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ABSTRACT

Generalizations of the Alternating Direction Method of Multipliers for Large-Scale

and Distributed Optimization

by

Wei Deng

The alternating direction method of multipliers (ADMM) has been revived in

recent years due to its effectiveness at solving many large-scale and distributed opti-

mization problems, particularly arising from the areas of compressive sensing, signal

and image processing, machine learning and statistics. This thesis makes important

generalizations to ADMM as well as extending its convergence theory.

We propose a generalized ADMM framework that allows more options of solving

the subproblems, either exactly or approximately. Such generalization is of great

practical importance because it brings more flexibility in solving the subproblems

efficiently, thereby making the entire algorithm run faster and scale better for large

problems. We establish its global convergence and further show its linear convergence

under a variety of scenarios, which cover a wide range of applications. The derived rate

of convergence also provides some theoretical guidance for optimizing the parameters

of the algorithm. In addition, we introduce a simple technique to improve an existing

convergence rate from O(1/k) to o(1/k).

Moreover, we introduce a parallel and multi-block extension to ADMM for solving

convex separable problems with multiple blocks of variables. The algorithm decom-

poses the original problem into smaller subproblems and solves them in parallel at



each iteration. It can be implemented in a fully distributed manner and is particularly

attractive for solving certain large-scale problems. We show that extending ADMM

straightforwardly from the classic Gauss-Seidel setting to the Jacobi setting, from

two blocks to multiple blocks, will preserve convergence if the constraint coefficient

matrices are mutually near-orthogonal and have full column-rank. For general cases,

we propose to add proximal terms of different kinds to the subproblems, so that they

can be solved in flexible and efficient ways and the algorithm converges globally at

a rate of o(1/k). We introduce a strategy for dynamically tuning the parameters of

the algorithm, often leading to faster convergence in practice. Numerical results are

presented to demonstrate the efficiency of the proposed algorithm in comparison with

several existing parallel algorithms. We also implemented our algorithm on Amazon

EC2, an on-demand public computing cloud, and report its performance on very

large-scale basis pursuit problems with distributed data.
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Chapter 1

Introduction

With the rapid advancement of modern technology, enormous amount of data is be-

ing generated in diverse areas such as the Internet, mobile devices, cameras, business,

research and engineering. There is a dramatically increasing demand for processing

and interpreting the often extremely large datasets. However, the size and complexity

of the modern datasets have been growing beyond the ability of the traditional meth-

ods, and have become a major bottleneck for many applications. This phenomenon

is often referred to as the “Big Data”. Therefore, efficient and scalable methods are

highly desirable to cope with the size and complexity of the modern datasets.

This thesis focuses on a particular optimization method – the alternating direction

method of multipliers (ADMM), which is well suited to many of the Big Data appli-

cations. ADMM uses a “divide and conquer” strategy to decompose an often large

and difficult problem into smaller and easier subproblems, which can be processed

efficiently and in parallel. The method can be implemented in a fully decentralized

manner to process distributed and huge datasets. Due to these favorable features, this

classic optimization method has experienced a renaissance in the recent decade. As

a versatile algorithmic tool, ADMM has proven to be very effective at solving many

large-scale and distributed optimization problems, particularly arising from the areas

of compressive sensing, signal and image processing, machine learning and applied

statistics.

In this thesis, we generalize the classic ADMM in various ways, aiming to further
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improve its efficiency, flexibility and applicability for large-scale and distributed op-

timization problems. We also make important extensions to the convergence theory

and establish better convergence rates. The structure of this thesis is organized as

follows:

• In Chapter 2, we briefly review ADMM and the related literature. We give

an overview of several important applications which motivate the study of this

thesis. In addition, we introduce some basic mathematical notation and pre-

liminary knowledge in convex analysis that will be used frequently in the later

chapters.

• In Chapter 3, we introduce a generalized ADMM framework that allows more

options of solving the subproblems either exactly or approximately, such as

linearizing the subproblems, taking one gradient descent step, and approximat-

ing the Hessian. The generalization is of great practical importance because it

brings more flexibility in solving the subproblems efficiently, thereby making the

entire algorithm run faster and scale better for large problems. Furthermore, we

establish the global convergence of the generalized ADMM under some standard

assumptions. In addition, we give a brief literature review on the convergence

rates of ADMM. We introduce a simple technique to improve an existing O(1/k)

convergence rate to o(1/k), where k is the number of iterations.

• In Chapter 4, we mainly establish the global linear convergence of the gen-

eralized ADMM under a variety of scenarios. Among these scenarios, we re-

quire that at least one of the two objective functions is strictly convex and has

Lipschitz continuous gradient, along with certain full rank conditions on the

constraint coefficient matrices. These scenarios commonly arise in many ap-
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plications and we will give several examples. In addition, we carry out simple

numerical experiments to demonstrate the linear convergence of ADMM on the

elastic net and distributed Lasso problems.

• In Chapter 5, we introduce a parallel and multi-block extension to ADMM,

which is well suited to distributed computing and is particularly attractive for

solving certain large-scale problems. We show that extending ADMM straight-

forwardly from the classic Gauss-Seidel setting to the Jacobi setting, from 2

blocks to N blocks, will preserve convergence if the constraint coefficient ma-

trices are mutually near-orthogonal and have full column-rank. Without these

assumptions, this straightforward extension may fail to converge in general.

Therefore, we propose a simple modification by adding proximal terms of dif-

ferent kinds to the subproblems. We show that this modification not only allows

more flexible and efficient ways of solving the subproblems, but more impor-

tantly makes the algorithm converges globally at a rate of o(1/k). In addition,

we introduce a strategy for dynamically tuning the parameters of the algorithm,

often leading to faster convergence in practice. We present numerical results to

demonstrate the efficiency of the proposed algorithm in comparison with several

existing parallel algorithms. We also implemented our algorithm on Amazon

EC2, an on-demand public computing cloud, and report its performance on

very large-scale basis pursuit problems with distributed data.

• In Chapter 6, we summarize and conclude the thesis.
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Chapter 2

Background and Preliminary

In this chapter, we provide some background and preliminary knowledge necessary

to understand the later chapters of the thesis. First, in Section 2.1, we give a brief

introduction to the augmented Lagrangian method, a precursor to the alternating

direction method of multipliers. Then in Section 2.2, we review the alternating di-

rection method of multipliers and the related literature. In Section 2.3, we mention

several important applications which motivate the study of this thesis. In Section

2.4, we introduce some basic mathematical notation and preliminary knowledge in

convex analysis that will be used frequently in the later chapters.

2.1 Augmented Lagrangian Method

The classic augmented Lagrangian method, also known as the method of multipliers,

was first introduced by [37,49] in the late 1960s and has been a popular methodology

for solving constrained optimization problems. Let us consider the canonical convex

optimization problem with linear constraints:

min
x∈Rn

f(x)

s.t. Ax = b,

(2.1)

where x ∈ Rn is an unknown variable, A ∈ Rp×n and b ∈ Rp are given, and f :

Rn → R ∪ {+∞} is an extended-value convex function. Note that f is allowed to

take the value +∞ so that any constraints on x can be “embedded” in f . That is, if
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x is constrained in some closed convex set X ⊆ Rn, then it is equivalent to include

the indicator functions IX (x) as part of the objective function f , where the indicator

function of a convex set X is defined by

IX (x) :=

 0 if x ∈ X ,

+∞ if x /∈ X .
(2.2)

The so-called augmented Lagrangian of (2.1) is given by

Lβ(x, λ) := f(x)− λT (Ax− b) +
β

2
‖Ax− b‖22, (2.3)

where λ ∈ Rp is the Lagrangian multiplier (or dual variable), and β > 0 is a penalty

parameter. It can be viewed as a combination of the standard Lagrangian function

and a quadratic penalty term on the constraints.

The augmented Lagrangian method is an iterative algorithmic framework that

solves a sequence of unconstrained subproblems based on the augmented Lagrangian

function. It starts with an initial estimate λ0 to the Lagrangian multiplier and iterates

as follows: for k = 0, 1, . . .,

xk+1 = arg min
x

Lβ(x, λk) (2.4)

λk+1 = λk − β(Axk+1 − b) (2.5)

At each iteration, it minimizes the augmented Lagrangian over the primal variable x

by fixing the dual variable λ, and then makes a simple update to λ using the updated

x. In addition, the fixed penalty parameter β can also be replaced by a sequence of

variable parameters {βk} updated at every iteration.

The augmented Lagrangian method is closely related to the dual ascent method (or

dual subgradient method) [53] as well as the quadratic penalty method. Compared to

these methods, the augmented Lagrangian method is more robust and converges under
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much milder conditions. Unlike the quadratic penalty method where the penalty pa-

rameter needs to go to infinity, the penalty parameter β of the augmented Lagrangian

method can be fixed and stay much smaller, thereby avoiding ill-conditioning of the

subproblems.

2.2 Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM) is a variant of the aug-

mented Lagrangian method, which is applied to constrained optimization problems

with separable objective functions in the following form:

min
x,y

f(x) + g(y)

s.t. Ax+By = b,

(2.6)

where x ∈ Rn and y ∈ Rm are unknown variables, A ∈ Rp×n and B ∈ Rp×m are given

matrices, b ∈ Rp is a given vector, and f : Rn → R∪{+∞} and g : Rm → R∪{+∞}

are extended-value convex functions. Constraints x ∈ X and y ∈ Y , where X ⊆ Rn

and Y ⊆ Rm are closed convex sets, can be included as the indicator functions IX (x)

and IY(y) in the objective functions f and g, respectively.

Applying the augmented Lagrangian method to (2.6) yields the following itera-

tions:

(xk+1, yk+1) = arg min
x,y

Lβ(x, y, λk), (2.7)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (2.8)

Here, the augmented Lagrangian of (2.6) is given by:

Lβ(x, y, λ) = f(x) + g(y)− λT (Ax+By − b) +
β

2
‖Ax+By − b‖22, (2.9)
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where λ ∈ Rp is the Lagrangian multiplier and β > 0 is a penalty parameter. Note

that though x and y are separable in the objective functions, they are coupled in the

augmented Lagrangian through the quadratic penalty term.

In many applications, it is often relatively easy to minimize the functions f and

g individually; however, minimizing both of f and g at the same time is much more

difficult. Therefore, the joint minimization step (2.7) of the augmented Lagrangian

method often becomes a bottleneck for these applications. In contrast, the alternating

direction method of multipliers (see Algorithm 1 below) replaces the joint minimiza-

tion step by two “alternating minimization” steps in which Lβ(x, y, λk) in (2.7) is

minimized over x and y separately, one after another. We refer to the step 3 and step

4 of Algorithm 1 as y-subproblem and x-subproblem of ADMM, respectively.

Algorithm 1: Classic ADMM

1 Initialize x0, λ0, β > 0;

2 for k = 0, 1, . . . do

3 yk+1 = arg miny Lβ(xk, y, λk);

4 xk+1 = arg minx Lβ(x, yk+1, λk);

5 λk+1 = λk − β(Axk+1 +Byk+1 − b).

Compared to the augmented Lagrangian method, ADMM can take advantage of

the separability of the problem (2.6) and thus is particularly more effective on this

kind of problems. ADMM may take more iterations to converge, due to less accurate

minimization of the augmented Lagrangian Lβ(x, y, λk) than (2.7) at each iteration.

However, ADMM often runs faster due to the much cheaper subproblems.

ADMM was first introduced in the 1970s by [21,23] with the application in solving

partial differential equations. Its root traces back to the Douglas-Rachford splitting
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method [15] in the 1950s. However, this classic optimization method was not widely

known until the recent past. In the last few years, ADMM has experienced a sig-

nificant revival and has found numerous successful applications, particularly in the

areas of compressive sensing, signal and image processing, machine learning, applied

statistics and operations research. We refer to [4, 6, 14, 18, 27, 29, 39, 42, 59, 61] for a

number of recent applications. With the relative ease of implementation, ADMM of-

ten leads to state-of-the-art performance on many large-scale problems. Also, ADMM

is well suited to parallel and distributed computing. It can be implemented in a fully

decentralized computational environment, with the scalability to process very huge

datasets. These benefits have mainly contributed to the renaissance of ADMM and

are of great importance to modern applications with extremely large datasets.

2.3 Applications

The alternating direction method of multipliers has wide applications in diverse areas.

In this section, we review several important applications as motivating examples.

2.3.1 Convex Regularization

Convex regularization models have been widely used in various applications:

min
x
f(Ax− b) + g(x) (2.10)

where x ∈ Rn is unknown variable, A ∈ Rp×n and b ∈ Rp are given data, and f and

g are convex functions. Here, f is referred to as the loss (or data fidelity) function

for penalizing data-fitting errors; g is the regularization function in order to prevent

over-fitting or promote certain structures in the solutions. For example, the loss

function f can be chosen as squared `2-norm ‖·‖22 (least squares), `1-norm ‖·‖1 (least
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absolute deviations), Huber function, indicator function of a closed convex set, and so

on. Several commonly used regularization functions g include squared `2-norm ‖ · ‖22,

total variation, `1-norm, nuclear norm, just to name a few.

Though the problem (2.10) is not in the form of (2.6), it can be transformed to

(2.6) after introducing auxiliary variables and constraints. For example, introducing

y = x, the problem (2.10) becomes

min
x,y

f(Ax− b) + g(y)

s.t. x− y = 0.

(2.11)

Alternatively, one may also introduce y = Ax− b to reformulate (2.10) as

min
x,y

g(x) + f(y)

s.t. Ax− y = b.

(2.12)

Then ADMM is readily applicable to either (2.11) or (2.12). The way of reformulating

the problems should be chosen wisely so that the resulting subproblems can be carried

out efficiently.

2.3.2 Sparse and Low-Rank Optimization

In recent years, the problems of finding sparse or/and low-rank solutions have received

tremendous attention from researchers and engineers, particularly those in the areas

of compressive sensing, signal and image processing, machine learning and statistics.

Many of these problems are posed as convex regularization models, where the `1-norm

or nuclear norm are often used as the regularization function to enforce sparsity or

low-rankness in the solutions. For example, we consider the following problems:

• Sparse recovery [11]:

min
x∈Rn

‖x‖1 +
1

2µ
‖Ax− b‖22, (2.13)
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where A ∈ Rm×n, b ∈ Rm, and µ > 0 is a regularization parameter. Here the `1

norm ‖x‖1 :=
∑n

i=1 |xi| is known to promote sparse solutions. In compressive

sensing, this problem is commonly used for reconstructing sparse signals from

a relatively small number of (noisy) measurements. In machine learning and

statistics, it is also known as the Lasso problem [56] for feature selection.

• Low-rank matrix recovery/matrix completion [7]:

min
X
‖X‖∗ +

1

2µ
‖A(X)− b‖22, (2.14)

where X ∈ Rm×n is an unknown low-rank matrix, A : Rm×n → Rp is a linear

operator, b ∈ Rp is our observed data, and µ > 0 is a regularization parameter.

Here, the nuclear norm ‖X‖∗ denotes the sum of singular values of X which is

well known for promoting low-rank solutions.

Such problems pose computational challenges due to the non-smoothness of the

regularization functions as well as the often large scale of the problems. Traditional

optimization methods, such as the interior-point methods, often cannot take advan-

tage of the structures of the problems and are computationally expensive to handle

very large problems.

We illustrate how ADMM can be effectively applied to these problems, giving rise

to very efficient and scalable algorithms. Let us take the sparse recovery problem

(2.13) as an illustrative example. By introducing the auxiliary variable y = x, (2.13)

can be reformulated as:

min
x,y
‖y‖1 +

1

2µ
‖Ax− b‖22

s.t. x− y = 0.

(2.15)
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Applying ADMM to the above problem yields the following iterations:

yk+1 = arg min
y
‖y‖1 +

β

2

∥∥y − (xk − λk/β)
∥∥2
2
, (2.16)

xk+1 = arg min
x

1

2µ
‖Ax− b‖22 +

β

2

∥∥x− yk+1 − λk/β
∥∥2
2
, (2.17)

λk+1 = λk − β(xk+1 − yk+1). (2.18)

Note that the y-subproblem (2.16) admits a simple closed-form solution by the well-

known shrinkage or soft-thresholding operator. For the low-rank matrix recovery

problem (2.14), the application of ADMM follows exactly the same, except that the

closed-form solution of the Y -subproblems takes a slightly different form by the so-

called singular value soft-thresholding.

The x-subproblem (2.17) solves a quadratic problem that involves inverting a

matrix (βI + A>A/µ) or solving a linear system. We may cache an initial matrix

factorization to make the x-subproblems much cheaper to carry out. For very large

problems where caching matrix factorization may not be affordable, it is more efficient

to just solve the x-subproblem approximately, such as taking one gradient descent step

as suggested in [61]. Though more iterations may be needed due to the less accurate

subproblem, the entire algorithm runs faster because the subproblems can be carried

out in much less time. This observation motivates us to generalize the ADMM to

allow more options of solving the subproblems, possibly less exactly but faster, in

order to make ADMM more efficient with wider applicability. We will discuss such

generalization to ADMM and analyze its convergence in Chapter 3 and Chapter 4.
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2.3.3 Consensus and Sharing Optimization

Consider in a network of N nodes, the problem of minimizing the sum of N functions,

one from each node, over a common variable x. This problem can be written as

min
x∈Rn

N∑
i=1

fi(x). (2.19)

Let each node i keep vector xi ∈ Rn as its copy of x. To reach a consensus among xi,

i = 1, . . . , N , a common approach is to introduce a global common variable y and get

min
{xi},y

N∑
i=1

fi(xi), s.t. xi − y = 0, i = 1, . . . , N. (2.20)

This is the well-known global consensus problem; see [4] for a review. With an

objective function g on the global variable y, we have the global variable consensus

problem with regularization:

min
{xi},y

N∑
i=1

fi(xi) + g(y), s.t. xi − y = 0, i = 1, . . . , N, (2.21)

where g(y) is a convex function,

The following sharing problem is also nicely reviewed in [4]:

min
{xi},y

N∑
i=1

fi(xi) + g

(
N∑
i=1

yi

)
, s.t. xi − yi = 0, i = 1, . . . , N, (2.22)

where fi’s are local cost functions and g is the shared cost function by all the nodes

i.

ADMM applied to the problems (2.20), (2.21) and (2.22) is particularly suitable

for distributed implementation, since the x-subproblem can be decomposed into N

independent xi-subproblems, and the update to the multiplier λ can also be done at

each node i. We will discuss this topic in more details in Chapter 5.
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2.4 Notation and Preliminary

We let 〈·, ·〉 denote the standard inner product in the Euclidean space. That is, for

any x = (x1, x2, . . . , xn)> ∈ Rn and y = (y1, y2, . . . , yn)> ∈ Rn,

〈x, y〉 := x>y =
n∑
i=1

xiyi. (2.23)

We use ‖ · ‖ to denote the `2-norm. That is, for a vector x = (x1, x2, . . . , xn)> ∈ Rn,

‖x‖ :=
√
x>x =

√√√√ n∑
i=1

x2i . (2.24)

For a matrix M ∈ Rm×n, ‖M‖ denotes the spectral norm, i.e., the largest singular

value of M :

‖M‖ :=
√
λmax(M>M). (2.25)

We let λmin(·) and λmax(·) denote the smallest and largest eigenvalues of a real sym-

metric matrix, respectively.

For a positive definite matrix G ∈ Rn×n, we define the G-norm as follows:

‖x‖G :=
√
x>Gx, ∀x ∈ Rn. (2.26)

If the matrix G is positive semi-definite, then ‖ · ‖G is a semi-norm.

Let us consider an extended real-value function f : Rn → R∪{+∞}, and let domf

denote its domain. We say the function is proper if there is at least one x ∈ domf

such that f(x) < +∞. We say the function is closed if for any α ∈ R the set

{x ∈ domf : f(x) ≤ α} is a closed set.

The function is convex if domf is a convex set and the following inequality holds

for all t ∈ [0, 1] and all x, y ∈ domf :

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (2.27)
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The function is called strictly convex if the above inequality holds strictly (with “<”)

for all t ∈ (0, 1) and all x 6= y such that f(x) < +∞ and f(y) < +∞. The function

is called strongly convex with constant ν > 0 if the function f(x)− ν
2
‖x‖2 is convex,

or equivalently, if the following inequality holds for all t ∈ [0, 1] and all x, y ∈ domf :

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− 1

2
νt(1− t)‖x− y‖2. (2.28)

For a convex function f , we let the subdifferential (i.e., the set of all subgradients)

of f at x ∈ domf be denoted by ∂f(x):

∂f(x) :=
{
s ∈ Rn : s>(y − x) ≤ f(y)− f(x), ∀y ∈ domf

}
. (2.29)

If f is strongly convex with constant ν > 0, then it can be shown that for any

x ∈ domf and s ∈ ∂f(x), the following holds:

f(y)− f(x) ≥ s>(y − x) +
ν

2
‖x− y‖2. (2.30)

For a differentiable function f , the gradient ∇f is called Lipschitz continuous with

constant L > 0 if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ domf. (2.31)

Let us review some basic properties of convex functions which will be used fre-

quently in the later chapters.

Lemma 2.1 (monotonicity of subdifferential). If function f is convex, then for any

x, y ∈ dom f , we have

〈x− y, s− t〉 ≥ 0, ∀s ∈ ∂f(x), t ∈ ∂f(y). (2.32)

If function f is strongly convex with constant ν > 0, then for any x, y ∈ dom f , we

have

〈x− y, s− t〉 ≥ ν‖x− y‖2, ∀s ∈ ∂f(x), t ∈ ∂f(y). (2.33)
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Proof. For brevity, we only prove (2.33) since it reduces to (2.32) when ν = 0. By

(2.30), for any s ∈ ∂f(x) and t ∈ ∂f(y), we have

f(y)− f(x)− s>(y − x) ≥ ν

2
‖x− y‖2,

f(x)− f(y)− t>(x− y) ≥ ν

2
‖x− y‖2.

Adding these two inequalities together yields (2.33).

Lemma 2.2. If a convex function f has Lipschitz continuous gradient ∇f with con-

stant L > 0, then the following inequality holds:

〈x− y, ∇f(x)−∇f(y)〉 ≥ 1

L
‖∇f(x)−∇f(y)‖2, ∀x, y ∈ domf. (2.34)

For the sake of brevity, we omit the proof which can be found in many convex

analysis books, for example [44].
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Chapter 3

Generalized ADMM with Simplified Subproblems

In this chapter, we consider a generalized ADMM framework that allows various

options of simplifying the subproblems. The generalization of ADMM is of great

practical importance because it brings more flexibility and efficiency in carrying out

the iterations, thereby making the entire algorithm run faster and scale better for

large problems.

First, in Section 3.1, we discuss the motivation of the generalization and give some

motivating examples. In Section 3.2, we present the technical details of the generalized

ADMM framework, as well as comparison to some closely related work [30,62]. Then,

in Section 3.3, we establish the global convergence of the generalized ADMM under

some standard assumptions. In Section 3.4, we briefly review some existing results on

the convergence rates of ADMM. Furthermore, in Section 3.5, we introduce a simple

technique to improve an existing O(1/k) convergence rate to o(1/k), where k is the

number of iterations.

3.1 Motivation

The efficiency of ADMM often relies on the fact that the original problem can be de-

composed into easier subproblems which admit efficient solvers or simple closed-form

solutions. In many applications, however, the subproblems of ADMM are not always

easy to carry out. Especially for many large-scale problems, solving the subproblems
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exactly may become computationally expensive, and applying ADMM straightfor-

wardly may be inefficient. If one spends too much time on solving each single sub-

problem, the entire algorithm will take a long time to finish. Often, even though

some subproblems are expensive to solve exactly, it is much cheaper to compute ap-

proximate solutions to the subproblems which are still good enough to guarantee the

convergence. Although it may take more iterations to converge due to less accurate

subproblems, the entire algorithm can finish in less time since each iteration runs

much faster.

In practice, many variants of ADMM have been developed in which the subprob-

lems are solved inexactly but faster in different ways. Below we give several useful

examples on how to come up with efficient methods to solve the subproblems approx-

imately. For the sake of brevity, we consider only the x-subproblem:

min
x

f(x)− (λk)TAx+
β

2
‖Ax+Byk+1 − b‖2, (3.1)

while the same arguments will apply to the y-subproblem as well.

• Prox-linear ADMM. The Prox-linear method was introduced in [10], which

linearizes the quadratic term β
2
‖Ax + Byk+1 − b‖2 in (3.1) at x = xk and adds

a proximal term ‖x− xk‖2. That is, it solves the following problem:

min
x

f(x) + (pk)T (x− xk) +
β

2τ
‖x− xk‖2, (3.2)

where τ > 0 is a proximal parameter and pk := βAT (Axk + Byk+1 − b− λk/β)

is the gradient of the last two terms of (3.1) at x = xk. Compared to the

original x-subproblem (3.1), it essentially replaces the Hessian matrix βATA of

the quadratic term by an identity matrix β
τ
I.

Prox-linear subproblems are much easier to compute in various applications.
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For example, if f is a separable∗ function, problem (3.2) reduces to a set of in-

dependent one-dimensional problems. In particular, if f is `1 norm, the solution

is given in the closed form by the so-called soft-thresholding. If f is the matrix

nuclear norm, then the solution is given by singular-value soft-thresholding. If

f(x) = ‖Φx‖1 where Φ is an orthogonal operator or a tight frame, (3.2) also

has a closed-form solution. If f is total variation, (3.2) can be solved by graph-

cut [5, 26]. There are a large number of such examples in signal processing,

imaging, statistics, machine learning, etc.

• Gradient-descent ADMM. In many situations, the function f is quadratic

and hence the x-subproblem amounts to solving a linear system. When one

must solve a large, nontrivial linear system at every iteration, the overall com-

putational cost can be very expensive. Alternatively, one may simply take a

gradient descent step to compute an approximate solution:

xk+1 = xk − αgk, (3.3)

where α > 0 is a step size and

gk := ∇f(xk) + βAT (Axk +Byk+1 − b− λk/β) (3.4)

is the gradient of the augmented Lagrangian LA(x, yk+1, λk) at x = xk. Appar-

ently, taking one gradient step only requires several matrix-vector multiplica-

tions, which significantly reduces the cost and has a clear speed advantage.

• ADMM with fast approximation of A (and/or B). The x-subproblem

contains the quadratic term β
2
xTATAx. Sometimes, replacing ATA by a certain

∗We call a function f : Rn → R separable if f(x) = f1(x1) + f2(x2) + · · · + fn(xn) for x =

(x1, x2, . . . , xn) ∈ Rn, where fi : R→ R, ∀i = 1, 2, . . . , n
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symmetric matrix D ≈ ATA makes the problem easier to compute. For ex-

ample, this approach is useful when ATA is nearly diagonal (D is the diagonal

matrix), or is an orthogonal matrix plus error (D is the orthogonal matrix),

as well as when an off-the-grid operator A can be approximated by its on-the-

grid counterpart that has very fast implementations (e.g., the discrete Fourier

transforms and FFT).

3.2 Generalized ADMM

As discussed above, variants of ADMM that allow subproblems to be solved approx-

imately and faster are very important to the applications in which it is expensive to

exactly solve either the x-subproblem or the y-subproblem, or both of them. For this

reason, we present a generalized ADMM framework (Algorithm 2 below) by allow-

ing various ways of simplifying the subproblems. In particular, it includes not only

the classic ADMM (Algorithm 1), but also the aforementioned Prox-linear ADMM,

Gradient-descent ADMM, ADMM with fast approximation of A and/or B as well as

combinations of them as special cases.

Algorithm 2: Generalized ADMM

1 Choose Q � 0 and a symmetric matrix P (possibly indefinite);

2 Initialize x0, y0, λ0, β > 0, γ > 0;

3 for k = 0, 1, . . . do

4 yk+1 = arg miny LA(xk, y, λk) + 1
2
(y − yk)TQ(y − yk);

5 xk+1 = arg minx LA(x, yk+1, λk) + 1
2
(x− xk)TP (x− xk);

6 λk+1 = λk − γβ(Axk+1 +Byk+1 − b).

Compared to Algorithm 1, Algorithm 2 adds 1
2
‖y − yk‖2Q and 1

2
‖x − xk‖2P to the
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y- and x-subproblems, respectively, and assigns γ as the step size for the update of

λ. Here, we slightly abuse the notion ‖x‖2M := xTMx as we allow any symmetric

matrix M . Different choices of P and Q are overviewed in the next subsection. They

can make steps 4 and 5 of Algorithm 2 easier than those of Algorithm 1. Obviously,

Algoirthm 2 reduces to Algorithm 1 when P = 0, Q = 0 and γ = 1.

We do not fix γ = 1 like in most of the ADMM literature since γ plays an

important role in convergence and speed. For example, when P = 0 and Q = 0, any

γ ∈ (0, (
√

5 + 1)/2) guarantees the convergence of Algorithm 2 [22], but γ = 1.618 ≈

(
√

5+1)/2 makes it converge noticeably faster than γ = 1. As we will show in Section

3.3, the range of γ depends on P and Q, as well as β. When P is indefinite, γ must

be smaller than 1 or the iteration may diverge.

3.2.1 Choices of P and Q.

The general goal is to wisely choose P and Q so that the subproblems of Algorithm

2 become much easier to carry out and the entire algorithm runs in less time. Let us

give a few examples of matrix P in step 5 of Algorithm 2. These examples also apply

to Q in step 4 as well. Note that P and Q can be different.

• Exact ADMM. If the original x-subproblem in Algorithm 1 is already easy to

compute exactly, then one can simply set P = 0.

• Prox-linear ADMM. Setting

P =
β

τ
I − βATA, (3.5)

gives rise to the prox-linear problem (3.2).
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• Gradient-descent ADMM. When function f is quadratic, letting

P =
1

α
I −Hf − βATA, where Hf := ∇2f(x) � 0, (3.6)

yields the following x-subproblem:

min
x

(gk)T (x− xk) +
1

2α
‖x− xk‖22, (3.7)

where gk is the gradient given by (3.4). Clearly, it amounts to the gradient

descent step (3.3).

• ADMM with fast approximation of A (and/or B). To replace ATA by a

certain symmetric matrix D ≈ ATA, one can let

P = β(D − ATA). (3.8)

This choice of P effectively turns β
2
xTATAx into β

2
xTDx since

β

2
‖Ax+Byk+1 − b‖22 +

1

2
‖x− xk‖2P

=
β

2
xTDx+ [terms linear in x] + [terms independent of x].

Note that P can be indefinite. This approach also applies to step 4 of Algorithm

2 as long as Q � 0.

In ADMM, the two subproblems can be solved in either order (but fixed through-

out the iterations). However, when one subproblem is solved less exactly than the

other, Algorithm 2 tends to run faster if the less exact one is solved later — as-

signed as step 5 of Algorithm 2 — because at each iteration, the ADMM updates the

variables in the Gauss-Seidel fashion. If the less exact one runs first, its relatively

inaccurate solution will then affect the more exact step, making its solution also inac-

curate. Since the less exact subproblem should be assigned as the later step 5, more

choices of P are needed than Q, which is the case in Algorithm 2.
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3.2.2 Related Work

Let us overview two works very related to Algorithm 2. Both works [30,62] consider

adding proximal terms to the subproblems, where P and Q are restricted to positive

semi-definite matrices. In [30], the convergence analysis is restricted to the case of

γ = 1 and differentiable functions f and g; on the other hand, the quadratic penalty

term of augmented Lagrangian is further generalized to ‖Ax+By−b‖2Hk for a sequence

of bounded positive definite matrices {Hk}. The work [62] extends the scalar γ to

a positive definite matrix C and establishes convergence assuming that A = I and

the smallest eigenvalue of C is no greater than 1, which corresponds to γ ≤ 1 when

C = γI.

Our work makes meaningful extensions to the existing convergence theory in [30,

62]. Specifically, the step size γ is less restrictive, and P is allowed to be indefinite.

These extensions translate to faster convergence and more options of solving the x-

subproblem efficiently. While there is no rate of convergence given in [30,62], we will

further establish linear convergence rates in Chapter 4.

3.3 Global Convergence

In this section, we show the global convergence of Algorithm 2. The proof steps are

similar to the existing convergence theory in [30,62] but are adapted to Algorithm 2

with several extensions. The analysis in this section will also be used frequently in

the next chapter to establish linear convergence under additional assumptions.
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3.3.1 Assumptions

Throughout the rest of this chapter as well as Chapter 4, we make the following

standard assumptions.

Assumption 3.1. There exists a saddle point u∗ := (x∗, y∗, λ∗) to problem (2.6),

namely, x∗, y∗, and λ∗ satisfy the KKT conditions:

ATλ∗ ∈ ∂f(x∗), (3.9)

BTλ∗ ∈ ∂g(y∗), (3.10)

Ax∗ +By∗ − b =0. (3.11)

These conditions can be written in a more compact form by the following varia-

tional inequality:

f(x) + g(y)− f(x∗)− g(y∗) + (u− u∗)>H(u∗) ≥ 0, ∀u, (3.12)

where

H(u) :=


−A>λ

−B>λ

Ax+By − b

 .

When assumption 3.1 fails to hold, the ADMM method has either unsolvable or

unbounded subproblems or a diverging sequence of λk.

Assumption 3.2. Functions f and g are closed, proper and convex.

We define scalars νf and νg as the modulus of f and g, respectively. Following

from Lemma 2.1, they satisfy

〈s1 − s2, x1 − x2〉 ≥ νf‖x1 − x2‖2, ∀x1, x2, s1 ∈ ∂f(x1), s2 ∈ ∂f(x2), (3.13)

〈t1 − t2, y1 − y2〉 ≥ νg ‖y1 − y2‖2, ∀y1, y2, t1 ∈ ∂g(y1), t2 ∈ ∂g(y2). (3.14)
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From the convexity of f and g, it follows that νf ≥ 0 and νg ≥ 0. They are (strictly)

positive if the functions are strongly convex.

Throughout this chapter, since f and g are allowed to be any convex functions,

we can treat νf = 0 and νg = 0 for the worst case. In Chapter 4, we will further

assume νf > 0 or/and νg > 0, as strong convexity of at least one of the functions is

needed to show linear convergence.

3.3.2 Convergence Analysis

For notation simplicity, we introduce

λ̂ := λk − β(Axk+1 +Byk+1 − b). (3.15)

If γ = 1, then λ̂ = λk+1; otherwise,

λ̂− λk+1 = (γ − 1)β(Axk+1 +Byk+1 − b) = (1− 1

λ
)(λk − λk+1). (3.16)

This relation between λ̂ and λk+1 is used frequently in our analysis. Let

u∗ :=


x∗

y∗

λ∗

 , uk :=


xk

yk

λk

 , û :=


xk+1

yk+1

λ̂

 , for k = 0, 1, . . . , (3.17)

where u∗ is a KKT point, uk is the current point, and û is the next point as if γ = 1,

and

G0 :=


In

Im

γIp

 , G1 :=


P̂

Q

1
β
Ip

 , G := G−10 G1 =


P̂

Q

1
βγ
Ip

 ,

(3.18)

where we recall P̂ = P + βATA. From these definitions it follows

uk+1 = uk −G0(u
k − û). (3.19)
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We choose P , Q and β such that P̂ � 0 and Q � 0. Hence G � 0 and ‖ · ‖G is a

(semi-)norm. The definitions of the matrix G and the G-norm are similar to those in

the work [35]. Our analysis is based on bounding the error ‖uk − u∗‖2G and estimate

its decrease.

Lemma 3.1. Under Assumptions 3.1 and 3.2, the sequence {uk} of algorithm 2 obeys

i)

AT λ̂+ P (xk − xk+1) ∈ ∂f(xk+1), (3.20)

BT
(
λ̂− βA(xk − xk+1)

)
+Q(yk − yk+1) ∈ ∂g(yk+1). (3.21)

ii)

〈xk+1 − x∗, AT (λ̂− λ∗) + P (xk − xk+1)〉 ≥ νf‖xk+1 − x∗‖2, (3.22)

〈yk+1 − y∗, BT
(
λ̂− λ∗ − βA(xk − xk+1)

)
+Q(yk − yk+1)〉 ≥ νg‖yk+1 − y∗‖2.

(3.23)

iii)

A(xk+1 − x∗) +B(yk+1 − y∗) =
1

β
(λk − λ̂). (3.24)

iv)

‖uk−u∗‖2G−‖uk+1−u∗‖2G ≥ h(uk−û)+2νf‖xk+1−x∗‖2+2νg‖yk+1−y∗‖2, (3.25)

where

h(uk − û) :=‖xk − xk+1‖2
P̂

+ ‖yk − yk+1‖2Q +
2− γ
β
‖λk − λ̂‖2

+ 2(λk − λ̂)TA(xk − xk+1).

(3.26)

Proof. i) By the optimality conditions for the subproblems of Algorithm 2 and

using (3.15), we obtain (3.20) and (3.21) immediately.
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ii) By the convexity of f (3.13), combining the optimality conditions (3.9) and (3.20)

yields (3.22). Similarly, by the convexity of g (3.14), combing the optimality

conditions (3.10) and (3.21) yields (3.23).

iii) The equation (3.24) follows directly from (3.11) and (3.15).

iv) By adding (3.22) and (3.23) and using (3.24), we have

1

β
〈λk − λ̂, λ̂− λ∗ − βA(xk − xk+1)〉+ 〈xk+1 − x∗, P̂ (xk − xk+1)〉

+ 〈yk+1 − y∗, Q(yk − yk+1)〉 ≥ νf‖xk+1 − x∗‖2 + νg‖yk+1 − y∗‖2, (3.27)

which can be simplified as

(û− u∗)TG1(u
k − û)

≥〈A(xk − xk+1), λk − λ̂〉+ νf‖xk+1 − x∗‖2 + νg‖yk+1 − y∗‖2.
(3.28)

By rearranging the terms, we have

(uk − u∗)TG1(u
k − û) ≥ ‖uk − û‖2G1

+ 〈A(xk − xk+1), λk − λ̂〉

+νf‖xk+1 − x∗‖2 + νg‖yk+1 − y∗‖2.
(3.29)

Then, from (3.19) and the identity

‖a− c‖2G − ‖b− c‖2G = 2(a− c)TG(a− b)− ‖a− b‖2G, (3.30)

it follows that

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G = 2(uk − u∗)TG1(u
k − û)− ‖G0(u

k − û)‖2G. (3.31)

Substituting (3.29) into the right-hand side of the above equation, we have

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ 2‖uk − û‖2G1
− ‖uk − û‖2G1G0

+ 2〈A(xk − xk+1), λk − λ̂〉+ 2νf‖xk+1 − x∗‖2 + 2νg‖yk+1 − y∗‖2,

(3.32)
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and thus (3.25) follows immediately.

In the next theorem, we show that ‖uk − u∗‖2G has sufficient descent. Technically,

it is done through bounding h(uk − û) from zero by applying the Cauchy-Schwarz

inequality to its cross term 2(λk − λ̂)TA(xk − xk+1). If P = 0, a more refined bound

is obtained to give γ a wider range of convergence.

Theorem 3.1 (Sufficient descent of ‖uk − u∗‖2G). Assume Assumptions 3.1 and 3.2.

i) When P 6= 0, if γ obeys

(2− γ)P � (γ − 1)βATA (3.33)

(see Remark 3.1 below for simplification), then there exists η > 0 such that

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G

≥η‖uk − uk+1‖2G + 2νf‖xk+1 − x∗‖2 + 2νg‖yk+1 − y∗‖2.
(3.34)

ii) When P = 0, if

γ ∈
(

0,
1 +
√

5

2

)
, (3.35)

then there exist η > 0 such that(
‖uk − u∗‖2G +

β

ρ
‖rk‖2

)
−
(
‖uk+1 − u∗‖2G +

β

ρ
‖rk+1‖2

)
≥ η‖uk − uk+1‖2G + 2νf‖xk − xk+1‖2 + 2νf‖xk+1 − x∗‖2 + 2νg‖yk+1 − y∗‖2,

(3.36)

where rk is the residual at iteration k:

rk := Axk +Byk − b.
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If we set γ = 1, then we have

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥‖uk − uk+1‖2G + 2νf‖xk − xk+1‖2

+ 2νf‖xk+1 − x∗‖2 + 2νg‖yk+1 − y∗‖2.
(3.37)

Proof. i) By the Cauchy-Schwarz inequality, we have

2(λk − λ̂)TA(xk − xk+1) ≥ −1

ρ
‖A(xk − xk+1)‖2 − ρ‖λk − λ̂‖2, ∀ρ > 0. (3.38)

Substituting (3.38) into (3.25) and using 1
γ
(λk − λk+1) = λk − λ̂, we have

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G

≥ ‖xk − xk+1‖2
P̂− 1

ρ
ATA

+ ‖yk − yk+1‖2Q +

(
2− γ
β
− ρ
)

1

γ2
‖λk − λk+1‖2

+ 2νf‖xk+1 − x∗‖2 + 2νg‖yk+1 − y∗‖2, ∀ρ > 0.

(3.39)

To show that (3.34) holds for a certain η > 0, we only need P̂ − 1
ρ
ATA � 0 and

2−γ
β
−ρ > 0 for a certain ρ > 0, which is true if and only if we have P̂ � β

2−γA
TA

or, equivalently, (3.33).

ii) For P = 0, we first derive a lower bound for the cross term (λk−λ̂)TA(xk−xk+1).

Applying (3.20) at two consecutive iterations with P = 0 and in light of the

definition of λ̂, we have AT [λk−1 − β(Axk +Byk − b)] ∈ ∂f(xk),

AT λ̂ ∈ ∂f(xk+1).
(3.40)

The difference of the two terms on the left in (3.40) is

AT [λk−1−β(Axk+Byk−b)−λ̂] = AT (λk−λ̂)−(1−γ)βAT (Axk+Byk−b). (3.41)

By (3.40), (3.41) and (3.13), we get

〈AT (λk−λ̂), xk−xk+1〉−〈(1−γ)βAT (Axk+Byk−b), xk−xk+1〉 ≥ νf‖xk−xk+1‖2,

(3.42)
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to which applying the Cauchy-Schwarz inequality gives

(λk − λ̂)TA(xk − xk+1)

≥〈
√
β(Axk +Byk − b), (1− γ)

√
βA(xk − xk+1)〉+ νf‖xk − xk+1‖2

≥− β

2ρ
‖Axk +Byk − b‖2 − (1− γ)2βρ

2
‖A(xk − xk+1)‖2 + νf‖xk − xk+1‖2,

(3.43)

for any ρ > 0. Substituting (3.43) into (3.25) and using P̂ = P +βATA = βATA

and the definition of λ̂, we have

‖uk − u∗‖2G +
β

ρ
‖Axk +Byk − b‖2

≥ ‖uk+1 − u∗‖2G +
β

ρ
‖Axk+1 +Byk+1 − b‖2

+ β

(
2− γ − 1

ρ

)
‖Axk+1 +Byk+1 − b‖2 + β

(
1− (1− γ)2ρ

)
‖A(xk − xk+1)‖2

+ ‖yk − yk+1‖2Q + 2νf‖xk − xk+1‖2 + 2νf‖xk+1 − x∗‖2 + 2νg‖yk+1 − y∗‖2.

(3.44)

To prove such η > 0 exists for (3.36), we only need the existence of ρ > 0 such

that 2−γ− 1
ρ
> 0 and 1−(1−γ)2ρ > 0, which holds if and only if 2−γ > (1−γ)2

or, equivalently, γ ∈ (0, 1+
√
5

2
).

In this case of P = 0, if we set γ = 1, (3.43) reduces to (λk − λ̂)TA(xk − xk+1) ≥

νf‖xk − xk+1‖2, which substituting into (3.25) gives (3.37) with η = 1.

Now the sufficient descent of ‖uk − u∗‖2G in Theorem 3.1 are used to yield the

global convergence of Algorithm 2.

Theorem 3.2 (Global convergence of Algorithm 2). Assume Assumptions 3.1 and

3.2, and that {uk} of Algorithm 2 is bounded (see Remark 3.2 below). For any γ
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satisfying its conditions given in Theorem 3.1, {uk} converges to a KKT point u∗ of

(2.6) in the G-norm, namely,

‖uk − u∗‖G → 0.

It further follows that

(a) λk → λ∗, regardless of the choice of P and Q;

(b) when P 6= 0, xk → x∗; otherwise, Axk → Ax∗;

(c) when Q � 0, yk → y∗; when Q = 0, Byk → By∗.

Proof. Being bounded, {uk} has a converging subsequence {ukj}. Let ū = limj→∞ u
kj .

Next, we will show ū is a KKT point. Let u∗ denote an arbitrary KKT point.

Consider P 6= 0 first. From (3.34) we conclude that ‖uk − u∗‖2G is monotonically

nonincreasing and thus converging, and due to η > 0, ‖uk − uk+1‖2G → 0. In light of

(3.18) where P̂ � 0 and Q � 0, we obtain λk − λk+1 → 0 or equivalently,

rk = (Axk+1 +Byk+1 − b)→ 0, as k →∞. (3.45)

Now consider P = 0. From (3.36) we conclude that ‖uk − u∗‖2G + β
ρ
‖rk‖2 is

monotonically nonincreasing and thus converging. Due to η > 0, ‖uk − uk+1‖2G → 0,

so λk − λk+1 → 0 and (3.45) holds as well. Consequently, ‖uk − u∗‖2G also converges.

Therefore, by passing limit on (3.45) over the subsequence, we have for P = 0 or

not:

Ax̄+Bȳ − b = 0. (3.46)

Recall the optimality conditions (3.21) and (3.20):

BT λ̂− βBTA(xk − xk+1) +Q(yk − yk+1) ∈ ∂g(yk+1),

AT λ̂+ P (xk − xk+1) ∈ ∂f(xk+1).
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Since ‖uk − uk+1‖2G → 0, in light of the definition of G (3.18), we have the following:

• when P = 0, A(xk − xk+1)→ 0;

• when P 6= 0, the condition (3.33) guarantees P̂ � 0 and thus xk − xk+1 → 0;

• since Q � 0, we obtain Q(yk − yk+1)→ 0.

In summary, βBTA(xk − xk+1), Q(yk − yk+1), and P (xk − xk+1) are either 0 or

converging to 0 in k, no matter P = 0 or not.

Now on both sides of (3.21) and (3.20) taking limit over the subsequence and

applying Theorem 24.4 of [52], we obtain:

BT λ̄ ∈ ∂g(ȳ), (3.47)

AT λ̄ ∈ ∂f(x̄). (3.48)

Therefore, together with (3.46), ū satisfies the KKT condition of (2.6).

Since ū is a KKT point, we can now let u∗ = ū. From ukj → ū in j and the

convergence of ‖uk − u∗‖2G it follows ‖uk − u∗‖2G → 0 in k.

By the definition of G, ‖uk − u∗‖2G → 0 implies the following:

(a) λk → λ∗, regardless of the choice of P and Q;

(b) when P 6= 0, condition (3.33) guarantees P̂ � 0 and thus xk → x∗; when P = 0,

Axk → Ax∗;

(c) when Q � 0, yk → y∗; when Q = 0, Byk → By∗ following from (3.45) and (3.46).

Remark 3.1. Let us discuss the conditions on γ. If P � 0, the condition (3.33) is

always be satisfied for 0 < γ ≤ 1. However, in this case, γ can go greater than 1,
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which often leads to faster convergence in practice. If P 6� 0, the condition (3.33)

requires γ to lie in (0, γ̄) where 0 < γ̄ < 1 depends on β, P , and ATA. A larger β

would allow a larger γ̄.

In particular, in Prox-liner ADM where the x-subproblem is solved by (3.2), con-

dition (3.33) is guaranteed by

τ‖A‖2 + γ < 2. (3.49)

In Gradient-descent ADM where the x-subproblem has the form of (3.7), a sufficient

condition for (3.33) is given by

β‖A‖2
1
α
− ‖Hf‖

+ γ < 2. (3.50)

Remark 3.2. The assumption on the boundedness of the sequence {uk} can be guar-

anteed by various conditions. Since (3.34) and (3.36) imply that ‖uk−u∗‖2G is bounded,

{uk} must be bounded if P̂ � 0 and Q � 0. Furthermore, if P = 0 and Q = 0, we

have the boundedness of {(Axk, λk)} (since ‖uk−u∗‖2G is bounded) and that of {Byk}

by (3.24), so in this case, {uk} is bounded if

(i) matrix A has full column rank whenever P = 0; and

(ii) matrix B has full column rank whenever Q = 0.

In addition, the boundedness of {uk} is guaranteed if the objective functions are co-

ercive.

3.4 Existing Rate-of-Convergence Results

In this section, we review some existing results on the convergence rate of ADMM.

Although there is extensive literature on ADMM and its applications, there are very

few results on its rate of convergence until the very recent past. Work [24] shows
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that for a Jacobi version of the ADMM applied to smooth functions with Lipschitz

continuous gradients, the objective value descends at the rate of O(1/k) and that

of an accelerated version descends at O(1/k2). Then, work [25] establishes the same

rates on a Gauss-Seidel version and requires only one of the two objective functions to

be smooth with Lipschitz continuous gradient. But these two works only consider the

model with the linear constraint coefficient matrices A and B being identity matrix

or negative identity matrix.

Lately, work [36] shows that the optimality conditions of the ADMM based on

a variational inequality converges at an O(1/k) rate in an ergodic sense. Work [35]

shows that ‖uk−uk+1‖2, where uk := (xk, yk, λk), of the ADMM converges at O(1/k).

Work [28] proves that the dual objective value of an accelerated version of ADMM

descends at O(1/k2) under the assumption that the objective functions are strongly

convex (one of them being quadratic).

Besides these sublinear rates, several linear rates have also been established. Work

[16] shows that the ADMM applied to linear programming converges at a global linear

rate. For quadratic programming, work [3] presents an analysis leading to a conjecture

that the ADMM should converge linearly near the optimal solution.

Work [38] proves the linear convergence of ADMM in a different approach. The

linear convergence in [38] requires that the objective function takes a certain form

involving a strictly convex function and the step size for updating the multipliers

is sufficiently small (which is impractical), while no explicit linear rate is given. Its

recent update assumes a bounded sequence in addition. On the other hand, it allows

more than two blocks of separable variables and it does not require strict convexity;

instead, it requires the objective function to include f(Ex), where f is strictly convex

and E is a possibly rank-deficient matrix.
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The linear convergence of ADMM was also established in the context of Douglas-

Rachford Splitting Mehtod (DRSM) [15] and Proximal Point Mehtod (PPA) [50]. It

has been shown that ADMM is a special case of DRSM [20], and further DRSM

is a special case of PPA [17]. Therefore, the linear convergence of ADMM can be

obtained from the existing linear convergence results of DRSM and PPA [40, 50].

However, it is unclear whether those results can apply to the generalizations to ADMM

(Algorithm 2). It remains an open question whether these generalizations to ADMM

are equivalent to the iterations of some firmly nonexpansive operators, which will be

left for future research.

In the next subsection, we introduce a simple technique to slightly improve the

result in [35] from O(1/k) to o(1/k). In Chapter 4, we will present detailed analysis to

show the linear convergence of the Generalized ADMM under a variety of scenarios in

which at least one of the two objective functions is strictly convex and has Lipschitz

continuous gradient. This rate is stronger than the sublinear rates such as O(1/k)

and O(1/k2) and is given in terms of the solution error, which is stronger than those

given in terms of the objective error in [24, 25, 28], violation of optimality conditions

in [36], and the solution relative change in [35]. On the other hand, [24,25,35,36] do

not require any strictly convex functions. The fact that a wide range of applications

give rise to model (2.6) with at least one strictly convex functions has motivated our

work. In Subsection 4.2.3, we will review the linear convergence result of DRSM

in [40] and show that our analysis yields a better linear rate, in addition to its wider

applicability for generalizations of ADMM.
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3.5 On o(1/k) Convergence Rate

In this section, we improve the O(1/k) convergence rate of ADMM established in [35]

slightly to o(1/k). The proof technique is based on an elementary lemma (see Lemma

3.2 below) which can be used to improve many other existing O(1/k) convergence

rate to o(1/k) as well.

Lemma 3.2. If a sequence {ak} ⊆ R obeys: (1) ak ≥ 0; (2)
∑∞

k=1 ak < +∞; (3) ak

is monotonically non-increasing, then we have ak = o(1/k).

Proof. By the assumptions, we have

k · a2k ≤ ak+1 + ak+2 + · · ·+ a2k → 0

as k → +∞. Therefore, ak = o(1/k).

Intuitively, the harmonic sequence {1/k} is not summable, so a summable, non-

negative, monotonic sequence shall converge faster than {1/k}.

Let us briefly review the analysis in [35]. For simplicity, we consider the classic

ADMM (Algorithm 1) but the analysis can be extended to the Generalized ADMM

(Algorithm 2) as well. In [35], the quantity ‖uk − uk+1‖2G is used to measure the

optimality of the iterations, where

u :=


x

y

λ

 , G :=


βA>A

O

1
β
I

 .

Note that y is essentially not part of the G-norm. In fact, y can be regarded as an

intermediate variable in the iterations of ADMM, whereas x and λ are the essential

variables [4]. Based on the optimality conditions (3.20) and (3.21) as well as the

relation between λk−λk+1 and Axk+1+Byk+1−b, it is easy to see that if ‖uk−uk+1‖2G =
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0 then uk+1 satisfies the KKT conditions and thus is optimal. On the other hand, if

‖uk−uk+1‖2G is large, then there is big violation of the KKT conditions so uk+1 is very

likely far away from being a solution. Therefore, the quantity ‖uk − uk+1‖2G can be

viewed as a measure of the distance between uk+1 and the solution set. Furthermore,

it seems reasonable to use the squared term ‖uk − uk+1‖2G rather than ‖uk − uk+1‖G
to measure the convergence rate of ADMM. By the variational inequality (3.12) as

well as the variational characterization of the ADMM iterations (refer to [35] for

more details), we can see that the quadratic term ‖uk − uk+1‖2G closely relates to the

objective error f(xk+1) + g(yk+1)− f(x∗)− g(y∗). Therefore, in the similar sense that

the objective error is commonly used to measure convergence rates, it is reasonable

to use the quadratic term ‖uk − uk+1‖2G as well.

The work [35] proves that ‖uk − uk+1‖2G converges to zero at a rate of O(1/k).

The key steps of the proof are to establish the following properties.

Lemma 3.3. Let {uk} be the sequence generated by Algorithm 1.

(i) The sequence {uk} is contractive:

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ ‖uk − uk+1‖2G. (3.51)

(ii) The sequence ‖uk − uk+1‖2G is monotonically non-increasing:

‖uk − uk+1‖2G ≤ ‖uk−1 − uk‖2G. (3.52)

The contraction property (3.51) follows directly from (3.37). It has been long

established in the literature, which dates back to [21,23]. For the sake of completeness,

we shall prove the monontonicity property (3.52). Inspired by [35], we provide a much

shorter proof than the one in [35].
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Proof of (3.52). To simplify the notation, we let

∆xk+1 = xk − xk+1, ∆yk+1 = yk − yk+1, ∆λk+1 = λk − λk+1.

Let us recall the part (i) of Lemma 3.1. We have the following optimality conditions

for the subproblems:

ATλk+1 ∈ ∂f(xk+1), (3.53)

BT
(
λk+1 − βA(xk − xk+1)

)
∈ ∂g(yk+1). (3.54)

By the monotonicity of subdifferential ∂f , combining (3.53) at k-th and (k + 1)-th

iterations yields

〈∆xk+1, A>∆λk+1〉 ≥ 0. (3.55)

Similarly, using the monotonicity of ∂g for (3.54) at k-th and (k + 1)-th iterations,

we obtain

〈∆yk+1, B>∆λk+1 − βB>A(∆xk −∆xk+1)〉 ≥ 0. (3.56)

Adding the above two inequalities together, we have

(A∆xk+1 +B∆yk+1)>∆λk+1 − β(B∆yk+1)>A(∆xk −∆xk+1) ≥ 0. (3.57)

Note that we have

A∆xk+1 +B∆yk+1 =
1

β
(∆λk −∆λk+1). (3.58)

Then we substitute ∆yk+1 using (3.58), and thereby (3.57) becomes

1

β
(∆λk−∆λk+1)>∆λk+1− (∆λk−∆λk+1−βA∆xk+1)>A(∆xk−∆xk+1) ≥ 0. (3.59)
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To further simplify the notation, we let

ak =
√
βA∆xk, bk =

1√
β

∆λk.

After rearranging the terms, (3.59) can be rewritten as

(ak + bk)>(ak+1 + bk+1)− (ak)>bk − (ak+1)>bk+1

≥ ‖ak+1‖2 + ‖bk+1‖2 = ‖uk − uk+1‖2G.
(3.60)

By the Cauchy-Schwarz inequality, we have

(ak + bk)>(ak+1 + bk+1) ≤ (‖ak + bk‖2 + ‖ak+1 + bk+1‖2)/2, (3.61)

or equivalently,

(ak + bk)>(ak+1 + bk+1)− (ak)>bk − (ak+1)>bk+1

≤ (‖ak‖2 + ‖bk‖2 + ‖ak+1‖2 + ‖bk+1‖2)/2.
(3.62)

Applying the above inequality to the left-hand side of (3.60), we have

‖uk − uk+1‖2G ≤ (‖ak‖2 + ‖bk‖2 + ‖ak+1‖2 + ‖bk+1‖2)/2

=
(
‖uk−1 − uk‖2G + ‖uk − uk+1‖2G

)
/2,

(3.63)

and thus (3.52) follows immediately.

We are now ready to improve the convergence rate from O(1/k) to o(1/k).

Theorem 3.3 (Convergence Rate of o(1/k) ). Let {uk} be the sequence generated by

Algorithm 1. Then ‖uk − uk+1‖2G = o(1/k). Therefore,

• ‖Axk − Axk+1‖2 + ‖Byk −Byk+1‖2 + ‖λk − λk+1‖2 = o(1/k);

• ‖Axk+1 +Byk+1 − b‖2 = o(1/k).
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Proof. By (3.51), we have

n∑
k=1

‖uk − uk+1‖2G ≤ ‖u1 − u∗‖2G − ‖un+1 − u∗‖2G, ∀n. (3.64)

As we have shown, ‖un+1−u∗‖2G → 0 as n→∞. Therefore,
∑∞

k=1 ‖uk−uk+1‖2G <∞.

By (3.52), ‖uk−uk+1‖2G is monotonically non-increasing. Obviously, ‖uk−uk+1‖2G
is also nonnegative. Therefore, ‖uk − uk+1‖2G = o(1/k) follows from Lemma 3.2

immediately. By the definition of G, we have ‖Axk − Axk+1‖2 = o(1/k) and ‖λk −

λk+1‖2 = o(1/k). By (3.58), we have ‖Byk − Byk+1‖2 = o(1/k) as well. Finally,

‖Axk+1 +Byk+1 − b‖2 = ‖λk − λk+1‖2/β2 = o(1/k).

Remark 3.3. The proof technique based on Lemma 3.2 can be applied to improve

some other existing convergence rates of O(1/k) (e.g., [12, 33]) to o(1/k) as well.
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Chapter 4

Linear Convergence of Generalized ADMM

The main goal of this chapter is to show that the Generalized ADMM (Algorithm 2)

applied to the problem (2.6) has global linear convergence O(1/ck) for some c > 1,

provided that one of the two objective functions, say, f is strictly convex, ∇f is

Lipschitz continuous, and matrices A and B have certain rank conditions. Note that

when restricted to a compact set, a strictly convex function is strongly convex. So,

as long as an algorithm generates a bounded sequence, strict convexity is effectively

strong convexity. For simplicity, we use “strong convexity” or “strongly convex” in

the remaining of the chapter.

The chapter is organized as follows. Section 4.1 summarizes the linear convergence

results that we shall establish under various scenarios. The detailed analysis is then

given in Section 4.2. Section 4.3 discusses several interesting applications that are

covered by our linear convergence results. Section 4.4 presents numerical results to

demonstrate the linear convergence behavior of ADMM in practice.

4.1 Summary of Results

We shall establish the global linear convergence of Algorithm 2 that are described in

Tables 4.1 and 4.2. Table 4.1 summarizes the four scenarios under which we study

the linear convergence of Algorithm 2, and Table 4.2 specifies the linear convergent
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Table 4.1 : Four scenarios leading to linear convergence

scenario
strongly Lipschitz full row

additional assumptions
convex continuous rank

1 f ∇f A if Q � 0, B has full column rank

2 f, g ∇f A

3 f ∇f,∇g - B has full column rank

4 f, g ∇f,∇g -

quantities for different types of matrices P̂ , P , and Q, where

P̂ := P + βATA

is defined for the convenience of convergence analysis. P = 0 and Q = 0 correspond

to exactly solving the x- and y-subproblems, respectively. Although P = 0 and P̂ � 0

are different cases in Table 4.2, they may happen at the same time if A has full column

rank; if so, apply the result under P̂ � 0, which is stronger.

The conclusions in Table 4.2 are the quantities that converge either Q-linearly

or R-linearly∗. Q-linear convergent quantities are the entireties of multiple variables

whereas R-linear convergent quantities are the individual variables xk, yk, and λk.

Four scenarios of global linear convergence. In scenario 1, only function

f needs to be strongly convex and having Lipschitz continuous gradient; there is no

∗Suppose a sequence {uk} converges to u∗. We say the convergence is (in some norm ‖ · ‖)

• Q-linear, if there exists µ ∈ (0, 1) such that ‖u
k+1−u∗‖
‖uk−u∗‖ ≤ µ;

• R-linear, if there exists a sequence {σk} such that ‖uk − u∗‖ ≤ σk and σk → 0 Q-linearly.
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Table 4.2 : Summary of linear convergence results

case P, P̂ Q
any scenario 1 – 4

Q-linear convergence R-linear convergence

1 P = 0 = 0 (Axk, λk)

xk, (yk or Byk)∗, λk
2 P̂ � 0 = 0 (xk, λk)

3 P = 0 � 0 (Axk, yk, λk)

4 P̂ � 0 � 0 (xk, yk, λk)
∗ In cases 1 and 2, scenario 1, R-linear convergence of yk requires full

column rank of B; otherwise, only Byk has R-linear convergence.

assumption on g besides convexity. On the other hand, matrix A must have full

row rank. Roughly speaking, the full row rank of A makes sure that the error of

λk can be bounded just from the x-side by applying the Lipschitz continuity of ∇f .

One cannot remove this condition or relax it to the full row rank of [A,B] without

additional assumptions. Consider the example of A = [1; 0] and B = [0; 1], where

[A,B] = I has full rank. Since λk2, which is the 2nd entry of λk, is not affected by f

or {xk} at all, there is no way to take advantages of the Lipschitz continuity of ∇f to

bound the error of λk2. In general, without the full row rank of A, a part of λk needs

to be controlled from the y-side using properties of g.

Scenario 2 adds the strong convexity assumption on g. As a result, the remark in

case 1 regarding the full column rank of B is no longer needed.

Both scenarios 3 and 4 assume that g is differentiable and ∇g is Lipschitz con-

tinuous. As a result, the error of λk can be controlled by taking advantages of the

Lipschitz continuity of both ∇f and ∇g, and the full row rank assumption on A is
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no longer needed. On the other hand, scenarios 3 and 4 exclude the problems with

non-differentiable g. Compared to scenario 3, scenario 4 adds the strong convexity

assumption on g and drops the remark on the full column rank of B.

Under scenario 1 with Q � 0 and scenario 3, the remarks in Table 4.1 are needed

essentially because yk gets coupled with xk and λk in certain inequalities in our

convergence analysis. The full column rank of B helps bound the error of yk by those

of xk and λk.

Four cases. When P = 0 (corresponding to exactly solving the x-subproblem),

we have P̂ � 0 and only obtain linear convergence in Ax. However, when P̂ � 0,

linear convergence in x is obtained.

When Q = 0 (corresponding to exactly solving the y-subproblem), y is not part

of the Q-linear convergent joint variable. But, when Q � 0, y becomes part of it.

Remark 4.1. Indeed, we only use f and g’s properties over the compact sets including

{xk} and {yk}, not globally; thus, strict convexity can replace strong convexity.

4.2 Linear Convergence

To establish the linear convergence, we take three steps. First, using (3.34) for P 6= 0

and (3.36) for P = 0, as well as the assumptions in Table 4.1, we show that there

exists δ > 0 such that

‖uk − u∗‖2G ≥ (1 + δ)‖uk+1 − u∗‖2G, (4.1)

where u∗ = limk→∞ u
k is given by Theorem 3.2. We call (4.1) the Q-linear convergence

of {uk} in G-(semi)norm. Next, using (4.1) and the definition of G, we obtain the

Q-linear convergent quantities in Table 4.2. Finally, the R-linear convergence in Table

2 is established.
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4.2.1 Analysis

We first assume γ = 1, which allows us to simplify the proof presentation. At the end

of this subsection, we explain why the results for γ = 1 can be extended to γ 6= 1 that

satisfies the conditions of Theorem 3.1. Note that for γ = 1, we have (3.37) instead

of (3.36). Hence, no matter P = 0 or P 6= 0, both inequalities (3.34) and (3.37) have

the form

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ C,

where C stands for their right-hand sides. To show (4.1), it is sufficient to establish

C ≥ δ‖uk+1 − u∗‖2G. (4.2)

The challenge is that ‖uk+1 − u∗‖2G is the sum of ‖xk+1 − x∗‖2
P̂

, ‖yk+1 − y∗‖2Q, and

1
βγ
‖λk+1 − λ∗‖2, but C does not contain terms like ‖yk+1 − y∗‖2 and ‖λk+1 − λ∗‖2.

Therefore, we shall bound ‖λk+1 − λ∗‖2 and ‖yk+1 − y∗‖2Q from the existing terms

in C or using the strong convexity assumptions. This is done in a series of lemmas

below.

Lemma 4.1 (For scenario 1, cases 3 and 4, and scenario 3). Suppose that B has full

column rank. For any µ1 > 0, we have

‖yk+1 − y∗‖2 ≤ c1‖xk+1 − x∗‖2 + c2‖λk − λk+1‖2, (4.3)

where c1 := (1 + 1
µ1

)‖A‖2 · λ−1min(BTB) > 0 and c2 := (1 + µ1)(βγ)−2 · λ−1min(BTB) > 0.

Proof. By (3.24), we have ‖B(yk+1− y∗)‖2 = ‖A(xk+1−x∗)− 1
βγ

(λk−λk+1)‖2. Then

apply the following inequality (or the Cauchy-Schwarz inequality):

‖u+ v‖2 ≤
(

1 +
1

µ1

)
‖u‖2 + (1 + µ1)‖v‖2, ∀µ1 > 0, (4.4)

to its right-hand side.
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Lemma 4.2 (For scenarios 1 and 2). Suppose that ∇f is Lipschitz continuous with

constant Lf and A has full row rank. For any µ2 > 1, we have

‖λ̂− λ∗‖2 ≤ c3‖xk+1 − x∗‖2 + c4‖xk − xk+1‖2, (4.5)

where c3 := L2
f (1− 1

µ2
)−1λ−1min(AAT ) > 0 and c4 := µ2‖P‖2λ−1min(AAT ) > 0.

Proof. By the optimality conditions (3.9) and (3.20) together with the Lipschitz con-

tinuity of ∇f , we have

‖AT (λ̂− λ∗) + P (xk − xk+1)‖2 = ‖∇f(xk+1)−∇f(x∗)‖2 ≤ L2
f‖xk+1 − x∗‖2. (4.6)

Then apply the following basic inequality:

‖u+ v‖2 ≥
(

1− 1

µ2

)
‖u‖2 + (1− µ2)‖v‖2, ∀µ2 > 0, (4.7)

to the left hand side of (4.6). We require µ2 > 1 so that (1− 1
µ2

) > 0.

Lemma 4.3 (For scenarios 3 and 4). Suppose ∇f and ∇g are Lipschitz continuous,

and the initial multiplier λ0 is in the range space of [A,B] (letting λ0 = 0 suffices).

For any µ3 > 1 and µ4 > 0, we have

‖λ̂−λ∗‖2 ≤ c5‖xk−xk+1‖2 + c6‖yk−yk+1‖2Q+ c7‖xk+1−x∗‖2 + c8‖yk+1−y∗‖2, (4.8)

where c5 = µ3(1 + 1
µ4

)‖[P T ,−βATB]‖2c̄ > 0, c6 = µ3(1 + µ4)‖Q‖2c̄ ≥ 0, c7 =

(1− 1
µ3

)−1L2
f c̄ > 0, c8 = (1− 1

µ3
)−1L2

g c̄ > 0, and c̄ > 0 is as follows:

• If the matrix [A,B] has full row rank, c̄ := λ−1min([A,B][A,B]T ) > 0.

• Otherwise, rank([A,B]) = r < p. Without loss of generality, assuming the first

r rows of [A,B] (denoted by [Ar, Br]) are linearly independent, we have

[A,B] =

I
L

 [Ar, Br],
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where I ∈ Rr×r is the identity matrix and L ∈ R(p−r)×r. Let E := (I +

LTL)[Ar, Br], and c̄ := λ−1min(EET )‖I + LTL‖ > 0.

Proof. We first show that

‖λ̂− λ∗‖2 ≤ c̄ ·

∥∥∥∥∥∥∥
AT
BT

 (λ̂− λ∗)

∥∥∥∥∥∥∥
2

, (4.9)

where c̄ > 0 is defined above. If [A,B] has full row rank, it is trivial. Now, suppose

[A,B] is rank deficient, i.e., rank([A,B]) = r < p. Without loss of generality, we

assume the first r rows of [A,B] (denoted by [Ar, Br]) are linearly independent, and

thus

[A,B] =

I
L

 [Ar, Br].

By the update formula, if the initial multiplier λ0 is in the range space of [A,B], then

λk, k = 1, 2, . . ., always stay in the range space of [A,B], so do λ̂ and λ∗. It follows

that

λk =

I
L

λkr , λ̂ =

I
L

 λ̂r, λ∗ =

I
L

λ∗r.
and thus AT

BT

 (λ̂− λ∗) =

ATr
BT
r

 (I + LTL)(λ̂r − λ∗r).

Since E := (I+LTL)[Ar, Br] has full row rank, we have c̄ := λ−1min(EET )‖I+LTL‖ > 0

and (4.9) follows immediately.

Combining the optimality conditions (3.10), (3.9), (3.20), and (3.21) together with
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the Lipschitz continuity of ∇f and ∇g, we have∥∥∥∥∥∥∥
AT
BT

 (λ̂− λ∗) +

 P

−βBTA

 (xk − xk+1) +

0

Q

 (yk − yk+1)

∥∥∥∥∥∥∥
2

=‖∇f(xk+1)−∇f(x∗)‖2 + ‖∇g(yk+1)−∇g(y∗)‖2

≤L2
f‖xk+1 − x∗‖2 + L2

g‖yk+1 − y∗‖2.

(4.10)

Similarly, we apply the basic inequalities (4.4) and (4.7) to its left hand side and use

(4.9).

With the above lemmas, we now prove the following main theorem of this subsec-

tion.

Theorem 4.1 (Q-linear convergence of ‖uk−u∗‖2G). Under the same assumptions of

Theorem 3.2 and γ = 1, for all scenarios in Table 4.1, there exists δ > 0 such that

(4.1) holds.

Proof. Consider the case of P = 0 and the corresponding inequality (3.37). In this

case P̂ = βATA � 0. Let C denote the right-hand side of (3.37).

Scenarios 1 and 2 (recall in both scenarios, f is strongly convex, ∇f is Lipschitz

continuous, and A has full row rank). Note that C contains the terms on the right

side of (4.5) with strictly positive coefficients. Hence, applying Lemma 4.2 to C, we

can obtain

C ≥(c9‖xk+1 − x∗‖2 + c10‖yk+1 − y∗‖2 + c11‖λk+1 − λ∗‖2)

+ (c12‖yk − yk+1‖2Q + c13‖λk − λk+1‖2)
(4.11)

with c9, c11 > 0, c10 = 2νg ≥ 0, c12 = η > 0, and c13 = η/(βγ) > 0. We have c9 > 0

because only a fraction of 2νf‖xk+1 − x∗‖2 is used with Lemma 4.2; c9‖xk+1 − x∗‖2

is unused so it stays. The same principle is applied below to get strictly positive
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coefficients, and we do not re-state it. For proof brevity, we do not necessarily specify

the values of ci.

For scenario 1 with Q = 0, ‖uk+1 − u∗‖2G = ‖xk+1 − x∗‖2
P̂

+ 1
βγ
‖λk+1 − λ∗‖2.

Since ‖xk+1 − x∗‖2 ≥ λmax(P̂ )−1‖xk+1 − x∗‖2
P̂

, (4.2) follows from (4.11) with δ =

min{c9λ−1max(P̂ ), c11βγ} > 0.

For scenario 1 with Q � 0, ‖uk+1−u∗‖2G = ‖xk+1−x∗‖2
P̂

+‖yk+1−x∗‖2Q+ 1
βγ
‖λk+1−

λ∗‖2. Since c10 is not necessarily strictly positive, we shall apply Lemma 4.1 to (4.11)

and obtain

C ≥ (c14‖xk+1− x∗‖2 + c15‖yk+1− y∗‖2 + c11‖λk+1− λ∗‖2) + c12‖yk − yk+1‖2Q (4.12)

where c14, c15, c11, c12 > 0. So, it leads to (4.1) with

δ = min{c14λ−1max(P̂ ), c15λ
−1
max(Q), c11βγ} > 0.

Scenario 2 (recall it is scenario 1 plus that g is strongly convex). We have c10 =

2νg > 0 in (4.11), which gives (4.1) with δ = min{c9λ−1max(P̂ ), c10λ
−1
max(Q), c11βγ} > 0.

Note that we have used the convention that if Q = 0, then λ−1max(Q) =∞.

Scenario 3 (recall f is strongly convex, both∇f and∇g are Lipschitz continuous).

We apply Lemma 4.1 to get ‖yk+1 − y∗‖2 with which we then apply Lemma 4.3 to

obtain

C ≥ c16‖xk+1 − x∗‖2 + c17‖yk+1 − y∗‖2 + c18‖λk+1 − λ∗‖2, (4.13)

where c16, c17, c18 > 0 and the terms ‖xk − xk+1‖2, ‖yk − yk+1‖2, and ‖λk − λk+1‖2

with nonnegative coefficients have been dropped from the right-hand side of (4.13).

From (4.13), we obtain (4.1) with δ = min{c16λ−1max(P̂ ), c17λ
−1
max(Q), c18βγ} > 0.

Scenario 4 (recall it is scenario 3 plus that g is strongly convex). Since c11 =

2νg > 0 in (4.11), we can directly apply Lemma 4.3 to get (4.1) with δ > 0 in a way

similar to scenario 3.
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Now consider the case of P 6= 0 and the corresponding inequality (3.32). Inequal-

ities (3.32) and (3.37) are similar except (3.37) has the extra term ‖xk − xk+1‖2 with

a strictly positive coefficient in its right-hand side. This term is needed when Lemma

4.2 is applied. However, the assumptions of the theorem ensure P̂ � 0 whenever

P 6= 0. Therefore, in (3.32), the term ‖uk − uk+1‖2G, which contains ‖xk − xk+1‖2
P̂

,

can spare out a term c19‖xk − xk+1‖2 with c19 > 0. Therefore, following the same

arguments for the case of P = 0, we get (4.1) with certain δ > 0.

Now we extend the result in Theorem 4.1 (which is under γ = 1) to γ 6= 1 in the

following theorem.

Theorem 4.2. Under the same assumptions of Theorem 3.2 and γ 6= 1, for all

scenarios in Table 4.1,

i) if P 6= 0, there exists δ > 0 such that (4.1) holds;

ii) if P = 0, there exists δ > 0 such that

‖uk − u∗‖2G +
β

ρ
‖rk‖2 ≥ (1 + δ)

(
‖uk+1 − u∗‖2G +

β

ρ
‖rk+1‖2

)
. (4.14)

Proof. When γ 6= 1, which causes λk+1 6= λ̂. We shall bound ‖λk+1−λ∗‖2 but Lemmas

4.2 and 4.3 only give bounds on ‖λ̂−λ∗‖2. Noticing that (λ̂−λ∗)− (λk+1−λ∗) = λ̂−

λk+1 = (γ−1)rk+1 and C contains a strictly positive term in ‖λk−λk+1‖2 = γ2‖rk+1‖2,

we can bound ‖λk+1−λ∗‖2 by a positively weighted sum of ‖λ̂−λ∗‖2 and ‖λk−λk+1‖2.

If P 6= 0, the rest of the proof follows from that of Theorem 4.1.

If P = 0, γ 6= 1 leads to (3.36), which extends ‖ui−u∗‖2G in (3.37) to ‖ui−u∗‖2G+

β
ρ
‖ri‖2, for i = k, k + 1. Since C contains ‖λk − λk+1‖2 = γ2‖rk+1‖2 with a strictly

positive coefficient, one obtains (4.14) by using this term and following the proof of

Theorem 4.1.
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Q-linear convergent quantities

From the definition of G, which depends on P and Q, it is easy to see that the Q-

linear convergence of uk = (xk; yk;λk) translates to the Q-linear convergence results

in Table 4.2. For example, in case 1 (P = 0 and Q = 0), ‖uk+1 − u∗‖2G = ‖xk+1 −

x∗‖2
P̂

+ 1
βγ
‖λk+1 − λ∗‖2, where P̂ = P + βAAT = βATA. Hence, (Axk, λk) converges

Q-linearly. Examining ‖uk+1 − u∗‖2G gives the results for cases 2, 3, 4.

R-linear convergent quantities

By the definition of R-linear convergence, any part of a Q-linear convergent quantity

converges R-linearly. For example, in case 1 (P = 0 and Q = 0), the Q-linear

convergence of (Axk, λk) in Table 4.2 gives the R-linear convergence of Axk and λk.

Therefore, to establish Table 4.2, it remains to show the R-linear convergence of xk in

cases 1 and 3 and that of yk in cases 1 and 2. Our approach is to bound their errors

by existing R-linear convergent quantities.

Theorem 4.3 (R-linear convergence). The following statements hold.

i) In cases 1 and 3, if λk converges R-linearly, then xk converges R-linearly.

ii) In cases 1 and 2, scenario 1, if λk and xk both converge R-linearly, then Byk

converges R-linearly. In addition, if B has full column rank, then yk converges

R-linearly.

iii) In cases 1 and 2, scenarios 2–4, if λk and xk both converge R-linearly, then yk

converges R-linearly.

Proof. We only show the result for γ = 1 (thus λ̂ = λk+1); for γ 6= 1 (thus λ̂ 6= λk+1),

the results follow from those for γ = 1 and the R-linear convergence of ‖λ̂− λk+1‖2,



51

which itself follows from (3.16) and the R-linear convergence of λk (thus that of

λk − λk+1).

i) By (3.22) and P̂ = βATA, we have νf‖xk+1−x∗‖2 ≤ ‖A‖‖xk+1−x∗‖‖λk+1−λ∗‖,

which implies

‖xk+1 − x∗‖2 ≤ ‖A‖
2

ν2f
‖λk+1 − λ∗‖2. (4.15)

ii) The result follows from (3.24).

iii) Scenario 3 assumes the full column rank of B, so the result follows from (3.24).

In scenarios 2 and 4, g is strongly convex. Recall (3.23) with λ̂ = λk+1:

〈yk+1 − y∗, BT
(
λk+1 − λ∗ − βA(xk − xk+1)

)
+Q(yk − yk+1)〉 ≥ νg‖yk+1 − y∗‖2.

(4.16)

By the Cauchy-Schwarz inequality and Q = 0, we have

νg‖yk+1 − y∗‖ ≤ ‖B‖‖λk+1 − λ∗ − βA(xk − xk+1)‖. (4.17)

Therefore, the result follows from the R-linear convergence of xk and λk.

4.2.2 Explicit Formula of Linear Rate

To keep the proof of Theorem 4.1 easy to follow, we have avoided giving the explicit

formulas of ci’s and thus also those of δ. To give the reader an idea what quantities

affect δ, we now provide an explicit formula of δ for the classic ADMM (i.e., case 1

with γ = 1) under scenario 1.
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Corollary 4.1 (Convergence rate of classic ADMM under scenario 1). Under As-

sumptions 3.1 and 3.2, for scenario 1 in Table 4.1, the sequence {uk} of Algorithm 1

satisfies (4.1) with

δ = 2

(
β‖A‖2
νf

+
Lf

βλmin(AAT )

)−1
. (4.18)

In particular,choosing β =
√

Lfνf
‖A‖2λmin(AAT )

yields the largest δ:

δmax =
1

κA
√
κf
, (4.19)

where κA :=
√
λmax(AAT )/λmin(AAT ) is the condition number of matrix A, and

κf = Lf/νf is the condition number of function f .

Proof. Recall the important inequality (3.37) in Theorem 3.1:

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G

≥2νf‖xk+1 − x∗‖2 + 2νg‖yk+1 − y∗‖2 + ‖uk − uk+1‖2G + 2νf‖xk − xk+1‖2.
(4.20)

Note that the term νf‖xk+1 − x∗‖2 on the right-hand side comes from (3.22):

〈xk+1 − x∗, AT (λk+1 − λ∗)〉 ≥ νf‖xk+1 − x∗‖2, (4.21)

due to the strong convexity of f and the optimality conditions:

ATλk+1 = ∇f(xk+1), ATλ∗ = ∇f(x∗).

On the other hand, since ∇f is Lipschitz continuous and A has full row rank, using

(2.34) yields

〈xk+1−x∗, AT (λk+1−λ∗)〉 ≥ 1

Lf
‖AT (λk+1−λ∗)‖2 ≥ λmin(AAT )

Lf
‖λk+1−λ∗‖2. (4.22)

By combining (4.21) and (4.22), it follows that for any t ∈ [0, 1],

〈xk+1−x∗, AT (λk+1−λ∗)〉 ≥ t·νf‖xk+1−x∗‖2+(1−t)λmin(AAT )

Lf
‖λk+1−λ∗‖2. (4.23)
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Now, using (4.23) to replace (4.21) in our analysis in Section 3.3, the inequality (4.20)

can be further refined as

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G

≥ 2t · νf‖xk+1 − x∗‖2 + 2(1− t)λmin(AAT )

Lf
‖λk+1 − λ∗‖2

+ 2νg‖yk+1 − y∗‖2 + ‖uk − uk+1‖2G + 2νf‖xk − xk+1‖2, ∀t ∈ [0, 1].

(4.24)

In particular, letting

t =

(
1 +

Lfνf
β2‖A‖2λmin(AAT )

)−1
, (4.25)

we have

2t · νf‖xk+1 − x∗‖2 + 2(1− t)λmin(AAT )

Lf
‖λk+1 − λ∗‖2

≥δ
(
β‖A‖2‖xk+1 − x∗‖2 +

1

β
‖λk+1 − λ∗‖2

)
≥ δ‖uk+1 − u∗‖2G, (4.26)

where δ > 0 is given by (4.18). Then (4.1) follows from (4.24) and (4.26) immediately.

Not surprisingly, the convergence rate under scenario 1 is negatively affected by

the condition numbers of A and f . For other scenarios, the formulas of δ can also be

similarly obtained by deriving the specific values of ci’s in our analysis. However, they

appear to be more complicated than the nice formula (4.19) for scenario 1. A close

look at these formulas of ci’s reveals that the convergence rate is negatively affected

by the condition numbers of the constraint matrices A, B and [A,B], as well as the

condition numbers of the objective functions f and g. Due to page limit, we leave

other scenarios/cases and further analysis to future research.

Remark 4.2. It is well known that the penalty parameter β can significantly affect the

speed of ADMM. Since the rate of convergence developed in this section is a function
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of β, the rate can be optimized over β which sheds some lights on how to choose a

“good” β. More analysis and numerical simulations are left as future research.

4.2.3 Comparison with Linear Rate of DRSM

It is known that applying the classic ADMM to problem (2.6) is equivalent to applying

the Douglas-Rachford splitting method (DRSM) to the dual of (2.6). (However, it

is unclear to which splitting methods the various ADMM generalizations correspond

to.) In this subsection, we review the classic linear convergence result [40] of DRSM.

In comparison, we show that our linear rate for the classic ADMM is considerably

better than the one in [40].

The dual of (2.6) is given by

min
λ

{
−min

x,y
f(x) + g(y)− λ>(Ax+By − b)

}
= min

λ
f ∗(A>λ) + g∗(B>λ)− b>λ,

(4.27)

where f ∗ and g∗ are the convex conjugate functions of f and g, respectively. Define

the maximal monotone operators A and B as follows:

A(λ) := ∂[g∗(B>λ)]− b, B(λ) := ∂[f ∗(A>λ)]. (4.28)

Then (4.27) is equivalent to finding a zero of the sum of two maximal monotone

operators:

0 ∈ A(λ) + B(λ). (4.29)

Applying DRSM to the above problem yields the following algorithm:

vk+1 = JβA(2JβB − I)vk + (I − JβB)vk, (4.30)

λk+1 = JβBv
k+1, (4.31)
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where JβA = (I +βA)−1 and JβB = (I +βB)−1 are the resolvent operators. After some

calculation, it can be shown that this algorithm is equivalent to the classic ADMM

(Algorithm 1) [20]. Here, the variable v corresponds to

vk = βAxk + λk. (4.32)

The linear convergence of DRSM was established by Lions and Merciers [40]. We

summarize their result in the following theorem.

Theorem 4.4 (Lions and Mercier [40]). Assume the operator B is both coercive and

Lipschitz. Namely, there exists α > 0 and M > 0 such that

〈B(λ1)− B(λ2), λ1 − λ2〉 ≥ α‖λ1 − λ2‖2, (4.33)

‖B(λ1)− B(λ2)‖ ≤M‖λ1 − λ2‖. (4.34)

Then, there exists a constant C > 0 such that

‖λk − λ∗‖2 ≤ C · θk, ‖vk+1 − v∗‖2 ≤ θ · ‖vk − v∗‖2, (4.35)

where

θ = 1− 2βα

(1 + βM)2
. (4.36)

The smallest θ is given by

θmin = 1− α

2M
, (4.37)

which corresponds to β = 1/M .

Under the assumptions of Scenario 1 of Table 4.1, f is strongly convex with

constant νf , gradient ∇f is Lipschitz with constant Lf , and matrix A has full row

rank. Then the operator B := ∂[f ∗ ◦A>] is coercive and Lipschitz with the constants

α = λmin(AA>)/Lf , M = ‖A‖2/νf . (4.38)
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Hence, the linear convergence of ADMM follows from Theorem 4.4, and the optimal

linear rate is given by

θmin = 1− λmin(AA>)νf
2‖A‖2Lf

= 1− 1

2κ2Aκf
. (4.39)

In contrast, our linear rate (4.19) is given by

1

1 + δmax

= 1− δmax +O(δ2max) = 1− 1

κA
√
κf

+O

(
1

κ2Aκf

)
, (4.40)

which is better than (4.39). By careful inspection, it is also clear that our linear rate

(4.18) considerably improves the classic rate (4.36) in [40].

4.3 Applications

This section describes several well-known optimization models on which Algorithm 2

not only enjoys global linear convergence but also often has easy-to-solve subproblems.

4.3.1 Convex Regularization

Consider the convex regularization models discussed in Section 2.3:

min
x
f(Ax− b) + g(x), (4.41)

where f is the loss function and g is the regularization function. In many applications,

the loss function f is typically a strongly convex function with Lipschitz continuous

gradient, such as the commonly used squared `2-norm ‖ · ‖22 for least squares. If

matrix A has full column rank, then the term f(Ax− b) is strongly convex in x and

the following reformulation of the problem (4.41):

min
x,y

f(Ax− b) + g(y)

s.t. x− y = 0,

(4.42)
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satisfies the scenario 1 in Table 4.1.

If matrix A is column-rank deficient, then f(Ax − b) is not strongly convex in

x. Alternatively, we may consider the following equivalent problem after introducing

y = Ax− b:

min
x,y

g(x) + f(y)

s.t. Ax− y = b.

(4.43)

Then it satisfies the scenario 1 in Table 4.1 if the x-subproblem can be solved exactly

with P = 0 (since full column rank of A is needed if P � 0). Moreover, if the

regularization function g is also strongly convex, then the problem will satisfy the

scenorio 2 or 4, depending on whether g has Lipschitz continuous gradient. As one

of the most commonly used regularization methods, the Tikhonov regularization, also

known as ridge regression in statistics:

min
x
‖Ax− b‖2 + λ‖x‖2 (λ > 0) (4.44)

is an example of scenario 4, that both f and g are strongly convex and have Lipschitz

continuous gradients.

4.3.2 Sparse Optimization

Elastic net (augmented `1) model:

min
x
‖x‖1 + α‖x‖2 +

1

2µ
‖Ax− b‖2, (4.45)

where A ∈ Rm×n, α > 0 and µ > 0 are parameters. It has been shown that the

elastic model can effectively recover sparse vectors and outperform Lasso (α = 0) on

reported real-world regression problems [63]. With the constraint x = y, (4.45) can
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be reformulated as:

min
x,y
‖y‖1 + α‖x‖2 +

1

2µ
‖Ax− b‖2

s.t. x− y = 0.

(4.46)

Similarly, the elastic net model can be extended for recovering low-rank matrices.

Augmented nuclear-norm model:

min
X
‖X‖∗ + α‖X‖2F +

1

2µ
‖A(X)− b‖2, (4.47)

where α > 0 and µ > 0 are parameters, A : Rm×n → Rp is a linear operator, ‖ · ‖F
denotes the Frobenius norm, and ‖·‖∗ denotes the nuclear norm. By variable splitting

X = Y , (4.47) can be reformulated as:

min
X,Y
‖Y ‖∗ + α‖X‖2F +

1

2µ
‖A(X)− b‖2

s.t. X − Y = 0.

(4.48)

In (4.46) and (4.48), both of the functions f(x) = α‖x‖2 + 1
2µ
‖Ax − b‖2 and

f(X) = α‖X‖2F + 1
2µ
‖A(X)− b‖2 are strongly convex and have Lipschitz continuous

gradients. Therefore, they satisfy the scenario 1 of Table 4.1.

4.3.3 Consensus and Sharing Optimization

As discussed in Section 2.3, we consider the global consensus problem with regular-

ization:

min
{xi},y

N∑
i=1

fi(xi) + g(y)

s.t.


x1
...

xN

−

−I

...

−I

 y = 0,

(4.49)
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and the sharing problem:

min
{xi},{yi}

N∑
i=1

fi(xi) + g

(
N∑
i=1

yi

)
, s.t. xi − yi = 0, i = 1, . . . , N, (4.50)

where fi’s are local cost functions and g is the regularization or shared cost function.

If each function fi is strongly convex and has Lipschitz continuous gradient, then

both problems (4.49) and (4.50) satisfy the conditions in scenario 1 of Table 4.1. If the

function g is strongly convex and both f and g have Lipschitz continuous gradients,

then problem (4.49) satisfies scenario 3 or 4, depending on whether each function fi

is strongly convex.

4.4 Numerical Demonstration

We present some simple numerical results to demonstrate the linear convergence of

Algorithm 2 on the elastic net and distributed Lasso problems.

4.4.1 Elastic Net

We apply Algorithm 2 with P = 0 and Q = 0 to a small elastic net problem (4.46),

where the feature matrix A has m = 250 examples and n = 1000 features. We first

generated the matrix A from the standard Gaussian distribution N (0, 1) and then

orthonormalized its rows. A sparse vector x0 ∈ Rn was generated with 25 nonzero

entries, each sampled from the standard Gaussian distribution. The observation

vector b ∈ Rm was then computed by b = Ax0 + ε, where ε ∼ N (0, 10−3I). We chose

the model parameters α = 0.1 and µ = 10−2, which we found to yield reasonable

accuracy for recovering the sparse solution. We initialized all the variables at zero

and set the algorithm parameters β = 100 and γ = 1. We ran the algorithm for 200

iterations and recorded the errors at each iteration with respect to a precomputed
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reference solution u∗.

Figure 4.1(a) shows the decreasing behavior of ‖uk−u∗‖2G(:= β‖xk−x∗‖2 +‖λk−

λ∗‖2/β) as the algorithm progresses. Since variable y is not contained in the G-norm,

we also plot the convergence curve of ‖yk − y∗‖2 in Figure 4.1(b). We observe that

both uk and yk converge at similar linear rates. In addition, the convergence appears

to have different stages. The later stage exhibits faster convergence rate than the

earlier stage. This can be clearly seen in Figure 4.2 which depicts the Q-linear rate

‖uk+1 − u∗‖2G/‖uk − u∗‖2G.
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Figure 4.1 : Elastic net: convergence curves of ADMM.

Here, the strong convexity constant of f is νf = 2α + λmin(ATA)/µ = 2α and

the Lipschitz constant of ∇f is Lf = 2α + λmax(A
TA)/µ = 2α + 1/µ. By (4.18),

our bound for the global linear rate is (1 + δ)−1 = 0.996, which roughly matches

the early-stage rate shown in the figure. However, our theoretical bound is rather

conservative, since it is a global worst-case bound and it does not take into account

the properties of the `1 norm and the solution. In fact, the optimal solution x∗ is

very sparse and xk will also become sparse after a number of iterations. Let S be an
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Figure 4.2 : Elastic net: Q-linear convergence rate of ADMM.

index set of the nonzero support of (xk − x∗), and AS be a submatrix composed of

those columns of A indexed by S. Then, the constants νf and Lf in our bound can

be effectively replaced by ν̄f = 2α + λmin(ATSAS)/µ and L̄f = 2α + λmax(A
T
SAS)/µ,

thereby accounting for the faster convergence rate in the later stage. For example,

letting S be the nonzero support of the optimal solution x∗, we obtain an estimate

of the (asymptotic) linear rate (1 + δ)−1 = 0.817, which well matches the later-stage

rate.

4.4.2 Distributed Lasso

We consider solving the Lasso problem in a distributed way [41]:

min
{xi},y

N∑
i=1

1

2µ
‖Aixi − bi‖2 + ‖y‖1

s.t. xi − y = 0, i = 1, . . . , N,

(4.51)

which is an instance of the global consensus problem with regularization (2.21).
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We apply Algorithm 2 with P = 0 and Q = 0 to a small distributed Lasso problem

(4.51) with N = 5, where each Ai has m = 600 examples and n = 500 features. Each

Ai is a tall matrix and has full column rank, yielding a strongly convex objective

function in xi. Therefore, Algorithm 2 is guaranteed to converge linearly.

We generated the data similarly as in the elastic net test. We randomly generated

each Ai from the standard Gaussian distribution N (0, 1), and then simply scaled

its columns to have a unit length. We generated a sparse vector x0 ∈ Rn with 250

nonzero entries, each sampled from the N (0, 1) distribution. Each bi ∈ Rm was then

computed by bi = Aix
0 + εi, where εi ∼ N (0, 10−3I). We chose the model parameter

µ = 0.1, which we found to yield reasonably good recovery quality. From the initial

point at zero, we ran the algorithm with parameters β = 10 and γ = 1 for 50 iterations

and computed the iterative errors.

Figure 4.3 demonstrates the clear linear convergence behavior of ‖uk − u∗‖2G and

‖yk − y∗‖2. In Figure 4.4, the Q-linear convergence rate of ‖uk − u∗‖2G is depicted.

For this problem, the strong convexity constant is νf = mini{λmin(ATi Ai)/µ} and the

Lipschitz constant is Lf = maxi{λmax(A
T
i Ai)/µ}. However, the condition number

νf/Lf in this test is relatively big, and hence the theoretical linear rate specified by

(4.19) is not a very tight bound for the observed fast rate. Note that all xi’s tend

to be equal and become sparse after a number of iterations. Similar to our previous

discussion in Section 4.4.1, we can estimate the asymptotic linear rate by letting

ν̄f = λmin(ATSAS)/(µN) and L̄f = λmax(A
T
SAS)/(µN), where A ∈ RNm×n is formed

by stacking all the matrices Ai (i = 1, . . . , N), and S is an index set of the nonzero

support of x∗. We obtained the asymptotic linear rate to be (1 + δ)−1 = 0.779, which

appears to be a much tighter bound.
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Figure 4.3 : Distributed Lasso: convergence curves of ADMM.
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Chapter 5

Parallel Multi-Block ADMM

This chapter introduces a parallel and multi-block extension to the alternating direc-

tion method of multipliers (ADMM) for solving convex problem:

minimize f1(x1) + · · ·+ fN(xN)

subject to A1x1 + · · ·+ ANxN = c,

x1 ∈ X1, . . . , xN ∈ XN .

The proposed algorithm decomposes the original problem into N smaller subproblems

and solves them in parallel at each iteration. It is well suited to distributed computing

and is particularly attractive for solving certain large-scale problems.

This chapter is organized as follows. In Section 5.1, we briefly review some existing

parallel and distributed algorithms for solving the above optimization problem. Then

we introduce a few novel results in the following sections. In Section 5.2, we show

that extending ADMM straightforwardly from the classic Gauss-Seidel setting to the

Jacobi setting, from 2 blocks to N blocks, will preserve convergence if matrices Ai

are mutually near-orthogonal and have full column-rank. In Section 5.3, for general

matrices Ai, we propose to add proximal terms of different kinds to theN subproblems

so that the subproblems can be solved in flexible and efficient ways and the algorithm

converges globally at a rate of o(1/k). We also introduce a strategy for dynamically

tuning the parameters in the algorithm, often leading to substantial acceleration of the

convergence in practice. In Section 5.4, numerical results are presented to demonstrate
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the efficiency of the proposed algorithm in comparison with several existing parallel

algorithms. We also implemented our algorithm on Amazon EC2, an on-demand

public computing cloud, and report its performance on very large-scale basis pursuit

problems with distributed data.

5.1 Introduction

We consider the following convex optimization problem with N (N ≥ 2) blocks of

variables:

min
x1,x2,...,xN

N∑
i=1

fi(xi) s.t.
N∑
i=1

Aixi = c, (5.1)

where xi ∈ Rni , Ai ∈ Rm×ni , c ∈ Rm, and fi : Rni → (−∞,+∞] are closed proper

convex functions, i = 1, 2, . . . , N . If an individual block is subject to constraint

xi ∈ Xi, where Xi ⊆ Rni is a nonempty closed convex set, it can be incorporated in

the objective function fi using the indicator function:

IXi(xi) =

 0 if xi ∈ Xi,

+∞ otherwise.
(5.2)

In this study, we do not impose any additional assumptions such as strict convexity

or differentiability on the objective functions fi.

The problem (5.1) is also referred to as an extended monotropic programming

problem [2]. The special case that each xi is a scalar (i.e., ni = 1) is called a

monotropic programming problem [51]. Such optimization problems arise from a

broad spectrum of applications including numerical partial differential equations,

signal and image processing, compressive sensing, statistics and machine learning.

See [1, 4, 8, 22,43,46,47,55,60] and the references therein for a number of examples.

We focus on parallel and distributed optimization algorithms for solving the prob-

lem (5.1). Due to the dramatically increasing demand for dealing with big data,
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parallel and distributed computational methods are highly desirable. Since both of

the objective function and constraints of (5.1) are summations of terms on individ-

ual xi’s (we call them separable), the problem can be decomposed into N smaller

subproblems, which can be solved in a parallel and distributed manner.

5.1.1 Literature review

A simple distributed algorithm for solving (5.1) is dual decomposition [19], which is

essentially a dual ascent method or dual subgradient method [53] as follows. Consider

the Lagrangian for problem (5.1):

L(x1, . . . ,xN , λ) =
N∑
i=1

fi(xi)− λ>
(

N∑
i=1

Aixi − c
)

(5.3)

where λ ∈ Rm is the Lagrangian multiplier or the dual variable. The method of dual

decomposition iterates as follows: for k ≥ 1,
(xk+1

1 ,xk+1
2 , . . . ,xk+1

N ) = arg min{xi} L(x1, . . . ,xN , λ
k),

λk+1 = λk − αk
(∑N

i=1Aix
k+1
i − c

)
,

(5.4)

where αk > 0 is a step-size. Since all the xi’s are separable in the Lagrangian function

(5.3), the x-update step reduces to solving N individual xi-subproblems:

xk+1
i = arg min

xi

fi(xi)− 〈λk, Aixi〉, for i = 1, 2, . . . , N, (5.5)

and thus they can be carried out in parallel. With suitable choice of αk and certain

assumptions, dual decomposition is guaranteed to converge to an optimal solution

[53]. However, the convergence of such subgradient method often tends to be slow in

practice. Its convergence rate for general convex problems is O(1/
√
k).

Another effective distributed approach is based on the alternating direction method

of multipliers (ADMM). As we know, ADMM was introduced to solve the special case
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of problem (5.1) with only two blocks of variables (i.e., N = 2). To solve the problem

(5.1) with N ≥ 3, one can first convert the multi-block problem into an equivalent

two-block problem and then solve it by ADMM. The problem reformulation is done

via variable splitting [1]:

min
{xi},{zi}

N∑
i=1

fi(xi)

s.t. Aixi − zi =
c

N
, ∀i = 1, 2, . . . , N,

N∑
i=1

zi = 0,

(5.6)

or equivalently,

min
{xi},{zi}

N∑
i=1

fi(xi) + IZ(z1, . . . , zN)

s.t. Aixi − zi =
c

N
, ∀i = 1, 2, . . . , N,

(5.7)

where IZ is an indicator function defined by (5.2), and the convex set Z is given by

Z =

{
(z1, . . . , zN) :

N∑
i=1

zi = 0

}
.

The variables zi (we call them splitting variables) are introduced to decouple the xi’s

in the constraints. Now we group the variables into two blocks: x := (x1, . . . ,xN) and

z := (z1, . . . , zN). Then ADMM can be applied directly. The augmented Lagrangian

for (5.7) is given by

Lβ(x, z, λ) =
N∑
i=1

fi(xi)+IZ(z)−
N∑
i=1

λ>i

(
Aixi − zi −

c

N

)
+
β

2

N∑
i=1

∥∥∥Aixi − zi −
c

N

∥∥∥2 .
(5.8)

Since all the xi’s are now fully decoupled, the resulting x-subproblem decomposes

into N individual xi-subproblems:

xk+1
i = arg min

xi

fi(xi) +
β

2

∥∥∥∥Aixi − zk+1
i − c

N
− λki

β

∥∥∥∥2 , (5.9)
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which can be carried out in parallel. The resulting z-subproblem is a simple quadratic

problem:

zk+1 = arg min
{z:

∑N
i=1 zi=0}

N∑
i=1

β

2

∥∥∥∥Aixi − zi −
c

N
− λki

β

∥∥∥∥2 , (5.10)

which admits a closed-form solution:

zk+1
i =

(
Aix

k
i −

c

N
− λki

β

)
− 1

N

{
N∑
j=1

Ajx
k
j −

c

N
− λkj

β

}
. (5.11)

We summarize the algorithm below:

Algorithm 3: Variable Splitting ADMM (VSADMM)

1 Initialize x0, λ0, β > 0;

2 for k = 0, 1, . . . do

3 Update zi then xi for i = 1, . . . , N in parallel by:

zk+1
i =

(
Aix

k
i − c

N
− λki

β

)
− 1

N

{∑N
j=1Ajx

k
j − c

N
− λkj

β

}
;

4 xk+1
i = arg minxi

fi(xi) + β
2

∥∥∥Aixi − zk+1
i − c

N
− λki

β

∥∥∥2;
5 Update λk+1

i = λki − β
(
Aix

k+1
i − zk+1

i − c
N

)
, ∀i = 1, . . . , N .

This ADMM approach based on (5.7), by introducing splitting variables, sub-

stantially increases the number of variables and constraints in the problem, especially

when N is large. Alternatively, we aim to develop a parallel and multi-block extension

of ADMM that solves (5.1) directly without splitting variables.

A straightforward multi-block extension of ADMM is to use a sweep of Gauss-

Seidel update to minimize the augmented Lagrangian. Namely, it updates xi for
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i = 1, 2, . . . , N sequentially as follows:

xk+1
i = arg min

xi

Lβ(xk+1
1 , . . . ,xk+1

i−1 ,xi,x
k
i+1, . . . ,x

k
N , λ

k)

= arg min
xi

fi(xi) +
β

2

∥∥∥∥∥∑
j<i

Ajx
k+1
j + Aixi +

∑
j>i

Ajx
k
j − c−

λk

β

∥∥∥∥∥
2

, (5.12)

where Lβ is the augmented Lagrangian for (5.1):

Lβ(x1, . . . ,xN , λ) =
N∑
i=1

fi(xi)− λ>
(

N∑
i=1

Aixi − c
)

+
β

2

∥∥∥∥∥
N∑
i=1

Aixi − c
∥∥∥∥∥
2

. (5.13)

Such Gauss-Seidel ADMM (Algorithm 4) has been considered lately, e.g., in [34,38].

It has been shown that the algorithm may not converge forN ≥ 3 [9]. Although lack of

convergence guarantee, some empirical studies show that the Gauss-Seidel ADMM is

still very effective at solving many practical problems (see, e.g., [47,55,58]). However,

as the Gauss-Seidel ADMM updates the blocks sequentially one after another, it is

not amenable for parallelization.

Algorithm 4: Gauss-Seidel ADMM

1 Initialize x0, λ0, β > 0;

2 for k = 0, 1, . . . do

3 Update xi for i = 1, . . . , N sequentially by:

xk+1
i = minxi fi(xi) + β

2

∥∥∥∑j<iAjx
k+1
j + Aixi +

∑
j>iAjx

k
j − c− λk

β

∥∥∥2;
4 Update λk+1 = λk − β

(∑N
i=1Aix

k+1
i − c

)
.

5.1.2 Jacobi-Type ADMM

A parallel counterpart of the Gauss-Seidel ADMM is the Jacobi ADMM (see Algo-

rithm 5 below). Unlike the Gauss-Seidel ADMM, the Jacobi ADMM updates all the
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blocks in parallel at every iteration:

xk+1
i = arg min

xi

Lβ(xk1, . . . ,x
k
i−1,xi,x

k
i+1, . . . ,x

k
N , λ

k)

= arg min
xi

fi(xi) +
β

2

∥∥∥∥∥Aixi +
∑
j 6=i

Ajx
k
j − c−

λk

β

∥∥∥∥∥
2

, ∀i = 1, . . . , N. (5.14)

Therefore, it is well suited to parallel and distributed computation.

Algorithm 5: Jacobi ADMM

1 Initialize x0, λ0, β > 0;

2 for k = 0, 1, . . . do

3 Update xi for i = 1, . . . , N in parallel by:

xk+1
i = arg minxi

fi(xi) + β
2

∥∥∥Aixi +
∑

j 6=iAjx
k
j − c− λk

β

∥∥∥2;
4 Update λk+1 = λk − β

(∑N
i=1Aix

k+1
i − c

)
.

On the other hand, such straightforward parallelization comes with a cost: the

augmented Lagrangian is minimized “less accurately” than it is in the Gauss-Seidel

scheme. Hence, this Jacobi ADMM is more likely to diverge than the Gauss-Seidel

ADMM. In fact, it may diverge even when N = 2; see [33] for such an example. A

few variants of Jacobi ADMM have been proposed which take certain correction steps

to ensure its convergence [32,33].

In order to guarantee the convergence of Jacobi ADMM, either additional as-

sumptions or modifications to Algorithm 5 must be made. Therefore, we discuss

along these two lines in the rest of the chapter. In Section 5.2, we provide a sufficient

condition for the convergence of Algorithm 5 by assuming the “near-orthogonality”

of the matrices Ai. In Section 5.3, we propose a simple modification to Algorithm 5

— called Jacobi-Proximal ADMM — which converges at a rate of o(1/k).
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5.1.3 Notation and Assumptions

To simplify the notation, we introduce

x :=


x1

...

xN

 ∈ Rn, A :=

(
A1, . . . , AN

)
∈ Rm×n, u :=

x

λ

 ∈ Rn+m,

where

n =
N∑
i=1

ni.

Throughout this chapter, we make the following standard assumptions.

Assumption 5.1. Functions fi : Rni → (−∞,+∞] (i = 1, 2, . . . , N) are closed

proper convex.

Assumption 5.2. There exists a saddle point u∗ = (x∗1,x
∗
2, . . . ,x

∗
N , λ

∗) to the problem

(5.1). Namely, u∗ satisfies the KKT conditions:

A>i λ
∗ ∈ ∂fi(x∗i ), for i = 1, . . . , N, (5.15)

Ax∗ =
N∑
i=1

Aix
∗
i = c. (5.16)

The optimality conditions (5.15) and (5.16) can be written in a more compact form

by the following variational inequality [33]:

f(x)− f(x∗) + (u− u∗)>F (u∗) ≥ 0, ∀u, (5.17)

where f(x) :=
∑

i fi(xi) and

F (u) :=



−A>1 λ
...

−A>Nλ

Ax− c


.
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5.2 On the Convergence of Jacobi ADMM

In this section, we provide a sufficient condition to guarantee the convergence of Ja-

cobi ADMM (Algorithm 5). The condition only depends on the coefficient matrices

Ai, without imposing further assumptions on the objective functions fi or the penalty

parameter β. For the Gauss-Seidel ADMM (Algorithm 4), a sufficient condition for

convergence is given in [9] for the special case N = 3, assuming two of the three

coefficient matrices are orthogonal. Our condition does not require exact orthogonal-

ity. Instead, we mainly assume that the matrices Ai, i = 1, 2, . . . , N are mutually

“near-orthogonal” and have full column-rank.

Theorem 5.1. Suppose that there exists δ >= 0 such that

‖A>i Aj‖ ≤ δ, ∀ i 6= j, and λmin(A>i Ai) > 3(N − 1)δ, ∀ i, (5.18)

where λmin(A>i Ai) denotes the smallest eigenvalue of A>i Ai. Then the sequence {uk}

generated by Algorithm 5 converges to a solution u∗ to the problem (5.1).

The proof technique is motivated by the contraction analysis of the sequence {uk}

under some G-norm (e.g., see [13, 33, 36]). To prove the theorem, we first need the

following lemma:

Lemma 5.1. Let

G0 :=



βA>1 A1

. . .

βA>NAN

1
β
I


, S0 :=



βA>1 A1 A>1
. . .

...

βA>NAN A>N

A1 . . . AN
1
β
I


,

where I is the identity matrix of size m×m. For k ≥ 1, we have

‖uk − u∗‖2G0
− ‖uk+1 − u∗‖2G0

≥ ‖uk − uk+1‖2S0
, (5.19)
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where

‖uk − uk+1‖2S0
= ‖uk − uk+1‖2G0

+ 2(λk − λk+1)>A(xk − xk+1). (5.20)

This lemma follows directly from Lemma 5.2 (which will be proved in the next

section), since it is a special case with γ = 1 and Pi = 0, ∀i. Now we are ready to

prove the theorem.

Proof of Theorem 5.1. By the assumption ‖A>i Aj‖ ≤ δ, i 6= j, we have∣∣∣∣∣∑
i6=j

〈Aiai, Ajbj〉
∣∣∣∣∣ ≤∑

i6=j

δ‖ai‖‖bj‖ ≤
δ

2
(N − 1)(‖a‖2 + ‖b‖2), ∀ a,b. (5.21)

To simplify the notation, we let

aki := xki − x∗i , i = 1, 2, . . . , N. (5.22)

Note that

λk − λk+1 = βAak+1, xk − xk+1 = ak − ak+1.

Then, we can rewrite (5.20) as

1

β
‖uk − uk+1‖2S0

=
∑
i

‖Ai(aki − ak+1
i )‖2 + ‖Aak+1‖2 + 2〈Aak+1, A(ak − ak+1)〉

(5.23)

=
∑
i

‖Aiaki ‖2 + 2
∑
i6=j

〈Aiak+1
i , Aja

k
j 〉 −

∑
i6=j

〈Aiak+1
i , Aja

k+1
j 〉 (5.24)

≥
∑
i

‖Aiaki ‖2 − (N − 1)δ(‖ak+1‖2 + ‖ak‖2)− (N − 1)δ‖ak+1‖2

(5.25)

=
∑
i

‖Aiaki ‖2 − (N − 1)δ‖ak‖2 − 2(N − 1)δ‖ak+1‖2, (5.26)
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where the inequality (5.25) comes from (5.21). By Lemma 5.1, we have

‖uk − u∗‖2G0
− 2(N − 1)δβ‖ak‖2

≥‖uk+1 − u∗‖2G0
− 2(N − 1)δβ‖ak+1‖2 + β

∑
i

‖Aiaki ‖2 − 3(N − 1)δβ‖ak‖2. (5.27)

We further simplify (5.27) as

bk − bk+1 ≥ dk, (5.28)

where the sequences {bk} and {dk} are defined by

bk := ‖uk − u∗‖2G0
− 2(N − 1)δβ‖ak‖2, (5.29)

dk := β
∑
i

‖Aiaki ‖2 − 3(N − 1)δβ‖ak‖2. (5.30)

By the definition of G0, we have

bk = β
∑
i

‖Aiaki ‖2 − 2(N − 1)δβ‖aki ‖2 +
1

β
‖λk − λ∗‖2. (5.31)

Since we assume λmin(A>i Ai) > 3(N − 1)δ, it follows that

‖Aiaki ‖2 ≥ 3(N − 1)δ‖aki ‖2, ∀i. (5.32)

Then it is easy to see that bk ≥ 0 and dk ≥ 0. By (5.28), the nonnegative sequence

{bk} is monotonically non-increasing. Hence, {bk} converges to some b∗ ≥ 0. By

(5.28), it also follows that dk → 0. Therefore, ak → 0, i.e., xk → x∗.

Next we show λk → λ∗. By taking limit of (5.31) and using ak → 0, we have

b∗ = lim
k→∞

bk = lim
k→∞

1

β
‖λk − λ∗‖2. (5.33)

To show λk → λ∗, it thus suffices to show b∗ = 0.

By (5.33), {λk} is bounded and must have a convergent subsequence λkj → λ̄.

Recall the optimality conditions for the xi-subproblems (5.14):

A>i

(
λk − β(Aix

k+1
i +

∑
j 6=i

Ajx
k
j − c)

)
∈ ∂fi(xk+1

i ). (5.34)
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By Theorem 24.4 of [52], taking limit over the subsequence {kj} on both sides of

(5.34) yields:

A>i λ̄ ∈ ∂fi(x∗i ), ∀ i. (5.35)

Therefore, (x∗, λ̄) satisfies the KKT conditions of the problem (5.1). Since (x∗, λ∗) is

any KKT point, now we let λ∗ = λ̄. By (5.33) and ‖λkj − λ∗‖2 → 0, we must have

b∗ = 0, thereby completing the proof.

5.3 Jacobi-Proximal ADMM

In this section, we propose the Jacobi-Proximal ADMM (Algorithm 6). Compared

with Algorithm 5, we introduce a proximal term 1
2
‖xi − xki ‖2Pi (Pi � 0) for each

xi-subproblem and a damping parameter γ > 0 for the update of λ.

Algorithm 6: Jacobi-Proximal ADMM

1 Initialize: x0
i (i = 1, 2, . . . , N) and λ0;

2 for k = 0, 1, . . . do

3 Update xi for i = 1, . . . , N in parallel by:

xk+1
i = arg minxi

fi(xi) + β
2

∥∥∥Aixi +
∑

j 6=iAjx
k
j − c− λk

β

∥∥∥2 + 1
2

∥∥xi − xki
∥∥2
Pi

;

4 Update λk+1 = λk − γβ(
∑N

i=1Aix
k+1
i − c).

The proposed algorithm has a few advantages. First of all, as we will show, it

enjoys global convergence as well as an o(1/k) convergence rate under conditions on Pi

and γ. Secondly, when the xi-subproblem is not strictly convex, adding the proximal

term can make the subproblem strictly or strongly convex, making it more stable.

Thirdly, we provide multiple choices for matrices Pi with which the subproblems can
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be made easier to solve. For example, in many cases that A>i Ai is ill-conditioned

or computationally expensive to invert, the xi-subproblem becomes difficult to solve

exactly which contains a quadratic term β
2
xiA

>
i Aixi. One can let Pi = Di − βA>i Ai,

which effectively replaces the quadratic term β
2
xiA

>
i Aixi by 1

2
xiDixi. The matrix Di

can be chosen as some well-conditioned and simple matrix (such as identity matrix,

diagonal matrix and so on), thereby leading to an easier subproblem. Various choices

of Pi have been discussed in Section 3.2.1. The use of flexible proximal terms makes

it possible to solve its subproblems in different ways, important for easy coding and

fast computation.

In this section, we mainly study the convergence of the Jacobi-Proximal ADMM.

We first show its convergence and then establish an o(1/k) convergence rate in the

same sense as in [35]. Furthermore, we discuss how to tune the parameters in order to

make the algorithm more practical. Our numerical results on the exchange problem

and the basis pursuit problem show that the proposed algorithm achieves competitive

performance, in comparison with several existing parallel algorithms.

5.3.1 Convergence

To simplify the notation, we let

Gx :=


P1 + βA>1 A1

. . .

PN + βA>NAN

 , G :=

Gx

1
γβ

I

 ,
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and

S :=



P1 + βA>1 A1
1
γ
A>1

. . .
...

PN + βA>NAN
1
γ
A>N

1
γ
A1 . . . 1

γ
AN

2−γ
βγ2

I


, (5.36)

where I is the identity matrix of size m ×m. In the rest of the section, we let {uk}

denote the sequence generated by Jacobi-Proximal ADMM from any initial point.

The analysis is based on bounding the error ‖uk − u∗‖2G and estimating its decrease,

motivated by the works [13,33,36].

Lemma 5.2. For k ≥ 1, we have

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ ‖uk − uk+1‖2S, (5.37)

where

‖uk − uk+1‖2S = ‖xk − xk+1‖2Gx +
2− γ
βγ2

‖λk − λk+1‖2 +
2

γ
(λk − λk+1)>A(xk − xk+1).

(5.38)

Proof. Recall that in Algorithm 6, we solve the following xi-subproblem:

xk+1
i = arg min

xi

fi(xi) +
β

2

∥∥∥∥∥Aixi +
∑
j 6=i

Ajx
k
j − c−

λk

β

∥∥∥∥∥
2

+
1

2
‖xi − xki ‖2Pi .

Its optimality condition is given by

A>i

(
λk − β(Aix

k+1
i +

∑
j 6=i

Ajx
k
j − c)

)
+ Pi(x

k
i − xk+1

i ) ∈ ∂fi(xk+1
i ). (5.39)

For convenience, we introduce λ̂ := λk − β(Axk+1 − c). Then (5.39) can be rewritten

as

A>i

(
λ̂− β

∑
j 6=i

Aj(x
k
j − xk+1

j )

)
+ Pi(x

k
i − xk+1

i ) ∈ ∂fi(xk+1
i ). (5.40)
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By Lemma 2.1, it follows from (5.15) and (5.40) that〈
Ai(x

k+1
i − x∗i ), λ̂− λ∗ − β

∑
j 6=i

Aj(x
k
j − xk+1

j )

〉
+ (xk+1

i − x∗i )
>Pi(x

k
i − xk+1

i ) ≥ 0.

Summing the above inequality over all i and using the following equality for each i:

∑
j 6=i

Aj(x
k
j − xk+1

j ) = A(xk − xk+1)− Ai(xki − xk+1
i ),

we obtain

〈A(xk+1 − x∗), λ̂− λ∗〉+
N∑
i=1

(xk+1
i − x∗i )

>(Pi + βA>i Ai)(x
k
i − xk+1

i )

≥ β〈A(xk+1 − x∗), A(xk − xk+1)〉.
(5.41)

Note that

A(xk+1 − x∗) =
1

γβ
(λk − λk+1),

and

λ̂− λ∗ = (λ̂− λk+1) + (λk+1 − λ∗) =
γ − 1

γ
(λk − λk+1) + (λk+1 − λ∗).

With the above two equations, the inequality (5.41) can be rewritten as

〈 1

γβ
(λk − λk+1), λk+1 − λ∗〉+

N∑
i=1

(xk+1
i − x∗i )

>(Pi + βA>i Ai)(x
k
i − xk+1

i )

≥ 1− γ
γ2β

‖λk − λk+1‖2 +
1

γ
(λk − λk+1)>A(xk − xk+1),

(5.42)

or more compactly,

(uk−uk+1)>G(uk+1−u∗) ≥ 1− γ
γ2β

‖λk−λk+1‖2+
1

γ
(λk−λk+1)>A(xk−xk+1). (5.43)

Since ‖uk−u∗‖2G−‖uk+1−u∗‖2G = 2(uk−uk+1)>G(uk+1−u∗)+‖uk−uk+1‖2G, using

the above inequality (5.43) yields (5.37) immediately.
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If the matrix S (5.36) is positive definite, there exists some η > 0 such that

‖uk − uk+1‖2S ≥ η · ‖uk − uk+1‖2 ≥ 0. (5.44)

Then Lemma 5.2 indicates that

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ η · ‖uk − uk+1‖2. (5.45)

That is, the iterative sequence {uk} is strictly contractive. In particular, the error

‖uk − u∗‖2G is monotonically non-increasing and thus converging, as well as ‖uk −

uk+1‖2 → 0. Then the convergence of the algorithm (‖uk − u∗‖2G → 0) follows

immediately from the standard analysis for contraction methods (see, e.g., [31]). We

omit the details of the proof for the sake of brevity and state the convergence theorem

as follows.

Theorem 5.2. Suppose the parameters in Algorithm 6 satisfy that the matrix S (5.36)

is positive definite. Then the sequence {uk} generated by Algorithm 6 converges to a

solution u∗ to the problem (5.1).

In the following theorem, we give a sufficient condition to guarantee that S is

positive definite. It basically requires the parameters Pi (i = 1, 2, . . . , N) to be

sufficiently large.

Theorem 5.3. Suppose the parameters β, γ and Pi (i = 1, 2, . . . , N) satisfy the

following condition:  Pi � β( 1
εi
− 1)A>i Ai, i = 1, 2, . . . , N∑N

i=1 εi < 2− γ,
(5.46)

for some εi > 0, i = 1, 2, . . . , N . Then the matrix S (5.36) is positive definite. Thus,

the sequence {uk} generated by Algorithm 6 converges to a solution u∗ to the problem

(5.1).
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The condition (5.46) can be reduced to

Pi � β

(
N

2− γ − 1

)
A>i Ai, i = 1, 2, . . . , N, (5.47)

by letting each εi <
2−γ
N

. In particular, for the following choices:

• Pi = τiI (standard proximal), condition (5.47) becomes τi > β
(

N
2−γ − 1

)
‖Ai‖2;

• Pi = τiI− βA>i Ai (prox-linear), condition (5.47) becomes τi >
βN
2−γ‖Ai‖2.

Proof. For any u = (x;λ) ∈ Rn+m, we have

‖u‖2S := ‖x‖2Gx +
2− γ
βγ2

‖λ‖2 +
2

γ
λ>Ax. (5.48)

Using the following basic inequality:

2

γ
λ>Ax =

N∑
i=1

2

γ
λ>Aixi ≥ −

N∑
i=1

(
εi
βγ2
‖λ‖2 +

β

εi
‖Aixi‖2

)
, (5.49)

for any εi > 0 (i = 1, 2, . . . , N), we have

‖u‖2S ≥
N∑
i=1

‖xi‖2Pi+βA>i Ai− β
εi
A>i Ai

+
2− γ −∑N

i=1 εi
βγ2

‖λ‖2. (5.50)

The condition (5.46) guarantees that Pi+βA
>
i Ai− β

εi
A>i Ai � 0 and 2−γ−∑N

i=1 εi > 0,

and thus ‖u‖S > 0. Therefore, S is positive definite. The rest follows immediately.

Under the similar near-orthogonality assumption on the matrices Ai, we have the

following convergence result for Jacobi-Proximal ADMM:

Theorem 5.4. Suppose there exists δ ≥ 0 such that ‖A>i Aj‖ ≤ δ for all i 6= j, and

the parameters in Algorithm 6 satisfy the following condition: for some α, ρ > 0 and

0 < γ < 2,  Pi � β( 1
α
− 1)A>i Ai + β

ρ
δ(N − 1)I

λmin(A>i Ai) >
2−γ+ρ
2−γ−αδ(N − 1)

for i = 1, . . . , N. (5.51)

Then Algorithm 6 converges to a solution to the problem (5.1).
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Proof. Let

H :=


A>1 A1

. . .

A>NAN

 .

If ‖A>i Aj‖ ≤ δ for all i 6= j, then it is easy to show the following: for any x and y,

‖Ax‖2 =
N∑
i=1

‖Aixi‖2 +
∑
i6=j

x>i A
>
i Ajxj ≥

N∑
i=1

‖Aixi‖2 − δ
∑
i6=j

‖xi‖‖xj‖

≥
N∑
i=1

‖Aixi‖2 − δ(N − 1)‖x‖2 = ‖x‖2[H−δ(N−1)I], (5.52)

and

2x>A>Ay = 2
N∑
i=1

x>i A
>
i Ajyj + 2

∑
i6=j

x>i A
>
i Ajyj (5.53)

≥ 2
N∑
i=1

x>i A
>
i Ajyj − 2δ

∑
i6=j

‖xi‖‖yj‖

≥ −
N∑
i=1

α‖Aixi‖2 − ρδ(N − 1)‖x‖2 −
N∑
i=1

1

α
‖Aiyi‖2 −

1

ρ
δ(N − 1)‖y‖2

= −‖x‖2[αH+ρδ(N−1)I] − ‖y‖2[ 1
α
H+ 1

ρ
δ(N−1)I], ∀α, ρ > 0, (5.54)

Using the above inequalities, we have

2

γ
(λk − λk+1)>A(xk − xk+1) = 2β(xk+1 − x∗)A>A(xk − xk+1)

≥− β‖xk+1 − x∗‖2[αH+ρδ(N−1)I] − β‖xk − xk+1‖2
[ 1
α
H+ 1

ρ
δ(N−1)I], (5.55)

and

‖λk − λk+1‖2 = γ2β2‖A(xk+1 − x∗)‖2 ≥ γ2β2‖xk+1 − x∗‖2[H−δ(N−1)I]. (5.56)

Therefore,

‖uk − uk+1‖2S ≥‖xk − xk+1‖2Gx + (2− γ)β‖xk+1 − x∗‖2[H−δ(N−1)I]

− β‖xk+1 − x∗‖2[αH+ρδ(N−1)I] − β‖xk − xk+1‖2
[ 1
α
H+ 1

ρ
δ(N−1)I]. (5.57)
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As long as the following holds: Gx � β
α
H + β

ρ
δ(N − 1)I,

(2− γ)β[H − δ(N − 1)I] � β[αH + ρδ(N − 1)I],
(5.58)

which is equivalent to the condition (5.51), there must exist some η > 0 such that

(5.44) and (5.45) hold. Then the convergence of Algorithm 6 follows immediately

from the standard analysis of contraction methods [31].

Remark 5.1. The conditions in Theorem 5.4 guarantee that (5.44) holds, i.e., there

exists some η > 0 such that

‖uk − uk+1‖2S ≥ η · ‖uk − uk+1‖2.

But the matrix S is not necessarily positive semi-definite. Also, the term
2− γ + ρ

2− γ − α
in (5.51) may be negative for some α. Then, λmin(A>i Ai) is allowed to be 0; in other

words, Ai may not be of full column rank. As long as the conditions in (5.51) are

satisfied, Algorithm 6 will converge.

5.3.2 Convergence Rate of o(1/k)

Next, we shall establish the o(1/k) convergence rate of Jacobi-Proximal ADMM.

We use the quantity ‖uk − uk+1‖2M as a measure of the convergence rate motivated

by [33,35]. Here, we define the matrix M by

M :=

Mx

1
γβ

I

 and Mx := Gx − βA>A.

Theorem 5.5. If S � 0 and Mx � 0, then

‖uk − uk+1‖2M = o(1/k),
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and, thus,

‖xk − xk+1‖2Mx
= o(1/k) and ‖λk − λk+1‖2 = o(1/k).

We need the following monotonic property of the iterations:

Lemma 5.3. If Mx � 0 and 0 < γ < 2, then

‖uk − uk+1‖2M ≤ ‖uk−1 − uk‖2M . (5.59)

Proof. Let ∆xk+1
i = xki − xk+1

i , i = 1, . . . , N , ∆xk+1 = xk − xk+1, and ∆λk+1 =

λk − λk+1. By Lemma 2.1, the optimality conditions (5.40) at k-th and (k + 1)-th

iterations yield

〈Ai∆xk+1
i ,∆λk−βA∆xk+1−β

∑
j 6=i

Aj(∆xkj−∆xk+1
j )〉+(∆xk+1

i )>Pi(∆xki−∆xk+1
i ) ≥ 0.

(5.60)

Summing up over all i and rearranging the terms, we have

〈A∆xk+1,∆λk〉 ≥ ‖∆xk+1‖2Gx − (∆xk)>(Gx − βA>A)∆xk+1. (5.61)

Since Mx := Gx − βA>A � 0, we have

2(∆xk)>(Gx − βA>A)∆xk+1 ≤ ‖∆xk‖2Mx
+ ‖∆xk‖2Mx

, (5.62)

and thus

2〈A∆xk+1,∆λk〉 ≥ ‖∆xk+1‖22Gx−Mx
− ‖∆xk‖2Mx

= ‖∆xk+1‖2Gx+βA>A − ‖∆xk‖2Mx
. (5.63)

Note that ∆λk+1 = ∆λk − γβA∆xk+1. It follows that

1

γβ
‖∆λk‖2 − 1

γβ
‖∆λk+1‖2 = 2〈A∆xk+1,∆λk〉 − γβ‖A∆xk+1‖2

≥ ‖∆xk+1‖2Gx+(1−γ)βA>A − ‖∆xk‖2Mx
, (5.64)
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or equivalently,

(‖∆xk‖2Mx
+

1

γβ
‖∆λk‖2)− (‖∆xk+1‖Mx +

1

γβ
‖∆λk+1‖2)

≥ ‖∆xk+1‖2(2−γ)βA>A ≥ 0,

(5.65)

which completes the proof.

Proof of Theorem 5.5. By Lemma 5.2 and S � 0, there must exist η > 0 such

that

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ η‖uk − uk+1‖2G ≥ η‖uk − uk+1‖2M . (5.66)

Summing (5.66) over k gives

∞∑
k=1

‖uk − uk+1‖2M <∞. (5.67)

On the other hand, Lemma 5.3 implies the monotone non-increasing of ‖uk−uk+1‖2M .

By Lemma 3.2, we have ‖uk − uk+1‖2M = o(1/k), which completes the proof.

5.3.3 Adaptive Parameter Tuning

The parameters satisfying the condition (5.46) may be rather conservative, because

the inequality (5.49) for bounding ‖u‖2S is usually very loose. In practice, we can

compute ‖uk − uk+1‖2S exactly at very little extra cost. If ‖uk − uk+1‖2S > 0, then

Lemma 5.2 assures the decreasing of the solution error (in the G-norm) so that the

current parameters are acceptable. On the other hand, if ‖uk − uk+1‖2S < 0, then

the matrix S is not positive definite, suggesting that the current parameters Pi, i =

1, 2, . . . , N may be too small. So we should make {Pi} bigger until ‖uk − uk+1‖2S >

0 holds. Therefore, we propose a practical strategy for adaptively adjusting the

parameters {Pi} based on the value of ‖uk − uk+1‖2S:
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1 Initialize with small P 0
i � 0 (i = 1, 2, . . . , N) and a small η > 0;

2 for k = 1, 2, . . . do

3 if ‖uk−1 − uk‖2S > η · ‖uk−1 − uk‖2 then

4 P k+1
i ← P k

i , ∀i;

5 else

6 Increase Pi: P
k+1
i ← αiP

k
i + βiQi (αi > 1, βi ≥ 0, Qi � 0),∀i;

7 Restart: uk ← uk−1;

The above strategy starts with relatively small proximal parameters {Pi} and

gradually increase them. By Theorem 5.3, we know that when the parameters {Pi}

are large enough for (5.46) to hold, the condition (5.44) will be satisfied (for sufficiently

small η). Therefore, the adjustment of {Pi} cannot occur infinite times. After a finite

number of iterations, {Pi} will remain constant and the contraction property (5.45)

of the iterations will hold. Therefore, the convergence of such an adaptive parameter

tuning scheme follows immediately from our previous analysis.

Theorem 5.6. Suppose the matrices Pi (i = 1, 2, . . . , N) in Algorithm 6 are adap-

tively adjusted using the above scheme. Then the algorithm converges to a solution to

the problem (5.1).

Empirical evidence shows that the parameters {Pi} typically adjust themselves

only during the first few iterations and then remain constant afterwards. Alterna-

tively, one may also decrease the parameters after every few iterations or after they

have not been updated for a certain number of iterations. But the total times of de-

crease should be bounded to guarantee convergence. By using this adaptive strategy,

the resulting parameters {Pi} are usually much smaller than those required by the
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condition (5.46), thereby leading to substantially faster convergence in practice.

5.4 Numerical Experiments

In this section, we present numerical results to compare the performance of the fol-

lowing parallel splitting algorithms:

• Prox-JADMM: proposed Jacobi-Proximal ADMM (Algorithm 6);

• VSADMM: Variable Splitting ADMM (Algorithm 3);

• Corr-JADMM: Jacobi ADMM with correction steps [33]. At every iteration,

it first generates a “predictor” ũk+1 by an iteration of Jacobi ADMM (Algorithm

5) and then corrects ũk+1 to generate the new iterate by:

uk+1 = uk − αk(uk − ũk+1), (5.68)

where αk > 0 is a step size. In our experiments, we adopt the dynamically

updated step size αk according to [33], which is shown to converge significantly

faster than using a constant step size, though updating the step size requires

extra computation.

• YALL1: one of the state-of-the-art solvers for the `1-minimization problem.

In Section 5.4.1 and 5.4.2, all of the numerical experiments are run in MATLAB

(R2011b) on a workstation with an Intel Core i5-3570 CPUs (3.40GHz) and 32 GB

of RAM. Section 5.4.3 gives two very large instances that are solved by a C/MPI

implementation on Amazon Elastic Compute Cloud (EC2).



87

5.4.1 Exchange Problem

Consider a network of N agents that exchange n commodities. Let xi ∈ Rn (i =

1, 2, . . . , N) denote the amount of commodities that are exchanged among the N

agents. Each agent i has a certain cost function fi : Rn → R. The exchange problem

(see, e.g., [4] for a review) is given by

min
{xi}

N∑
i=1

fi(xi) s.t.
N∑
i=1

xi = 0, (5.69)

which minimizes the total cost among N agents subject to an equilibrium constraint

on the commodities. This is a special case of (5.1) where Ai = I and c = 0.

We consider quadratic cost functions fi(xi) := 1
2
‖Cixi−di‖2, where Ci ∈ Rp×n and

di ∈ Rp. Then all the compared algorithms solve the following type of subproblems

at every iteration:

xk+1
i = arg min

xi

1

2
‖Cixi − di‖2 +

β

2
‖xi − bki ‖2, ∀i = 1, 2, . . . , N, (5.70)

except that Prox-JADMM also adds a proximal term 1
2
‖xi − xki ‖2Pi . Here bki ∈ Rm

is a vector independent of xi and takes different forms in different algorithms. For

Prox-JADMM, we simply set Pi = τiI (τi > 0). Clearly, each xi-subproblem is a

quadratic program that can be computed efficiently using various methods.

In our experiment, we randomly generate x∗i , i = 1, 2, . . . , N − 1, following the

standard Gaussian distribution, and let x∗N = −∑N−1
i=1 x∗i . Matrices Ci are random

Gaussian matrices, and vectors di are computed by di = Cix
∗
i . Apparently, x∗ is a

solution (not necessarily unique) to (5.69), and the optimal objective value is 0.

The penalty parameter β is set to be 0.01, 1 and 0.01 for Prox-JADMM, VSADMM

and Corr-JADMM, respectively. They are nearly optimal for each algorithm, picked

out of a number of different values. Note that the parameter for VSADMM is quite
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different from the other two algorithms because it has different constraints due to

the variable splitting. For Prox-JADMM, the proximal parameters are initialized by

τi = 0.1(N − 1)β and adaptively updated by the strategy in Subsection 5.3.3; the

parameter γ is set to be 1.

The size of the test problem is set to be n = 100, N = 100, p = 80. Letting

all the algorithms run 200 iterations, we plot their objective value
∑N

i=1 fi(xi) and

residual ‖∑N
i=1 xi‖2. Note that the per-iteration cost (in terms of both computation

and communication) is roughly the same for all the compared algorithms. Figure 5.1

shows the comparison result, which is averaged over 100 random trials. We can see

that Prox-JADMM is clearly the fastest one among the compared algorithm.
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Figure 5.1 : Exchange problem (n = 100, N = 100, p = 80).
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5.4.2 Basis Pursuit

We consider the `1-minimization problem for finding sparse solutions of an underde-

termined linear system:

min
x
‖x‖1 s.t. Ax = c, (5.71)

where x ∈ Rn, A ∈ Rm×n and c ∈ Rm (m < n). It is also known as the basis

pursuit problem, which has been widely used in compressive sensing, signal and image

processing, statistics, and machine learning. Suppose that the data is partitioned into

N blocks: x = [x1,x2, . . . ,xN ] and A = [A1, A2, . . . , AN ]. Then the problem (5.71)

can be written in the form of (5.1) with fi(xi) = ‖xi‖1.

In our experiment, a sparse solution x∗ is randomly generated with k (k � n)

nonzeros drawn from the standard Gaussian distribution. Matrix A is also randomly

generated from the standard Gaussian distribution, and it is partitioned evenly into

N blocks. The vector c is then computed by c = Ax∗ + η, where η ∼ N (0, σ2I) is

Gaussian noise with standard deviation σ.

Prox-JADMM solves the xi-subproblems with Pi = τiI− βA>i Ai (i = 1, 2, . . . , N)

as follows:

xk+1
i = arg min

xi

‖xi‖1 +
β

2

∥∥∥∥∥Aixi +
∑
j 6=i

Ajx
k
j − c−

λk

β

∥∥∥∥∥
2

+
1

2

∥∥xi − xki
∥∥2
Pi

= arg min
xi

‖xi‖1 +

〈
βA>i

(
Axk − c− λk

β

)
,xi

〉
+
τi
2

∥∥xi − xki
∥∥2 . (5.72)

Here, we choose the prox-linear Pi’s to linearize the original subproblems, and thus

(5.72) admits a simple closed-form solution by the shrinkage (or soft-thresholding)

formula. The proximal parameters are initialized as τi = 0.1Nβ and are adaptively

updated by the strategy discussed in Section 5.3.3.
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Recall that VSADMM needs to solve the following xi-subproblems:

xk+1
i = arg min

xi

‖xi‖1 +
β

2

∥∥∥∥Aixi − zk+1
i − c

N
− λki

β

∥∥∥∥2 . (5.73)

Such subproblems are not easily computable, unless xi is a scalar (i.e., ni = 1) or

A>i Ai is a diagonal matrix. Instead, we solve the subproblems approximately using

the prox-linear approach:

xk+1
i = arg min

xi

‖xi‖1 +

〈
βA>i

(
Aix

k
i − zk+1

i − c

N
− λki

β

)
,xi − xki

〉
+
τi
2

∥∥xi − xki
∥∥2 ,

(5.74)

which can be easily computed by the shrinkage operator. We set τi = 1.01β‖Ai‖2 in

order to guarantee the convergence, as suggested in [58].

Corr-JADMM solves the following xi-subproblems in the “prediction” step:

x̃k+1
i = arg min

xi

‖xi‖1 +
β

2

∥∥∥∥∥Aixi +
∑
j 6=i

Ajx
k
j − c−

λk

β

∥∥∥∥∥
2

. (5.75)

Because the correction step in [33] is based on exact minimization of the subproblems,

we do not apply the prox-linear approach to solve the subproblems approximately.

Instead, we always partition x into scalar components (i.e., N = n) so that the

subproblems (5.75) can still be computed exactly. The same penalty parameter β =

10/‖c‖1 is used for the three algorithms. It is nearly optimal for each algorithm,

selected out of a number of different values.

In addition, we also include the YALL1 package [61] in the experiment, which

is one of the state-of-the-art solvers for `1 minimization. Though YALL1 is not

implemented in parallel, the major computation of its iteration is matrix-vector mul-

tiplication by A and A>, which can be easily parallelized (see [48]). Since all the

compared algorithms have roughly the same amount of per-iteration cost (in terms
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(b) Noise added (σ = 10−3)

Figure 5.2 : Basis pursuit (n = 1000, m = 300, k = 60).

of both computation and communication), we simply let all the algorithms run for a

fixed number of iterations and plot their relative error ‖x
k−x∗‖2
‖x∗‖2 .

Figure 5.2 shows the comparison result where n = 1000, m = 300, k = 60 and

the standard deviation of noise σ is set to be 0 and 10−3, respectively. For Prox-

JADMM and VSADMM, we set N = 100; for Corr-JADMM, we set N = 1000. The

results are average of 100 random trials. We can see that Prox-JADMM and Corr-

JADMM achieve very close performance and are the fastest ones among the compared

algorithms. YALL1 also shows competitive performance. However, VSADMM is far

slower than the others, probably due to inexact minimization of the subproblems and

the conservative proximal parameters.

5.4.3 Distributed Large-Scale Basis Pursuit

In previous subsections, we described the numerical simulation of a distributed im-

plementation of Jacobi-Proximal ADMM that was carried out in Matlab. We now

turn to realistic distributed examples and solve two very large instances of the `1-
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minimization problem (5.71) using a C code with MPI for inter-process communica-

tion and the GNU Scientific Library (GSL) for BLAS operations. The experiments

are carried out on Amazon’s Elastic Compute Cloud (EC2).

We generate two test instances as shown in Table 5.1. Specifically, a sparse so-

lution x∗ is randomly generated with k nonzeros drawn from the standard Gaussian

distribution. Matrix A is also randomly generated from the standard Gaussian distri-

bution with m rows and n columns, and it is partitioned evenly into N = 80 blocks.

Vector c is then computed by c = Ax∗. Note that A is dense and has double precision.

For Test 1 it requires over 150 GB of RAM and has 20 billion nonzero entries, and for

Test 2 it requires over 337GB of RAM. Those two tests are far too large to process

on a single PC or workstation. We want to point out that we cannot find a dataset of

similar or larger size in the public domain. We are willing to test our a larger problem

per reader’s request.

Table 5.1 : Two large datasets

m n k RAM

dataset 1 1.0× 105 2.0× 105 2.0× 103 150GB

dataset 2 1.5× 105 3.0× 105 3.0× 103 337GB

We solve the problem using a cluster of 10 machines, where each machine is a

“memory-optimized instance” with 68 GB RAM and 1 eight-core Intel Xeon E5-2665

CPU. Those instances run Ubuntu 12.04 and are connected with 10 Gigabit ethernet

network. Since each has 8 cores, we run the code with 80 processes so that each

process runs on its own core. Such a setup is charged for under $17 per hour.

We solve the large-scale `1 minimization problems with a C implementation that



93

matches the Matlab implementation in the previous section. The implementation

consists of a single file of C code of about 300 lines, which is available for download

on our personal website.

Table 5.2 : Time results for large scale basis pursuit examples

150GB Test 337GB Test

Itr Time(s) Cost($) Itr Time(s) Cost($)

Data generation – 44.4 0.21 – 99.5 0.5

CPU per iteration – 1.32 – – 2.85 –

Comm. per iteration – 0.07 – – 0.15 –

Reach 10−1 23 30.4 0.14 27 79.08 0.37

Reach 10−2 30 39.4 0.18 39 113.68 0.53

Reach 10−3 86 112.7 0.53 84 244.49 1.15

Reach 10−4 234 307.9 1.45 89 259.24 1.22

The breakdown of the wall-clock time is summarized in Table 5.2. We can observe

that Jacobi ADMM is very efficient in obtaining a relative low accuracy, which is

usually sufficient for large-scale problems. We want to point out that the basic BLAS

operations in our implantation can be further improved by using other libraries such

as hardware-optimized BLAS libraries produced by ATLAS, Armadillo, etc. Those

libraries might lead to several times of speedup∗. We use GSL due to its ease of use,

so the code can be easily adapted for solving similar problems.

∗http://nghiaho.com/?p=1726
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Chapter 6

Conclusion

In this thesis, we have mainly developed two different types of generalizations to the

classic alternating direction method of multipliers (ADMM):

• A Generalized ADMM with simplified subproblems. The Generalized

ADMM framework allows flexible ways of solving the subproblems efficiently. It

subsumes many variants of ADMM such as prox-linear ADMM, gradient-descent

ADMM and ADMM with Hessian approximation. We establish the global con-

vergence of the Generalized ADMM and improve an existing convergence rate

of O(1/k) slightly to o(1/k). Furthermore, we establish its linear convergence

rate under various scenarios, in which at least one of the two objective functions

is strictly convex and has Lipschitz continuous gradient.

• A parallel and multi-block extension to ADMM. We extend ADMM from

the classic Gauss-Seidel setting to the Jacobi setting, from 2 blocks to N blocks.

The algorithm can be implemented in a fully parallel and distributed fashion,

and thus is particularly attractive for solving certain problems with huge and

distributed datasets. However, the straightforward extension — Jacobi ADMM

is not necessarily convergent. To guarantee its convergence, we provide a suffi-

cient condition on the constraint coefficient matrices Ai. For general matrices

Ai, we propose the Jacobi-Proximal ADMM by adding proximal terms of differ-

ent kinds to the subproblems. We show that the algorithm converges globally
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at a rate of o(1/k), while allowing flexible and efficient ways of solving the

subproblems. Numerical results are presented to demonstrate the efficiency of

the proposed algorithm in comparison with several existing parallel algorithms.

We also implemented our algorithm on Amazon EC2, an on-demand public

computing cloud, and report its performance on very large-scale basis pursuit

problems with distributed data.

These generalizations are of both theoretical and practical importance to the ap-

plications of ADMM. From the theoretical point of view, the generalizations provide

unified frameworks to analyze a wide variety of ADMM-based algorithms and their

variants in practice, particularly in the areas of compressive sensing, signal and image

processing, machine learning and applied statistics. Our convergence analysis makes

various meaningful extensions to the existing convergence theory, as well as obtaining

better convergence rates.

From the practical point of view, the generalizations introduce better flexibility

and efficiency in solving the subproblems, thereby making the algorithms more scal-

able for many large-scale problems. Our analysis provides a deeper understanding of

the underlying convergence mechanism of ADMM. It sheds lights on how to design

and tune the algorithms in practice. In particular, our derived linear convergence

rates provide insights on how the penalty parameter β affects the convergence speed,

thereby providing some theoretical guidance for choosing β. Also, the convergence

analysis of the Jacobi-Proximal ADMM enables us to design a way of adaptively

tuning the proximal parameters to make its convergence much faster.

Besides the generalizations discussed in this thesis, we leave many other general-

izations and analyses for future study. We list a few topics below:

• In both of the Generalized ADMM and the Jacobi-Proximal ADMM frame-
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works, the proximal terms in the subproblems are restricted to be quadratic

terms. The quadratic proximal term is perhaps most commonly used and is

often simple enough to compute. However, we may make further generalization

by allowing non-quadratic proximal terms (such as Bregman divergence). In

some applications, choosing certain non-quadratic proximal terms wisely may

make the subproblems simpler to solve and make the algorithm run faster than

using quadratic proximal terms. Further research is needed to understand the

convergence behaviors when using non-quadratic proximal terms and how to

choose these proximal terms in practice.

• The penalty parameter β and the proximal parameters P/Q (in Generalized

ADMM) or Pi, i = 1, 2, . . . , N (in Jacobi-Proximal ADMM) are important pa-

rameters affecting the performance of the algorithms. To make the presentation

of our analysis simpler to understand, we have assumed these parameters to be

fixed over iterations for most part of the thesis. Empirical studies have shown

that updating these parameters properly during the iterations can often greatly

improve the performance of the algorithm and make it more robust to the initial

values of the parameters. In Section 5.3.3, we have briefly discussed a simple

method for adjusting the proximal parameters of the Jacobi-Proximal ADMM,

while the penalty parameter is assumed to be fixed. It remains open how to

effectively update the penalty parameter in coordination with the adjustment

of proximal parameters. It still needs further investigation and improvement.

• For the Jacobi-Proximal ADMM, we have established its o(1/k) rate of conver-

gence under fairy mild conditions. Analogous to our linear convergence results

for the Generalized ADMM, we should also be able to show the linear conver-
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gence of the Jacobi-Proximal ADMM under certain additional assumptions such

as strong convexity and Lipschitz continuous gradients of the objective func-

tions. Also, similar results might be obtained for the Gauss-Seidel multi-block

extension of ADMM.

• Though the classic ADMM can be considered as a special case of the Douglas-

Rachford Splitting Method (DRSM), it is unclear whether one can establish

equivalence between our extensions of ADMM (i.e., the Generalized ADMM

and the Jacobi-Proximal ADMM) and any operator splitting methods with

skillfully chosen operators

• In addition, there is a variety of interesting ongoing development of ADMM

such as the stochastic ADMM [45], online ADMM [54, 57], and asynchronous

ADMM [60]. ADMM seems to be a powerful and promising algorithmic tool

for many modern “Big Data” applications which will remain for future research

and development.
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