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Overview 
 
To an increasing extent, computational models are being used in the design of chemically 
reacting flow systems. This trend will continue as models improve, computer power increases, 
and the alternative of empirical testing becomes more expensive. Of central importance here is a 
fundamental understanding of high-temperature, high-heat-release systems — namely, flames. 
Such systems, often nonpremixed and subject to many competing physical effects involving 
numerous mixture components changing rapidly in space and time, contain the essential features 
inherent to practical engineered systems. This research looks to enhance the solution of these 
systems through a number of computational methodologies. In particular, we have examined 
methods for solving problems by constraining the temperature and/or species fields; we have 
developed three-dimensional local gridding techniques and we have utilized velocity-vorticity 
methods for fluid dynamic modeling of combustion problems. Finally, we have combined high 
order, high resolution spatial discretization schemes with a robust implicit solution strategy. A 
central premise of the research discussed in this proposal is that the advancement of 
computational algorithms and the interaction between computation and experiments can play a 
role of equal or even greater importance, compared to computational architecture development, 
in the solution of these critical problems. All the topics were designed to provide a more 
effective computational/experimental strategy for the solution of problems of interest to the Air 
Force. 
 
Experimentally Constrained Computations 
 
In our development of computational models for one-dimensional burner-stabilized premixed 
laminar flames, we discovered that it was often difficult to produce accurate comparisons of 
numerical calculations with experimental data. This was true even for simple fuels such as 
hydrogen [1]. In addition, convergence difficulties often occurred due to the exponential 
dependence of the temperature in the Arrhenius chemistry terms. As a result, by specifying the 
temperature profile, we reduced the convergence difficulties of the Newton-based solution 
algorithm and we did not have to model distributed heat losses (often radiative). The immediate 
benefit was that the species comparisons were often dramatically better than when the 
temperature was computed. This constrained approach to premixed flame computations is still 
an option in the various PREMIX versions that circulate in research labs today [2]. A variant of 
the concept was also utilized in a paper by Ashurst et al., in which a precomputed velocity 
field was utilized as an input field in a multidimensional reacting system that approximated a 
turbulent reacting flow [3]. Generalization of these ideas has not been explored in any significant  
detail in the solution of flames with more complex chemistry. As part of our research program, 
we have utilized multidimensional experimental data for the temperature and the chemical 
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full Jacobian) was quite substantial, as it affected several of the major data structures in the code.  
It paid off in considerably faster convergence of the application problem from the 2007 paper 
(for one case, the updated code required only 1 Newton iteration, down from 11 in 2007). 
 
More recent updates to LRR3D include the fact that now many quantities appearing frequently in 
the multiple-scale discretizations are precomputed (each time the grid adapts) to save CPU time 
later during residual formation, and that additional redundancy has been built into the arrays used  
to navigate the unstructured LRR3D grids, thus enabling quicker access of quantities needed for 
residual formation.  These improvements, along with the earlier updates, have led to a factor of 
100 speedup in the grid adaption process, which enabled LRR3D to be applied finally to 
unsteady reacting applications --- ones in which the grid adapts every few time steps.  
Subsequently, two unsteady reacting applications were investigated numerically using LRR3D, 
as described below. 
 
The first application was a 3D extension of convection-diffusion-reaction problem with an 
analytical solution, whose purpose was to demonstrate the efficiency and accuracy of LRR3D. 
This problem was governed by a single nonlinear PDE.  The same problem was also solved 
using a structured-grid code that had discretizations of the same level of accuracy as those in 
LRR3D, as well as the same Newton solver; however, all data storage and access in the 
structured-grid code was greatly simplified compared to that in the LRR3D code.  The structured 
grid itself was equispaced and had the same minimum spacing as the LRR3D grid.  Conclusions 
were as follows: 
 

 In plots of spatially averaged error as a function of time, LRR3D results and structured-
grid results were indistinguishable. 

 LRR3D used approximately 530,000 points (this value is time-averaged, since the 
number of grid points changed throughout the LRR3D simulation as the grid adapted), 
while the structured-grid code employed approximately 4.2 million points, which was 
fixed throughout the calculation. 

 LRR3D required approximately one-fourth of the CPU time that the structured-grid 
calculation took. 

 
The second application was a 3D extension of an unsteady 2D solid-solid alloying problem 
studied in the mid-1980s [5].  The problem describes a reactor containing a mixture of solid 
particles of aluminum and palladium (Figure 2).  The particle radius varies, with larger particles 
close to the reactor's central axis, smaller particles close to the exterior walls, and a gradual 
variation in between.  The problem's physics are governed by two coupled nonlinear PDEs 
involving two  
unknowns: temperature and solid fraction.  Values of material properties appearing in the 
equations are taken from measurements by Birnbaum and co-workers [6,7].  Initially the 
aluminum and palladium are cold and unreacted.  The bottom wall of the reactor is then 
gradually heated, causing a diffusion-controlled alloying front to propagate through the domain.  
The simulation terminates when the alloying is complete. 
 
Because this application problem has four-fold symmetry, only one-fourth of the physical 
domain was modeled.  As can be seen in the figure, the alloying front (purple) is non-planar 
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flame is an unconfined flame. These two flames are selected because they cover a broad 
spectrum of operating conditions and the conclusions drawn from them are useful for future 
applications. 
 
 

  
Figure 3. Left: Normalized axial mass flux of the confined flame as a function of the axial position. At z = 
zmax = 12.2 cm, Φj/Φ1 = 0.994 for the MC-Smooth formulation, Φj/Φ1 = 0.984 for the modified 
formulation, and Φj/Φ1 = 0.766 for the original formulation. Right: One-dimensional profiles of axial 
velocity in the confined flame in a portion of the computational domain at z = zmax = 12.2 cm. At r = 2.96 
cm, vz = 10.9 cm/s for the MC-Smooth formulation, vz = 11.0 cm/s for the modified formulation, and vz = 
7.0 cm/s for the original formulation. 
 
To quantify the mass conservation performance of each formulation in the confined flame, we 
have computed the normalized axial mass flux Φj/Φ1 along the axial direction, and the results are 
shown in the left half of Figure 3. As can be seen from this plot, when z = zmax = 12.2 cm, the 
MC-Smooth solution loses 0.6% of its mass, the MOD solution loses 1.6% of its mass, and the 
ORIG solution loses 23.4% of its mass. This result indicates that MC-Smooth and MOD can 
ensure mass conservation but ORIG cannot. In the right half of Figure 3, the corresponding one-
dimensional distribution of axial velocity at z = zmax = 12.2 cm are depicted. From this plot, it is 
clearly observed that losing mass can significantly change the prediction of the velocity field, 
and that ensuring mass conservation is a crucial condition in obtaining a correct prediction of the 
velocity field. 
 
For the unconfined flame, the two-dimensional distributions of the axial velocity field predicted 
by the MC-Smooth formulation and the modified formulation are shown in the left part of Figure 
4. From this contour, we can observe that the modified formulation is unable to ensure the 
smoothness of the velocity field, and that the nonsmoothness in its velocity field will propagate 
vertically to the downstream. The right part of Figure 4 shows the one-dimensional profiles of 
the axial velocity at z = 3.0 cm. From this plot, it is also observed that the velocity field of the 
modified formulation indeed has significant nonsmoothness. Containing nonsmoothness in the 
velocity field is not negligible, because it can further affect derived quantities such as the 
residence time and the soot volume fraction. The MC-Smooth formulation, on the other hand, 
can always ensure the smoothness of the velocity field, and this improvement is confirmed by the 
two plots in Figure 4. The MC-Smooth formulation also requires the least CPU time to converge. 
Specifically, for the simulations related to the confined flame (Figure 3), the CPU time required 
by MC-Smooth is 26% and 16% lower than those required by MOD and ORIG, respectively; for 
the simulations related to the unconfined flame (Figure 4), the CPU time required by MC-
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solver to three-dimensional problems while retaining, for the time being, the global 
approximation on which the high order compact finite differences are based. Concurrent work in 
the combustion diagnostics portion of the research has provided indispensable support for the 
validation and continued development of the numerical methods.  
 
One critical issue that arose in the C1 flame calculations was a form of preconditioner instability 
that made it very difficult to recover from a rejected time step by simply reducing the stepsize. 
Further work using a time-dependent “flame sheet” model considerably clarified the diagnosis of  
the problem. The relative simplicity of the flame sheet model has allowed us to determine that 
the preconditioner instability is related to certain features of the fluid dynamical subproblem, in 
particular (1) the presence of the time derivative of density in the continuity equation, and (2) the 
absence of pressure in the same. Since the flames we are studying burn in a very low Mach 
number regime where the flow is hydrodynamically incompressible, the most natural set of 
primitive variables includes the pressure at the expense of the density, and hence this time 
derivative involves time derivatives of temperature and of all of the mass fractions via the ideal 
gas law. Moreover, in a fully implicit, pressure-based formulation of the problem, the pressure 
unknown is associated with the continuity equation, which is, of course, independent of the 
pressure. Accordingly, every row in the Jacobian matrix corresponding to the continuity equation 
has not only many strong off-diagonal entries of size related to the inverse of the time step but 
also a zero on the diagonal. The effect of this is potentially destabilizing on any standard 
incomplete factorization algorithm applied to the low order approximate Jacobian in the 
preconditioner formation process, and it gets worse as the time step gets smaller and the 
departure from diagonal dominance increases. In some cases, such as in our calculations of the 
one-step flames with the finite-rate Arrhenius chemistry model, the preconditioners constructed 
in this way could be made sufficiently tractable for a satisfactory range of time steps by various 
stabilization techniques, and the computations could be completed; in others, it proved very 
difficult or impossible to form or maintain a sufficiently stable and accurate preconditioner, 
without which the Newton-Krylov method could not converge. 
 
Over the past several years we have developed a detailed understanding of this difficulty, as well 
as a plan for leveraging an important body of recent (and ongoing) research in numerical linear 
algebra in order to address it [10]. The key point is that the discrete form of the linear systems 
which arise in the implicit-compact solution process has strong similarities with the form of so-
called saddle point linear systems, which have received a great deal of attention from numerical 
analysts in the past decade [11]. Typical examples of saddle point problems come from 
constrained optimization, PDE-constrained optimal control, and incompressible fluid dynamics. 
The common thread here is the presence of a constraint. In an incompressible flow, the pressure 
field is fixed by the divergence-free constraint on the velocity field. Similarly, in the low Mach 
number limit, the governing equations of chemically reacting flows describe a constrained 
mechanical system in which the tiny hydrodynamic pressure can be interpreted as a Lagrange 
multiplier that imposes the proper divergence constraint on the velocity field. It can be shown 
that the only sources (S) of nonzero divergence of the velocity in an open vessel are due to the 
diffusion of heat and its production by means of the chemical reaction, e.g., [12]. Hence, it is 
possible to formulate a low Mach number combustion problem as a kind of incompressible flow 
problem with additional conservation equations for the species and a generalized divergence 
constraint on the velocity field. This insight is fundamental to some well-known splitting 

DISTRIBUTION A: Distribution approved for public release.



methods for reacting flow problems [13-15], yet the connection to saddle point problems is not 
clearly articulated in the combustion literature, precisely because most practitioners of 
computational combustion still avoid fully coupled numerical methods. In the field of 
incompressible fluid dynamics, however, where implicit solvers have been used for decades, the 
past fifteen years have seen the advent of new, highly efficient saddle point preconditioning 
algorithms for the fully coupled solution of the steady Navier-Stokes equations [16-19]. Notably, 
these algorithms have also been used in conjunction with a Newton solver [20], and recast in an 
easily parallelizable form [21]. More recently, they have been applied to time-dependent 
problems [22], and used to study more complicated physics, such as buoyancy driven flow [23]. 
Most importantly of all, various generalizations of these algorithms have been devised for linear 
systems which deviate from the canonical saddle point form in one way or another [24, 25]. The 
time derivative of density in the continuity equation is just one element of the reacting flow 
problem which leads to problems with generalized saddle point structure (we note that problems 
with off-diagonal time derivatives have been solved previously with numerical methods of the 
kind we propose to develop [26]). 
 
We have begun development of these methods in Matlab [27], where the existence of ILUx 
routines allow detailed comparison with our current algebraic preconditioning approach in a 
controlled environment. The time-dependent flame sheet problem provides a compelling test of 
their performance on a small-scale flame problem. Applications to more realistic flames can 
follow as soon as suitably efficient Schur complement approximations can be devised for 
problems with strong, localized source terms. One possibility is to use block diagonal 
approximations for the chemistry terms (like in some operator splitting methods) and multigrid 
for the flow variables.  
 
As already mentioned, the preliminary C1 flame calculations undertaken were made possible by 
replacing the JFNK method with a Newton-like method that employs a time-lagged, low order 
Jacobian matrix. Although “modified” Newton is an established strategy for the efficient 
computation of steady flames by “time-dependent” methods [28, 29], our numerical experiments 
have revealed that time-lagging of the Jacobian can lead to inaccurate results for unsteady 
flames, even when the refresh rate of the Jacobian is relatively fast compared to the characteristic 
dynamical time scale of the flame evolution. Given that the modified Newton iteration is not a 
robust approach for true time-dependent simulations and that JFNK has difficulties with small 
chemical species which cannot be resolved well on grids of modest size and complexity, better 
Jacobian options for the nonlinear solver will be explored in the future. Automatic 
Differentiation is not a realistic option, since the residual function that needs to be differentiated 
is actually a complicated hierarchy of subroutines that involves Chemkin and other third-party 
software for the various physical submodels. A more promising approach may be to revisit the 
“Jacobian component” methodology, which was first introduced in [30] and implemented in the 
implicit-compact primitive variable solver for nonreacting flows that was developed in the 
earliest stage of our AFOSR sponsorship. This is best understood as a novel data compression 
scheme for Jacobian matrices arising in the nonlinear solution of PDE problems. Using the 
“component form,” a full (nonsparse) high order Jacobian can be decomposed into a mere two 
arrays using less memory than is required to store a nine blockdiagonal (sparse) low order 
Jacobian. Moreover, this high order Jacobian can be applied to a vector — the key operation of 
any iterative linear solver based on Krylov subspaces — in O(N) operations, where N is the 
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dimension of the Jacobian. Although incredibly promising on paper, the effectiveness of this 
numerical approach was thought to be dependent on the accurate analytical derivation of the 
elements in the two “component” arrays. For nonreacting flow problems, the robustness of this 
process was secured by an in-house code generator based on the symbolic computing capabilities 
of Mathematica [31]. However, it proved extremely challenging to extend this software in such a 
way that it could reliably derive the correct “Jacobian components” for combustion problems 
with detailed kinetics. We believe that this approach may be able to be salvaged, albeit at 
marginally greater computational cost and with some (acceptable) loss of accuracy, by replacing 
all analytically generated quantities with numerically estimated ones. This change should pose 
no more problems than the switch from an analytical Jacobian matrix to a numerical Jacobian 
matrix — which, in most normal circumstances, is not considered critical to the performance of a 
Newton method [32]. 
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