
Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2015 2. REPORT TYPE

3. DATES COVERED
 00-00-2015 to 00-00-2015

4. TITLE AND SUBTITLE
Matrix-Free Polynomial-Based Nonlinear Least Squares Optimized
Preconditioning and its Application to Discontinuous Galerkin
Discretizations of the Euler Equations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Applied
Mathematics,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We introduce a preconditioner that can be both constructed and applied using only the ability to apply the
underlying operator. Such a preconditioner can be very attractive in scenarios where one has a highly
e cient parallel code for applying the operator. Our method constructs a polynomial preconditioner using a
nonlinear least squares (NLLS) algorithm. We show that this polynomial-based NLLS-optimized (PBNO)
preconditioner signi cantly improves the performance of a discontinuous Galerkin (DG) compressible
Euler equation model when run in an implicit-explicit time integration mode. The PBNO preconditioner
achieves signi cant reduction in GMRES iteration counts and model wall-clock time, and signi cantly
outperforms several existing types of generalized (linear) least squares (GLS) polynomial preconditioners.
Comparisons of the ability of the PBNO preconditioner to improve DG model performance when
employing the Stabilized Biconjugate Gradient algorithm (BICGS) and the basic Richardson (RICH)
iteration are also included. In particular, we show that higher order PBNO preconditioning of the
Richardson iteration (run in a dot product free mode) makes the algorithm competitive with GMRES and
BICGS in a serial computing environment. Because the NLLS-based algorithm used to construct the
PBNO preconditioner can handle both positive de nite and complex spectra without any need for algorithm
modi cation we suggest that the PBNO preconditioner is, for certain types of problems, an attractive
alternative to existing polynomial preconditioners based on linear least-squares methods.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

25

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Journal of Scientific Computing manuscript No.
(will be inserted by the editor)

Matrix-Free Polynomial-Based Nonlinear Least Squares
Optimized Preconditioning and its Application to
Discontinuous Galerkin Discretizations of the Euler
Equations

L.E. Carr III · C.F. Borges · F.X. Giraldo

February 12, 2015

Abstract We introduce a preconditioner that can be both constructed and applied us-
ing only the ability to apply the underlying operator. Such a preconditioner can be very
attractive in scenarios where one has a highly efficient parallel code for applying the oper-
ator. Our method constructs a polynomial preconditioner using a nonlinear least squares
(NLLS) algorithm. We show that this polynomial-based NLLS-optimized (PBNO) pre-
conditioner significantly improves the performance of a discontinuous Galerkin (DG)
compressible Euler equation model when run in an implicit-explicit time integration
mode. The PBNO preconditioner achieves significant reduction in GMRES iteration
counts and model wall-clock time, and significantly outperforms several existing types
of generalized (linear) least squares (GLS) polynomial preconditioners. Comparisons of
the ability of the PBNO preconditioner to improve DG model performance when employ-
ing the Stabilized Biconjugate Gradient algorithm (BICGS) and the basic Richardson
(RICH) iteration are also included. In particular, we show that higher order PBNO
preconditioning of the Richardson iteration (run in a dot product free mode) makes the
algorithm competitive with GMRES and BICGS in a serial computing environment. Be-
cause the NLLS-based algorithm used to construct the PBNO preconditioner can handle
both positive definite and complex spectra without any need for algorithm modification,
we suggest that the PBNO preconditioner is, for certain types of problems, an attractive
alternative to existing polynomial preconditioners based on linear least-squares methods.

Keywords preconditioning · polynomial preconditioner · nonlinear least squares ·
spectral elements · Galerkin methods · Euler Equations · nonhydrostatic atmospheric
model

L.E. Carr III
Department of Applied Mathematics
Naval Postgraduate School
Monterey, CA 93943, USA
E-mail: lecarr@nps.edu

C.F. Borges
Department of Applied Mathematics
Naval Postgraduate School
Monterey, CA 93943, USA
E-mail: borges@nps.edu

F.X. Giraldo
Department of Applied Mathematics
Naval Postgraduate School
Monterey, CA 93943, USA
E-mail: fxgirald@nps.edu

2 L.E. Carr, C.F. Borges, and F.X. Giraldo

Mathematics Subject Classification (2000) 65M60 · 65M70 · 35L65 · 86A10

1 Introduction

1.1 Background

In a variety of practical applications one must repeatedly solve a large system of linear
equations where one has an extremely fast parallel code for applying an underlying fixed
linear operator. Coincident with this, there are many iterative methods (e.g. GMRES)
that can leverage this ability as they rely only on repeated applications of the opera-
tor and hence their speed is directly related to the speed with which the operator can
be applied. Unfortunately, many of these methods converge very slowly without proper
preconditioning which can be problematic. Although common approaches to precondi-
tioning such as incomplete LU can be very effective in reducing the number of iterations,
they are not, generally, able to exploit the same parallel structure as that of the original
operator. This makes their use very troublesome because they may only be practical if
one can construct a sufficiently fast code for applying them. Such a code may not be
feasible for a variety of reasons (cost of development, parallel structure that is different
from that of the original operator, etc.).

Fortunately, polynomial preconditioners do not suffer from these drawbacks as they
can directly leverage the existing parallel code for the operator and hence are excellent
candidates for problems of this type. With this in mind, our goal is to develop a method
for constructing an effective polynomial preconditioner that requires only the existing
code for applying the original operator, from construction to application. We will de-
rive and then demonstrate the effectiveness of this approach on a specific test problem
involving a rising thermal bubble (RTB). We considered this problem previously in [3]
using an implicit-explicit (IMEX) 2-D continuous Galerkin (CG) model of the Euler
equations in Schur-complement form with a continuous initial temperature distribution.
Here we revisit the problem using a 2-D DG model (without Schur-complement form1)
and both continuous and discontinuous initial temperature distributions. We choose to
use the RTB test case in particular for our simulations because this test case (from all
test cases typically used as given in [6]) offers the largest possible gains in efficiency for
an IMEX method since the stiffness of the problem derives only from the fast acoustic
waves in the compressible equations.

1.2 Paper Format

Section 2 provides an overview of the test model context within which we will develop
the preconditioner. In particular, we begin with the assumption that there is an exist-
ing code for applying the underlying operator (e.g. a fast parallel code, a configurable
hardware implementation) and that we will therefore be using a solution algorithm that
only requires the ability to apply the underlying operator (e.g. GMRES). Given these
preliminary assumptions we wish to create a preconditioner while observing three basic
premises:

– Premise 1: It must be possible to apply the preconditioner using only the existing
matrix-free code.

– Premise 2: It must be possible to construct the preconditioner using only the ex-
isting code.

1 In [13] it was shown that deriving the DG Schur-complement form for general boundary conditions
remains an open problem.

A Polynomial-Based, NLLS-Optimized Preconditioner 3

– Premise 3: The system in question will be solved many times and hence the cost of
constructing the preconditioner will be amortized over a great number of uses.

This section also includes an overview of the iterative solvers that we will evaluate
in terms of their response to the PBNO preconditioner and several comparison precon-
ditioners. Section 3 provides some background on polynomial preconditioning including
existing generalized least squares (GLS) preconditioners to which the PBNO precon-
ditioner will be compared. Section 4 lays out the mathematical development of the
NLLS-based method for constructing the PBNO preconditioner, and explains how the
preconditioner can be applied in a completely matrix-free manner. Section 4 describes
how the comparision GLS preconditioners are constructed. Section 5 presents the results
of the PBNO preconditioner performance in the DG model of the 2-D RTB problem in
a serial computing environment. Section 6 summarizes the key results of the paper.

2 Test Model Context

The test model context for our development is a high-resolution nonhydrostatic atmo-
spheric model (NUMA) as described in [6,7,9,8]. The combination of high-resolution
and large domain size associated with global atmospheric models requires as many as
O(107) elements and Ng = O(109) grid points (nodes). As a result, at each time-step in
the IMEX time integration process there is a need to iteratively solve a very large, but
sparse, linear system of the form

Aqn+1 = R(qn), (1)

or, using standard generic notation

Ax = b. (2)

In Eq. (1), q is the state vector, R is a right-hand side operator, and the matrix A is
square, invertible, nonsymmetric, and fixed (unless adaptive mesh refinement is used).
The size of A is 4Ng×4Ng in 2-D and 5Ng×5Ng in 3-D (both are non-Schur complement
forms).

At this point it is important to emphasize that system matrix A in Eq. (1) is never
constructed in either a global or elemental form. Rather, the algorithms in NUMA
merely accomplish the equivalent action of matrix A on state vector q. Thus, from an
implementation perspective, Eq. (2) is effectively

LA(x) = b. (3)

The above fact provides the motivation behind Premises 1 and 2 in Section 1.2 above.
To facilitate the subsequent analysis and comparison of results, it is useful to define

the scaling parameter

λmid =
|λmax|+ |λmin|

2
, (4)

where λmax and λmin are the eigenvalues of system matrix A with the largest and
smallest moduli, and which can be well-approximated via the Arnoldi method for a
system of any size. Dividing both sides of Eq. 2 by λmid results in the equivalent system

(A/λmid)x = (b/λmid), (5)

which we will hereafter denote more concisely by

Ãx = b̃. (6)

4 L.E. Carr, C.F. Borges, and F.X. Giraldo

0 1 2

−1

0

1

 |λ
max

| = 33.94

 |λ
min

| = 1

Fig. 1 Example of a complex spectrum for a matrix Ã associated with a 2-D DG model of the RTB test
case. The model had a coarse spatial resolution consisting of 5-by-5 elements and 5th order Lagrange
polynomials, based on the Legendre-Gauss-Lobatto (LGL) points, and employed a 2-stage ARK time-
differencing scheme with the time-step set to produce a Courant No. of 16. The eigenvalues of the
unscaled system matrix A having the largest and smallest modulus, respectively, appear in the upper
left.

For a DG model of the RTB problem (for which a Schur-complement form is not presently
available), the spectrum of Ã is complex, confined to the right half of the complex plane,
and largely contained within the unit disk as shown in Fig. 1.

Despite the need to solve Eq. (6) iteratively, the attraction of IMEX methods is
that, under suitable dynamical circumstances, one may employ time-steps that are as
much as 100 times (or more) greater than the maximum allowable explicit time-step.
As a result, IMEX-based models can run faster than explicit models provided that the
number of iterations needed to solve Eq. (6) is kept under control by a sufficiently
effective preconditioner. The RTB test case is an example of a dynamical scenario that
can be run at a large Courant Number in an IMEX model, and thus permits a large
time-step. In [3] we described this test case and used it to show the ability of the
EBSO preconditioner to accelerate the iterative solution of Eq. (6) when Ã is in Schur-
complement form. Herein we will use the same test case to illustrate the ability of the
PBNO preconditioner to solve Eq. (6) regardless of whether Ã is in Schur-complement
form or not, and thus allow us to use it to precondition DG compressible flow models.

Because the matrix Ã is not symmetric positive definite (SPD) our selection of suit-
able iterative solvers is limited to those that can handle non-SPD systems. In [3] we
compared the performance of GMRES [17] based on the Arnoldi process [16, p. 165] and
transpose-free BICGS [19] based on the Lanczos process [16, p. 234]. In this paper we also
include the (Richardson) RICH algorithm [19, p. 22]. All three of these algorithms will
be evaluated on the basis of their PBNO-preconditioned performance in a serial comput-
ing environment. The rationale in selecting these three solvers is that they demonstrate
diverse combinations of computational and communication costs. For example, GMRES
applies the system matrix once per iteration, but if n is the number of iterations required
for convergence, then the number of dot-products performed by GMRES is n2/2. By
contrast, transpose-free BICGS applies the system matrix twice, but only requires 6n
dot-products. Like GMRES, RICH applies the system matrix once per iteration. How-
ever, unlike either GMRES or BICGS, RICH can be run in a dot-product-free mode,
which can be potentially advantageous in a massively-parallel computing environment.

A Polynomial-Based, NLLS-Optimized Preconditioner 5

If a linear system is to be solved only once, then the cost to construct a precondi-
tioner prior to its use in the solution process must be kept small. However, in many
IMEX applications matrix Ã in Eq. (6) remains the same for hundreds or thousands
of time-steps.2 Moreover, in a typical operational numerical weather prediction model
only the initial condition specification relative to the basic state changes, which changes
only the right hand side of Eq. (6). As a result, matrix Ã can remain unchanged for
many thousands of model runs. It is a critical observation that in such situations (i.e.,
solving the same system with different right hand sides many hundreds of thousands of
times), the cost to construct the preconditioner is essentially unimportant since it will
be amortized over a great number of applications. As a result, it becomes reasonable
to construct the preconditioner using computationally more expensive methods. Hence,
the test model context we are considering clearly satisfies Premise 3. In [3] we showed
how a NLLS algorithm could be used to construct the EBSO preconditioner in a process
that required approximately an hour of computing time on a typical desktop computer.
In this paper we show that a similar NLLS algorithm can construct the PBNO precon-
ditioner so efficiently that even when matrix Ã is not in Schur-complement form the
construction cost of the preconditioner is completely amortized after only a tiny frac-
tion of the total number of time-steps in a typical integration of the RTB problem (see
Section 5.4).

3 Polynomial Preconditioning Background

Generally speaking, preconditioning methods may be grouped into two classes that have
been termed implicit and explicit [2], where the latter is also referred to as sparse ap-
proximate inverse preconditioning (See [1] for a thorough discussion of the two classes).
When explicit preconditioning is employed, Eq.(6) is replaced by the equivalent system
(here using left-preconditioning)

(KÃ)x = Kb̃, (7)

where the matrix K is required to approximate Ã−1 in some sense.
In polynomial preconditioning (see [12] for a thorough discussion) we require K to

be a low-order polynomial in Ã

K = s(Ã) =
m∑
i=0

kiÃ
i. (8)

From a DG modeling perspective, an extremely attractive feature of making K a poly-
nomial in Ã is that K possesses the same degree of parallelization potential as Ã. Thus,
incorporating a polynomial-based K into a parallel version of DG NUMA would require
no additional preconditioner-specific parallelization machinery whatsoever. Polynomial
preconditioning in this form clearly satisfies Premise 1.

Now since any polynomial in Ã shares the same invariant subspaces that are common
to Ã and Ã−1, the requirement that K approximate Ã−1 is effectively the requirement
that

σ(K) ≈ σ(Ã−1). (9)

or alternatively, the requirement that

σ(KÃ) ≈ σ(I). (10)

2 The reason the matrix remains constant with time is due to some judicious choices we make. First,
we linearize the nonlinear system about a spatially dependent, but time-independent basic state. Next,
in our IMEX-RK approach we only use SDIRK methods which, in the Butcher tableau, have constant
diagonal terms (see [8]).

6 L.E. Carr, C.F. Borges, and F.X. Giraldo

The simplest polynomial preconditioner is the Neumann preconditioner

sN (Ã) =
m∑
i=0

(I − Ã)i, (11)

which is based on the Neumann series [4] property that the right-hand side of Eq. (11)
must converge to Ã−1 as m → ∞ as long as the spectrum of Ã is contained within
the open unit disk centered at (1,0). Neumann preconditioners contain no user-specified
parameters. Thus, in situations where they can be applied successfully, they basically
function as a zero-skill benchmark against which other polynomial preconditioners may
be compared. However, the spectrum of the rising bubble problem shown in Fig. 1 has
many small eigenvalues very close to the unit circle, and we have verified that the 2-D
IMEX DG NUMA model of the RTB problem will not reliably converge at each time-step
using a Neumann-type preconditioner.

A linear least squares approach to formally satisfying condition (10) would be the
optimization problem

kopt ⇐ min
λ∈σ(Ã)

||1− λs(λ))||2, (12)

where vector kopt = [k0 . . . km]T contains the optimal coefficients of the polynomial in
Eq. (8). However, due to the intractability of (12), it has been customary (based on the
maximum modulus principle) to replace (12) by

kopt ⇐ min
λ∈Γ
||1− λs(λ))||w, (13)

where

– Γ is a continuous convex contour that encloses the spectrum of a Hessenberg matrix3

H̃ that arises from applying the Arnoldi process to Ã,
– w(λ) is a positive weighting function,
– and the norm involved is induced by the inner product

(f, g) =

∫
Γ

f(λ)g(λ)w(λ)d|λ|. (14)

Although the so-called generalized least-squares (GLS) preconditioners that result
from optimization problem (13) clearly can be constructed for systems with complex
spectra, often this approach is restricted to symmetric positive definite (SPD) or sym-
metric indefinite (SID) systems that simplify the preconditioner construction process by
virtue of their real spectra [14,11,12]. Moreover, the choice of the functional form of w
is typically influenced not so much by maximization of preconditioner performance, but
more by the desire to obtain kopt via analytical means, such as those made possible by,
for instance, choosing w to be an appropriately translated/scaled Chebyshev weight (see
e.g., [16, p. 385]).

Past examples of GLS preconditioners for systems with a complex spectra again
tend to choose w for analytical convenience (see e.g., [15, p. 159] and [16, p. 387]).
Furthermore, an additional issue that arises when constructing a GLS preconditioner
for a system with a complex spectrum is that a degree of user-determined arbitrariness
is introduced with regard to what convex form (e.g., an ellipse or polygon) is to be used
to enclose the system’s spectrum (see e.g., [15, p. 158]). Figure 2 illustrates how the
hull of the spectrum of the same Ã as shown in Fig. 1 is accurately represented by the
spectrum of the Hessenberg matrix H̃ constructed from Ã, and also shows an example of

3 See Section 4.1 for the details of how H̃ is constructed.

A Polynomial-Based, NLLS-Optimized Preconditioner 7

0 1 2

−1

0

1

 |λ
max

| = 33.94

 |λ
min

| = 1

Fig. 2 As in Fig. 1, except that included is: i) the spectrum (green circles) of a 150 × 150 Hessenberg
matrix H̃ obtained from Ã via the Arnoldi process, and ii) an octagonal example of contour Γ (solid
blue line) constructed so as to enclose the spectral hull of H̃. For comparison purposes with H̃, the
dimension of Ã is 3600 × 3600.

an octagonal contour Γ constructed from knowledge of the spectrum of H̃ only. We will
use this octagonal Γ when we construct several GLS preconditioners (see Section 4.4)
to compare with the PBNO preconditioner in terms of performance in the DG NUMA
model.

4 PBNO and Comparison Preconditioner Development

4.1 PBNO Optimization Problem Formulation

In the nonlinear least squares approach we develop here, we begin formally by replacing
optimization problem (12) with

kopt ⇐ min
λ∈σ(Ã)

||1− λs(λ))||p, (15)

where the subscript p is the index of a standard Euclidean p-norm. If matrix Ã is M×M ,
and we choose a power basis form for K as shown in Eq. (8), then optimization problem
(15) effectively becomes

kopt ⇐ min

[
M∑
i=1

|1− s(λi)λi|p
]1/p

, (16)

Because of the poor behavior of the power basis when doing numerical computations,
we will instead represent coefficients of preconditioner K using the form

sL(λ) =
m+1∑
i=1

ciLj(λ), (17)

where

Lj(λ) =
m+1∏
i=1
i6=j

(λ− ni)
(nj − ni)

, (18)

8 L.E. Carr, C.F. Borges, and F.X. Giraldo

are mth-order Lagrange polynomials with nodal values ni located at the Chebyshev
points appropriately translated and scaled so as to be centered in the interval [|λmin| , |λmax|].
By virtue of representing K via Eq. (17), optimization problem (16) is replaced by

copt ⇐ min

[
M∑
i=1

|1− sL(λi)λi|p
]1/p

, (19)

where vector copt = [c1 . . . cm+1]T contains the optimal coefficients of the polynomial in
Eq. (17).

In principle, optimization problem (19) provides us with a method to construct
matrix K by finding the coefficients in Eq. (17), but it is likely just as intractable as
optimization problem (12). Therefore, in order to advance the construction we replace
the nonlinear least squares problem (19) with a tractable proxy via the procedure that
follows.

Recall that the Arnoldi algorithm applied to an arbitrarily large M -by-M matrix Ã
generates the factorization

ÃQ = QH̃, (20)

where H̃ is an upper Hessenberg matrix of size N -by-N and N is relatively small (N =
150 in this paper). This upper Hessenberg matrix has a spectrum

σ(H̃) = [µ1 . . . µN]
T
, (21)

that can be quickly computed in its entirety using the QR algorithm [18, p. 211-224].
A key feature of σ(H̃) is that it provides a good discrete approximation to the hull

of the spectrum of the matrix Ã as long as N is adequately large. This property of σ(H̃)
is illustrated in Fig. 2 for the scaled system matrix Ã associated with the RTB problem.

The combination of the fact that σ(H̃) contains the eigenvalues of H̃ farthest from
(1, 0) on the complex plane, and the fact that the residual polynomial

r(λ) = 1− sL(λ)λ, (22)

contained inside optimization problem (19) tends to become large for those eigenvalues
farthest from (1, 0), suggests that we replace (19) with the very tractable proxy problem

copt ⇐ min

[
N∑
i=1

|1− sL(µi)µi|p
]1/p

. (23)

We note that we do not need in-depth information about the operator in order to
proceed. In order to construct the proxy problem we require only the ability to apply
the underlying operator and therefore this approach satisfies Premise 2.

In concluding this subsection we note that if σ(H̃) is complex, then optimization
problem (23) must be solved using a nonlinear least squares (NLLS) approach for all
values of norm index p > 1. If σ(H̃) is real, then a NLLS approach must be used for all
values of p > 2.

4.2 PBNO Optimization Problem Solution

We can iteratively solve optimization problem (23) for any even value of norm index
p ≥ 2 using the Gauss-Newton (GN) algorithm as follows:

A Polynomial-Based, NLLS-Optimized Preconditioner 9

1. Create the vector-valued cost function

h(c) =
[
|1− sL(µ1)µ1|p/2 , . . . , |1− sL(µN)µN |p/2

]T
, (24)

where vector c = [c1 . . . cm+1]T contains the coefficients ci in Eq. (17) and the expo-
nent form p/2 allows for the fact that the GN algorithm minimizes the square of the
norm of the residual vector.

2. Approximate h(c) as a 1st-order Taylor series

h(c) = h(c0) + J∆c, (25)

where c0 is an appropriate 1st-guess4 for c, and J is a finite-difference approximated
Jacobian matrix given by

J =

[
∂h

∂c1
,
∂h

∂c2
, . . . ,

∂h

∂cm+1

]
c=c0

. (26)

3. Obtain the QR factorization of the Jacobian J = QR and apply the minimum
residual criterion QTh(c) = 0 to Eq. (25) to obtain the normal system

R∆c = −QTh(c0), (27)

which is then solved for ∆c by back substitution.
4. If necessary, reduce ∆c by repeated factors of 1/2 until the descent criterion

‖h(c0 +∆c)‖2 < ‖h(c0)‖2 (28)

is satisfied.
5. Replace c0 by c0 +∆c and repeat steps 2-4 until the relative error criterion

‖∆h‖
‖h‖

< ε (29)

is satisfied.
6. Convert the copt obtained from Steps 1-5 into the equivalent power basis coefficient

vector kopt so that Eq. (8) can be used when actually applying the PBNO precondi-
tioner (via Horner’s Method).

In all cases we found that letting ε = 10−5 in GN convergence criterion (29) was sufficient
to ensure the GN algorithm produced a solution copt in optimization problem (23) that
was of adequate precision for use in Eq. (17). The number of GN iterations required
to satisfy criterion (29) depends on the order m of the PBNO preconditioner and the
norm index p, varying from fewer than 10 for m = 1 and p = 2, to on the order of 50
for m = 9 and p = 20.5

Fig. 3(a)-(b) shows the effect of 5th-order PBNO preconditioners with p = 2 and
p = 20 on the spectrum of the preconditioned system matrices KÃ and KH̃ for the
RTB. The coefficients of these four PBNO preconditioners appear in Table 1 of this
section. When compared to the spectra unpreconditioned system matrices Ã and H̃ in
Fig. 2, we can see that in each panel of Fig. 3 the effect of the PBNO preconditioner is
to drive all the eigenvalues of KÃ and KH̃ closer to (1,0) on the complex plane in an
effort to satisfy criterion (10). Most importantly, notice in both panels of Fig. 3 that the

4 For all cases in this paper we use c0 = [1 . . . 1]T , which, by virtue of the form of Eq. (17), makes
sL(λ) = 1.

5 The range of iteration values just cited excludes the case when p = 2 and the spectrum of Ã is
positive definite, in which case optimization problem (23) is linear and GN converges in a single step.

10 L.E. Carr, C.F. Borges, and F.X. Giraldo

0 1 2

−1

0

1

 PBNO Order = 5
 p−norm = 2

a)

0 1 2

−1

0

1

 PBNO Order = 5
 p−norm = 20

b)

Fig. 3 (a) Spectra for the preconditioned system matrices KÃ (red crosses) and KH (green circles)
where Ã is the same system matrix as in Fig. (2b), and where K is a 5th-order PBNO preconditioner
with the norm index p = 2. (b) As in panel (a) of this figure, except for a PBNO preconditioner using
a norm index p = 20.

p Norm k0 k1 k2 k3 k4 k5
p = 2 3.8319 -8.0515 10.161 -7.4160 2.8788 -0.45999
p = 20 5.1638 -13.367 19.799 -16.502 7.1857 -1.2669

Table 1 Coefficient values in Eq. (8) for the 5th-order PBNO preconditioners that generated the
spectra shown in Fig (3a-b).

spectral hull of KH̃ (green circles) lies virtually on top of the spectral hull of KÃ (red
crosses). This observation supports the assumption that tractable optimization problem
(23) is a suitable proxy for the intractable problem (16).

By comparing Fig. 3(a) with 3(b) we can readily see that increasing the norm index
from p = 2 and p = 20 in optimization problem (23) results in a more symmetric
distribution of eigenvalues around (1,0). This is to be expected since increasing the p-
norm index effectively results in a heavier weighting of the least squares residual vector
components associated with the eigenvalues farthest from (1,0). We will see in Section
5 that the ability to change norm index p will allow us to create the optimal PBNO
preconditioner for each of the GMRES, BICGS, and RICH iterative solvers that we will
employ.

4.3 PBNO Preconditioner Construction and Application

For preconditioned system matrix spectra (red crosses) shown in Fig. 3a-b, the reso-
lution of the RTB problem was sufficiently coarse so that we could actually construct
matrix KÃ and extract its entire spectrum via the QR method for comparison with the
spectrum of the preconditioned Hessenberg matrix KH̃. For higher resolution test case
problems, and for any operational atmospheric prediction problem, we must begin with
Eq. (2) in the more numerically relevant form

LA(x) = b, (30)

where LA() is the matrix-free linear operator that accomplishes the transformational
action of the unscaled system matrix A. In this case the method for constructing and
applying the PBNO preconditioner is as follows:

A Polynomial-Based, NLLS-Optimized Preconditioner 11

1. Prior to the time integration phase of the numerical model, construct an unscaled
Hessenberg matrix H via an operator-based implementation of the Arnoldi algo-
rithm, namely:

LA(Q) = QH. (31)

2. Apply the QR method to H to obtain λmax and λmax in order to construct λmid in
Eq. (4), which in turn enables us to create a scaled system matrix operator

LÃ() =
1

λmid
LA(), (32)

for use during preconditioner construction and at each step of the time integration
phase of the DG model.

3. Employ the method outlined in Sections 4.1 and 4.2 to determine the coefficients of
the PBNO preconditioner for the values of polynomial order m and norm index p
specified by the user. We note here that Eq. (20) is replaced by the operator-based
form

LÃ(Q) = QH̃, (33)

and also emphasize that the only quantities that require storage for later use in the
time-integration phase of the numerical model are the small number (≤ 10) of scalar
coefficients that constitute the components of the coefficient vector copt.

4. After the preconditioner is constructed via Steps 1-3 above, it is then employed at
each step in the time-integration phase to solve the operator-based form of Eq. (7)

LK ◦ LÃ(x) = LK(b̃), (34)

via the particular iterative solver specified by the user. Here it is important to em-
phasize that the operator LK is implemented iteratively using Horner’s Method, and
thus never requires more processor memory than the modest amount6 required by
LÃ, regardless of the polynomial order m of the PBNO preconditioner K.

We emphasize that for Steps 1-3 listed above, the greatest computational cost by far
is incurred in Step 1 when the matrix H is constructed via the Arnoldi algorithm, partic-
ularly if system matrix A is large. Since we use a 150×150 Hessenberg matrix, this cost
is approximately equivalent to running GMRES for 150 iterations. Similar costs would
also be incurred when constructing other polynomial preconditioners (e.g. Chebyshev)
using linear least-squares methods, as well as the cost to compute the spectrum of H
in Step 2. The cost to complete Step 3, which is the only step unique to the NLLS-
based PBNO preconditioner, is negligible compared to the cost of Step 1. Moreover,
as we show in Section 5.4, the total cost of constructing the PBNO preconditioner is
completely amortized very early in just a single run of the DG model provided that a
realistically large Courant Number is utilized.

Fig. 4 shows the impact on the spectrum of KH̃ due to a set of PBNO preconditioners
of increasing order constructed for a DG model RTB problem with five times the spatial
resolution of the analogous coarse-resolution model having the spectra shown in Fig. 3.
Notice the similarity of the spectra of the unpreconditioned scaled Hessenberg matrix H̃
in Fig. 4(a) with the analogous matrix H̃ for the course-resolution model shown in Fig.
2. Likewise, note the similarity of the spectra of the matrices KH̃ (green circles) in Fig.
3(b) and Fig. 4(d), where, in each case a 5th-order PBNO preconditioner with p = 20
was employed. Finally, notice in Fig. 4(f) the high degree of axisymmetry about (1,0)
exhibited by the spectrum of H̃ when a 9th-order PBNO preconditioner is employed.

6 Recall that in NUMA neither the unscaled system matrix A nor the scaled system matrix Ã is ever
constructed.

12 L.E. Carr, C.F. Borges, and F.X. Giraldo

PBNO Order = 0

a)

PBNO Order = 1

b)

PBNO Order = 3

c)

PBNO Order = 5

d)

PBNO Order = 7

e)

PBNO Order = 9

f)

Fig. 4 From top left to right (a)-(c) and bottom left to right (d)-(f). Spectrum of the scaled 150× 150
Hessenberg matrix H̃ derived from a DG model of the RTB problem using 25 × 25 elements, 5th-order
polynomials (based on LGL points), 2nd-order-accurate ARK time differencing, and a Courant No. of
16. The corresponding scaled system matrix Ã has dimensions of 22, 550 × 22, 500.

4.4 Comparison GLS Preconditioners

Here we outline the method set forth by van Gijzen [5], which constructs a GLS pre-
conditioner by numerical means, and has the advantage of allowing us to choose any
positive weighting function w(λ) we desire. The first step is to view the polynomial
portion of the integrand in optimization problem (13) as the function

f(k, λ) = 1− λs(λ), (35)

and then to create the inner product-based cost function

F (k) =

∫
Γ

f(k, λ)f(k, λ)w(λ)d|λ|. (36)

For an mth-order GLS preconditioner, the kopt that minimizes the cost function is the
solution to the (m+1)×(m+1) linear system arising from the stationary-point conditions

∂F

∂ki
= 0 i ∈ [0,m]. (37)

The reader is referred to van Gijzen [5, p. 96-97] for the system-matrix entry and right-
hand side vector component formulas resulting from Eqs. (37) when preconditioner K
is represented via a power basis as in Eq. (8). Although the use of a power basis has the
potential for numerical instability as polynomial order m becomes large, we have verified
van Gijzen’s claim that no such problem occurs for lower order polynomials. Specifically,
when Γ = [0, 4] and a Chebyshev w(λ) is used, our numerical computations for m ≤ 8
approximate the exact results presented by Saad [16, p. 385] out to 8 significant digits.

Using the above approach we have constructed GLS preconditioners using both
uniform weighting (hereafter GLSU) and generalized Chebyshev weightings (hereafter

A Polynomial-Based, NLLS-Optimized Preconditioner 13

GLS Variant k0 k1 k2 k3 k4 k5
GLSU 3.5599 -7.0695 8.4318 -5.9007 2.2272 -0.3494
GLSC 3.4839 -7.2185 9.0164 -6.4720 2.4619 -0.3848

Table 2 Coefficient values in Eq. (8) for the 5th-order GLSU and GLSC preconditioners created using
the octagonal contour Γ shown in Fig. 2.

GLSC) applied to all sides of the octagonal contour Γ shown in Fig. 2. The coefficients
of resulting kopt in each case are shown in Table 2 for comparison with the analogous
PBNO preconditioner coefficients shown in Table 1.

5 Results in a Serial Computing Environment

In order to adequately map out the large parameter space associated with:

– the DG variant of NUMA2D7

– a range of possible time-steps with Courant No. as high as 32,
– three iterative solvers (GMRES, BICGS, RICH),
– preconditioner order as high as 9th-order,
– and the adjustable p-norm index in PBNO optimization problem (23),

we initially use a coarse spatial resolution, a low order time integration scheme, and a
relatively short simulation time of 100s. The model domain is spatially discretized using a
25-by-25 element grid and 5th-order Lagrange polynomials (based on LGL points) within
each element, and a 2nd-order accurate Additive Runge-Kutta (ARK2) time integration
scheme [8]. A set of six different time-steps is employed and corresponds to a Courant
No. as small as 2 and as large as 32.8 As the analysis proceeds we will include selected
results that employ 9th-order spatial resolution, higher order ARK methods, and a model
simulation time of 700s to show that conclusions based on the coarse simulation runs
are justified.

5.1 Solver Performance Dependence on PBNO p-Norm Index

Recall that in optimization problem (23) the index of the p-norm employed can be varied.
The effect of changing index p on the performance of the GMRES, BICGS, and RICH
iterative solvers using PBNO preconditioners of up to 9th-order is illustrated in Fig. 5 for
DG-NUMA2D. Increasing the value of index p from 2 to 10 to 20 moderately improves
the performance of GMRES (Fig. 5(a)-(b)) and BICGS (Fig. 5(c)-(d)), and significantly
improves the performance of RICH (Fig. 5(e)-(f)). Based on the results shown, a setting
of p = 10 would be appropriate when using either the GMRES or BICGS solver, and
a setting of p = 20 would be an appropriate choice when using the RICH solver. In
comparing Figs. 5(b) and 5(d), it is important to note that the wall-clock time of the
RICH solver (with p = 20) is of the same order as both GMRES and BICGS regardless
of PBNO preconditioner order m. A summary of the p-norm index values used in all
subsequent model runs are provided in Table 3.

7 NUMA2D refers to the two-dimensional version of the NUMA model.
8 A Courant No. of 32 is the largest for which the RTB problem will run to completion (i.e., bubble

at top of domain at 700s) without exceeding the CFL limit of the explicit part of the IMEX method.

14 L.E. Carr, C.F. Borges, and F.X. Giraldo

GMRES Iterations

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

PBNO Preconditioner Order

A
vg

 It
er

at
io

ns
 /

T
im

es
te

p

p = 2
p = 10
p = 20

a)

GMRES Wall Clock Time

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

PBNO Preconditioner Order

W
al

l C
lo

ck
 T

im
e(

se
c)

p = 2
p = 10
p = 20

b)
BICGS Iterations

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

PBNO Preconditioner Order

A
vg

 It
er

at
io

ns
 /

T
im

es
te

p

p = 2
p = 10
p = 20

c)

BICGS Wall Clock Time

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

PBNO Preconditioner Order

W
al

l C
lo

ck
 T

im
e(

se
c)

p = 2
p = 10
p = 20

d)
RICH Iterations

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

PBNO Preconditioner Order

A
vg

 It
er

at
io

ns
 /

T
im

es
te

p

p = 2
p = 10
p = 20

e)

RICH Wall Clock Time

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

PBNO Preconditioner Order

W
al

l C
lo

ck
 T

im
e(

se
c)

p = 2
p = 10
p = 20

f)

Fig. 5 (a)-(b) Effect of PBNO preconditioner p-norm index on GMRES Iterations/Time-step and Wall
Clock Time, respectively, when employing a time-step corresponding to a Courant No. of 16. (c)-(d)
As in (a)-(b), except for the BICGS iterative solver. The missing data points for PBNO order m = 0
reflects the fact that unpreconditioned BICGS solver would not reliably converge at every time-step.
(e)-(f) As in (a)-(b), except for the RICH iterative solver. The missing data points reflect the fact that
the RICH solver would not converge for PBNO order m < 2.

5.2 Comparison of PBNO and GLS Preconditioner Performance

In Figure 7 we provide comparisons of how effective 3rd-order and 7th-order PBNO and
GLS preconditioners are in improving the convergence rate of the GMRES (Fig. 7(a)-(b))
and RICH (Fig. 7(c)-(d)) iterative solvers for one particular time-step in the RTB model.
It is important to emphasize that because the system matrix H̃ remains unchanged
throughout the entire model run, the ”snap-shots” provided in Fig. 7 are completely
representative of the relative performance of the preconditioners at all time-steps during
the time integration process. The performance comparison using the GMRES solver (Fig.
7(a)-(b)) clearly reveals that for both 3rd-order and 7th-order polynomials:

– The GLSC preconditioner makes essentially negligible improvement over the GLSU
preconditioner, which indicates that, at least for the RTB problem, the mathematical
advantages of choosing a Chebyshev weighing function do not translate into any
meaningful performance improvement over a uniform weighting function.

– The PBNO preconditioner requires approximately 20% fewer iterations of GMRES
to achieve a relative residual of 10−6 compared to GLSU.

The relative performance of the PBNO, GLSU, and GLSC preconditioners using the
BICGS solver were found to be essentially the same as for GMRES and are not shown.

A Polynomial-Based, NLLS-Optimized Preconditioner 15

GMRES BIGCS RICH
Norm index p = 10 p = 10 p = 20

Table 3 Norm index values used in optimization problem (23) when constructing PBNO precondition-
ers for the three different iterative solvers.

The performance comparison using the RICH solver (Fig. 7(c)-(d)) clearly reveals:

– The RICH solver will not converge without preconditioning
– The GLSC preconditioner actual performs slightly worse than the GLSU precondi-

tioner. This is because although the GLSC produces a tighter spectral grouping, it
fails to center the grouping within the unit circle about (1,0), which is essential for
accelerating the RICH solver.

– The PBNO preconditioner requires approximately 30% fewer iterations of RICH
to achieve a relative residual of 10−6 compared to GLSU. This increase in RICH
solver convergence rate illustrates the fact that by design the PBNO preconditioner
attempts to center the spectrum of the preconditioned system matrix KÃ within the
unit circle about (1,0) (recall Fig. 4e for a 7th-order PBNO preconditioner).

Since the foregoing results clearly indicate that the PBNO preconditioner will signif-
icantly outperform the comparison GLSU and GLSC preconditioners at all time-steps,
no further reference to the GLS preconditioners will be made, and all the results that
follow focus on analyzing the properties of the PBNO preconditioner with regard to the
choice of iterative solver, time integrator order, model initial conditions, etc.

5.3 Relative Performance of PBNO-preconditioned Solvers

The effect of the PBNO preconditioners on the iterations/time-step and wall clock time
of GMRES, BICGS, and RICH solvers as a function of RTB problem Courant No. are
shown in Fig. 7. Comparing Figs. 7(b),(d) and (f) reveals that in terms of minimum
wall clock time all three solvers run more efficiently when higher order preconditioning
is combined with large Courant No. In particular:

– when employing GMRES the model runs the fastest when a 9th-order preconditioner
is combined with the maximum Courant No. of 32.

– when employing BICGS the model runs the fastest when a 7th-order preconditioner
is combined with the maximum Courant No. of 32.

– when employing RICH the model runs the fastest when a 9th-order preconditioner
is combined with the maximum Courant No. of 32.

When looking over Figs. 7(b), (d) and (f) it is clear that the lowest wall clock time
tends to occur when using the largest Courant No. of 32 (and thus longest time-step).
However, the preconditioner order needed to achieve the lowest wall clock time when
running the model at Courant No. 32 varies with the iterative solver used. Figure 8
provides an example of the PBNO-preconditioned model performance when running at
the maximum Courant No. of 32 and employing an ARK4 [10] time integrator. With
regard to iterations per time-step (Fig. 8(a)), important points to note are that:

– The performance of the RICH solver is only slightly worse than the GMRES and
BICGS solvers for low PBNO order, but nearly matches the performance of GMRES
for PBNO order greater than 4.

16 L.E. Carr, C.F. Borges, and F.X. Giraldo

0 10 20 30 40 50 60 70 80
10

−6

10
−4

10
−2

10
0

Iterations

R
el

at
iv

e
R

es
id

ua
l

GMRES Convergence Trends

NONE
GLSU−3
GLSC−3
PBNO−3

a)

0 10 20 30 40 50 60 70 80
10

−6

10
−4

10
−2

10
0

Iterations

R
el

at
iv

e
R

es
id

ua
l

GMRES Convergence Trends

NONE
GLSU−7
GLSC−7
PBNO−7

b)

0 10 20 30 40 50 60 70 80 90 100110120
10

−6

10
−4

10
−2

10
0

Iterations

R
el

at
iv

e
R

es
id

ua
l

RICH Convergence Trends

NONE
GLSU−3
GLSC−3
PBNO−3

c)

0 10 20 30 40 50 60 70 80 90 100110120
10

−6

10
−4

10
−2

10
0

Iterations

R
el

at
iv

e
R

es
id

ua
l

RICH Convergence Trends

NONE
GLSU−7
GLSC−7
PBNO−7

d)

Fig. 6 (a) A representative example of the relative residual convergence rates exhibited by the GMRES
iterative solver at each time-step of the RTB problem using the 3rd-order preconditioners shown in the
legend and the following model specifications: 25-by-25 element grid and 5th-order Lagrange polynomials
(based on LGL points) within each element, an ARK2 time integrator and a Courant No. of 16. (b) As
in (a), except for 7th-order preconditioners. (c)-(d) As in (a) and (b) respectively, except for using the
RICH iterative solver.

– Although BICGS has significantly fewer iterations per time-step than GMRES, it
must be remembered that this advantage tends to be offset, to some degree, by the
fact that BICGS applies the preconditioned system matrix twice at each time-step.

With regard to wall clock time (Fig. 8(b)), important points to note are that:

– The 1st-order preconditioning of GMRES or BICGS results in a dramatic reduction
in wall clock time compared to unpreconditioned GMRES (the only solver for which
DG-NUMA2D would run without preconditioning).

– The performance of all three solvers is very similar for PBNO order m ≥ 2 and we
can see that a modest reduction in wall clock time occurs as PBNO order increases.

– The competitiveness of the RICH algorithm for PBNO order m ≥ 2 is particularly
noteworthy given that the algorithm is run in a dot-product-free mode in NUMA2D.

5.4 PBNO Preconditioner Construction Cost Amortization

Recall that Premise 3 formalizes the assumption that the same preconditioner can be
used many times, and that one might expect that this will amortize the cost of con-

A Polynomial-Based, NLLS-Optimized Preconditioner 17

GMRES Iterations

0 5 10 15 20 25 30 35
0

50

100

150

200

250

Courant Number

A
vg

 It
er

at
io

ns
 /

T
im

es
te

p

Order 0
Order 1
Order 3
Order 5
Order 7
Order 9

a)

GMRES Wall Clock Time

0 5 10 15 20 25 30 35
200

300

400

500

600

700

800

Courant Number

W
al

l C
lo

ck
 T

im
e(

se
c)

Order 0
Order 1
Order 3
Order 5
Order 7
Order 9

b)
BICGS Iterations

0 5 10 15 20 25 30 35
0

25

50

75

100

125

150

Courant Number

A
vg

 It
er

at
io

ns
 /

T
im

es
te

p

Order 0
Order 1
Order 3
Order 5
Order 7
Order 9

c)

BICGS Wall Clock Time

0 5 10 15 20 25 30 35
200

300

400

500

600

700

800

900

Courant Number

W
al

l C
lo

ck
 T

im
e(

se
c)

Order 0
Order 1
Order 3
Order 5
Order 7
Order 9

d)
RICH Iterations

0 5 10 15 20 25 30 35
0

25

50

75

100

125

150

Courant Number

A
vg

 It
er

at
io

ns
 /

T
im

es
te

p

Order 2
Order 3
Order 5
Order 7
Order 9

e)

RICH Wall Clock Time

0 5 10 15 20 25 30 35
200

300

400

500

600

700

800

900

Courant Number

W
al

l C
lo

ck
 T

im
e(

se
c)

Order 2
Order 3
Order 5
Order 7
Order 9

f)

Fig. 7 (a)-(b) Iterations/time-step (a) and wall clock time (b) as a function of Courant No. exhibited
by DG-NUMA2D preconditioned with the orders of the PBNO-preconditioner shown in the legend.
For these results DG-NUMA2D employed 5th-order Lagrange polynomials (based on LGL points), an
ARK2 time integrator, and RTB simulation time of 100s. (c)-(d) As in (a) and (b), except for using
the BICGS solver. The missing data points for 0-order preconditioning indicates that the model would
not run to completion when employing the unpreconditioned BICGS solver. (e)-(f) As in (a) and (b),
except for using the RICH solver.

2−D NUMA DG Iterations

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

PBNO Preconditioner Order

A
vg

 It
er

at
io

ns
 /

T
im

es
te

p

GMRES
BICGS
RICH

a)

2−D NUMA DG Wall Clock Time

0 1 2 3 4 5 6 7 8 9 10
0

250
500
750

1000
1250
1500
1750
2000

PBNO Preconditioner Order

W
al

l C
lo

ck
 T

im
e(

se
c)

GMRES
BICGS
RICH

b)

Fig. 8 Comparison of iterations/time-step (a) and wall clock time (b) as a function of PBNO pre-
conditioner order for DG-NUMA2D. Missing data points indicate that the model would not run to
completion using that particular combination of iterative solver and PBNO order. The model employed
5th-order Lagrange polynomials (based on LGL points), a Courant No. of 32, an ARK4 time integrator,
and RTB simulation time of 100s.

18 L.E. Carr, C.F. Borges, and F.X. Giraldo

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

Model Time (s)

W
al

lc
lo

ck
 T

im
e

(s
)

PBNO Construction Cost Amortization

 GMRES−ARK2
 Cour. No. = 8

NONE
PBNO9

a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

Model Time (s)

W
al

lc
lo

ck
 T

im
e

(s
)

PBNO Construction Cost Amortization

 GMRES−ARK2
 Cour. No. = 32

NONE
PBNO9

b)

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

Model Time (s)

W
al

lc
lo

ck
 T

im
e

(s
)

PBNO Construction Cost Amortization

 GMRES−ARK4
 Cour. No. = 8

NONE
PBNO9

c)

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

Model Time (s)

W
al

lc
lo

ck
 T

im
e

(s
)

PBNO Construction Cost Amortization

 GMRES−ARK4
 Cour. No. = 32

NONE
PBNO9

d)

Fig. 9 (a)-(d) Graph of wall-clock time versus model simulation time when running the RTB problem
using unpreconditioned GMRES (red-circles) and GMRES using a 9th-order PBNO preconditioner
(green squares) for the various combinations of Courant No. and ARK time integrator accuracy shown
in the upper left of each panel. The horizontal distance between adjacent circles or squares indicates
the length of the time-step employed. In all the panels the model domain is spatially discretized using a
25-by-25 element grid and 5th-order Lagrange polynomials (based on LGL points) within each element.

structing the preconditioner over a great number of repeated applications. The alge-
braic justification for this premise is that, within a suitably formulated IMEX modeling
context, the linear operator represented by matrix Ã in Eq. (7) does not vary from time-
step to time-step, and thus matrix K (i.e., the PBNO preconditioner) does not need to
change. Verification of the validity of Premise 3 is provided in Figs. 9(a)-(d) which plots
wall-clock time as a function of model simulation time for runs of NUMA2D-DG that
employ both unpreconditioned GMRES (red circles) and GMRES preconditioned with
a 9th-order9 PBNO preconditioner (green squares).

First, notice that all the graphs are nearly straight lines, which reflects the fact
that matrix Ã in Eq. (7) does not change. The slight departures from linearity are a
manifestation of the fact that the average number of GMRES iterations per time-step
has a slight dependence on vector b̃ in Eq. (7), which changes from time-step to time-step
due to its dependence on the evolving RTB state vector (recall Eqs. (1) and (2)).

Notice that in each panel of Fig. 9 the preconditioned GMRES graph starts with
a wall-clock time of approximately 4 seconds, which reflects the upfront cost of con-
structing the PBNO preconditioner before RTB simulation begins. However, the key
observation is that in each panel the preconditioned GMRES wall-clock time graph
crosses the unpreconditioned GMRES wall-clock time graph within the first few seconds
of model simulation time. At the cross-over point the cost of constructing the PBNO
preconditioner has been completely amortized, which means that after the cross-over
point the preconditioned model is requiring less wall-clock time than the unprecondi-

9 By making the polynomial order the largest we consider in this paper (i.e., 9th-order) we maximize
the number of Gauss-Newton iterations required during the construction of the preconditioner, and thus
maximize the construction cost.

A Polynomial-Based, NLLS-Optimized Preconditioner 19

tioned model. For the 2nd-order-accurate ARK time integrator, when we use a time-step
corresponding to a Courant No. of 8, the cross-over point occurs after 34 time-steps (Fig.
9(a)); when we increase the Courant No. to 32 the cross-over point drops dramatically
to just after the 1st time-step (Fig. 9(b)). For the 4th-order-accurate ARK time inte-
grator, when using a time-step corresponding to a Courant No. of 8 the cross-over point
occurs after only 14 time-steps (Fig. 9(c)); increasing the Courant No. to 32 brings the
cross-over point to before the completion of the 1st time-step (Fig. 9(d)). The increasing
rapidity with which the construction cost of the PBNO preconditioner is amortized as
ARK order and Courant No. are increased reflects the fact that the construction cost of
the preconditioner is roughly equivalent to 150 GMRES iterations (as determined by the
size of H̃) regardless of the Courant No. or ARK order used. By contrast, the average
number of GMRES iterations per time-step increases as either the order of the ARK
method or the size of the Courant No. are increased.

The results in this subsection clearly show that Premise 3 is easily satisfied even
if the PBNO preconditioner is applied to only one run of NUMA2D-DG. In the next
subsection, we show that, once constructed, the same PBNO preconditioner can be used
for multiple runs of the model with different initial conditions, thus making the cost of
constructing the preconditioner even more inconsequential.

5.5 Long-Duration, High-Resolution Simulation Comparisons

As mentioned earlier, to expeditiously map out the large parameter space associated
with multiple PBNO variants, iterative solvers, etc, we initially presented results based
on coarse spatial resolution, a low-order time integration scheme, and relatively short
simulation time of 100s. To ensure that PBNO preconditioning up to order m = 9
produces stable and consistent results for longer RTB simulation times, regardless of the
iterative solver used, we ran the problem to 700s, by which time the bubble has already
impacted the top of the domain. For these runs we employ a problem domain that is
spatially discretized using a 25-by-25 element grid and 9th-order Lagrange polynomials
(based on LGL points) within each element, and we use a 4th-order accurate Additive
Runge-Kutta (ARK4) time integration scheme.10

For these runs we also used two different initial conditions:

– the continuous cosine-based profile shown in Fig. 10(a) on which all runs shown
earlier in this paper are based,

– and a discontinuous profile shown Fig. 10(b) to show that PBNO preconditioned
NUMA2D-DG can effectively handle strong state variable gradients, as well as show
that changing the initial condition does not require recomputation of the PBNO
preconditioner coefficients.

For the purpose of comparison, Figures 10(c) and (d) show the RTB potential tem-
perature fields for the continuous and discontinuous cases, respectively, at 100 seconds
of model simulation time, which is well before significant deformation of the bubble
occurs in either simulation. In the discontinuous case (Fig. 10(d)), one can see that the
inclusion of an artificial kinematic viscosity of 1.0 m2/s has smoothed the initial discon-
tinuity into a strong gradient.11 A smaller artificial kinematic viscosity of 0.01m2/s is

10 The total number of grid points in this simulation is 50,625 with each grid point having 4 variables
for a total of 202,500 degrees of freedom. Using a time-step of dt=0.148287 means that the linear system
has to be solved 700·k

dt
= 18, 882 times during the 700s simulation, where k=4 denotes the number of

implicit Runge-Kutta stages used in the ARK method.
11 We emphasize here that the use of artificial viscosity is not necessary for NUMA2D-DG to run the

discontinuous RTB case to completion, and has no effect on the performance of the PBNO precondi-

20 L.E. Carr, C.F. Borges, and F.X. Giraldo

0 250 500 750 1000
−0.25

0

0.25

0.5

0.75

Initial Condition Cross−section
(Continuous Case)

Horizontal Position (m)

P
er

tu
rb

at
io

n
T

em
pe

ra
tu

re
 (o K

)

a)

0 250 500 750 1000
−0.25

0

0.25

0.5

0.75

Initial Condition Cross−section
(Discontinuous Case)

Horizontal Position (m)

P
er

tu
rb

at
io

n
T

em
pe

ra
tu

re
 (o K

)

b)

c) d)

Fig. 10 (a)-(b) RTB cross-sections for the continuous cosine-based and discontinuous step-function-
based initial conditions respectively. (c)-(d) Potential temperature fields at 100s corresponding to the
initial conditions shown in panels (a) and (b), respectively.

also used in the continuous case, but only for the purpose of making the cost of running
NUMA2D-DG comparable for the two initial conditions.

Potential temperature fields that result from running the model using the contin-
uous initial condition (Fig. 10(a)) and employing unpreconditioned GMRES, 9th-order
PBNO-preconditioned GMRES, BICGS, and RICH are depicted in Fig. 11(a)-(d), re-
spectively. The fields shown are at the 600s point in the 700s simulation, which is ap-
proximately the time when the bubble attains its maximum upward speed. It is visually
evident that all four runs closely reproduce the fine structure of the rising bubble. The
small values of |∆T |max shown in Fig. 11(b)-(d) provide numerical confirmation that
9th-order preconditioning of the GMRES, BICGS, and RICH solvers is not causing any
significant dispersion or phase lag relative to the unpreconditioned GMRES field (Fig.
11(a)). A comparison of wall clock time values in the lower right of each panel shows
that relative to unpreconditioned GMRES (which is the only solver that runs without
preconditioning in DG NUMA2D):

tioner. Rather the numerical viscosity has been added solely for the purpose of avoiding the generation
of spurious eddies associated with imposing a curving discontinuous initial condition on a rectangularly
discretized model domain, and thus allowing the continuous and discontinuous runs to produce visually
comparable results.

A Polynomial-Based, NLLS-Optimized Preconditioner 21

a) b)

c) d)

Fig. 11 (a)-(d) Potential temperature fields for the continuous RTB test case at 600s in a 700s simu-
lation time run of the model. Model setup specifications are as described in the text. The heading on
each panel identifies the iterative solver and order of PBNO preconditioning employed. Iterations per
time-step and wall clock time in seconds appear in the upper and lower right of each panel, respectively.
The value in the upper left of panel (a) is the maximum potential temperature in the bubble. The value
in the upper left of panels (b)-(c) is the infinity norm of the difference between the unpreconditioned
GMRES potential temperature state vector in (a) and the respective potential temperature state vector
in panels (b), (c), and (d).

– preconditioned GMRES is running ≈ 2.78 times faster,
– preconditioned BICGS is running ≈ 2.40 times faster,
– and preconditioned dot-product-free RICH is running ≈ 2.16 times faster.

A comparison of average iterations per time-step values in the upper right of each
panel of Fig. 11 shows that relative to unpreconditioned GMRES:

– preconditioned GMRES uses ≈ 8.83 times fewer iterations,
– preconditioned BICGS uses ≈ 14.7 times fewer iterations,
– and preconditioned RICH uses ≈ 6.37 times fewer iterations.

Potential temperature fields that result from running the model using the discontin-
uous initial condition (Fig. 10(b)) and employing unpreconditioned GMRES, 9th-order

22 L.E. Carr, C.F. Borges, and F.X. Giraldo

a) b)

c) d)

Fig. 12 (a)-(d) As in Figs. 10(a)-(d), except for the discontinuous RTB test case at 500s.

PBNO-preconditioned GMRES, BICGS, and RICH are depicted in Fig. 12(a)-(d), re-
spectively. The fields shown are at the 500s point in the 700s simulation, which is ap-
proximately the time when the more energetic discontinuous bubble reaches the same
height and state of development as the less energetic continuous bubble. As in the con-
tinuous RTB case, it is again visually evident that all four runs closely reproduce the
fine structure of the rising bubble, as well as maintaining the strong gradient of temper-
ature seen at 100 s in Fig. 10(d). The small values of |∆T |max shown in Fig. 12(b)-(d)
provide numerical confirmation that 9th-order preconditioning of the GMRES, BICGS,
and RICH solvers is not causing any significant dispersion or phase lag relative to the
unpreconditioned GMRES field (Fig. 12(a)).

As we conclude this section, we again wish to emphasize that the same PBNO pre-
conditioner that was constructed for the continuous bubble case was also utilized in
the discontinuous bubble case, and could have been used with an unlimited number of
different initial conditions without incurring any additional construction cost.

6 Conclusion

We have introduced a method for constructing a polynomial preconditioner using a
nonlinear least squares (NLLS) algorithm and have shown that this polynomial-based

A Polynomial-Based, NLLS-Optimized Preconditioner 23

NLLS-optimized (PBNO) preconditioner significantly outperforms two generalized lin-
ear least squares (GLS) preconditioners when running a 2-D discontinuous Galerkin
(DG) compressible flow model of a rising bubble (RTB) test case using implicit-explicit
(IMEX) time integrators. The DG model with PBNO preconditioner achieves signifi-
cant reduction in GMRES iteration counts and model wall-clock time. Comparisons of
the ability of the PBNO preconditioner to improve model performance when employing
BICGS and RICH have also been included. In particular, we have shown that higher
order PBNO preconditioning of RICH (which is run in a dot product free mode) makes
the algorithm competitive with GMRES and BICGS in a serial computing environment.
In addition, since the method used to construct the PBNO preconditioner can, without
modification, handle both positive definite and complex spectra, we believe that the
PBNO preconditioning approach is, for certain types of problems, an attractive alterna-
tive to existing GLS polynomial preconditioners based on linear least-squares methods.

Acknowledgements The authors gratefully acknowledge the support of the Computational Mathe-
matics program of the Air Force Office of Scientific Research, the Office of Naval Research through pro-
gram element PE-0602435N, and the National Science Foundation (Division of Mathematical Sciences)
through program element 121670. We also would like to thank Michal Kopera and several anonymous
reviewers for their helpful suggestions for improving the manuscript.

Conflict of Interest: The authors declare that they have no conflict of interest.

References

1. M. Benzi, Preconditioning Techniques for Large Linear Systems: A Survey, J. Comput. Phys., 182
(2002), 418-477.

2. M. Benzi and M. Tuma, A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear
Systems, SIAM J. Sci. Comput., 19 (1998) pp. 968-994.

3. L.E. Carr III, C.F. Borges and F.X. Giraldo, An Element-Based Spectrally-Optimized Approximate
Inverse Preconditioner for the Euler Equations, SIAM J. Sci. Comput., 34 (2012) pp. B392-420.

4. P.F. Dubois, A. Greenbaum, and G.H.Rodrigue, Approximating the inverse of a matrix for use in
iterative algorithms on vector processors, Computing, 22 (1979), pp. 257-268.

5. M.B. van Gijzen, A polynomial preconditioner for the GMRES algorithm, J. Comp. Appl. Math.,
59 (1995), pp. 9197.

6. F.X. Giraldo and M. Restelli, A Study of Spectral Element and Discontinuous Galerkin Methods for
the Navier-Stokes Equations in Nonhydrostatic Mesoscale Atmospheric Modeling: Equation Sets
and Test Cases, J. Comp. Phys., 227 (2008), pp. 3849-3877.

7. F.X. Giraldo, M. Restelli, and M. Lauter, Semi-Implicit Formulations of the Navier-Stokes Equa-
tions: Applications to Nonhydrostatic Atmospheric Modeling, SIAM J. Sci. Comput., 32 (2010),
pp. 3394-3425.

8. F.X. Giraldo, J.F. Kelly, and E.M. Constantinescu, Implicit-Explicit formulations for a 3D non-
hydrostatic unified model of the atmospheric (NUMA), SIAM J. Sci. Comput., 35 (2013), pp.
B1162-1194.

9. J. F. Kelly and F.X. Giraldo, Continuous and Discontinuous Galerkin Methods for a Scalable 3D
Nonhydrostatic Atmospheric Model: Limited Area Mode, J. Comp. Phys., Vol. 231, pp.7988-8008.

10. C. Kennedy and M. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction
equations, Appl. Numer. Math., 44 (2003), pp. 139181.

11. Y. Liang, Generalized Least-Squares Polynomial Preconditioners for Symmetric Indefinite Linear
Equations, Parallel Comput., 28 (2002), 323-341.

12. Y. Liang, The Use of Parallel Polynomial Preconditioners in the Solution of Systems of Linear
Equations, Ph.D. dissertation, University of Ulster, 2005.

13. M. Restelli and F.X. Giraldo, A Conservative Semi-Implicit Discontinuous Galerkin Method for
the Navier-Stokes Equations in Nonhydrostatic Mesoscale Atmospheric Modeling, SIAM J. Sci.
Comp., Vol. 31, 2231-2257 (2009).

14. Y. Saad, Iterative Solution of Indefinite Symmetric Linear Systems by Methods Using Orthogonal
Polynomials Over Two Disjoint Intervals, SIAM J. Numer. Anal., 20 (1983), 784-811.

15. Y. Saad, Least Squares Polynomials in the Complex Plane and Their Use for Solving Nonsymmetric
Linear Systems, SIAM J. Numer. Anal., 24 (1987), 155-169.

16. Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia PA, 2003.
17. Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving non-

symmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

24 L.E. Carr, C.F. Borges, and F.X. Giraldo

18. L.N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia PA, 1997.
19. H.A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution

of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631-644.
20. H.A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge University

Press, New York NY, 2003.

