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Improved Root Normal Size Distributions for Liquid Atomization 

Culbert B. Laney1 
Engility Corp., 8211 Terminal Rd, Lorton, VA 22079 U.S.A. 

 
Abstract: This paper identifies two issues with traditional root normal size distributions, which 
are commonly fitted to experimental results for liquid atomization and sprays. First, while root 
normal size distributions are typically expressed in terms of mass mean diameter, they do not 
actually obtain the correct mass mean diameter. The error is usually small but may be 
significant in some cases. Simple corrective measures are suggested. Second, depending on the 
chosen form, traditional root normal size distributions may exhibit severe non-physical 
singularities. An alternative root normal size distribution is suggested that experiences only mild 
singularities. A literature survey finds six possible parameter choices for root normal size 
distributions. It is found that these parameter choices provide an adequate fit to a wide variety of 
experimental data, except possibly for the largest droplets.  
 
Keywords: Root Normal Size Distribution, Simmons Universal Size Distribution, Spray 
Atomization, Probability Density Function, Aerosol Size Distribution, Liquid Fragmentation 
 
1. Introduction 

First introduced by Tate and Marshall (1953), root normal size distributions are commonly used 
to describe aerosol size distributions, and appear in most recent textbooks on multiphase flows, 
atomization, and sprays, e.g., Bayvel and Orzechowski (1993), Liu (2000), Brennan (2005), 
Crowe (2006), Ashgriz (2011).  
 
Simmons (1977) proposed the best-known root normal size distribution. In particular, the 
Simmons root normal size distribution has been featured in an extensive series of papers by Dr. 
Gerard Faeth and his colleagues, e.g., Wu et. al. (1991, 1992 1995); Ruff et. al. (1992); Hsiang 
and Faeth (1992, 1993); Wu and Faeth (1993), Chou et. al. (1997), Dai et. al. (1998), Sallam et. 
al. (1999, 2006), Aalberg et. al. (2005), Lee et. al. (2007), Miller et. al. (2008). 
 
As the main advantage of root normal size distributions, the research literature suggests that 
there are only a limited number of parameter choices. Each such parameter choice is sometimes 
referred to as a universal. Contrast this situation with other distributions, especially those with 
three or more free parameters, where a small change in the experimental data may lead to a large 
change in the as-fitted parameters, e.g., Dumouchel (2009), Dumouchel et. al. (2012).  
 
As the main disadvantage of root normal size distributions – as well as all known alternatives – 
“no single distribution accurately fits even a large fraction of the available drop size data 
research literature …[which] necessitates trial-and-error use of several distributions to determine 
which one best fits a particular data set.” (Ashgriz, 2011). As one main goal, this paper attempts 
to clarify how close root normal size distributions, with just a half-a-dozen different parameter 
settings, can come to fitting a wide variety of experimental data. 
 
                                                 
1 E-mail address: Bert.Laney@engilitycorp.com 
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The research literature offers few mathematical expressions for root normal size distributions. As 
a second main goal, this paper considers two variants of the root normal size distribution, one 
common and one rare, with complete mathematical expressions given for both. For example, this 
treatment provides new algebraic results for the ratio of the mass mean diameter to the Sauter 
mean diameter, which reveal unexpected sensitivity to an arbitrary minimum droplet size. 
 
Root normal size distributions are often expressed in normalized (self-similar) forms, i.e., with 
the independent variable divided (and optionally the dependent variable multiplied) by an 
average droplet size. This paper suggests a way to ensure that root normal size distributions 
actually obtain the average droplet sizes implied by such normalized forms. This requires 
sacrificing a free parameter. 
 
Finally, this paper confirms an earlier observation, namely, that the common variant of the root 
normal size distribution experiences a severe singularity for small droplets. By contrast, this 
paper finds that the rare variant has only a mild singularity. This observation suggests the use of 
the rare variant in future work.  
 
Aerosol droplets are typically nearly-spherical; thus aerosol size distributions are usually 
expressed as functions of droplet diameter. However, certain liquids tend to form highly-
distended or stringy fragments including viscoelastic liquids such as silicone oils, non-
Newtonian liquids such as starch solutions, and highly-viscous liquids such as thick melts, e.g., 
Joseph et. al. (1999), Joseph et. al. (2002), Theofanous (2011). Even simple liquids such as water 
may exhibit irregularly shaped fragments for a brief period of time immediately following an 
atomization event. Such situations are best described in terms of mass rather than in terms of 
diameter. Thus this treatment gives expressions both for mass and diameter.  
 
2. Size Distributions and Transformation Conditions 
 
Let D be the droplet diameter and let M be the droplet mass. Then there are eight common ways 
of expressing aerosol size distributions: 
 

)(DFM  [ )(MFM ] is the mass fraction of droplets with diameters [masses] greater than 
or equal to D [M]. 

 
)(DfM  [ )(MfM ] is the mass fraction of droplets with diameters [masses] in a range dD 

centered on D divided by dD [dM centered on M divided by dM] 
 

)(DF  [ )(MF ] is the number fraction of droplets with diameters [masses] greater than or 
equal to D [M] 

 
)(Df  [ )(Mf ] is the number fraction of droplets with diameters [masses] in a range dD 

centered on D divided by dD [dM centered on M divided by dM] 
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This list excludes minor variations such as MF1 , or the use of volume V  instead of mass M. 
The above definitions imply that MF  is monotone decreasing such that 1)0( MF  and 

0)( MF . In addition, Mf  is always non-negative such that: 





0

1)( dxxfM                                                            (1a) 

 
Similarly, the above definitions imply that F  is monotone decreasing such that 1)0( F  and 

0)( F . In addition, f  is always non-negative such that: 





0

1)( dxxf                                                            (1b) 

 
In standard probability theory, F is called a complementary cumulative distribution function 
(CCDF) and f  is called a probability density function (PDF).  
 
As defined here, the transformation condition requires that all eight forms given above have, at 
most, mild (integrable) singularities. It would not make physical sense for an aerosol size 
distribution to be well-behaved in one form but to experience severe (non-integrable) 
singularities in another form. As seen below, traditional root normal size distributions do not 
obey the transformation condition. 
 
Transforming between the eight different forms given above requires eight different equations. 
The first of these equations is as follows: 
 

mCDM                                                                   (2) 
 
where   is density, C  is a shape factor, and m is the spatial dimension ( 31 m ). For classic 
aerosols with nearly-spherical droplets, 3m . Equation (2) may not apply to certain highly- 
irregular liquid fragments; this treatment specifically excludes such cases. 
 
The next two transformation equations are as follows: 
 

)()( DFMF MM                                                            (3) 
 

)()( DFMF                                                                (4) 
 
which follow directly from the definitions of the functions involved. The fourth transformation 
equation is as follows: 

 






0

)()(

)()()(
dxxfxM

xfxMxfM                                                     (5) 
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This was first introduced by Brown (1989) and Brown and Wohletz (1995); see also Dumouchel 
(2009). The last four transformation equations are well-known and follow directly from the 
definitions of the functions involved: 

 





D

MM dxxfDF )()( ; 
dD

dFDf M
M )(                                   (6) 

 





M

MM dxxfMF )()( ; 
dM
dFMf M

M )(                                 (7) 

 





D

dxxfDF )()( ; 
dD
dFDf )(                                        (8)                                     

 





M

dxxfMF )()( ; 
dM
dFMf )(                                      (9) 

 
3. Average Droplet Sizes and Self-Similarity Conditions 
 
As noted above, average droplet sizes are often used to normalize size distribution functions. The 
complexity of various mathematical expressions depends on the choice of average. Judging by 
the complexity of the expressions given later in Sections 5 to 8, the eight size distributions 
defined above appear to be naturally associated with different average sizes. For example, 

)(DFM  and )(DfM  are naturally associated with the following two averages: 
 











0

0

3

0

4

)(

)(
)(

dDDfD

dDDfD
dDDfDD MM avg                                     (10) 

 













0

2

0

3

0

)(

)(

)(
1

dDDfD

dDDfD

dD
D

Df
D

M
avgM                                     (11) 

 
 
which are known as the mass mean diameter (MMD) and the Sauter mean diameter (SMD), 
respectively. In the research literature, it is common to see the ratio of these two averages: 
 

avgM

avgM
M D

D
R


                                                                (12) 
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Notice that avgMD  emphasizes small droplets while avgMD emphasizes large droplets. As a result, 

 MR1  measures aerosol size spread where 1MR  corresponds to the least possible spread 
(i.e. monodisperse) while MR  corresponds to the greatest possible spread.  
 
For another example, )(DF  and )(Df are naturally associated with the following two averages:  
 





0

)( dDDDfDavg                                                         (13) 

 






0

)(
1

dD
D

Df
D

M
avg                                                         (14) 

 
The former is known as the count mean diameter (CMD). The latter is non-standard and 
unnamed. As before, one can define a ratio of these two averages: 
 

avg

avg

D
D

R


                                                                 (15) 

 
The observations made earlier about MR  apply equally to R .  
 
As a third example, )(MFM  and )(MfM  are naturally associated with M avgM  where: 
 











0

0

0

2

)(

)(
)(

dMMMf

dMMfM
dMMfMM MM avg                                         (16) 

 
As a fourth and final example, )(MF  and )(Mf  are naturally associated with avgM  where: 
 





0

)( dMMMfM avg                                                      (17) 

 
When transforming between the eight different size distributions given in Section 2, it is useful 
to have ratios such as the following: 
 

avg

avgM

D
D

Q                                                              (18) 

: 
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m
avgM

avgM
M CD

M
S


                                                        (19a) 

 

m
avg

avg

CD
M

S


                                                            (19b) 

 
Notice that MS  measures skewness, where 1MS  if the aerosol size distribution is evenly 
balanced between small and large droplets, e.g., a uniform size distribution. Similar observations 
apply to S. 
 
In the simplest possible case, self-preserving or self-similar aerosol size distributions can be 
written in terms of the following ratio: 
 

avgMM
M

       

 
This was first observed by Friedlander and Wang (1966) for populations of droplets that collide 
with each other; see also Lee et. al. (1984), Spicer and Pratsinis (1996), and Lehtinen and 
Zachariah (2001). For example, Spicer and Pratsinis (1996) give the following definition: “When 
the steady-state size distributions scaled by the average particle volume [or mass] collapse onto a 
single size distribution, this distribution is termed self-preserving.”  
 
Using the transformations given in Section 2, self-similar aerosol size distributions can equally 
well be written in terms of the following ratio: 
 

avgMD
D

'       

 
In fact, as already noted, root normal size distributions are commonly written in such simple self-
preserving (normalized) forms. An obvious condition is that, if an aerosol size distribution is 
written in terms of a given average, it should actually obtain that average. However, as seen 
below, traditional root normal size distributions do not obey this condition.  
 
4. Modifications for Minimum Droplet Sizes 
 
The vast majority of experiments impose a minimum droplet size minD  or, equivalently, 

mCDM minmin   due to optical resolution or other practical factors. If the minimum droplet size 
is large enough, the aerosol size distribution should be modified accordingly. For example, MF  
should be replaced by MF  where 1)( min DFM and 0)( MF . This is true if: 
 

)(
)()(

minDF
DFDF

M

M
M                                                           (20) 
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Similarly, Mf  should be replaced by Mf  where: 
 






min

1)(
D

M dDDf  

 
This is true if 
 

)(
)()(

minDF
DfDf

M

M
M                                                          (21) 

 
As another example, M avgD  should be replaced by M avgD  where: 
 






minmin

)(
)(

1)(
min D

M
MD

MM avg dDDfD
DF

dDDfDD                         (22) 

 
Similarly, M avgD  should be replaced by M avgD   where: 
 






minmin

)(
)(

)(
1 min

D

M

M

D

M
avgM

dD
D

Df
DF

dD
D

Df
D                                    (23) 

 
As a final example, MR  should be replaced by MR  where: 
 

avgM

avgM
M D

D
R


                                                              (24a) 

 
or: 






minmin

)(1)(
)(

1
2

min D
M

D
M

M
M dDDf

D
dDDDf

DF
R                           (24b) 

 
Alternatively, when avgMD  is finite while avgMD  is not, it is common to see mixed expressions 
such as the following: 
 

avgM

avgM
M D

D
R


                                                                  (25) 
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5. Traditional Root Normal Size Distributions (Type I) 
 

The traditional root normal size distribution may be written as follows: 
 

22
11)(
avgM

M AD
Df  








 2

2 )/(
2

1exp
/
1 aDD
DD avgM

avgM 
             (26) 

 
Table 1 recasts this size distribution into eight equivalent forms using the expressions given in 
Section 2. Unfortunately, there are no known analytical expressions for two of these forms –

)(DF  and )(MF  – meaning they must be determined numerically. 
 
Table 1a. Root normal distributions of Type I expressed in terms of FM and fM 

 













 


2

/
erfc1)(

aDD

A
DF avgM

M  

 

 













 


2

)/(
erfc1)(

2/1 aMMS
A

MF
m

avgMM
M  

 

 


22

11)(
avgM

M AD
Df  









 2

2 )/(
2

1exp
/
1 aDD
DD avgM

avgM 
 

 

 


22

1)(
avgM

M
M AmM

SMf  


































































2

2
1

2

1
2
1

2
1exp a

M
MS

M
MS m

avgM

M
m

avgM

M


 

 
Table 1b. Root normal distributions of Type I expressed in terms of F and f. 





D

dxxfDF )()(  



M

dxxfMF )()(  


22

11)(
avgMBD

Df  


























2
2

2/1

)/(
2

1exp aDD
D

D
avgM

m

avgM 
 

 


22

1)(
avgM

M

BmM
SMf  


































































2

2
1

2

2
2
1

2
1exp a

M
MS

M
MS m

avgM

M
m

avgM

M



 
 
As described in the next section, the traditional root normal size distribution suffers from a mild 
singularity in Mf  but a severe singularity in f at the origin. This singularity has been previously 
observed by, for example, Babinsky and Sojka (2002), who called it “a gradient catastrophe near 
zero.”  
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It is convenient to express the properties of the root normal size distribution in terms of the 
following integral: 
 

dxaxxW i
i 







 
 





2

2

0

2/1

2 2
)(exp

2
1


                                       (27) 

 
There are analytic expressions for iW  if and only if i  is a non-negative integer; see Table 2. 
 
 Table 2. Six examples of integrals defined by Equation (27) where erfc is the complementary error function. 
 

i iW  

0 









2
erfc a  

1 












2
erfc)( 22 aa 








 2

2

2
exp

2
2



 aa  

2 














2
erfc)36( 4224 aaa  

 







 2

2
22

2
exp

2
2)5(






aaa  

3 









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By Equation (1): 
 

0WA                                                                   (28) 

mWB                                                                 (29) 
 
By Equations (12), (15), and (18): 
 

2
0

11

W
WWRM

                                                             (30) 

 

2
11

m

mm

W
WW

R


                                                         (31) 

 

10

1




m

m

W
W

W
WQ                                                          (32) 

 
Because of the singularity at the origin, Equations (29) to (32) require imposing a minimum 
droplet size minD . The minimum droplet size must be applied to those iW  with a negative index 
i  and, optionally, to all iW . In other words, B should be replaced by B , MR  should be replaced 
by MR , R should be replaced by R , and Q  should be replaced by Q  as described in Section 4. 
 
Figure 1 shows how MR  depends on minD  and σ.  Notice that MR  is relatively insensitive to the 
arbitrary choice of minD  for  2.00  . However, MR  may be extremely sensitive to minD  for 
larger  . It is a common practice in the research literature to specify MR  rather than  . 
However, this may be somewhat confusing given that MR  depends on an arbitrary minD , at least 
for 2.0   For most cases seen in the research literature, avgMDD /min  is somewhere between 

0.1 and 0.2. Figure 2 shows that MR  may vary substantially over this range when 2.0 . 
 



 
 

11 

 
 
Figure 1. The ratio RM for traditional (Type I) root normal size distributions with a=1. 
 
If )(DFM  and )(DfM  are self-similar, then avgMD  in Table 1a must agree with avgMD  as 
defined by Equation (10). This is true if:  
 

10 WW                                                               (33) 
 
According to Table 2, this can be written as follows: 
 

1
)2/(erfc
)2/exp(

2
2 22

22 














a
aaa  

 
This is approximately true if: 
 

21 a                                                            (34) 
 
Equations (33) and (34) have not appeared in the research literature before. Rather, past 
treatments assumed 1a . Figure 2 compares Equations (33), Equations (34), and the traditional 
choice of 1a .  
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Figure 2. The relationship between parameters a and σ required to ensure that traditional (Type I) root 
normal size distributions have the correct count mean diameter. In the legend, ‘self similar’ refers to 
Equation (33) while ‘approximate’ refers to Equation (34).  
 
Figure 3 illustrates the effects of changing a. More specifically, Figure 3 compares the effects of 
using a fixed value of 1a  versus Equation (33). In this example, the choice 1a  results in 
mass mean diameter that is about 6% too large while the choice 9708.0a  results in the correct 
mass mean diameter.  
 

 
Figure 3. Traditional (Type I) root normal size distributions with σ=0.24 and a=1 vs. a=0.9708. The latter 
value of a was chosen using Equation (33) to ensure the correct mass mean diameter. 
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If )(MFM  and )(MfM  are self-similar, then avgMM  in Table 1a must agree with avgMM  as 
defined by Equation (19). This is true if: 
 

0W
W

S m
M                                                                (35) 

 
For example, if 3m and Equation (33) is exactly true, then Equation (35) becomes: 

 
6424224 1823314   aaaSM  

 
6. Variant of Traditional Root Normal Size Distributions (Type IB) 
 
Suppose the traditional (Type I) root normal size distribution is modified as follows: 
 

22
11)(
avg

M AD
Df  








 2

2 )/(
2

1exp
/
1 aDD
DD avg

avg 
             (36) 

 
Notice that Equation (36) is the same as Equation (26), except that the mass mean diameter 

avgMD  has been replaced by the count mean diameter avgD . Equation (36) can be recast in eight 
different forms. The results are identical to those given earlier in Table 1 after replacing avgMD  
by avgD ,  avgMM  by avgM , and MS  by S. 
 
Most properties of Equation (36) are exactly the same as those of Equation (26). In particular, 
Equations (28) to (32) are the same as before. Only the self-similarity conditions change to 
become:  
 

1  mm WW                                                          (37) 
 

mW
W

S


 0                                                               (38) 

 
Unlike Equations (33) and (35), Equations (37) and (38) require imposing a minimum droplet 
size minD . This extra complication makes Type IB root normal size distributions unattractive. 
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7. Alternative Root Normal Size Distributions (Type II) 
 
Consider the following alternative root normal size distribution: 
 

22
11)(
avgMAD

Df  







 2

2 )/(
2

1exp
/
1 aDD
DD avgM

avgM 
             (39) 

 
Notice that Equation (39) is identical to Equation (26) except that Mf  has been replaced by f . 
While this alternative root normal distribution has been mentioned in the research literature 
before, e.g., Crowe (2006), its properties have never been well-described. Table 3 recasts this 
size distribution into eight equivalent forms using the expressions given in Section 2.  
 
As specific examples, Table 4 gives expressions for MF and Mf  for 1m , 2, and 3. There are 
analytical expressions for MF  if and only if m is an integer. 
 
As seen in Figure 4a, when expressed in terms of Mf , the traditional root normal size 
distribution has a mild singularity at the origin while the alternative root normal size distribution 
has no singularity. As seen in Figure 4b, when expressed in terms of f , the traditional root 
normal size distribution has a severe singularity at the origin while the alternative root normal 
size distribution has only a mild singularity. In other words, the alternative root normal size 
distribution satisfies the transformation condition proposed in Section 2 while the traditional root 
normal size distribution does not. 
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Table 3a.  Root normal distributions of Type IIA expressed in terms of F and f. 
 













 


2

/
erfc1)(

aDD

A
DF avgM

 

 

 













 


2

)/(
erfc1)(

2/1 aMMS
A

MF
m

avgMM  

 

 
 


22

11)(
avgMAD

Df  









 2

2 )/(
2

1exp
/
1 aDD
DD avgM

avgM 
 

 

 


22

1)(
avgM

M

AmM
SMf  


































































2

2
1

2

1
2
1

2
1exp a

M
MS

M
MS m

avgM

M
m

avgM

M


 

 
 
Table 3b. Root normal distributions of Type IIA expressed in terms of FM and fM  for arbitrary m. 
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Table 4a. Root normal distributions of Type IIA expressed in terms of FM and fM for m = 1 
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Table 4b. Root normal distributions of Type IIA expressed in terms of FM and fM for m = 2 
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Table 4c. Root normal distributions of Type IIA expressed in terms of FM and fM for m = 3 
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(a.) fM(D) for Type I vs. Type II root normal size distributions in a linear-log plane. 
 

 
(b.) f(D) for Type I vs. Type II root normal size distributions in a linear-log plane. 
 
Figure 4. The Type I root normal size distribution experiences a mild singularity in fM(D) and a severe 
singularity in f(D). The Type II root normal size distribution does not experience any singularity in  fM(D)  
and experiences only a mild singularity in f(D). The parameter settings for the Type I distribution are 
σ=0.238 and a=1. The parameter settings for the Type II distribution are σ=0.27, a=0.5019, and m=3 where 
the value of a is chosen to ensure the correct mass mean diameter. 
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By Equation (1): 
 

0WA                                                                    (40) 

mWB                                                                   (41) 
 
By Equations (12), (15), and (18): 
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WWR                                                                 (43) 

 

m
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W
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W
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Q 1

1

0                                                                (44) 

 
Equation (43) requires imposing a minimum droplet size minD . This minimum droplet size 
should be applied to 1W  and, optionally, 0W  and 1W . In other words, R should be replaced by R  
as described in Section 4. 
 
Figure 5 shows MR  as a function of σ.  Unlike Type I distributions, Type II distributions have a 
one-to-one analytical relationship between MR  and  σ . Notice that the Type II results agree well 
with the Type I results when the latter has 15.0/min avgMDD . 
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Figure 5. The ratio RM for alternative (Type II) root normal size distributions with a chosen to ensure self-
similarity. For comparison, results for traditional (Type I) root normal distributions with a=1 are also shown. 
 
If )(DFM  and )(DfM  are self-similar, then avgMD  in Table 3 must agree with avgMD  as defined 
by Equation (10). This is true if:  
 

1 mm WW                                                               (45) 
  
Figure 6 shows how a varies with σ per Equation (45).  
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Figure 6. The relationship between parameters a and σ required to ensure that Type II root normal size 
distributions have the correct mass mean diameter. This assumes that m=3. This is a plot of Equation (45). 
 
If )(MFM  and )(MfM  are self-similar, then avgMM  in Table 3 must agree with avgMM  as 
defined by Equation (19). This is true if: 
 

m

m
M W

W
S 2                                                                   (46) 

 
8. Variant of Alternative Root Normal Size Distributions (Type IIB) 
 
Suppose the alternative (Type II) root normal size distribution is modified as follows: 
 

22
11)(
avgAD

Df  







 2

2 )/(
2

1exp
/
1 aDD
DD avg

avg 
             (47) 

 
Notice that Equation (47) is the same as Equation (39), except that the mass mean diameter 

avgMD  has been replaced by the count mean diameter avgD . Equation (47) can be recast in the 
usual eight forms. The results are identical to those given earlier in Table 3 after replacing avgMD  
by avgD ,  avgMM  by avgM , and MS  by S. 
 
Most properties of Equation (47) are exactly the same as those of Equation (39). In particular, 
Equations (40) to (44) are the same as before. Only the self-similarity conditions change to 
become:  
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10 WW                                                               (48) 
 

0W
W

S m                                                               (49) 

 
Notice that Equations (48) and (49) for Type IIB distributions are the same as Equations (33) and 
(35) for Type I distributions, after replacing MS  by S. Thus the earlier discussion applies here, 
including Figures 2 and 3.  . 
 
Figure 7 gives an example showing that, with the right parameter choice, Type II and IIB root 
normal size distributions are nearly identical. Notice that the Type IIB distribution is plotted as 

)(QDQfM . As their main advantage, Type IIB distributions have somewhat simpler self-
similarity conditions than Type II distributions. 
 

Figure 7. An example of Type II vs. Type IIB root normal size distributions for m=3. The parameter a in both 
cases is chosen to ensure self-similarity, i.e., the Type II has the correct MMD and the Type IIB has the 
correct CMD.  
 
9. Experimental Evidence 
 
Table 5 lists six root normal size distributions found in a literature search. Each reference given 
in Table 5 typically provides three root normal size distributions -- an upper bound, a lower 
bound, and an average – to describe anywhere between four and 2,000 separate tests. For the 
references marked by an asterisks, the given root normal size distribution is a lower bound to 
multiple sets of test data. For the remainder, the given root normal size distribution is an average 
of multiple sets of test data.  
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Table 5. Six examples of traditional (Type I) root normal size distributions found in the research literature. 
The values given in bold are specified in the original reference. The other values are derived. All root normals 
are averages of multiple sets of test data except where noted. 

   a  MR  Reference(s) 
1 0.081 1 1.02 Chou & Faeth (1998) (*) 
2 0.11 1 1.04 Sallam et. al. (2006) (*) 
3 0.17 1 1.10 Wu et. al. (1991) (*); Sallam et. al. (2006) 
4 0.20 1 1.15 Empie et. al. (1993, 1995, 1997) 
5 0.238 1 1.20 Simmons (1977); Wu et. al. (1991); Ruff et. al. (1992); etc. 
6 0.286 1 1.5 (†) Speilbauer et. al. (1989); Adams et. al. (1990); Loebker & Empie (2001) 

 (†) Highly sensitive to the choice of minimum droplet size. 
 (*) Lower bound to multiple sets of test data in terms of MR . 
 
In general, the curve fits in Table 5 were derived using a traditional procedure that involves, first, 
transforming the test data into a plane in which the presumed size distribution is linear and, 
second, using least squares to estimate the slope. In the case of power laws, Clauset et. al.  
(2009) has criticized this approach as follows: “commonly used methods for analyzing power-law 
data, such as least-squares fitting, can produce substantially inaccurate estimates of parameters 
… Even in cases where such methods return accurate answers they are still unsatisfactory 
because they give no indication of whether the data obey a power law at all.” The same criticism 
applies in general, including to root normal size distributions. However, regardless of such 
concerns, some of the root normal fits listed in Table 5 – especially Simmons universal – have 
been successfully applied to a wide variety of tests for decades.  
 
Pimentel et. al. (2010) compiled 42 test results for spray atomization, including both their own 
original results and those found in a literature survey done by Paloposki (1994). This is a neutral 
source of test data, in the sense that most of it has not been previously fitted by root normal size 
distributions. As shown in Table 6, all of these test results can be reasonably well-fitted by one 
of the six root normal size distributions listed in Table 5, with the exception of three tests due to 
Bhatia et. al. (1988), which are omitted. 
 
The size distributions given in Table 6 were chosen to minimize the average error in four 
different views, namely, )(DfM  in the linear-linear plane, )(DfM  in the log-log plane, )(Df in 
the linear-linear plane, and )(Df in the log-log plane. In essence, each view implies a different 
weighting on the error. In most cases, a maximum droplet size was imposed prior to choosing the 
size distribution. This affects quantities such as the mass mean diameter. The maximum droplet 
size addresses three issues: first, it balances out the effects of minimum droplet sizes inherent to 
most tests; second, it avoids random variations caused by small samples of large droplets seen in 
some tests; and, third, it avoids divergence from root normal size distributions for the largest 
droplets seen in some tests. 
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Table 6. Experimental results for spray atomization given by Pimentel et. al. (2010). As indicated in the first 
and second columns, all  results can be reasonably well-fitted by one of the root normal size distributions 
listed in Table 5, except for those from Bhatia et. al . (1988), which are omitted. 
   Reference(s) Liquid Spray System No. % 
1 0.081 Pimentel et. al. (2010) Jet Fuel ‘Delavan’ 3 7.8 
2 0.11 Pimentel et. al. (2010) 

                 ʺ 
                 ʺ 

Jet Fuel 
ʺ 
ʺ 

‘Bosch’ 
‘BETE’ 
‘Delavan’ 

4 
9 
1 

35.9 
 

3 0.17 Pimentel et. al. (2010) 
Paloposki & Fagerholm (1986) 
Li & Tankin (1987) 
Tishkoff (1979) 

(unknown) 
Fuel Oil 
Water 
Water 

‘LaVision’ 
Hollow Cone 
Solid Cone 
Hollow Cone 

3 
5 
4 
2 

35.9 

4 0.20 Turner & Moulton (1953) β-naphthol Swirl Jet 4 10.2 
5 0.238 Tate & Olson (1962) 

Houghton (1941) 
Water 
(unknown) 

Solid, Hollow Cone 
(unknown) 

3 
1 

10.2 

6 0.286 - - - 0 0 
 
The following subsections review the experimental evidence found in the research literature for 
each of the size distributions listed in Table 5. In addition, the following subsections compare 
test data to the chosen root normal size distributions for each case listed in Table 6.  
 

9.1 Experimental Evidence for σ = 0.081 
 
As an example, Chou and Faeth (1998) studied aerodynamic breakup of water and glycerol-
water droplets. They found that bag-type breakup, excluding the basal ring, led to Type I root 
normal size distributions with a lower bound of 02.1MR , an  upper bound of 10.1MR , and 
an average of 04.1MR . The two tests with the most glycerol (42%, 63%) did not consistently 
obtain the lower bound, upper bound, or average. However, the two tests with the least glycerol 
(0%, 21%) approximately obtained the lower bound of 02.1MR  or, equivalently, 081.0  
and 1a .  
 
As another example, Figure 8 compares Type I and II root normal distributions against 
experimental data obtained by Pimentel et. al. (2010) using several different Delavan atomizers. 
The Type I and II distributions are essentially identical. The root normal distributions only agree 
with the experimental results for the smallest droplets. The larger droplets appear to 
approximately obey a power law rather than a root normal distribution, as indicated by linearity 
in the log-log plane. 
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(a.) Log-log plane 
 

 
(b.) Linear-linear plane 

 
Figure 8. Type I vs. Type II root normal distributions compared to experimental results obtained by Pimentel 
et. al.  (2010) using Delavan atomizers. 
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9.2 Experimental Evidence for σ = 0.11 
 
As an example, Sallam et. al. (2006) studied primary breakup of round aerated jets of water, 
ethyl alcohol, and 79% glycerol solutions in supersonic crossflows. They found Type I root 
normal size distributions with a lower bound of 04.1MR  and an upper bound of 10.1MR . 
Two of the five tests were somewhere between the upper and lower bounds. One of the five tests 
approximately obtained the upper bound. Two of the five tests approximately obtained the lower 
bound; more specifically, water and glycerol with jet diameters of 0.5mm approximately 
obtained 04.1MR  or, equivalently, 11.0  and 1a .  
 
As another example, Figure 9 compares Type I and II root normal distributions against 
experimental data obtained by Pimentel et. al. (2010) using a common rail Bosch system and a 
BETE XA-PR200 nozzle. The Type I and II distributions are essentially identical. The Type I 
and II distributions agree reasonably well with the experimental results, except for the largest 
droplets. As before, in the experiments, the largest droplets appear to approximately obey a 
power law rather than a root normal distribution. 
 

9.3 Experimental Evidence for σ = 0.17 
 
As an example, Wu et. al. (1991) studied primary breakup of round turbulent and non-turbulent 
jets of water, glycerol-water solutions, and n-Heptane in still air. They found Type I root normal 
size distributions with a lower bound of 1.1MR , an upper bound of 5.1MR , and an average 
of 2.1MR . Three of the eighteen tests, those with relatively low jet speeds, approximately 
obtained the lower bound of 1.1MR  or, equivalently, 17.0  and 1a . 
 
As another example, Figure 10 compares Type I and II root normal distributions against 
experimental data obtained by Li and Tankin (1987) and Tischkoff (1979). The Type I and II 
distributions agree well except for the smallest droplets. Where the two distributions disagree, 
the experimental results slightly favor the Type II distribution.  
 

9.4 Experimental Evidence for σ = 0.20 
 
As an example, Empie et. al. (1993, 1995, 1997) conducted over 140 different experiments 
involving black liquor sprayed through vibrating and stationary splashplate, V-jet, and swirl cone 
nozzles. They found Type I root normal size distributions with a lower bound of 15.0 , an 
upper bound of 28.0 , and an arithmetic average of 20.0 . The tables and figures in 
Empie et. al. (1993) indicate that at least 16 of the experiments obtained 20.0  almost 
exactly.   
 
As another example, Figure 11 compares Type I and II root normal distributions against 
experimental data obtained by Turner and Moulton (1953). The Type I and II distributions agree 
well except for the smallest droplets. Where the two distributions disagree, the experimental 
results mostly favor the Type II distribution.  
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(a.) Log-log plane 
 

 
(b.) Linear-line plane 
 
Figure 9. Type I vs. Type II root normal distributions compared to experimental results obtained by Pimentel 
et. al.  (2010) using a common rail Bosch system and a BETE XA-PR200 nozzle. 
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(a.) Log-log plane 
 
 

 
(b.) Linear-linear plane 
 
Figure 10. Type I vs. Type II root normal distributions compared to experimental results obtained by Li and 
Tankin (1987) and Tischkoff (1979). Both sets of experimental results are as reported by Pimentel et. al. 
(2010). 
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(a.) Log-log plane 
 
 

 
(b.) Linear-linear plane 
 
Figure 11. Type I vs. Type II root normal distributions compared to experimental results obtained by Turner 
and Moulton (1953). The experimental results are as reported by Pimentel et. al. (2010). 
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9.5 Experimental Evidence for σ = 0.238 
 
As a well-known example, Simmons (1977) examined “over 2,000 separate tests on about 100 
different nozzle designs.” According to Spielbauer et. al. (1989), the entire set of tests yielded   
Type I root normal sized distributions with an average   of about “0.24, with a maximum 17% 
greater, and a minimum 20% smaller.” Assuming 1a , this roughly corresponds to a lower 
bound of 1.1MR , an upper bound of 5.1MR , and an average of 2.1MR . For a subset of 
200 tests “selected almost at random,” Simmons (1977) reported a much narrower range of 

%520.1 MR . Simmons (1977) notes that 20.1MR  corresponds to 238.0  and 1a . 
 
As another example, Ruff et. al. (1992) studied primary and secondary breakup of laminar and 
turbulent round water jets in still air. They found Type I root normal size distributions with a 
lower bound of 1.1MR , an upper bound of 5.1MR , and an average of 2.1MR . For both 
laminar and turbulent flows, they found 2.1MR  at the jet surface. For laminar flows, they 
found MR  increased moving away from the jet surface, e.g., 1.10, 1.14, 1.22, 1.24. For turbulent 
flows, they found MR  decreased moving away from the jet surface, e.g., 1.27, 1.22, 1.18, 1.19. 
 
As a third example, Hsiang and Faeth (1992, 1993) and Chou et. al. (1997) studied stripping-type 
breakup of liquid droplets moving through still air. In their schematic, aerodynamic forces cause 
a boundary layer to form on the surface of a droplet. Once the boundary layer becomes thick 
enough, it gradually sheds children droplets, whose mass mean diameters grow with the square 
root of time. Hsiang and Faeth (1992, 1993) represented all children from a given parent by a 
single size distribution, while Chou et. al. (1997) represented the children from a given parent by 
either three or four different size distributions. All told, Hsiang and Faeth (1992, 1993) and Chou 
et. al. (1997) reported stripping breakup results for fifteen different for combinations of liquid 
types and initial relative droplet velocities. Overall, they found Type I root normal size 
distributions with a lower bound of 1.1MR , an upper bound of 5.1MR , and an average of 

2.1MR . The test results were densely scattered between the upper and lower bounds without 
any obvious clustering around the boundaries or the average. 
 
As a final example, Figure 12 compares Type I and II root normal distributions against 
experimental data obtained by Houghton (1941) and Tate and Olson (1979). The Type I and II 
distributions agree well except for the smallest droplets. Where the two distributions disagree, 
the experimental results clearly favor the Type II distribution. In the one result from Houghton 
(1941), the largest droplets appear to approximately obey a power law rather than a root normal 
size distribution. 
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(a.) Log-log plane 
 

 
(a.) Linear-linear plane 
 
Figure 12. Type I vs. Type II root normal distributions compared to experimental results obtained by  
Houghton (1941) and Tate and Olson (1962). The experimental results are as reported by Pimentel et. al. 
(2010). 
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As noted earlier, past researchers generally fitted experimental results in the probability-square-
root plane, i.e., in a plane in which )(1 DFM  is linear. To check the consistency between our 
fitting procedure and the traditional approach, Figure 13 coverts Figure 12 to a probability-
square-root plane. The chosen root normal parameters appear to provide an equally good fit in 
either case. Notice that Φ is the cumulative distribution function of the standard normal 
distribution and Φ-1 is its inverse.  
 

 
 
Figure 13. Another view of Type I vs. Type II root normal distributions compared to experimental results 
obtained by Houghton (1941) and Tate and Olson (1962).  The experimental results are as reported by 
Pimentel et. al. (2010). 
 

9.6 Experimental Evidence for σ = 0.286 
 
As one example, Spielbauer et. al. (1989) sprayed black liquor through splashplate nozzles under 
varying conditions. They found 35 different root normal size distributions with a minimum value 
of 230.0 , a maximum value of 330.0 , and an arithmetic average value of 286.0 . 
Over 20% of the tests obtained the average value of 286.0  almost exactly. For additional 
examples along these same lines, see Adams et. al. (1990) and Loebker & Empie (2001). None 
of the data in Pimentel et. al. (2010) is well-fitted by a Type I distribution with 286.0 ; thus 
the plots seen in earlier cases are omitted here. 
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10. Conclusions 
 
As summarized in Table 7, a small number of root normal size distributions, on the order of a 
half-dozen, may provide reasonably good fits to a wide variety of test data. No pretense is made 
that these are always the best possible fits. In particular, in many cases, root normal size 
distributions provide obviously poor fits to the largest droplets.  
 
Table 7. Recommended Type IIA and Type IIB substitutes for the Type I distributions listed in Table 5. 
 Original Recommended 
 Type IA (*) Type IIA (*) Type IIB (**) 

  a    a    a  
1 0.081 1 0.083 0.9549 0.086 0.9963 
2 0.11 1 0.115 0.9130 0.125 0.9922 
3 0.17 1 0.19 0.7584 0.24 0.9708 
4 0.20 1 0.23 0.6422 0.34 0.9389 
5 0.238 1 0.27 0.5019 0.47 0.8650 
6 0.286 1 0.33 0.2452 0.72 0.5738 

(*) Normalized by the MMD      (**) Normalized by the CMD. 
 
Unlike other size distributions, the parameters in root normal size distributions depend on which 
average size, such as the MMD or CMD, is used for normalization. As seen in Table 7, the 
difference is small only when   is small.   
 
While not always an exact match to the traditional Type I distributions, the Type II and IIB 
distributions given in Table 7 avoid severe singularities found in the Type I distributions, and 
ensure true self-similarity. Furthermore, the preponderance of the experimental evidence 
reviewed here favors Type II over Type I root normal size distributions.  
 
As seen in Section 9, most previous work on root normal size distributions relies on heavily-
averaged test data. First, the results for each test are usually averaged over time and/or space. In 
those rare cases where test results are given for specific points in time and/or space, the results 
often deviate substantially from the average, e.g., Ruff et. al. (1992), Chou et. al. (1997). Next, 
the results are usually averaged across multiple test, sometimes dozens or even hundreds of 
different tests with different outcomes. When results are given for one specific test, the results 
often deviate substantially from the average.  
 
As a typical conclusion based on such averages-of-averages, Spielbauer et. al. (1989) says that 
the “size distribution doesn’t change, or changes very little, as a function of nozzle geometry, 
flow conditions, and fluid parameters … What is most surprising … is the similarity of the 
droplet size distribution from the splashplate and swirl cone nozzles.” While ±15% or ±20% 
variations in root normal parameters such as   may seem small, the results given here show that 
they can be highly significant, although this obviously depends on the application. 
 
By focusing on individual tests rather than ensemble averages of different tests, this treatment 
has avoided one kind of averaging. However, it is hard to avoid the other kind of averaging –  
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individual test results may still depend on averages in time and/or  space. Accurate pre-test 
prediction is difficult to the extent that test results depend on unknowns such as exactly when or 
where measurements will be taken.  
 
The results presented here indicate that the well-known Simmons universal root normal size 
distribution may not always be especially common. In particular, for the data compiled by 
Pimentel et. al. (2010), Simmons universal root normal provides the best fit just about 10% of 
the time; see Table 6. Obviously, this observation only applies to one particular collection of test 
data. Different collections of test data have, in the past, yielded very different conclusions. 
Future work will hopefully provide additional insight into the correctness, completeness, and 
frequency of occurrence of the root normal parameters surveyed here. 
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