REPORT DOCUMENTATION PAGE				Form Approved OMB NO. 0704-0188				
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments egarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.								
1. REPORT I	DATE (DD-MM-	-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)		
26-05-2015	5		Final Report			1-Jun-2007 - 31-May-2011		
4. TITLE AN	ND SUBTITLE				5a. CONT	TRACT NUMBER		
Final Report: Quantum Material Properties of 4d and 5d					W911NF-07-1-0182			
Transition Metal Oxides and Potential Applications					5b. GRANT NUMBER			
					5c PROGRAM ELEMENT NUMBER			
					611102			
6. AUTHOR	.S				5d. PROJ	PROJECT NUMBER		
Liu, Ying								
					5e. TASK NUMBER			
					5f. WORK	K UNIT NUMBER		
7. PERFOR	MING ORGANI	ZATION NAME	S AND ADDRESSES		8.	PERFORMING ORGANIZATION REPORT		
Pennsylvania State University Office of Sponsored Programs 110 Technology Center Building University Park PA						UMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARO						. SPONSOR/MONITOR'S ACRONYM(S) ARO		
U.S. Army Research Office P.O. Box 12211				11. NU	11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
Research II	langle Fark, NC	27709-2211			52	52615-PH.9		
12. DISTRIE	UTION AVAIL	IBILITY STATE	MENT					
Approved for Public Release; Distribution Unlimited								
13. SUPPLE The views, op of the Army	MENTARY NO pinions and/or fir position, policy o	TES ndings contained i or decision, unless	n this report are those so designated by other	of the au r docume	thor(s) and sentation.	should not contrued as an official Department		
14. ABSTRACT This grant enabled the exploration of 4d and 5d transition metal oxides, in particular, ruthenates, as well as novel two-dimensional (2D) electronic materials, all featuring interesting physical properties and/or structure-property relationships. Specifically, we carried out electrical and magneto transport measurements on La4Ru6O19, BaRuO3, and Sr2RuO4 single crystals, and pursued the characterization, device fabrication, as well as the exploration of the potential uses of 2D electronic materials including graphene and NbSe2. La4Ru6O19 showed a ferromagnetic								
15. SUBJECT TERMS Quantum materials; structure-property relationship, quantum transport; low-temperature magneto transport measurements								
16. SECURI	TY CLASSIFICA	ATION OF:	17. LIMITATION C	DF 15.	NUMBER	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF	PAGES	Ying Liu		
UU	UU	UU	UU			19b. TELEPHONE NUMBER 814-863-0090		

٦

Report Title

Final Report: Quantum Material Properties of 4d and 5d Transition Metal Oxides and Potential Applications

ABSTRACT

This grant enabled the exploration of 4d and 5d transition metal oxides, in particular, ruthenates, as well as novel two-dimensional (2D) electronic materials, all featuring interesting physical properties and/or structure-property relationships. Specifically, we carried out electrical and magneto transport measurements on La4Ru6O19, BaRuO3, and Sr2RuO4 single crystals, and pursued the characterization, device fabrication, as well as the exploration of the potential uses of 2D electronic materials including graphene and NbSe2. La4Ru6O19 showed a ferromagnetic quantum criticality near ambient pressure; four-layered hexagonal (4H) and nine-layered rhombohedral (9R) BaRuO3 possess interesting structure-property relationships, with the strong one-dimensional character in the 9R structure leads to clear deviation from the metallic behavior seen in the 4H structure. The Nernst effect signal in the normal state of Sr2RuO4 is large which decreases linearly as a function of temperature, possibly related to the band-dependent magnetic fluctuation, which was suppressed by the emergence of coherence at low temperatures. We observed strong magneto conductance fluctuations in few layer graphene near the charge neutral point, and novel electronic states at the "interface" between monolayer and bilayer graphene. For NbSe2, we found that the CDW was suppressed in the atomically thin NbSe2 while SC survives down to two atomic layers.

Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

Received		Paper
05/25/2015	1.00	X. F. Xu, Z. A. Xu, T. J. Liu, D. Fobes, Z. Q. Mao, J. L. Luo, Y. Liu. Band-Dependent Normal-State Coherence in Sr2RuO4:Evidence from Nernst Effect and Thermopower Measurements, Physical Review Letters, (07 2008): 0. doi: 10.1103/PhysRevLett.101.057002
05/25/2015	2.00	Joshua A. Robinson, Neal E. Staley, Conor P. Puls, Joseph P. Stitt, Mark A. Fanton, Konstantin V. Emtsev, Thomas Seyller, Ying Liu. Raman Topography and Strain Uniformity of Large-Area Epitaxial Graphene, Nano Letters, (03 2009): 0. doi: 10.1021/nl802852p
05/25/2015	3.00	C. P. Puls, N. E. Staley, Y. Liu. Interface states and anomalous quantum oscillations in hybrid graphene structures, Physical Review B, (06 2009): 0. doi: 10.1103/PhysRevB.79.235415
05/25/2015	4.00	Ying Liu, Linjun Li, Zhuan Xu, Peter Eklund, Neal E. Staley, Jian Wu. Electric field effect on superconductivity in atomically thin flakes of NbSe2, Physical Review B, (11 2009): 0. doi: 10.1103/PhysRevB.80.184505
05/26/2015	5.00	Y. Liu, I. G. Deac, P. Khalifah, R. J. Cava, Y. A. Ying, P. Schiffer, K. D. Nelson. Possible observation of quantum ferromagnetic fluctuations in La4Ru6O19, Physical Review B, (07 2009): 0. doi: 10.1103/PhysRevB.80.024303
05/26/2015	6.00	Y. A. Ying, Y. Xin, B. W. Clouser, E. Hao, N. E. Staley, Y. Liu, R. J. Myers, L. F. Allard, D. Fobes, T. Liu, Z. Q. Mao. Suppression of Proximity Effect and the Enhancement of p-Wave Superconductivityin the Sr2RuO4-Ru System, Physical Review Letters, (12 2009): 0. doi: 10.1103/PhysRevLett.103.247004
05/26/2015	7.00	Ying Liu. Phase-sensitive-measurement determination ofodd-parity, spin-triplet superconductivity in Sr2RuO4, New Journal of Physics, (07 2010): 0. doi: 10.1088/1367-2630/12/7/075001
05/26/2015	8.00	Y. A. Ying, Y. Liu, T. He, R. J. Cava. Magnetotransport properties of BaRuO3: Observation of two scattering rates, Physical Review B, (12 2011): 0. doi: 10.1103/PhysRevB.84.233104
TOTAL:		8

(b) Papers published in non-peer-reviewed journals (N/A for none)

Received

Paper

TOTAL:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

November 30, 2007. Department of Physics, University of Illinois in Urbana Champaign. "Pairing symmetries of the bulk and the 3-K phases of Sr2RuO4."

December 11, 2007, Workshop on Physics of Sr2RuO4, Kavli Institute for Theoretical Physics, University of California Santa Barbara. "Pairing symmetry of the 3-K phases of Sr2RuO4."

January 15, 2009. Argonne National Laboratory, Chicago. "From Graphene to Single-Sheet Superconductors."

January 16, 2009. Northwestern University, Evanston. "Spin-triplet Superconductivity in Sr2RuO4." Number of Presentations: 4.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

TOTAL:

	(d) Manuscripts			
Received	Paper			
TOTAL:				
Number of Man	uscripts:			
	Books			
Received	Book			
TOTAL:				
Received	Book Chapter			
TOTAL:				
	Patents Submitted			
Patents Awarded				
	Awards			

Graduate Students						
<u>NAME</u> Ying, Yiqun, A FTE Equivalent: Total Number:	PERCENT_SUPPORTED 0.50 0.50 1	Discipline				
Names of Post Doctorates						
NAME	PERCENT_SUPPORTED					
FTE Equivalent: Total Number:						
	Names of Faculty S	Supported				
<u>NAME</u> Liu, Ying FTE Equivalent: Total Number:	PERCENT_SUPPORTED 0.08 0.08 1	National Academy Member				
	Names of Under Graduate s	tudents supported				
NAME	PERCENT_SUPPORTED					
FTE Equivalent: Total Number:						
Student Metrics This section only applies to graduating undergraduates supported by this agreement in this reporting period						
The number of undergraduates funded by this agreement who graduated during this period: 0.00 The number of undergraduates funded by this agreement who graduated during this period with a degree in science mathematics engineering or technology fields: 0.00						
The number of undergraduates funded by your agreement who graduated during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields: 0.00						
Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale): 0.00 Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education Research and Engineering: 0.00						
The number of undergraduates funded by your agreement who graduated during this period and intend to work for the Department of Defense 0.00						
The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: 0.00						
Names of Personnel receiving masters degrees						
NAME						

Total Number:

NAME		
Ying, Yiqun, A		
Total Number:	1	
	Names of other research staff	
NAME	PERCENT_SUPPORTED	
FTE Equivalent:		
Total Number:		
	Sub Contractors (DD882)	

Scientific Progress

Inventions (DD882)

This grant enabled the exploration of 4d and 5d transition metal oxides, in particular, ruthenates, as well as novel twodimensional (2D) electronic materials, all featuring interesting physical properties and/or structure-property relationships. Specifically, we carried out electrical and magneto transport measurements on La4Ru6O19, BaRuO3, and Sr2RuO4 single crystals, and pursued the characterization, device fabrication, as well as the exploration of the potential uses of 2D electronic materials including graphene and NbSe2.

Measurements on single crystals La4Ru6O19 revealed that the previously observed metal-metal bonding and non-Fermi-liquid behavior are likely due to the existence of a ferromagnetic quantum criticality near ambient pressure in this material. Our results obtained on single crystals of four-layered hexagonal (4H) and nine-layered rhombohedral (9R) BaRuO3 provided insight into the structure-property relationships of BaRuO3 polymorphs, with the strong one dimensional character in the 9R structure leads to clear deviation from the metallic behavior seen in the 4H structure. Measurements on the Nernst effect in the normal state of Sr2RuO4 found a large value of the Nernst signal with its magnitude increasing with the decreasing temperature until reaching a maximum around 20-25 K, below which it starts to decrease linearly as a function of temperature. The observed behavior was explained by relating the Nernst signal to the band-dependent magnetic fluctuation suppressed by the emergence of coherence in one of the bands at low temperatures in Sr2RuO4. In addition, preliminary work on ionic liquid gating of Ca3Ru2O7, the n = 2 member of the Roddelsden-Popper series of Can+1RunO3n+1 aiming at tuning its structural transition by electric field was carried out. We found that the effect of electric field is minimal.

We also carried out work on graphene, which was focused on the device fabrication and characterization on graphene flakes prepared by mechanical exfoliation from bulk graphite, and NbSe2, on the interplay between charge-density waves (CDWs) and superconductivity (SC) in atomically thin flakes again prepared by mechanical exfoliation from the bulk crystals. We observed strong magneto conductance fluctuations in few layer graphene near the charge neutral point, and novel electronic states at the "interface" between monolayer and bilayer graphene. For NbSe2, we found that the CDW was suppressed easily in the atomically thin NbSe2 while SC survives at least down to two atomic layers.

Technology Transfer

Report Type: Final Report

Proposal Number: 52615PH Agreement Number: W911NF0710182 Quantum Material Properties of 4d and 5d Transition Metal Oxides and Potential Applications Report Period Begin Date: 06/01/2007 Report Period End Date: 05/31/2011

Program monitor: Dr. Marc Ulrich

Prepared by Ying Liu

Abstract

This grant enabled the exploration of 4d and 5d transition metal oxides, in particular, ruthenates, as well as novel two-dimensional (2D) electronic materials, all featuring interesting physical properties and/or structure-property relationships. Specifically, we carried out electrical and magneto transport measurements on La₄Ru₆O₁₉, BaRuO₃, and Sr₂RuO₄ single crystals, and pursued the characterization, device fabrication, as well as the exploration of the potential uses of 2D electronic materials including graphene and NbSe₂. La₄Ru₆O₁₉ showed a ferromagnetic quantum criticality near ambient pressure; four-layered hexagonal (4H) and nine-layered rhombohedral (9R) BaRuO₃ possess interesting structure-property relationships, with the strong one-dimensional character in the 9R structure leads to clear deviation from the metallic behavior seen in the 4H structure. The Nernst effect signal in the normal state of Sr₂RuO₄ is large which decreases linearly as a function of temperature, possibly related to the band-dependent magnetic fluctuation, which was suppressed by the emergence of coherence at low temperatures. We observed strong magneto conductance fluctuations in few layer graphene near the charge neutral point, and novel electronic states at the "interface" between monolayer and bilayer graphene. For NbSe₂, we found that the CDW was suppressed in the atomically thin NbSe₂ while SC survives down to two atomic layers.

Subject terms:

Proposal Title:

Quantum materials; structure-property relationship, quantum transport; low-temperature magneto transport measurements

Main results

Measurements on single crystals La₄Ru₆O₁₉ with metal-metal bonding revealed that the previously observed non-Fermi-liquid behavior are likely due to the existence of a ferromagnetic quantum criticality near ambient pressure in this material. Our results obtained on single crystals of four-layered hexagonal (4H) and nine-layered rhombohedral (9R) BaRuO₃ provided insight

into the structure-property relationships of BaRuO₃ polymorphs, with the strong one-dimensional character in the 9R structure leads to clear deviation from the metallic behavior seen in the 4H structure. Measurements on the Nernst effect in the normal state of Sr₂RuO₄ found a large value of the Nernst signal which decreases linearly as a function of temperature. The observed behavior was explained by relating the Nernst signal to the band-dependent magnetic fluctuation suppressed by the emergence of coherence in one of the bands at low temperatures in Sr₂RuO₄. We also found that the Ru/Sr₂RuO₄ interface in the eutectic phase of Ru-Sr₂RuO₄ is atomically sharp. In addition, preliminary work on ionic liquid gating of $Ca_3Ru_2O_7$, the n = 2 member of the Roddelsden-Popper series of Can+1RunO3n+1 aiming at tuning its structural transition by electric field was carried out. We found that the effect of electric field is minimal. We also carried out work on graphene, which was focused on the device fabrication and characterization on graphene flakes prepared by mechanical exfoliation from bulk graphite, and NbSe₂, on the interplay between charge-density waves (CDWs) and superconductivity (SC) in atomically thin flakes again prepared by mechanical exfoliation from the bulk crystals. We observed strong magneto conductance fluctuations in few layer graphene near the charge neutral point, and novel electronic states at the "interface" between monolayer and bilayer graphene. For NbSe2, we found that the CDW was suppressed easily in the atomically thin NbSe₂ while SC survives at least down to two atomic layers.

Publications

- 1. Xiangfan Xu, Zhuan Xu, Tijiang Liu, David Fobes, Zhiqiang Mao, and Ying Liu, "Banddependent normal-state coherence in Sr₂RuO₄: Evidence from Nernst and thermopower measurements," **Phys. Rev. Lett.** 101, 057002 (2008).
- J. A. Robinson, C. P. Puls, N. E. Staley, J. Stitt, M.A. Fanton, K. V. Emtsev, T. Seyller, Y. Liu, "Raman Topography and Strain Uniformity of Large-Area Epitaxial Graphene," Nano Lett. 9, 964-968 (2009).
- 3. C. P. Puls, N. E. Staley, Y. Liu, "Interface states and anomalous quantum oscillations in graphene hybrid structures," **Phys. Rev. B** 79, 235415 (2009).
- 4. Neal E. Staley, Linjun Li and Zhuan Xu, and Ying Liu, "Electric field effect on superconductivity in atomically thin flakes of NbSe₂," **Phys. Rev. B** 80, 184505 (2009).
- 5. Yiqun A. Ying, Karl Nelson, Iosef G. Deac, Peter Schiffer, Peter Khalifah, Robert J. Cava, and Ying Liu, "Magneto electrical transport properties and possible quantum critical fluctuation in La4Ru₆O₁₉," **Phys. Rev. B** 80, 024303 (2009).
- 6. Y. A. Ying, Y. Xin, B. W. Clouser, E. Hao, N. E. Staley, R. J. Myers, L. F. Allard, D. Fobes, T. Liu, Z. Q. Mao, and Y. Liu, "Suppression of proximity effect and the enhancement of *p*-wave superconductivity in the Sr₂RuO₄-Ru system," **Phys. Rev. Lett.** 103, 247004 (2009).
- 7. Ying Liu, "Phase-sensitive measurement determination of odd-parity, spin-triplet superconductivity in Sr₂RuO₄," **New J. Phys.** 12, 075001 (2010).
- 8. Y. A. Ying, Y. Liu, T. He, and R. J. Cava, "Magnetotransport properties of BaRuO₃: Observation of two scattering rates," **Phys. Rev. B** 84, 233104 (2011).

Presentations

November 30, 2007. Department of Physics, University of Illinois in Urbana Champaign. "Pairing symmetries of the bulk and the 3-K phases of Sr₂RuO₄."

December 11, 2007, *Workshop on Physics of Sr₂RuO*₄, Kavli Institute for Theoretical Physics, University of California Santa Barbara. "Pairing symmetry of the 3-K phases of Sr₂RuO₄."

January 15, 2009. Argonne National Laboratory, Chicago. "From Graphene to Single-Sheet Superconductors."

January 16, 2009. Northwestern University, Evanston. "Spin-triplet Superconductivity in Sr₂RuO₄."

1. Transport properties of BaRuO₃

We carried out transport measurements on BaRuO₃ that features four crystalline structures for BaRuO₃, the nine-layered rhombohedral (9R), the four-layered hexagonal (4H), the sixlayered hexagonal (6H), and the perovskite structure (3C). We measured only the 9R and 4H forms. It was found previously¹ that the 4H BaRuO₃ shows a metallic resistivity down to the lowest temperatures. The 9R features a cross from metallic over to insulating behavior below 100K, which becomes flatten near 30K in the *c*-axis but not in the in-plane resistivity. The magnetic susceptibility of the 4H BaRuO₃ was found to show a featureless, linearly increasing temperature dependence. However, the 9R BaRuO₃ was found to possess a subtle change in slope around 100 - 150 K, slightly higher than the temperature below which the resistivity starts to cross over from an metallic to insulating behavior, and a more dramatic feature near 30 K.

We found that both forms of BaRuO₃ show temperature dependent magnetoresistance. In particular, the behavior in the 9R BaRuO₃ seems to correspond well with the behavior seen in resitivity and magnetic susceptibilities. More specifically, the magnetoresistance of the 9R BaRuO₃ was found to be negative, growing rapidly below 30K. In comparison, the magnetoresistance of the 4H BaRuO₃ was found to be positive, but becoming significant also below 30K. The Hall coefficient was found to be linear as a function of magnetic field up to 8 T and different in sign for 4H or 9R BaRuO₃, suggesting that there were no ferromagnetic instabilities in either form. Nevertheless, the magnetic fluctuation in 9R BaRuO₃ is very different from that in 4H BaRuO₃ at low temperatures, consistent with the magnetic susceptibility and resistivity results described above. Furthermore, the Hall coefficient was found to be nearly temperature independent for the 4H but not the 9R, suggesting that the 4H BaRuO₃ is a good metal but the 9R is not.

The above observation is related to the structural features in these two forms of BaRuO₃. The 9R form consists of units of three RuO₆ octahedra sharing faces in a partial chain, with a Ru-Ru distance of 2.529 Å, facilitating a metal-metal bonding. Each of these triple units of octahedra is connected to its neighbors along the hexagonal axis by perovskite-like corner sharing with the

nearly 180-degree Ru-O-Ru bonds. The stacking pattern repeats after 9 octahedra. The 4H form, on the other hand, consists of units of two octahedra sharing faces connected to each other by perovskite-type corner sharing. The stacking pattern along the hexagonal axis repeats after 4 octahedra. The distance between two Ru ions in the two face-sharing octahedra in the 4H BaRuO₃ is 2.537Å. Both the 9R and the 4L forms of BaRuO₃ possess certain effective one dimensionality in the crystalline structure because of the presence of chains. In addition, both the 4H and the 9R BaRuO₃ feature a metal-metal bonding because of the very short Ru-Ru distance, leading possibly to the formation of local moments, resulting in the difference between the direct Ru-Ru and that of the oxygen mediated Ru-O-Ru interactions, and consequently, differences in electronic and magnetic properties.

The above result is published in Phys. Rev. B^2 .

2. Orbital ordering transition in ionic liquid-gated Ca3Ru2O7 surface

While strontium ruthenates in the Roddelsden-Popper (R-P) series of $Sr_{n+1}Ru_nO_{3n+1}$ are all metals, the calcium ruthenates are more strongly correlated than their strontium ruthenate counterparts, featuring metallic as well as insulating behavior accompanied by magnetic and structural phase transitions. In particular, the bilayer calcium ruthenate, Ca₃Ru₂O₇, features a band-dependent Mott metal-insulator transition (MIT) at 56 K, followed by a structural transition at 48 K as the temperature is lowered. Furthermore, a bulk spin valve behavior featuring colossal magnetoresistance was discovered, which was attributed to the existence of strongly spin-dependent resistive states in Ca₃Ru₂O₇. The application of an in-plane field leads to a spin-reorientation as well as a resistive transition.

FIG. 1: a) Optical image of a Ca₃Ru₂O₇ ake supported by a Si/SiO₂ substrate. Dashed lines outline location of photoresist window to be patterned; b) Optical image of a device completed on the same flake with electrical contact made on the surface of the flake using a window through hard-baked photoresist; c) Schematic of the side-view of the device, including the coplanar ionic liquid gate (G) setup, with two of the six contacts acting as source (S) and drain (D).

We pursued the fabrication and measurements of ionic liquid gated Hall bar devices

prepared on very thin Ca₃Ru₂O₇ fakes exfoliated from a bulk single crystals that were grown by a floating zone method (Fig. 1). We found that our process yielded two types of devices, Type A and Type B, where Type A devices are referred to those with their electrical transport properties dominated by c-axis transport and Type B devices by in-plane transport properties. Bulk physical phenomena, including a magnetic transition near 50 K, a structural and orbital ordering transition at a slightly lower temperature, as well as a highly unusual metallic state as the temperature is further lowered, were found in both types of devices (Fig. 2).

Interestingly, the Shubnikov-de Haas oscillations were found in Type A devices. These oscillations are consistent with those found in the bulk, suggesting that our Type A devices are of sufficient good quality. However, the same quantum oscillations were not observed in Type B devices. This is consistent with the idea that Type A devices are dominated by c-axis transport which is not sensitive to disorder on the surface while Type B devices are dominated by in-plane transport which most likely are subject to enhanced disorder on the flake surface. The most important result is that the ionic liquid gating of a Type B device did seem to lead to a shift in critical temperature of the structural and orbital ordering transition, suggesting that such a transition can be tuned by the electric field effect.

FIG. 2: a) Resistance R vs: temperature T in a $Ca_3Ru_2O_7$ flake with low-T behavior dominated by c-axis transport; b) dR/dT vs: T, calculated numerically from (a), highlighting complex transition behavior at low temperatures; c) R vs: T in a $Ca_3Ru_2O_7$ flake with low-T behavior dominated by in-plane transport; d) dR/dT vs: T, calculated numerically from (b).

References

¹ J. T. Rijssenbeek, R. Jin, Y. Zadorozhny, Y. Liu, B. Batlogg, and R. J. Cava, "The Electrical and Magnetic Properties of the Two Crystalographic Forms of BaRuO₃," **Phys. Rev. B** 59 4561-4564 (1999).

² Y. A. Ying, Y. Liu, T. He, and R. J. Cava, "Magnetotransport properties of BaRuO₃: Observation of two scattering rate s," Phys. Rev. B 84, 233104 (2011).