
GRAPHTABLES

JUNE 2015

INTERIM TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-132

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2015-132 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
ASHER D. SINCLAIR JULIE BRICHACEK, Chief
Work Unit Manager Information Systems Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUNE 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

OCT 2013 – SEP 2014
4. TITLE AND SUBTITLE

GRAPHTABLES

5a. CONTRACT NUMBER
IN-HOUSE: R12L

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Jason A. Moore

5d. PROJECT NUMBER
PAVZ

5e. TASK NUMBER
IH

5f. WORK UNIT NUMBER
07

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/RISB
525 Brooks Road
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-132
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2015-2638
Date Cleared: 26 MAY 2015
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Graphtables provides for a spreadsheet style structured exploration, filtering, and augmenting of graphs. This document introduces the
Graphtables concept and compares it to current methods and issues that common methods present. A subset of graph specific tasks
from published works is then listed and how the Graphtables metaphor could directly enhance many of the tasks that generalized
graph visualizations fail to provide.

15. SUBJECT TERMS
Graph Visualization, Graph Navigation, Visual Literacy

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
DAVID E. KAVENEY

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

37

i

Table of Contents
List of Figures .. ii

List of Tables ... ii

1.0 Summary ... 1

2.0 Introduction .. 1

2.1. Traditional node-link ... 1

2.2. Large Graphs ... 3

2.3. Visual Literacy ... 3

2.4. Tasks .. 4

3.0 Methods, Assumptions, and Procedures .. 4

4.0 Results and Discussion .. 5

4.1. Graphtables Introduction.. 6

4.2. Sort by sub-columns.. 7

4.3. Filtering ... 8

4.4. Edge Bundling ... 9

4.5. Custom Columns ... 10

4.6. Secondary features ... 11

4.7. Breaking the Spreadsheet Metaphor .. 11

4.8. Visual Opportunities ... 12

4.9. Initial Java Implementation ... 13

5.0 Conclusions ... 14

6.0 References .. 16

Appendix A – Patent Application .. 17

Appendix B – Graphics for Patent Application .. 29

List of Symbols, Abbreviations, and Acronyms ... 32

ii

List of Figures

Figure 1 Inventing Abstraction 1910-1925 Graph of artists and their connections with other artists that
where pivotal to the field of abstract art. ((MOMA), 2012) ... 1
Figure 2 The effect of selecting Vasily Kadinsky from the overview graph displays the artist’s direct
connections. ((MOMA), 2012) .. 2
Figure 3 US airlines graph (235 nodes, 2101 edges) (a) not bundled and bundled using (b) [Force Directed
Edge Bundling] FDEB with inverse-linear model, (c) [Geometry-Based Edge Bundling] GBEB and (d) FDEB
with inverse-quadratic model. (Holten & Van Wijk, 2009) ... 3
Figure 4 Node-link diagrams. (a) A directed graph typical of a biological pathway (b) An undirected graph
with nodes arranged in a circle. (c) A spring-embedded layout of data from b. (Nature America Inc, 2012)
 .. 4
Figure 5 Adjacency matrices. (a) Nodes are ordered as rows and columns; connections are indicated as
filled cells. (b) A matrix representation of data from Figure [4]. (Nature America Inc, 2012) 4
Figure 6 Simple graph depicted as nodes and edges. ... 6
Figure 7 Graphtables depiction of a simple graph. ... 6
Figure 8 Graphtables sorting by sub-column. ... 7
Figure 9 Graphtables secondary sort. ... 8
Figure 10 Graphtables example of a whole graph filter (Filter on Value < 5 as displayed in the top bar). .. 8
Figure 11 Graphtable example of a sub-column filter. ... 9
Figure 12 Edge-bundling common neighbor sub paths. ... 10
Figure 13 Edge-bundling all repeated nodes and edges. .. 10
Figure 14 Edge-bundling compromise. ... 10
Figure 15 Descending column with nulls. ... 12
Figure 16 Ascending column with nulls. ... 12
Figure 17 Bertin matrix example. (Perin, Dragicevic, & Fekete, 2014) ... 13
Figure 18 Initial custom table implementation. ... 14

List of Tables
Table 1 Simple graph of nodes, edges, and attributes. .. 6

Approved for Public Release; Distribution Unlimited.
1

1.0 Summary
Graphtables provides for a spreadsheet style structured exploration, filtering, and augmenting of
graphs. This document introduces the Graphtables concept and compares it to current methods and
issues that common methods present. A subset of graph specific tasks from published works is then
listed and how the Graphtables metaphor could directly enhance many of the tasks that generalized
graph visualizations fail to provide.

2.0 Introduction
User driven path traversal on graphs is cognitively difficult and error prone. The problem of exploring
graphs becomes impossible when the nodes and links of graphs become larger than available display
real-estate, making it impossible for the viewer to follow the embedded relations. A recent survey
paper of graph visualization techniques (Gibson, Faith, & Vickers, 2012), cites the difficulty of common
graph tasks (identifying the shortest path, determining connectivity, listing neighbors, etc.) in even small
graphs of 10s of nodes. Additionally, they discuss that cognitively inspired layouts aiming to reduce
edge crossing or otherwise making improvements to graph aesthetics also failed to improve the user’s
performance.

2.1. Traditional node-link
The following images showcase the most common way of displaying graphs, as a series of links and
nodes.

Figure 1 Inventing Abstraction 1910-1925 Graph of artists and their connections with other artists that where pivotal to the
field of abstract art. ((MOMA), 2012)

Approved for Public Release; Distribution Unlimited.
2

Figure 2 The effect of selecting Vasily Kadinsky from the overview graph displays the artist’s direct connections. ((MOMA),
2012)

While the graph from Figure 1 is greatly simplified when selecting a particular artist, as displayed in
Figure 2, difficulty in following links between participants is exacerbated by numerous overlapping
edges, obscuring labels, and a layout that attempts to show the important figure centrally. Imagine
using this depiction to determine if there is a direct connection between Mikhal Matiushin and Natalia
Goncharova.

Approved for Public Release; Distribution Unlimited.
3

2.2. Large Graphs
Many techniques for making large graphs more aesthetically pleasing make discerning detail in the
graph more difficult where they allege the opposite. Perhaps the best example of this is in Force-
Directed Edge Bundling.

Figure 3 US airlines graph (235 nodes, 2101 edges) (a) not bundled and bundled using (b) [Force Directed Edge Bundling]
FDEB with inverse-linear model, (c) [Geometry-Based Edge Bundling] GBEB and (d) FDEB with inverse-quadratic model.
(Holten & Van Wijk, 2009)

While the (b), (c), and (d) figures above are indeed more visually appealing, the details are heavily
obscured and individual edges that could be traversed before bundled are now completely lost among
the bundled edges.

2.3. Visual Literacy
Visual literacy is the most dominant factor in a person being able to use information embedded into any
visual metaphor. Without it, the user requires a significant amount of effort in first understanding how
the visual representation is meant to convey information. Results become worse when the user
misinterprets the visualization and applies the incorrect set of assumptions which can lead to incorrect
conclusions. Key journals, such as Nature, expect users to have a robust visual literacy and have articles
online to help readers understand their means and methods. These depictions are designed to help
scientists and laypeople make sense of the complicated world in which we live. The following images
are excerpts from nature|methods1, a website dedicated to teaching techniques for life scientists and
chemists.

1 http://www.nature.com/nmeth/index.html

Approved for Public Release; Distribution Unlimited.
4

Figure 4 Node-link diagrams. (a) A directed graph typical of a
biological pathway (b) An undirected graph with nodes
arranged in a circle. (c) A spring-embedded layout of data
from b. (Nature America Inc, 2012)

Figure 5 Adjacency matrices. (a) Nodes are ordered as rows
and columns; connections are indicated as filled cells. (b) A
matrix representation of data from Figure [4]. (Nature
America Inc, 2012)

For a more complete understanding of the breadth of graph visualization techniques, the reader is
encouraged to read, “A survey of two-dimensional graph layout techniques for information
visualization” (Gibson, Faith, & Vickers, 2012).

2.4. Tasks
Traditional graph visualization designs are not designed to directly address a user’s questions and
therefore attempt to optimize on visual aesthetics. Understanding the tasks (types of questions) that
users are trying to answer with graphs should provide substantial pressure in designing optimal graph
visualizations. The tasks as defined by (Lee, Plaisant, Parr, Fekete, & Henry, 2006) describe primitive
task operations; the intent of Graphtables is to improve user performance in many of these tasks. While
Graphtables is about optimizing human performance, no formal human experiment was performed
under this task; however, many of the computer related issues that are of concern are introduced
below. The Graphtables concept and basic implementation2 is patent pending: PASN 62/087,289, titled,
“METHOD AND APPARATUS FOR GRAPHICAL DATA INTERACTION AND VISUALIZATION OF GRAPHS VIA
PATHS”.

3.0 Methods, Assumptions, and Procedures
Initial exploration of the Graphtables approach was expressed as a series of concept art with an evolving
set of visual options and a set of notes and discussion points. Relevant portions of that exploration are
in the Results and Discussion sections below. Once that was accomplished, a small curated dataset (4
nodes and 2 edges) was created to test and illustrate a subset of features. Once the tests were created
and the output was validated, a very primitive interactive visualization was implemented which allowed
the user to perform a simple sort and led to patenting the concept.

The overall assumption of Graphtables is simple; structured navigation of graphs will outperform
commonly used layout algorithms for a large range of graph specific tasks. Those tasks are enumerated
from previous published works by Lee et al and fall into one of the following: topology-based tasks,
attribute-based tasks, browsing tasks, and overview tasks.

2 AFRL/RHCV has volunteered resources to assist in developing a full-featured Graphtables application.

Approved for Public Release; Distribution Unlimited.
5

4.0 Results and Discussion
Graph visualization algorithms are conceptually designed to support human decision making. As graphs
of larger sizes are used, they often fall short in providing direct answers and only provide some overview
capability. Instead of designing a general graph visualization capability which is agnostic to the types of
questions users need (or want) answered, Graphtables uses a tabular metaphor that allows the user to
directly answer graph oriented questions.

Lee et al define four major types of tasks: topology-based, attribute-based, browsing and overview.
Topology-based tasks are broken down into: adjacency (direct connection), accessibility (direct or
indirect connection), common connection, and connectivity. Attribute tasks are broken down into: on
the nodes, and on the links. Browsing tasks are broken down into: path following and revisiting.
Overview visualization tasks as defined by Lee et al are not treated in this work and it is believed that
Graphtables will perform worse since its purpose is specifically to show individual paths through the
graph and not the graph structure in its entirety.

The following is an excerpt from (Lee, Plaisant, Parr, Fekete, & Henry, 2006) where they describe one
type of topological task and introduce some example questions:

Find the set of nodes adjacent to a node.
· How many nodes are adjacent to a node?
· Which node has a maximum number of adjacent nodes?

Examples:
· Find the names of the direct friends of Eric.

[Find on Nodes + Find Adjacent Nodes on Nodes + Retrieve Value on Nodes]
· How many kinds of organisms do golden eagles eat?

[Find on Nodes + Find Adjacent Nodes on Nodes + Filter on Links + Compute Derived
Value (Count) on Nodes]

· Who is the most popular person?
[Find Extremum on Nodes]

The above tasks are not well supported by traditional graph visualizations as exemplified in Figure 1.
Take for instance, the problem of finding the neighbors of Vasily Kandinsky. This first requires the user
to scan the entire graph for the name [Find on Nodes], or alternatively, to use a search function if it is
available in the tool. Unfortunately, due to the number of edges in the graph, it is nearly impossible to
walk the edges. Instead, the user would have to prune the graph to see only the direct neighbors as can
be seen in Figure 2. At this point, the user could answer the question of retrieving the names of the
neighbors of Vasily Kandinsky. However, finding all the second degree neighbors is significantly harder
and error prone since the relevant data for each task would require the user to repeat the above tasks
for each of the direct neighbors.

These tasks become nearly impossible when the query parameter doesn’t fit well into the interface,
such as attributes or names that do not reasonably fit within the constrained area. It is rare for graph

Approved for Public Release; Distribution Unlimited.
6

visualizations to encode secondary attributes into the visualization; if they are represented, they are
typically encoded as shapes or colors of the nodes and edges. This dramatically reduces the number of
values that can be displayed, reducing the amount of information available to the viewer.

4.1. Graphtables Introduction
Graphtables provides the user with a spreadsheet style visual and interaction metaphor to sort,
augment, and filter paths over arbitrary graphs. Take the following graph G(v,e) = ({A,B,C,D}, {{A,C},
{A,D}}) where each of the nodes and edges also have the following attributes:

Table 1 Simple graph of nodes, edges, and attributes.

Nodes Label Value Valid

A A 3 T

B B NULL F

C C 2 F

D D 9 NULL

Edges Label Weight

AC AC 10

AD AD 2

The graph can be depicted in the following traditional way:

Figure 6 Simple graph depicted as nodes and edges.

Instead of displaying the graph in the traditional way, Graphtables first builds a complete set of paths
starting from every node and of every length possible such that each path contains no cycles and no
path is represented more than once. Each path is then displayed in a single row with each node visually
represented by an encapsulated rounded rectangle and each edge as a line.

Figure 7 Graphtables depiction of a simple graph.

A B

C D

Approved for Public Release; Distribution Unlimited.
7

The path metaphor of alternating between vertices and edges is additionally encoded in the main
header which alternates between Node and Edge until the length of the longest path is reached. Below
those main headers, sub-column headers are provided for each attribute which exists within the graph.

The operations then available to the user are relatively simple: Sort by any number of sub-columns,
insert a main level column, insert a sub-column, change the order of the sub-columns, filter the graph,
filter a main column, or filter by a sub column.

Displaying all possible paths does grow quickly and will be very large for real-world graphs. The following
formula provides the upper bound of this complexity:

 ++
=

 −
⋅⋅

⋅+ ∑

−

= 2
811 where

2
!

2
2

2

0

en
i

n
i

n
v

n

i
 where v is the total number of vertices in the

graph and e is the total number of edges3. The explosion of real-estate needed to display these paths is
not considered a detriment and during real-world tasks is believed to be of great utility and is discussed
in later sections.

4.2. Sort by sub-columns
One of the primary operations provided to the users is the ability to sort one or more columns. Figure 8
displays the result of taking the simple graph and sorting the paths by the values in Node1’s sub-column.

From this, it is then trivial for the user to answer questions about which nodes have the greatest values,
least values, or the distribution of values of any attribute.

Figure 8 Graphtables sorting by sub-column.

As is possible with spreadsheet programs, the user can cascade sorting parameters. Figure 9 depicts the
result of the user performing a secondary sort on Edge 1’s Weight sub-column.

3 Special thanks to Dr. Victoria Horan of AFRL for her assistance in the derivation of this upper bound.

Approved for Public Release; Distribution Unlimited.
8

Figure 9 Graphtables secondary sort.

It is reasonable to expect that graphs with heterogeneous attributes will be ingested. In the current
version, any node or edge that does not have a value for that sub-column will results in a visually empty
cell. This has an interesting implication; the number of sub-columns for each of the nodes and edges is
the sum of unique attribute types between all nodes and edges, respectively.

4.3. Filtering
Another common task will be applying one or more filters to the data. Filtering can be done on the
entire graph, on a particular Node or Edge main column, or on any sub-column. Figure 10 depicts one
possible way to display a whole graph filter. The user provides a filter predicate and the system then
sorts the paths to reflect that portions of the graph either pass or fail the filter. Notice that this filtering
is done prior to any other user defined sorting as defined in section 4.2.

Figure 10 Graphtables example of a whole graph filter (Filter on Value < 5 as displayed in the top bar).

This essentially converts the filtering operation into a ranking operation, meaning that paths that fail the
filter are still ranked with respect to the user defined sorting. This is vastly different from every other
known graph representation. To put it another way, filtering is just ranking and a user will never be
presented an empty set. Instead, the paths that most closely satisfy the desires of the user are
presented earlier in the list. This is keeping with the intent of preserving the Gestalt principle of
visualization where items that are closer are more related than items which are further away.

Approved for Public Release; Distribution Unlimited.
9

Figure 11 Graphtable example of a sub-column filter.

As described above, filters can be applied to sub-portions of the graph and Figure 11 depicts the result
of the same basic filter to a sub-column. Notice the partition line is between rows 6 and 7 versus when
it was applied to the whole graph filter and the partition was between rows 4 and 5.

How filtering should be specified by the user is still open. A simple and natural mechanism can be
something as simple as a Boolean algebra that allows the operator to choose a column and then an
inequality and value for comparison. Limiting the interface to Boolean operations is not necessary and
more expressive interfaces can enable extrinsic data from the graph to be represented. One could
imagine specifying a geospatial filter defined through a map interface to filter out nodes that have
addresses further from some user generated polygon. Alternatively, the user could create a custom
column that calculates distance information and then perform a simple sort and filter. Even more
expressive mechanisms for sorting are possible and could include domain specific languages or other
graphical techniques for specifying the filter criteria.

4.4. Edge Bundling
A fair criticism of the approach as presented thus far is that paths that have many common elements
require the user to visually match each of the elements to identify the common subgraph. While the
default ordering will result in rows having many common sub-paths, direct neighbors will have much
less in common once user defined filtering and sorting is applied. Techniques similar to edge bundling
can still be supported, and unlike the common case where the edge bundling technique makes it
impossible to follow exact paths, it enhances the readability in the Graphtables implementation. Take
Figure 12 for instance. Neighboring duplicate nodes and edges are collapsed, resulting in an easier to
discern set of common sub paths. There are numerous other ways that edge bundling could be visually
depicted, and for example, Figure 13 shows an alternative where there are no repeated nodes or edges
in subsequent columns. One issue with this representation is that sub paths (for example the path that
starts and end with the C labelled Node) are not as visually salient as in the other representations.
Figure 14 represents one possible compromise between drawing the minimum number of repeated
values and drawing each path independently.

Approved for Public Release; Distribution Unlimited.
10

Figure 12 Edge-bundling common neighbor sub paths.

Figure 13 Edge-bundling all repeated nodes and edges.

Figure 14 Edge-bundling compromise.

4.5. Custom Columns
Adding user defined columns, both at the main level and sub-level is very desirable. This feature allows
users to augment data with values that are either necessary to answer questions intrinsic within the
graph or calculated values such as path length. More interesting is augmenting the graph with values
that are not internally available, like distance of addresses in the graph from a user specified location.
While not depicted, the expectation is that users could move these columns freely at the main level if
created there, or within the sub columns if created under a particular main level header. It may also be

Approved for Public Release; Distribution Unlimited.
11

desirable when users insert a column under one node that it is replicated under all nodes, but these
interface concepts need to be explored for good defaults and allow for alternative implementations.

4.6. Secondary features
There are a set of secondary features that will make using larger graphs or graphs with numerous
attributes easier to handle. Future implementations should provide the ability to hide undesired or
unnecessary attribute columns for either a particular main column or for the entire display.
Additionally, the user could also decide to hide rows from the display. Both of these features are
common in high quality spreadsheet software and should be intuitive for users to understand.

Altering the sorting precedence in spreadsheets is difficult and often requires the user to completely re-
define the sorting preferences. Some effort providing a more intuitive method is necessary since
Graphtables is designed for these sorting properties to be altered often and knowing the order is
generally more important in Graphtables than spreadsheets. One possible solution is to display the
current sorting order in a small vertical table, allowing the user to change the sorting precedence and
direction by dragging the column names.

This visualization assumes all paths begin at edges, but it is conceivable for a user to desire the paths to
be used for the first column. This could be trivially supported, but is not expected to be implemented
due to the fact that a user could simply sort by a field in the first edge column and then look left and
right for the answer.

4.7. Breaking the Spreadsheet Metaphor
While Graphtables holds closely to the spreadsheet metaphor, there are differences that should be
pointed out. It doesn’t make sense to re-order high level columns (Node1, Edge1, Node2,…) since they
only represent the overall type in the display and are numbered and labelled solely for user
identification.

An additional difference is that the number of rows is static. Other than the user visually hiding values;
the actual number of rows cannot change in the current implementation since the number is tied to the
number of unique paths in the graph.

Sub-columns under a main column header can be re-ordered, but only within the main column they are
displayed.

Since nulls are ranked differently and are always considered of lower rank than all other values, graphs
that contain nulls have the oddity that the list in ascending order is not the inverse of the list in
descending order; see Figure 15 and Figure 16 sorted by the Valid field.

Approved for Public Release; Distribution Unlimited.
12

Figure 15 Descending column with nulls.

Figure 16 Ascending column with nulls.

4.8. Visual Opportunities
While the figures above show a relatively simple visual metaphor, all the techniques that have been
used in the past can still be brought to bear. Nodes and edges could also be rendered differently (shape,
color, stroke, etc…) based on values in their attributes.

One could imagine rendering charts, icons, images, and maps as the values in sub columns. An
interesting blend would be to use the common visual metaphors as seen in Bertin matrices, where the
user can see the relative magnitude of values, resulting in the ability to scan quicker, see Figure 17.

Approved for Public Release; Distribution Unlimited.
13

Figure 17 Bertin matrix example. (Perin, Dragicevic, & Fekete, 2014)

Numerous other interaction opportunities exist including all the common brushing and linking
operations as introduced by Ben Schneiderman; hovering over one cell could highlight all the other cells
that represent the exact same node or edge. The user may wish to preserve the relative order of all sub-
columns consistently (Label, Value, Valid as seen through the examples above) so moving the relative
position of a sub-column under any main column would change the displayed order for all the sub-
columns.

4.9. Initial Java Implementation
A basic implementation was performed under this task to understand some of the issues that will be
present in a full implementation. A major issue was caused by Java’s javafx.scene.control.TableView
implementation which prevented graphs of more than 500 rows and columns to be interactively
panned. In order to address this performance limitation, a prototype replacement for table was
developed to provide for out-of-core and on-demand creation of the visual elements when cells are
exposed. Out-of-core techniques limit the amount of information kept in main memory and defer
loading all the data until it is essential to present or use. These techniques usually minimize the amount
of memory, bandwidth, or computation that a system needs to use at the expense of not having all the
information immediately available which causes the user to wait until the data can be retrieved from
long term storage. This is how applications like Google Earth© allow the user to pan massive geospatial
datasets interactively. In the case of Graphtables, the computer had ample memory to store all the
information but Java, in particular the JavaFX graphics layer, builds a complete image of the table to
make panning more responsive; in this case those “optimizations” became detriments as the vast

Approved for Public Release; Distribution Unlimited.
14

majority of the table was not actually exposed and panning all the hidden components in the table was
too computationally intensive.

The table implementation provided by JavaFX also failed to provide a rich method for addressing more
elaborate column reordering logic. Particularly, for novice users exploring the interface, the system
needs to promote learning the interface concepts, and simply rejecting bad positions isn’t sufficient;
instead, the sub-column will not move further than allowed. Recall that sub columns are limited to
being reordered only within the main column for which they occur.

Another issue is in sorting elements of a graph that have heterogeneous attributes. The default Java
sorting routines consider null as always higher rank than any value. This means that in sorted sub-
columns, the empty values always appeared first. This behavior was opposite of what was desired and a
custom sort was implemented.

Figure 18 is a screenshot from the custom table implementation with a graph that has four nodes and
two edges. Many features described earlier are missing, in particularly the visual metaphors described
above are not implemented. In this case, the user had selected the first column for sorting.

Figure 18 Initial custom table implementation.

5.0 Conclusions
Graphtables provides a simple, intuitive, and powerful structure for directly answering graph specific
questions. The promise of such a capability is sufficient to warrant a complete implementation and an
experiment to validate the presumption that this method will increase human performance. There are
significant hurdles in scaling this metaphor to very large graphs as the system first needs to build a
complete set of all possible paths. While this can be done in parallel, sorting the paths and computing
user generated fields could pose a significant computational burden. Additionally, there is a question
about how long of a path will be useful to the user, but this will only be gleaned from utilizing the
capability with real-world scenarios. If it is determined that paths longer than some length offer little
benefit, then this optimization could be easily added. It is not necessarily envisioned that this display is
meant to completely replace current graph representations, but rather to be the primary mechanism

Approved for Public Release; Distribution Unlimited.
15

used to answer graph specific task. In particular, Graphtables does not intend to provide overview.
Graphtables offers a huge opportunity and is the only spreadsheet/path approach directly designed to
answer graph specific questions.

Approved for Public Release; Distribution Unlimited.
16

6.0 References

(MOMA), M. o. (2012). MOMA | Inventing Abstraction. Retrieved Dec 2, 2014, from Museum of Modern

Art:
http://www.moma.org/interactives/exhibitions/2012/inventingabstraction/?page=connections

Gibson, H., Faith, J., & Vickers, P. (2012). A survey of two dimensional graph layout techniques for
information visualization. Information Visualization. SAGE Publications.

Holten, D., & Van Wijk, J. J. (2009). Force-Directed Edge Bundling for Graph Visualization. Computer
Graphics Forum, 28(3), 983-990.

Lee, B., Plaisant, C., Parr, C., Fekete, J.-D., & Henry, N. (2006). Task taxonomy for graph visualization. In
Proceedings of the 2006 AVI workshop on Beyond time and errors: novel evaluation methods for
information visualization (pp. 1--5). ACM.

Nature America Inc. (2012, February). Networks. Nature Methods, 9(2), p. 115.

Perin, C., Dragicevic, P., & Fekete, J. (2014). Revisiting bertin matrices: New interactions for crafting
tabular visualizations. IEEE.

Approved for Public Release; Distribution Unlimited.
17

Appendix A – Patent Application
Air Force Invention RL10043 1

 2

METHOD AND APPARATUS FOR REMOVING REDUNDANT INFORMATION 3

FROM DIGITAL DOCUMENTS 4

 5

STATEMENT OF GOVERNMENT INTEREST 6

 The invention described herein may be manufactured and used by or for the 7

Government for governmental purposes without the payment of any royalty thereon. 8

 9

PRIORITY CLAIM UNDER 35 U.S.C. §119(e) 10

 This patent application claims the priority benefit of the filing date of a 11

provisional application, serial number 62/087,289, filed in the United States Patent and 12

Trademark Office on Dec 15, 2014. 13

 14

BACKGROUND OF THE INVENTION 15

 Mathematical graphs which are made up of nodes and edges are pervasive in day 16

to day life. Graphs are even more essential for analysts that rely on graph based data for 17

analyzing domains such as social networks, computer networks, road networks, subway 18

maps and command and control structures. This makes graph visualization and 19

understanding pivotal to effectively using these potentially large and complex graph 20

based data sources. 21

 Traditional graph visualization uses one or more graph layout algorithms to draw 22

rectangles and lines to depict nodes and edges in the graph. These visualizations often 23

rely on algorithms that attempt to layout the graph using poorly balanced aesthetic 24

principles. While the readability of the graphs is the principle purpose of these layout 25

algorithms, increasing graph size and complexity are reducing the effectiveness of these 26

algorithms to allow the user to quickly and easily digest both the structure and the content 27

Approved for Public Release; Distribution Unlimited.
18

of these graphs. This problem is further exacerbated for graphs where the number of 28

nodes greatly exceeds the display area. 29

 Traditional graph visualizations also often fail to maintain the gestalt principle of 30

proximity where the viewer automatically correlates graph elements’ proximity to some 31

form of relationship between those elements. Another failing of traditional graph 32

visualizations is that they are ill-suited to address rapid sequential questions where each 33

layout that optimizes a particular question can often cause the entire display to change 34

radically. A layout optimizing a single path through a graph may omit values at the 35

nodes; another layout that bundles edges to give the overall flow within a graph makes it 36

impossible to see which paths actually exist. Overall, each traditional layout 37

compromises which aspects of a graph is displayed. 38

 39

OBJECTS AND SUMMARY OF THE INVENTION 40

One object of the present invention is to provide a method and apparatus for 41

displaying graphs as a series of paths in a tabular form. 42

Another object of the present invention is to provide a method and apparatus for 43

prioritizing the order of the paths that are displayed in order to satisfy dynamic user 44

queries for information. 45

Yet another object of the present invention is to provide a method and apparatus 46

to allow the user to interactively generate new information based on data both internal 47

and external to the graph while still being able to use these new results for prioritizing the 48

sorting order of the paths. 49

The invention disclosed herein provides a method and apparatus for displaying 50

graphs as a series of paths with the ability to filter and sort those paths based on intrinsic 51

and extrinsic values. In particular, this invention allows the user to display and 52

intuitively interact with graphs using a common spreadsheet style metaphor. A graph 53

consists of a set of edges and nodes where edges connect nodes to nodes. Each edge 54

and/or node can have any amount of other data associated with it, whether integer, real, 55

boolean, textual or otherwise. The present embodiment of Graphtables allows the user to 56

interactively: configure the sorting order of the columns of the table; define which data to 57

display in each column; and compute new values or fields. By providing these few, but 58

Approved for Public Release; Distribution Unlimited.
19

powerful set of operations, the user can quickly get a list of paths through a graph to 59

answer targeted questions such as: which paths are of length 5 starting from a particular 60

node; which nodes are directly connected to a particularly node; and display all the paths 61

that have a node with an address that is also 5 minutes away from another user-supplied 62

address. 63

According to an embodiment of the present invention, Graphtables, comprises the 64

steps of: accepting an input graph from the user; computing all possible paths through the 65

graph such that each path is unique and has no cycles; and display each path in a single 66

row where upon initialization that the first row starts with the shortest paths and the last 67

row contains the longest path. 68

According to the preferred embodiment of the present invention, Graphtables, the 69

spreadsheet metaphor is slightly changed in that the user is presented with a set of overall 70

columns in the order of Node, Edge, Node, Edge, etc. There is one column for each 71

element in the longest path, so if the longest path is of length 15, there are 15 main 72

columns each labelled with Node or Edge. In the preferred embodiment, each main 73

column is broken up into sub columns where each attribute of the node or edge is 74

displayed in a sub column. The number of sub columns is equivalent to the number of 75

unique attributes for all nodes or edges. This allows the present invention to 76

accommodate nodes or edges with non-homogenous data and data types. In the preferred 77

embodiment, when a node or edge does not contain a particular attribute, it simply 78

doesn’t display any value in that cell. Other embodiments may choose to display NULL 79

or other value or symbol. 80

According to a feature of the present invention, Graphtables, the user can re-order 81

the sub columns not labelled Node or Edge. In the preferred embodiment, this only alters 82

the location within that one Node or Edge but in another embodiment, changing the 83

column display order for sub columns could alter the display order for the other Node or 84

Edge columns. There is no utility in moving the main columns labelled Node and Edge 85

as they only let the user know that the column is displaying node or edge information. 86

 According to a feature of the present invention, Graphtables, the user can sort any 87

number of columns as is common in spreadsheet applications. The user selecting 88

columns to sort is equivalent to a complex graph matching search where more relevant 89

Approved for Public Release; Distribution Unlimited.
20

results are displayed first, but Graphtables achieves this effect without requiring any 90

complex textual input. It is not necessary that each node or edge contain the same 91

number of attribute data values. The preferred embodiment allows the user to decide 92

when a node or edge does not contain a value, whether to consider that the node or edge 93

lacking a value is displayed earlier or later in the table. 94

 According to another embodiment of the present invention, Graphtables, the user 95

can filter the data by all or any of the following: 1) all nodes and edges, 2) any subset of 96

nodes or edges, and 3) any number of rows. When a path fails the filter, the preferred 97

embodiment does not hide that path, it just makes it sorting order to be later in the list. 98

This allows the user to still sort and view the filtered results in context with the other 99

information. The preferred embodiment still sorts the filtered data in the same way as 100

specified by the user and displays a line to depict that the rows below that line are 101

filtered. This embodiment effectively converts filtering to a simple ranking calculation, 102

showing possible relevant results where other graph implementations would have 103

excluded those nodes or edges from the graph entirely. Those traditional 104

implementations do not allow the user to see that there are paths that might have closely 105

matched their filter. 106

According to another feature of the present invention, Graphtables, the user can 107

insert main columns or sub columns that generate derived data for the entire graph, or any 108

number of steps along the path. If the inserted columns are at the main level, the inserted 109

columns are moveable next to any other already existing main column. If the inserted 110

column is a sub column, that sub column location can be moved but is limited to the 111

inserted main column. 112

According to another feature of the present invention, Graphtables, the user can 113

choose to bundle edges so that if two neighboring rows share the same edge, the node is 114

only displayed once and the edge is only displayed once on the first occurrence and all 115

subsequent contiguous edges are displayed as edges from the primary edge. 116

 117

BRIEF DESCRIPTION OF THE DRAWINGS 118

Approved for Public Release; Distribution Unlimited.
21

FIGURE 1 depicts a sample graph with the default sorting, called the Initial 119
State. 120

 FIGURE 2 shows the result of sorting by a single column from the Initial State. 121

 FIGURE 3 shows the result of sub sorting by a second column from the state 122

depicted in Figure 2. 123

 FIGURE 4 shows the result of sub sorting by a third column from the state 124

depicted in Figure 3. 125

 FIGURE 5 shows the result of filtering the entire table from the Initial State. 126

 FIGURE 6 shows the result of filtering a single column from the Initial State. 127

 FIGURE 7 shows the result of filtering a single column from the state displayed 128

in Figure 3. 129

 FIGURE 8 shows the result of inserting a custom main level computed column. 130

 FIGURE 9 shows the result of sorting a different column from the Initial State. 131

 FIGURE 10 shows the result of edge bundling from the state displayed in Figure 132

9. 133

 134

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 135

This invention displays a user defined ordered set of paths with optional filters 136

and user defined columns. In particular, this invention provides an interface to explore 137

graph paths that satisfy extrinsic user needs. 138

Referring to FIGURE 1, the graph G is displayed in its initial state assuming the 139

user had loaded a graph with the nodes and edges as defined in 100. 120 displays the 140

same graph as the traditional node-link style of the same graph as defined in 100. 140 141

contains the additional metadata for each node and edge. 160 is the canonical depiction of 142

the same graph as defined in 100, 120, and 140. 160 consists of 5 major columns, where 143

each major column is named based upon the type of item that it contains, either nodes or 144

Approved for Public Release; Distribution Unlimited.
22

edges and has a monotonically increasing column number for each node-edge pair and 145

has subcolums as in 165. The number of columns in 160 is defined based on the length of 146

the longest path through the graph as defined by 100. The titles of the subcolumns as in 147

165 are based on the metadata in the underlying graph as defined by 140. Each row of the 148

table as in 170 displays a single walk through the graph and its contents are based on the 149

sorting order of the columns in 165. The canonical representation for a node as in 175 is 150

to simply surround the contents of the primary column as in 160 with a rounded 151

rectangle. The visual depiction in 175 is solely to improve the user’s interpretation and in 152

no way affects the ability to: sort contents, alter the order of the columns, or insert user 153

defined columns. The canonical representation for an edge as in 185 is to simply to draw 154

a thick line behind the contents of the primary column as in 160. The visual depiction in 155

185 is solely to improve the user’s interpretation and in no way affects the ability to: sort 156

contents, alter the order of the columns, or insert user defined columns. 180 displays the 157

canonical method of displaying NULL values metadata fields as empty cells. 158

Referring to FIGURE 2 is the result of sorting the value column (200) in the 159

graph as defined by 140 in descending order. This action causes the rows to be reordered 160

based on the contents of that cell. Note that the entire path stays together and entire rows 161

are sorted, not just the contents of a single column or subcolumn. 162

Referring to FIGURE 3 is the result of sorting the weight column (300) in the 163

graph as defined by 140 in ascending order after previously sorting was applied as in 164

Figure 2. Note that sorting precedence is applied, and the sort as applied in Figure 2 165

stays consistent. 166

Referring to FIGURE 4 is the result of applying a graph filter (400) based off the 167

initial state as displayed in Figure 1. A graph based filter evaluates all elements in all 168

paths for the entire graph. If any element fails the check, then the entire path fails the 169

check and is considered filtered. In the canonical implementation, a filter doesn’t 170

eliminate the element, but instead serves as a sorting order modifier. In the canonical 171

implementation, all non-filtered elements are displayed before all filtered elements, but 172

regardless of filtered or non-filtered, all elements are still sorted. In the current 173

embodiment, a dark line is drawn (450) to visual separate the filtered from non-filtered 174

elements. 175

Approved for Public Release; Distribution Unlimited.
23

Referring to FIGURE 5 is the result of applying a column based filter (500) off 176

the initial state as displayed in Figure 1. A column based filter only compares the filter 177

equation versus elements in the column in which it is defined. If any element in the 178

subordinate column (500) fails the filter evaluation then the entire row (aka path) fails the 179

check and is considered filtered. In the canonical implementation, a filter doesn’t 180

eliminate the element, but instead serves as a sorting order modifier. In the canonical 181

implementation, all non-filtered elements are displayed before all filtered elements, but 182

regardless of filtered or non-filtered, all elements are still sorted. 183

Referring to FIGURE 6 is the result of sorting the label column (500) in the 184

graph as defined by 140 in descending order. This action causes the rows to be reordered 185

based on the contents of that cell. Note that the entire path stays together and entire rows 186

are sorted, not just the contents of a single column or subcolumn. Additional to the 187

sorting, FIGURE 6 depicts the process of edge bundling. Subsequent rows that would 188

duplicate the same value (520, 540) are displayed as a forked edge (560) instead of 189

duplicating the values. This reduces the visual clutter and is intended to preserve the 190

visual the uniqueness of each path. 191

Referring to FIGURE 7 is the result of inserting a custom top level column (700) 192

used to compute some value based on the contents of the path or the graph. In this case, 193

the value as seen in 750 displays the computed path length. These computed column(s) 194

can also be used as sorting column and work the same as in previous examples. Unlike 195

the path based main level columns (160), custom columns can be relocated to anywhere 196

the user desires. Additionally, subordinate custom column headers 197

Other embodiments do not display filtered elements, and the number of failed 198

filters can also be used to further reduce the rank of a filtered path. This means that a 199

path that only fails one filter would rank higher than a path that failed two filters. 200

Other embodiments may choose to hide columns or rows to reduce the amount of 201

displayed content. Other embodiments may also dramatically change the visual metaphor 202

of using rounded rectangles for nodes and lines for edges. 203

While the preferred embodiments have been described and illustrated, it should be 204

understood that various substitutions, equivalents, adaptations and modifications of the 205

invention may be made thereto by those skilled in the art without departing from the 206

Approved for Public Release; Distribution Unlimited.
24

spirit and scope of the invention. Accordingly, it is to be understood that the present 207

invention has been described by way of illustration and not limitation. 208

 209

 210

 211

What is claimed is: 212

1. Method for displaying graphs as a series of paths, comprising the steps of: 213

creating a series of paths through the graph; 214

displaying the series of paths using a tabular based metaphor; 215

 sorting the paths based on user supplied criteria; 216

 inserting user defined columns to augment the data; and 217

 filtering the data based on user supplied criteria 218

 219

2. Method of claim 1, wherein said step of displaying the paths comprises the 220

steps of: 221

ingest provided graph information; 222

generate all applicable paths through the graph; and 223

display each path as a series of node-edge-node-edge-…columns in a tabular row 224

configuration where: 225

 each piece of metadata is displayed in a labelled sub column; 226

 users are allowed to select to sort by this column in ascending or 227

descending order; 228

Approved for Public Release; Distribution Unlimited.
25

 user can reorder the visual placement of these sub columns such that it 229

doesn’t move outside its parent column; and 230

disallow the user to alter the order of node-edge-node-edge… columns as this 231

operation doesn’t make sense. 232

 233

3. Method of claim 2, wherein said step of sorting the paths comprises the steps 234

of: 235

user or application driven sorting precedence of: 236

 sorting all paths in ascending or descending order by the first column 237

identified using the natural ordination or user supplied ordination; 238

 sorting all paths in ascending or descending order by subsequent 239

column(s), in the order as defined by the user, using the natural ordination 240

or user supplied ordination such that the path rank of previous orderings is 241

still observed. 242

 243

4. Method of claim 3, wherein said step of filtering the paths comprises the steps 244

of: 245

user defining a filter whether at the graph, primary node or edge column or sub 246

column filter: 247

 user defines acceptance criteria for path or sub path filtering; 248

 paths that fail the filtering criteria are displayed after those that pass the 249

filtering criteria; 250

 an optional visual marker is displayed separating the paths that pass and 251

those that fail the criteria; and 252

 sorting as in claim 1 is still observed for the filtered path(s). 253

Approved for Public Release; Distribution Unlimited.
26

 254

5. Method of claim 4, wherein said steps of augmenting path information by 255

inserting user defined columns comprises the steps of: 256

user inserting a column as a sibling to the main node or edge columns or as a 257

subcolumn of a particular node or edge: 258

 user defines the name of the column; 259

 user chooses predefined algorithms or defines a new process for providing 260

new detail as a string, number, or other computable value capable of being 261

sorted; 262

 Computed values are displayed in line with the path in which they calculate 263

and then can be used for sorting as in Claim 1. 264

 Computed columns at the main level can be moved to any position to 265

interleave with nodes or edges. 266

 Computed columns at the lower level can only be moved within that node or 267

edge. 268

 269

6. Method of claim 5, wherein said steps of bundling edges comprise the steps 270

of: 271

IF the node in the row displayed above this current node or edge contains the 272

same information, THEN 273

do not draw the content and perform the following: 274

 IF the node traverses the same edge, THEN 275

do not display the edge in the normal fashion, and instead show it 276

as a fork off the previous displayed edge. 277

OTHERWISE 278

Approved for Public Release; Distribution Unlimited.
27

 display the edge in the traditional method 279

OTHERWISE 280

 display the node in the traditional method. 281

 282

Approved for Public Release; Distribution Unlimited.
28

ABSTRACT OF THE DISCLOSURE

Method and apparatus for displaying and identifying relevant paths through a graph by

displaying them in a tabular format and providing user defined and computed values and filters.

Each graph is represented as a set of nodes and edges. Each paths through the graph is displayed

as a row in a table where the user can apply sorting, filtering, and compute intrinsic or extrinsic

information to augment the data. It is proposed that the user performs a useful set of these

operations to identify paths through the graph to identify relevant traversals to gain insight of the

graph in general or to answer specific questions. Unlike traditional graph visualizations, this

mechanism displays in rank order, all paths that could be useful in answering the questions. The

invention presents a fundamentally new way for structured navigation, inspection, and

augmentation of graphs using paths.

Approved for Public Release; Distribution Unlimited.
29

Appendix B – Graphics for Patent Application

Approved for Public Release; Distribution Unlimited.
30

Approved for Public Release; Distribution Unlimited.
31

Approved for Public Release; Distribution Unlimited.
32

List of Symbols, Abbreviations, and Acronyms

C2 ……………………………………………………. Command and Control

DOD …………………………………………………. Department of Defense

	List of Tables
	1.0 Summary
	2.0 Introduction
	2.1. Traditional node-link
	2.2. Large Graphs
	2.3. Visual Literacy
	2.4. Tasks

	3.0 Methods, Assumptions, and Procedures
	4.0 Results and Discussion
	4.1. Graphtables Introduction
	4.2. Sort by sub-columns
	4.3. Filtering
	4.4. Edge Bundling
	4.5. Custom Columns
	4.8. Visual Opportunities
	4.9. Initial Java Implementation

	5.0 Conclusions
	6.0 References
	Appendix A – Patent Application
	Appendix B – Graphics for Patent Application
	List of Symbols, Abbreviations, and Acronyms

