
! Pleg(5,0.3141592654d0) =  0.3418427518   { 0.3418427517} 
! Pleg(6,0.3141592654d0) =  0.1572986974   { 0.1572986975} 
! Pleg(7,0.3141592654d0) = -0.2012339355   {-0.2012339354} 
! Pleg(8,0.3141592654d0) = -0.2561729328   {-0.2561729328} 
! 
! Milton Abramowitz, Irene Stegun. Handbook of Mathematical Functions 
! With Formulas, Graphs, and Mathematical Tables. US Department of 
! Commerce, National Bureau of Standards, Applied Mathematics Series 55, 
! Issued 1964, Fifth Printing, August 1966, with corrections. 
 
implicit none 
 
integer n 
real*8  x 
 
real*8  Rslt, a, b 
integer i 
 
a = 1.0d0 
b = x 
 
if (n == 0) then 
  Pleg = a 
  return 
end if 
 
if (n == 1) then 
  Pleg = b 
  return 
end if 
 
do I = 2, n 
  Rslt = ((2*i-1)*x*b – (i-1)*a)/i 
  a = b 
  b = Rslt 
end do 
 



UNCLASSIFIED 
DST-Group-TR-3134 

78 
UNCLASSIFIED 

Pleg = Rslt 
 
return 
end function 
 
!======================================================================= 
 
SUBROUTINE DECOMP(N, NDIM, A, IP) 
 
! TOMS ALGORITHM 423 – MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION 
! 
! TOMS 423 is a FORTRAN 77 program that implements ACM TOMS Algorithm 
! 423, for Gaussian elimination to factor a matrix and solve a related 
! linear system. 
! 
! The algorithm was originally written using single precision 
! arithmetic, but has been converted to double precision here. 
! 
! Source code is a modification of Algorithm 423: ‘Linear Equation 
! Solver’ by Cleve B. Moler, Communications of the ACM, April 1972, 
! Volume 15, Number 4. 
! 
! Input: 
! 
!   N    = order of matrix. 
!   NDIM = declared dimension of array A. 
!   A    = matrix to be triangularized. 
! 
! Output: 
! 
!   A(I,J), I.LE.J = upper triangular factor U. 
!   A(I,J), I.GT.J = multipliers = lower triangular factor, I-L. 
!   IP(K),  K.LT.N = index of K-th pivot row. 
!   IP(N)          = (-1)**(number of interchanges) or 0. 
! 
! Use SOLVE to obtain the solution of the linear system of 
! simultaneous equations. 
! 
! Note that DETERMINANT(A) = IP(N)*A(1,1)*A(2,2)*...*A(N,N). 
! 
! If IP(N) = 0, then A is singular, and SOLVE will divide by zero. 
! Interchanges finished in U, only partly in L. 
 
IMPLICIT NONE 
 
INTEGER N, NDIM, IP(NDIM) 
real*8  A(NDIM,NDIM) 
 
real*8  T 
INTEGER I, J, K, KP1, M 
 
  IP(N) = 1 
  DO 6 K = 1, N 
    IF ( K .EQ. N ) GO TO 5 
    KP1 = K + 1 
    M = K 
    DO 1 I = KP1, N 
      IF ( ABS(A(I,K)) .GT. ABS(A(M,K)) ) M = I 
1   CONTINUE 
    IP(K) = M 
    IF ( M .NE. K ) IP(N) = -IP(N) 
    T = A(M,K) 
    A(M,K) = A(K,K) 
    A(K,K) = T 
    IF ( T .EQ. 0.0D0 ) GO TO 5 
    DO 2 I = KP1, N 
2     A(I,K) = -A(I,K) / T 
    DO 4 J = KP1, N 
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      T = A(M,J) 
      A(M,J) = A(K,J) 
      A(K,J) = T 
      IF ( T .EQ. 0.0D0 ) GO TO 4 
      DO 3 I = KP1, N 
3       A(I,J) = A(I,J) + A(I,K) * T 
4   CONTINUE 
5   IF ( A(K,K) .EQ. 0.0D0 ) IP(N) = 0 
6 CONTINUE 
 
RETURN 
END SUBROUTINE 
 
!======================================================================= 
 
SUBROUTINE SOLVE(N, NDIM, A, B, IP) 
 
! Solution of linear system of equations, A*X = B. 
! 
! Input: 
! 
!   N    = order of matrix. 
!   NDIM = declared dimension of array A. 
!   A    = triangularized matrix obtained from DECOMP. 
!   B    = right hand side vector. 
!   IP   = pivot vector obtained from DECOMP. 
! 
! Do not use results if DECOMP has set IP(N) = 0. 
! 
! Output: 
! 
!   B = solution vector, X. 
 
IMPLICIT NONE 
 
INTEGER N, NDIM, IP(NDIM) 
real*8  A(NDIM,NDIM), B(NDIM) 
 
real*8  T 
INTEGER KM1, KP1, NM1, I, K, KB, M 
 
  IF ( N .EQ. 1 ) GO TO 9 
  NM1 = N – 1 
  DO 7 K = 1, NM1 
    KP1 = K + 1 
    M = IP(K) 
    T = B(M) 
    B(M) = B(K) 
    B(K) = T 
    DO 7 I = KP1, N 
7     B(I) = B(I) + A(I,K) * T 
  DO 8 KB = 1, NM1 
    KM1 = N – KB 
    K = KM1 + 1 
    B(K) = B(K) / A(K,K) 
    T = -B(K) 
    DO 8 I = 1,KM1 
8     B(I) = B(I) + A(I,K) * T 
9   B(1) = B(1) / A(1,1) 
 
RETURN 
END SUBROUTINE 
 
!======================================================================= 
 
subroutine TestDFZERO 
 
implicit none 
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real*8  b, c, r, re, ae 
integer iflag 
 
external TestFuncDFZERO 
real*8   TestFuncDFZERO 
 
b  =  0.0d0 
c  = 90.0d0 
r  = b 
re = 1.0d-07 
ae = 0.0d0 
 
call DFZERO(TestFuncDFZERO, b, c, r, re, ae, iflag) 
 
write(*,’(a,i20)’   ) ‘IFLAG        = ‘,iflag 
write(*,’(a,f20.10)’) ‘Zero of F(x) = ‘,b 
 
stop 
 
return 
end subroutine 
 
!======================================================================= 
 
real*8 function TestFuncDFZERO(x) 
 
implicit none 
 
real*8 x 
 
TestFuncDFZERO = sind(x)-1.0d0/sqrt(2.0d0) ! F(x) = 0 when x = 45. 
 
return 
end function 
 
!======================================================================= 
 
SUBROUTINE DFZERO(F, B, C, R, RE, AE, IFLAG) 
 
!***BEGIN PROLOGUE  DFZERO 
! 
!***PURPOSE 
! 
! Search for a zero of a function F(X) in a given interval (B,C). 
! It is designed primarily for problems where F(B) and F(C) have 
! opposite signs. 
! 
!***LIBRARY   SLATEC 
!***CATEGORY  F1B 
!***TYPE      DOUBLE PRECISION (FZERO-S, DFZERO-D) 
!***KEYWORDS  BISECTION, NONLINEAR, ROOTS, ZEROS 
!***AUTHORS   L. F. Shampine (SNLA) 
!             H. A. Watts    (SNLA) 
! 
!***DESCRIPTION 
! 
! DFZERO searches for a zero of a DOUBLE PRECISION function F(X) 
! between the given DOUBLE PRECISION values B and C until the width 
! of the interval (B,C) has collapsed to within a tolerance 
! specified by the stopping criterion, 
! 
!    ABS(B-C) .LE. 2.*(RW*ABS(B)+AE). 
! 
! The method used is an efficient combination of bisection and the 
! secant rule, and is due to T. J. Dekker. 
! 
! Description Of Arguments 
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! 
!   F     :EXT   - Name of the DOUBLE PRECISION external function. This 
!                  name must be in an EXTERNAL statement in the calling 
!                  program. F must be a function of one DOUBLE 
!                  PRECISION argument. 
! 
!   B     :INOUT – One end of the DOUBLE PRECISION interval (B,C). The 
!                  value returned for B usually is the better 
!                  approximation to a zero of F. 
! 
!   C     :INOUT – The other end of the DOUBLE PRECISION interval (B,C) 
! 
!   R     :IN    - A (better) DOUBLE PRECISION guess of a zero of F 
!                  which could help in speeding up convergence. If F(B) 
!                  and FI have opposite signs, a root will be found in 
!                  the interval (B,R); if not, but FI and F(C) have 
!                  opposite signs, a root will be found in the interval 
!                  (R,C); otherwise, the interval (B,C) will be 
!                  searched for a possible root. When no better guess 
!                  is known, it is recommended that R be set to B or C, 
!                  since if R is not interior to the interval (B,C), it 
!                  will be ignored. 
! 
!   RE    :IN    - Relative error used for RW in the stopping criterion. 
!                  If the requested RE is less than machine precision, 
!                  then RW is set to approximately machine precision. 
! 
!   AE    :IN    - Absolute error used in the stopping criterion. If the 
!                  given interval (B,C) contains the origin, then a 
!                  nonzero value should be chosen for AE. 
! 
!   IFLAG :OUT   - A status code. User must check IFLAG after each call. 
!                  Control returns to the user from DFZERO in all cases. 
! 
!                  1  B is within the requested tolerance of a zero. 
!                     The interval (B,C) collapsed to the requested 
!                     tolerance, the function changes sign in (B,C), and 
!                     F(X) decreased in magnitude as (B,C) collapsed. 
! 
!                  2  F(B) = 0. However, the interval (B,C) may not have 
!                     collapsed to the requested tolerance. 
! 
!                  3  B may be near a singular point of F(X). The 
!                     interval (B,C) collapsed to the requested 
!                     tolerance and the function changes sign in 
!                     (B,C), but F(X) increased in magnitude as 
!                     (B,C) collapsed, i.e. 
!                     ABS(F(B out)) .GT. MAX(ABS(F(B in)),ABS(F(C in))) 
! 
!                  4  No change in sign of F(X) was found although the 
!                     interval (B,C) collapsed to the requested 
!                     tolerance. The user must examine this case and 
!                     decide whether B is near a local minimum of F(X), 
!                     or B is near a zero of even multiplicity, or 
!                     neither of these. 
! 
!                  5  Too many (.GT. 1000) function evaluations used. 
! 
!***REFERENCES 
! 
!  L. F. Shampine and H. A. Watts. FZERO, a root-solving code. 
!  Report SC-TM-70-631, Sandia Laboratories, September 1970. 
! 
!  T. J. Dekker. Finding a zero by means of successive 
!  linear interpolation. Constructive Aspects of the 
!  Fundamental Theorem of Algebra, edited by B. Dejon 
!  and P. Henrici, Wiley-Interscience, 1969. 
! 
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!***ROUTINES CALLED  D1MACH 
! 
!***REVISION HISTORY  (YYMMDD) 
! 
!   700901  DATE WRITTEN 
!   890531  Changed all specific intrinsics to generic.  (WRB) 
!   890531  REVISION DATE from Version 3.2 
!   891214  Prologue converted to Version 4.0 format.  (BAB) 
!   920501  Reformatted the REFERENCES section.  (WRB) 
! 
!***END PROLOGUE  DFZERO 
 
   real*8  A,ACBS,ACMB,AE,AW,B,C,CMB,ER 
   real*8  F,FA,FB,FC,FX,FZ,P,Q,R,RE,RW,T,TOL,Z 
   INTEGER IC,IFLAG,KOUNT 
 
   !***FIRST EXECUTABLE STATEMENT  DFZERO 
 
   ! ER is two times the computer unit roundoff value which is defined 
   ! here by the function D1MACH. 
 
   ! ER = 2.0D0 * D1MACH(4) 
 
   ER = 2.0D0*1.0D-14 
 
   ! Initialize. 
 
   Z = R 
   IF (R .LE. MIN(B,C)  .OR.  R .GE. MAX(B,C)) Z = C 
   RW = MAX(RE,ER) 
   AW = MAX(AE,0.D0) 
   IC = 0 
   T = Z 
   FZ = F(T) 
   FC = FZ 
   T = B 
   FB = F(T) 
   KOUNT = 2 
   IF (SIGN(1.0D0,FZ) .EQ. SIGN(1.0D0,FB)) GO TO 1 
   C = Z 
   GO TO 2 
 1 IF (Z .EQ. C) GO TO 2 
   T = C 
   FC = F(T) 
   KOUNT = 3 
   IF (SIGN(1.0D0,FZ) .EQ. SIGN(1.0D0,FC)) GO TO 2 
   B = Z 
   FB = FZ 
 2 A = C 
   FA = FC 
   ACBS = ABS(B-C) 
   FX = MAX(ABS(FB),ABS(FC)) 
 
 3 IF (ABS(FC) .GE. ABS(FB)) GO TO 4 
 
  ! Perform interchange. 
 
   A = B 
   FA = FB 
   B = C 
   FB = FC 
   C = A 
   FC = FA 
 
 4 CMB = 0.5D0*(C-B) 
   ACMB = ABS(CMB) 
   TOL = RW*ABS(B) + AW 
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   ! Test stopping criterion and function count. 
 
   IF (ACMB .LE. TOL) GO TO 10 
   IF (FB .EQ. 0.D0) GO TO 11 
   IF (KOUNT .GE. 1000) GO TO 14 
 
   ! Calculate new iterate implicitly as B+P/Q, where we arrange 
   ! P .GE. 0.  The implicit form is used to prevent overflow. 
 
   P = (B-A)*FB 
   Q = FA – FB 
   IF (P .GE. 0.D0) GO TO 5 
   P = -P 
   Q = -Q 
 
   ! Update A and check for satisfactory reduction in the size of the 
   ! bracketing interval.  If not, perform bisection. 
 
 5 A = B 
   FA = FB 
   IC = IC + 1 
   IF (IC .LT. 4) GO TO 6 
   IF (8.0D0*ACMB .GE. ACBS) GO TO 8 
   IC = 0 
   ACBS = ACMB 
 
   ! Test for too small a change. 
 
 6 IF (P .GT. ABS(Q)*TOL) GO TO 7 
 
   ! Increment by TOLerance. 
 
   B = B + SIGN(TOL,CMB) 
   GO TO 9 
 
   ! Root ought to be between B and (C+B)/2. 
 
 7 IF (P .GE. CMB*Q) GO TO 8 
 
   ! Use secant rule. 
 
   B = B + P/Q 
   GO TO 9 
 
   ! Use bisection (C+B)/2. 
 
 8 B = B + CMB 
 
   ! Have completed computation for new iterate B. 
 
 9 T = B 
   FB = F(T) 
   KOUNT = KOUNT + 1 
 
   ! Decide whether next step is interpolation or extrapolation. 
 
   IF (SIGN(1.0D0,FB) .NE. SIGN(1.0D0,FC)) GO TO 3 
   C = A 
   FC = FA 
   GO TO 3 
 
   ! Finished. Process results for proper setting of IFLAG. 
 
10 IF (SIGN(1.0D0,FB) .EQ. SIGN(1.0D0,FC)) GO TO 13 
   IF (ABS(FB) .GT. FX) GO TO 12 
   IFLAG = 1 
   RETURN 
11 IFLAG = 2 
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   RETURN 
12 IFLAG = 3 
   RETURN 
13 IFLAG = 4 
   RETURN 
14 IFLAG = 5 
   RETURN 
 
END SUBROUTINE 
 
!======================================================================= 
 
subroutine TestCompleteEllipticIntegrals12 
 
! Test program to check the computation of the complete elliptic 
! integrals of the first and second kind. 
! 
! Values from the tables in Abramowitz and Stegun are marked as “A&S”. 
! 
!      m                      K(m)                  E(m) 
!  0.000     1.570796326794897E+00     1.570796326794897 
!  0.050     1.591003453790792E+00     1.550973351780472 
!  0.100     1.612441348720219E+00     1.530757636897763 
!  0.150     1.635256732264580E+00     1.510121832092820 
!  0.200     1.659623598610528E+00     1.489035058095853 
!  0.250     1.685750354812596E+00     1.467462209339427 
!  0.300     1.713889448178791E+00     1.445363064412665 
!  0.300 A&S 1.713889448178791         1.445363064 
!  0.350     1.744350597225613E+00     1.422691133490879 
!  0.400     1.777519371491253E+00     1.399392138897432 
!  0.450     1.813883936816983E+00     1.375401971871116 
!  0.500     1.854074677301372E+00     1.350643881047675 
!  0.500 A&S 1.854074677301372         1.350643881 
!  0.550     1.898924910271554E+00     1.325024497958230 
!  0.600     1.949567749806026E+00     1.298428035046913 
!  0.650     2.007598398424376E+00     1.270707479650149 
!  0.700     2.075363135292469E+00     1.241670567945823 
!  0.750     2.156515647499643E+00     1.211056027568459 
!  0.750 A&S 2.156515647499643         1.211056028 
!  0.800     2.257205326820854E+00     1.178489924327838 
!  0.850     2.389016486325580E+00     1.143395791883166 
!  0.900     2.578092113348173E+00     1.104774732704073 
!  0.950     2.908337248444552E+00     1.060473727766279 
!  0.950 A&S 2.908337248444552         1.060473728 
!  0.990     3.695637362989874E+00     1.015993545025224 
!  0.990 A&S 3.695637362989875         1.015993456 
!  1.000     1.000000000000000+300     1.000000000000000 
!  1.000 A&S Infinity                  1.000000000 
 
implicit none 
 
real*8  e1,e2,m 
integer I, ni 
 
m  = 0.0d0 
ni = 100 
 
write(*,’(a6,a26,a22)’) ‘m’,’K(m)’,’E(m)’ 
 
do I = 0, ni 
  m = i*1.0d0/ni 
  call CompleteEllipticIntegrals12(m,e1,e2) 
  write(*,’(f6.3,es26.15,f22.15)’) m,e1,e2 
end do 
 
stop 
 
end subroutine 
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!======================================================================= 
 
subroutine CompleteEllipticIntegrals12(m,EIK,EIE) 
 
! This procedure computes the complete elliptic integrals of the first 
! and second kind, K(m) and E(m). The computational technique uses an 
! arithmetic-geometric-mean process. 
! 
! The input parameter is m, where 0 <= m <= 1. 
! 
! The returned values are EIK and EIE, the complete elliptic integrals 
! of the first and second kind, respectively. 
! 
! Note that m1 = 1 – k^2 = 1 –m = cos(alpha)**2. 
! 
! The complementary parameter, m1, is chosen as the independent 
! variable, rather than the parameter m, the modulus k, or the 
! modular angle alpha, because of the possibility of serious 
! loss of significance in generating m1 from the other possible 
! independent variables when m1 is small and dK/dm1 is very large. 
! 
! Reference: 
! 
! Algorithm 165, Complete Elliptic Integrals. H. C. Thatcher. 
! Communications of the ACM, Volume 6, Number 4, April 1963, 
! pages 163-164. 
 
implicit none 
 
real*8  m,EIK,EIE 
 
real*8  m1,tol,pi,a,b,c,s,temp 
integer fact 
 
if (m == 1.0d0) then 
  EIK = 1.0d+300 
  EIE = 1.0d0 
  return 
end if 
 
tol = 5.0d-07 
 
pi = 4.0d0*atan(1.0d0) 
 
m1 = 1.0d0 – m 
 
if (m1 < 0.0 .or. m1 > 1.0d0) then 
  write(*,*) & 
    ‘*** Error: m1 is out of range in CompleteEllipticIntegrals12.’ 
  stop 
end if 
 
a    = 1.0d0 
fact = 1 
b    = sqrt(m1) 
temp = 1.0d0 – m1 
s    = 0.0d0 
 
100 continue 
 
s    = s + temp 
c    = (a-b)/2.0d0 
fact = fact + fact 
temp = (a+b)/2.0d0 
b    = sqrt(a*b) 
a    = temp 
temp = fact*c**2 
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if (abs(c) >= tol*a .or. temp > tol*s) goto 100 
 
s = s + temp 
 
EIK = pi/(a+b) 
EIE = EIK*(1.0d0-s/2.0d0) 
 
return 
end subroutine 
 
!======================================================================= 
 
SUBROUTINE JACOBI(SYMMTX,EIGVAL,EIGVEC,NEQ,TL) 
 
! EIGENVALUE SOLUTION BY JACOBI METHOD. 
! 
! ORIGINALLY WRITTEN BY ED WILSON, 25 DECEMBER 1990. 
! MODIFIED 14 OCTOBER 2010. 
! 
! NEQ    - ORDER OF THE SQUARE MATRIX. 
! SYMMTX – MATRIX (ANY RANK) TO BE SOLVED. 
! A      - WORKING COPY OF INPUT MATRIX TO BE SOLVED. 
!          EIGENVALUES STORED ON THE DIAGONAL. 
! EIGVEC – MATRIX OF EIGENVECTORS PRODUCED. 
! EIGVAL – VECTOR COLUMN OF COMPUTED EIGENVALUES. 
! TL     - NUMBER OF SIGNIFICANT FIGURES. 
 
IMPLICIT REAL*8 (A-H,O-Z) 
 
DIMENSION SYMMTX(NEQ,NEQ),EIGVAL(NEQ),EIGVEC(NEQ,NEQ) 
 
DIMENSION A(NEQ,NEQ) 
 
!---- INITIALIZATION ----------------------- 
DO I=1,NEQ 
  DO J=1,NEQ 
    A(I,J) = SYMMTX(I,J) 
  END DO 
END DO 
ZERO = 0.0D0 
SUM = ZERO 
TOL = ABS(TL) 
!---- SET INITIAL EIGENVECTORS ------------- 
DO 200 I=1,NEQ 
DO 190 J=1,NEQ 
IF (TL.GT.ZERO) EIGVEC(I,J) = ZERO 
190 SUM = SUM + ABS(A(I,J)) 
IF (TL.GT.ZERO) EIGVEC(I,I) = 1.0D0 
200 CONTINUE 
!---- CHECK FOR TRIVIAL PROBLEM ----------- 
IF (NEQ.EQ.1) THEN 
  EIGVAL(1) = 1.0d0 
  RETURN 
END IF 
IF (SUM.LE.ZERO) RETURN 
SUM = SUM/(NEQ*NEQ) 
!------------------------------------------- 
!---- REDUCE MATRIX TO DIAGONAL ------------ 
!------------------------------------------- 
400 SSUM = ZERO 
AMAX = ZERO 
DO 700 J=2,NEQ 
IH = J – 1 
DO 700 I=1,IH 
!---- CHECK IF A(I,J) IS TO BE REDUCED ----- 
AA = ABS(A(I,J)) 
IF (AA.GT.AMAX) AMAX = AA 
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SSUM = SSUM + AA 
IF (AA.LT.0.1*AMAX) GO TO 700 
!---- CALCULATE ROTATION ANGLE ---------- 
AA=ATAN2(2.0D0*A(I,J),A(I,I)-A(J,J))/2.0D0 
SI = SIN(AA) 
CO = COS(AA) 
!---- MODIFY “I” AND “J” COLUMNS -------- 
DO 500 K=1,NEQ 
TT = A(K,I) 
A(K,I) = CO*TT + SI*A(K,J) 
A(K,J) = -SI*TT + CO*A(K,J) 
TT = EIGVEC(K,I) 
EIGVEC(K,I) = CO*TT + SI*EIGVEC(K,J) 
500 EIGVEC(K,J) = -SI*TT + CO*EIGVEC(K,J) 
!---- MODIFY DIAGONAL TERMS ------------- 
A(I,I) =  CO*A(I,I) + SI*A(J,I) 
A(J,J) = -SI*A(I,J) + CO*A(J,J) 
A(I,J) =  ZERO 
!---- MAKE “A” MATRIX SYMMETRICAL ------- 
DO 600 K=1,NEQ 
  A(I,K) = A(K,I) 
  A(J,K) = A(K,J) 
600 CONTINUE 
!---- A(I,J) MADE ZERO BY ROTATION ------ 
700 CONTINUE 
!---- CHECK FOR CONVERGENCE ------------- 
IF(ABS(SSUM)/SUM .GT. TOL) GO TO 400 
 
DO I=1,NEQ 
  EIGVAL(I) = A(I,I) 
END DO 
 
RETURN 
END SUBROUTINE 
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Appendix C:  Computation of an integrand containing 
cot(θ/2) and ln(θ) singularities at θ = 0 

By Colin Pickthall 

The integral that is causing numerical problems when computing the integrand at θ = 0 is 
(see Equation 37 in Wilson [3]): 
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This equation can be rewritten as: 
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In the above equation, note that θ runs from 0 to η, thus θ ≤ η and therefore 
)(cos)(cos 22 η≥θ . 

The first term of the integrand has three factors, as follows: 
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In the limit as θ→0, these factors have the following limits: 
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The product of these three factors becomes )2ln()sin()ln()sin( η+θη− . The first part of this 
cancels with the second term of the integrand, and so, for vanishingly small θ, the integrand 
in )(ηnI  becomes simply the constant value )2ln()sin(η . 
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It is instructive and useful to look at the small-θ series expansions of the three factors. The 
following series are used: 

( ) ( ) 
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The small θ series expansions of the three factors above, on using these series expansions, 
become: 
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These series can now be multiplied together. Although terms of order θ4 have been retained 
above, they have not been retained below because the coefficients become unwieldy. 
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It is seen that the first term above cancels with the second term in the integrand of )(ηnI , 
which eliminates the subtraction of diverging terms in the small θ limit evaluations of the 
integrand for numerical integrations. 

One way to overcome the problem of evaluating the diverging terms is to split the integral 
into two parts, as follows, with the second part causing no problems for numerical 
integration: 
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The value of d should be chosen small enough so that the power series above provides 
sufficient accuracy: terms of order θ4 and θ4ln(θ) should be negligible. In this case, the first 
integral can be written as: 
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This integral can be evaluated analytically, resulting in: 
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For small values of η, care needs to be exercised because the coefficients α and β then become 
large. However, as long as d is chosen much smaller than η, any potential problems should 
be able to be avoided. 
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