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1 Introduction
This project consists of the development of a software application for the user-guided design of
a robotic system in conjunction with a computer-automated optimization system (Fig. 1). In
Year 1 (Feb, 2011 - Feb 2012) we demonstrated an initial system for allowing a human user to
configure a robot, its environment and to specify a task. In addition, we also demonstrated a
paradigm for allowing a human-user to guide an automated optimization / machine learning system
to collaborate in solving a problem. In Year 2 (Feb 2012 - Feb 2013) we integrated these two parts
into a prototype desktop application and concluded the year with testing the effectiveness of this
approach. In year 3 we extended our system so that it can support the crowd-sourcing of robotics
by non-expert users: multiple users collectively influence an optimization method (Fig. 2).

This final report is organized as follows. Section 2 is an overview of this project and sum-
marizes its goals. Section 3 describes the successful crowdsourcing of robotics: we have shown
that, when two non-experts interact with our robotics system, robot controllers are developed more
rapidly compared to two users acting independently, or one user working alone.

The main new deliverables are the submission of two manuscripts that documents the design,
deployment and results from crowdsourcing robotics. Work described in the first manuscript was
summarized in the previous QPR. Worked described in the second manuscript are summarized in
this Report.

Wagy, M., Hornby, G. S. & Bongard, J. C. (2014). Crowdsourced robot design aided by evolu-
tionary computation. The Fourteenth International Conference on the Synthesis and Simulation of
Living Systems (ALife XIV). In review.

Bernatskiy, A., Hornby, G. S. & Bongard, J. C. (2014). Improving Robot Behavior Optimiza-
tion by Combining User Preferences. The Fourteenth International Conference on the Synthesis
and Simulation of Living Systems (ALife XIV). In review.
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Figure 1: An overview of the software tool for human-computer, collaborative design of robotic
systems which is the goal of this project. The user first specifies the robot and the controller task
(1(a)) and then assists the computer in creating a controller by indicating preferred designs (1(b)).
Behind the scenes, the software is building a user-model and is using this to assist in driving its
search algorithm (1(c)).

2 Project Overview
An overview of how the proposed system is as follows. In this project we are using advanced
Interactive Evolutionary Algorithms with User Modeling as the core technologies in developing an
application for enabling human users to interactively guide the automated design of sophisticated
robotic systems for mobility/manipulation tasks. How this application works can be understood by
following the three stages of its work flow:

1. Specify the robot morphology.

2. Specify the control task (Figure 1(a)).

3. Interactively guide the design of a controller to accomplish the task (Figure 1(b)).

First (1) the user will either specify a pre-existing robot morphology to use or create a new robot
using a GUI to specify its morphology. Next (2) the task environment is specified, either by loading
a pre-existing one or by specifying it with a GUI. Once the task environment is set, the control task
to be generated is specified by indicating the desired starting and stopping states of the robot and
objects in the environment (Figure 1(a)). Once the robot, environment and control task have been
specified an optimization algorithm will being searching for a controller to perform the task. The
user will be presented with example controllers generated by the search algorithm and (3) will be
able to indicate to the computer which results are more promising (Figure 1(b)). Based on the
user’s preferences, a model of the user will continuously learned and this model will be used as a
kind of fitness function to help guide the optimization algorithm (Figure 1(c)).

In addition, once a robot is designed and its control policy becomes mired in a local optimum,
a user may follow one of two paths to alter the search landscape: they may alter the robot’s task

2
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Figure 2: Extending the system from individual user modeling to crowdsourcing. The core of the system is
comprised of an evolutionary algorithm that optimizes artificial neural network control policies (a). Each control
policy is evaluated on a simulated robot (green; b). In this example, control policies are evolved to guide the robot
around a barrier (cyan) to reach a target object (red). However, search converges at a local optimum, which corresponds
to the robot reaching the barrier but going no further (arrow). To date, we have developed a user model (d), which
collects data from the user about which behaviors she prefers over others. The model can then output predictions about
how much a user will like an unseen behavior (‘score’). In this example the user has indicated increasing preference
for behaviors that guide the robot to the right edge of the barrier (dotted lines in e). The optimizer (c) now selects
for control policies that increase fitness and increase scores output by the user model. In this past quarter we have
extended to code to accommodate multiple users (f-k). In this example the system collects preferences from two users
(j,k) and creates three user models: one trained on preferences from just user 1 (g), just user 2 (h), and both users (i),
respectively. Assuming both users prefer the same kinds of behaviors, the user model trained on the combined training
set from both users (i) will have lower error than the individual user models (g,h) and will be used for influencing
behavior optimization. If two users provide diverging preferences however (p,q), the combined user model (o) will
have a higher error than the two individual user models (m,n). Thus optimization (l) will select control policies that
maximize fitness and obtain high scores from either of the two individual user models (i.e., at least one of the users
will like the behavior produced by this control policy).
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environment, or they may indicate user preferences. As an example of the former approach we
have evolved behaviors for a brachiating robot that swings underneath suspended rungs. There are
local optima however in which the robot manages to swing up between rungs and ‘walk’ across
their tops. The user can remove these local optima from the search space by placing planks just
above the rungs so that the robot hits the planks when trying to swing up between the rungs. As an
example of the latter approach, the user can now indicate preferences to guide search away from
these degenerate solutions: The user is repeatedly shown two robots (controlled by two competing
control policies); one gets between and above the rungs and ‘walks’ slightly further than the second
robot which swings under the rungs but falls off earlier. If the user repeatedly indicates preference
for this latter behavior, search will focus on improving control policies that keep the robot below
the rungs. Thus the amount of interaction the user is willing to provide is tunable: the user may
render the process more manual by defining many intermediate states close to one another in the
control and behavioral space of the robot, or more automatic by defining few states and placing
many aspects of the robot’s controller and morphology under evolutionary control.

3 Crowdsourcing Robotics
Recently it has been demonstrated that collaboration between automated algorithms and human
users can be especially effective in robot behavior optimization tasks. In particular, we recently
introduced a Fitness-based Search with Preference-based Policy Learning (FS-PPL) approach, in
which the algorithm models the user based on her preferences and then uses the model, along with
the fitness function, to guide search. However, so far only interaction between a single human
user and an evolutionary algorithm was considered. If multiple users contribute preferences, the
algorithm must determine whether to model them separately or jointly. Here, we describe an
algorithm in which one evolutionary algorithm interacts with two users and determines the best way
to model them automatically. We test the algorithm with automated substitutes for human users
and show that it performs better for two users working together than for the same users working
separately, thus demonstrating the potential for crowdsourcing robot behavior optimization1.

3.1 Introduction
Historically, interactive evolutionary algorithms are typically used to solve search problems in
which automatic evaluation of a solution candidate is impractical for some reason – for example,
artistic tasks. In this case the duty of solution evaluation is fully entrusted to the user. A lot
of studies were made in regard to this approach, many successful algorithms were designed (for
example ([4])) and many of those allow multiple users to collaborate on the same problem ([11,
12, 5]). Much less is known, however, about the algorithms which distribute the burden of solution
candidates evaluation between the users and the computer.

In this work we employ this latter approach to address an important issue arising in traditional
fitness-based evolutionary algorithms – namely, the phenomenon of premature convergence, i.e.
convergence to a local optimum with a large basin of attraction rather than to the global opti-

1The following is adapted from A Bernatskiy, GS Hornby, JC Bongard (2014). Improving robot behavior optimiza-
tion by combining user preferences. 14th Intl Conf on the Synthesis and Simulation of Living Systems. In preparation.
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mum with a much narrower basin.2 One approach used to combat this problem is to use multiple
objectives instead of just a single fitness value to evaluate solutions. Some objectives shown to
be effective are age ([9]) and novelty ([7]). However, depending on a task, even multiobjective
algorithms can become trapped on local optima.

For some tasks this problem can be greatly reduced by adding human preference as an opti-
mization objective. This is particularly true for robot behavior optimization, because humans have
good intuition about legged locomotion and are able to visually determine that search has become
trapped on a local optimum ([2]). The major problem with these methods, however, is the quantity
of preferences required from the user, which is often so demanding that it makes the algorithm too
labor-intensive to be practical.

This problem can be approached in several ways. One way is to use a machine learning algo-
rithm to build a model of the user and then use the model to supply preferences on the human user’s
behalf as behavior optimization continues ([13, 10, 1, 3]). In ([3]) we investigated the efficiency
of this approach in a robot behavior optimization task with a deceptive fitness landscape. Using an
algorithm based on Age-Fitness Pareto Optimization (AFPO) ([9]) with an additional user prefer-
ence objective and a neural network-based user model, we showed that a user model and fitness
function together can guide the search to convergence more rapidly (in terms of wall-clock time)
than either of them on its own.

Another way to cope with the labor intensity of interactive evolution is to utilize evaluations
coming from multiple users. This approach has been investigated theoretically to some extent
([12]) and successfully applied to artistic tasks ([11, 5]).

Our hypothesis is that it is possible to make the optimization of robot behavior faster by col-
lecting evaluations simultaneously generated by multiple users into one common evolutionary al-
gorithm. Consider an algorithm which attempts to learn preferences supplied by multiple users
based on their evaluations. If n users simultaneously indicate preferences and if their preferences
agree, then the machine learning algorithm can train on these preferences as if they were indicated
by a single user. Therefore, it will have up to n times more training data, which will allow it to
build an accurate user model faster.

If user preferences disagree, the algorithm will have to model users separately using their re-
spective preference sets. In this case the speed of learning of each user model is reduced back
to the level of the single user case, and additional computational costs associated with training
multiple user models can impact the performance of the behavior optimization method (see the
Experiments section). However, disagreement in users’ preferences is likely to indicate that more
than one global optimum – or several similar (in terms of fitness) local optima – have been intuited
by the users and are present in the fitness landscape. In the latter case it is possible to exploit the
disagreement to explore both of the user-favored optima, evaluate them and determine if one of the
user-favored optima is better then the other in terms of fitness.

To test these suppositions we have developed an interactive, user-modeling algorithm which
can simultaneously accept preferences from one or two users. We measure its performance with
two users working together and compare it to the combined performance of two users working
separately, each with her own evolutionary algorithm and user model.

2Fitness landscapes with such optima are said to be deceptive.
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Figure 3: Test problem. (a) Side and top views of the robot and its environment at the beginning
of the simulation. The small square to the left denotes the light source; spheres on the robot’s body
are light sensors. The target position that the robot should reach is depicted with dotted lines. Yb
denotes the Y coordinate of the barrier. (b) Joint between the robot’s main body (square plate)
and a limb, top view. The dotted line denotes the axis of rotation. The angle of the limb’s rotation
relative to its default position (as in (a)) can take values in [−45◦, 45◦]. A video of the robot with
a successfully evolved controller can be viewed at http://youtu.be/ByDfAcDBsHI .

3.2 Test Problem
We use the test problem from ([3]). The goal is to navigate a simple quadrupedal robot around the
wall to a target object on the far side (Fig. 3a). The robot is composed of a square plate and four
rigid vertical legs, each attached to the plate by an actuated joint with one degree of freedom (Fig.
3b).

Each body part has one light sensor and one touch sensor. Signals from the photosensors
are real values from [0, 1] varying linearly depending on their euclidean distance from the light
source3. Touch sensors produce 1 if the body part touches the ground or collides with the wall and
−1 otherwise. Additionally, the robot is equipped with a compass sensor which gives the current
robot’s orientation relative to the Y axis, normalized to be in [0, 1].

The robot is controlled by a feedforward neural network without hidden nodes. A total of 11
sensors connect to four actuators, which yields a total of 44 synaptic weights. Hereafter we will
refer to a particular set of synaptic weights as a controller.

3The sensors saturate to 0 for distances greater than 40, which is about 5 times further than any robot traveled in
our experiments.
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3.3 Methods
The algorithm uses a client-server computational architecture. The client here is an interactive pro-
gram which takes a pair of controllers as input, simulates4 two copies of the robot with controllers
from the pair and shows the resulting behaviors to the user (Fig. 4). The user is forced to prefer
one – she cannot skip a pair. After the preference is provided, the client sends it to the server.

The server performs the following functions:

• it supplies controllers to and receives preferences from multiple clients via asynchronous
communication;

• it optimizes the robot’s behavior with an evolutionary algorithm;

• it generates the controller pairs to be evaluated by users and maintains the users’ preference
tables;

• it trains the user models based on users’ preferences;

• it employs predictions from the user models along with the fitness function to guide the
evolutionary algorithm.

A user model is defined as a mapping from a pair of robot behaviors to a prediction of the user’s
preference for this pair. The mapping is learned by an artificial neural network5 with a hidden layer
using backpropagation. For details, see the User Models section below.

If only one user has supplied preferences so far, only one user model is maintained. If two
users supply preferences, the program must find an optimal way to utilize these. For this purpose
our program maintains three separate user models – one individual model for each user and one
collective model, which is trained on the combined preferences of both users. For details see the
Coordinated Score Generation section below.

3.3.1 Evolutionary Algorithm

For robot behavior optimization the server uses Age-Fitness Pareto Optimization ([9]), an evolu-
tionary algorithm with two explicit objectives – fitness and age. In all experiments described below
the algorithm starts with a population of 30 controllers, initialized with random synaptic weights
in [−1, 1]. The server simulates controllers sequentially and records the full time series of the re-
sulting sensor values. When all controllers in the population have been simulated, the algorithm
calculates their fitness values and constructs the Pareto front, taking the time controllers have spent
in the population – their age – into account. The next generation is composed of

• one new, completely random controller,

• nondominated controllers from the previous population and

• their mutated copies, in a quantity sufficient to restore the initial size of the population.

4All physics simulations use Open Dynamics Engine, http://www.ode.org.
5This network is not to be confused with the robot’s controller (see the Test Problem section), which is another

artificial neural network employed in the program. Unlike the one described here that one has no hidden neurons.

7



Figure 4: Screenshot of two clients running on the same computer. The user can select a behavior
she likes by cycling through the robots. The selected robot is highlighted and the other one is
made translucent. The preference is sent to the server as soon as the user confirms the selection.
For example, in the left window the user is about to confirm her preference towards the highlighted
robot to the right of the other contestant.

The fitness function is
f = fuσ, (1)

where fu is the unscaled fitness ([3]):

fu =
1

1 +
(∑5

i=1

∑T
t=1 ‖s

(t)
i − s

(r)
i ‖

)
/5T

. (2)

T = 1000 here is the number of time steps during which behavior is simulated, s(t)i is a value of
ith light sensor at time step t, and s(r)i is the value of the ith light sensor at the goal position (see
Fig. 3a).

σ is the coordinated score: a number in [0, 1] which represents a combined prediction from all
of the user models about how much the user (or users) would like this controller. In particular,
σ near 1 indicates that at least one of the two user models tended to prefer this controller when
it was presented multiple times, while a score near 0 indicates that the user models predict that
both users will greatly dislike this controller. In the beginning of the program’s operation, when
no users’ preferences have been provided yet, it is equal to 0.5 for all controllers. For details on σ
see Coordinated Score Generation section below.

In the current implementation, the second generation commences only after the first pair of
controllers has been evaluated by a user. This ensures that the coordinated score σ affects evolution
from the outset. However, in practice, this should have little impact on evolution, because the user
models learn more slowly than the evolutionary algorithm improves the robot’s behavior: it takes
many before the user models’ predictions deviate significantly from 0.5.

3.3.2 User Preference Gathering

After evaluating the first generation, the server ranks the controllers from the Pareto front by fitness
and requests the evaluation of the four best controllers from the users. The first user must compare
the first and the second controller, and the second user compares the third controller to the fourth.
The program waits for either user to evaluate her pair and then enters the evolutionary loop of
reproduction and selection (see the section above). The server never pauses to wait for any user
action after the indication of this first preference.

8



Every time the program evaluates all unscaled fitness values fu of the controllers from the cur-
rent generation, it checks whether any of its previous requests for user preferences were granted. If
that is not the case, the program continues with the next iteration of the evolutionary loop. Other-
wise, it stores the obtained preference into a table of preferences, selects a new pair of controllers
for user evaluation, sends it to the client and, if appropriate, retrains some user models on the
expanded set of preferences.

All controllers sent to the client for user evaluation are stored, along with their respective sensor
time series, in an archive. The obtained user preferences are stored in the preference table P , such
that P [i, j] = 1 if the ith controller of the archive was preferred to the jth, -1 if the jth controller
was preferred to the ith, and 0 if the preference is neutral (in the current implementation that is
possible only for P [i, i]) or not yet known ([3], [1]).

To accelerate the filling of the preference table we assume that user preferences are transitive.
Consider a situation when the user has seen n controllers c1, c2, · · · , cn so far, and for every i < j
she preferred cj to ci. The program assumes then that if a new controller c′ is preferred over cj
for some j ≤ n, then all controllers ci (for which i ≤ j) are assumed to not be preferred over c′.
Similarly, if c′ is not preferred over cj , then all controllers from the upper part of the ranking, ci
(with i ≥ j) are assumed to be preferred over c′.

To determine how a new controller fares against controllers previously shown to a user, the
program uses a version of binary search adapted for our purposes. First, for each controller already
shown it produces a score: the number of times this particular controller was preferred to its peers
minus the number of times it was not preferred. If a new controller c′ is preferred over some
previously shown controller ci, then it is assumed that c′ is preferred over all previously shown
controllers with a score less than or equal to the score of ci, and the corresponding entries of
P [i, j] are stored. Similarly, if some previously shown controller ci is preferred to the new one, the
algorithm assumes that all controllers with the score higher than that of ci are preferred to the new
controller.

The old controllers are shown to the user (paired with the new controller) in the following
order: the controller with the highest score is shown first, then the one with the lowest score and
then – repeatedly – the closest one to the middle of the current interval of possible values of the
score for the new controller. The algorithm terminates when all of the relationships between the
new controller and the previously known ones are established. In the worst case this happens after
the user has indicated 2 + log2 n preferences; in the best case one preference is sufficient.

When the binary search described above terminates, two events occur. First, a new controller is
selected among the current evolutionary population to be evaluated by the user. In the experiments
described here, the algorithm selected the most fit controller among those which have not been seen
by any user yet. The server sends the pair, as dictated by the first step of the bisection algorithm
described above, to the user.

Second, two user models are retrained: the individual model corresponding to the newly gath-
ered preference’s author and the collective user model. The models are trained on the fully eval-
uated subsets of users’ archives, i.e. on those subsets for which the preference is known for each
pair of controllers in the subset. The individual model is retrained on the preference table of the
user who indicated the last preference; the collective model uses the tables of both users.

This process of robot behavior optimization, preference gathering, and user modeling is re-
peated indefinitely, or until the server process is terminated.

Note that with the pair selection strategy described above a user never gets to evaluate a con-
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troller which has already been seen by her peer. The motivation for this is twofold. First, this
approach maximizes the diversity of controllers available to the collective user model, which in
turn maximizes its potential for accurate prediction. Second, it facilitates the detection of situa-
tions when the learned user models tend to overfit the user data (see the 3.5 section).

3.3.3 User Models

A user model is a mapping between the robot’s behavior and an assessment of its quality by the
user. In this particular algorithm we employ a mapping which takes as input two robot behaviors
compressed into feature vectors and maps them onto a value from [−1, 1], approximating the record
of the preference table P (see the User Preference Gathering section).

In all experiments described here we use the values from six sensors (five light sensors and one
compass sensor) of the robot recorded at the middle (t = T/2) of the simulation as the feature
vector ([3]). This kind of compressed representation simplifies the problem of learning the user
model. Designing a general way in which such a vector can be generated to facilitate learning is a
nontrivial problem and it is not considered in this work.

The mapping is learned by an artificial neural network with 12 inputs – six for each feature
vector of the two controllers which the model is supposed to compare. These neurons are connected
to the only output of the network through a single hidden layer containing 12 neurons.

For convenience, the output neuron is trained to reproduce not the P [i, j] itself, but its linear
transformation to [0, 1]:

target(i, j) ≡ P [i, j] + 1

2
. (3)

The network is trained using error backpropagation ([8], [3]). The algorithm iterates through
all entries of the preference table P [i, j] and backpropagates the network’s errors associated with
each entry once. If the network being trained is the collective user model, the same procedure
is applied to the other user’s preference table as well. Then it iterates through all of the entries
again and compares the sign of the model’s prediction to the sign of the original entry. If the
signs coincide for all entries, the network is considered to be successfully trained. Otherwise, the
procedure is repeated, but no more than 104(m/2− n) times, where m is the total number of table
entries and n is the total number of controllers. If this number is reached, the learning process is
considered to have failed.

Depending on the outcome of the learning procedure, the algorithm assigns model errors to
each generated user model as follows:

• 10 if the learning failed;

• 2 if the learning was attempted on one preference table and succeeded;

• 1 if the learning was attempted on two preference tables and succeeded.

This value is used to determine the optimal way to utilize the three user models. As we will see
in the next section, the behavior of the algorithm we use to accomplish that does not depend on
the particular values we chose to represent the models errors, but rather on the relative position of
these values on the real axis with respect to each other.

10



3.3.4 Coordinated Score Generation

To generate coordinated scores σ (see the Evolutionary Algorithm section above) for the newly-
evolved controllers, the the server starts by producing scores based on each one of the user models
present ([3]).

To determine these scores for an evolutionary population of size 30, each user model fills a
30× 30 table P [i, j] with its preference approximations (from [0, 1]). The score is then calculated
as

σk(j) =
1

30

30∑
i=1

Pk[i, j], (4)

where k ∈ {0, 1, C} is the index of the user model: 0 and 1 correspond to the first and second
individual user models respectively and C corresponds to the collective model6.

Denoting the errors of the models (defined in the previous section) as ε0, ε1 and εC , the coordi-
nated score σ can be computed as follows:

1. If there is only one user model, use its score;

2. If εC < ε0 and εC < ε1, use σC ;

3. Otherwise, use max(σ0, σ1).

The first rule describes the trivial behavior the algorithm exhibits when only one user supplies
preferences. The second corresponds to the condition under which the score from the collective
user model should be used. With model error defined as we did in the previous section, this
decision is always made when the backpropagation algorithm was able to train the collective user
model successfully. The basis for this decision is the assumption that if it is possible to successfully
train the collective user model on the data provided by two independent users, then these users are
likely to be “allied”, i.e., they are guiding the evolutionary search towards the same optimum.

The third rule describes the case when users are likely to have different opinions regarding
which optimum is a global one. In that case the max function helps to retain controllers which
are favored by one of the two users. This allows us to take both users’ opinions into account and
subject behaviors favored by each one of them to direct competition in the evolutionary algorithm.

We do not consider users who make errors or change their opinion over time in this work.

3.4 Experiments
To reduce the amount of effort required to test the algorithm and increase the experiments’ repro-
ducibility, we employed surrogate users in place of humans ([3]). A surrogate user is a version of
the client program which simulates the behavior of a human user with particular preferences. In
our experiments surrogate users preferred robots that attempt to circumnavigate around the right
edge of the barrier, which is detected by the surrogate user by measuring which one of the two
controllers yields the largest X coordinate for the robot’s position at the mid-point of the simula-
tion (t = T/2) (henceforth referred to as a surrogate user preferring the “rightmost” behavior). For

6A similar metric was defined in the User Preference Gathering section to rank controllers by the degree to which
a user likes or dislikes them. The value we generate here serves a similar purpose, but is computed using a different
set of controllers.
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Figure 5: Time series for some parameters of the server over the course of typical allied simula-
tions: (a) an unsuccessful simulation and (b) a successful simulation. The three topmost graphs
represent the unscaled fitness fu, age and the coordinated score σ of the current best controller in
the evolutionary population (computed using the product fuσ). The red dotted line in the fitness
graph (top) shows a rough estimate of the maximal value of fu which the robot not going around
the barrier can have (0.88). The fourth graph from the top shows how the way in which the server
modeled users changed over the course of the simulation: “coll”, “u0” and “u1” indicate the usage
of the collective user model and the individual models of the first and the second user, correspond-
ingly; “indiv” corresponds to the two users being modeled separately. See the Coordinated Score
Generation section for details. The graph at the bottom gives the logical value “No robots above
the barrier”: false if there are any controllers in the current population which make robot travel
beyond the barrier (i.e., have Y ≥ Yb at some point of the behavior simulation) and true otherwise.

simulating users with different strategies, we also made a version of the surrogate user who prefers
behaviors with the lowest X coordinate at the same point in the evaluation period (i.e. a user who
prefers “leftmost” behaviors).

Also, the surrogate user stopped supplying preferences and terminated the client if it encoun-
tered a controller which is able to guide the robot around the barrier, i.e., to have some points in its
trajectory with Y greater than the coordinate Yb where the barrier is located (see Fig. 3).

3.4.1 Results

In the simulations discussed below the server was run for 30 minutes of wall clock time. One or
two clients controlled by the surrogate users were run on the same computer as parallel processes
(Fig. 4). Once every 60 seconds the clients supplied preferences to the server.

Three types of simulation were performed:
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# of generations spent
Simulation # of wins/ Rate # of generations per run using the collective model/
type # of runs of success Average±std. deviation Total # of generations
Single user 53/300 0.177 (3.12± 0.13)× 102 0/937443 (0%)
Allied users 86/300 0.287 (2.59± 0.28)× 102 538610/777250 (69%)
Opposing users 25/300 0.083 (2.48± 0.20)× 102 397220/744647 (53%)

Table 1: Experimental results

• single user simulations with one surrogate user preferring “rightmost” behaviors;

• allied simulations with two surrogate users preferring “rightmost” behaviors;

• opposing simulations with one surrogate user preferring “rightmost” behaviors and one sur-
rogate user preferring “leftmost” behaviors.

We considered a simulation to have succeeded if during the last 20 generations it had at least
one controller in the server’s evolutionary population which was able to guide the robot around the
barrier (defined as above).

Figure 5 demonstrates how some parameters of the server change over the course of two typical
allied simulations. Periodically, the age of the most fit controller stays constant for short time
periods (“plateaus” on the age graphs). This occurs when the server is busy with model training
for a significant portion of time and indicates the presence of a significant computational overhead
related to training of the user models.

The graphs for the opposing simulations are very similar. Graphs for single user simulations
differ from Figure 5 in two respects. First, there is no switching between usage of individual and
collective user models to guide evolution: the algorithm only has only one user model, and it is the
only one which is ever used. Second, the amount of time the server spends training the user model
is substantially lower.

We performed 300 runs of each of simulation type with the servers configured as described
above. The results are presented in Table 1.

We used the one-tailed Z-test to compare the success rates ([6]). The rate of success for allied
simulations was found to be significantly higher than the success rate of the single user simulations
(p ≤ 7 × 10−4), despite the significantly lower (p < 10−4 by the standard t-test) average number
of evolutionary generations per run.

The success rate for the opposing simulations was found to be significantly lower (p ≤ 7×10−4)
than the success rate of the single user simulations. The average number of generations per run is
about the same as for the allied simulations, and is significantly less than the number of generations
for the single user simulations (p < 10−4).

The ratio between the number of generations which the server spent using the collective model
and the total number of generations was found to be significantly higher (p < 10−5) in the allied
simulations than in the opposing simulations.

Out of all 25 opposing simulations which succeeded, at least 10 did so by taking the robot
around the right side of the barrier and at least 9 used the left side of the barrier.
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3.5 Discussion
If a simulation involves two users, on average it iterates through fewer generations of the evolution-
ary algorithm than a simulation with only one user. This is explained it as follows: in single user
simulations the server maintains only one user model, which reduces the computational expense
required for model training compared to the two user case in which three user models must be con-
tinually trained and re-trained. This reduced computational burden is exploited by the evolutionary
algorithm, which is now able to perform more generations.

The results also indicate that in allied simulations the program performs better than in the
single user simulations. This confirms our hypothesis that it is possible to accelerate robot behavior
optimization by utilizing preferences from multiple users, despite the additional cost incurred by
having to train models of both individual and collective user behavior.

We hypothesize that the inferior performance of the program when it hosts opposing users is
due to the three following factors:

1. When the coordinated score is generated as a maximum of scores by the individual user
models, the evolutionary population is effectively divided into two subpopulations, each of
which consists of controllers favored by the corresponding individual user model. This leads
to a growth of the Pareto front and ultimately slows down search. We hypothesize that this
problem may be remedied by utilizing an evolutionary algorithm which treats the Pareto
front in a different way and/or employs a larger population.

2. In the experiments presented here, during a substantial fraction of generations (53%) op-
posing simulations employed the collective user model to guide search. The collective user
model “successfully” learned a data set which has implicit internal inconsistencies. That is,
the model must learn to take two similar inputs yet output two very different predictions: for
example, the first user very much liked the first behavior, but the second user greatly disliked
the second, similar behavior. This suggests that the model has overfit the data and its usage
can negatively impact the algorithm’s search ability.

Notice that if there were at least two controllers which both users has seen, it would become
impossible to “successfully” train the collective user model. This can conceal the problem
of overfitting. That’s why, although such overlap would help the algorithm to recognize the
situation when it is better to model users separately, it is not allowed in the experiments
reported here. This was one of the reasons why we decided to query the users on completely
disjoint sets of controllers (see the User Preference Gathering.

This problem might be solved by using a different metric for the user model’s learning effi-
ciency.

3. The additional computational overhead mentioned above in the context of allied simulations
already places this simulation at a computational disadvantage compared to the single user
simulation.

Despite the general failure to accommodate opposing users, the algorithm still managed to
solve the task in a substantial fraction of runs. These runs succeeded by discovering both user-
favored optima, which indirectly confirms our second hypothesis about the possibility of finding
and comparing multiple user-favored optima in the fitness landscape.
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3.6 Conclusions
Our findings confirm that in robot behavior optimization tasks it is possible to increase the perfor-
mance of fitness-based, user-assisted evolutionary algorithms by utilizing preferences from mul-
tiple users. This constitutes a step towards fitness-based, crowd-assisted algorithms which may
potentially solve problems too deceptive to be solved by purely automated algorithms.

We demonstrated that employing more than one user can help solve robot behavior optimization
tasks in at least two ways. First, if users approach the task with the same strategy, this approach
allows the optimizer to recognize and employ the strategy more rapidly. Second, if the users
employ different strategies, it is possible to find all optima recognized by the users and choose the
best one among them.

However, the task of designing such algorithms is far from trivial. Here we would like to
highlight some difficulties particular to search algorithms guided by multiple users, which employ
user modeling. A good algorithm of this type must

1. be able to distinguish between different user strategies and model each appropriately;

2. employ user modeling algorithms flexible enough to adapt to any or almost any benign user
strategy, yet not overfit user input and thus retain good extrapolation properties; and

3. employ a search algorithm which is able to retain good performance while utilizing user
models that change in number and quality.

Every one of these tasks constitutes a nontrivial design problem in its own right. However, we
believe that all of these challenges can be addressed by a suitable combination of machine learning
techniques. Possible future work may include utilizing clustering to solve the first subproblem
listed above (pioneered in ([5])), evolving user models of varying accuracy and complexity to
address the second one and designing evolutionary algorithms with better scaling properties to
handle the last one.
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