UNCLASSIFIED

Australian Government
Department of Defence
Defence Science and
Technology Organisation

An Analysis of SE and MBSE Concepts to Support
Defence Capability Acquisition

Meredith Hue

Defence Systems Integration Technical Advisory
Joint and Operations Analysis Division
Defence Science and Technology Organisation

DSTO-TR-3039

ABSTRACT

System modelling has been an enduring method of enquiry supporting systems analysis and
design synthesis in systems engineering for decades. New generation systems modelling tools
provide sophisticated modelling capability, coined Model-based Systems Engineering
(MBSE). The underpinning fundamentals of systems engineering and MBSE are scrutinised in
the context of the current Defence capability development process and enterprise architecture
initiatives. The capabilities, relevance, and utility of new generation MBSE tools and
methodologies are then examined, contrasting Defence and industry perspectives to reveal
potential implications for Defence. Potential benefits to Defence are highlighted together with
potential issues of concern. Related aspects of software engineering, enterprise engineering
enterprise architecting and operations research are also clarified to assist unravelling some of
the complexities and interdependencies between the respective professional disciplines.

RELEASE LIMITATION

Approved for Public Release

UNCLASSIFIED

UNCLASSIFIED

Published by

Defence Systems Integration Technical Advisory
Joint and Operations Analysis Division

DSTO Defence Science and Technology Organisation
PO Box 1500

Edinburgh, South Australia 5111 Australia

Telephone: 1300 333 362
Fax: (08) 7389 6537

© Commonuwealth of Australia 2014
AR- 016-126
September 2014

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

UNCLASSIFIED

An Analysis of SE and MBSE Concepts to Support
Defence Capability Acquisition

Executive Summary

Model-based systems engineering (MBSE) is proffered by modelling tool vendors to
provide improved ability to cope with the more onerous demands of engineering the
larger scale and more complex capability systems aspired to by Defence.

The underpinning fundamentals of systems engineering and MBSE are scrutinised in
this report in the context of the current Defence capability development process and
enterprise architecture initiatives. The capabilities, relevance, and utility of next
generation system modelling tools and methodologies are examined, contrasting
Defence and industry perspectives to reveal potential implications for Defence.

It is evident there are multiple overlapping MBSE perspectives, somewhat similar, but
with different problem foci and different problem solving approaches. If no common
agreement can be achieved, these differences in perspective can introduce considerable
ambiguity within the Defence stakeholder community; this can potentially exacerbate
rather than resolve the problems at hand.

MBSE tool vendors posit that MBSE methodologies can offer improved flexibility,
consistency and traceability, and facilitate easier upgrade of the associated information
set. However, adoption of an effective MBSE approach by Defence would entail a
Defence-wide methodological change to the capability development and acquisition
processes. This has the potential for significant and widespread impact, spanning
corporate management processes, engineering technical processes, governance and the
tool environment within Defence. This change would have an inevitable impact on
resourcing, staffing levels, staff skill-sets, training and support requirements.

Analysis in this report has also revealed a major divide between Defence, as the
customer, and industry as the supplier, in terms of mindsets, skill sets, scale of
endeavour, process requirements, constraints, and responsibilities. The methods of
enquiry and utility of MBSE tools for Defence and industry will therefore differ
markedly between the two mindsets and the differing responsibilities.

The differing utility of systems engineering expertise as perceived by Defence and
industry is also a major differentiator. Due to the distributed responsibilities within the
overall Defence capability lifecycle, Defence does not have a unified systems
engineering approach, which has the potential to decouple the capability development
process from the traditional systems engineering approach. This in turn introduces
additional challenges, and can negate other efforts towards achieving the desired
decision outcomes.

Defence faces a number of challenges in developing and applying sufficient systems
engineering knowledge and experience both at the high-end platform and the System
of Systems engineering levels to effect any major improvement to capability acquisition

UNCLASSIFIED

UNCLASSIFIED

outcomes. The current approach to capability development does not explicitly define
the role of the systems engineer, instead, relying on process description in the Defence
Capability Development Handbook to drive the capability development and
acquisition process. Process governance relies on extensive scrutiny by numerous
stakeholders from many perspectives, however, there is no independent scrutiny from
a systems engineering perspective to ensure the systems engineering precepts are
preserved.

The need to undertake systems analysis is inherent but not explicitly acknowledged
within Defence. Of particular import, the capability development and acquisition
process is document-centric and governance-oriented. Early capability definition
activities are centred on development of the documentation and satisfying governance
requirements rather than following a traditional systems engineering process.

Finally, it is important to distinguish between the concept of a methodology that is
facilitated by a tool environment and the analytical capability of a tool modelling
environment. Established MBSE methodologies such as the Rational Unified Process
for Systems Engineering (RUP SE) and the Object-Oriented Systems Engineering
Methodology (OOSEM) are modelling language dependent and implementation
focused, and thus may offer potential cost savings and efficiencies in industry.
However, they do not address the problem space posed to Defence. These established
methodologies are therefore not necessarily suited for adoption in the Defence context.

Notwithstanding, MBSE tools can provide a powerful analytic capability, particularly
to investigate capability and project interdependencies and propagation of capability
system properties. This is contingent on the system models being set up correctly, used
by knowledgeable practitioners, and the results are used within the correct context.

From a Defence enterprise architecture perspective, the new generation MBSE tools
provide a useful means to create Defence Architecture Framework (DAF) artefacts
using templates. The MBSE tools are evolving to support future developments of the
UK MODAF and US DoDAF towards a common Unified Architecture Framework,
embracing data-centric system modelling concepts. The latest AUSDAF2 view-based
orientation does not provide a pathway towards supporting MBSE data-oriented
constructs, nor the Unified Architecture Framework.

A separate study is recommended to investigate these issues further, including:

e The implications to Australian Defence capability development and acquisition
and Defence enterprise architecture initiatives of the Unified Architecture
Framework proposed developments;

e The feasibility and selection criteria for different information elements for
incorporation in an enterprise-wide repository, and associated knowledge
management process support requirements; and

e Provision of formal methodology guidance to leverage the potential of new-
generation MBSE tools to achieve improved Defence capability acquisition and
integration outcomes.

UNCLASSIFIED

UNCLASSIFIED
Author

Meredith Hue
Defence Systems Integration Technical Advisory
Joint and Operations Analysis Division

Meredith is responsible for providing advice on defence systems
integration principles and practices targeting systemic problems in
Defence, and working with projects to address specific system
integration issues. A former Chief Engineer, she has over 35 years
experience in both industry and Defence as a Systems Engineering
practitioner, in the areas of real-time systems, combat systems and
military communications. Specific interests include Systems,
Systems of Systems, Enterprise Architecting and Systems
Architecting methodologies supporting capability development,
including modelling and analysis of C4ISR architectures.

UNCLASSIFIED

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

DSTO-TR-3039
Contents

1. INTRODUCTION....uouuiirieeeereenssens 1
1.1 Report IMPetus....cccieinecsensecnsenseisensensecsiiseissisiisiseieissiesisisssssisisssssssssssssssseses 1
0 T) o O 2

2. CONCEPTS OF METHODOLOGY AND THE SE DEVELOPMENT
ENVIRONMENToiiirinininsetetstesesesesssessssssssnssesssassssens 3
21 Significance of Methodology ... 3
2.2 Significance of SCale ... 5
3. SYSTEM MODELLING CONCEPTS........coeetetrrrrrternneneneneneeeesssssssssssesssssssssssssssssesens 8
3.1 Modelling Concepts in ENGIiNeeringcceeveeereereresserensesensereescsnssessesesneseneseons 8
3.2 Modelling vs. Simulation.........eeeeeeiciniciniiiitiinnnceceeeeeeeeesssssssssssenes 9
3.3 What is @ Model?....iririiiniiniiinniniiincsiisisinsssssssssssssssssesssssssssssess 10
3.3.1 Real World Models........cccoveiininiiiiniiccineccceceeee e 10
3.3.2 Conceptual Models ..o 11
3.3.3 Decision Modellingcccccccvviviiiiiiniiiiniiiiiiciincccccccces 14
334 Information Model ... 14
3.3.5 Meta-modelling...........cccccoviviiiiiiiiiiiiiiiiie 15
3.3.6 Architecture Modellingcccccccvviviiiiiniiiiiiniiiicccccces 16
3.3.7 SW Architecture Modelling ... 19
3.3.8 Reference Modelscccociiiiiiiiniiiiiniiiiiiiccces 22
3.3.9 Reference Architectures.............cccooccivviiiiniiiiininiiinccccces 25
3310 Design PatteIns.........cccccovviiiiiiiiiiiiiiiiiicc 25
3.3.10.1 Software Design Patternsccccoceiciviiiininiiiniiiccie, 25
3.3.10.2 S0S Design Patterns............ccocooviiiiiiiiiiiiiiiiiicccccs 27
3311 Model Reuse.........cccoouiiiiiiiiiiiiiicicccc e 28
3.4 Programming Language Concepts.......uivnererrisennernsnisnnsesnssesnssessssessesessesenne 30
3.4.1 Imperative Programming Language Paradigm.............ccccceceienn. 30
3.4.2 Object-Oriented Programming Language Paradigm....................... 30
3.5 Modelling Language CONCePts......uuiirnrnriisesnnsisesesssseisissssisessssssessssssssessssssess 32
3.5.1 Language Concepts.......ccovviiiiiiiiiiiiniiiiiiees 32
3.5.2 Architecture Description Languages............ccccoeeivviniiiniicnnnnes 37
4. SYSTEMS APPROACH TO PROBLEM SOLVINGrririnrsrensnsnssssssssesesesenens 45
4.1 Systems Analysis and Design Conceptcuceevenerecerenesensesnssesnssessesessesenns 45
4.2 Structured Analysis and Design Paradigm..........ccoeereecvencrencrnnesnncsnescsnesenns 47
421 General Principlesc..cooerenieinenncinciciecececeeeeseeenene 47
422 Structured Analysis and Design Technique...........cccccccccevviiiiinnne. 48
423 Structured Systems Analysis and Design Method 49
4.3 Object-Oriented Analysis and Design Paradigmcccceeueveeuerencruccrnnrcsncnenns 50
44 Service-Oriented Analysis and Design Paradigm..........ccecevueereruerircrnsnsncncnnns 51
4.5 Service-Oriented Modelling and Architecture (SOMA)ccevuvverirererurrerennns 52

UNCLASSIFIED

DSTO-TR-3039
5. SYSTEMS ENGINEERING CONCEPTScovvururrrrnrersnnnsnsnensnssssesesesesesesesssesssssssnens 54
51 What is Systems Thinking? ... 54
5.2 WHhat is @ SYStEm?uuceivirrirenrienniinniinininsinnsesnsissiissiississsissssssssssssssssssssssssans 55
5.3 What is Systems ENgineering?cvvvverererusrieresnsseesnsnssisessssssesessssssesesssnens 56
531 Systems Engineering Origins and Purpose.............ccccccccovciviiiininnnns 56
53.2 Basic Notions of SE Processcccceeeiviniiininiiininiciinicccines 59
533 Engineering Management Planning and Control Basics................. 61
53.4 Basic Activities and Responsibilities.........c.cccoecevecinccincnncnincnnnnne. 62
53.5 Documentation in Systems Engineering............ccccocevviiniinnnnnne. 67
5.3.6 Formalisation of Systems Engineering as a Discipline..................... 67
53.7 Contemporary Systems Engineering............ccccccvcevvviiiiinncncnnnnne, 72
5.4 The Systems Engineering Process ... 74
5.5 The System Life CYcle ... 81
5.6 The Significance of System Architecture in SEcccevvererererncrencsnercrncnenns 84
5.7 Notions of System Hierarchy..........einnennennienisniseninenenencsnsesnesesseseens 84
5.8 System of Interest and Systems of Systems..........ccevverirerenrireresnncrernsnenesennnne 88
5.9 Systems Integration and SoS Integration...........cceeeeeeeeserernsesnsesnenenenenes 9%
5.10 Human Systems Integrationuceeveruiniirensensenesennesncsnisnesnssnnesessessessessenns 96
6. DEFENCE NOTIONS OF A SYSTEMucunnieerinninensnnniseessssssesssssssssssssssssssssssssssses 98
6.1 The Capability System.......ererereesiicistnisisinnneeeeeeeee s ssssssssenes 98
6.2 The Materiel SYStem ... 100
6.3 MajOr SYSEEIMSucuueeiiinincniicininenisesenenineiessesssssesesesessssssssssssssssessesaes 100
6.4 Project vs. System Contextuuneneniniininrinsinsinenenenneninnnenneeninenee 101
6.4.1 Specification Considerations..........c..ccceeevveereenieineenenincenreneenene 101
6.4.2 Life Cycle Considerationscccccceveueiiiniiinniiiininiccinne, 102
6.5 Defence vs. INCOSE System Definition...........veirnenriiresnnsccsennescscnnnne 102
7. CAPABILITY DEVELOPMENT PROCESS CONTEXTccoevuerireneencncnccennnnns 103
71 Defence Capability Life Cycle Model..........cueveinrivenirinrisenerencrencsecncsnnnens 103
7.2 Defence Capability Planning Guidance..........ieeiecirenereccsencsecncsnnnens 103
7.3 Defence Capability Life Cycle Responsibilities.......cccecerururuerirerusunrcrcrerunnnes 103
8. DEFENCE VS. INDUSTRY SE PERSPECTIVE.........iicnenenencnencencennnnns 108
8.1 Legal and Political Process INfluences.........ccceeereeerunrerunsesnecsnnesnesessiessesenes 108
8.2 Sourcing Defence ReqUIrementscecveererennirencsnnesnccsnecsssessesessssessesnnes 109
8.3 Sourcing Industry-based Requirements...........cccvevuvrerererunririresnssercsnsnesesennnne 113
8.4 Adaptability to Change........couvinriiririnnisisinnnniinisissiisisssisissssessmsesssssss 113
9. ENTERPRISE ARCHITECTURE CONCEPTS.......ccoueririrrririnirenirininereninesnsnannnseseanans 118
10. DEFENCE ENTERPRISE ARCHITECTURE CONTEXTcccceeevvunenennesnenncsnenens 121
10.1 Defence Architecture FrameworkK.........iveniiisnnnirisnnnnniinsnnsesisnsnesiscnnnne 121
10.2 Integrated Defence Architecture.........iivnicrernnririsnsenniisesinseisnsnssesennnne 125

11.

MBSE ORIGINS AND CONCEPTS.......cocvenrinniniiiininissnssessessessissssssssssssssssessesesses 131

UNCLASSIFIED

DSTO-TR-3039
111 MBSE IMPELUS c.ccuereiiiieineniininniieisnisnisneseseississssssessesssessessesssessessessssssssasssseses 131
11.2 MBSE OFiZinS....uuiiiinenncnnennisnisnninnsissensessessisnessesssssssssessessessssssssssssssssssssssessesses 131
11.3 MBSE T00l Capabilitiescccovirerririnrirenrirenrisenisinscsinesecsessisessiessesessssessesnenes 133
11.4 Model-Based DeSigncuuerenririrnrnnnisirisissisisisinsisinsissisismssssisessssssesssssssssssassssss 138
11.5 Model Driven System DeSigncouevirerriririrunrisiresinsisisnsnssisessssssesissssssessansnns 138
11.6 Model Driven ENgineeringceivnerenriseniseescsnnessesessesessesessesessssessessens 142
11.6.1 Graphical Modelling Techniques...........ccccccccociiiiiiiiininnee, 142
11.6.2 Rational Unified Process (RUP).......ccccoceoeeinreennncininrccreeene 142
11.6.3 The RUP SE ProcCesscccoeueueirmreueirieeceireeieetreeeeeeeeeneeeseeneeens 148
11.6.4 Object-Oriented Systems Engineering Methodology (OOSEM)... 151
11.7 Industry Impetus for MBSE..........inirnirnieniinineiscnnncsnsessesessssessessenes 153
11.8 INCOSE Impetus for a New MBSE Approach........cevccencsunccunccncncnnes 154
11.9 SE Perspective on New Generation MBSE Tool Environment.................... 156
11.10 EAF Perspective on New Generation MBSE Tool Environment................. 157
11.11 Clarifying MBSE Perspectivesiirenirenirenesinesesesneesssessesessssessessnes 158
12. MINDSETS AND PERSPECTIVES........oviiiiinririiissisiisnssesssssssisssssssessssssseses 160
13. MBSE UTILITY TO DEFENCEucovniiiinrininnnnsesiisnssisisssssesssssssssssssssssssssssseses 163
13.1 Utility Considerations........cccerienerierisenisenisnniseeesnnsissssessesessssssessssssessessns 163
13.2 Defence Problem Space Considerations.........occnesenennecsnnsesncsesseessesnnes 163
13.3 MBSE Process Considerations..........cevesereresensisisesnssisisnsnssisissssssesessssesessssens 164
13.4 MBSE Tool Considerations - Analytic Capabilityc.cccecervvurureerurncrirenennne 167
13.5 MBSE T00l IMPlicationscocveuivenriricrisenrisensisensisenscsinesssessssessssessesessssessessnes 176
13.6 MBSE Tool Considerations - Capability Development Process.................. 177
13.7 MBSE Tool Considerations — AUSDAFcirniirnninrisiresnssesisesnesesennene 179
13.8 MBSE Tool Considerations - IDAuuvniireriniisnsnssisisssnssesessssssesesnnns 180
13.9 System Modelling Challengesocveeerenrirenerenisinesenesnsesnnesseessesessesnnes 181
13.10 MBSE Possibilities for Defencecovueererrnrierernnninesennnnincsnsnnnecsnssessennens 182
14. CONCLUSIONS......ccoiiinririninnisisissssisisssssesisissssisssassssssses 184
15. REFERENCESucuiiiiiininiininniniiissisiisnssisiisssisssssssssssmsses 187
APPENDIX A: TOOLS IN THE SE DEVELOPMENT ENVIRONMENT 204
AL, INtroduction....ececeicecceiiincenncneenneeenseseenssesesenseseaes 204

APPENDIX B: OBJECT-ORIENTED MODELLING LANGUAGE ORIGIN AND

CONCEPTS.....crrriiecssniisssesessssssssssesssssssssssssssssssssassssssssssasss 210
B.1. Object-Oriented Programming Language Paradigm -
OFIGINuuiriiiriiiiiiininnntennininiisisisiesineneninssssssssssssssessssesns 210
B.2. Developing an Object-Oriented Architecturecceuueuee.. 211
B.3. Object-Oriented Modelling with UML...........cccoevururrcrereruencnes 212
B.4. The 4 +1 Architecture View using UML2............ccceuverueucunnne 213
B.5. Systems Modelling Language (SysML) - Origins 216
B.6. Systems Modelling Language (SysML) - Concepts 219

UNCLASSIFIED

DSTO-TR-3039

APPENDIX C:

APPENDIX D:

APPENDIX E:

APPENDIX F:

UNCLASSIFIED

UML AND SYSML COMMON TERMS AND DIAGRAMS........ 221
C.1. Object-Oriented Problem Solving - Overviewccceccunee 221
C.2. Important Terms and Conceptscoceveeverecrirenrcresseresseseesesnenens 221
C.3. Tool User Interface.........ccveverrerirerennssiesnsnnscesnsnesisesnsnsscsessseseaes 223
C.4. UML Diagramscceeereeesinnsnnsnssesnssnsnssessssessssesnssesssessssessssess 226
C41 UML2 Object and Class and Diagrams....................... 226
C42 UML2 Package Diagram..........cccccoeuviviririniiicicicnciccnnes 227
C43 UML2 State Chart and Activity Diagram................... 228
C44 UML2 Sequence Diagram..........cccccoeevvvviiiiininincinnnnes 230
C45 UML2 Communication Diagram..........c.ccccoevvuirninnnnes 231
C4.6 UML2 Timing Diagram..........ccccceevvvininninininniniinnns 232
C4.7 UML2 Interaction Overview Diagram.............ccc...... 233
C4.8 UML2 Component Diagramccoceeuviiiiinniiinnnnns 234
C4.9 UML2 Deployment Diagramcccoceeuievviruiinnnnnes 235
C410 UML2 Composite Structure Diagram..........cccccoeuenee 236
C4.11 UML2 Use Case Diagrams..........cccccocvvviviviniiniiinnnnns 237
C.5. SySML Diagramsceesnesnnsessesnssesnssessssessssesnssesnssessssessssens 237
C5.1 SysML System Block Definition Diagram................. 237
Cb5.2 SysML Requirements Diagram...........cccoccevvvvinininnnnns 239
C5.3 SysML Package Diagram..........ccccccceveiviviuiciniinicnnnnnes 240
Cb5.4 SysML Internal Block Diagram...........ccccccccevviruiuiinnnes 241
Cb5.5 SysML Parametric Diagramccccocoeviiiiinininincnns 242
Cb5.6 SysML Use Case Diagrams............ccccoevuvivinnniniiinnnnnns 243

ZACHMAN FRAMEWORK FOR ENTERPRISE

ARCHITECTURE OVERVIEWuuieteerererrreecrsneessseeesssessssesssssseses 244
D.1. INTTrOAUCHION.c.cuueeereeereeeecrneeresssneeressneesesssssesssssseessssassessssassassssansens 244
D.2. Zachman Framework Reference Model..........cuueereervueererruneen. 244

RATIONAL UNIFIED PROCESS FOR SYSTEMS

ENGINEERING (RUP SE) OVERVIEWcuirnrnrirernsneseresesnesenes 250
E1. INtroduction.......ecencneicnnnennncnnienniensiensiesseeesesnssessescssesens 250
E.2. RUP SE Representations.........cucucienesncsnesnssnnsensnsessessessessenens 250

UML TOOL SUPPORT FOR DODAF.......cinineisensenssessesseessene 254

UNCLASSIFIED
DSTO-TR-3039

Abbreviations and Acronyms

ADF Australian Defence Force

ADGE Air Defence Ground Environment

ADL Architecture Description Language

ADM Architecture Development Method

AGA Australian Government Architecture

AGIMO Australian Government Information Management Office

ANSI American National Standards Institute

API Application Program Interface

ARM Architecture Review Meeting

ATM Automatic Teller Machine

AUSDAF Australian Defence Architecture Framework (also known as DAF)

BOK Body of Knowledge

BPMN Business Process Modelling Notation

BRM Business Reference Model

C4ISR AF Command, Control, Communications, Computing, Intelligence,
Surveillance and Reconnaissance Architecture Framework

CAD Computer-aided Design

CADM Core Architecture Data Model

CAE Computer-aided Engineering

CASE Computer-aided Software Engineering

CCA Circuit Card Assembly

CDD Capability Development Documentation

CDG Capability Development Group

CDRL Contract Data Requirements List

CI Configuration Item

CIOG Chief Information Officer Group

COE Common Operating Environment

CORBA Common Object Request Broker Architecture

COTS Commercial-off-the-Shelf

DAF Defence Architecture Framework (also known as AUSDAF)

DCDH Defence Capability Development Handbook

DCG Defence Capability Guide

DCP Defence Capability Plan

DFD Data Flow Diagram

DM2 DoDAF Meta-Model

DMO Defence Materiel Organisation

DND Department of National Defence, Canada

DNDAF Department of National Defence Architecture Framework
(Canada)

DoDAF Department of Defense Architecture Framework (U.S.)

DRM Data Reference Model

EA Enterprise Architecture

EAF Enterprise Architecture Framework

ECIA Electronic Components Industry Association

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

e.g. For example

EIA Electronic Industries Alliance (known as Electronic Industries
Association prior to 1997)

EMC Electromagnetic Compatibility

EMI Electromagnetic Interference

FEA Federal Enterprise Architecture

FEAF Federal Enterprise Architecture Framework (U.S.)

FIC Fundamental Inputs to Capability

FPGA Field Programmable Gate Array

FPS Function and Performance Specification

FSR Force Structure Review

GEA Gartner Enterprise Architecture

GIG Global Information Grid

HSI Human Systems Integration

HW Hardware

ICT Information and Communications Technology

IDA Integrated Defence Architecture

ie. That is

IEC International Electro-technical Commission

IEEE Institute of Electrical and Electronic Engineering

INCOSE International Council on Systems Engineering

IPPD Integrated Product and Project Development

IPT Integrated Project Team

ISO International Standards Organisation

ISR Intelligence, Surveillance and Reconnaissance

IT Information Technology

JCIDS Joint Capabilities Integration Development System

M3 MODAF Meta-Model

MBSE Model-Based Systems Engineering

MDA Model-driven Architecture

MDD Model-driven Design

MDE Model-driven Engineering

MDSD Model-driven System Design

MODAF Ministry of Defence Architecture Framework (UK)

MOTS Military Off-the-Shelf

NAF NATO Architecture Framework

NATO North Atlantic Treaty Organisation

NCOIC Network Centric Operations Industry Consortium

NCOSE National Council on Systems Engineering (in the US)

NCW Network Centric Warfare

NCWIIS Network Centric Warfare Integration and Implementation
Strategy

NIF NCOIC Interoperability Framework

OCD Operational Concept Document

OMG Object Management Group

OMT Object Modeling Technique

O-O0 Object-Oriented

OOA
OOAD
OOD
OOSE
OOSEM
OR
OT&E
OTS
PCB
PMSA
PMTE
PRM
RFT
RUP
SADT
SDL

SE
SESA
SETE

SI

SIE
SOA
SOAD
SOMA
SOP
SoS
SoSE
SoSI
Specs.
SRM
SSADM
STEP
SW
SysML
TCD
TOGAF
TRM
UAF
UHF
UK

UK MOD
UML
UPDM
u.s.

US DoD
VACRM
VOA

UNCLASSIFIED
DSTO-TR-3039

Object-Oriented Analysis

Object-Oriented Analysis and Design
Object-Oriented Design

Object-Oriented Software Engineering
Object-Oriented Systems Engineering Methodology
Operations Research

Operational Test and Evaluation

Off-the-Shelf

Printed Circuit Board

Program of Major Service Activities

Process Methods Tools Environment
Performance Reference Model

Request for Tender

Rational Unified Process

Structured Analysis and Design Technique
System Description Language

Systems Engineering

Systems Engineering Society of Australia
Systems Engineering Test & Evaluation Symposium
Systems Integration

Single Information Environment
Service-oriented Architecture

Service-oriented Analysis and Design
Service-Oriented Modelling and Architecture
Standard Operating Procedure

System of Systems

System of Systems Engineering

System of Systems Integration

Specifications

Service Reference Model

Structured Systems Analysis and Design Method
Standard for the Exchange of Product model data
Software

System Modelling Language

Test Concept Document

The Open Group Architecture Framework
Technical Reference Model

United Architecture Framework

Ultra High Frequency

United Kingdom

United Kingdom Ministry of Defence

Unified Modelling Language

Unified Profile for DODAF and MODAF
United States of America

United States Department of Defense
Verification Assurance Cross-Reference Matrix
Variability-oriented Analysis

UNCLASSIFIED

DSTO-TR-3039

V&V
WBS
XMI
XML
ZF

UNCLASSIFIED

Verification and Validation

Work Breakdown Structure

XML Metadata Interchange

Extensible Markup Language

Zachman Framework for Enterprise Architecture

UNCLASSIFIED
DSTO-TR-3039

1. Introduction

1.1 Report Impetus

Pioneered by the Defence and Aerospace sectors in the 1940s, Systems Engineering (SE)
practice has evolved significantly in recent decades as systems engineers have both
enthusiastically progressed the development of new computer-based technology, then
embraced this new technology to enhance their own SE development environments.

Despite these changes, systems modelling has remained an enduring method of enquiry
supporting systems analysis and design synthesis in SE. New generation system modelling
tools seek to extend the SE development environment even further by providing a more
sophisticated systems modelling capability, coined MBSE (model-based systems
engineering) in its most recent form, suggesting that another paradigm shift in SE might be
in the offing.

From a Defence perspective, in recent years, capability development and acquisition
processes have strained to cope with the increasing scale, complexity, and interdependency
of capability as Defence has embraced the onset of the information age and adopted new
concepts of networked warfare. MBSE is proffered by modelling tool vendors to provide
improved ability to cope with the more onerous demands of engineering the larger scale
and more complex systems as aspired in Defence.

To improve system integration outcomes, it is important to understand what is so difficult
about systems engineering and Defence capability development. An inherent challenge of
developing integrated systems that involve multiple technical disciplines is that each
professional may be an expert in their respective field, but they will not be expert in the
other disciplines. However, dependencies are created between components across different
technical disciplines as the components interact. In order to properly design for this
interaction, some technical professionals, typically the responsibility of the systems
engineers in particular, must have some knowledge of the other technical disciplines.

Escalating design complexity is reported as one of the top challenges of system design
(Boucher & Kelly-Rand, 2011). Lack of cross-functional knowledge and significant system
complexity means that it can become very difficult to predict system behaviour. This means
identifying system level problems early in development can also be a problem. This is a
significant source of risk. Problems arising from system complexity are exacerbated by lack
of integration of tools and methods across the technical disciplines, and differences in
cultures, work practices, and semantics.

The utility or otherwise of SE fundamentals and MBSE-specific concepts, methodologies
and tools for Defence purposes will be shaped by a number of factors, including;:

e the extent to which SE and MBSE concepts are relevant to Defence;
e compatibility with the Defence’s capability development process?;
e governance requirements;

e enterprise architecture (EA) initiatives; and

! The Defence capability development process is described in (DCDH 2012).

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

e other policy and regulatory directives, as well as required competencies of Defence
personnel.

This report firstly examines the underpinning fundamentals of SE and MBSE, then
compares them to current Defence practice and reports on their relevance. The heritage of
key concepts is also clarified to highlight their significance in shaping current notions of SE
and MBSE, from both Defence and industry perspectives, highlighting similarities and
dissimilarities, and again reporting on their significance. The capabilities of new generation
MBSE tools and methodologies are then examined, contrasting Defence and industry
perspectives, to reveal potential implications for Defence. Potential benefits to Defence are
highlighted, together with potential issues that might arise to constrain this potential.

Related aspects of software (SW) engineering, enterprise engineering?, enterprise
architecting and operations research are also clarified to assist unravelling some of the
complexities and interdependencies between the respective professional disciplines.

1.2 Scope

This report places particular emphasis on providing a baseline for fundamental SE concepts
and terminology, particularly focussing on modelling methodologies in relation to the SE
development environment. The relevance and utility of these are then considered in the
Defence context. While the report refers to a number of specific concepts, methodologies,
and tools, it does not aspire to provide particular detailed explanation on each of these.
Instead, further information can be found in the cited references.

While the report aims to introduce and clarify relationships between various methodologies
and the supporting tool environment to illustrate particular principles, it does not intend to
provide a comprehensive review of MBSE tools and/or tool vendors, nor details of
individual tool capability. A more comprehensive review of MBSE methodologies is
provided in (Estefan 2008). A sample list of tools and vendors is provided in Appendix A of
this report. Detailed information on the respective tools and supporting White Papers can
typically be found on the respective vendor’s websites.

% The term “enterprise engineering” is sometimes used interchangeably with “enterprise architecture”,
depending on the enterprise architecture framework. The focus, typically, is on the business operations of the
enterprise rather than a particular engineering process or system. In particular, the US Federal Government uses
the term as applied to their Federal Enterprise Architecture Framework (FEAF) (FEAF 2001).

2
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

2. Concepts of Methodology and the SE Development
Environment

2.1 Significance of Methodology

As Mar and Morais astutely noted some ten years ago, SE can be difficult to implement if
the words and framework are not clearly understood by all parties involved (Mar & Morais,
2002). While many aspects of SE, including tools and methodologies, have evolved over the
decades, the underlying fundamental concepts of SE have not changed, despite the passage
of time (Mar 1997).

Adopting an MBSE approach in Defence is therefore not simply a matter of purchasing
MBSE tool licenses and tool-user training courses by individuals at their own discretion.
Leveraging the power of the new generation MBSE tools will require a much more
considered approach in the Defence context, underpinned by a strong foundation of SE
fundamentals.

When considering the utility of models and methods of model development to inform the
SE process, it is essential to have a common understanding of the SE terminology and
inferred meaning of the terms used, in the correct context. A useful starting point is to
understand how models might relate to SE, and what is model-based systems engineering
(MBSE).

In the same way that SE practice is undertaken, MBSE practice also manifests in a practical
sense in terms of various methodologies that can be applied to different classes of
engineering problems in particular environmental settings. An MBSE methodology can be
considered as a collection of related processes, methods and tools used to support the
discipline of SE in a “model-based” or “model-driven” context (Estefan 2008).

Here, the methodology is not just a collection of specific process steps but is an aggregation
of several constituent parts as shown in Figure 1 where:

e A Process (P) is a logical sequence of tasks performed to achieve a particular
objective, i.e. it defines “WHAT” is to be done without specifying “HOW” each task
is to be performed.

¢ A Method (M) is a technique for performing a task to achieve a particular objective,
i.e. it defines the “HOW" each task is to be performed. The term “method” is often
used interchangeably with the terms “technique”, practice” and “procedure”.

e A Tool (T) is an instrument that, when applied to a particular method, can enhance
the efficiency of the task, provided it is properly applied, and by someone with
appropriate skills and training.

e The Environment (E) comprises the surroundings, the external objects, and
conditions or factors that can influence the actions of an object, individual person, or
group. These factors can be social, cultural, personal, physical, organisational or
functional (Estefan 2008), (Sage 1992).

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

PROCESS
(defines “WHAT")

supported by l T support

o N

9 e METHODS i

- " (defines “HOW”) § -
O L gs— — m
= 25 supported by support gaq @)
S|\ EE l T ie/ e
EJ) g5 O\ - m
= TOOLS 3

|

(enhances “WHAT” & “HOW”)

supported by l I support

ENVIRONMENT
(enables/disables “WHAT” & “HOW™)

Figure 1. PMTE Elements and the Impact of Technology and People (Estefan 2008).

Notably, a process can be structured in a hierarchy which provides several levels of process
aggregation - to support analysis and synthesis at different levels of abstraction to support
different decision-making needs.

At any level of aggregation, process tasks are performed using methods. Since each method
is also a process itself, comprising a sequence of process steps to be performed for that
particular method, the “HOW?” at one level of abstraction becomes the “WHAT” at the next
lower level. This notion of recursiveness is widespread in SE, imbuing the ability to present
either higher levels of abstraction with broader scope, or increased fidelity of representation
with much narrower scope, without compromising the integrity of the description of
individual piece-parts, the nature of their interactions, the relationships between the piece-
parts, or the interactions with the external environment.

Importantly, the utility of the methodology is dependent on the people involved; the state
of technology pertaining to both the SE development environment and the system
undergoing engineering development; and the influence of the external environment, as
well as the nature of the problem itself to be solved.

A Project Environment would thus be expected to integrate and support the use of the
methods and tools used on a particular project to address a particular engineering problem,
mindful of the skills and corporate resources available and suitable to bring to bear for the
task, and the state of technology envisaged to drive the engineered system solution.

A Defence-wide methodological change to capability development and acquisition thus has
the potential for significant and wide-spread impact, spanning corporate management
processes, engineering technical processes, governance, and the tools environment, along

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

with the inevitable impact on resourcing, staffing levels, staff skill-sets, training and
support requirements. It is therefore crucial to understand what concepts are enduring,
what change is necessitated to accommodate changing Defence needs and constraints, and
what additional change may be precipitated if an MBSE approach was adopted in Defence.

2.2 Significance of Scale

The effectiveness or otherwise of a particular methodology to support acquisition of a new
Defence capability system, or a major upgrade, will to a large extent, be determined by the
scale and complexity of the problem to be addressed, and the nature of the engineering
endeavour required.

For the most part, Defence capability systems are very large scale and very complex, costing
many millions of dollars, and potentially affecting many thousands of Defence personnel,
whether they are operators or maintainers. These systems can range in size from major
warfighting platforms (e.g. submarines, tanks, aircraft), to fleets of specific equipment (e.g.
UHF radios, sonobuoys, BDU-33 practice bombs), to individually licensed desktop
computing applications such as Microsoft Office™.

The scale of engineering development can span a huge range of activity, from:

e designing an individual integrated circuit such as a custom processor or
microcontroller;

e programming an integrated circuit such as a Field Programmable Gate Array
(FPGA);

e designing a printed circuit board (PCB) containing devices such as microprocessors,
microcontrollers and FPGAs;

e programming a microprocessor with embedded SW;

e designing equipment which includes multiple circuit card assemblies (CCAs)
housed in an equipment enclosure or chassis, which may or may not be
programmable;

e designing a dedicated purpose SW application which can be hosted on a general
purpose desktop computer or operated in a distributed manner across a network;

e designing a dedicated SW application to be hosted on dedicated HW within a
military system; to
e designing a large scale military platform.
A simple but useful categorisation in terms of scale of engineering endeavour is provided in
Table 1 (adapted from Landherr 1997), where Defence capability systems are comprised of

multiple assemblies of black boxes forming subsystems, systems, and systems of systems as
described in Section 6.

UNCLASSIFIED

DSTO-TR-3039

UNCLASSIFIED

Table 1. Scales of Engineering Development.
Activity Scope Description
SW | Mechanical

Programming X - Ability to modify the source code but not to

level change the fundamental system design.

Circuit Card - X Ability to assemble different devices and/or

Assembly level sub-assemblies, and/or programmed or non-
programmed electronic devices to modify the
circuit card capability, but not to change the
fundamental system design.

SW Linkage X - Ability to link selected SW modules together

level to produce different versions of the executable
program.

Equipment - X Ability to assemble different HW modules

Assembly level (either programmed or non-programmed
circuit card assemblies) together to change the
system configuration.

Executable SW X - Ability to copy and load executable programs

level onto host computing platforms, and change
the system configuration, but not to modify the
program.

“White Box” X - Ability to execute embedded programs and to
perform diagnostic functions. No ability to
change the system configuration.

“Black Box” X X Ability to execute embedded programs
without any visibility of the internal
composition of the system. No ability to
change the system configuration.

System Design X X Ability to fundamentally modify the system.

level

System of - - No ability to fundamentally modify the

Systems level hardware, software, or mechanical aspects of
each system. Ability to apply SoS specific
policy and provide guidance to influence
system level design or purchase of each
component system within the SoS.

Enterprise - - No ability to fundamentally modify the
hardware, software, or mechanical aspects of
each system. Ability to apply pan-
organisational policy and provide guidance to
influence system level design or purchase of
each component system within the policy
remit.

6

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

The notion of the “Black Box” in Table 1 is significant in that it is a configuration item (CI)
of equipment or an assembly of equipment which has a specific system identity and known
configuration, and comes within specific SE life cycle management purview over the life-of-
type of the Black Box. Subsequent assemblies of “Black Boxes” to form larger Defence
systems, SoS, and Defence capability systems may or may not necessarily be identified as
separate configuration items in their own right, with specific system identity, managed
configuration, and with separate discernible system life cycle management.

Each level of engineering activity of Table 1 requires engaging different skill sets in
different engineering development environments, with different process support,
methodologies and tools. SE principles are applicable at all these scales of development,
and across the range of engineering-oriented technologies, whether it is mechanical,
electrical, electronic HW, SW or a combination thereof. However, the instantiation of the SE
process in terms of specific methods and procedures, and degree of formality in process
application (e.g. repeatability of process) will differ to suit the scope and nature of the
development activity required, the extent of risk to be managed, and to meet any regulatory
or governance requirements.

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

3. System Modelling Concepts

“All models are wrong but some are useful.” George Box, 1979.

3.1 Modelling Concepts in Engineering

Before exploring the more elaborate notion of MBSE as it might apply to Defence, it is
essential to establish a common understanding of some basic notions of systems modelling
within the engineering disciplines.

In simple terms, a systems model in the engineering context is a semantically closed
abstraction of a system, providing a simplified representation of reality (or potential
reality). Abstraction is the suppression of irrelevant detail. Abstraction is an intrinsic
response of the human mind as it relentlessly seeks to make sense of perceptions. These
abstractions can form in various ways, including making generalisations, deleting detail,
and forming distortions (i.e. different perspectives) (Dickerson & Mavris 2010).

Models are formed to enable a better understanding of a much more complex situation
under consideration from a particular perspective. They are especially useful to represent
particularly complex matters because the human mind cannot comprehend all the intricate
and implicit interactions and interdependencies except for the simplest of problems
(Rosenblueth & Norbet 1945), (Lieberman 2003a), (Friedenthal et al. 2008).

Models can be characterised in the way they are used, for example:
e they can be used prescriptively, to specify behaviour or a course of action;

e they can be used predictively, to predict possible future outcomes in light of
different decisions or actions, or

e they can be used descriptively, to explain or describe a problem, phenomena or
system to assist understanding (Pidd 2004).

Models have been used extensively for decades to investigate engineering-related
problems, including;:

e to help visualise a system or part of a system as it is, or how it is required to be;

e from an architectural perspective, to specify the structure or behaviour of a system,
or describe how the parts might relate to each other, or behave dynamically with
each other;

e to provide a template to guide the construction of a system, or to inform how to
combine the parts together;

e to undertake explicit formal enquiry to identify alternate courses of action or
possible outcomes to assist in decision making in relation to systems analysis and
systems synthesis (i.e. systems design);

e to document design decisions that have been made during the development of a
new system or parts of a system (Rechtin 1991), (Booch et al. 1999), (Maier & Rechtin
2002).

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Models can take on many different forms: from a simple sketch to conjecture or
communicate key ideas; to sets of equations to implement algorithms; to models which can
be used to generate documentation and /or SW code; to models which can provide
extensive engineering process support.

Computer-based SE and SW engineering tools have been used to support requirements
management, systems analysis and systems synthesis, configuration management,
automated document generation, and automated SW code generation since the 1980s.
Graphical modelling tools have also evolved to replace text-based tools to help manage or
reduce the complexity of expression to improve communication between system
stakeholders.

A number of specific modelling techniques have been published over the years to address
certain classes of problems, particularly relating to SW development. Formal methods and
supporting computer-based modelling tools have evolved significantly from ad hoc
beginnings to systematise systems analysis and systems synthesis in particular,? to cope
with increasing complexity and ambiguity in the systems problems taken on, and the
commensurate complexity inherent in the resultant system solutions.

Models are particularly useful in engineering to understand or predict properties or
characteristics, behaviour, functional performance, and logical consistency to assist with
system implementation. They can also be used to describe system processes, data, and data
flows. Their utility stems from the ability to use precise modelling constructs and process
descriptions to improve precision of expression and avoid the ambiguity that is often found
in natural language descriptions (Hawryszkiewycz 1988), (Rechtin 1992).

However, the utility of a model is dependent on a number of considerations, including;:

e the ability to acquire valid source information relating to the key characteristics and
behaviours of interest;

¢ understanding the impact of simplifying approximations and assumptions;
achieving the fidelity required; and

e establishing the validity of the model outputs.

Models can be manipulated to reduce the misfit between the model and the real world, but
it requires real-world measurement to test the model prediction or explanation against
measurements or observations to provide validation of the model. However, this may not
necessarily be feasible, particularly for those circumstances where the input conditions
cannot be adequately controlled, or the input and control conditions cannot be replicated.

3.2 Modelling vs. Simulation

It is also requisite to understand the difference between the concepts of modelling and
simulation in an engineering context, where simulation is typically an imitation of a real-
world process or system over time. The act of simulating something first requires that a
model be developed; the model representing the key characteristics or behaviour of the
selected physical or abstract system or process under scrutiny. It is then possible to show
anticipated effects of alternate conditions and courses of action (Rechtin 1991), (SEF 2001).

® This is sometimes referred to as “systems analysis and design”, as used in (Blanchard & Fabrycky 1998).

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Models and the process of simulation can provide a more timely and resource-effective
means of obtaining factual information (and therefore providing underpinning rigour) in
lieu of building and testing prototype alternatives to allow a system design to converge to
an acceptable system solution.

The primary purpose of simulation in SE is to explore the effects of alternative system
characteristics on system performance without building and testing real-world alternatives.
This might otherwise be a time consuming and costly process, and may not necessarily be
feasible to undertake. Modelling and simulation can therefore offer an attractive alternative
to expedite investigations in pursuit of the most cost-effective and swift implementation in
a resource constrained SE development environment. Heuristically, cost escalates with
schedule escalation. This can arise through reduced efficiency in implementation, and/or
increased opportunity cost of lost product sales due to a potential reduction in the
marketing window of opportunity.

The importance of systems modelling and simulation to SE is exemplified where typically, a
major part of the design process relies on decisions made based on a model of the system
(either current or proposed alternative) rather than decisions derived from a real-world
system instantiation (Blanchard & Fabrycky 1998).

3.3 What is a Model?

3.3.1 Real World Models

What is meant by the term model in the engineering context? In its most basic form, a
model is anything used to represent anything else for the purpose of informing and
facilitating understanding about the subject matter they represent; whether the subject
matter relates to the real world or whether it is conceptual. Models are used in many
scientific disciplines, ranging from hard science to social, political, economics and
management sciences for this same purpose. Models can thus take on many forms, from
representing systems, processes, information, and operations, to representing organisations,
depending on the nature of the enquiry. Many of these can be applied to systems problems
(Blanchard & Fabrycky 1998), (Lieberman 2003b).

It is import to distinguish between what models are, and what the models are models of,
when applied to systems problems. In the real world, for example, a physical model of a car
can be constructed as a scale 1:10 representation. Its purpose may range variously:

e to convey alternate possible car design configurations for evaluation of aesthetics
and functionality prior to selection of the preferred alternative;

e as a representation of a new car model about to be launched on the market for
advertising purposes; or

e tosimply to demonstrate the operation of a new door opening feature.

In a simple example of a model car, the detail included in the model will differ according to
the purpose the model was constructed, whether for aesthetic evaluation, functional
evaluation, or market evaluation; to decide on future possibilities, or to highlight current or
past features.

In the same vein, a weather map can be regarded as a model of the weather patterns over a

10
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

designated geographic region, and can include a wide variety of information. Model
parameters can include, for example, measured or predicted pressure, wind speed and
direction, temperature, precipitation, humidity, river flows, high and low tide levels and
times, and sunrise and sunset times. A weather map published in a newspaper can report
past or present measured weather conditions, or depict future predicted weather
conditions, depending on the purpose the weather map was created.

However, it is important to note that the model representation in the newspaper only
reports the parameter values determined by alternative means; the tool used to draw the
weather map does not necessarily provide the ability to generate the parameter values
displayed in the model. Similarly, the nature of any relationships between parameters
cannot be inferred from the information displayed within the model unless a definition of
the type of relationship is incorporated in the modelling technique - even though
relationships may exist between different parameters. The weather map is an example of a
non-architectural model.

In each of these instances, a common feature is the correspondence with the real world. The
value of the model is proportional to how well it exemplifies a past or present actual real-
world implementation, or, potential future real-world implementation, in terms of the
information presented for the purpose intended, or understanding sought.

3.3.2 Conceptual Models

Conceptualisation from observation of physical existence and conceptual modelling are the
necessary means people employ to think and solve problems. Concepts are used to convey
semantics using natural language based communication. If the concepts in the mind of one
person are very different to the concepts in the mind of the other then there is no shared
model of the topic, and therefore no effective communication. Effective human
communication entails:

e Translation of one person’s ideas into the other’s understanding;
¢ Embedding those ideas within the other’s mental model;
¢ Maintaining those ideas with constant and consistent reinforcement; and

e Verifying the validity of the ideas and their translation for further action (Rechtin
1991).

The greater the number of people involved in the conceptual activity, the greater the
challenge in arriving at, and maintaining sufficient shared understanding. Since a concept
might map to multiple semantics by itself, an explicit formalisation is usually required for
identifying and locating the intended semantic from several candidates to avoid
misunderstandings and confusion in the conceptual models. This is critically important
from an engineering perspective to ensure the right outcome is achieved for the right
problem (Pidd 2004).

Conceptual models can be used to explore many different types of concepts, ranging from
different views of stakeholders in an organisation to knowledge representation of subject
matter experts, to explore different representations of “truths” or possible consequences
from different perspectives.

When applied to systems problems, a model of a concept is quite different to a real-world

11
UNCLASSIFIED

DSTO-TR-3039

UNCLASSIFIED

model in that it does not need to have real-world correspondence to be a good model.
Conceptual models are typically used by analysts who are not concerned with the truth or
falsity of the concepts being modelled, but wish to clarify understanding by problem
structuring or articulating different notions or perspectives (Gregory 1993).

In SE, conceptual modelling is used to promote effective human communication between
client and system designer. A dialogue typically ensues between the client and the system
designer to exchange ideas of what the system might do, and what it might look like. In the
process, the conceptual model takes form and evolves to provide the basis from which
subsequent design activity can be undertaken (Rechtin 1991).

A plethora of conceptual models can be drawn from numerous scientific disciplines to
undertake systems analysis to inform system design; a snapshot of which is provided in

Table 2 4.

Table 2. Conceptual Model Types.

Conceptual Model
Type

Description

Mental Models

A representation of something in the mind. Can also be a non-
physical external model of the mind itself (Lieberman 2003a),
(Jones et al. 2011).

Logical Models

A relational structure for which the interpretation of a logical
sentence (in the predicate calculus) becomes valid. The
relational structure is referred to as a model of the sentence. A
relation is an assignment of a mathematical function of one or
more arguments (or logical variables) whose range is the set of
truth values {true, false} (Dickerson & Mavris 2010).

A type of interpretation under which a particular statement
(i.e. interpretation of a logical sentence) is true (Taha 2002).
Two broad categories:

e Those which only attempt to represent concepts
(e.g. mathematical models) (Chang et al. 1990)

e Those which attempt to represent physical objects
and factual relationships (e.g. scientific models).

Mathematical Models

Can take many different forms using a variety of abstract
structures (e.g. dynamical systems representations; statistical
models; differential equations; game-theoretic models).

Can also be a theoretical construct that represents processes by
a set of variables and a set of logic and/or quantitative
relationships between them. The model can have various
parameters which can be changed to create various properties

* [online] URL http://en.wikipedia.org/wiki/Conceptual_model. (Rechtin 1991) and (Blanchard & Fabrycky

2010) also provide a useful discussion on the role of modelling in supporting systems analysis in system
engineering. (Pidd 2004) provides a useful discussion from a complementary operations research perspective.

12

UNCLASSIFIED

http://en.wikipedia.org/wiki/Conceptual_model

UNCLASSIFIED
DSTO-TR-3039

(Taha 2002), (Pidd 2004), (Dickerson & Mavris 2010).

Scientific Models Provide a simplified abstract view of the complex reality. Can
represent empirical objects, phenomena, and physical
processes in a logical way. Seeks to formalise principles of the
empirical sciences using an interpretation to model reality.

Statistical Models Provide a probability function for generating data (Taha 2002).
These can take two forms:

e parametric models - where the probability
distribution function has variable parameters.

e non-parametric models - provides a distribution
function without parameters, and is only loosely
confined by assumptions.

System Architecture Describe mutually interdependent systems concepts of:

Model .
odess e structure - what major elements are, how they are

organised and decomposed, functionality,
interfaces, and ties to system requirements

e layout - physical arrangement, packaging and
location of design aspects

e behaviour - system dynamics response to events to
providing a basis for reasoning about the system.

Can represent multiple views of a system by using two
different approaches:

e non-architectural approach - a model is created for
each view

e architectural approach - single integrated model is
created encompassing all required views.

Can be used to model concepts or real world objects and
events (Eeles 2006a), Maier & Rechtin (2002).

Data Models Also known as data structure, in SW engineering, is an abstract
model that describes how data is represented and accessed.

Formally define data elements and relationships between data
elements for a domain of interest.

Provide various means of describing system data (in SW
engineering and enterprise engineering):

e Entity-Relationship Model - an abstract and
conceptual representation of data to develop a
conceptual schema or semantic data model of a
system (e.g. relational database) (Chen 1976).

e Domain Model - used to depict the structural
elements and their constraints within a domain of
interest (e.g. problem domain), including the

13
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

various system entities, their attributes and
relationships, with constraints governing the
conceptual integrity of the structural model
elements comprising the problem domain. Domain
model can include a number of conceptual views
where each view is relevant to a particular subject
area of the domain or to a particular subset of the
domain model that is of interest to a stakeholder of
the domain model.

Can be used to model concepts or real world objects and
events (Cantor 2003a).

3.3.3 Decision Modelling

Insight can also be gained using systems analysis by formulating and manipulating
decision models to determine how changes in those aspects of the decision under control of
the decision maker affect the modelled system. This allows evaluation of a probable
outcome of a decision without disturbing the current operational system itself (Taha 2002).

Models for operational decisions and design decisions are abstractions of the system under
study. However, like all abstractions, models can make many assumptions - about the
operating characteristics of the components; about the behaviour of people; and about the
nature of the environment. The implications of these assumptions must be understood and
evaluated when the models are used to aid decision making in design and operations.

Notably, a decision model cannot be classified as accurate or inaccurate in any absolute
sense; to validate model manipulation would require reality manipulation. A decision
model is therefore difficult to test except for an intuitive check for reasonableness
(Blanchard & Fabrycky 1998).

3.3.4 Information Model

An information model is a different but important concept in systems and SW engineering,.
An information model is an abstract formal representation of concepts or real-world objects,
and the relationships, constraints, rules, and operations to specify data semantics for a
chosen domain. In SW engineering, it is typically used to provide a sharable, stable and
organised structure of knowledge in the domain context.

An information modelling language is used to specify the notations representing the
information in the information model. The ICAMS5 Definition (IDEF) Language IDEF1X
graphical representation in particular, is widely used in systems and SW engineering.

IDEF1X is a data modelling language standard for the development of semantic data
models. It used to produce a graphical diagram that represents the structure and semantics
of information within a domain. The basic constructs of an IDEF1X model are:

1. Things about which data is kept, such as people, places, ideas, events, represented

® Published as Federal Information Processing Standards Publication 184 (IDEF1X 1993)

14
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

by a box;
2. Relationships between those things, represented by lines connecting the boxes; and
3. Characteristics of those things represented by attribute names within the box.

The basic constructs of an IDEF1X model are shown in Figure 2 (IDEF1X 1993).

Concept Construct

“Things” ————

Relationships
Between Those —————
“Things”

Characteristics
of those -

“Things”

Figure 2. Basic IDEF1X Modelling Concepts

Importantly, the information model provides formalism to the description of a problem
domain without constraining how that description is mapped to an actual implementation
in software. There may be many mappings of the information model; these are called data
models, regardless of whether they are object models, entity relationship models or XML
schemas.

3.3.5 Meta-modelling

Meta-modelling is a related concept, often used in mathematics, computing science, SE and
SW engineering, entailing the analysis, construction and development of the frames, rules,
constraints, models and theories applicable and useful for modelling a predefined class of
problems.

A meta-model is a higher-level abstraction of a model, highlighting the properties of the
model within a certain domain. A model conforms to its meta-model in the way a computer
program conforms to the grammar of the programming language in which it is written®.

Meta-models can be viewed from three different perspectives:
e Asa set of building blocks and rules to build models;
e Asamodel of a domain of interest; and

® [online] URL: http://en.wikipedia.org/wiki/Metamodeling.

15
UNCLASSIFIED

http://en.wikipedia.org/wiki/Metamodeling

UNCLASSIFIED
DSTO-TR-3039

e As an instance of another model’.

Meta-models are closely related to ontology, which is also used to describe and analyse
relationships between concepts, providing specific grammar, controlled vocabulary (non-
redundant and unambiguous) and explicit semantics to express something meaningful
within a particular domain. When a meta-model is used as a model for a domain of interest,
the ontology is the meta-model together with the data set in the domain of interest.

An example of a meta-model is provided in Figure 38.

A

Symbol
describesI
symbolises SALUEE
Descriptor
<XConcept > ” > Occurren(f_>
classifies
Figure 3. Information Meta-model with Four Different Meta-objects and their Relationships.

3.3.6 Architecture Modelling

The notion of architecture modelling, drawing initially from the principles of IEEE 1471,
then subsequently superseded by ISO/IEC/IEEE 42010% has become more prominent over
the last ten years to supplement classical systems analysis and design activity. The impetus
stems from the need to simplify knowledge representations of very large-scale complex
systems and systems-of-systems (SoS) whilst preserving the integrity of the underlying
(and more complex) relationships (Maier & Rechtin 2002).

Architecture-based modelling enables a specific focus to be cast on a set of prescribed
relationships across a domain of interest, which can contain SoS, systems or components of
interest. A simple example considering a car as a system is illustrated as follows. Figure 4
reveals the static structure (i.e. system architecture) of the car (but only the major
components of interest associated with the anti-lock braking system). Figure 5 shows the

" [online] URL: www.metamodel.com

8 [online] URL: http://en.wikipedia.org/wiki/Metamodeling.

° ISO/IEC/IEEE 42010 superseded IEEE 1471 in 2007. However, because of the pivotal role of IEEE 1471 in
shaping the concept of architecture descriptions, it is still widely referred to in the context of architectural
modelling.

16
UNCLASSIFIED

http://www.metamodel.com/
http://en.wikipedia.org/wiki/Metamodeling

UNCLASSIFIED

DSTO-TR-3039

dynamic behaviour between some of these components making up the car anti-lock braking
system to provide specific functionality (e.g. accelerating and braking capability) in the car.

Figure 4.

Figure 5.

Car
Anti-lock Engine
braking management Chassis
system system
Rotor Anti-lock Hub -
controller assembly ks

Traction Brake
detector modulator Sensor

Simple Architectural Model for a Car System (adapted from Shamieh 2011).

start
engine

Operate

engage
accelerator,
release

Off

J

stop
engine
~\

Idling

when
speed =

brake

<

Braking

»

Accelerat'g

engage
brake

Simple Behavioural Model for a Car System (Shamieh 2011).

UNCLASSIFIED

17

UNCLASSIFIED
DSTO-TR-3039

An example of an architecture modelling activity using a computer-based modelling tool
and a defined graphical modelling language is shown in Figure 610,11,

In recent years the concept has been applied more broadly to organisational entities within
the fields of enterprise engineering and enterprise architecting as described in Section 9
Enterprise Architecture concepts and Section 10 Defence Enterprise Architecture context.

ArchiMate - ABACUS (=13

Eile Edit Wiew Insert Analysis Tools \Window Help

NS @S SIMPIO|R Mie NBlE -Hifie N st dfind o o ibao B

: Explorer - ArchiMate.abacus* v oXx _/% Applications - ArchiSurance Example * l 4 kX |ED
PS

Leggd fiel
> CRM
Lo Aicl
beachticos
=ystem

1 Implementations ~
~8 Types
* Templates
=% Architectures
=% ArchiSurance Example
-8 Components
=1 Business
=1 People

r ArchiSurance

o Customer's Bank
O Customer

o Insurer

= Intermediary
Ewvents
-7 Damage ocoured
=3 Process/Function

= Handle Claim

Fiegister
Accept
Walue
Fay

sasadolg

applicion

sapadoid |p4auas

il
L e8-8-8-8

=+

[

1 Application
=1 Data bt
=1 Custarner file < ?
Inswrance request
Insurance policy
[Integrated ‘Web access -
| Customer data Business logic [EJB] (-)
| Customer data Persistence [EJB]
| Puolicy data Perzistence [EJB)
| Policy data Business logic (EJB)
“ Claim data Persistence [EJB) Hernes & fowaty Pelicy acmirisraian i
*| Claim data Business logic [EJB) Piolicy Creation

Ihs ce Policy

Travel Insurane A a a R
b ingured" (securnity) I foge BLeliy -

S
Insurance Policy: 0 Sub-Components, 1 Port &

1 B
L : Policy Creation application - ArchiSurance Example * w X

£y

e e = = = e

Stencil - Policy Creation application v Ox ”,‘

rd

[j g E @ D FeUrance necuest reurence paicy | Custamer file
Funictio OMmpo 0GES
n

Object Service -

L or—"

Components | Connections | Shapes | Connectors

nent s-Funct

Contents Changed

Figure 6. Example of Architecture Modelling Using the Archimate® Modelling Language and
ABACUS modelling tool.

19 Tonline] URL: http://www.avolution.com.au/releases/0809_archimate.html
1 vitech Corporation has devoted an entire book to explain how MBSE principles can be applied to
architecture modelling using their MBSE tool, CORE (Long & Scott 2011).

18
UNCLASSIFIED

http://www.avolution.com.au/releases/0809_archimate.html

UNCLASSIFIED
DSTO-TR-3039

3.3.7 SW Architecture Modelling

International SW engineering standards IEEE 1471 and its ISO replacement ISO/IEC 42010
lay down basic terms, principles and guidelines for the consistent application of
architectural precepts to systems throughout their life cycle. They also provide a framework
for the collection and consideration of architectural attributes and related information for
use in application of other IEEE standards. Most importantly, IEEE 1471 offers a widely
accepted definition and a prescriptive meta-model to enable a description to be crafted of a
SW architecture.

IEEE 1471-2000 offers a definition of software architecture as:

“the fundamental organisation of a system,
embodied in its components;
their relationships to each other and the environment;
and the principles governing its design and evolution”.

The scope of the standard spans the creation, analysis and sustainment of architectures of
SW-intensive systems (including IT systems or information systems), including recording
the architecture in terms of architectural descriptions as described in Figures 4, 6 and 6.

A key tenet of the IEEE 1471 Conceptual Framework is the notion of multiple views of the
data set comprising the system description. An architectural description is organised into
one or more architectural views of the system; the particular views selected being
dependent on the particular technique used.

IEEE 1471 was deliberately framed to be life cycle neutral, and independent of method,
technique, notation, media, and format. The IEEE 1471 information model or meta-model
shown in Figure 7 is agnostic to the process used to obtain the information to populate the
model, and does not necessarily provide an ability to attribute meaning or context to the
information contained in the model.

With regard to semantics, the standard makes an important distinction between the notions
of architecture and architecture description. In the context of the standard, the architecture
of the system is conceptual, and is a fundamental characteristic of the system. The
architecture comprises the set of elements depicted in in the architectural model, and the
links between the inter-related elements. The architecture description is a tangible artefact
that records the details in the data set of elements and links that comprise the architecture
(Hilliard 2000).

It is important to note that this interpretation differs markedly from that used in a number
of view-centric enterprise architecture frameworks (EAFs) including TOGAF, AUSDAF2,
and the initial version of DoDAF, as described in Sections 9 and 10. These EAFs blur the
distinction between the two terms and use them interchangeably, whilst inferring the
meaning to be pertaining to the tangible artefacts. View-centric EAFs are therefore agnostic
to the notion of an architecture described using an integrated architecture model,
notwithstanding any EAF references to the use of the IEEE 1471 standard in regard to
preparation of different artefacts to describe different views.

12 \/ersion 1 is also referred to as “the DAF”.

19
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Mission
furfills 1..*
influences has an
Environment System Architecture
inhabits
described by
has1.* }] 1
is important to identifies
1.* 1.7 Architectural | Provides i
Stakeholder Description Rationale
is addressec: t? participates in
has identifies
1.* 1.* \
"‘u
conforms o
Concern Viewpoint View \
\
used to
cover 1.*
\ pariicipates in consists of "\
has source 1.* 1.* aggregates
\ 1.

0.1 \

Library
Viewpaoint

Figure 7. Knowledge Representation of Architectures — IEEE 1471 Conceptual Framework.

estahlishes metthor\\

\

1.

Model

An example of an integrated architectural model is provided in Figure 83, which is an
informational model supporting model driven SW-intensive system design methodology.
In this example, the architecture data set comprises all the data populating the entities listed
in the boxes, together with the relationships forming the connectors between the boxes.

A number of different architecture viewpoints can be expressed from the data set to draw
out different perspectives of entities and relationships using different diagrammatic
techniques. However the entire set of underlying entities and relationships is preserved,
regardless of which subset of data is extracted for consideration in a particular viewpoint.
Thus, a single integrated model or meta-model is created encompassing all required views.

B In Figure 7, the symbology “1..*’ is used to indicate a ‘many’ relationship, i.e. the respective information

items can be recursively decomposed.

20
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Validates DesignCase @ Executes
«— “—
Exercises
® Tl
Specifies Represents
Requirement Model
q — Component «—

Figure 8. Informational Model for Model Driven System Design (MDSD) (Estefan 2008).

In Figure 8, the boxes show kinds of information; arrows show the direction of the
relationship (not the direction of information flow); and the bullets show a ‘many’
relationship.

The diagram elements in Figure 814 can be unfolded as follows:

1
2
3.
4

o

Requirements specify components (real world or conceptual).
Requirements are decomposed into other lower-tier requirements.
Components are decomposed into other lower-tier components.

Components represent design alternatives (e.g. design alternatives are proposed to
potentially satisfy requirements).

Models are developed to represent components (i.e. design alternatives).

Models execute design alternatives using use cases to investigate the extent to which
different design alternatives might satisfy the originating requirement as part of a
trade study prior to selecting a particular alternative as the preferred design.

The results from exercising the selected component using use cases verify or not
whether it actually satisfies the originating requirement.

The above example of the MDSD engineering methodology is significant in that it omits a
number of key activities in SE; the most notable being the absence of an analysis or design
activity, a purchase or build activity, and a test and evaluation activity. Why spend time
and resources building a model then? In a SW context, this methodology might be useful,
for example, if the modelling environment was capable of automatically generating the
code forming the SW component solution. Thus building the model could be equated to
building the SW. It can also be useful to analyse SW architectures to improve SW quality
and correctness.

Y In Figure 8, the boxes show kinds of information; lines represent relationships symbology ‘®” is used to
indicate the presence of a one to many respective information items can be recursively decomposed.

21
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Since the component hierarchy can be synthesised in the modelling environment, and the
hierarchy will be preserved in the transition to a real-world SW instantiation, the modelling
environment can also be used to evaluate the merits of alternative abstract SW structures
more quickly and cheaply than developing detailed code implementations with alternative
SW structures.

However, SW does not exist in isolation from its host environment in the real world, so an
acquisition and integration activity is implied to result in a real-world solution that can be
verified independently of the model. Although this method is not useful for synthesising
hardware (HW) structures, it can be useful to record HW synthesis outcomes determined
using more suitable alternate methods.

The methodology can also be useful for comparing commercial-off-the-shelf (COTS)
product alternatives prior to selection and purchase, or evaluation of different system
concepts prior to acquisition. This is the case in Defence where the above architecture-
centric methodology is used widely to undertake analysis of architecture attributes
supporting the capability development process.

However, in the Defence case, individual Defence acquisition projects have considerable
freedom to create their own project specific architecture modelling approaches. The
guidance provided does not include the notion of a formal information model prescribing
the data elements, architectural attributes, or process. Thus, there can be considerable
variation in semantics and vocabulary as well as methodology from project to project, and
from one tool-user to another. This approach, while possibly useful from a project-specific
point of view, does not provide extensibility beyond the boundaries of the project and the
particular project system of interest to the broader Defence systems environment.

Since Government policy obliges a solution independent approach to the acquisition of
military capability, the acquisition process relies considerably on the generation of project-
specific specifications to provide sufficient guidance on function and performance to
procure acceptable system solutions, abstracted from technology considerations and
solution-space constraints. Without a notion of the solution implementation (i.e. the
components to be acquired), it is not possible to provide feedback to verify the information
model as represented in Figure 8. Thus, there can be no verification activity in an
architectural context of the implemented components or architectural perspectives. The
absence of verification and validation activity of the synthesised components and of the
resultant system assembly is a major shortfall in the methodology illustrated from a
systems engineering perspective. These considerations are revisited in this report in the
context of Defence capability acquisition, and Defence enterprise architecture practice.

3.3.8 Reference Models

Another concept sometimes used in the systems modelling environment is the notion of a
reference model’>. In the SE, SW engineering and enterprise engineering disciplines, a
reference model is an abstract framework or domain-specific ontology consisting of an
interlinked set of clearly defined concepts produced by an authoritative source within a
defined stakeholder community. A reference model can represent the piece-parts of any
consistent idea, from business functions to system components, as long as it represents a
complete set. This frame of reference can then be used to communicate ideas clearly among

15 Jonline] URL: http://en.wikipedia.org/wiki/Reference_model

22
UNCLASSIFIED

http://en.wikipedia.org/wiki/Reference_model

UNCLASSIFIED
DSTO-TR-3039

members of the same stakeholder community from the different perspectives provided in
the reference model (Eeles & Cripps 2009).

The reference model is distinct from, but can also include related taxonomies of concepts,
entities and relationships to reveal hierarchies of significance to inform stakeholders,
including the system hierarchy or system architecture. Thus, as the system architecture is
developed and documented during the system design process, it can provide guidance on
preferred terminology, and standardised functions and components to use if relevant to the
system problem under consideration.

In enterprise engineering, the boundary between engineering and business is quite blurred,
with greater emphasis being placed on facets of enterprise-wide business concerns. In
enterprise engineering, a business reference model (BRM) is typically included as part of an
EAF, where the EAF is used to define a series of reference models to inform stakeholders
how to organise the structure and views associated with an Enterprise Architecture (EA).
Notions of enterprise also transcend notions of individual systems in the engineering sense;
their boundaries can be quite indistinct, often determined by organising principles or other
abstract criteria rather than necessarily having physically realised interface boundaries.

An example of a reference model associated with the commercial Zachman Framework for
Enterprise Architecture (ZF) is provided in Figure 9 (Sowa et al. 1992). Notably in the ZF,
engineering terminology is used in many instances using similar knowledge representation
tools and techniques drawn from the engineering discipline, but tailored to provide an
enterprise-specific business focus. For example, in the context of EA, a BRM is an important
concept, where it provides a means to describe the business operations of an organisation
independent of the organisational structure that performs them. It can also depict the
relationships between business processes, business functions, and business areas to provide
a foundation for analysis of service components, technology, data, and performance. Many
of these have engineering underpinnings as evident in the various cell contents of the
reference model in Figure 7*°.

A more detailed description of the ZF is provided in Appendix D. These considerations are
also revisited in this report in the context of Defence enterprise architecture practice.

18 Tonline] URL: http://www.zachman.com

23
UNCLASSIFIED

http://www.zachman.com/

DSTO-TR-3039

Claszification
Mames

Auvdience
Faripactivas

Executive
Perspective

{Butiness Context
Planners)

Business Mgmt

e G e T e 8y By e

Composite Intagratlions — =

UNCLASSIFIED

o | e [

- Allgamest —

*— Sompociie Intagratlons

Inventory ldentification

Process Identification

Distribution Identification

=

Responsihility Identification

2.

] .4% _

Timing ldentification

E

Motivation Identification

List: Invantary Types U5 £ Proces s Types List: PE trirtion Types U5 t: FaspansiFIEy Types List: Timing Types LEt: Mathation Types
[4 q [[4
Inventory Definition Process Definition Distribution Definition Responsibility Definition Timing Definition Motivation Definition

R

—] I I

& A B

=

&
ﬂri '
el bk bl BE B L LR Tr—"ry

Contexts

(Scope Identilfcation
Lise)

Business

Lration

Perspective " A |44 = ”'rEF/" i Concepts
L . T [=
(Business Cancept = -
; P = Busingss Emtey i@ BusingssTrans Brm A Busingss [acation I Busingss Rale e BiS INA55 mtarisl Bushess Fnd a ey —“u
\ — Business Ralationship —» BusinessinputDuiprt — Busingss Connactisn -+ Pusingss Werk Froasust * Busingss emant — Bushess Maans L
[4 4 4 4 [E4
Inventory Representation Process Representation | (Distribution Representation| (Responsibility Representation Timing Representation Malivation Representalion|
Arr_‘hlta_::t = P _-:Oﬂ'ﬁ-""" S =T = ET_7 s =N
1 < -] . -
Perspective _'::l—k : = I\\"Ele‘\f\ [L = e) 0
L : I Gystam Entity () Gystam Trans &m . Gystam Lacation Gystam Rak o Gystamintarial 3 GystamEnd
— Systam Ralatlenship —+ Gystam input Autput —+ Gystam Connsctien = Gystam Wik Fradust o Gystamiemant — GystamMaans
4 Fd [4 4 4
Inventory Specification Process Specification Distribution Specification| |Responsibility Specification| Timing Specification Maotivation Specification
E“E'"E‘?r P = - e l“?i"bi-" = l_ - Ty P Technc.tlugy
Perspective —"| % | L= ;:E_l_;- = Phyzics
'm”‘r": = Tachnslogy Entity & Tachnsbqy Transfarm A Tastnsisgy Ladatin B Techn by y Rals o Taghnaisgy intariai b TachnsiogyEnd L B“'i""“""gi' s
3 — Tesnnsiagy Falatiansnip | | — Teznnaiagyinput /Qugput| | —+ Taznnaizgy Connastin b TRZNAAALY Work Fradies & Tasnnalagy hdamant — Tachnsiagy Maans 1
4 i 4 4 b4 A
Inventory Configuration Proce:s Configuration Distribution C. jion| |Responsibility Co Timing Configuration Motivation Configuration
Technician g = g [ey - Tool
Perspective —— — R i — - Components
f 5 - (Toal G
f"ﬁ’h",:;ﬂf:"w, i TAIEREEY Tal Transfam TasiLazatian Teal sl Tasiintarial ek
Taa 4B LB nship TMMPIMIQM-PIM TRelcannazten T2 Werk Froaust Tl M amant 3

Enterprise
Perspective
{Lisers)

The
Enterprise

Audience
Perspective.

Mamasz

T T L L [—

Jns-'eﬁt
| ru:tanﬁaﬂnn
[

Operations Entlties
Operations Relations.

Inventory

Sets

Process
Instantiations.

Q

Operations Transforms
Operations InfOutputs

Distribution
Instantiations

Distribution

MNetw

Responsibility

Ini ations

Responsibility
Assignments

3

Operations Intervals
erations Moments

& 1957-2011 Jofn A Zachrman, all rights reserved. Zachman® and Zachman Infemationak® are regisiered trademarks of John A Zachman

Figure 9. Example Reference Model Used in Zachman Framework for Enterprise Architecture v 3

24

UNCLASSIFIED

Maotivation
Instantiations

|

Opﬂ:ﬂn'ﬂ Endsz

tons Means
Jrl:d.;r:l: & nF

Maotrvation
Intentions

CEL il Bl B L L LR ELT Er e ——

Operations
Instances
- -
The _
Enterprise

UNCLASSIFIED
DSTO-TR-3039

3.3.9 Reference Architectures

Similarly, the term reference architecture is used both in a SW engineering and an
enterprise engineering sense, and is typically a template solution for an architecture for a
particular domain'?. It is used to provide a common vocabulary with which to discuss
prospective implementations, with a particular focus on commonality.

The reference architecture typically comprises:
e alist of functions;
e some indication of their application program interfaces (i.e. APIs);

e a description of the interactions between listed functions within the reference
architecture; and

e adescription of interactions with functions external to the reference architecture.

All of these can be captured, presented, analysed, and modified in a systems modelling
environment.

A reference SW architecture typically provides a template to document those significant SW
structures and respective elements and relationships for a particular project, domain or
family of SW systems. This is often based on a generalisation of a set of solutions. These
solutions may have been generalized and structured for the depiction of one or more SW
architectures based on the harvesting of a set of patterns that have been observed in a
number of successful implementations, together with guidance on how to to compose
elements together to form a system solution (Eeles & Cripps 2009).

3.3.10 Design Patterns

3.3.10.1 Software Design Patterns

Another useful concept drawn from SW engineering which can be utilised in systems
modelling is the notion of a design pattern!s (Gamma et al. 1994), (Eeles & Cripps 2009). A
design pattern is a recurring structure within a design domain.

A pattern typically expresses a specific problem or functional objective for a system along
with a solution. The set of patterns sufficient to span the entire design within a domain is
known as a pattern language. Using the Alexandrian method, patterns can be composed to
synthesise solutions to diverse problems; the patterns that evoke the elements desired in the
system become the building blocks for synthesising the solution. The patterns either suggest
instructions for a solution structure (i.e. solution architecture) or contain solution fragments.
The fragments and instructions are merged to form the system design (Maier & Rechtin
2002). A somewhat similar notion to a reference architecture, a design pattern aims to
provide a generalised template solution for solving a specific type of problem that is
reusable in different circumstances.

7 Tonline] URL: http://en.wikipedia.org/wiki/Reference_architecture

18 Christopher Alexander first conceptualised an approach to synthesis using formalised patterns in architecture
in the field of civil architecture and urban design. The notion of design patterns was subsequently embraced by
the field of SW engineering (Maier & Rechtin (2002).

25
UNCLASSIFIED

http://en.wikipedia.org/wiki/Reference_architecture

UNCLASSIFIED
DSTO-TR-3039

However, design patterns typically manifest in terms of prescribed SW modules at the code
level and interconnections internal to a SW element. This is usually on a micro-scale, rather
than between SW elements or components within larger systems or between SW systems
relating to system architectures.

Object-oriented?® design patterns typically show relationships and interactions between
classes or objects, without specifying the actual application specific classes or objects in the
finalised design. A design pattern is therefore not a completed design that can be directly
coded into a SW implementation, but seeks to articulate best practice distilled from
previous successful implementations to guide new SW implementations. A design pattern
must therefore be reprogrammed for each application, which differentiates itself from the
concept of SW reuse for a new application, or using specific library modules or SW
elements when building a new SW application.

A published design pattern is typically ascribed a specific identity or name, and includes
prescribed information relating to:

¢ the identity, including intent for use (i.e. name);

e motivation or problem context in which the pattern can be used (i.e. the problem
statement);

e applicability;
e pattern structure in terms of class diagrams and interaction diagrams;

e participants, comprising classes and objects used in the pattern, and their roles in
the design;

e collaborations in terms of how the classes and objects used in the pattern interact
with each other; consequences, providing a description of the results, side effects,
and trade-offs caused by using the pattern; and finally,

e adescription of the implementation of the pattern.

Sample code can also be included, as well as real-world examples where the pattern has
been successfully used and codified. Design patterns can take different forms, including
creational patterns, structural patterns, and behavioural patterns. Examples of SW
design patterns are provided in Table 3 (Gamma et al. 1994).

Table 3. Examples of SW Design Patterns.

Name Description
Creational Patterns
Abstract Factory Provides an interface for creating families of related or

dependent objects without specifying their concrete classes.

Builder Separates the construction of a complex object from its
representation allowing the same construction process to
create various representations.

19 Object-oriented concepts and the object-oriented design paradigm are discussed in detail in Section 4 —
Systems Approach to Problem Solving.

26
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Singleton Ensures that a class has only one instance, and provides a
global point of access.

Structural Patterns

Adapter (wrapper, Converts the interface of one class into another interface

translator) expected by clients, allowing classes to work together that
would not be able to otherwise.

Bridge Decouples an abstraction from its implementation allowing the
two to vary independently.

Facade Provides a unified interface to a set of interfaces in a subsystem

Behavioural

Patterns

Iterator Provides a way to access the elements of an aggregate object
sequentially without exposing the underlying representation.

Mediator Defines an object that encapsulates how a set of objects
interact. This promotes loose coupling by keeping objects from
referring to each other explicitly, and allows the interaction to
be varied independently.

Observer Defines a one-to-many dependency between objects where a

(publish/subscribe) | state change in one object results in all of its dependents being
consequently notified and updated.

Patterns also allow SW developers to communicate using well-known names for SW
interactions. As common design patterns are evolved and improved over time, they can
become more robust when applied under different circumstances compared with ad-hoc
bespoke designs. By providing tested and proven SW development paradigms, design
patterns can reduce both the development effort required and the development risk,
reducing the likelihood of occurrence of subtle problems that might otherwise cause major
problems2.

3.3.10.2 SoS Design Patterns

Over the last decade, the notion of design patterns has been adapted for application in an
entirely different context - for use in shaping net-readiness?' in large scale SoS and socio-
technical system solutions. The organisation NCOIC, for example, has coined the term “net-
centric patterns”, where they have applied the notion of patterns to assist in solving shared
interoperability problems by soliciting government and industry-wide consensus on the
approach 2 (Bowler 2010).

NCOIC is a consortium comprising government and industry representatives from several

? [online] URL: http:/en.wikipedia.org/wiki/Design_Patterns; Gamma et al., 1994,

2 Net-readiness is described by NCOIC in terms of a system’s ability to connect to a common communication
network together with other net-ready systems to form a SoS.

22 [online] URL: https://www.ncoic.org/technology/deliverables/patterns/

27
UNCLASSIFIED

http://en.wikipedia.org/wiki/Design_Patterns
https://www.ncoic.org/technology/deliverables/patterns/

UNCLASSIFIED
DSTO-TR-3039

nations including the US, UK, and Australia??, to facilitate private and public sectors
working together between cross-domains towards achieving interoperability?* goals. Here
the solution may not necessarily be SW-based, but some of the same principles associated
with design patterns have been emulated to promote interoperability and interface
compatibility on a much larger scale.

The NCOIC Interoperability Framework (NIF) was developed to provide a vehicle to distil
information that is considered relevant to net-centricity, and to recommend particular
standards for international adoption to support improved net-centricity, together with
flexible guidance to promote multiple use?> (NCOIC 2008). The impetus stemmed from the
difficulty encountered in trying to achieve harmonisation of technical standards and
processes between interconnected systems and SoS, and across multiple organisations, each
of which is evolving independently at different rates, with diverse needs, drivers and
constraints.

Net-centric design patterns have been developed over three domains as follows:

e Operational - comprising standard practices and their interoperability requirements
needed to conduct activities (military operations or business objectives) in a given
mission context;

e Capability - comprising standard methodologies and functions needed to support
required activities in a given mission context; and

e Technical - comprising technical standards, technologies and interoperability
techniques needed to support required capabilities in a functional context specified
in the associated capability patterns (NCOIC 2008)2.

3.3.11 Model Reuse

In a similar vein to design patterns, another useful SW engineering concept used in systems
modelling is the notion of model reuse. Model reuse is simply copying the implementation
of some parts of a model or all of the model and reusing it in a different model
implementation?’.

Model reusability is the ability to reuse segments of the model to add new functionality
with minimal modification; the impetus being to reduce redundant effort, and hence time
and cost to develop, verify, and validate new models. The ability to reuse segments of the
model relies on the ability to identify commonalities between different segments such that
larger models can be built by combining the smaller segments (Frakes et al. 2005).

¥ Member organisations include Object Management Group (OMG), The Open Group, Thales, Australian
Department of Defence, Federal Aviation Authority (FAA), IBM, Boeing Ltd., Raytheon, Lockheed Martin
CISCO, Saab, MITRE, and EADS.

NCOIC has published an interoperability reference model whose scope spans people, process, applications,
information services and network transport considerations.

% [online] URL: https://www.ncoic.org/technology/deliverables/nif/

% This is akin to the notion of open architectures, although the mechanism to select the standards and the
motivations of the participating organisations can differ, but both approaches seek similar outcomes.
2" Tonline] URL: http://en.wikipedia.org/wiki/Code_reuse

28
UNCLASSIFIED

https://www.ncoic.org/technology/deliverables/nif/
http://en.wikipedia.org/wiki/Code_reuse

UNCLASSIFIED
DSTO-TR-3039

Reusability implies explicit management of numerous aspects during model development,
including:

¢ modelling language and application compatibility,
e documentation,

e separate verification and validation (V&V),

e packaging,

e distribution,

e installation,

e configuration,

e maintenance, and

e upgrade.

These issues might not otherwise have been given attention if reusability was not
considered. Since the life cycle of the portion being reused, or the life cycle of a library
implementation may differ from that of the model being developed, the ability to maintain
reused code is an important consideration when weighing the perceived benefits of reusing
code against the total life cycle cost of supporting the entire model.

Models, or model segments, can be reused by a modeller on an a-hoc basis at a later date to
leverage previous effort. An obvious example of model reuse is the refinement of the
implementation from one version to the next:

e to fix implementation problems within the model;
e to provide enhanced model features; or
e to provide a known starting point for development of a different application.

A more deliberate approach to model reusability may also be taken where internal
abstractions are used to create specific model segments or modules (or objects in the case of
object-oriented implementation) for later reuse, and are explicitly copied for separate
storage in a library. These library implementations are particularly suited for performing
common operations on data that may be used repeatedly in many different models. Library
implementations therefore need a defined interface, and documented features, attributes
and testing so that newly developed code can readily access the required functionality
within the library module with a known degree of confidence.

Model segments can be imbued with certain characteristics and attributed to particular
libraries to facilitate easier sharing and reuse. Characteristics that facilitate model segment
reuse include:

modularity,

e loose coupling,

e high cohesion,

e information hiding, and

e separation of concerns.

29
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Similarly, common data can be located in libraries for use by independent models. Library
implementations can also be sourced from third parties for use in new model development.

However, the cost-benefit of using tested library implementations must be weighed against
inherent limitations including an inability to tune the library implementation to optimise
features and attributes, including interface details and performance, and any additional
time or cost incurred to acquire, learn, configure and support the library to suit the required
application.

3.4 Programming Language Concepts

3.4.1 Imperative Programming Language Paradigm

Specific to SW modelling, two fundamentally different paradigms predominate, offering
either an algorithmic perspective or an object-oriented perspective of the system.

The algorithmic perspective originated in the mid-1950s. It was quickly embraced by the
engineering community where algorithms could be described using one of a family of
imperative computer programming languages; the main building block of SW being the
procedure or function. In computing science, imperative programing is a programming
paradigm that describes computation in terms of statements that change a program’s
state?s.

This particular approach supports the notion of structured programming and the
decomposition of larger algorithms into smaller ones; particularly suited for numeric
computation, mathematical modelling, and quantitative analysis.

These techniques are useful to analyse and solve scientific problems typically found in
engineering. The resultant SW architecture is therefore a reflection of the SW partitioning of
the algorithm into its smaller parts. Examples of imperative (procedural) programming
languages include Fortran, ALGOL, COBOL, PASCAL, and the C programming language.

3.4.2 Object-Oriented Programming Language Paradigm

The basis of object-oriented development methods is the “object”. An object is a
fundamental concept in the object-oriented SW modelling paradigm, where it is a “thing”,
generally drawn from the vocabulary of a problem space or solution space. A class is also a
fundamental concept, which is a description of a set of objects that share the same
attributes, operations, relationships and semantics. Using object-oriented vernacular, the
object is known as an “instance” of the class.

Of particular significance, each object has:
e aspecific identity (i.e. it can be distinguished from other objects);
e astate (i.e. it usually has data associated with it); and

e behaviour (i.e. the object can interact with other objects, and it can interact with
external influences).

% [online] URL: http://en.wikipedia.org/wiki/Imperative_programming

30
UNCLASSIFIED

http://en.wikipedia.org/wiki/Imperative_programming

UNCLASSIFIED
DSTO-TR-3039

Other important concepts defined in the UML object-oriented paradigm include:
¢ an element, which is defined as an atomic constituent of a model;

e a component, which is defined as a physical and realisable part of a system that
conforms to and provides the realisation of a set of interfaces;

e an interface is a collection of operations which affect behaviour that are used to
specify a service of a class or a component?®, and

e a node is a physical element that exists at run-time and that represents a
computational resource, generally having at least some memory, and, often times,
processing capability.

In UML, “use cases” are used to describe the behaviour of the system as seen by its end
users, analysts and testers. A “use case” is comprised of a number of discrete scenarios,
each of which provides a specific sequence of actions, including variants, that yields an
observable result that illustrates system behaviour to the actor. Here the actor is a coherent
set of roles that users of use cases play when interacting with the use cases. A set of use
cases is used to verify and validate the system’s architecture.

The resultant SW architecture is revealed in terms of:
e the set of significant decisions about the organisation of the SW system,

e the selection of the structural elements and their interfaces from which the system is
composed, together with their behaviour as specified in the collaborations among
those elements,

e the composition of the structural and behavioural elements into progressively large
subsystems, and

e the architectural style that guides the organisation of the elements and subsystems.

Object-oriented development thus provides the conceptual foundation for assembling
systems out of SW components that are standardised technology building blocks (Booch et
al. 1999). This approach is therefore particularly suited for SW-intensive systems largely
comprised of COTS components. The object-orientation maps well into the physical realm
making it particularly suited for representing and analysing physical architectures and their
interfaces, and providing a robust audit trail for the recursive functional to physical
allocation synthesis activity. It is also much easier to model large numbers of asynchronous
interactions between many interacting entities.

UML has continued to evolve over the ensuing years, leading to development of notions of
EA modelling and MBSE?3 - it is thus prerequisite to be familiar with the basic ideas
underpinning object-oriented SW and systems modelling and the accompanying vernacular
and standards, to understand notions of EA modelling and MBSE.

2 A useful definition of interface from a SW engineering perspective is provided in (Sparx Systems 2007a).
The UML2 Tutorial using the tool enterprise Architect defines an interface as a specification of behaviour that
implementers agree to meet. It is therefore a contractual obligation. By realising an interface, classes are
required to guarantee they support a required behaviour, which allows the system to treat non-related elements
in the same way, through the common interface.

% UML version 2.4.1 was formally published in April 2012 in two parts, as ISO/IEC standards ISO/IEC 19501-
1:2012(E) and ISO/IEC 19501-2:2012(E).

31
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

3.5 Modelling Language Concepts

“Computers do not solve problems, they execute solutions” - Laurent Gasser, 1995.

3.5.1 Language Concepts

Another central concept in systems modelling is the notion of a modelling language. A
modelling language is any artificial language that can be used to express information in a
structured manner that is defined by a consistent set of rules; the rules providing the basis
for interpreting the meaning of the information in the structure3!.

From Table 2, it is evident there are many approaches to conceptual modelling of systems.
Aside from the specifics of each modelling process to construct a model, each approach can
be differentiated according to the form of representation of the information that comprises
the model, i.e. the modelling language used.

Various modelling languages are used in many different disciplines, including computer
science, operations research, business and operations management, SW engineering, SE,
and enterprise engineering. These modelling languages provide the ability to specify or
describe system requirements, structures and behaviours with the required fidelity in such
a way that stakeholders (e.g. customers, operators, analysts, designers) can better
understand the system being modelled. These can vary in quality of knowledge
representations from simple informal pictorial representations using commodity drawing
tools such as PowerPoint™ or Visio™ to produce diagrammatic knowledge
representations, to precise, executable languages using specialised SW tools which can
support automated system V&V, simulation, and code generation from the same
representations.

These modelling languages can be either graphical or textual. A textual or imperative
modelling language typically uses standardised keywords accompanied by parameters to
construct computer-interpretable expressions. A simple example of some object-oriented
Java code for the class MessageParser is provided in Figure 10 (Booch et al. 1999, p 338).
The concept of object-orientation is described in more detail in Section 3.4.2 below.

Graphical modelling languages use diagramming techniques with named symbols that
represents concepts, together with lines that connect the symbols representing
relationships, and other graphical notations to indicate constraints and other relevant
notions as shown in Figure 11.

%! [online] URL: http://en.wikipedia.org/wiki/Modeling_language

32
UNCLASSIFIED

http://en.wikipedia.org/wiki/Modeling_language

UNCLASSIFIED
DSTO-TR-3039

class MessageParser {
public Boolean put (char c) {
switch (state) {
case Waiting::

if (c== <’){
state = GettingToken;
token = new StringBuffer () ;

body = new StringBuffer () ;
¥

break;
case GettingToken :
if (c == %)
state = GettingBody;
else
token.append (c) ;
break ;
case GettingBody :
if (c==1%) {
state = Waiting;
return true; }
else

body.append (c) ;
¥
return false;
}
public stringbuffer getToken () {
return token;
public stringbuffer getBody () {
return body;
}
private final static int Waiting = O;
private final static int GettingToken = 1;
private final static int GettingBody = 2;
private int state = Waiting;
private StringBuffer token, body;

b
Figure 10. Textual Representation of State Machine Providing Specific Software Functionality
in Java Code Created Using Tool Automated Code Generation Capability (Booch et al.

1999).

put(c) [c==";
/ return true

put(c) [c/='<]
/ return false

put(c) [c=='<]

put(c) [c==">']

GettingBody

put(c) [c/="}]
/ token.append(c); return false

GettingToken

put(c) [c/=">"]
/ token.append(c); return false

Figure 11. Tool Generated Graphical Representation of a State Machine Providing the Specific
Software Functionality of Figure 8 (Booch et al. 1999).

33
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Graphical modelling languages are based on the notion that knowledge can be described in
terms of entities, relationships, interpretations and structure. Entities, relationships and
interpretations are formally defined in the mathematical sciences in predicate calculus.
Structure is formalised in logic. Graphs provide a visual means of describing entities and
relationships (Dickerson & Mavris 2010).

Examples of graphical modelling languages include:
e behaviour trees,
¢ Dbusiness process modelling notation (BPMNTV),
e flowcharts,
e IDEFx™ family of diagrams, and
e Architecture Description Languages (ADL)32.

In the example shown in Figure 10, a machine is implemented using Java code which parses
different messages when certain conditions are met. Code is generated automatically from a
simple state diagram using a tool where the graphical representation of the state machine is
shown in Figure 11 (Booch et al. 1999, p 338).

Figures 10 and 11 show an example of modelling a reactive (i.e. event driven) object, useful
particularly for instances of classes, use cases, and modelling the system as a whole.

When modelling the behaviour of a reactive object, it is necessary to specify three things:
o the stable states in which the object may live;
e the events that trigger a transition from state to state; and
e the actions that occur on each state change.

It also involves modelling the lifetime of the reactive object, starting at the time of the
object’s creation, and continuing until the object’s destruction, highlighting the stable states
in between in which the object may be found.

In graphical terms, an interaction diagram models the behaviour of a society of objects
working together, whereas the statechart diagram models the behaviour of a single object
over its lifetime. The activity diagram models the flow of control from activity to activity,
whereas the statechart diagram models the flow of control from event to event.

Textual and graphical modelling languages are used widely in both the commercial and the
Defence sectors to assist in developing engineering system solutions. The choice of visual
presentation aesthetics and techniques in diagramming is particularly important in terms of
determining how to create the most effective graphical knowledge representations of the
system at hand.

Unlike computer drawn abstract pictorial representations, for example, using Microsoft
PowerPoint™ drawing tool, where an artist can enjoy considerable discretion in creative
presentation, model diagraming of the ilk of BPMN, UML and SysML? is heavily rules-

% Architecture Description Languages are also used for enterprise architecture modelling, and may be vendor
tool specific such as for the Vitech CORE SE Tool, or be an industry standard such as Archimate®, managed
under the auspices of Object Management Group (OMG).

¥ BPMN, UML and SysML are graphical modelling languages managed under the auspices of OMG (BPMN
2011), (UML 2011a,) (UML 2011b), (SysML 2006).

34
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

oriented. This allows the modeller to maximise the clarity of the information contained in
the model so the modeller can accurately project the desired understanding to the intended
audience.

Concerns such as line and contour scale and proportion, colour and thickness, and
composition and layout, and number and complexity of diagram elements, all become
important considerations in system, software, and process modelling. This may assist or
detract from understanding. This is especially important when specific meaning is
attributed to particular variations in visual presentation (Lieberman 2004).

Two examples of graphical knowledge representation, using BPMN notion, and UML 2.0,
are provided in Figures 12 and 13 respectively (White 2004). The same information is
provided in both diagrams in each figure, however, the way it is presented, and the method
of interpretation, are dependent on the knowledge representation technique and associated
rules set.

Milestone

- Business Process
Notation diagram

o | L..@ B Completed
| A E
el (- D -
B C-ompleted

Milestone
/ % -UML2 activity diagram
Fa ~, I ™,

- L= -

O f

m . }.IB Complete - D } :\-‘

F

y

Figure 12. Example Milestone Graphical Knowledge Representation using BPMN & UML2
(White, 2005).

35
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Interleaved Parallel Routing
— Business Process Notation diagram

Perform B and D

A F
\ Ad-hoc Sub-process
N - } “] AdhocOrdering Attribute set to Sequential
AdhocCompletionCondition Attribute set to
include the completion of Task “B” and “C”
Interleaved Parallel Routing
— UMLZ2 Activity diagram
| | =, =, -~
%
|~ Choose B u._i B E]— ,a-| C
: I [— [— i S
I
A ¢ F
I i
— - K
l'm_- Choose D B]~ \-hl E }
- S, .-

|

Figure 13. Example Workflow Graphical Knowledge Representation using BPMN and UML?2
(White, 2004).

36
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

3.5.2 Architecture Description Languages

An international engineering standard, ISO/IEC/IEEE 42010:2011 Systems and Software
Engineering - Architecture Description, defines an ADL as any form of expression for use
in architecture descriptions. The standard also specifies the minimum requirements to
create an ADL. The use of an ADL is inherent in the notion of SW and SE-related
architecture modelling so as to be able to articulate their respective architectures in a
prescribed manner.

In the SW engineering discipline, an ADL is a computer language used to describe and
represent SW architectures in an integrated form, i.e. the structure and behaviour of a SW
system and the non-SW entities that the system interfaces to. Thus, the SW system is
represented as a set of SW components, their connections, and their significant behavioural
interactions.

In SE, an ADL can be a language and/or a conceptual model used to represent the system
architecture in an integrated form, in terms of its structure, layout, behaviour and other
system-specific views associated with systems analysis and synthesis.

For enterprise engineering, various approaches may be taken, depending on the particular
EAF. Enterprises can be modelled, however for the most part, they use commonly available
textual and graphical tools using recognised standards rather than having an EAF specific
ADL to promulgate EAF based information.

EAF utilise various modelling techniques including Business Process Modelling Notation
(BPMN®), Archimate and UML. They can also use office and graphic drawing tools such as
Microsoft Office PowerPoint™ or Visio™, or even use SW or SE ADL based tool sets to
draw pictorial representations of enterprise-related information.

For example, the EAF published by The Open Group, TOGAF, focuses on a particular
architecture development method, ADM, depicted in Figure 1434,

% [online] URL: http://www.opengroup.org/subjectareas/enterprise/togaf

37
UNCLASSIFIED

http://www.opengroup.org/subjectareas/enterprise/togaf

UNCLASSIFIED

DSTO-TR-3039

Figure 14. TOGAF Architecture Development Method Process Overview.

The TOGAF does not prescribe any particular suite of products to build, nor represent an
EA model (i.e. architecture descriptions or views), nor direct information content. Instead,
TOGAF provides two reference models, the TOGAF Technical Reference Model, and the
Integrated Information Infrastructure Model as depicted in Figure 15 (Josey 2009).

The Open Group suggest that enterprise-related information can be depicted by populating
templates replicated from military EA frameworks such as the MODAF developed by MOD
in the UK and DoDAF developed by DoD in the US® (Dandashi et al. 2006).

% The MODAF and DoDAF are described in more detail in Section 9 Enterprise Architecture Concepts.

38
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Business Applications

(Application Platform Interface)

juawabeuep

NJom)aN pue waishs
BuusauiBug siemyjos
Buissasoud uonoesues]
Al1ojo2aa1q *® uoEDOT
aseliaju| 1asn
abueyaiaju| elEQ
juawabeuep eleqg
abew) pue saydeis

suonesadQ jeuonjeusaiu|

Operating System Services

Network Services

Communications Infrastructure Interface

Communications Infrastructure
A /!

Figure 15a. TOGAF Technical Reference Model.

7
L/

Sacuriby hability

Applicatan Flationmm

Performance SLAs Management Palicy

Figure 15b. TOGAF Integrated Information Infrastructure Model.

39
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

The EA model is then the aggregation of the populated templates that describe the
enterprise from various perspectives as prescribed by the reference model. This information
is stored in an architecture repository, typically in artefact form, for later retrieval.

Since the TOGAF is agnostic to the SE and SW engineering disciplines, definitions can
differ, despite frequent use of well-known terms from these disciplines. Some effort has
been made to align the TOGAF approach to produce DoDAF products, however, this is
strictly view-centric, and is agnostic to any underlying concurrent systems engineering,
quality management, project management or other supporting processes in train to produce
the information for inclusion in the respective views.

The military EAFs, MODAF and DoDAF, in particular, have developed their own ADLs,
each of which can be implemented as profiles of internationally recognised modelling
language standards. They each define numerous architecture views (similar but different),
that can be generated using commercial EA and MBSE tools supporting internationally
recognised standard ADLs such as UML?3.

Importantly, the DoDAF and MODAF are also underpinned by information meta-models.
These are integrated data models, which define the set of underlying architectural
information (entities and relationships), and are stored in the tool or repository.

The different view templates can thus be populated from data stored according to the single
integrated data model representing the associated systems or SoS architectures associated
with the respective problem domains. The MODAF Meta-Model (M3) is the information
model for MODAF (MODAF 2010). This defines the structure of the underlying
architectural information that is presented in the MODAF views. Similarly, the DoDAF
Meta-Model (DM2) is the information model for the DoDAF v2, which defines the structure
of the underlying architectural information that is presented in the DoDAF views (DoDAF
2009).

An example is shown in Figure 16 of a simplified high-level integrated data model showing
operational and system level data elements and relationships associated with the first
military EAF, the C4ISR Architecture Framework (C4ISR AF) (C4ISRAF 1997). The
underlying architectural information is stored in a database in the tool or in a managed data
repository.

The C4ISR AF v 2.0, was a precursor to the DoDAF v 1.0; its underlying core architecture
data model (CADM) specifying its ADL was several hundred pages in length. While this
representation could be implemented using a number of different approaches, it is
particularly well-matched to the object-oriented language constructs in UML. A
corresponding ADL spanning the CADM would thus be implemented as profile of UML in
a UML-based tool.

An architecture process overview to generate the respective C4ISR AF artefacts?” using a
computer-aided SE tool is provided in Figures 17 and 18, where the CADM (i.e the

% The Vitech CORE tool is one exception where the DoDAF and MODAF profiles are overlaid on a propriety
ADL. This tool used structured analysis principles rather the object-oriented concepts inherent in UML (Long
2010), (Long & Scott 2011).

3" The C4ISR AF, and its successor the DoDAF, define numerous document artefacts including
common or all views (e.g. AV1 operational views (e.g. OV1 to OV6), systems views (e.g. SV1 to SV-
11) and technical views (e.g. TV1-TV3). Later versions of the DoDAF have increased the number and
types of views supported. See DoDAF Desk book Volumes 1, 2, and 3 for further information on the DM2
(formerly CADM) and the DoDAF specific artefacts (DoDAF 2009).

40
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

integrated data model or meta-model) is overlaid on the tool native ADL (Levis 2000).

However, there are some crucial differences between the commercial and military
approaches. Each commercial EA Framework is typically based around a particular
reference model and/or reference architecture. They are agnostic to the notions of systems
or SoS architecture that can be represented in an integrated form, underpinned by an ADL
and information meta-model as described above for MODAF and DoDAF.

EAFs are also agnostic to engineering notions of analysis and design, whereas MODAF and
DoDAF are integral process overlays on the engineering and acquisition processes in the
UK MOD and the US DoD respectively (Ryder & Flannigan 2005).

In commercial EAFs, information is commonly expressed in natural language form. This
information is typically organised into categories according to the reference model and
displayed in non-architectural form to reflect a particular viewpoint or stakeholder
perspective.

This is akin to the weather map example described above, where prescribed information is
derived separate to the model, and displayed a prescribed manner; the information
populating a standardised set of templates, possibly drawn from a designated solution
architecture or prescribed design patterns. Enterprise-related information may be inter-
related within a particular category, for example, when describing a particular business
process, but many facets of the EA cannot be represented using an ADL or produced as an
analytical outcome.

The particular military EA frameworks mentioned above, i.e. MODAF and DoDAF support
the notion of different viewpoints or perspectives based on a single integrated system
architecture model, thus preserving the integrity of the systems architectures. The MODAF
and DoDAF employ specific but distinct tailored interpretations of the internationally
recognised standard modelling languages UML and SysML managed under the auspices of
OMG, and thus inherently presume an integrated architectural approach.

Developed in collaboration with Defence industry, UK MOD, US DoD, OMG has recently
released a new ADL, Unified Profile for MODAF and DoDAF, known as UPDM?3* (UPDM
2012). UPDM incorporates modelling features of both these military EAFs to improve
interoperability between commercial tools and data sets, and to expand the types of
analyses and presentation formats supported (Hause, 2010), (Hause et al. 2012), (IBM
UPDM 2012).

Further elaboration is provided in Section 9 Enterprise Architecture Concepts and Section
10 Defence Enterprise Architecture Concepts of this report in the context of enterprise
architecture practice in Defence.

% [online] URL: http://www.omg.org/spec/UPDM/2.0/

41
UNCLASSIFIED

http://www.omg.org/spec/UPDM/2.0/

UNCLASSIFIED

is associated

Operationa
Information
Element

implements/
is implemented

by

transmits System

Information
Element

DSTO-TR-3039
is associated
Operational represents /Operational with .
Noo_le/<A "\ Element '\\
may represent
1 - performs/ 1
Organisation is performed by
maps to implements/
1 is implemented
OPERATIONAL VIEW by
implements/
SYSTEMSVIEW has is implemented by
Asset performs/
) Is performed by v
! is a
Link
System
Node has
contains Element
Performance
Parameter Set
contains
is attached to
Is attached to
WAN enables
Figure 16. Integrated Data Model Representation of C4ISR Architecture Framework V2.0 - Key Entities Example (Levis 2000).
42

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Stage 1

- Create high level Operational
Operational Concept operational concept Concept Graphic
(AV1, D1) graphic with textual

description OV-1

(a) Stagel

Create
functional
decompositio

Stage 2

Universal Joint Task List SEI(?Ct
(D2) functions

Operational Concept

(AV1,D1) S colect ——
organisations Determine
Organisation List _7 assets

(D3)

Define
operational
elements

Define
operational
nodes

Determine
organisational
relationships _

Command
Relationship
Chart OV-4

Organisational
Relationships (D4)

(b) Stage 2
Figure 17. Example Process Steps to Generate C4ISR AF V2.0 Artefacts (Levis 2000).

43
UNCLASSIFIED

DSTO-TR-3039

Figure 18.

44

Operational Concept
(AV1,D1)

Universal Joint Task List
(D2)

Organisation List
(D3)

Organisational
Relationships (D4)

Doctrine, tactics,
Procedures (D5)

States and Events
(D7)

System functions
(D8)

System descriptions
(D12)

Operational Information
Elements (D6)

UNCLASSIFIED

Operational
Concept Graphic
OV-1

Command
'Relationship
Chart OV-4

Complete

_| Activity

| Model ov-5

OV-2 Operational Node

A 4

Connectivity Diagram

Operational Information

A 4

Exchange Matrix OV-3

Operational Activity to

y

Operational State
Transition
Description OV-6b

A 4

System Function
Traceability Matrix SV-5

A 4

Physical Data Model
SV-11

Stage 3

Complete

Operational
Rules Model
OV-6¢

Logical Data
Model OV-7

Communication Systems
Description (D9)

System Performance
Attributes (D10)

»

Migration Systems
(D11)

\\ v
VGmplete
/Qagy

A 4

Systems Functionality
Description SV-4

A 4

Systems Interface
Description SV-1

_|Systems Communications
Description SV-2

A 4

Systems Matrix
SV-3

A 4

System Information
Exchange Matrix SV-6

A 4

System Evolution
Description SV-8

Example 5 Stage Process Summary to Generate C41SR AF V2.0 Artefacts (Levis 2000).

UNCLASSIFIED

A 4

System Technology
Forecast SV-9

A 4

System Performance
Parameter Matrix SV-7

UNCLASSIFIED
DSTO-TR-3039

4. Systems Approach to Problem Solving

4.1 Systems Analysis and Design Concept

The importance of purpose, method and context to systems modelling is readily apparent
from the initial discussion thus far. Akin to system modelling, it is similarly essential to
establish a common understanding of problem structuring in the engineering context. The
SE environment encapsulates methods, tools, and people to support staged engineering
activity. This in essence, starts with defining a problem which can be resolved by
engineering a technical system solution, then progressively undertaking a sequence of
activities from analysis to synthesis (i.e. system design) through to construction and V&V
as shown in Figure 19 (adapted from Hawryszkiewycz 1988).

Problem
Definition
Not feasible.
Problem needs /*
redefining ,

System cannot
meet essential
requirements, but
e remediation may

~-_ be feasible

Feasibility
Study

Cannot build

conceptual |/ S

system, but / Systems /

remediation Analysis /
may be e i
feasible |/ e g \ Unexpected /

\ problemsin /
\ existing /
\system /

Design proposals
cannot be
implemented

Figure 19. Staged Problem Solving through Systems Analysis and Design.

The terms analysis and synthesis are Greek in origin, where they mean respectively “to take
apart” and “to put together”. Analysis can be described as the way the human mind breaks
down an intellectual or substantial whole into parts. In contrast, synthesis can be described
as the way the human mind combines separate elements or components to form a coherent
whole.

Systems analysis is described as “the study of sets of interacting entities to identify
alternative courses of action to aid a decision maker identify a better course of action and

45
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

make a better decision than otherwise might have been made” (Ritchey 1991). In the SE
context, it is essentially a directed enquiry to investigate the system operation in the context
of the system problem and the system stakeholders against the backdrop of the system
environment and the inherent constraints therein.

Analysis is a critical precursor to gain an understanding of the system problem being
addressed, in order to be able to synthesise a description of a proposed or revised system,
and to determine what is required of it. If there is no existing system to be modified, then
the analysis will only provide a set of requirements. These requirements then form the basis
for synthesising a proposed system solution.

If an existing system is to be modified, then the analysis will yield a set of requirements to
guide evolution of the system from its current state to a future desired state. These
requirements form the basis for synthesis of possible modifications to the extant system to
achieve the desired result.

While SE effort can be directed towards creating an entirely new system using
combinations of analysis and synthesis, often the effort is directed towards modifying,
expanding or documenting existing systems.

The scope of a system’s requirements typically includes consideration of:

e input/output requirements (including functional transformations and
input/output interface definitions);

e technology;

e performance;

e cost-benefits;

e trade-offs;

e constraints; and

e system test requirements, considered over a trajectory of time (Wymore 1993).

The system design activity which follows analysis proposes a new system (or a number of
alternatives) that meets these requirements. System design is the aggregation of the process
activities of defining the architecture, components, interfaces, data, and the data flows for a
proposed system implementation to satisfy the system requirements as summarised in
Table 4. If a system already exists, then it can be modified or replaced with a new system.
Once the systems design is finalised, it can be built (Hawryszkiewycz 1988).

46
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Table 4 Functions of the System Design Process (adapted from Buede 2000)

Design Function Major Inputs Major Outputs

1. Define system level design | Stakeholder’s inputs Originating requirements
problem Operational concept

2. Develop system functional | Originating requirements Functional architecture
architecture Operational concept

3. Develop system physical | Originating requirements Physical architecture
architecture

4. Develop system Originating requirements Operational architecture

operational architecture Functional architecture

Physical architecture

5. Develop interface Operational architecture Interface architecture
architecture
6. Define the qualification Originating requirements Qualification System

system for the system. System requirements Design Documentation

Decision evaluation is also an important part of systems analysis and design. Evaluation
criteria or metrics are needed, and evaluation activity is needed, to provide a basis for
choice among proposed solution alternatives (i.e. perform trade-off activities) that arise
from the systems analysis and design activities (Blanchard & Fabrycky 1998).

Three radically different systems modelling paradigms have been spawned to support
systems analysis and design activities. Each has developed their own definitions, concepts,
methodologies, tools, modelling languages, and diagrammatic forms to apply to problems
amenable to systems analysis and design. Unfortunately, many terms used across the
different paradigms are common, but have different definitions. It is therefore crucial to
understand the context of the modelling in order to understand the semantics associated
with the modelling activity and the modelling outcomes.

4.2 Structured Analysis and Design Paradigm

4.2.1 General Principles

Structured analysis and design techniques are fundamental tools of systems analysis,
developed from classical systems analysis during the 1960’s and 1970’s. They were typically
applied to system problems in SW engineering, where the system solution entailed
significant development of SW components (de Marco 1979).

These techniques were characterised by their use of diagrams to aid communication
between users and developers. Data flow diagrams (DFDs) were typically used to
document the structured analysis, and structure charts (e.g. flow charts) were used to

47
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

document the structured design (i.e. the SW architecture was documented as the SW code
was implemented).

During the 1980’s, computer-based tools emerged which automated the drawings and kept
track of the information included in the diagrams in a data dictionary. The use of these tools
was coined Computer-aided Software Engineering (CASE).

The essential characteristic of structured analysis is the initial separation of the problem
description from the solution (Dickerson & Mavris 2010). Structured analysis views a
system from the perspective of the data flowing through it. The function of the system is
described by the processes that transform the data. It is reductionist in nature, typified by
creating a hierarchy employing a simple abstraction mechanism (Maier & Rechtin 2002).

The method is process driven, and starts with a purpose and a viewpoint. It takes
advantage of information hiding through successive decomposition analysis, allowing
attention to be focussed on pertinent details at the same level of abstraction for analysis and
design, thus avoiding confusion from looking at other details that are not relevant for the
particular abstraction under scrutiny. As the level of detail increases, the breadth of
information for viewing purposes is reduced, but the integrity of the underlying inter-
relationships is preserved.

The result is a set of related graphical diagrams, process descriptions and data definitions
that describe the transformations that need to take place, and describe the data required to
meet those aspects of a system’s requirements that are being implemented as SW
component (Peters 1987).

Structured design is the creation or synthesis of SW modules (i.e. SW components) in a
module hierarchy based on cohesion and coupling considerations. Cohesion is concerned
with the grouping of functionally related processes into a particular SW module. Coupling
refers to the flow of information or parameters passing through the modules.

The structure chart documents the module hierarchy or calling sequence of the modules.
Best practice in structured analysis and design therefore seeks to minimise the complexity
of the SW implementation of the modules, including the interfaces through optimising
module cohesion and coupling (Yourdon & Constantine 1978). Different structured analysis
and design approaches and supporting computer-based tools have been developed to
support SW and SE activity. Early methods of note included the Structured Analysis and
Design Technique (SADT), and the Structured Systems Analysis and Design Method
(SSADM).

4.2.2 Structured Analysis and Design Technique

SADT is a SW engineering method that performs functional analysis of a given process
using successive layers of decomposition, resulting in a description of an information
system in terms of a hierarchy of functions and its associated data and control relationships.

It uses diagrammatic notation in the form of activity models and data models to
communicate the analysis and design outcomes to assist stakeholders to understand the
functions and relationships of the information system under consideration. Since it provides
a functional view, it can also be used to represent manufacturing and other business
processes and functions in an organisation and their relationships (Marca et al. 1987).

48
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Because SADT is focussed on functions and data and control relationships, the technique
can be useful in informing systems analysis and synthesis activities of systems which
contain elements other than just SW or IT. However, the lack of representation of non-
functional concepts means that the approach cannot be used for system synthesis in
isolation from the broader set of system concerns. It also lacks consideration of verification
and validation activity. This is essential to confirm that an acceptable solution has been
implemented within the feasible solution envelope that solves the original problem.

4.2.3 Structured Systems Analysis and Design Method

SSADM was developed by a UK Government office concerned with the use of IT in
government (Eva, 1994). SSADM is a registered trademark of the UK Office of Commerce. It
prescribes another systems approach to the analysis and design of information systems
based on various stages of activity including;:

e carrying out feasibility studies - addresses technical, financial, organisational
and ethical concerns;

e investigating the current environment - assumes underlying data will be
relatively unchanged even though a new system may be radically different from
the old system;

e developing business system options - where a set of new business options is
developed offering different ways in which the new system can be produced.

e preparing requirements specifications;
e considering technical system options; and,
e performing logical and physical design.

The method provides explicit guidance on the nature of enquiry to be undertaken, with a
particularly strong business emphasis. Its end products are intended to inform engineers
how to build the system in terms of specific details on the HW and SW, and informs of the
appropriate standards. However, but the construction and verification aspects of the system
are not included in the method. The method also lacks consideration of non-functional
requirements in the same vein as SADT.

In terms of structured analysis and design, the three most important techniques used in
SSADM are:

e Logical Data Modelling - the process of identifying, modelling and
documenting the data requirements of the system being designed. The data are
separated into entities (things about which a business needs to record
information) and relationships (the associations between the entities);

e Data Flow Modelling - the process of identifying, modelling and documenting
how data moves around an information system. Data Flow Modelling examines
processes (activities that transform data from one form to another), data stores
(the holding areas for data), external entities (what sends data into a system or
receives data from a system), and data flows (routes by which data can flow);
and

e Entity Behaviour Modelling - the process of identifying, modelling and

49
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

documenting the events that affect each entity and the sequence in which these
events occur?®® (Yourdon 1989).

SSADM implies that the information system will be developed for in-house use, and that a
starting concept for the system has already been developed based on current organisational
practices. For example, during the feasibility study, the main topics for consideration
include project affordability, compatibility with current organisational practices, and
whether the new system concept will be socially acceptable within the culture of the
organisation.

4.3 Object-Oriented Analysis and Design Paradigm

Object-oriented analysis and design (OOAD) is a radically different SW engineering
approach that models a system as a group of interacting objects. Each object represents
some entity of interest in the system being modelled, and is characterised by its class, its
state (data elements), and its behaviour (Booch et al. 2007) (Maier & Rechtin 2002). Various
models can be created to show the static structure, dynamic behaviour, and run-time
deployment of these collaborating objects. There are a number of different notations for
representing these models, including UML as previously described in Section 3.

Object-oriented analysis (OOA) applies object-modelling techniques to analyse the
functional requirements for a system. Object-oriented design (OOD) elaborates the analysis
models to produce implementation specifications. That is, OOA focuses on what the system
does; OOD on how the system does it.

OOA is the process of analysing a task (also known as a problem domain), to develop a
conceptual model that can then be used to complete the task. The conceptual model that
results from OOA will typically consist of a set of UML use cases, one or more UML class
diagrams, and a number of UML interaction diagrams. It may also include some kind of
user interface mock-up.

During OOD, a developer applies implementation constraints to the conceptual model
produced in object-oriented analysis. Such constraints can include not only constraints
imposed by the chosen architecture but also the non-functional aspects. These consider
transaction throughput, response time, the run-time platform, and the development
environment, as well as those constraints inherent in the nominated programming
language. Concepts in the analysis model are mapped onto implementation classes and
interfaces resulting in construction of a model of the solution domain, which is a detailed
description of how the system is to be built.

Since the design paradigm is SW focussed, it offers few formalisms to consider non-
functional aspects relating to the physical implementation (e.g. technological and
environmental considerations). Additional insight on modelling in an object-oriented
design paradigm is provided in Appendix B.

% [online] URL: http://en.wikipedia.org/wiki/Structured_analysis ; http://en.wikipedia.org/wiki/SSADM:;
http://sharpertutorials.com/design-methodology-and-system-lifecycle/ ; Office of the Government Chief
Information Officer: SSADM v4.2 Structural standards.

50
UNCLASSIFIED

http://en.wikipedia.org/wiki/Structured_analysis
http://en.wikipedia.org/wiki/SSADM
http://sharpertutorials.com/design-methodology-and-system-lifecycle/

UNCLASSIFIED
DSTO-TR-3039

4.4 Service-Oriented Analysis and Design Paradigm

Service-oriented analysis and design (SOAD) is another radically different paradigm, with
its genesis in distributed computing. In SW engineering, a service-oriented architecture
(SOA) is a set of principles and methodologies for designing and developing SW in the
form of interoperable services (Stojanovic, 2005). Rather than defining an API, SOA defines
an interface in terms of protocols and functionality comprising a “service”. SOAD is a SW
engineering methodology focused on the development of SW systems by composition of
reusable services (service-orientation), often provided by other service providers.

SOA therefore provides a uniform means to organise and integrate widely disparate SW
applications, hosted on multiple implementation platforms, and under the control of
different ownership domains, typically in a web-based environment.

SOA provides a way for consumers of services, such as web-based applications, to be aware
of available SOA-based services as shown in Figure 20 (Peraire 2007).

’ Catalogue ‘
Service§
Registry:

— S
L/ \ |

Broker

discover
" Service bind e N
 Requestor). °nd [Service
“(Consumer) _ Provider

Figure 20. SOA Publish-Subscribe Model (adapted from Peraire 2007).

A service in this context is described as an entity that has a description, and that is made
available for use through a published interface that allows it to be invoked by a service
consumer. It is generally implemented as a coarse-grained, discoverable software entity that
exists as a single instance, and interacts with applications and other services through a
loosely coupled, message based communications model. (Densmore & Bohn, 2007).

An event broker features a catalogue repository that contains meta-data describing events
or services exposed by the various event producers or service providers.

SOA separates functions into distinct units or services, which developers can make
available over a network in order to allow users to combine and reuse them in the
production of SW applications. These services and their corresponding consumers
communicate with each other by passing data in a well-defined, shared format, or by
coordinating an activity between two or more services.

Service-orientation requires loose coupling of services with the operating systems and other

51
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

technologies underlying the SW applications. Since it involves composition, it shares many
characteristics of component-based SW engineering, including the composition of SW
systems from reusable components. It differs in one important way, where it adds the
ability to dynamically locate necessary services at run-time. These services may be provided
as web services, but the essential element is the dynamic nature of the connection between
the service users and the service providers.

Since the design paradigm is SW focussed, it offers few formalisms to consider non-
functional aspects relating to the physical implementation (e.g. technological,
environmental).

4.5 Service-Oriented Modelling and Architecture (SOMA)

Service-oriented modelling is the application of modelling for the specification and design
of service-oriented business and SW systems using a variety of architectural styles; these
include enterprise architecture, application architecture, service-oriented architecture, and
cloud computing.

Any service-oriented modelling methodology typically includes a modelling language that
can be employed by both the “problem domain organisation” (e.g. the Business), and
“solution domain organisation” (e.g. the IT Department), whose unique perspectives
typically influence the “service” development life cycle strategy and the projects
implemented using that strategy.

Service-oriented modelling typically strives to create models that provide a comprehensive
view of the analysis, design, and architecture of all “SW entities” in an organisation that can
be understood by individuals with diverse levels of business and technical understanding.
Service-oriented modelling typically encourages viewing SW entities as “assets” (i.e.
service-oriented assets), and refers to these assets collectively as “services” (Bell 2008).

The vendor IBM% published the Service-Oriented Modelling and Architecture (SOMA)
methodology in 2004 as the first publicly announced Service-oriented Architecture-related
methodology (Asanjani 2004). SOMA refers to the more general domain of service
modelling necessary to design and create SOA. SOMA covers a broader scope and
implements SOAD through the identification, specification and realisation of services;
components that realise those services (i.e. service components); and flows that can be used
to compose services.

SOMA incorporates an analysis and design method that extends traditional object-oriented
and component-based analysis and design methods to include concerns relevant to and
supporting SOA. It consists of three major phases of identification, specification and
realisation of the three main elements of SOA, namely, the services, the components that
realise those services, and the flows that are used to compose the services (Endrei et al.
2004).

SOMA is an end-to-end SOA methodology for the identification, specification, realisation
and implementation of services (including information services), components, and flows

0 IBM is a tool and host-platform developer and vendor; a software developer, and a consultancy service
provider spanning diverse domains including software engineering, enterprise architecture and business
management. [online] URL: http://www.research.ibm.com/.

52
UNCLASSIFIED

http://www.research.ibm.com/

UNCLASSIFIED
DSTO-TR-3039

(processes/composition). It builds on current techniques in areas such as domain analysis,
functional areas grouping, variability-oriented analysis (VOA) process modelling,
component-based development, object-oriented analysis and design and wuse case
modelling. SOMA introduces new techniques such as goal-service modelling, service model
creation and a service litmus test to help determine the granularity of a service* (Arsanjani
2004).

SOMA identifies services, component boundaries, flows, compositions, and information
through complementary techniques that include domain decomposition, goal-service
modelling and existing asset analysis.

Again, since the design paradigm is SW focussed, it offers few formalisms to consider non-
functional aspects relating to the physical implementation.

*! [online] URL: http://www.ibm.com/developerworks/webservices/library/ws-soa-designi/.

53
UNCLASSIFIED

http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/

UNCLASSIFIED
DSTO-TR-3039

5. Systems Engineering Concepts

5.1 What is Systems Thinking?

Thus far, the focus of discussion has centred on relating modelling concepts to problem
structuring, and describing the resulting emergence of different systems analysis and
synthesis paradigms within the engineering disciplines. It is equally important to
understand what is a system in the same regard, and what is systems thinking, before
examining the application of the notions in the Defence context.

Systems thinking is a style of thinking and reasoning scientifically about certain classes of
problems, phenomena, events and situations based around the concept of a system. A
plethora of scientific disciplines employ systems thinking to study different types of
problems, spanning both the hard and the soft sciences, ranging from engineering to
physics, mathematics, biology, economics, management science, operations research, and
the social and cognitive sciences. However, the notion of a system can vary markedly from
one scientific discipline to another.

Systems theory is described both as the science of complex systems and the science of
wholes; from every perspective, including the science of how wholes form, how they
stabilise, how they behave, how they function, how they adapt, how they decay, how they
reconfigure, how they become moribund and so on (Hitchens 2007).

General systems theory views the world as a complex system of interconnected parts. In
systems thinking, the components or parts of the system are considered in the context of the
relationships with each other and other systems, rather than in isolation. However, there is
no assertion on the characteristics of the components or parts, other than recognising that
they interact, and that their interaction results in formation of a functional unit with specific
outcomes.

A system (or system-of-interest) is determined by defining a boundary, and deciding which
entities are inside the system and which are outside, and hence part of the external
environment (Blanchard & Fabrycky 1998). Systems can manifest in many forms: natural or
man-made; physical or abstract; in open or closed form.

In each case, these systems share common defining characteristics including;:

e A system has structure - it contains parts that are directly or indirectly related to
each other;

e A system has behaviour - it contains processes that transform inputs into outputs
(e.g. energy, matter, data);

e A system has interconnectivity - the parts and processes are connected by structural
and/or behavioural relationships;

e A system’s structure and behaviour may be decomposed via subsystems and sub-
processes to elementary parts and process steps;

e A set of rules may also be applied which determine the structure and/or behaviour
of the system and its parts (Blanchard & Fabrycky 1998).

In the SE context, systems thinking is described in the INCOSE SE Handbook as a way of

54
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

thinking, where the primacy of the whole is acknowledged. It manifests through discovery,
learning, diagnosis, and dialog that leads to a better understanding of how the (engineered)
systems fit into the larger context of day-to-day life, how they behave, and how to manage
them (INCOSE 2012).

By viewing a problem as an individual part in relation to a larger whole, it can assist to
understand why the problem occurs. The mindset is thus particularly useful for studying
systems and system behaviour, and for problem solving in an engineering context.

5.2 What is a System?

While the terms “system” and “component*” are used widely in the general community,
with many and varied interpretations, these terms have specific significance in the SE
context.

The contemporary engineering-based understanding of a system is a “an assemblage of
inter-related components working together to form a unitary whole towards some common
purpose” (Blanchard & Fabrycky 1998). This is sometimes described as “the whole is more
than the sum of its parts” (Mar 1997). A system can also be a grouping of parts (i.e. inter-
related components) that operate together for a common purpose (Forrestor 1968).

An engineered system has three essential elements:

1. Components: i.e. the operating parts of the system consisting of input, process and
output, where each component can assume a variety of values to describe a system
state as set by some control action and one or more constraints;

2. Attributes: i.e. the properties of the components that characterise the system; and
3. Relationships: i.e. the links between components and attributes.

The components also possess the following properties from the perspective of the
particular system, where:

1. The properties and behaviour of each component in the system has an effect on the
properties and behaviour of the system as a whole; and

2. The properties and behaviour of each component within the system have an effect
on at least one other component in the system (Blanchard & Fabrycky 1998).

A component of a system in this context, is a subset of the physical realisation (and hence
the physical architecture) of the system to which a subset of the system’s functions have
been allocated to. As with requirements and functions, there is often a hierarchical structure
to the components that comprise the system (Buede 2000).

The INCOSE SE Handbook provides a similar definition of a system as a combination of
interacting elements organised to achieve one or more stated purposes, where it is an
integrated set of elements, subsystems or assemblies that accomplish a defined objective.
These elements can include products (HW, SW, firmware), processes, people, information,
techniques, facilities, services, and/or other support elements (INCOSE 2012). Here the
term system element is equivalent to the term component used in contemporary SE texts

*2 The term “component” has been superseded by the term “system element” in the 2014 draft of international
standard ISO/IEC 15288 and ISO/IEE 12207 (both awaiting ratification). This change acknowledges that
components can be independent systems or SoS in different system contexts.

55
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

such as (Blanchard & Fabrycky 1998) and (Sage & Rouse 2009).

Bounding the system and identifying its external interfaces is critical to establishing the
system identity. The system is bounded by the definition and characterisation of all of the
inputs and controls that enter the system, as well as the outputs that the system must
produce. The external interface is a connection resource for hooking the external systems to
the system. Internal interfaces are the connection resources provided within the system for
hooking one component to another (Buede 2000).

Notably, the notion of a system is much broader in the SE context compared to that in a SW
engineering context pertaining to SW-intensive systems.

5.3 What is Systems Engineering?

5.3.1 Systems Engineering Origins and Purpose

In abstract terms, (Sage 1992) suggests that SE is a purposeful, managed human activity,
where technology is the result of, and represents the totality of the organisation,
application, and delivery of scientific knowledge for the intended enhancement of society.
He frames the purposeful management of this activity against the backdrop of an
organisation interacting with its external environment. Technology management in this
context therefore involves the interaction of science, an organisation, and its environment,
shown conceptually in Figure 21.

e?& L”b,)

S 2
4 S
Technology
Management

Information

Organisation

Figure 21. Systems Engineering as a Technology Management Concept (adapted from Sage
1992)

This is underpinned by the exchange of information, where different knowledge
perspectives are brought together; knowledge principles are applied to formal problem
solving approaches (particularly in new situations); and knowledge practices are employed
which encapsulate accumulated wisdom and experience into standard operating policies,
directed towards the creation of deliberate technology outcome, i.e. an innovative product
or service as shown in Figure 22 (Sage 1992).

In contemporary terms, a point sometimes overlooked - systems engineering (SE) is about
the engineering of systems.

Engineering as described by (Buede 2000), has morphed into a discipline for transforming

56
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

scientific concepts into cost-effective products through the use of analysis and judgement
and deliberate application of resources.

Engineering of systems is described as an engineering discipline that develops, matches,
and trades-off functions and alternate system resources to achieve a cost-effective, life-cycle
balanced product based on the needs of the stakeholders.

Innovative Product or Service

T
T I

Management System Design Technological System Design
A T
Physical System Design Information System Design

SYSTEMS ENGINEERING KNOWLEDGE

|

Knowledge Perspective —¢

A
I __--¥ Knowledge Principles —¢
R e o + Knowledge Practices
Figure 22. Systems Engineering in the Production of Innovative Products and Services (Buede

2000).

As a problem solving approach, Hitchens suggests SE has several objectives:
e To scope the problem space;
e To explore the problem space;
e To characterise the whole problem;
e To conceive remedies;

e To formulate and manifest the best solution achievable in the situation, constraints
and circumstances; and hence

e To solve, resolve or dissolve the whole problem (Hitchens 2007).

The term “systems engineering” first came to the fore in Bell Laboratories in the 1940"s%.

“3 A brief history of the origins of systems engineering is provided on the INCOSE website, accessible at URL:
http://www.incose.org/mediarelations/briefhistory.aspx, and in (Buede 2000 p 6.).

57
UNCLASSIFIED

http://www.incose.org/mediarelations/briefhistory.aspx

UNCLASSIFIED
DSTO-TR-3039

This came with the realisation that in many instances, it was no longer possible to rely on
design evolution as the primary means to improve upon a system’s capability. Likewise, the
tools were no longer sufficient to meet the growing demands and increased complexity of
the time, necessitating a new multi-disciplinary approach.

Contemporary SE has evolved as an interdisciplinary field of engineering that specifically
focuses on how to manage engineering activity to design, deliver and support bespoke
complex systems over the duration of their life cycles#. The purpose of this engineering
activity is to transform customer needs, requirements and constraints® into a realised
system solution, then to maintain the system over its life cycle. To accomplish the difficult
tasks of engineering a complex system, personnel from many disciplines need to be
involved in a team effort, including the system stakeholders as shown in Figure 23.

Management

Domain
stakeholders

Technology
(Engineering,
Science,
Social
Sciences
Disciplines)

Modelling,
Simulation,
Analysis

Figure 23. SE Team Expertise Required for Engineering a System (Buede 2000)

Discipline engineers with knowledge of the technologies associated with the system
concept provide the expertise needed to make design and integration decisions throughout
the development process. Discipline expertise is not only required from traditional fields of
engineering such as electrical, mechanical and civil, but also from the social sciences to
address psychological, informational, physical and cultural issues of personnel involved in
the deployment, operation and maintenance of the system?*.

Additional expertise is required for costing, scheduling, project management, risk
management, manufacturing and support purposes. Ignoring any aspect of the system over
its life cycle while engineering the system, can result in negative consequences, up to and
including total system failure (Buede 2000).

* The notion of the system life cycle is described in Section 5.5.
* A requirement is one of many statements that constrain or guide the design of the system in such a
way that the system will be useful to one or more of its stakeholders. A specification is a collection of
requirements that completely defines the constraints and performance requirements for a specific
E}hysical entity that is part Qf th(? system (Buede 2000).

Also known as “human engineering”.

58
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

The failure to identify all functions and constraints early in the development process is a
source of many cost overruns, poor product performance, and schedule delays (Mar 1992).
The earlier the problems are identified, the cheaper they are to address. Early on in the
system design, less of the design is fixed, so there are more options to address the problem
and fewer components may be impacted (Boucher & Kelly-Rand 2011).

The cost and difficulty to remedy defects is known heuristically to increase exponentially
with the stage of life cycle detection, as shown in Figure 24 (Shamieh 2011). It is therefore
far more cost effective to prevent, or identify and remedy design defects as early as
practicable in the design process.

SE therefore focuses on the deliberate design and management of the engineering work
processes, and employment of tools and methods as appropriate, to manage the associated
risk of the activity to achieve the technical, cost and schedule outcomes sought over the life
cycle of the engineered system.

$7,600/defect

After product
release

$960/defect

QA/Testing
phase

$240/defect

Design &

$80/defect
implementation

Requirements phase
phase

Figure 24. Cost/Defect Comparison with Stage of Life Cycle Detection.

Figure 30 also highlights the criticality of good communication and good team work
throughout the design process to minimise the number of hidden defects. This is to ensure
the multitudes of perspectives are given adequate consideration in a timely manner to
ensure the design progresses smoothly, and as planned towards successful completion.

5.3.2 Basic Notions of SE Process

SE incorporates both technical processes to produce deliberate technical outcomes, as well
as management processes to organise the technical effort, whilst controlling cost, schedule
and risk.

In its simplest form, systems engineering provides a consistent and logical approach to
engineering new system solutions, characterised by:

e A structured and disciplined process that defines problems before seeking solutions;
e A systematic search for solutions that examines trade-offs between alternative

solution sets;

59
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

e A traceable and disciplined integration process that verifies the product system
meets the original requirements and performs the needed functions; and

e An effective information management system, that provides each team member and
the customer with information concerning the system being generated (Mar 1992).

This structured and iterative process is exemplified by explicit stages of engineering design
activity with typical discernible milestones of achievement such as shown in Figure 25.

Input Functional Synthiesis Evaluation &
" Requirements | Analysis > (of Decision
R ! alternatives) (Trade-off)
* What H
* Why ow

Iterative Trade-off No

Acceptab

©9) \OD @ Solution?

Mission (e.g. .

 Objectives Tachgology Selection Factors (e.g.)

« Interoperability ngrw:/":r‘;e

« Environment)

« Constraints * Interfaces Description

« Measures of Effectiveness * Reliability of System
« Maintainability Elements

» Personnel/Human Factors

* Survivability

* Security

« Safety

« Standardisation

« Integrated Logistics Support
* EMC/EMI

Solutions (e.g.)
¢ Equipment

» Personnel

* Facilities

e Computer software

» Technical data

* Susceptibility

» System Mass Properties
* Produceability

« Transportability

» Computing Resources

« Growth potential

Figure 25. Iterative Stages of Systems Design with Trade-offs (adapted from Hoban &
Lawbaugh 1993c)

Work is typically managed within the auspices of an engineering project*’, broken up into
structured work packages (i.e. the work breakdown structure (WBS)), and managed using
project management principles to achieve the desired outcomes. These outcomes are
typically are framed in terms of key decision milestones, percentage work complete,
completion of designated project documentation and progressive delivery of system piece-
parts towards achieving project completion.

*" The notion of a project is as described in the Project Management Body of Knowledge publication (PMBOK
2009).

60
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

The project documentation requirements are guided both by internal process standard
operating procedures (SOPs), and by customer documentation specified to be delivered
under the auspices of the contract, commonly in the form of a Contract Data Requirements
List (CDRL).

The project typically has an organisational structure closely aligned to the WBS, usually a
tree structure, with clusters of personnel assigned to undertake the work outlined in the
different work packages. Project documentation is the product of work outcomes achieved
within each work package (Hoban & Lawbaugh 1993a).

5.3.3 Engineering Management Planning and Control Basics

Technical planning and controls during system development and production can be
extensive, particularly for project-based large complex system development. A list of typical
considerations is provided in Table 5 (adapted from Hoban & Lawbaugh 1993b).

Table 5 Typical SE Management Process and Control Considerations

Role and Process Contribution

Control Processes and Other Influences

The role of the project office (if the SE
development is project based)

The role and contribution of Logistics
Support Engineering

The identity and role of the user

Applicable standards

The identity and role of the Stakeholders

Applicable procedures and training

The role of the Contracting Office Technical
Representative (if appointed)

Configuration Baseline control process

The role and contribution of Systems
Engineering

Change control process

The role and contribution of Design
Engineering

Interface control process

The role and contribution of Speciality
Engineering

Control of contracted or subcontracted
engineering

The role and contribution of Manufacturing
Engineering

Project Data control and information
management process (i.e. documentation
and other project pertinent)

The role and contribution of Test
Engineering

Make-or-buy control process

The role and contribution of Logistics
Support Engineering

Parts, materiel and process control

System definition process

Manufacturing control process

System analysis and design process

Life cycle cost management control

System decomposition process

Risk management process

Trade study process

Quality control

Use of mathematical models and simulation

Safety control

61

UNCLASSIFIED

DSTO-TR-3039

UNCLASSIFIED

e System qualification process

Security control

e System acceptance process

Contamination control

e EMI/EMC

Reliability and supportability planning and
control

e Survivability and vulnerability

Integrated Logistics support planning and
control

e Technical performance measurement

Control gates (review milestones, decision
governance)

e Reporting process

Integration planning and control

e Internal technical reviews

Verification planning and control

e Tools and resources to be used

Acceptance testing planning and control

Validation planning and control

By taking a holistic view of the development effort, SE provides a formalised structured
engineering development process to combine the various technical contributions into a
unified team effort. This unified effort spans the entire life of the system, from initial
concept articulation through analysis and design activity, to production, operation and
support of the engineered system over its life cycle.

5.3.4 Basic Activities and Responsibilities

From the earliest notions of SE, the process has been depicted as spanning typical project
activities as shown in Figure 26 (Hoban & Lawbaugh 1993a).

Verification and Validation

Technical Oversight

Configuration Management

Implementation Planning and
Systems Integration

Project and Mission Requirements/
Needs Definition

Risk Analysis/ Management

Systems Analysis

Concept Development

Derived Requirements

Figure 26. Systems Engineering Cycle (Hoban & Lawbaugh 1993a).

62

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

These include (Hoban & Lawbaugh 1993a):
1. Project and Mission Requirements/Needs Definition

The process by which the needs of the customer (including parliamentary and
budgetary authorities are determined. This allows the Systems Engineer to define the
requirements for a system that will meet the needs of the customer. The requirements
provide a hierarchical description of the customer’s desired product system as seen by
the Systems Engineer.

The interaction between the customer and the Systems Engineer to develop these
requirements is one way of ensuring the customer perspective is captured, while
ensuring the customer is informed about the value proposition, and the customer can
make a judgement that they are willing to pay for a product system that meets the
specified requirements (Hoban & Lawbaugh 1993b).

2. Risk Analysis/Management

Risk management is an ongoing process to identify and assess the risks involved with
the development and operation of the system, including technical, schedule, cost and
organisational risk. The Systems Engineer is responsible for developing an
implementation plan to control and if possible, reduce the risks incurred by the project.

3. Systems Analysis

Systems analysis involves understanding how the key mission and system functional
elements interact. The mission analysis translates the user’s needs into functional and
performance requirements and design constraints. A functional analysis takes these
requirements and breaks them down to specific tasks.

4. Concept Development

Concept development is a process of making informed trade-offs among various
options to select the one that best meets the requirements and design constraints. This
activity produces a preliminary design and implementation architecture.

5. Derived Requirements Definition

Requirements Definition entails translating mission and functional analysis results,
system operational concepts, and the selected system architecture into a set of system
performance and interface requirements (without presenting an actual design solution).

6. Implementation Planning and Systems Integration

Implementation planning and systems integration are complex activities to produce a
coherent, integrated set of implementation tasks and responsibilities for the detail
design (i.e. of the implementation or solution), development, fabrication, verification,
operation and maintenance of the required system. It requires negotiation between the
system requirements definition personnel and the system implementation personnel
whilst considering the project constraints of schedule and budget, and avoiding
unnecessary risk.

7. Configuration Management

Configuration management is an activity that ensures that controlled definition of all

63
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

engineering documentation is maintained and the information is distributed to the
appropriated parties in a timely manner. Importantly, this activity is the mechanism by
which the system development process is documented (i.e. the design knowledge is
captured).

8. Technical Oversight

Technical oversight ensures all subsystems work together as intended, and implements
mechanisms to ensure to guarantee the developed and documented architected concept
is not inadvertently changed during the development process. This allows the system
developer to certify that the system (as tested) will meet the customer’s requirements.
This entails a number of reviews and audits that gather consensus from all parties
involved that the effort at any given time is correct and adequately planned for the
continuance of the work.

The Systems Engineer is responsible for communicating the customer’s requirements to
the design organisation as to what to design and build or code. As the requirements are
allocated, they inevitably become linked to the system architecture and product
breakdown, which consists of the hierarchy of project, and its subservient systems,
segments, subsystems, components and elements (Hoban & Lawbaugh 1993b).

The Systems Engineer is responsible for assuring the systems requirements are
understood and correctly implemented by the design organisation, and therefore needs
to work closely with the design organisation over the duration of the project.
Importantly, the Systems Engineer must recognise the initial set of systems
requirements may not be “perfect”, where during the design evolution, or because of
the inability of a subsystem to meet its intended functional and performance
requirements, changes in the systems requirements will be necessitated. These changes
are an essential and normal part of the design process.

9. Verification and Validation

Here, the characteristics and performance of the implemented system are compared to
the requirements and specifications. Tests, analyses and demonstrations are performed
to verify that the hardware and software satisfactorily meet the function and
performance requirements of the system specifications.

The engineering design of complex systems thus involves making many decisions during
the development process. To be successful, these need to made using a rational, explicit,
and traceable process, i.e. the engineering organisation’s instantiation of a SE process. This
is typically expressed within the organisation’s standard operating procedures (SOPs). A
sample of system design decisions supporting SE process activity is provided in Table 6.
Typical project documentation produced during development is described in Table 7.

Table 6 Sample of Decisions Made during System Design (adapted from Buede 2000)

Development Phase | Example Decisions in Systems Engineering

Conceptual Design | ¢ Should a conceptual design effort be undertaken?

e Which system concept (or mix of technologies)should be

64
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

the basis of design?
e Which technology for a given subsystem should be chosen?
e What existing hardware and software can be used?

e Is the envisaged concept technically feasible based on cost,
performance, and schedule requirements?

e Should additional research be undertaken before a decision
is made?

Preliminary Design | e Should a preliminary design effort be undertaken

e Which specific physical architecture should be chosen
(from several alternatives)?

e Which physical resource should a function be allocated to?

e Should a prototype be built? If so, to what degree of
reality?

e How should verification, validation and acceptance testing
be structured?

Full-scale Design e Should a full-scale design effort be undertaken?

e Which configuration items should be bought rather than
manufactured?

e Which detailed design should be chosen for a particular
component, given that one or more performance
requirements are critical?

Integration & e What is the most cost-effective schedule for
Qualification implementation activities?

e What issues should be tested?

e What people, equipment, facilities should be used to test
each issue?

e What models of the system should be developed or
adapted to enhance the effectiveness of integration?

e How much testing should be devoted to each issue?

e What adaptive testing (Fall-back testing in case of failure)
should be planned for each issue?

Product Refinement | e Should product improvement be introduced at this time?

e Which technologies should be the basis for the product
improvement?

e What redesign is best to meet some clearly defined
deficiency in the system?

e How should the refinement of existing systems be
implemented, given schedule, cost, performance and risk

65
UNCLASSIFIED

DSTO-TR-3039

UNCLASSIFIED

criteria?

Are there any external interdependencies affected? If so,
has the impact been accounted for in the schedule, cost,
performance and risk criteria?

Table 7 Sample of Typical Requirements Documentation (Buede 2000).

Document Type

Document Contents

Problem Situation or
Mission Element
Need Statement

e Definition of stakeholders and their relationships
e Stakeholder’s description of the problem and its context

e Description of the current system

Systems Engineering
Management Plan
(SEMP)

e Definition of mission requirements

e Definition of the systems engineering development
system (requirements, architectures, interfaces)

Operational Need or

e Definition of the problem needing solution by the

Operational system, including the context and external systems with
Requirements which the system must interact
Document or s . .

o e Definition of the operational concept upon which the
Originating .

. system will be based

Requirements
Document (ORD) e Creation of the structure for defining requirements

e Description of the Stakeholder’s requirements in the
Stakeholder’s language with considerable breadth but
little depth

e Trace of every requirement to a recorded statement or
opinion of the stakeholder.

e Description of trade-offs between performance
requirements, including cost, schedule and operational
effectiveness

System e Restatement of the operational concept on which the
Requirements system will be based
Document or s .
Mission ¢ Definition of the external system interfaces and
. interactions in engineering terms
Requirements
Document (SRD) e Restatement of the operational requirement in

engineering terms
e Trace of every requirement to the previous document

e Justification of the engineering version of the
requirements in terms of analyses, expert opinions, and
stakeholders meetings

e Description of a test plan for each requirement

UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

System e Documents analyses to show that the requirements in
Requirements the systems requirement documentation are consistent,
Verification or complete, and correct, to the degree practicable.
Systems Acceptance . . .

Y P e Demonstrates that there is at least one feasible solution
Document

to the design problem as defined in the system
requirements documentation, and that it has been
achieved.

5.3.5 Documentation in Systems Engineering

As evident from Table 7, formalised capture and management of specific types of
information created and used to support the SE management and technical sub-processes is
a key feature of SE practice. Traditionally, a document-based approach has been used to
convey system requirements, design and test information. This is characterised by the
generation of textual specifications, design documents, test documents and drawings, in
hard copy or electronic file format.

This documentation is exchanged between the respective stakeholders, including
customers, users, developers and testers, to solicit input, review and response, and record a
myriad of significant decisions towards forging sufficient common and agreed
understanding. SE practice places particular emphasis on controlling the documentation
and ensuring the document and drawing contents are valid, complete and consistent, and
that the system solution implemented complies with the documentation, including the
originating specifications (Friedenthal et al. 2008).

5.3.6 Formalisation of Systems Engineering as a Discipline

A significant milestone in the formalisation of SE as a discipline came with the publication
by US DoD of the military standard MIL-STD-499 in 1969, and the mandate of its use in
industry for design and development of US Defense major military capability. This had the
impact of re-aligning entire company organisational structures and standard operating
procedures, as well as their skill bases, to facilitate ease of compliance with the directives of
the military standard.

The discipline of SE has continued to evolve, both tools and methods, with various
interpretations and adaptations based on the same theme published in SE Handbooks
written by large science and engineering organisations including NASA, Jet Propulsion
Laboratories, and more recently, by INCOSE (Hoban & Laughbaugh 1993a), (NASA, 2007),
(Jansma 2006), (INCOSE 2012) #.

Notably, it was not until as recently as 1990 that a professional society was founded for the
discipline: a group of representatives from a number of US corporations coming together to
form the National Council on Systems Engineering (NCOSE). Increasing prominence of SE
outside of the US as a discipline of significance led to the repositioning of the organisation

*® The terms ‘documentation’ and “drawing’ are both ‘information items’.

*° (Buede 2000) describes a number of definitions of systems engineering drawn from pre-eminent sources
including MIL-STD-499A, Sage (1992), Wymore (1993), Forsberg and Mooz (1992) and INCOSE in the 1999
edition of the SE Handbook.

67
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

as the foremost international representative of the global SE community, and renaming of
the organisation in 1994 as the International Council on Systems Engineering>.

Coinciding with the demise of use of military standards by the US DoD during the 1990’s,
responsibility for formalising and evolving SE process methods and other related
engineering technical and process standards has since been devolved to a number of
international standards organisations and commercial corporate bodies. These include the
International Standards Organisation (ISO)3!, the Electronics Industries Alliance (EIA)5253,
and the Institute of Electrical and Electronic Engineers (IEEE) Standards Association.

The commensurate rise in use of COTS products and use of open standards, replacing
bespoke engineering development using specialised military standards, has led to
numerous proprietary industry-based approaches being adopted as de facto standards. One
of the most prominent of these being that associated with the desktop computing
environment, typified by the use of Microsoft Office™ product suite running on the
Windows Operating System™ to provide basic word processing and spreadsheet
functionality.

Crucially, while SE practice is inherently multi-disciplinary, and draws extensive
contributions from other mainstream engineering disciplines (e.g. electrical engineering,
electronics engineering, computer systems engineering, SW engineering, mechanical
engineering) to achieve the desired technical outcomes, SE has maintained a separate
identity from these other specialised engineering disciplines.

Over the last fifteen years in particular, considerable effort has been devoted to
harmonising the key SE standards (Croll 2002) and compiling and publishing
internationally recognised bodies of knowledge (BOK). The progressive emergence of
discrete bodies of knowledge as separate formal disciplines, from earlier military and
commercial standards to contemporary notions of engineering and enterprise architecture,
are shown in Figure 27.

Key development milestones relating to SE process standards and capability models,
together with the SW engineering counterparts are shown in Figure 285 (Martin 1998),
ISO/IEC JTC1/SC7/WG7 2002), (Doran 2008). For completeness, the timeline for different
EA frameworks, discussed in Section 9, is also provided in Figure 29 to highlight the
correlation between the respective stages of maturation of SE practice with evolving
maturity of SW engineering practice and EA architecture practice (Hause 2010),
(Friedenthal et al. 2008)5.

%0 [online] URL: http://en.wikipedia.org/wiki/International_Council_on_Systems_Engineering ;
http://www.incose.org/

*! [online] URL: http://en.wikipedia.org/wiki/International_Standards_Organization ;
http://www.iso.org/iso/home.html

%2 [online] URL: http://en.wikipedia.org/wiki/Electronic_Industries_Alliance#EIA_standards ;
http://www.eciaonline.org/eiastandards/

>3 The EIA was renamed from Electronic Industries Association to Electronic Industries Alliance in 1997. The
EIA ceased operations in February 2011, and designated ECIA to continue to develop standards for
interconnect, passive and electro-mechanical electronic components under the ANSI designation of ECIA
standards.

> [online] URL: http://standards.ieee.org/ ; http://en.wikipedia.org/wiki/|IEEE_Standards_Association ;

% (Sheard & Lake 1998) provides a useful overview of the various SE standards and models of the time, and
discusses similarities and differences in definition, scope and applicability within the respective standards.
% [online] URL: http://www.bespokesystems.net/ea/timeline/;
http://www.opengroup.org/openca/cert/methods.tpl.

68
UNCLASSIFIED

http://en.wikipedia.org/wiki/International_Council_on_Systems_Engineering
http://www.incose.org/
http://en.wikipedia.org/wiki/International_Standards_Organization
http://www.iso.org/iso/home.html
http://en.wikipedia.org/wiki/Electronic_Industries_Alliance#EIA_standards
http://www.eciaonline.org/eiastandards/
http://standards.ieee.org/
http://en.wikipedia.org/wiki/IEEE_Standards_Association
http://www.bespokesystems.net/ea/timeline/
http://www.opengroup.org/openca/cert/methods.tpl

UNCLASSIFIED

DSTO-TR-3039

neering Mathematical

ience Science \Management

Computing Informatlon Science
Science

€y = 3>
0 = G = 05 = G0 = G

Military Systems Software Enterprise
Standards Engineering Engineering Archltectures -._ Architectures
coTs Operations Business
standards Research Analysis
Figure 27. Progressive Emergence of Systems Engineering, Software Engineering and

Enterprise Architecture Practice Formal Disciplines.

69
UNCLASSIFIED

UNCLASSIFIED

1994/96
INCOSE
SECAM [~«_

~
~

DSTO-TR-3039

Systems
Engineering
Capability (Industry model)
Models 1994/95 =
EPICSE- | _.---""

‘ CMM '

(Industry model) :l

,’

!

1

2002
EIA/IS 731.1
=7 SE CM

——————— 1
2002 ! 2012
ISO/IEC ISO/IEC
15504 15504

2002 |
(@
ISO

2003
ISO/IEC
*B 19760

1
1969 1974 1994 i
- - 15288
Mil-Std- [Mil-Std- [Mil-Std- EIA/IS A SN
499A 7| 499B O
499 "1 - \ 632 s
(Not released) (Interim L ; EIA/IS
\ standard) 2 ' 632
7 1 - @
\ d
Systems \ 1994 1998 . /2005
) ,

Engineering IEEE IEEE 4 IEEE

1220 1220 K 1220
(Trial Use) (Full standard) /'
7
1

Software 1995 2002 2008

Engineering 1988 ISO/IEC ISO/IEC ISO/IEC
DoD-Std- | 12207 12207 \ 12207
1987 21628 1994 1996 1997
s \
DoD-Std- ~ Mil-Std- IEEE 1498 J-Std-
1703 498 | /EIA 640 015
(draft)
—> Supersedes
- Is derived from

1988
DoD-Std-
7935A

Figure 28.
UNCLASSIFIED

70

Key Development Milestones - SE Standards, System Capability Models, and SW Engineering Standards.

UNCLASSIFIED
DSTO-TR-3039

Enterprise Architecture Frameworks

JTAA

1995
>IOGAF villl—— — — —
1987) 2003 2011
Zachman | Zachman _J Zachman
Frameworkvdf<~_ .~~~ ~ ~~~~~~~“~"“~"“~"“~"“~"“~“"~“"~"""“"“""""""™"™""™7 Framework v2 Framework v3
2012+

— — % Is superseded by — ——_—»| FEAF Vv3+
—— Isinfluenced by
- - --p Is supported by 2008 2011+

— - —» references

- AGA v3+

e |S adopted by

Figure 29. Key Development Milestones - Enterprise Architecture Frameworks.

71
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

In recent times, the SE discipline has drawn heavily from the SW engineering discipline.
However, as shown in Figure 33, the two disciplines maintain separate identities, with
separate bodies of knowledge, as revealed in knowledge repositories such as “The SE Body
of Knowledge” (SEBoK) published by INCOSE (SEBoK 2012); and “The Software
Engineering Body of Knowledge” (SWEBOK) published by IEEE (SWEBOK 2004).

5.3.7 Contemporary Systems Engineering

“Systems Engineering becomes the bridge between the system problems generated by society and
solutions provided by technology” A. Wayne Wymore (Wymore 1993).

Contemporary SE incorporates the concepts and processes utilised widely in industry and
encapsulated in international standards such as ISO/IEC 15288:2008, ANSI/EIA-632:2009,
and IEEE-1220-2005 as shown in Figure 30 (Estefan 2008). The typical context for applying
SE process standards with respect to an organisation or enterprise is shown in Figure 31 as
represented in EIA-632.

INCOSE, the international professional body representing the profession of SE has elected
to support standard EIA 15288:2008 for the practical application of SE concepts and
processes within an organisation or enterprise.

The IEEE 15288 standard describes the enduring concept of a cradle-to-grave life cycle for a
product or system, from initial conception to final disposal, mapped to specific technical
and management process activities spanning different domain areas across the
organisation. Each domain area has its own technical and management process steps, with
required outputs, outcomes and completion criteria as described in Figure 32 (ISO/IEC
JTC1/5C7/WG7 2002).

Provides a common framework for
describing the lifecycle of systems

System life /

Process ’
----deseription ISO/IEC 15288
§ High level
@ ! .
O description EIA/ANSI 632 Provides a set of integrated processes to
S " aida developer in the engineering or re-
D 8 engineering of a system
> _ N
e Detailed E
practices Provides a standard for managing a system
i
Conceptualise Develop | Transition Operate, Replace or
to operation maintain, or | dismantle
enhance

Figure 30. Systems Engineering Process Standards and Capability Model Comparison.

72
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

External Environment]
+ LAWS & REGULATIONS +LEGAL LIABILITIES +SOQOCIAL RESPONSIBILITIES + TECHNOLOGY BASE \
+ LABOR POOL + COMPETING PRODUCTS +STANDARDS & SPECIFICATIONS «PUBLIC CULTURE

/—[Enterprise Environment]
+ POLICIES & PROCEDURES + STANDARDS & SPECIFICATIONS \

* GUIDELINES +DOMAIN TECHNOLOGIES «LOCAL CULTURE

/ [Project Environment]

» DIRECTIVES & PROCEDURES -« PLANS - TOOLS - PROJECT REVIEWS + METRICS \\ /_‘ Enterprise Support]_\

- Process Groups for
Project Support Engineering Systems + Investment Decisions
, + External Agreements

« Project Management Acquisition & Supply R Infrastructl?re Support

+ Agreement Support Technical Management < > . Resource Management
System Design
Product Realization + Process Management

N Technical Evaluation . EFC’l?jUSCtlon "
Project A » Field Suppo
Project B j \

Project C /

N)

Figure 31. Enterprise and Project Context for Applying the EIA-632 SE Process Standard.

Concept Development Production Utilisation Phase Retirement
Phase Phase Phase Support Phase Phase
(N
| Processes)

4 @GSOUI’CG Manageme@\

Enterprise EEnt.erprise . Investment System Life Cycle
Processes AL Management Processes Management Quality Management

Management
\e .
4 A
Project Project Project Project — _
Planning Assessment Monitor & Control Decision Making
Processes -
(Risk) (Configuration) < Information >
g Management Management Management J
. _ - . ™\
) Stakeholder Requirements Requirements (Archltectural) Qmmemematioa Clntegration)
Technical Definition Analysis Design

Processes L » o . . .
L C Verification) CTransﬂlon) CVahdatlon) (Operatlon) (Mamtenance) (D|sposaDj
(Special
P Tailoring
\PrOCGSSES

Figure 32. Enterprise Context for Applying EIA 15288 Process Standard.

73
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

While there are still many and varied definitions of SE, the version offered by INCOSE in
their SE Handbook based on ISO/EIA 15288:2008 is widely accepted internationally as
encapsulating the essence of SE. SE is defined by INCOSE as:

“an interdisciplinary approach and means to enable the realization of successful systems. It focuses
on defining customer needs and required functionality early in the system development cycle,
documenting requirements, then proceeding with the design synthesis and system validation while
considering the complete problem including:

e operations

e performance

o fest

e manufacturing

e cost and schedule

e training and support and
e disposal.

SE considers both the business and technical needs of all customers with the goal of providing a
quality product that meets the user needs” (INCOSE 2012).

In his 1997 paper, Mar asks probing questions such as what is SE, whether it is a process or
skill code, and what is the role of SE in the engineering of complex systems (Mar 1997).
These questions are still relevant today to Defence.

The INCOSE SE Handbook suggests that SE is a combination of concepts:
e a perspective based on systems thinking;
e aprocess; and
e aprofession (as discussed in para. 5.3.2).

Key tenets include recognising it is a disciplined approach for systematically addressing the
engineering of human-made or technical systems, and it requires the application of
formalised technical and management processes over a system life cycle to achieve an
intended engineering outcome.

5.4 The Systems Engineering Process

Contemporary SE manifests where formalised technical processes are used to define the
requirements for a technology-based system (which needs to be engineered to satisfy an
identified need); to transform the requirements into an effective product imbued with the
required attributes; to permit consistent reproduction of the product where necessary; to
use the product to provide the required services; to sustain the provision of those services;
and to dispose of the product when it is retired from service (ISO/IEC 15288:2008). The
system solution is to be developed on a basis that balances cost, schedule, performance and
risk.

There are many and varied instantiations of the SE process, depending on many and varied
factors including the source and nature of the originating requirement, resourcing
considerations, organisation competencies, regulatory and governance requirements, and
end user considerations. An overview of a typical SE process is illustrated in Figure 33
(Blanchard & Fabrycky 1998). A more detailed and explicit description of the SE process is
provided in IEEE standard 1220-2005 as shown in Figure 34.

74
UNCLASSIFIED

UNCLASSIFIED

DSTO-TR-3039

[Refre Compare Analysis
&Test Data
Define The W'th Test Actual
System [—* Requirements «— The Characteristics
Requirements And System
Objectives
I ~_Interface
Measured Control
Characteristics
y A, l 4
Understand Consider Choose Design Accomplish |
IDENTIFIED
NEED The —” Altemative " TheBest [The —” System lMP;EgATEE’HED
Objectives Configurations Configuration System Integration
y
Update
System Characteristics |
& Data
Figure 33. Typical SE Process Overview (Blanchard 2010).
Process inputs
Requirement and constraint conflicts
————
Requirement tradeoffs |
Requirements baseline and impacts ! Requirements
Requirements ~———F—1 trade studies and
S assessments
validation
- - - Decomposition and requirements mm
Validated requirements baseline allocation altsmatives analysis
R
Decomposition allocation i *
; ; tradeoffs and impacts | Functional
— | Functional architecture i— B0 trade shudies and
assessments
Ventied functional architecture Design solution requirements
—ee—ee_____Aandaitematives [
————————————————————————————————————— i +
Design solution fradeoffs .
S I Design
Physical architecture CILLE I_— — 14— trade studies and
assessments

Figure 34.

Verified physical architecture

Process outputs

UNCLASSIFIED

Recursive Process Representation (IEEE-1220-2005).

75

UNCLASSIFIED
DSTO-TR-3039

Significantly, the process is not linear; it typically is recursive in nature, where increasing
detail is revealed as the requirements and functions are successively decomposed and
verified as the design synthesis is progressed towards detailed implementation. Integration
and verification is also recursive, where the system solution is progressively built up as a
product hierarchy, and verified against the applicable requirements at the respective layers
of decomposition and integration until the final implementation comprising the verified
and validated completed system assembly is achieved (Mar 1992).

The key IEEE 1220 system structural concepts showing the basic system building block, the
resultant product hierarchy produced, and the life cycle processes are illustrated in Figure
35 (Doran 2006). Here the hierarchical nature of the system is prominently shown.

IEEE 1220 Building Block | System

| Product

1
Life-cycle

rOCEsses
p System
evelopment

O ’ design
Manufacturing I
|

Operations

Product

auppaort

|Suh51_.rsteml| Subsystemn |Suhsystem |Subsystem || TE:TS"I'::L'EEI —|

Subsystem
desian

| Asselrnhly | Asselrnhly I| Assembly | Asselrrlhly

| |
1 1 1 1
Component Jl| Component | Component ||| Component ||| Component
(Cabinet) ||(Processor) if (Hardware) (COTS) (Software) Component

—— design
Su bassemhhfl | Object I| Object I| Object

| Subcomponent | Subcomponent

Figure 35. IEEE 1220-2005 Key System Structural Concepts.

The scope of consideration in respect of the problem space and the solution space of
relevance to the organisation or enterprise as described in IEEE 1220-2005 is provided in
Figure 36.

A commercial example of SE technical and management processes and reviews
recommended to manage and control project activity is shown in Figures 37a, 37b, and 37c.
The SQA 2000 Software Quality Assurance methodology©, developed by Coopers and
Lybrand (Coopers & Lybrand 1991, 1995), provides a detailed list of activities, reviews,
deliverables and audits as might typically be used to plan and manage the undertaking of
complex software engineering development and production activity.

76
UNCLASSIFIED

UNCLASSIFIED

Solution Space

Three
Requirements
View

DSTO-TR-3039

Allocations

v

Functional
architecture

Allocations

v

Problem :
Space |
Natural 1 Utilisation P :
environment 1
1
Induced — !
Platform | :
i
Threats | i
External | | i
_ systems !
Operational | | [
scenarios !
| Operations || :
Measures of | | !
effectiveness
5 | Components | |
Required eve opmentt]
operational |— environmen Subsystem
capability Syst
1 ystem
In-service . q
Manufacturing —
shortfalls s :
i
. . . I
Distribution [Verification | '
1
!
Support [:
— | Logistics || i
i
Training | '
1
Others — 1
1
Disposal — i
i

Design
architecture

Specification
tree

Product
breakdown
structure
v

System
architecture

Key Problem and Solution Space Structuring Concepts (IEEE-1220-2005).

UNCLASSIFIED

Operational
View
Functional
View
Physical
View
_ Performance
Requirements
;
Allocations
:
v
Functional
Requirements
.| External Internal
Interfaces Interfaces
System/ System
| subsystem/ elements
components - hardware
- software
. - personnel
e - facilities
ro (ijc - materials
an - data
prgctess - services
ata - techniques
package

77

DSTO-TR-3039

1
Initial Project

UNCLASSIFIED

3
Detailed Risk

4
Task

Task

Project

Planning

1.1 Establish Project
Scope & Objectives

1.2 Define Project
Workplan

1.3 Prepare Project
Proposal

Key Deliverables

e

.- Checklist
Mapping

2.1 Document the
Methodology

2.2 Develop Review &
Audit Framework

2.3 Review the
Framework

Assessment &
Planning

3.1 Project
Familiarisation

3.2 Undertake Risk
Assessment

3.3 Detail Findings &
Subsequent Work

Preparation

4.1Prepare for Detailed
Reviews & Audits

4.2 Implement & Train

Completion

Completion

5.1 Undertake task
activities

5.2 Complete
Follow-up Activities

5.3 Finalise Task
Conclusions

6.1Analyses Project
Outcome

6.2 Assignment
Completion Report

6.3 Present Report &
Recommendations of
Customer/ Sponsor

6.4 Assignment
Debriefing & Feedback

4 Project Planning
Checklist

4 Project Work Plan
UProject Planning
Worksheet

4 Project Proposal

U Tailored Methodology
O New Review & Audit
Framework

O Checklist Profiles

Q Project Risk
Assessment

O SQA Strategy Matrix
O Review & Audit Scope
and Objectives

U Tailored Checklists &
Working Papers
4 Training Programs

U Completed Checklists
0 Phase & Product
Reports & Conclusions
QO Task Report

U Assignment
Completion Report
0 Project Debriefing

Figure 37a. Coopers & Lybrand SQA 2000 Methodology Overview®.

78
UNCLASSIFIED

UNCLASSIFIED

DSTO-TR-3039

6 Installation &

Figure 37b.

2Requirements 4
. _ i Testin
Planning Analysis Design Development esting
1.1 Scoping and 2.1 Analysis Planning 3.1 Develop Logical 4.1 Prepare Development 5.1 Complete
Evaluating Project & Initiation Design Models Framework Testing Plans &
Materials

1.2 Define Project
Boundaries &
Milestones

1.3 Develop Work
Breakdown Structure

1.4 Prepare Project
Schedules & Budgets

1.5 Prepare Project
Team & Additional
Resources

1.6 Prepare Project Plan

1.7 Project Start-up
Procedures

2.2 Define User
Needs

2.3 Current System
Review

2.4 Functional
Specification
Development

2.5 Request for
Proposal

2.6 Evaluate Tenders

2.7 Solution Definition

3.2 Design Interfaces

3.3 Design
Subsystems

3.4 Complete System
Support Specification

3.5 Specify Data
Conversion System

3.6 Cost Benefits
Analysis

4.2 Develop System
Databases

4.3 Conduct Detailed
Design

4.4 Establish Operations
Functions

4.5 Complete Migration
Design

4.6 Code & Test
Development
Components

UNCLASSIFIED

5.2 Prepare Testing
Environments

5.3 Perform Tests

5.4 Transfer to
Production System

5.5 Conduct User
Acceptance Testing

Integration

7 Production

Support

6.1 Finalise Migration
Planning

6.2 Prepare New
Procedures

6.3 Migrate Data

6.4 Finalise Migration
Effort

6.5 Project Completion

7.1 Provide System
Support

7.2 Change Request
Feasibility & Initial
Planning

7.3 Perform
maintenance &
enhancements

7.4 Implement Change
Request

Coopers & Lybrand SQA 2000 Systems Development Life Cycle Overview, Reviews and Audits Schedule© - Part 1 (adapted).

79

DSTO-TR-3039

Figure 37c.

80

2 Requirements

Planning

UNCLASSIFIED

Analysis

Reviews

Design

6 Installation &

4
Development

Testing

7 Production

Integration

Support

QO Software Quality
Plan

O Project Plan

Q Planning Phase

0 Requirements Analysis
Phase Plan

QO Business Model
Walkthrough

O Questionnaires

QO Preliminary Solution
Definition

O Software V&V Plan

Q Operational/
environmental Issues
walkthrough

QO Request for Tender
Document

Q Evaluation Hierarchy &
Criteria

OEstimates

QO Selected Solution

O Requirements Analysis
Phase

QO Design Walkthroughs
0 Design Specifications
Q Security and Control
Specifications

O Conversion
Specifications

0 Cost Benefit Analysis
Q Design Phase

QO Technical Environment
O Operating Environment
QO Database Design
Walkthrough

QO Technical Design
Walkthrough

QO Operational
Requirements

QO Operational Security &
Control

O Unit/String Test Results
Walkthrough

O Development Phase
Code Inspections

Q Conversion Plan

O Development Phase

O Test Specifications &
Plan

QO Test Case Walkthrough
QO System Test
Preparation

O System Test Results
QO Acceptance Test
Preparation

QO Acceptance Test
Results

O Testing Phase

O Installation & Integration
Plan

QO Operating Procedures
0 Automated Data
Conversion

O Manual Data Conversion
0 Systems Acceptance

Q Installation & Integration
Phase

Q Post Installation &
Integration

O Formal System

O Classification &
Prioritisation

Q Planning
Requirements &
Design Changes

QO Development &
Testing Changes

QO Production Support
Code Inspection

O Change
Implementation

QO Production Support
Phase

Process Audits

O Project Initiation
O Project Planning
Q Project
Management &
Control

O Change
Configuration
Management

QO Quality System

O Requirements Analysis
O Tender Evaluation

O Design

O Development

O Testing

Q Installation & Integration

QO Production Support

Product Audits

O IT Strategic Plan 0 Request for Tender 0 Software Design 0 Software Code Q Test Planning 0 User Documentation 0 Production System
U Systems QO Software Description Documentation O Migration Plan

Development Requirements QO Test Completion Q Installation &

Methodology Specification Documentation Integration Readiness

m] PrOcht Plan O Functional

Q Quality Plan Configuration

O Software Quality
Management System

O Physical Configuration

UNCLASSIFIED

Coopers & Lybrand SQA 2000 Systems Development Life Cycle Overview, Reviews and Audits Schedule© - Part 2 (adapted).

UNCLASSIFIED
DSTO-TR-3039

From a systems perspective, the approach in a SE context can therefore be summarised as:

1. Understand the problem in the broader context before attempting to solve it as a
technical system (including metrics, priorities and constraints, to establish the
feasible solution envelope).

2. Identify and rank (as far as reasonable), all possible technical solutions prior to

selecting an answer (within the feasible solution envelope).

Look for hybrid solutions to add to the set of alternatives.

4. Select a technical solution, capture the supporting analysis, and formulate the
subsequent problem at a lower level of decomposition or implement the solution

(adapted from Mar 1997).

©

5.5 The System Life Cycle

The precise nature of the detailed engineering activities and the order in which they are
performed are encapsulated in the concept of a life cycle model. As previously illustrated in
Figure 38, the standard ISO/EIA 15288:2008 provide a simple, high-level summary of
significant stages in the life of a product or system that is relevant to the organisations
responsible for conceptualising, implementing, using, and supporting the product or
system over its useful life.

Different life cycle models follow different process steps, decision points, and governance,
with different consequences at each step in terms of cost, schedule, risk, and achieved
progress in system implementation. Well known life cycle models include the Royce
Waterfall Model, the Forsberg and Mooz V-Model, and the Boehm Spiral Model as shown
in Figure 38(a), 38(b), and 38(c) respectively (Royce 1970), (Forsberg & Mooz 1992), (Boehm
1988).

Requirements
Specification
\ Analysis \

\ Design \
Implementation
(Construction/ \

Coding)

\ Verification \
\ Operations

Figure 38(a). SE Life Cycle Development Models — Waterfall Model (Royce 1970).

81
UNCLASSIFIED

DSTO-TR-3039

Understand user
requirements.
Develop system
concept and user
validation plan

UNCLASSIFIED

Demonstrate &
validate system
to user validation

plan
Develop system Integrate system &
performance perform system
specification and verification to
system verification performance
plan specification
Expand performance Assemble Cls &
specifications into Cl perform CI
“design-to” verification to Cl
specifications & ClI “design-to”
verification plan specifications Systems.
+ 3 Engineering
A 4 +

Evolve “design-to”
specifications into
“build-to”
documentation &
inspection plan

Inspect to “build-to”
documentation

I |

Fabricate,
assemble & code
to “Build-to”
Documentation

Design
Engineering

Figure 38(b).

82

UNCLASSIFIED

SE Life Cycle Development Models - Vee Model (Forsberg & Mooz 1992).

UNCLASSIFIED
DSTO-TR-3039

objactives,
alternatives and
constraing

Committioan
approach for
the next
fteration

Requirements
p::n. lifecycle operation benchmanks
plan

Ptan the nesxt
teration

Integration
and test plan

dedivemables forthe
iteration and verify
that they are cormect

Figure 38(c). SE Life Cycle Development Model- Spiral Development (Boehm 1988).

Variations of these basic models, supporting both structured and iterative development,
provide the basis for undertaking SE and SW development activity over the entire system
life cycle. The high-level depiction of life cycle development activities as described in Figure
38 provide a meta-model for the major SE activities over the duration of the system life
cycle, revealing the presence of significant decision-points or governance milestones. It
therefore provides a framework for deliberate detailed planning and management of
activity to attain the technical, schedule, and cost goals for the system>.

The Vee-model as illustrated in Figure 38(b) is typically used within the context of an
Australian Defence Project used to acquire Major Capital Equipment (MCE) for the
Australian Defence Force (ADF).

> A detailed description of the life cycle methodology for SE is provided in Sage (1992).

83
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

5.6 The Significance of System Architecture in SE

The term architecture has been used on numerous occasions in this report, with many
different facets; heavily shaped by SW engineering and IEEE 1471 influences.

The notions of systems architect and system architecture have emerged in recent times,
displacing earlier notions of system designer and system design, even though they are not
analogous. The term system architecture is widely used in modern SE, SW and EA parlance
but not necessarily as widely understood.

(Hitchen 2007) offers that basic notions of system architecture arise around ideas of binding
and coupling. Where a number of piece-parts all mutually interact, there is said to be tight
functional binding (i.e. forms a cluster). Where such tight functional binds (i.e. clusters) are
interconnected, the clusters are said to be loosely coupled.

A useful way of conceptualising system architecture suggested by Hitchens is to envisage
the pattern formed by linking clusters of systems and subsystems. Since such clustering and
linking can occur in many different ways, there can be many different patterns, all of which
can ostensibly called system architectures. These are referred to as “viewpoints” of the
system architecture in IEEE 1471 since all connections are simultaneously present. If the
system is particularly large or complex, its system architecture (in its broadest sense) may
be difficult to discern, and may change dynamically over time.

Hitchen suggests that in deliberately engineered systems, the system functional architecture
emerges unaided as an intrinsic part of the system conception and design process; however,
physical configurations are shaped by the constraints of the solution space. System
implementation is therefore concerned with maintaining an effective functional architecture
when mapping it onto a suitable physical configuration, without impeding functional
interactions and functional behaviour. The system architecture indicates connectivity and
potential cohesion since it shows the extent of interconnection, which is the fundamental
aspect of any system - that all its piece-parts are interconnected and contribute towards the
“whole”.

In a SE context, the architecture is delineated by the connections between the piece-parts of
the system (i.e. at the interfaces), since interruption of the connections could prevent the
isolated piece-parts from contributing to the operation of the “whole”, and could therefore
impair performance of the “whole”.

If there are multiple connections such that the severing of one connection did not impair
piece-part interactions, then it may be possible for the piece-parts to continue to operate as a
unified “whole”. This illustrates the principle of redundancy to improve system resilience
(Hitchens 2007).

5.7 Notions of System Hierarchy

The concept of system hierarchy is also very important in SE, manifesting as a physical
architecture. The INCOSE SE Handbook describes a recursiveness within the life cycle
process model that is applicable at each level of the system hierarchy (as previously shown
in Figure 34) as the system implementation progresses through from initial system design
to detailed subsystem, element, component and configuration item design, development
and test.

84
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Typical recursive interactions with stakeholders, and process inputs and outputs are
illustrated in Figure 39, with the initial considerations providing a constant backdrop for
consideration throughout the successive process steps and decision points.

MARKET-SEGMENT ENVIRO

CORPORATE
POLICY FINANCES CONSUMERS RESOURCES

STRATEGY ECONOMICS coNSTRAINTS

ACQUIRER ©
CONTEXT — >
L
?\I‘Z‘gfe CUSTOMER/ACQUIRER — can be assisted by DEVELOPER
System description .
generated for this level I Process Flow for Each Level of Decomposition
forms the Requirement for .
ey Define SUPPLIER/DEVELOPER
Functions that
meet Needs AL UIRIER
STAKEHOLDERS
REGULATORS I
L. Goals &
Define h Objectives
Requirements ———— l
l Develop ACQUIRER &
AlDeveI(.)p Decision SUPPLIER
ternatives Criteria
Ele
T SUPPLIER
e V&V | » Verified requirements and solution
Reviews & Audits components at each level of
decomposition/ integration.
ACQUIRER

Validated when integrated as fully
assembled system solution and
successfully used or operated in customer
context.

Figure 39. Context for Typical Process Flow for Each Level of Decomposition. (Blanchard &
Fabrycky 1998).

The systems engineering design process includes defining all of the system’s requirements
and then bundling them by segmenting and refining into successive specifications for each
of the system’s segments, elements, components, and Configuration Items (CI) respectively.

The development process in SE can therefore be represented as a purposeful decomposition
(or design) process followed by a re-composition (or integration process) (Buede 2000). The
progression of the design occurs as a decomposition of requirements and the operational
architecture, and performing physical to functional allocations at successive stages of
decomposition as shown in Figure 40.

85
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Trade-off studies carried out at each level of decomposition during the design phases are
used to inform of the benefits and pitfalls of design alternatives at each level.
Implementation decisions at each level then inform the set of requirements to direct
implementation of the next lower level in the hierarchy until the design synthesis is
completed.

Operational System Segment Element
Need Design Design Design
System

Operational -
Rep uirement [;'> Operational
q Architecture
2

Seament Segment
Sgecs E Operational
Pecs. Architectures
=
Element [T Elelﬂent
S Operational
pecs. .
Architectures
-
- 3
omponent r
Specs. ;'>

Figure 40. Design Decomposition of Architectures and Specifications (Buede 2000)

The system hierarchy is often expressed in the form of the resultant design architecture,
where the design architecture is the structure of the components (i.e. solution system
elements) in the system in terms of their interface boundaries, arising as a purposeful
system partitioning into components, or deliberate assignment of components to the
designated system (Hoban & Lawbaugh 1993b). This allows differentiation between those
components over which the acquirer has some semblance of control, as opposed to those
external components that the system has no control over.

Thus three distinct architectures are derived from the initial system’s operating concept or
operational requirement (functional, physical and operational) as part of this decomposition
as shown in Figure 41 (Buede 2000).

The functional architecture defines what the system must do, i.e. the system’s functions and
the data that flows between them. The physical architecture represents the partitioning of
the physical resources available to perform the system functions. The operational
architecture is the mapping of functions to resources.

86
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Operational Concept

N

Functional Architecture Physical Architecture

o~ 7

Operational Architecture

Figure 41. Architecture Development in the Engineering of a System (Buede 2000)

A life-cycle physical architecture is illustrated in Figure 42, showing both the physical
architecture of the system solution as well as the physical architecture supporting the
systems engineering activity (Buede 2000).

For many systems, a total of five distinct models are critical for capturing the totality of the
system: environment, data (or information), process, behaviour and implementation.

e The environment model reflects the system boundary, the operational concept, and
the objectives of the system performance;

e The data or information model captures the relationships between among the data
elements that cross the system’s boundary, as well those that are internal to the
system,;

e The process model captures the functionality of the system and is used to describe
the functional architecture;

e The behaviour model reflects the control structures in which the systems functions
are embedded;

e The implementation model reflects the overlay of processes and behaviours on the
physical architecture; and

e The operational model reflects the operational architecture (Buede 2000).

These five models need to be integrated to properly define the three architectures of Figure
41.

87
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Weapon System

Logistics Support

Operational System Manufacturing System Retirement System

System
Design and Integration System Training System Refinement System
L Utilities & Other . Vehicle Management
Avionics System
’ Subsystems GEAPEEED System
Radar Navigation Processing Controls & Displays Inertial Reference
System
Electronic Warfare Identification Stores Management

Figure 42. Life-cycle Physical Architecture - Weapons Systems Example (adapted from Buede
2000)

As the design synthesis progresses to lower levels of the hierarchy, and design integration
and verification progresses up the hierarchy towards the highest level, additional insights
can reveal emergent properties which may detrimentally affect the ability to achieve the
desired outcomes. In fact, it may be found belatedly that the desired outcome may not
achievable as initially conceived with the selected implementation.

This may necessitate revisiting the requirements and constraints at each level in the
hierarchy, including the originating need, to reconsider trade-offs in light of the additional
insights. This notion of feedback and iteration to refine the system concept and system
implementation to optimise the outcome in terms of capability, cost, and schedule, is
fundamental to SE.

5.8 System of Interest and Systems of Systems

Your system is someone else’s subsystem and someone else’s system is your subsystem” (Mar 1992).

The term “system of interest” is also used interchangeably with the term “system”, where
this is defined in ISO/IEC 15288:2008 as “the system whose life cycle is under consideration
in the context of the standard”. This definition is also used in the INCOSE SE Handbook

88
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

(INCOSE 2012).

This infers for the purpose of applying the SE process, it is also important to:
¢ Identify the boundary of the “system of interest”,
¢ Identify the inputs and outputs to the “system of interest “, and

e Identify the functions and performance of the “system of interest” to convert
inputs to outputs to meet the originating requirements (Mar 1997).

External systems are those entities outside the boundary of the “system of interest” which
can interact with the “system of interest” through its external interfaces. All the inputs and
outputs from the “system of interest” flow through its external interfaces to these external
systems, many of which may be legacy (existing) systems. It is therefore important to
properly articulate the system context, which identifies those external entities that can
impact on the “system of interest”, but cannot be impacted by the “system of interest”, as
shown in Figure 43 (adapted from Buede 2000).

External environment

Domain context \

External systems
“system of interest”
Is impacted by “system of interest”

Impacts on, but is not impacted by “system of interesy

\\ -No impact on, and is not impacted by “system of interest”

Figure 43. Depiction of “System of Interest”, External Systems and Context

Failure to define the “system of interest” appropriately will result in considerable confusion
and the misapplication of SE precepts in the wrong context (Mar 1997). The concepts of
system identity and system boundary, thus exposing the respective external system
interfaces, are therefore essential for the articulation of a system in the SE context. Similarly,
concepts of identity and boundary for the respective system elements (i.e. components) are
also essential for exposing the appropriate internal interfaces.

An example of a high-level context diagram showing the “system of interest” interfacing to
multiple legacy systems which may impact on the design of a car is shown in the following
diagram in Figure 44.

89
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

ystem of Systems

Road system

Vehicle
diagnostics
system

S
GPS location
system

Fleet
management
system

Home
garaging

Mobile Iraffic Hybrid/electric system
e management : :
communications - vehicle charging
ystem
network system

. \ ,/ Integration of electrical,
. ,/ mechanical, fluids,
))/ electronics, and software
engineering

“System of Interest®

©

Car System

Driver-assisted
safety alarm
subsystem

Multiple software-intensive
subsystems

360 degree
surround vision

Intelligent

Predictive navigation

Adaptive cruise A
subsystem Automated Eontrol collision subsystem
braking system avoidance
subsystem subsystem

Figure 44. Example of System of Interest in Relation to Car Design

The INCOSE Handbook introduces the term “Systems of Systems” (SoS) to differentiate
those “systems of interest” whose system elements are themselves systems - typically
associated with large scale inter-disciplinary problems with multiple, heterogeneous,
distributed systems. SoS are systems in their own right in that they perform functions and
have common purpose that do not reside in any component systems, and properties that
cannot be localised to any component system (Maier 1998).

Rather than designing from top down, as suggested in the simple Vee life cycle model for a
system, SoS are typically formed by bringing together specific individual systems such that
the emergent properties of the collective systems meet the higher level requirements of the
SoS. Systems engineering carried out at the SoS level is sometimes referred to as SOS
engineering (SOSE).

90
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Originally developed by Maier in 1998, the INCOSE SE Handbook offers the following
characteristics and challenges inherent in SoS:

1. System elements (i.e. component systems) operate independently - if the SoS is
disassembled into component systems, each system within a SoS has the ability to be
independently operational in its own right, (and hence may be subject to differing
requirements, constraints, and priorities);

2. System elements have different life cycles - older system elements may be
scheduled for disposal before newer system elements are deployed;

3. The initial requirements are likely to be ambiguous - the SoS requirements may be
no more explicit than the system element requirements. Thus requirements for a SoS
mature as the system elements mature;

4. Complexity is a major issue - as system elements are added, the complexity of the
system interactions grows in a non-linear manner;

5. Management can overshadow engineering - System elements normally operate
independently in their own right, and are managed independently. Since each
system element has its own product/project office, the coordination of
requirements, budget constraints, schedules, shared resources, interfaces and system
upgrades adds further complexity to the development of a SoS;

6. Fuzzy boundaries can cause confusion - unless the scope of the SoS is specifically
defined and controlled, and the the boundaries of the systems elements are
managed, there is no control of the definition of the external boundaries;

7. SoS engineering is never finished - the SoS does not appear fully formed. Its
existence is evolving with functions being added, modified, or deleted over time.
This means product and project management activity must continue to account for
changes in the various system element life cycles (e.g. introduction of new
technologies or replacement of obsolete system elements). (INCOSE 2012).

Inherent in the definition offered by Maier in 1998, SoS component systems are also
geographically distributed, and therefore can only readily exchange information and not
substantial quantities of mass or energy. This latter characteristic is particularly significant
in terms of its relationship to enterprise architecture practice, which primarily focuses on
information exchange (Hue 2011).

Since a SoS is a conceptual entity rather than a physical entity, there is substantial discretion
in selection of SoS boundaries in an organisation or enterprise as shown in Figure 45,
depending on the binding and coupling criteria elected, but the notion of system hierarchy
is still preserved (Hue 2011).

The usefulness of this conceptual construct is its ability to abstract away from overly
complex detail while conveying key themes and linkages. The level of abstraction at which
a problem is to be solved will determine the boundary of the system of interest. Thus, the
interactions of the system of interest with its wider system context, immediate environment
and wider environment need to be identified and understood.

91
UNCLASSIFIED

UNCLASSIFIED

DSTO-TR-3039

Same interface
- different fidelity External
External Environment of representation Organisation

Enterprise

SoS
Organisation

System/Sub-System
interdependencies

- Process interface Platform
- Functional interface System
- Information interface
- Technical interface

- Physical interface

- Organisation interface

Project

Platform
Sub-System

Figure 45. SoS Representation within an Enterprise.

The perception and definition of a particular system or SoS, its architecture, and its
components depends on an observer’s interests and responsibilities. Figure 46 illustrates
important principles including;:

92

The importance of defined boundaries that encapsulate meaningful need and
practical solution;

The hierarchical perception of system physical structure;
That an entity at any level in a hierarchical structure can be viewed as a system;

That a system comprises a fully integrated, defined set of subordinate systems, (i.e.
components);

The interactions between components give rise to characteristic properties at a
system’s boundary;

That humans can be viewed as users external to a system (e.g. car driver and
braking system), and/or as components within a system (e.g. car driver and car)

That a system may be viewed as both a product (looking inwards at its boundary)
and a set of services (when viewed from outside of its boundary) (ISO/IEC 15228).

UNCLASSIFIED

UNCLASSIFIED

DSTO-TR-3039

Predictive
collision
avoidance

subsystem

it ,’/ Adaptive cruise \‘\ “‘ N
“System of Interest®\ | control i /
e ' _subsystem i]
(s % Driver-assisted Intelligent g
safety alarm navigation
® ® subsystem subsystem .-~

Automated
braking system

Home

system

. GPS Iotcation Vehicle garaging
system diagnostics system
management Road system g y 4

system

Mobile Traffic
communications management
- —_network system

Hybrid/electric
vehicle charging
system

____System of System_s__,/./—“”/

Figure 46. Example System View of a Car in SoS Context

To ensure all system implications are exposed, a complete and holistic system view must be
taken in full context (Sparks 2011). Since the behaviour of a system is dependent on external
interactions and unforeseen circumstances, it behoves to explore all attributes of interest,
including the effect of failures on system behaviour, at the appropriate level of abstraction.

Key systems of purpose can be component systems in multiple SoS that have
complementary functionality. The greater the degree of integration required, the greater the
component system interdependencies, and thus the greater the number of acquisition
interdependencies and other socio-technical interdependencies to be acknowledged and
managed.

The “system of interest” can therefore be significantly larger than the individual component
system being engineered, so that other relevant socio-technical factors including
organisation, process, personnel, economic and political influences are also accounted for in
informing engineering decisions. Thus each key component system in a SoS can no longer
be managed solely in the context of its own engineering environment, but needs to be
examined in a much broader context with respect to the larger encompassing SoSs and their
external environments (Hue 2011).

Additional and ongoing SoS risk management activities, including V&V at the SoS level,
are therefore essential to ensure the desired emergent properties of the SoS are achieved and
sustained, and that no unexpected or detrimental properties emerge, nor required properties
lost, as individual component system elements progress through their respective life cycle
stages.

Broader integration of SoS (referred to as SoSI) within their external environments falls
more within the realms of the social sciences and management science rather than
engineering science, and is therefore out of scope of an engineering-centric process.
However, SoSI still needs to be appropriately managed.

93
UNCLASSIFIED

UNCLASSIFIED

DSTO-TR-3039

5.9 Systems Integration and SoS Integration

In the engineering context, system integration is the bringing together of the detailed
elements of the overall system design into one system through a process of assembly and
testing, and ensuring the elements function together as a system meeting the needs of the
stakeholders with the expected features and attributes, as shown in Figure 47 (Buede 2000),

(Shameih 2011).

Car System

Predictive
collision
avoidance
subsystem

Intelligent
navigation
subsystem

Automated
braking system

Adaptive cruise
control
subsystem

fully tested components »
assembled into subsystem§_,,_—"’

Driver-assisted
safety alarm
subsystem

[———]
| I—

successive
subsystem

verified
subsystems installation into
within system system assembly
assembly
context

“System of Interest?, . .
P Verified System installation and
& System system verification
@ complete

O ———————————

.-~| Validation F~__
\ . . . \\\
validation in SoS.

Vehicle
diagnostics
system

Fleet
management
system

Home
garaging
system

Traffic

Hybrid/electric

: Mobile
N communications management _ _ g
) network system vehicle charging
system

Figure 47. Integration and Verification — an Iterative Process (adapted from Shamieh 2011)

94
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

In IT, systems integration is the process of linking together different computing systems,
SW applications, and hardware host platforms physically and functionally to act as a
coordinated whole.

For decades, the notion of System Integration (SI) was regarded as a process step within the
SE process; being the final verification activity of the assembled system components against
the originating system specification. Thus, SI test was the penultimate major SE process step
prior to acceptance and delivery of the implemented solution to the customer, where the
solution has required design synthesis over multiple layers of decomposition prior to
building and assembling the solution components.

The concept of SI has morphed in recent times from a specific SE process step to embrace a
much wider notion of purposely bringing together designated piece-parts (principally
drawn from current inventory, or acquired as COTS or MOTS, requiring little or no
adaptation) to form a system with specific emergent properties to fulfil a specific
operational need. This can include circumstances such as retro-fitting an extant system;
replacing an obsolete component with a new component with equivalent form, fit and
function; or evolving a system by adding more components; or forming an entirely new
system by bringing together extant components which were developed for different
purposes.

System integration then includes the activity of joining the selected off-the-shelf subsystems
and components together. If the interfaces are selected are already designed to connect
together, then SI can be reduced to simple assembly and verification activity. If the
interfaces were not explicitly designed to connect together, then additional design activity is
required to provide suitable interface conversion or mapping, entailing either additional
HW engineering or SW engineering activity or both.

This alternate notion of SI is consistent with that from the IT discipline. However, it does
not address the scope of the integration activity required, nor the methodologies that may
be employed to achieve the SI objectives for system solutions that may overlap between the
IT discipline and other technical disciplines.

The latter concept of SI is applicable, for example, when deciding to replace obsolete
batteries in high cost equipment, as a lower cost, shorter schedule, and lower risk
alternative in lieu of re-designing or replacing an entire equipment suite. Here the
requirements may be simple to articulate, without requiring significant engineering
documentation, nor significant broader consideration of other technical or socio-technical
factors. The engineering task may only require minor effort to undertake the design
synthesis, select an off-the-shelf (OTS) solution from a number of suitable alternatives, and
perform system integration test to verify the implemented solution meets the originating
requirement.

In this example, if the replacement batteries were designed for operation in a similar context
to the equipment suite, then emergent properties when installed in the equipment might be
expected to be similar to the obsolete batteries. Thus, only limited design evaluation and
integration test may be warranted. If the range of OTS potential replacements were
designed for operation in a markedly different context, then additional enquiry, test, and
documentation may be warranted to ensure the desired attributes can be realised, and to
minimise the likelihood of latent defects where unexpected and detrimental emergent
properties are encountered in the operating environment.

If no suitable OTS replacements can be found then it may necessitate the raising of a new

95
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

SE project to design and build a new replacement battery. This approach would therefore
require the more classical application of SI to verify that the implemented solution is fit for
purpose as intended, with a low likelihood of latent defects.

The same notion of SI can also be applied, for example, for the addition of a new radio
capability to an existing fleet of land vehicles. Here, the land vehicles can be considered as
independent systems deployable in their own right, thus integration of a radio into each
vehicle in the fleet will occur at the SoS level. Again, the decision to design and build or buy
OTS will determine the scope of SoS integration (SoSI) required to verify the implemented
solution is fit for purpose as intended.

On a larger scale at the SoS level, a Deployed Force typically comprises extant military
capability elements that are brought together for a specific purpose such as a military
exercise or deployment in a theatre of operations. Here, the Deployed Force can be
considered a SoS, since it is typically comprised of capability elements which are
independent systems in their own right.

In this case, a set of requirements for the deployment may be articulated, but the design of
the Deployed Force is accomplished by military planning processes rather than through
engineering based design synthesis. Some SoS verification may be warranted under some
circumstances, for example, if a military platform is a new capability being introduced into
service; if it has undergone a major upgrade; or if it is being deployed under markedly
different circumstances to that previously encountered or considered.

Because of the large scale of endeavour, it may not be practical to undergo extensive V&V
activity of each potential combination of component systems comprising a Deployed Force.
However, the Deployed Force can undertake at least some SoSI activity to ensure, at least to
a notional level of confidence, that the assembled force will be capable of performing
adequately, with minimal likelihood of unexpected and detrimental emergent properties
which have the potential to compromise military capability.

This V&V activity can include, but is not limited to “Shakedown” activity. Shakedown
activity is sometimes undertaken where a military platform can undertake a series of OT&E
style validation activities when newly deployed into an extant theatre of operations, prior to
commencing active duty. The purpose of the “Shakedown” is to flush out and remedy any
latent defects that manifest under the new circumstances prior to commencing new
operations.

The Program of Major Service Activities (PMSA), a series of regularly scheduled military
exercises undertaken by ADF, not only provides an important venue for training, but also
for performing extended V&V activity supporting SoSI. The PMSA military exercises allow
evaluation of different Force deployment combinations from the respective Services and
selected coalition partners, under different operational conditions, so both strengths and
weaknesses of Force configurations can be identified. This in turn can be used to inform
future Force deployment planning at the SoS level, as well as to inform future capability
development activity at an individual systems level.

5.10 Human Systems Integration

While consideration of human factors has been integral to SE for decades, an integrating
discipline, human systems integration (HSI) has emerged to encourage organisations to
take a more considered view of people interactions. HSI provides a number of principles

96
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

and methods to help integrate people, technology and organisations with a common
objective towards designing, developing, and operating systems effectively and efficiently.

HSI scope includes management and organisational concepts and processes as they may
interact with the SE processes to achieve cost, safety and performance benefits that might
not otherwise have been considered (Sparks 2012). By considering people as a separate
capability as well as within a capability, the impact of human properties such as human
mental and physical performance, ways of thinking, and reasoning can be explicitly
accounted for (Booher 2003).

Historically, human factors has applied scientific knowledge about human psychological ,
social, physical and biological characteristics to the design and operation of systems in
order to achieve the desired human performance, health, safety and overall system
effectiveness. Human factors is considered by HSI practitioners as a subset of HSI, spanning
the engineering design of equipment, facilities, systems and environments; systems safety;
training; manpower; personnel; health hazards; survivability and mobility. However, HSI
operates in concert with SE principles to ensure human factors are adequately addressed in
the broader context, by providing a systematic process for specifically identifying, tracking
and resolving human related issues, seeking a balanced development of both technological
and human aspects (Sparks 2012).

97
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

6. Defence Notions of a System

6.1 The Capability System

Defence capability is core to the defence of Australia against direct armed attack and to
protect its strategic interests. In the Defence context, capability is the capacity or ability to
achieve an operational effect. The Defence Capability Development Handbook describes an
operational effect in terms of the nature of the effect and how, when, where and for how
long it is produced (DCDH 2012). As such, Defence capability is a broad socio-technical
concept rather than a prescriptive entity. A socio-technical system is deliberately abstract in
nature, characterised as technical works involving the participation of groups of people in
ways that significantly affect the architectures and the design of those technical works
(Maier & Rechtin 2002).

The Defence Capability Plan (DCP) and the Defence Capability Guide (DCG) are key
planning documents guiding acquisition of new Defence capability (DCP 2012), (DCG
2012). Capability acquisition is managed as a portfolio of projects as described in the DCP
and DCG. For example, the DCP 2012 is the Major Capital Investment Program for
Australian Defence focussing on planned project expenditure over the next four years of the
Government’s Forward Estimates period 2011-12-2015-16. The DCG 2012 provides an
overview of general capabilities and scope of planned future major projects whose approval
dates lie beyond the Forward Estimates period of 2015-16, but can change at any time. The
principle aim of capability development is to develop and maintain the most operationally
effective and cost-efficient mix of Defence capabilities to achieve the Australian
Government's strategic objectives (DCDH 2012).

Defence has a maturing capability development process drawing from systems engineering
principles as described in the Defence Capability Development Handbook (DCDH 2012). A
capability life cycle is ascribed to each capability system to visualise the life of the capability
system from the identification of a need (i.e. an existing or emerging capability gap) to the
acquisition of a physical capability system which is operated and supported over the life of
the capability system until its eventual disposal. Capability development entails those
activities involved in defining requirements for future capability.

While the SE fundamentals are widely understood within the international SE community,
it is pertinent to ask whether they are shared and widely understood within the Defence
capability development and acquisition community, and if they are applicable in the
Defence context.

What is a system in the Defence context? The term system is used widely in Defence for
many and varied purposes. For the most part, the term is used in a non-technical sense.
However, the DCDH provides expansive definitions of terms used in the context of the
Defence capability development process.

With reference to the capability systems being acquired, the DCDH minimises the use of the
term “system”, instead focussing on the notion of capability. Capability is further
elaborated in the DCDH in terms of a specific set of “fundamental inputs to capability”
(FIC), comprising organisation; personnel; collective training; major systems; supplies;
facilities and training areas; support; and command and management. This is distinct from,
and not to be confused with “Military Capability”, which is the “combination of force

98
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

structure and preparedness that enables the nation to exercise military power”.

System is defined in (DCDH 2012) as “an integrated composite of people, products, and
processes that provide a capability to satisfy a stated need or objective”. It goes further to
say that “a system is a combination or assembly of HW, SW, principles, doctrines, methods,
ideas, procedures and workforce, or a combination of them, arranged or ordered towards a
common objective”. Thus, the capability system is the combination of these assembled
individual elements in order to achieve the desired operational effect.

Operational effects in a specific theatre of operation are ephemeral in support of achieving
more longer term strategic objectives. This implies the notion of capability system relating
to the deployed force is also ephemeral. This is indeed the case, where the deployed force is
designed and assembled from its component parts to be fit for purpose for each successive
operation.

The capability system does not actually result as an engineering outcome, achieved through
the application of a SE process, complete with engineering style products. Rather it results
from the application of a military planning process. In effect, this means the capability
system is assembled and operated by the end user, although responsibility for individual
components may be assigned to different capability managers. For much of Defence
capability, the capability managers vested with component responsibility reside within the
military services (i.e. Army, Navy, Air Force).

However, with no enduring notion of specific capability systems, there will be no explicit
linkage articulated between individual piece-parts and the capability systems they might be
considered part of. It will therefore be difficult to formally manage any of the piece-parts in
an engineering sense across a managed life cycle if any piece-part in inventory does not
become an actual component of a capability system until it is selected for inclusion. Thus
issues such as interface compatibility, configuration management, and other technical
management considerations cannot be managed on a capability system basis; it is apparent
that they can only be managed at the piece-part level.

For a more enduring notion of a capability system, it would be necessary to prescribe a set
of system elements or components as belonging to particular capability systems in a SoS
context. Only then would it be meaningful to compose a suite of engineering products to
enable technical management of the capability system. However, the precise instantiation of
such a capability system might never be deployed as each deployed force requires specific
tailoring for the specific circumstances at hand.

Notably, most elements of FIC are outside the remit of engineering processes, particularly
with regard to personnel management. So different elements of FIC are subject to different
management processes and governance mechanisms, depending on which organisation(s)
in Defence is responsible for that element.

While the concept of capability may be useful to provide higher-level guidance to assist
framing of requirements for acquisition, it is thus apparent the DCDH notion of a capability
system is not particularly useful in a SE context. It does not relate to a specific system that
can be deliberately engineered and subsequently managed in an engineering sense,
particularly with regard to technical management across an explicit life cycle.

99
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

6.2 The Materiel System

The materiel system is described in the DCDH as a subset of the capability system,
comprising those aspects of the FIC that are supplied by the acquisition agency. The notion
of the materiel system as a combination of the mission system and the support system is
consistent with the notion described in the ISO/EIA-632 standard, which differentiates
between the end products and the enabling products within the system being acquired.

Since the materiel system only exists for the duration of the acquisition activity, it bears no
relationship to any instance of a specific capability system assembled by the user. Only the
piece-parts being acquired have this association. As such, each materiel system being
acquired would appear to have only indirect relevance to any particular capability system.
The materiel system as such does not have its own managed life cycle, where issues such as
interface compatibility, configuration management and other technical management
considerations are not managed on a materiel system basis.

Since materiel system piece-parts are acquired through the application of a SE process,
engineering style documentation may be available to assist with ongoing support and
technical management of these piece-parts over an explicit life cycle. Specific
documentation is prescribed by the DCDH, where Capability Development Group (CDG)
has responsibility for preparation of Capability Development Documentation (CDD),
comprising an Operational Concept Document (OCD), a Function and Performance
Specification (FPS), and a Test Concept Document (TCD). CDD must be provided for each
MCE project listed in the DCP (DCDH 2012). However, this relates to the materiel system in
its entirety, rather than to individual piece-parts.

Additional SE documentation for materiel system piece-parts may be delivered by the
supplier if listed on the Project Contract Data Requirements List (CDRL). The CDRL is
typically tailored using contracting principles prescribed by the acquisition agency, in most
cases, Defence Materiel Organisation (DMO), which outline mandatory and discretionary
contract activity and product deliverables. The quality and completeness of SE
documentation for any particular project will therefore be dependent both on that supplied
by the Commonwealth, as well as that specified by the Commonwealth, but supplied by the
Supplier for individual piece-parts.

6.3 Major Systems

The term “major system” is also used in the DCDH to describe one of the elements of FIC
within the definition of a capability system. A description rather than a definition is
provided, where it suggests that major systems include significant platforms, fleets of
equipment, and operating systems designed to enhance Defence’s ability to engage military
power. It also notes that major systems can also comprise systems of principal items in their
own right, or equipment that regularly requires more detailed reporting and management.

It is thus apparent that there are many and varied definitions and usages of the term system
in the context of the capability development process. A SE process is applied to acquire
capability system piece-parts within major project boundaries, but not to acquire or
upgrade an actual capability system. It is not so readily apparent which systems are
actually being “system engineered”, who has SE responsibility, and how to differentiate
between SE activity and other stakeholder related activity from a basic SE perspective.

100
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

Notably, none of the usages of the term system pertaining to DCDH process activity
acknowledge the concept of system hierarchy, nor the pre-existence of any architectural
relationships between systems or system elements of a hierarchical nature. In the absence of
a systems architectural context, this means during acquisition, entities within the materiel
system and the major system can be designated as a system or system element at the
discretion of each project.

For example, a system can be a major platform; a combat system within a major platform; a
radar system within a combat system; or a radar antenna array within a radar system. No
specific criteria is applied. Any such designation attributed during acquisition may well be
retained after delivery to the capability manager. It is therefore likely to retain the
designation during operational service, regardless of its hierarchical relationship to other
piece-parts of related Defence capability.

6.4 Project vs. System Context

6.4.1 Specification Considerations

The starting point for each DCP Project phase is the outcome of a capability gap analysis.
This is performed independent of any originating requirements for an extant capability
being replaced “like for like” or if the capability is to be modified.

Originating requirements are expressed by a project phase in terms of its CDD, including an
OCD and a FPS prepared specifically for that phase. The CDD are frequently not updated
after contract signature for acquisition, and are not maintained after delivery of the
capability. Thus, there is no notion of a persistent set of requirements associated with each
materiel system or capability system that is explicitly managed and evolved over the life
cycle of the capability.

Similarly, for introduction of new Defence capability, during the early phases of the life
cycle prior to the acquisition phase, the capability is described in conceptual form.
Defence’s desire to remain largely solution independent prior to the acquisition to provide
open competition to industry means that the actualised external interfaces to the physical
implementation can differ from the initial abstract form. However, there is little impetus to
update the project CDD to reflect the actualised form as the scope is outside the acquisition
contract.

This is particularly the case where the solution contains COTS components. These may
present external interfaces that may require adaptation elsewhere outside the project
boundary because of funding arrangements, raising the question whether the adaptation is
inside or outside the system of interest, and whether or how the adaptation might be
documented.

This is in contrast to the notion of “system of interest” as described in ISO/IEC 15288 which
has enduring system identity and boundary, with explicit external interfaces (i.e. explicit
input and output interfaces) and set of requirements which are explicitly managed over the
life of the system of interest.

101
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

6.4.2 Life Cycle Considerations

Since individual systems, subsystems, system elements and equipments are currently
modified or replaced within the auspices of designated Defence project phases, notions of
‘system of interest’” identity and ‘system of interest’ boundaries are project-centric, and
shaped by funding availability and investment priority. They are therefore ephemeral and
can be quite volatile. They have no life cycle as such that can be managed beyond the life of
the project phase, which ceases once the delivered capability is accepted into operational
service. Thus, each capability component can move in and out of different systems of
interest, and different life cycle stages, depending on the individual imperatives of the
subsequent projects and project phases.

Verification and Validation (V&V) activity undertaken within the auspices of a project will
not necessarily be extensible beyond the project boundaries once the materiel system is
delivered and accepted into operational service. Any differences between the delivered
materiel system configuration and any operational system, which comprises different
combinations of capability components, may not be subject to directed V&V activity that
exposes the differences in emergent properties, and hence shortfalls in expected emergent
capability. Thus there may be latent defects which can lie hidden for extended periods of
time until circumstances arise which bring together system elements in new ways which
finally expose the latent defects.

Remediation of more significant latent defects can be problematic as they are typically
reported as capability shortfalls, which can trigger a lengthy and potentially costly process
starting with the next Force Structure Review (FSR). This can require re-evaluation of
strategic guidance, a new entry into the DCP for planning and resourcing, renewed
Government approval, and restart of the capability development process to remedy.

Thus selecting the system boundary of interest for each project will determine the scope of
systems analysis undertaken and hence will affect the associated risk of an adverse
capability outcome at a later date.

6.5 Defence vs. INCOSE System Definition

The Defence definition of system in the DCDH as described above is markedly similar to
that offered in the INCOSE Handbook. The differences may be subtle, but an important
distinction between the two definitions is the extent to which the system of interest can or is
intended to be explicitly identified, in terms of specific system element composition, system
boundary location, input and output interface identification, and explicit functions within
the system boundaries, all suggested by Mar as having particular significance.

102
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

7. Capability Development Process Context

7.1 Defence Capability Life Cycle Model

What is SE in the Australian Defence context? The Department of Defence utilises a SE-like
process to undertake acquisition of new Defence capability based around the concept of a
Defence capability life cycle as described in Figure 48.

A meticulous description of process and governance requirements for capability acquisition
is published in the DCDH (DCDH 2012). Ostensibly, the generic representation is consistent
with the waterfall model of system acquisition, originally described by Royce in 1970 for
managing the development of large scale SW systems, although individual projects may
adopt alternative acquisition models as described in the INCOSE SE Handbook for selected
components of capability (Royce 1970).

The Capability Systems Life Cycle is used in the DCDH to visualise the life of a capability
system from the initial identification of a capability gap to the acquisition of a physical
capability system, which is operated and supported until disposed of. The key tenet of
capability development is to develop and maintain the most operationally effective and
cost-efficient mix of capabilities to achieve the Government’s strategic objectives.

7.2 Defence Capability Planning Guidance

The Defence Capability Plan (DCP) is the key planning document guiding acquisition of
MCE for Defence. The DCP comprises a list of projects proposed for Government first pass
or second pass approval spanning a rolling 10-year window (DCP 2012). Individual MCE
projects within the DCP have responsibility for undertaking SE activity within the confines
of their respective project boundaries as shown in Figure 49, where the aggregate capability
delivered by the DCP is expected to trend towards achieving that aspired in the Networked
Force 2030 (DWP 2009).

7.3 Defence Capability Life Cycle Responsibilities

A plethora of stakeholders contribute to the capability development process as shown in
Figure 50, with responsibility transitioning between different stakeholders throughout the
capability life cycle.

Notably, while life cycle concepts and language are drawn from the SE discipline, the
DCDH provides little explicit acknowledgement of its SE heritage. Instead, the document
relies on providing explicit instructions relating to each process step to progress through
each of the life cycle stages, identifying specific decision points and governance
responsibilities relating to each of the decision points.

103
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

ili OCD, FPS, TCD development , , ,
Capablllty.gap P RFT to industry for system implementation
analysis /
V Defence Capability Life Cycle Process Stages
F
Needs Requirements Acquisition In-Service Disposal
Phase Phase Phase Phase Phase
DCP entry In-Service Support /
_ A A , A
m Functional Baseline Allocated Baseline Product/
= — System Baseline
Conceptual design j
Systems Engineering Life Cycle Process Stages
r =
Limited '~ _ _ | Preliminary design
Feedback R
‘. Detail design/development/ j
Limited production/construction
Feedback _I/ \,_
eeapac R w
Limited '~ — | Operation Use/
Feedback And System Support —

Retirement

Figure 48. Defence Capability Life Cycle.

104
UNCLASSIFIED

Figure 49.

Strategic Guidance

Needs phase

UNCLASSIFIED

High level Architectural Guidance

Interpret &
decompose

High level SoS, FIC Guidance

Integrated Defence Architecture linkages to
influence lower level developmental activity

DCP Project 2

1
|
|
|
|
|
|
|
1
|
|
|
|
1
|
|
I DCP Project 1
|
|
|
|
|
|
1
1
|
|
1
|
|
|
1
1

DSTO-TR-3039

.— Strategy Framework Products to influence lower level developmental activity

Time

- Acquisition phase In-service phase
User requirements k System Component Integration, .
OCD1,FPS1 design 1 design verification, h ggggﬁllﬁ;all

Stakeholder input /build/test 1 msf[alla}Uon & |

R . ts bh 1 * validation 1 |

equirements phase i m » I

9 phase Vee 1 . E !

b e e e e e e e - L e e — - 1 "
] recdback & change T Feedback & change |
User requirements b | System Component Integration, .

OCD 2, FPS 2 design 2 | | design verification, | ggsgﬁ'ﬁgaz'

Stakeholder input /build/test 2 installation & _

[1 validation 2 |

I | 7'y !

I “Vee 2" I I I

e e e e e e e e = T | :

Feedback & change 2 Feedback & change !

== = = e = = = = =]

Multiple Nested Capability Life Cycle Stages Embedded in the Defence Capability Plan.

UNCLASSIFIED

105

UNCLASSIFIED

DSTO-TR-3039

Disposal

In-Service
Phase

Needs Requirements Acquisition
Phase

Phase Phase Phase

In-Service Support

| Responsibilities

] — il —

Strategic Policy/ . .
Strategy Force Structure Ensurl_ng Strategic
Executive . Alignment
Review
Ceppelalilyy Capability Needs As;gssment anc_i_ Sponsor changes to Government Approved Requirements
Development] Definition of Capability -
Analysis . and/or LOT extension
Group Requirements
Capability Experimentation/ Advice on Point of Accountability to Monitor and Report to Government
Manager Service Gap Analysis Capability Needs on Whole of Capability
Acqms_mon & Stakeholder in Adv!cg_on . .
Sustainment Acquisition & Acquire and Sustain the System
. Needs Phase .
Agencies Sustainment
Stakeholder Stakeholder in Advice on . o .
Groups Needs Phase FIC issues Point of Accountability for Delivery of FIC Elements

Figure 50. Defence Capability Life Cycle Responsibilities.

106
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

The process also relies extensively on the use of documentation templates to generate the
required products to support the decision points throughout capability development
process. The use of specific documentation tools is prescribed and tailored training is
provided both on the process as well as the tool environment.

The emphasis in the DCDH is therefore on process rather than perspective and profession
as offered in the INCOSE SE Handbook. It is thus not readily apparent to what extent the
SE body of knowledge is inferred, or whether it has any additional relevance over and
above the specific information provided in the DCDH.

107
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

8. Defence vs. Industry SE Perspective

8.1 Legal and Political Process Influences
Facts of Life:

If the politics don’t fly, the system never will.
Politics, not technology, sets the limits of what technology is allowed to achieve.
Cost Rules.
Affordability is decided by whichever side has the most votes.
The best engineering solutions are not necessarily the best political solutions.
Technical problems become political problems.
With few exceptions, schedule delays are accepted grudgingly; cost overruns are not.

(Maier & Rechtin 2002)

Two different types of decisions are critical to success in system design:
e Value judgements
0 Relative value decided by customers and clients, and
e Technical choices

0 Technical feasibility and implications decided by technical professionals
(e.g. engineers and architects) (Rechtin 1991).

The client, as sponsor of a major project, can pre-empt or overrule the technical
professionals responsible for implementing the solution, however, no complex system can
be optimum to all stakeholders concerned, nor all functions and performance be optimised
(Rechtin 1991).

Perhaps the most significant difference between Defence and industry is the influence of the
political process in the way that the end-client, i.e. the general public, expresses its value
judgements.

Importantly, the Federal Government is both the major sponsor and the major client of
capability acquisition activity, acting on behalf of the general public. Decisions are made
within the auspices of a formally constituted legal and political process. Ultimately the
general public are able to express their judgement through the election process as to the
perceived value of goods and services provided by the Federal Government. This infers that
value judgements be made by Federal Government representatives on behalf the political
constituency.

High-technology, high-budget, high-visibility, publicly supported programs typically offer
far greater political challenge rather than just technical challenge. In terms of engineering
outcomes, the political process can drive significant design and cost factors such as safety,
security, quantity and reliability, and can influence the choice of technologies to be
employed (Maier & Rechtin 2002).

This is in stark contrast to a commercial project or product development perspective, where
a commercial organisation may sponsor the project or product system design, but the
targeted customers may be different commercial businesses and/or the general public

108
UNCLASSIFIED

UNCLASSIFIED
DSTO-TR-3039

consumer, with different purchasing imperatives and different value judgements. The value
judgement of the customer is exercised in terms of whether the product is purchased or not;
the value to the sponsor is determined by factors such as return on investment, and future
prospects for earnings.

8.2 Sourcing Defence Requirements

Responsibility for Defence capability over its life cycle is distributed across different
organisational segments, with broad dispersion of authority as shown previously in Figure
50. However, responsibility for capability implementation is shared between Defence and
industry.

While many process steps may in principle be common between Defence and industry, the
specific implementation of the SE process, including tools and methodologies employed,
can differ significantly. SE practice for defence applications will necessarily differ from that
supporting commercial product development and support, not the least because of the
nature of the Defence contracting environment, where Defence outsources MCE-related
system implementation and some aspects of sustainment to industry. They also differ in
terms of how the originating requirements are obtained.

A key area of differentiation occurs during system definition when sourcing and analysing
needs, and determining system requirements. In Defence, capability guidance is formalised
by Government approval at numerous stages during the capability development process.

Initial capability guidance is solicited through a formal strategic planning process that
precedes the capability development process®; multiple sources of information are
analysed in the context of Government Policy and fiscal guidance outside the auspices of
the DCDH.

The DCDH prescribes a specific start point in the capability life cycle which occurs at the
start of the Needs phase. A specific process is articulated for sourcing requirements through
the Needs and Requirements phases as described in Figures 51, 52, and 53. Here the focus is
on gathering information required to support Government approval at various stages,
including generation and approval of the RFT documentation package.

Typically during these phases, a series of workshops are held with various stakeholders in
Defence to garner their individual perspectives. These perspectives are aggregat