
UNCLASSIFIED

UNCLASSIFIED

An Analysis of SE and MBSE Concepts to Support
Defence Capability Acquisition

Meredith Hue

Defence Systems Integration Technical Advisory
Joint and Operations Analysis Division

Defence Science and Technology Organisation

DSTO-TR-3039

ABSTRACT

System modelling has been an enduring method of enquiry supporting systems analysis and
design synthesis in systems engineering for decades. New generation systems modelling tools
provide sophisticated modelling capability, coined Model-based Systems Engineering
(MBSE). The underpinning fundamentals of systems engineering and MBSE are scrutinised in
the context of the current Defence capability development process and enterprise architecture
initiatives. The capabilities, relevance, and utility of new generation MBSE tools and
methodologies are then examined, contrasting Defence and industry perspectives to reveal
potential implications for Defence. Potential benefits to Defence are highlighted together with
potential issues of concern. Related aspects of software engineering, enterprise engineering
enterprise architecting and operations research are also clarified to assist unravelling some of
the complexities and interdependencies between the respective professional disciplines.

Approved for Public Release

RELEASE LIMITATION

UNCLASSIFIED

UNCLASSIFIED

 Published by

 Defence Systems Integration Technical Advisory
 Joint and Operations Analysis Division
 DSTO Defence Science and Technology Organisation
 PO Box 1500
 Edinburgh, South Australia 5111 Australia

 Telephone: 1300 333 362
 Fax: (08) 7389 6537

 © Commonwealth of Australia 2014
 AR- 016-126
 September 2014

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

UNCLASSIFIED

An Analysis of SE and MBSE Concepts to Support

Defence Capability Acquisition

Executive Summary

 Model-based systems engineering (MBSE) is proffered by modelling tool vendors to
provide improved ability to cope with the more onerous demands of engineering the
larger scale and more complex capability systems aspired to by Defence.

The underpinning fundamentals of systems engineering and MBSE are scrutinised in
this report in the context of the current Defence capability development process and
enterprise architecture initiatives. The capabilities, relevance, and utility of next
generation system modelling tools and methodologies are examined, contrasting
Defence and industry perspectives to reveal potential implications for Defence.

It is evident there are multiple overlapping MBSE perspectives, somewhat similar, but
with different problem foci and different problem solving approaches. If no common
agreement can be achieved, these differences in perspective can introduce considerable
ambiguity within the Defence stakeholder community; this can potentially exacerbate
rather than resolve the problems at hand.

MBSE tool vendors posit that MBSE methodologies can offer improved flexibility,
consistency and traceability, and facilitate easier upgrade of the associated information
set. However, adoption of an effective MBSE approach by Defence would entail a
Defence-wide methodological change to the capability development and acquisition
processes. This has the potential for significant and widespread impact, spanning
corporate management processes, engineering technical processes, governance and the
tool environment within Defence. This change would have an inevitable impact on
resourcing, staffing levels, staff skill-sets, training and support requirements.

Analysis in this report has also revealed a major divide between Defence, as the
customer, and industry as the supplier, in terms of mindsets, skill sets, scale of
endeavour, process requirements, constraints, and responsibilities. The methods of
enquiry and utility of MBSE tools for Defence and industry will therefore differ
markedly between the two mindsets and the differing responsibilities.

The differing utility of systems engineering expertise as perceived by Defence and
industry is also a major differentiator. Due to the distributed responsibilities within the
overall Defence capability lifecycle, Defence does not have a unified systems
engineering approach, which has the potential to decouple the capability development
process from the traditional systems engineering approach. This in turn introduces
additional challenges, and can negate other efforts towards achieving the desired
decision outcomes.

Defence faces a number of challenges in developing and applying sufficient systems
engineering knowledge and experience both at the high-end platform and the System
of Systems engineering levels to effect any major improvement to capability acquisition

UNCLASSIFIED

UNCLASSIFIED

outcomes. The current approach to capability development does not explicitly define
the role of the systems engineer, instead, relying on process description in the Defence
Capability Development Handbook to drive the capability development and
acquisition process. Process governance relies on extensive scrutiny by numerous
stakeholders from many perspectives, however, there is no independent scrutiny from
a systems engineering perspective to ensure the systems engineering precepts are
preserved.

The need to undertake systems analysis is inherent but not explicitly acknowledged
within Defence. Of particular import, the capability development and acquisition
process is document-centric and governance-oriented. Early capability definition
activities are centred on development of the documentation and satisfying governance
requirements rather than following a traditional systems engineering process.

Finally, it is important to distinguish between the concept of a methodology that is
facilitated by a tool environment and the analytical capability of a tool modelling
environment. Established MBSE methodologies such as the Rational Unified Process
for Systems Engineering (RUP SE) and the Object-Oriented Systems Engineering
Methodology (OOSEM) are modelling language dependent and implementation
focused, and thus may offer potential cost savings and efficiencies in industry.
However, they do not address the problem space posed to Defence. These established
methodologies are therefore not necessarily suited for adoption in the Defence context.

Notwithstanding, MBSE tools can provide a powerful analytic capability, particularly
to investigate capability and project interdependencies and propagation of capability
system properties. This is contingent on the system models being set up correctly, used
by knowledgeable practitioners, and the results are used within the correct context.

From a Defence enterprise architecture perspective, the new generation MBSE tools
provide a useful means to create Defence Architecture Framework (DAF) artefacts
using templates. The MBSE tools are evolving to support future developments of the
UK MODAF and US DoDAF towards a common Unified Architecture Framework,
embracing data-centric system modelling concepts. The latest AUSDAF2 view-based
orientation does not provide a pathway towards supporting MBSE data-oriented
constructs, nor the Unified Architecture Framework.

A separate study is recommended to investigate these issues further, including:

• The implications to Australian Defence capability development and acquisition
and Defence enterprise architecture initiatives of the Unified Architecture
Framework proposed developments;

• The feasibility and selection criteria for different information elements for
incorporation in an enterprise-wide repository, and associated knowledge
management process support requirements; and

• Provision of formal methodology guidance to leverage the potential of new-
generation MBSE tools to achieve improved Defence capability acquisition and
integration outcomes.

UNCLASSIFIED

UNCLASSIFIED

Author

Meredith Hue
Defence Systems Integration Technical Advisory
Joint and Operations Analysis Division

Meredith is responsible for providing advice on defence systems
integration principles and practices targeting systemic problems in
Defence, and working with projects to address specific system
integration issues. A former Chief Engineer, she has over 35 years
experience in both industry and Defence as a Systems Engineering
practitioner, in the areas of real-time systems, combat systems and
military communications. Specific interests include Systems,
Systems of Systems, Enterprise Architecting and Systems
Architecting methodologies supporting capability development,
including modelling and analysis of C4ISR architectures.

____________________ __

UNCLASSIFIED

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED
DSTO-TR-3039

UNCLASSIFIED

Contents

1. INTRODUCTION ... 1
1.1 Report Impetus .. 1
1.2 Scope ... 2

2. CONCEPTS OF METHODOLOGY AND THE SE DEVELOPMENT
ENVIRONMENT .. 3
2.1 Significance of Methodology ... 3
2.2 Significance of Scale .. 5

3. SYSTEM MODELLING CONCEPTS.. 8
3.1 Modelling Concepts in Engineering ... 8
3.2 Modelling vs. Simulation .. 9
3.3 What is a Model? ... 10

3.3.1 Real World Models .. 10
3.3.2 Conceptual Models ... 11
3.3.3 Decision Modelling ... 14
3.3.4 Information Model .. 14
3.3.5 Meta-modelling.. 15
3.3.6 Architecture Modelling .. 16
3.3.7 SW Architecture Modelling ... 19
3.3.8 Reference Models .. 22
3.3.9 Reference Architectures .. 25
3.3.10 Design Patterns .. 25
3.3.10.1 Software Design Patterns ... 25
3.3.10.2 SoS Design Patterns ... 27
3.3.11 Model Reuse ... 28

3.4 Programming Language Concepts ... 30
3.4.1 Imperative Programming Language Paradigm 30
3.4.2 Object-Oriented Programming Language Paradigm 30

3.5 Modelling Language Concepts... 32
3.5.1 Language Concepts ... 32
3.5.2 Architecture Description Languages .. 37

4. SYSTEMS APPROACH TO PROBLEM SOLVING .. 45
4.1 Systems Analysis and Design Concept .. 45
4.2 Structured Analysis and Design Paradigm .. 47

4.2.1 General Principles ... 47
4.2.2 Structured Analysis and Design Technique 48
4.2.3 Structured Systems Analysis and Design Method 49

4.3 Object-Oriented Analysis and Design Paradigm ... 50
4.4 Service-Oriented Analysis and Design Paradigm .. 51
4.5 Service-Oriented Modelling and Architecture (SOMA) 52

UNCLASSIFIED
DSTO-TR-3039

5. SYSTEMS ENGINEERING CONCEPTS ... 54
5.1 What is Systems Thinking? .. 54
5.2 What is a System? ... 55
5.3 What is Systems Engineering? ... 56

5.3.1 Systems Engineering Origins and Purpose 56
5.3.2 Basic Notions of SE Process ... 59
5.3.3 Engineering Management Planning and Control Basics 61
5.3.4 Basic Activities and Responsibilities ... 62
5.3.5 Documentation in Systems Engineering .. 67
5.3.6 Formalisation of Systems Engineering as a Discipline..................... 67
5.3.7 Contemporary Systems Engineering .. 72

5.4 The Systems Engineering Process ... 74
5.5 The System Life Cycle ... 81
5.6 The Significance of System Architecture in SE .. 84
5.7 Notions of System Hierarchy .. 84
5.8 System of Interest and Systems of Systems ... 88
5.9 Systems Integration and SoS Integration ... 94
5.10 Human Systems Integration ... 96

6. DEFENCE NOTIONS OF A SYSTEM .. 98
6.1 The Capability System ... 98
6.2 The Materiel System .. 100
6.3 Major Systems ... 100
6.4 Project vs. System Context .. 101

6.4.1 Specification Considerations .. 101
6.4.2 Life Cycle Considerations .. 102

6.5 Defence vs. INCOSE System Definition .. 102

7. CAPABILITY DEVELOPMENT PROCESS CONTEXT .. 103
7.1 Defence Capability Life Cycle Model ... 103
7.2 Defence Capability Planning Guidance ... 103
7.3 Defence Capability Life Cycle Responsibilities ... 103

8. DEFENCE VS. INDUSTRY SE PERSPECTIVE ... 108
8.1 Legal and Political Process Influences .. 108
8.2 Sourcing Defence Requirements ... 109
8.3 Sourcing Industry-based Requirements ... 113
8.4 Adaptability to Change .. 113

9. ENTERPRISE ARCHITECTURE CONCEPTS .. 118

10. DEFENCE ENTERPRISE ARCHITECTURE CONTEXT .. 121
10.1 Defence Architecture Framework .. 121
10.2 Integrated Defence Architecture .. 125

11. MBSE ORIGINS AND CONCEPTS .. 131

UNCLASSIFIED
DSTO-TR-3039

UNCLASSIFIED

11.1 MBSE Impetus ... 131
11.2 MBSE Origins .. 131
11.3 MBSE Tool Capabilities .. 133
11.4 Model-Based Design .. 138
11.5 Model Driven System Design .. 138
11.6 Model Driven Engineering ... 142

11.6.1 Graphical Modelling Techniques .. 142
11.6.2 Rational Unified Process (RUP) ... 142
11.6.3 The RUP SE Process .. 148
11.6.4 Object-Oriented Systems Engineering Methodology (OOSEM)... 151

11.7 Industry Impetus for MBSE .. 153
11.8 INCOSE Impetus for a New MBSE Approach .. 154
11.9 SE Perspective on New Generation MBSE Tool Environment 156
11.10 EAF Perspective on New Generation MBSE Tool Environment 157
11.11 Clarifying MBSE Perspectives ... 158

12. MINDSETS AND PERSPECTIVES ... 160

13. MBSE UTILITY TO DEFENCE .. 163
13.1 Utility Considerations .. 163
13.2 Defence Problem Space Considerations... 163
13.3 MBSE Process Considerations .. 164
13.4 MBSE Tool Considerations – Analytic Capability ... 167
13.5 MBSE Tool Implications ... 176
13.6 MBSE Tool Considerations - Capability Development Process 177
13.7 MBSE Tool Considerations – AUSDAF ... 179
13.8 MBSE Tool Considerations - IDA ... 180
13.9 System Modelling Challenges ... 181
13.10 MBSE Possibilities for Defence ... 182

14. CONCLUSIONS .. 184

15. REFERENCES .. 187

APPENDIX A: TOOLS IN THE SE DEVELOPMENT ENVIRONMENT 204
A.1. Introduction ... 204

APPENDIX B: OBJECT-ORIENTED MODELLING LANGUAGE ORIGIN AND
CONCEPTS .. 210
B.1. Object-Oriented Programming Language Paradigm –

Origin.. 210
B.2. Developing an Object-Oriented Architecture 211
B.3. Object-Oriented Modelling with UML 212
B.4. The 4 + 1 Architecture View using UML2 213
B.5. Systems Modelling Language (SysML) – Origins 216
B.6. Systems Modelling Language (SysML) – Concepts 219

UNCLASSIFIED
DSTO-TR-3039

APPENDIX C: UML AND SYSML COMMON TERMS AND DIAGRAMS 221
C.1. Object-Oriented Problem Solving – Overview 221
C.2. Important Terms and Concepts ... 221
C.3. Tool User Interface ... 223
C.4. UML Diagrams ... 226

C.4.1 UML2 Object and Class and Diagrams 226
C.4.2 UML2 Package Diagram ... 227
C.4.3 UML2 State Chart and Activity Diagram 228
C.4.4 UML2 Sequence Diagram ... 230
C.4.5 UML2 Communication Diagram 231
C.4.6 UML2 Timing Diagram ... 232
C.4.7 UML2 Interaction Overview Diagram 233
C.4.8 UML2 Component Diagram .. 234
C.4.9 UML2 Deployment Diagram 235
C.4.10 UML2 Composite Structure Diagram 236
C.4.11 UML2 Use Case Diagrams .. 237

C.5. SysML Diagrams .. 237
C.5.1 SysML System Block Definition Diagram 237
C.5.2 SysML Requirements Diagram 239
C.5.3 SysML Package Diagram .. 240
C.5.4 SysML Internal Block Diagram 241
C.5.5 SysML Parametric Diagram ... 242
C.5.6 SysML Use Case Diagrams ... 243

APPENDIX D: ZACHMAN FRAMEWORK FOR ENTERPRISE
ARCHITECTURE OVERVIEW ... 244
D.1. Introduction ... 244
D.2. Zachman Framework Reference Model 244

APPENDIX E: RATIONAL UNIFIED PROCESS FOR SYSTEMS
ENGINEERING (RUP SE) OVERVIEW .. 250
E.1. Introduction ... 250
E.2. RUP SE Representations ... 250

APPENDIX F: UML TOOL SUPPORT FOR DODAF .. 254

UNCLASSIFIED
DSTO-TR-3039

UNCLASSIFIED

Abbreviations and Acronyms

ADF Australian Defence Force
ADGE Air Defence Ground Environment
ADL Architecture Description Language
ADM Architecture Development Method
AGA Australian Government Architecture
AGIMO Australian Government Information Management Office
ANSI American National Standards Institute
API Application Program Interface
ARM Architecture Review Meeting
ATM Automatic Teller Machine
AUSDAF Australian Defence Architecture Framework (also known as DAF)
BOK Body of Knowledge
BPMN Business Process Modelling Notation
BRM Business Reference Model
C4ISR AF Command, Control, Communications, Computing, Intelligence,

Surveillance and Reconnaissance Architecture Framework
CAD Computer-aided Design
CADM Core Architecture Data Model
CAE Computer-aided Engineering
CASE Computer-aided Software Engineering
CCA Circuit Card Assembly
CDD Capability Development Documentation
CDG Capability Development Group
CDRL Contract Data Requirements List
CI Configuration Item
CIOG Chief Information Officer Group
COE Common Operating Environment
CORBA Common Object Request Broker Architecture
COTS Commercial-off-the-Shelf
DAF Defence Architecture Framework (also known as AUSDAF)
DCDH Defence Capability Development Handbook
DCG Defence Capability Guide
DCP Defence Capability Plan
DFD Data Flow Diagram
DM2 DoDAF Meta-Model
DMO Defence Materiel Organisation
DND Department of National Defence, Canada
DNDAF Department of National Defence Architecture Framework

(Canada)
DoDAF Department of Defense Architecture Framework (U.S.)
DRM Data Reference Model
EA Enterprise Architecture
EAF Enterprise Architecture Framework
ECIA Electronic Components Industry Association

UNCLASSIFIED
DSTO-TR-3039

e.g. For example
EIA Electronic Industries Alliance (known as Electronic Industries

Association prior to 1997)
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
FEA Federal Enterprise Architecture
FEAF Federal Enterprise Architecture Framework (U.S.)
FIC Fundamental Inputs to Capability
FPGA Field Programmable Gate Array
FPS Function and Performance Specification
FSR Force Structure Review
GEA Gartner Enterprise Architecture
GIG Global Information Grid
HSI Human Systems Integration
HW Hardware
ICT Information and Communications Technology
IDA Integrated Defence Architecture
i.e. That is
IEC International Electro-technical Commission
IEEE Institute of Electrical and Electronic Engineering
INCOSE International Council on Systems Engineering
IPPD Integrated Product and Project Development
IPT Integrated Project Team
ISO International Standards Organisation
ISR Intelligence, Surveillance and Reconnaissance
IT Information Technology
JCIDS Joint Capabilities Integration Development System
M3 MODAF Meta-Model
MBSE Model-Based Systems Engineering
MDA Model-driven Architecture
MDD Model-driven Design
MDE Model-driven Engineering
MDSD Model-driven System Design
MODAF Ministry of Defence Architecture Framework (UK)
MOTS Military Off-the-Shelf
NAF NATO Architecture Framework
NATO North Atlantic Treaty Organisation
NCOIC Network Centric Operations Industry Consortium
NCOSE National Council on Systems Engineering (in the US)
NCW Network Centric Warfare
NCWIIS Network Centric Warfare Integration and Implementation

Strategy
NIF NCOIC Interoperability Framework
OCD Operational Concept Document
OMG Object Management Group
OMT Object Modeling Technique
O-O Object-Oriented

UNCLASSIFIED
DSTO-TR-3039

UNCLASSIFIED

OOA Object-Oriented Analysis
OOAD Object-Oriented Analysis and Design
OOD Object-Oriented Design
OOSE Object-Oriented Software Engineering
OOSEM Object-Oriented Systems Engineering Methodology
OR Operations Research
OT&E Operational Test and Evaluation
OTS Off-the-Shelf
PCB Printed Circuit Board
PMSA Program of Major Service Activities
PMTE Process Methods Tools Environment
PRM Performance Reference Model
RFT Request for Tender
RUP Rational Unified Process
SADT Structured Analysis and Design Technique
SDL System Description Language
SE Systems Engineering
SESA Systems Engineering Society of Australia
SETE Systems Engineering Test & Evaluation Symposium
SI Systems Integration
SIE Single Information Environment
SOA Service-oriented Architecture
SOAD Service-oriented Analysis and Design
SOMA Service-Oriented Modelling and Architecture
SOP Standard Operating Procedure
SoS System of Systems
SoSE System of Systems Engineering
SoSI System of Systems Integration
Specs. Specifications
SRM Service Reference Model
SSADM Structured Systems Analysis and Design Method
STEP Standard for the Exchange of Product model data
SW Software
SysML System Modelling Language
TCD Test Concept Document
TOGAF The Open Group Architecture Framework
TRM Technical Reference Model
UAF United Architecture Framework
UHF Ultra High Frequency
UK United Kingdom
UK MOD United Kingdom Ministry of Defence
UML Unified Modelling Language
UPDM Unified Profile for DoDAF and MODAF
U.S. United States of America
US DoD United States Department of Defense
VACRM Verification Assurance Cross-Reference Matrix
VOA Variability-oriented Analysis

UNCLASSIFIED
DSTO-TR-3039

V&V Verification and Validation
WBS Work Breakdown Structure
XMI XML Metadata Interchange
XML Extensible Markup Language
ZF Zachman Framework for Enterprise Architecture

UNCLASSIFIED
DSTO-TR-3039

1
UNCLASSIFIED

1. Introduction

1.1 Report Impetus

Pioneered by the Defence and Aerospace sectors in the 1940s, Systems Engineering (SE)
practice has evolved significantly in recent decades as systems engineers have both
enthusiastically progressed the development of new computer-based technology, then
embraced this new technology to enhance their own SE development environments.

Despite these changes, systems modelling has remained an enduring method of enquiry
supporting systems analysis and design synthesis in SE. New generation system modelling
tools seek to extend the SE development environment even further by providing a more
sophisticated systems modelling capability, coined MBSE (model-based systems
engineering) in its most recent form, suggesting that another paradigm shift in SE might be
in the offing.

From a Defence perspective, in recent years, capability development and acquisition
processes have strained to cope with the increasing scale, complexity, and interdependency
of capability as Defence has embraced the onset of the information age and adopted new
concepts of networked warfare. MBSE is proffered by modelling tool vendors to provide
improved ability to cope with the more onerous demands of engineering the larger scale
and more complex systems as aspired in Defence.

To improve system integration outcomes, it is important to understand what is so difficult
about systems engineering and Defence capability development. An inherent challenge of
developing integrated systems that involve multiple technical disciplines is that each
professional may be an expert in their respective field, but they will not be expert in the
other disciplines. However, dependencies are created between components across different
technical disciplines as the components interact. In order to properly design for this
interaction, some technical professionals, typically the responsibility of the systems
engineers in particular, must have some knowledge of the other technical disciplines.

Escalating design complexity is reported as one of the top challenges of system design
(Boucher & Kelly-Rand, 2011). Lack of cross-functional knowledge and significant system
complexity means that it can become very difficult to predict system behaviour. This means
identifying system level problems early in development can also be a problem. This is a
significant source of risk. Problems arising from system complexity are exacerbated by lack
of integration of tools and methods across the technical disciplines, and differences in
cultures, work practices, and semantics.

The utility or otherwise of SE fundamentals and MBSE-specific concepts, methodologies
and tools for Defence purposes will be shaped by a number of factors, including:

• the extent to which SE and MBSE concepts are relevant to Defence;

• compatibility with the Defence’s capability development process1;

• governance requirements;

• enterprise architecture (EA) initiatives; and

1 The Defence capability development process is described in (DCDH 2012).

UNCLASSIFIED
DSTO-TR-3039

2

UNCLASSIFIED

• other policy and regulatory directives, as well as required competencies of Defence
personnel.

This report firstly examines the underpinning fundamentals of SE and MBSE, then
compares them to current Defence practice and reports on their relevance. The heritage of
key concepts is also clarified to highlight their significance in shaping current notions of SE
and MBSE, from both Defence and industry perspectives, highlighting similarities and
dissimilarities, and again reporting on their significance. The capabilities of new generation
MBSE tools and methodologies are then examined, contrasting Defence and industry
perspectives, to reveal potential implications for Defence. Potential benefits to Defence are
highlighted, together with potential issues that might arise to constrain this potential.

Related aspects of software (SW) engineering, enterprise engineering2, enterprise
architecting and operations research are also clarified to assist unravelling some of the
complexities and interdependencies between the respective professional disciplines.

1.2 Scope

This report places particular emphasis on providing a baseline for fundamental SE concepts
and terminology, particularly focussing on modelling methodologies in relation to the SE
development environment. The relevance and utility of these are then considered in the
Defence context. While the report refers to a number of specific concepts, methodologies,
and tools, it does not aspire to provide particular detailed explanation on each of these.
Instead, further information can be found in the cited references.

While the report aims to introduce and clarify relationships between various methodologies
and the supporting tool environment to illustrate particular principles, it does not intend to
provide a comprehensive review of MBSE tools and/or tool vendors, nor details of
individual tool capability. A more comprehensive review of MBSE methodologies is
provided in (Estefan 2008). A sample list of tools and vendors is provided in Appendix A of
this report. Detailed information on the respective tools and supporting White Papers can
typically be found on the respective vendor’s websites.

2 The term “enterprise engineering” is sometimes used interchangeably with “enterprise architecture”,
depending on the enterprise architecture framework. The focus, typically, is on the business operations of the
enterprise rather than a particular engineering process or system. In particular, the US Federal Government uses
the term as applied to their Federal Enterprise Architecture Framework (FEAF) (FEAF 2001).

UNCLASSIFIED
DSTO-TR-3039

3
UNCLASSIFIED

2. Concepts of Methodology and the SE Development
Environment

2.1 Significance of Methodology

As Mar and Morais astutely noted some ten years ago, SE can be difficult to implement if
the words and framework are not clearly understood by all parties involved (Mar & Morais,
2002). While many aspects of SE, including tools and methodologies, have evolved over the
decades, the underlying fundamental concepts of SE have not changed, despite the passage
of time (Mar 1997).

Adopting an MBSE approach in Defence is therefore not simply a matter of purchasing
MBSE tool licenses and tool-user training courses by individuals at their own discretion.
Leveraging the power of the new generation MBSE tools will require a much more
considered approach in the Defence context, underpinned by a strong foundation of SE
fundamentals.

When considering the utility of models and methods of model development to inform the
SE process, it is essential to have a common understanding of the SE terminology and
inferred meaning of the terms used, in the correct context. A useful starting point is to
understand how models might relate to SE, and what is model-based systems engineering
(MBSE).

In the same way that SE practice is undertaken, MBSE practice also manifests in a practical
sense in terms of various methodologies that can be applied to different classes of
engineering problems in particular environmental settings. An MBSE methodology can be
considered as a collection of related processes, methods and tools used to support the
discipline of SE in a “model-based” or “model-driven” context (Estefan 2008).

Here, the methodology is not just a collection of specific process steps but is an aggregation
of several constituent parts as shown in Figure 1 where:

• A Process (P) is a logical sequence of tasks performed to achieve a particular
objective, i.e. it defines “WHAT” is to be done without specifying “HOW” each task
is to be performed.

• A Method (M) is a technique for performing a task to achieve a particular objective,
i.e. it defines the “HOW” each task is to be performed. The term “method” is often
used interchangeably with the terms “technique”, practice” and “procedure”.

• A Tool (T) is an instrument that, when applied to a particular method, can enhance
the efficiency of the task, provided it is properly applied, and by someone with
appropriate skills and training.

• The Environment (E) comprises the surroundings, the external objects, and
conditions or factors that can influence the actions of an object, individual person, or
group. These factors can be social, cultural, personal, physical, organisational or
functional (Estefan 2008), (Sage 1992).

UNCLASSIFIED
DSTO-TR-3039

4

UNCLASSIFIED

Figure 1. PMTE Elements and the Impact of Technology and People (Estefan 2008).

Notably, a process can be structured in a hierarchy which provides several levels of process
aggregation - to support analysis and synthesis at different levels of abstraction to support
different decision-making needs.

At any level of aggregation, process tasks are performed using methods. Since each method
is also a process itself, comprising a sequence of process steps to be performed for that
particular method, the “HOW” at one level of abstraction becomes the “WHAT” at the next
lower level. This notion of recursiveness is widespread in SE, imbuing the ability to present
either higher levels of abstraction with broader scope, or increased fidelity of representation
with much narrower scope, without compromising the integrity of the description of
individual piece-parts, the nature of their interactions, the relationships between the piece-
parts, or the interactions with the external environment.

Importantly, the utility of the methodology is dependent on the people involved; the state
of technology pertaining to both the SE development environment and the system
undergoing engineering development; and the influence of the external environment, as
well as the nature of the problem itself to be solved.

A Project Environment would thus be expected to integrate and support the use of the
methods and tools used on a particular project to address a particular engineering problem,
mindful of the skills and corporate resources available and suitable to bring to bear for the
task, and the state of technology envisaged to drive the engineered system solution.

A Defence-wide methodological change to capability development and acquisition thus has
the potential for significant and wide-spread impact, spanning corporate management
processes, engineering technical processes, governance, and the tools environment, along

PROCESS
(defines “WHAT”)

METHODS
(defines “HOW”)

TOOLS
(enhances “WHAT” & “HOW”)

ENVIRONMENT
(enables/disables “WHAT” & “HOW”)

supportsupported by

supportsupported by

supportsupported by

PEO
PLE

TE
C

H
N

O
LO

G
Y

ca
pa

bi
lit

ie
s

&
lim

ita
tio

ns
Know

ledge, skills and
abilities

UNCLASSIFIED
DSTO-TR-3039

5
UNCLASSIFIED

with the inevitable impact on resourcing, staffing levels, staff skill-sets, training and
support requirements. It is therefore crucial to understand what concepts are enduring,
what change is necessitated to accommodate changing Defence needs and constraints, and
what additional change may be precipitated if an MBSE approach was adopted in Defence.

2.2 Significance of Scale

The effectiveness or otherwise of a particular methodology to support acquisition of a new
Defence capability system, or a major upgrade, will to a large extent, be determined by the
scale and complexity of the problem to be addressed, and the nature of the engineering
endeavour required.

For the most part, Defence capability systems are very large scale and very complex, costing
many millions of dollars, and potentially affecting many thousands of Defence personnel,
whether they are operators or maintainers. These systems can range in size from major
warfighting platforms (e.g. submarines, tanks, aircraft), to fleets of specific equipment (e.g.
UHF radios, sonobuoys, BDU-33 practice bombs), to individually licensed desktop
computing applications such as Microsoft Office™.

The scale of engineering development can span a huge range of activity, from:

• designing an individual integrated circuit such as a custom processor or
microcontroller;

• programming an integrated circuit such as a Field Programmable Gate Array
(FPGA);

• designing a printed circuit board (PCB) containing devices such as microprocessors,
microcontrollers and FPGAs;

• programming a microprocessor with embedded SW;

• designing equipment which includes multiple circuit card assemblies (CCAs)
housed in an equipment enclosure or chassis, which may or may not be
programmable;

• designing a dedicated purpose SW application which can be hosted on a general
purpose desktop computer or operated in a distributed manner across a network;

• designing a dedicated SW application to be hosted on dedicated HW within a
military system; to

• designing a large scale military platform.

A simple but useful categorisation in terms of scale of engineering endeavour is provided in
Table 1 (adapted from Landherr 1997), where Defence capability systems are comprised of
multiple assemblies of black boxes forming subsystems, systems, and systems of systems as
described in Section 6.

UNCLASSIFIED
DSTO-TR-3039

6

UNCLASSIFIED

Table 1. Scales of Engineering Development.

Activity Scope Description

HW SW Mechanical

Programming
level

- X - Ability to modify the source code but not to
change the fundamental system design.

Circuit Card
Assembly level

X - X Ability to assemble different devices and/or
sub-assemblies, and/or programmed or non-
programmed electronic devices to modify the
circuit card capability, but not to change the
fundamental system design.

SW Linkage
level

- X - Ability to link selected SW modules together
to produce different versions of the executable
program.

Equipment
Assembly level

X - X Ability to assemble different HW modules
(either programmed or non-programmed
circuit card assemblies) together to change the
system configuration.

Executable SW
level

- X - Ability to copy and load executable programs
onto host computing platforms, and change
the system configuration, but not to modify the
program.

“White Box” X X - Ability to execute embedded programs and to
perform diagnostic functions. No ability to
change the system configuration.

“Black Box” X X X Ability to execute embedded programs
without any visibility of the internal
composition of the system. No ability to
change the system configuration.

System Design
level

X X X Ability to fundamentally modify the system.

System of
Systems level

- - - No ability to fundamentally modify the
hardware, software, or mechanical aspects of
each system. Ability to apply SoS specific
policy and provide guidance to influence
system level design or purchase of each
component system within the SoS.

Enterprise - - - No ability to fundamentally modify the
hardware, software, or mechanical aspects of
each system. Ability to apply pan-
organisational policy and provide guidance to
influence system level design or purchase of
each component system within the policy
remit.

UNCLASSIFIED
DSTO-TR-3039

7
UNCLASSIFIED

The notion of the “Black Box” in Table 1 is significant in that it is a configuration item (CI)
of equipment or an assembly of equipment which has a specific system identity and known
configuration, and comes within specific SE life cycle management purview over the life-of-
type of the Black Box. Subsequent assemblies of “Black Boxes” to form larger Defence
systems, SoS, and Defence capability systems may or may not necessarily be identified as
separate configuration items in their own right, with specific system identity, managed
configuration, and with separate discernible system life cycle management.

Each level of engineering activity of Table 1 requires engaging different skill sets in
different engineering development environments, with different process support,
methodologies and tools. SE principles are applicable at all these scales of development,
and across the range of engineering-oriented technologies, whether it is mechanical,
electrical, electronic HW, SW or a combination thereof. However, the instantiation of the SE
process in terms of specific methods and procedures, and degree of formality in process
application (e.g. repeatability of process) will differ to suit the scope and nature of the
development activity required, the extent of risk to be managed, and to meet any regulatory
or governance requirements.

UNCLASSIFIED
DSTO-TR-3039

8

UNCLASSIFIED

3. System Modelling Concepts

“All models are wrong but some are useful.” George Box, 1979.

3.1 Modelling Concepts in Engineering

Before exploring the more elaborate notion of MBSE as it might apply to Defence, it is
essential to establish a common understanding of some basic notions of systems modelling
within the engineering disciplines.

In simple terms, a systems model in the engineering context is a semantically closed
abstraction of a system, providing a simplified representation of reality (or potential
reality). Abstraction is the suppression of irrelevant detail. Abstraction is an intrinsic
response of the human mind as it relentlessly seeks to make sense of perceptions. These
abstractions can form in various ways, including making generalisations, deleting detail,
and forming distortions (i.e. different perspectives) (Dickerson & Mavris 2010).

Models are formed to enable a better understanding of a much more complex situation
under consideration from a particular perspective. They are especially useful to represent
particularly complex matters because the human mind cannot comprehend all the intricate
and implicit interactions and interdependencies except for the simplest of problems
(Rosenblueth & Norbet 1945), (Lieberman 2003a), (Friedenthal et al. 2008).

Models can be characterised in the way they are used, for example:

• they can be used prescriptively, to specify behaviour or a course of action;

• they can be used predictively, to predict possible future outcomes in light of
different decisions or actions, or

• they can be used descriptively, to explain or describe a problem, phenomena or
system to assist understanding (Pidd 2004).

Models have been used extensively for decades to investigate engineering-related
problems, including:

• to help visualise a system or part of a system as it is, or how it is required to be;

• from an architectural perspective, to specify the structure or behaviour of a system,
or describe how the parts might relate to each other, or behave dynamically with
each other;

• to provide a template to guide the construction of a system, or to inform how to
combine the parts together;

• to undertake explicit formal enquiry to identify alternate courses of action or
possible outcomes to assist in decision making in relation to systems analysis and
systems synthesis (i.e. systems design);

• to document design decisions that have been made during the development of a
new system or parts of a system (Rechtin 1991), (Booch et al. 1999), (Maier & Rechtin
2002).

UNCLASSIFIED
DSTO-TR-3039

9
UNCLASSIFIED

Models can take on many different forms: from a simple sketch to conjecture or
communicate key ideas; to sets of equations to implement algorithms; to models which can
be used to generate documentation and /or SW code; to models which can provide
extensive engineering process support.

Computer-based SE and SW engineering tools have been used to support requirements
management, systems analysis and systems synthesis, configuration management,
automated document generation, and automated SW code generation since the 1980s.
Graphical modelling tools have also evolved to replace text-based tools to help manage or
reduce the complexity of expression to improve communication between system
stakeholders.

A number of specific modelling techniques have been published over the years to address
certain classes of problems, particularly relating to SW development. Formal methods and
supporting computer-based modelling tools have evolved significantly from ad hoc
beginnings to systematise systems analysis and systems synthesis in particular,3 to cope
with increasing complexity and ambiguity in the systems problems taken on, and the
commensurate complexity inherent in the resultant system solutions.

Models are particularly useful in engineering to understand or predict properties or
characteristics, behaviour, functional performance, and logical consistency to assist with
system implementation. They can also be used to describe system processes, data, and data
flows. Their utility stems from the ability to use precise modelling constructs and process
descriptions to improve precision of expression and avoid the ambiguity that is often found
in natural language descriptions (Hawryszkiewycz 1988), (Rechtin 1992).

However, the utility of a model is dependent on a number of considerations, including:

• the ability to acquire valid source information relating to the key characteristics and
behaviours of interest;

• understanding the impact of simplifying approximations and assumptions;
achieving the fidelity required; and

• establishing the validity of the model outputs.

Models can be manipulated to reduce the misfit between the model and the real world, but
it requires real-world measurement to test the model prediction or explanation against
measurements or observations to provide validation of the model. However, this may not
necessarily be feasible, particularly for those circumstances where the input conditions
cannot be adequately controlled, or the input and control conditions cannot be replicated.

3.2 Modelling vs. Simulation

It is also requisite to understand the difference between the concepts of modelling and
simulation in an engineering context, where simulation is typically an imitation of a real-
world process or system over time. The act of simulating something first requires that a
model be developed; the model representing the key characteristics or behaviour of the
selected physical or abstract system or process under scrutiny. It is then possible to show
anticipated effects of alternate conditions and courses of action (Rechtin 1991), (SEF 2001).

3 This is sometimes referred to as “systems analysis and design”, as used in (Blanchard & Fabrycky 1998).

UNCLASSIFIED
DSTO-TR-3039

10

UNCLASSIFIED

Models and the process of simulation can provide a more timely and resource-effective
means of obtaining factual information (and therefore providing underpinning rigour) in
lieu of building and testing prototype alternatives to allow a system design to converge to
an acceptable system solution.

The primary purpose of simulation in SE is to explore the effects of alternative system
characteristics on system performance without building and testing real-world alternatives.
This might otherwise be a time consuming and costly process, and may not necessarily be
feasible to undertake. Modelling and simulation can therefore offer an attractive alternative
to expedite investigations in pursuit of the most cost-effective and swift implementation in
a resource constrained SE development environment. Heuristically, cost escalates with
schedule escalation. This can arise through reduced efficiency in implementation, and/or
increased opportunity cost of lost product sales due to a potential reduction in the
marketing window of opportunity.

The importance of systems modelling and simulation to SE is exemplified where typically, a
major part of the design process relies on decisions made based on a model of the system
(either current or proposed alternative) rather than decisions derived from a real-world
system instantiation (Blanchard & Fabrycky 1998).

3.3 What is a Model?

3.3.1 Real World Models

What is meant by the term model in the engineering context? In its most basic form, a
model is anything used to represent anything else for the purpose of informing and
facilitating understanding about the subject matter they represent; whether the subject
matter relates to the real world or whether it is conceptual. Models are used in many
scientific disciplines, ranging from hard science to social, political, economics and
management sciences for this same purpose. Models can thus take on many forms, from
representing systems, processes, information, and operations, to representing organisations,
depending on the nature of the enquiry. Many of these can be applied to systems problems
(Blanchard & Fabrycky 1998), (Lieberman 2003b).

It is import to distinguish between what models are, and what the models are models of,
when applied to systems problems. In the real world, for example, a physical model of a car
can be constructed as a scale 1:10 representation. Its purpose may range variously:

• to convey alternate possible car design configurations for evaluation of aesthetics
and functionality prior to selection of the preferred alternative;

• as a representation of a new car model about to be launched on the market for
advertising purposes; or

• to simply to demonstrate the operation of a new door opening feature.

In a simple example of a model car, the detail included in the model will differ according to
the purpose the model was constructed, whether for aesthetic evaluation, functional
evaluation, or market evaluation; to decide on future possibilities, or to highlight current or
past features.

In the same vein, a weather map can be regarded as a model of the weather patterns over a

UNCLASSIFIED
DSTO-TR-3039

11
UNCLASSIFIED

designated geographic region, and can include a wide variety of information. Model
parameters can include, for example, measured or predicted pressure, wind speed and
direction, temperature, precipitation, humidity, river flows, high and low tide levels and
times, and sunrise and sunset times. A weather map published in a newspaper can report
past or present measured weather conditions, or depict future predicted weather
conditions, depending on the purpose the weather map was created.

However, it is important to note that the model representation in the newspaper only
reports the parameter values determined by alternative means; the tool used to draw the
weather map does not necessarily provide the ability to generate the parameter values
displayed in the model. Similarly, the nature of any relationships between parameters
cannot be inferred from the information displayed within the model unless a definition of
the type of relationship is incorporated in the modelling technique - even though
relationships may exist between different parameters. The weather map is an example of a
non-architectural model.

In each of these instances, a common feature is the correspondence with the real world. The
value of the model is proportional to how well it exemplifies a past or present actual real-
world implementation, or, potential future real-world implementation, in terms of the
information presented for the purpose intended, or understanding sought.

3.3.2 Conceptual Models

Conceptualisation from observation of physical existence and conceptual modelling are the
necessary means people employ to think and solve problems. Concepts are used to convey
semantics using natural language based communication. If the concepts in the mind of one
person are very different to the concepts in the mind of the other then there is no shared
model of the topic, and therefore no effective communication. Effective human
communication entails:

• Translation of one person’s ideas into the other’s understanding;

• Embedding those ideas within the other’s mental model;

• Maintaining those ideas with constant and consistent reinforcement; and

• Verifying the validity of the ideas and their translation for further action (Rechtin
1991).

The greater the number of people involved in the conceptual activity, the greater the
challenge in arriving at, and maintaining sufficient shared understanding. Since a concept
might map to multiple semantics by itself, an explicit formalisation is usually required for
identifying and locating the intended semantic from several candidates to avoid
misunderstandings and confusion in the conceptual models. This is critically important
from an engineering perspective to ensure the right outcome is achieved for the right
problem (Pidd 2004).

Conceptual models can be used to explore many different types of concepts, ranging from
different views of stakeholders in an organisation to knowledge representation of subject
matter experts, to explore different representations of “truths” or possible consequences
from different perspectives.

When applied to systems problems, a model of a concept is quite different to a real-world

UNCLASSIFIED
DSTO-TR-3039

12

UNCLASSIFIED

model in that it does not need to have real-world correspondence to be a good model.
Conceptual models are typically used by analysts who are not concerned with the truth or
falsity of the concepts being modelled, but wish to clarify understanding by problem
structuring or articulating different notions or perspectives (Gregory 1993).

In SE, conceptual modelling is used to promote effective human communication between
client and system designer. A dialogue typically ensues between the client and the system
designer to exchange ideas of what the system might do, and what it might look like. In the
process, the conceptual model takes form and evolves to provide the basis from which
subsequent design activity can be undertaken (Rechtin 1991).

A plethora of conceptual models can be drawn from numerous scientific disciplines to
undertake systems analysis to inform system design; a snapshot of which is provided in
Table 2 4.

Table 2. Conceptual Model Types.

Conceptual Model
Type

Description

Mental Models A representation of something in the mind. Can also be a non-
physical external model of the mind itself (Lieberman 2003a),
(Jones et al. 2011).

Logical Models A relational structure for which the interpretation of a logical
sentence (in the predicate calculus) becomes valid. The
relational structure is referred to as a model of the sentence. A
relation is an assignment of a mathematical function of one or
more arguments (or logical variables) whose range is the set of
truth values {true, false} (Dickerson & Mavris 2010).

A type of interpretation under which a particular statement
(i.e. interpretation of a logical sentence) is true (Taha 2002).
Two broad categories:

• Those which only attempt to represent concepts
(e.g. mathematical models) (Chang et al. 1990)

• Those which attempt to represent physical objects
and factual relationships (e.g. scientific models).

Mathematical Models Can take many different forms using a variety of abstract
structures (e.g. dynamical systems representations; statistical
models; differential equations; game-theoretic models).

Can also be a theoretical construct that represents processes by
a set of variables and a set of logic and/or quantitative
relationships between them. The model can have various
parameters which can be changed to create various properties

4 [online] URL http://en.wikipedia.org/wiki/Conceptual_model. (Rechtin 1991) and (Blanchard & Fabrycky
2010) also provide a useful discussion on the role of modelling in supporting systems analysis in system
engineering. (Pidd 2004) provides a useful discussion from a complementary operations research perspective.

http://en.wikipedia.org/wiki/Conceptual_model

UNCLASSIFIED
DSTO-TR-3039

13
UNCLASSIFIED

(Taha 2002), (Pidd 2004), (Dickerson & Mavris 2010).

Scientific Models Provide a simplified abstract view of the complex reality. Can
represent empirical objects, phenomena, and physical
processes in a logical way. Seeks to formalise principles of the
empirical sciences using an interpretation to model reality.

Statistical Models Provide a probability function for generating data (Taha 2002).
These can take two forms:

• parametric models - where the probability
distribution function has variable parameters.

• non-parametric models - provides a distribution
function without parameters, and is only loosely
confined by assumptions.

System Architecture
Models

Describe mutually interdependent systems concepts of:

• structure – what major elements are, how they are
organised and decomposed, functionality,
interfaces, and ties to system requirements

• layout – physical arrangement, packaging and
location of design aspects

• behaviour – system dynamics response to events to
providing a basis for reasoning about the system.

Can represent multiple views of a system by using two
different approaches:

• non-architectural approach – a model is created for
each view

• architectural approach – single integrated model is
created encompassing all required views.

Can be used to model concepts or real world objects and
events (Eeles 2006a), Maier & Rechtin (2002).

Data Models Also known as data structure, in SW engineering, is an abstract
model that describes how data is represented and accessed.

Formally define data elements and relationships between data
elements for a domain of interest.

Provide various means of describing system data (in SW
engineering and enterprise engineering):

• Entity-Relationship Model – an abstract and
conceptual representation of data to develop a
conceptual schema or semantic data model of a
system (e.g. relational database) (Chen 1976).

• Domain Model – used to depict the structural
elements and their constraints within a domain of
interest (e.g. problem domain), including the

UNCLASSIFIED
DSTO-TR-3039

14

UNCLASSIFIED

various system entities, their attributes and
relationships, with constraints governing the
conceptual integrity of the structural model
elements comprising the problem domain. Domain
model can include a number of conceptual views
where each view is relevant to a particular subject
area of the domain or to a particular subset of the
domain model that is of interest to a stakeholder of
the domain model.

Can be used to model concepts or real world objects and
events (Cantor 2003a).

3.3.3 Decision Modelling

Insight can also be gained using systems analysis by formulating and manipulating
decision models to determine how changes in those aspects of the decision under control of
the decision maker affect the modelled system. This allows evaluation of a probable
outcome of a decision without disturbing the current operational system itself (Taha 2002).

Models for operational decisions and design decisions are abstractions of the system under
study. However, like all abstractions, models can make many assumptions – about the
operating characteristics of the components; about the behaviour of people; and about the
nature of the environment. The implications of these assumptions must be understood and
evaluated when the models are used to aid decision making in design and operations.

Notably, a decision model cannot be classified as accurate or inaccurate in any absolute
sense; to validate model manipulation would require reality manipulation. A decision
model is therefore difficult to test except for an intuitive check for reasonableness
(Blanchard & Fabrycky 1998).

3.3.4 Information Model

An information model is a different but important concept in systems and SW engineering.
An information model is an abstract formal representation of concepts or real-world objects,
and the relationships, constraints, rules, and operations to specify data semantics for a
chosen domain. In SW engineering, it is typically used to provide a sharable, stable and
organised structure of knowledge in the domain context.

An information modelling language is used to specify the notations representing the
information in the information model. The ICAM5 Definition (IDEF) Language IDEF1X
graphical representation in particular, is widely used in systems and SW engineering.

 IDEF1X is a data modelling language standard for the development of semantic data
models. It used to produce a graphical diagram that represents the structure and semantics
of information within a domain. The basic constructs of an IDEF1X model are:

1. Things about which data is kept, such as people, places, ideas, events, represented

5 Published as Federal Information Processing Standards Publication 184 (IDEF1X 1993)

UNCLASSIFIED
DSTO-TR-3039

15
UNCLASSIFIED

by a box;

2. Relationships between those things, represented by lines connecting the boxes; and

3. Characteristics of those things represented by attribute names within the box.

The basic constructs of an IDEF1X model are shown in Figure 2 (IDEF1X 1993).

Figure 2. Basic IDEF1X Modelling Concepts

Importantly, the information model provides formalism to the description of a problem
domain without constraining how that description is mapped to an actual implementation
in software. There may be many mappings of the information model; these are called data
models, regardless of whether they are object models, entity relationship models or XML
schemas.

3.3.5 Meta-modelling

Meta-modelling is a related concept, often used in mathematics, computing science, SE and
SW engineering, entailing the analysis, construction and development of the frames, rules,
constraints, models and theories applicable and useful for modelling a predefined class of
problems.

A meta-model is a higher-level abstraction of a model, highlighting the properties of the
model within a certain domain. A model conforms to its meta-model in the way a computer
program conforms to the grammar of the programming language in which it is written6.

Meta-models can be viewed from three different perspectives:

• As a set of building blocks and rules to build models;
• As a model of a domain of interest; and

6 [online] URL: http://en.wikipedia.org/wiki/Metamodeling.

ConstructConcept

“Things”

Relationships
Between Those

“Things”

Characteristics
of those
“Things”

http://en.wikipedia.org/wiki/Metamodeling

UNCLASSIFIED
DSTO-TR-3039

16

UNCLASSIFIED

• As an instance of another model7.

Meta-models are closely related to ontology, which is also used to describe and analyse
relationships between concepts, providing specific grammar, controlled vocabulary (non-
redundant and unambiguous) and explicit semantics to express something meaningful
within a particular domain. When a meta-model is used as a model for a domain of interest,
the ontology is the meta-model together with the data set in the domain of interest.

An example of a meta-model is provided in Figure 38.

Figure 3. Information Meta-model with Four Different Meta-objects and their Relationships.

3.3.6 Architecture Modelling

The notion of architecture modelling, drawing initially from the principles of IEEE 1471,
then subsequently superseded by ISO/IEC/IEEE 420109, has become more prominent over
the last ten years to supplement classical systems analysis and design activity. The impetus
stems from the need to simplify knowledge representations of very large-scale complex
systems and systems-of-systems (SoS) whilst preserving the integrity of the underlying
(and more complex) relationships (Maier & Rechtin 2002).

Architecture-based modelling enables a specific focus to be cast on a set of prescribed
relationships across a domain of interest, which can contain SoS, systems or components of
interest. A simple example considering a car as a system is illustrated as follows. Figure 4
reveals the static structure (i.e. system architecture) of the car (but only the major
components of interest associated with the anti-lock braking system). Figure 5 shows the

7 [online] URL: www.metamodel.com
8 [online] URL: http://en.wikipedia.org/wiki/Metamodeling.
9 ISO/IEC/IEEE 42010 superseded IEEE 1471 in 2007. However, because of the pivotal role of IEEE 1471 in
shaping the concept of architecture descriptions, it is still widely referred to in the context of architectural
modelling.

SymbolSymbol

symbolises

DescriptorDescriptor

OccurrenceConcept classifies

describes

symbolises

http://www.metamodel.com/
http://en.wikipedia.org/wiki/Metamodeling

UNCLASSIFIED
DSTO-TR-3039

17
UNCLASSIFIED

dynamic behaviour between some of these components making up the car anti-lock braking
system to provide specific functionality (e.g. accelerating and braking capability) in the car.

Figure 4. Simple Architectural Model for a Car System (adapted from Shamieh 2011).

Figure 5. Simple Behavioural Model for a Car System (Shamieh 2011).

Car

Chassis

Anti-lock
controller

Traction
detector

Engine
management

system

Anti-lock
braking
system

Rotor
Hub

assembly Tyre

Brake
modulator Sensor

Off

Operate
Idling

Accelerat’g Braking

stop
engine

start
engine

when
speed =

0

engage
brake

release
brake

engage
accelerator

UNCLASSIFIED
DSTO-TR-3039

18

UNCLASSIFIED

An example of an architecture modelling activity using a computer-based modelling tool
and a defined graphical modelling language is shown in Figure 610,11.

In recent years the concept has been applied more broadly to organisational entities within
the fields of enterprise engineering and enterprise architecting as described in Section 9
Enterprise Architecture concepts and Section 10 Defence Enterprise Architecture context.

Figure 6. Example of Architecture Modelling Using the Archimate® Modelling Language and
ABACUS modelling tool.

10 [online] URL: http://www.avolution.com.au/releases/0809_archimate.html
11 Vitech Corporation has devoted an entire book to explain how MBSE principles can be applied to
architecture modelling using their MBSE tool, CORE (Long & Scott 2011).

http://www.avolution.com.au/releases/0809_archimate.html

UNCLASSIFIED
DSTO-TR-3039

19
UNCLASSIFIED

3.3.7 SW Architecture Modelling

International SW engineering standards IEEE l471 and its ISO replacement ISO/IEC 42010
lay down basic terms, principles and guidelines for the consistent application of
architectural precepts to systems throughout their life cycle. They also provide a framework
for the collection and consideration of architectural attributes and related information for
use in application of other IEEE standards. Most importantly, IEEE 1471 offers a widely
accepted definition and a prescriptive meta-model to enable a description to be crafted of a
SW architecture.

IEEE 1471-2000 offers a definition of software architecture as:

“the fundamental organisation of a system,

embodied in its components;
their relationships to each other and the environment;

and the principles governing its design and evolution”.

The scope of the standard spans the creation, analysis and sustainment of architectures of
SW-intensive systems (including IT systems or information systems), including recording
the architecture in terms of architectural descriptions as described in Figures 4, 6 and 6.

A key tenet of the IEEE 1471 Conceptual Framework is the notion of multiple views of the
data set comprising the system description. An architectural description is organised into
one or more architectural views of the system; the particular views selected being
dependent on the particular technique used.

IEEE 1471 was deliberately framed to be life cycle neutral, and independent of method,
technique, notation, media, and format. The IEEE 1471 information model or meta-model
shown in Figure 7 is agnostic to the process used to obtain the information to populate the
model, and does not necessarily provide an ability to attribute meaning or context to the
information contained in the model.

With regard to semantics, the standard makes an important distinction between the notions
of architecture and architecture description. In the context of the standard, the architecture
of the system is conceptual, and is a fundamental characteristic of the system. The
architecture comprises the set of elements depicted in in the architectural model, and the
links between the inter-related elements. The architecture description is a tangible artefact
that records the details in the data set of elements and links that comprise the architecture
(Hilliard 2000).

It is important to note that this interpretation differs markedly from that used in a number
of view-centric enterprise architecture frameworks (EAFs) including TOGAF, AUSDAF12,
and the initial version of DoDAF, as described in Sections 9 and 10. These EAFs blur the
distinction between the two terms and use them interchangeably, whilst inferring the
meaning to be pertaining to the tangible artefacts. View-centric EAFs are therefore agnostic
to the notion of an architecture described using an integrated architecture model,
notwithstanding any EAF references to the use of the IEEE 1471 standard in regard to
preparation of different artefacts to describe different views.

12 Version 1 is also referred to as “the DAF”.

UNCLASSIFIED
DSTO-TR-3039

20

UNCLASSIFIED

Figure 7. Knowledge Representation of Architectures – IEEE 1471 Conceptual Framework.

An example of an integrated architectural model is provided in Figure 813, which is an
informational model supporting model driven SW-intensive system design methodology.
In this example, the architecture data set comprises all the data populating the entities listed
in the boxes, together with the relationships forming the connectors between the boxes.

A number of different architecture viewpoints can be expressed from the data set to draw
out different perspectives of entities and relationships using different diagrammatic
techniques. However the entire set of underlying entities and relationships is preserved,
regardless of which subset of data is extracted for consideration in a particular viewpoint.
Thus, a single integrated model or meta-model is created encompassing all required views.

13 In Figure 7, the symbology ‘1..*’ is used to indicate a ‘many’ relationship, i.e. the respective information
items can be recursively decomposed.

UNCLASSIFIED
DSTO-TR-3039

21
UNCLASSIFIED

Figure 8. Informational Model for Model Driven System Design (MDSD) (Estefan 2008).

In Figure 8, the boxes show kinds of information; arrows show the direction of the
relationship (not the direction of information flow); and the bullets show a ‘many’
relationship.

The diagram elements in Figure 814 can be unfolded as follows:

1. Requirements specify components (real world or conceptual).

2. Requirements are decomposed into other lower-tier requirements.

3. Components are decomposed into other lower-tier components.

4. Components represent design alternatives (e.g. design alternatives are proposed to
potentially satisfy requirements).

5. Models are developed to represent components (i.e. design alternatives).

6. Models execute design alternatives using use cases to investigate the extent to which
different design alternatives might satisfy the originating requirement as part of a
trade study prior to selecting a particular alternative as the preferred design.

7. The results from exercising the selected component using use cases verify or not
whether it actually satisfies the originating requirement.

The above example of the MDSD engineering methodology is significant in that it omits a
number of key activities in SE; the most notable being the absence of an analysis or design
activity, a purchase or build activity, and a test and evaluation activity. Why spend time
and resources building a model then? In a SW context, this methodology might be useful,
for example, if the modelling environment was capable of automatically generating the
code forming the SW component solution. Thus building the model could be equated to
building the SW. It can also be useful to analyse SW architectures to improve SW quality
and correctness.

14 In Figure 8, the boxes show kinds of information; lines represent relationships symbology ‘ ’ is used to
indicate the presence of a one to many respective information items can be recursively decomposed.

DesignCase

Model
ComponentRequirement

Executes

RepresentsSpecifies

Exercises

Validates

UNCLASSIFIED
DSTO-TR-3039

22

UNCLASSIFIED

Since the component hierarchy can be synthesised in the modelling environment, and the
hierarchy will be preserved in the transition to a real-world SW instantiation, the modelling
environment can also be used to evaluate the merits of alternative abstract SW structures
more quickly and cheaply than developing detailed code implementations with alternative
SW structures.

However, SW does not exist in isolation from its host environment in the real world, so an
acquisition and integration activity is implied to result in a real-world solution that can be
verified independently of the model. Although this method is not useful for synthesising
hardware (HW) structures, it can be useful to record HW synthesis outcomes determined
using more suitable alternate methods.

The methodology can also be useful for comparing commercial-off-the-shelf (COTS)
product alternatives prior to selection and purchase, or evaluation of different system
concepts prior to acquisition. This is the case in Defence where the above architecture-
centric methodology is used widely to undertake analysis of architecture attributes
supporting the capability development process.

However, in the Defence case, individual Defence acquisition projects have considerable
freedom to create their own project specific architecture modelling approaches. The
guidance provided does not include the notion of a formal information model prescribing
the data elements, architectural attributes, or process. Thus, there can be considerable
variation in semantics and vocabulary as well as methodology from project to project, and
from one tool-user to another. This approach, while possibly useful from a project-specific
point of view, does not provide extensibility beyond the boundaries of the project and the
particular project system of interest to the broader Defence systems environment.

Since Government policy obliges a solution independent approach to the acquisition of
military capability, the acquisition process relies considerably on the generation of project-
specific specifications to provide sufficient guidance on function and performance to
procure acceptable system solutions, abstracted from technology considerations and
solution-space constraints. Without a notion of the solution implementation (i.e. the
components to be acquired), it is not possible to provide feedback to verify the information
model as represented in Figure 8. Thus, there can be no verification activity in an
architectural context of the implemented components or architectural perspectives. The
absence of verification and validation activity of the synthesised components and of the
resultant system assembly is a major shortfall in the methodology illustrated from a
systems engineering perspective. These considerations are revisited in this report in the
context of Defence capability acquisition, and Defence enterprise architecture practice.

3.3.8 Reference Models

Another concept sometimes used in the systems modelling environment is the notion of a
reference model15. In the SE, SW engineering and enterprise engineering disciplines, a
reference model is an abstract framework or domain-specific ontology consisting of an
interlinked set of clearly defined concepts produced by an authoritative source within a
defined stakeholder community. A reference model can represent the piece-parts of any
consistent idea, from business functions to system components, as long as it represents a
complete set. This frame of reference can then be used to communicate ideas clearly among

15 [online] URL: http://en.wikipedia.org/wiki/Reference_model

http://en.wikipedia.org/wiki/Reference_model

UNCLASSIFIED
DSTO-TR-3039

23
UNCLASSIFIED

members of the same stakeholder community from the different perspectives provided in
the reference model (Eeles & Cripps 2009).

The reference model is distinct from, but can also include related taxonomies of concepts,
entities and relationships to reveal hierarchies of significance to inform stakeholders,
including the system hierarchy or system architecture. Thus, as the system architecture is
developed and documented during the system design process, it can provide guidance on
preferred terminology, and standardised functions and components to use if relevant to the
system problem under consideration.

In enterprise engineering, the boundary between engineering and business is quite blurred,
with greater emphasis being placed on facets of enterprise-wide business concerns. In
enterprise engineering, a business reference model (BRM) is typically included as part of an
EAF, where the EAF is used to define a series of reference models to inform stakeholders
how to organise the structure and views associated with an Enterprise Architecture (EA).
Notions of enterprise also transcend notions of individual systems in the engineering sense;
their boundaries can be quite indistinct, often determined by organising principles or other
abstract criteria rather than necessarily having physically realised interface boundaries.

An example of a reference model associated with the commercial Zachman Framework for
Enterprise Architecture (ZF) is provided in Figure 9 (Sowa et al. 1992). Notably in the ZF,
engineering terminology is used in many instances using similar knowledge representation
tools and techniques drawn from the engineering discipline, but tailored to provide an
enterprise-specific business focus. For example, in the context of EA, a BRM is an important
concept, where it provides a means to describe the business operations of an organisation
independent of the organisational structure that performs them. It can also depict the
relationships between business processes, business functions, and business areas to provide
a foundation for analysis of service components, technology, data, and performance. Many
of these have engineering underpinnings as evident in the various cell contents of the
reference model in Figure 716.

A more detailed description of the ZF is provided in Appendix D. These considerations are
also revisited in this report in the context of Defence enterprise architecture practice.

16 [online] URL: http://www.zachman.com

http://www.zachman.com/

UNCLASSIFIED
DSTO-TR-3039

24

UNCLASSIFIED

Figure 9. Example Reference Model Used in Zachman Framework for Enterprise Architecture v 3

UNCLASSIFIED
DSTO-TR-3039

25
UNCLASSIFIED

3.3.9 Reference Architectures

Similarly, the term reference architecture is used both in a SW engineering and an
enterprise engineering sense, and is typically a template solution for an architecture for a
particular domain17. It is used to provide a common vocabulary with which to discuss
prospective implementations, with a particular focus on commonality.

The reference architecture typically comprises:

• a list of functions;

• some indication of their application program interfaces (i.e. APIs);

• a description of the interactions between listed functions within the reference
architecture; and

• a description of interactions with functions external to the reference architecture.

All of these can be captured, presented, analysed, and modified in a systems modelling
environment.

A reference SW architecture typically provides a template to document those significant SW
structures and respective elements and relationships for a particular project, domain or
family of SW systems. This is often based on a generalisation of a set of solutions. These
solutions may have been generalized and structured for the depiction of one or more SW
architectures based on the harvesting of a set of patterns that have been observed in a
number of successful implementations, together with guidance on how to to compose
elements together to form a system solution (Eeles & Cripps 2009).

3.3.10 Design Patterns

3.3.10.1 Software Design Patterns
Another useful concept drawn from SW engineering which can be utilised in systems
modelling is the notion of a design pattern18 (Gamma et al. 1994), (Eeles & Cripps 2009). A
design pattern is a recurring structure within a design domain.

A pattern typically expresses a specific problem or functional objective for a system along
with a solution. The set of patterns sufficient to span the entire design within a domain is
known as a pattern language. Using the Alexandrian method, patterns can be composed to
synthesise solutions to diverse problems; the patterns that evoke the elements desired in the
system become the building blocks for synthesising the solution. The patterns either suggest
instructions for a solution structure (i.e. solution architecture) or contain solution fragments.
The fragments and instructions are merged to form the system design (Maier & Rechtin
2002). A somewhat similar notion to a reference architecture, a design pattern aims to
provide a generalised template solution for solving a specific type of problem that is
reusable in different circumstances.

17 [online] URL: http://en.wikipedia.org/wiki/Reference_architecture
18 Christopher Alexander first conceptualised an approach to synthesis using formalised patterns in architecture
in the field of civil architecture and urban design. The notion of design patterns was subsequently embraced by
the field of SW engineering (Maier & Rechtin (2002).

http://en.wikipedia.org/wiki/Reference_architecture

UNCLASSIFIED
DSTO-TR-3039

26

UNCLASSIFIED

However, design patterns typically manifest in terms of prescribed SW modules at the code
level and interconnections internal to a SW element. This is usually on a micro-scale, rather
than between SW elements or components within larger systems or between SW systems
relating to system architectures.

Object-oriented19 design patterns typically show relationships and interactions between
classes or objects, without specifying the actual application specific classes or objects in the
finalised design. A design pattern is therefore not a completed design that can be directly
coded into a SW implementation, but seeks to articulate best practice distilled from
previous successful implementations to guide new SW implementations. A design pattern
must therefore be reprogrammed for each application, which differentiates itself from the
concept of SW reuse for a new application, or using specific library modules or SW
elements when building a new SW application.

A published design pattern is typically ascribed a specific identity or name, and includes
prescribed information relating to:

• the identity, including intent for use (i.e. name);

• motivation or problem context in which the pattern can be used (i.e. the problem
statement);

• applicability;

• pattern structure in terms of class diagrams and interaction diagrams;

• participants, comprising classes and objects used in the pattern, and their roles in
the design;

• collaborations in terms of how the classes and objects used in the pattern interact
with each other; consequences, providing a description of the results, side effects,
and trade-offs caused by using the pattern; and finally,

• a description of the implementation of the pattern.

Sample code can also be included, as well as real-world examples where the pattern has
been successfully used and codified. Design patterns can take different forms, including
creational patterns, structural patterns, and behavioural patterns. Examples of SW
design patterns are provided in Table 3 (Gamma et al. 1994).

Table 3. Examples of SW Design Patterns.

Name Description

Creational Patterns

Abstract Factory Provides an interface for creating families of related or
dependent objects without specifying their concrete classes.

Builder Separates the construction of a complex object from its
representation allowing the same construction process to
create various representations.

19 Object-oriented concepts and the object-oriented design paradigm are discussed in detail in Section 4 –
Systems Approach to Problem Solving.

UNCLASSIFIED
DSTO-TR-3039

27
UNCLASSIFIED

Singleton Ensures that a class has only one instance, and provides a
global point of access.

Structural Patterns

Adapter (wrapper,
translator)

Converts the interface of one class into another interface
expected by clients, allowing classes to work together that
would not be able to otherwise.

Bridge Decouples an abstraction from its implementation allowing the
two to vary independently.

Facade Provides a unified interface to a set of interfaces in a subsystem

Behavioural
Patterns

Iterator Provides a way to access the elements of an aggregate object
sequentially without exposing the underlying representation.

Mediator Defines an object that encapsulates how a set of objects
interact. This promotes loose coupling by keeping objects from
referring to each other explicitly, and allows the interaction to
be varied independently.

Observer
(publish/subscribe)

Defines a one-to-many dependency between objects where a
state change in one object results in all of its dependents being
consequently notified and updated.

Patterns also allow SW developers to communicate using well-known names for SW
interactions. As common design patterns are evolved and improved over time, they can
become more robust when applied under different circumstances compared with ad-hoc
bespoke designs. By providing tested and proven SW development paradigms, design
patterns can reduce both the development effort required and the development risk,
reducing the likelihood of occurrence of subtle problems that might otherwise cause major
problems20.

3.3.10.2 SoS Design Patterns
Over the last decade, the notion of design patterns has been adapted for application in an
entirely different context - for use in shaping net-readiness21 in large scale SoS and socio-
technical system solutions. The organisation NCOIC, for example, has coined the term “net-
centric patterns”, where they have applied the notion of patterns to assist in solving shared
interoperability problems by soliciting government and industry-wide consensus on the
approach 22 (Bowler 2010).

NCOIC is a consortium comprising government and industry representatives from several

20 [online] URL: http://en.wikipedia.org/wiki/Design_Patterns; Gamma et al., 1994.
21 Net-readiness is described by NCOIC in terms of a system’s ability to connect to a common communication
network together with other net-ready systems to form a SoS.
22 [online] URL: https://www.ncoic.org/technology/deliverables/patterns/

http://en.wikipedia.org/wiki/Design_Patterns
https://www.ncoic.org/technology/deliverables/patterns/

UNCLASSIFIED
DSTO-TR-3039

28

UNCLASSIFIED

nations including the US, UK, and Australia23, to facilitate private and public sectors
working together between cross-domains towards achieving interoperability24 goals. Here
the solution may not necessarily be SW-based, but some of the same principles associated
with design patterns have been emulated to promote interoperability and interface
compatibility on a much larger scale.

The NCOIC Interoperability Framework (NIF) was developed to provide a vehicle to distil
information that is considered relevant to net-centricity, and to recommend particular
standards for international adoption to support improved net-centricity, together with
flexible guidance to promote multiple use25 (NCOIC 2008). The impetus stemmed from the
difficulty encountered in trying to achieve harmonisation of technical standards and
processes between interconnected systems and SoS, and across multiple organisations, each
of which is evolving independently at different rates, with diverse needs, drivers and
constraints.

Net-centric design patterns have been developed over three domains as follows:

• Operational – comprising standard practices and their interoperability requirements
needed to conduct activities (military operations or business objectives) in a given
mission context;

• Capability – comprising standard methodologies and functions needed to support
required activities in a given mission context; and

• Technical – comprising technical standards, technologies and interoperability
techniques needed to support required capabilities in a functional context specified
in the associated capability patterns (NCOIC 2008)26.

3.3.11 Model Reuse

In a similar vein to design patterns, another useful SW engineering concept used in systems
modelling is the notion of model reuse. Model reuse is simply copying the implementation
of some parts of a model or all of the model and reusing it in a different model
implementation27.

Model reusability is the ability to reuse segments of the model to add new functionality
with minimal modification; the impetus being to reduce redundant effort, and hence time
and cost to develop, verify, and validate new models. The ability to reuse segments of the
model relies on the ability to identify commonalities between different segments such that
larger models can be built by combining the smaller segments (Frakes et al. 2005).

23 Member organisations include Object Management Group (OMG), The Open Group, Thales, Australian
Department of Defence, Federal Aviation Authority (FAA), IBM, Boeing Ltd., Raytheon, Lockheed Martin
CISCO, Saab, MITRE, and EADS.
24 NCOIC has published an interoperability reference model whose scope spans people, process, applications,
information services and network transport considerations.
25 [online] URL: https://www.ncoic.org/technology/deliverables/nif/

26 This is akin to the notion of open architectures, although the mechanism to select the standards and the
motivations of the participating organisations can differ, but both approaches seek similar outcomes.
27 [online] URL: http://en.wikipedia.org/wiki/Code_reuse

https://www.ncoic.org/technology/deliverables/nif/
http://en.wikipedia.org/wiki/Code_reuse

UNCLASSIFIED
DSTO-TR-3039

29
UNCLASSIFIED

Reusability implies explicit management of numerous aspects during model development,
including:

• modelling language and application compatibility,

• documentation,

• separate verification and validation (V&V),

• packaging,

• distribution,

• installation,

• configuration,

• maintenance, and

• upgrade.

These issues might not otherwise have been given attention if reusability was not
considered. Since the life cycle of the portion being reused, or the life cycle of a library
implementation may differ from that of the model being developed, the ability to maintain
reused code is an important consideration when weighing the perceived benefits of reusing
code against the total life cycle cost of supporting the entire model.

Models, or model segments, can be reused by a modeller on an a-hoc basis at a later date to
leverage previous effort. An obvious example of model reuse is the refinement of the
implementation from one version to the next:

• to fix implementation problems within the model;

• to provide enhanced model features; or

• to provide a known starting point for development of a different application.

A more deliberate approach to model reusability may also be taken where internal
abstractions are used to create specific model segments or modules (or objects in the case of
object-oriented implementation) for later reuse, and are explicitly copied for separate
storage in a library. These library implementations are particularly suited for performing
common operations on data that may be used repeatedly in many different models. Library
implementations therefore need a defined interface, and documented features, attributes
and testing so that newly developed code can readily access the required functionality
within the library module with a known degree of confidence.

Model segments can be imbued with certain characteristics and attributed to particular
libraries to facilitate easier sharing and reuse. Characteristics that facilitate model segment
reuse include:

• modularity,

• loose coupling,

• high cohesion,

• information hiding, and

• separation of concerns.

UNCLASSIFIED
DSTO-TR-3039

30

UNCLASSIFIED

Similarly, common data can be located in libraries for use by independent models. Library
implementations can also be sourced from third parties for use in new model development.

However, the cost-benefit of using tested library implementations must be weighed against
inherent limitations including an inability to tune the library implementation to optimise
features and attributes, including interface details and performance, and any additional
time or cost incurred to acquire, learn, configure and support the library to suit the required
application.

3.4 Programming Language Concepts

3.4.1 Imperative Programming Language Paradigm

Specific to SW modelling, two fundamentally different paradigms predominate, offering
either an algorithmic perspective or an object-oriented perspective of the system.

The algorithmic perspective originated in the mid-1950s. It was quickly embraced by the
engineering community where algorithms could be described using one of a family of
imperative computer programming languages; the main building block of SW being the
procedure or function. In computing science, imperative programing is a programming
paradigm that describes computation in terms of statements that change a program’s
state28.

This particular approach supports the notion of structured programming and the
decomposition of larger algorithms into smaller ones; particularly suited for numeric
computation, mathematical modelling, and quantitative analysis.

These techniques are useful to analyse and solve scientific problems typically found in
engineering. The resultant SW architecture is therefore a reflection of the SW partitioning of
the algorithm into its smaller parts. Examples of imperative (procedural) programming
languages include Fortran, ALGOL, COBOL, PASCAL, and the C programming language.

3.4.2 Object-Oriented Programming Language Paradigm

The basis of object-oriented development methods is the “object”. An object is a
fundamental concept in the object-oriented SW modelling paradigm, where it is a “thing”,
generally drawn from the vocabulary of a problem space or solution space. A class is also a
fundamental concept, which is a description of a set of objects that share the same
attributes, operations, relationships and semantics. Using object-oriented vernacular, the
object is known as an “instance” of the class.

Of particular significance, each object has:

• a specific identity (i.e. it can be distinguished from other objects);

• a state (i.e. it usually has data associated with it); and

• behaviour (i.e. the object can interact with other objects, and it can interact with
external influences).

28 [online] URL: http://en.wikipedia.org/wiki/Imperative_programming

http://en.wikipedia.org/wiki/Imperative_programming

UNCLASSIFIED
DSTO-TR-3039

31
UNCLASSIFIED

Other important concepts defined in the UML object-oriented paradigm include:

• an element, which is defined as an atomic constituent of a model;

• a component, which is defined as a physical and realisable part of a system that
conforms to and provides the realisation of a set of interfaces;

• an interface is a collection of operations which affect behaviour that are used to
specify a service of a class or a component29, and

• a node is a physical element that exists at run-time and that represents a
computational resource, generally having at least some memory, and, often times,
processing capability.

In UML, “use cases” are used to describe the behaviour of the system as seen by its end
users, analysts and testers. A “use case” is comprised of a number of discrete scenarios,
each of which provides a specific sequence of actions, including variants, that yields an
observable result that illustrates system behaviour to the actor. Here the actor is a coherent
set of roles that users of use cases play when interacting with the use cases. A set of use
cases is used to verify and validate the system’s architecture.

The resultant SW architecture is revealed in terms of:

• the set of significant decisions about the organisation of the SW system,

• the selection of the structural elements and their interfaces from which the system is
composed, together with their behaviour as specified in the collaborations among
those elements,

• the composition of the structural and behavioural elements into progressively large
subsystems, and

• the architectural style that guides the organisation of the elements and subsystems.

 Object-oriented development thus provides the conceptual foundation for assembling
systems out of SW components that are standardised technology building blocks (Booch et
al. 1999). This approach is therefore particularly suited for SW-intensive systems largely
comprised of COTS components. The object-orientation maps well into the physical realm
making it particularly suited for representing and analysing physical architectures and their
interfaces, and providing a robust audit trail for the recursive functional to physical
allocation synthesis activity. It is also much easier to model large numbers of asynchronous
interactions between many interacting entities.

UML has continued to evolve over the ensuing years, leading to development of notions of
EA modelling and MBSE30 - it is thus prerequisite to be familiar with the basic ideas
underpinning object-oriented SW and systems modelling and the accompanying vernacular
and standards, to understand notions of EA modelling and MBSE.

29 A useful definition of interface from a SW engineering perspective is provided in (Sparx Systems 2007a).
The UML2 Tutorial using the tool enterprise Architect defines an interface as a specification of behaviour that
implementers agree to meet. It is therefore a contractual obligation. By realising an interface, classes are
required to guarantee they support a required behaviour, which allows the system to treat non-related elements
in the same way, through the common interface.
30 UML version 2.4.1 was formally published in April 2012 in two parts, as ISO/IEC standards ISO/IEC 19501-
1:2012(E) and ISO/IEC 19501-2:2012(E).

UNCLASSIFIED
DSTO-TR-3039

32

UNCLASSIFIED

3.5 Modelling Language Concepts

“Computers do not solve problems, they execute solutions” – Laurent Gasser, 1995.

3.5.1 Language Concepts

Another central concept in systems modelling is the notion of a modelling language. A
modelling language is any artificial language that can be used to express information in a
structured manner that is defined by a consistent set of rules; the rules providing the basis
for interpreting the meaning of the information in the structure31.

From Table 2, it is evident there are many approaches to conceptual modelling of systems.
Aside from the specifics of each modelling process to construct a model, each approach can
be differentiated according to the form of representation of the information that comprises
the model, i.e. the modelling language used.

Various modelling languages are used in many different disciplines, including computer
science, operations research, business and operations management, SW engineering, SE,
and enterprise engineering. These modelling languages provide the ability to specify or
describe system requirements, structures and behaviours with the required fidelity in such
a way that stakeholders (e.g. customers, operators, analysts, designers) can better
understand the system being modelled. These can vary in quality of knowledge
representations from simple informal pictorial representations using commodity drawing
tools such as PowerPoint™ or Visio™ to produce diagrammatic knowledge
representations, to precise, executable languages using specialised SW tools which can
support automated system V&V, simulation, and code generation from the same
representations.

These modelling languages can be either graphical or textual. A textual or imperative
modelling language typically uses standardised keywords accompanied by parameters to
construct computer-interpretable expressions. A simple example of some object-oriented
Java code for the class MessageParser is provided in Figure 10 (Booch et al. 1999, p 338).
The concept of object-orientation is described in more detail in Section 3.4.2 below.

Graphical modelling languages use diagramming techniques with named symbols that
represents concepts, together with lines that connect the symbols representing
relationships, and other graphical notations to indicate constraints and other relevant
notions as shown in Figure 11.

31 [online] URL: http://en.wikipedia.org/wiki/Modeling_language

http://en.wikipedia.org/wiki/Modeling_language

UNCLASSIFIED
DSTO-TR-3039

33
UNCLASSIFIED

Figure 10. Textual Representation of State Machine Providing Specific Software Functionality
in Java Code Created Using Tool Automated Code Generation Capability (Booch et al.
1999).

Figure 11. Tool Generated Graphical Representation of a State Machine Providing the Specific
Software Functionality of Figure 8 (Booch et al. 1999).

class MessageParser {
public Boolean put (char c) {

switch (state) {
case Waiting::

if (c == ‘<’) {
state = GettingToken;
token = new StringBuffer () ;
body = new StringBuffer () ;

}
break;

case GettingToken :
if (c == ‘>’)

state = GettingBody;
else

token.append (c) ;
break ;

case GettingBody :
if (c == ‘;’) {

state = Waiting;
return true; }

else
body.append (c) ;

}
return false;

}
public stringbuffer getToken () {

return token;
public stringbuffer getBody () {

return body;
}

private final static int Waiting = 0;
private final static int GettingToken = 1;
private final static int GettingBody = 2;
private int state = Waiting;
private StringBuffer token, body;
}

Waiting

GettingToken

GettingBody

put(c) [c==‘;’]
/ return trueput(c) [c==‘<’]

put(c) [c==‘>’]
put(c) [c/=‘<’]
/ return false

put(c) [c/=‘>’]
/ token.append(c); return false

put(c) [c/=‘;’]
/ token.append(c); return false

UNCLASSIFIED
DSTO-TR-3039

34

UNCLASSIFIED

Graphical modelling languages are based on the notion that knowledge can be described in
terms of entities, relationships, interpretations and structure. Entities, relationships and
interpretations are formally defined in the mathematical sciences in predicate calculus.
Structure is formalised in logic. Graphs provide a visual means of describing entities and
relationships (Dickerson & Mavris 2010).

Examples of graphical modelling languages include:

• behaviour trees,

• business process modelling notation (BPMN™),

• flowcharts,

• IDEFx™ family of diagrams, and

• Architecture Description Languages (ADL)32.

In the example shown in Figure 10, a machine is implemented using Java code which parses
different messages when certain conditions are met. Code is generated automatically from a
simple state diagram using a tool where the graphical representation of the state machine is
shown in Figure 11 (Booch et al. 1999, p 338).

Figures 10 and 11 show an example of modelling a reactive (i.e. event driven) object, useful
particularly for instances of classes, use cases, and modelling the system as a whole.

When modelling the behaviour of a reactive object, it is necessary to specify three things:

• the stable states in which the object may live;

• the events that trigger a transition from state to state; and

• the actions that occur on each state change.

It also involves modelling the lifetime of the reactive object, starting at the time of the
object’s creation, and continuing until the object’s destruction, highlighting the stable states
in between in which the object may be found.

In graphical terms, an interaction diagram models the behaviour of a society of objects
working together, whereas the statechart diagram models the behaviour of a single object
over its lifetime. The activity diagram models the flow of control from activity to activity,
whereas the statechart diagram models the flow of control from event to event.

Textual and graphical modelling languages are used widely in both the commercial and the
Defence sectors to assist in developing engineering system solutions. The choice of visual
presentation aesthetics and techniques in diagramming is particularly important in terms of
determining how to create the most effective graphical knowledge representations of the
system at hand.

Unlike computer drawn abstract pictorial representations, for example, using Microsoft
PowerPoint™ drawing tool, where an artist can enjoy considerable discretion in creative
presentation, model diagraming of the ilk of BPMN, UML and SysML33 is heavily rules-

32 Architecture Description Languages are also used for enterprise architecture modelling, and may be vendor
tool specific such as for the Vitech CORE SE Tool, or be an industry standard such as Archimate®, managed
under the auspices of Object Management Group (OMG).
33 BPMN, UML and SysML are graphical modelling languages managed under the auspices of OMG (BPMN
2011), (UML 2011a,) (UML 2011b), (SysML 2006).

UNCLASSIFIED
DSTO-TR-3039

35
UNCLASSIFIED

oriented. This allows the modeller to maximise the clarity of the information contained in
the model so the modeller can accurately project the desired understanding to the intended
audience.

Concerns such as line and contour scale and proportion, colour and thickness, and
composition and layout, and number and complexity of diagram elements, all become
important considerations in system, software, and process modelling. This may assist or
detract from understanding. This is especially important when specific meaning is
attributed to particular variations in visual presentation (Lieberman 2004).

Two examples of graphical knowledge representation, using BPMN notion, and UML 2.0,
are provided in Figures 12 and 13 respectively (White 2004). The same information is
provided in both diagrams in each figure, however, the way it is presented, and the method
of interpretation, are dependent on the knowledge representation technique and associated
rules set.

Figure 12. Example Milestone Graphical Knowledge Representation using BPMN & UML2
(White, 2005).

B Completed

A

B C

D

E

B Completed

Milestone
– Business Process
Notation diagram

A

B C

D

E

B Completed

B Completed

Milestone
–UML2 activity diagram

UNCLASSIFIED
DSTO-TR-3039

36

UNCLASSIFIED

Figure 13. Example Workflow Graphical Knowledge Representation using BPMN and UML2
(White, 2004).

Choose B

A

B CE

F

Choose D BD E

Interleaved Parallel Routing

– UML2 Activity diagram

Ad-hoc Sub-process
AdhocOrdering Attribute set to Sequential
AdhocCompletionCondition Attribute set to
include the completion of Task “B” and “C”

Perform B and D

A

B C

D E

F

Interleaved Parallel Routing

– Business Process Notation diagram

UNCLASSIFIED
DSTO-TR-3039

37
UNCLASSIFIED

3.5.2 Architecture Description Languages

An international engineering standard, ISO/IEC/IEEE 42010:2011 Systems and Software
Engineering – Architecture Description, defines an ADL as any form of expression for use
in architecture descriptions. The standard also specifies the minimum requirements to
create an ADL. The use of an ADL is inherent in the notion of SW and SE-related
architecture modelling so as to be able to articulate their respective architectures in a
prescribed manner.

In the SW engineering discipline, an ADL is a computer language used to describe and
represent SW architectures in an integrated form, i.e. the structure and behaviour of a SW
system and the non-SW entities that the system interfaces to. Thus, the SW system is
represented as a set of SW components, their connections, and their significant behavioural
interactions.

In SE, an ADL can be a language and/or a conceptual model used to represent the system
architecture in an integrated form, in terms of its structure, layout, behaviour and other
system-specific views associated with systems analysis and synthesis.

For enterprise engineering, various approaches may be taken, depending on the particular
EAF. Enterprises can be modelled, however for the most part, they use commonly available
textual and graphical tools using recognised standards rather than having an EAF specific
ADL to promulgate EAF based information.

EAF utilise various modelling techniques including Business Process Modelling Notation
(BPMN®), Archimate and UML. They can also use office and graphic drawing tools such as
Microsoft Office PowerPoint™ or Visio™, or even use SW or SE ADL based tool sets to
draw pictorial representations of enterprise-related information.

For example, the EAF published by The Open Group, TOGAF, focuses on a particular
architecture development method, ADM, depicted in Figure 1434.

34 [online] URL: http://www.opengroup.org/subjectareas/enterprise/togaf

http://www.opengroup.org/subjectareas/enterprise/togaf

UNCLASSIFIED
DSTO-TR-3039

38

UNCLASSIFIED

Figure 14. TOGAF Architecture Development Method Process Overview.

The TOGAF does not prescribe any particular suite of products to build, nor represent an
EA model (i.e. architecture descriptions or views), nor direct information content. Instead,
TOGAF provides two reference models, the TOGAF Technical Reference Model, and the
Integrated Information Infrastructure Model as depicted in Figure 15 (Josey 2009).

The Open Group suggest that enterprise-related information can be depicted by populating
templates replicated from military EA frameworks such as the MODAF developed by MOD
in the UK and DoDAF developed by DoD in the US35 (Dandashi et al. 2006).

35 The MODAF and DoDAF are described in more detail in Section 9 Enterprise Architecture Concepts.

UNCLASSIFIED
DSTO-TR-3039

39
UNCLASSIFIED

Figure 15a. TOGAF Technical Reference Model.

Figure 15b. TOGAF Integrated Information Infrastructure Model.

UNCLASSIFIED
DSTO-TR-3039

40

UNCLASSIFIED

The EA model is then the aggregation of the populated templates that describe the
enterprise from various perspectives as prescribed by the reference model. This information
is stored in an architecture repository, typically in artefact form, for later retrieval.

Since the TOGAF is agnostic to the SE and SW engineering disciplines, definitions can
differ, despite frequent use of well-known terms from these disciplines. Some effort has
been made to align the TOGAF approach to produce DoDAF products, however, this is
strictly view-centric, and is agnostic to any underlying concurrent systems engineering,
quality management, project management or other supporting processes in train to produce
the information for inclusion in the respective views.

The military EAFs, MODAF and DoDAF, in particular, have developed their own ADLs,
each of which can be implemented as profiles of internationally recognised modelling
language standards. They each define numerous architecture views (similar but different),
that can be generated using commercial EA and MBSE tools supporting internationally
recognised standard ADLs such as UML36.

Importantly, the DoDAF and MODAF are also underpinned by information meta-models.
These are integrated data models, which define the set of underlying architectural
information (entities and relationships), and are stored in the tool or repository.

The different view templates can thus be populated from data stored according to the single
integrated data model representing the associated systems or SoS architectures associated
with the respective problem domains. The MODAF Meta-Model (M3) is the information
model for MODAF (MODAF 2010). This defines the structure of the underlying
architectural information that is presented in the MODAF views. Similarly, the DoDAF
Meta-Model (DM2) is the information model for the DoDAF v2, which defines the structure
of the underlying architectural information that is presented in the DoDAF views (DoDAF
2009).

An example is shown in Figure 16 of a simplified high-level integrated data model showing
operational and system level data elements and relationships associated with the first
military EAF, the C4ISR Architecture Framework (C4ISR AF) (C4ISRAF 1997). The
underlying architectural information is stored in a database in the tool or in a managed data
repository.

The C4ISR AF v 2.0, was a precursor to the DoDAF v 1.0; its underlying core architecture
data model (CADM) specifying its ADL was several hundred pages in length. While this
representation could be implemented using a number of different approaches, it is
particularly well-matched to the object-oriented language constructs in UML. A
corresponding ADL spanning the CADM would thus be implemented as profile of UML in
a UML-based tool.

An architecture process overview to generate the respective C4ISR AF artefacts37 using a
computer-aided SE tool is provided in Figures 17 and 18, where the CADM (i.e the

36 The Vitech CORE tool is one exception where the DoDAF and MODAF profiles are overlaid on a propriety
ADL. This tool used structured analysis principles rather the object-oriented concepts inherent in UML (Long
2010), (Long & Scott 2011).
37 The C4ISR AF, and its successor the DoDAF, define numerous document artefacts including
common or all views (e.g. AV1 operational views (e.g. OV1 to OV6), systems views (e.g. SV1 to SV-
11) and technical views (e.g. TV1-TV3). Later versions of the DoDAF have increased the number and
types of views supported. See DoDAF Desk book Volumes 1, 2, and 3 for further information on the DM2
(formerly CADM) and the DoDAF specific artefacts (DoDAF 2009).

UNCLASSIFIED
DSTO-TR-3039

41
UNCLASSIFIED

integrated data model or meta-model) is overlaid on the tool native ADL (Levis 2000).

However, there are some crucial differences between the commercial and military
approaches. Each commercial EA Framework is typically based around a particular
reference model and/or reference architecture. They are agnostic to the notions of systems
or SoS architecture that can be represented in an integrated form, underpinned by an ADL
and information meta-model as described above for MODAF and DoDAF.

EAFs are also agnostic to engineering notions of analysis and design, whereas MODAF and
DoDAF are integral process overlays on the engineering and acquisition processes in the
UK MOD and the US DoD respectively (Ryder & Flannigan 2005).

In commercial EAFs, information is commonly expressed in natural language form. This
information is typically organised into categories according to the reference model and
displayed in non-architectural form to reflect a particular viewpoint or stakeholder
perspective.

This is akin to the weather map example described above, where prescribed information is
derived separate to the model, and displayed a prescribed manner; the information
populating a standardised set of templates, possibly drawn from a designated solution
architecture or prescribed design patterns. Enterprise-related information may be inter-
related within a particular category, for example, when describing a particular business
process, but many facets of the EA cannot be represented using an ADL or produced as an
analytical outcome.

The particular military EA frameworks mentioned above, i.e. MODAF and DoDAF support
the notion of different viewpoints or perspectives based on a single integrated system
architecture model, thus preserving the integrity of the systems architectures. The MODAF
and DoDAF employ specific but distinct tailored interpretations of the internationally
recognised standard modelling languages UML and SysML managed under the auspices of
OMG, and thus inherently presume an integrated architectural approach.

Developed in collaboration with Defence industry, UK MOD, US DoD, OMG has recently
released a new ADL, Unified Profile for MODAF and DoDAF, known as UPDM38 (UPDM
2012). UPDM incorporates modelling features of both these military EAFs to improve
interoperability between commercial tools and data sets, and to expand the types of
analyses and presentation formats supported (Hause, 2010), (Hause et al. 2012), (IBM
UPDM 2012).

Further elaboration is provided in Section 9 Enterprise Architecture Concepts and Section
10 Defence Enterprise Architecture Concepts of this report in the context of enterprise
architecture practice in Defence.

38 [online] URL: http://www.omg.org/spec/UPDM/2.0/

http://www.omg.org/spec/UPDM/2.0/

UNCLASSIFIED
DSTO-TR-3039

42

UNCLASSIFIED

Figure 16. Integrated Data Model Representation of C4ISR Architecture Framework V2.0 – Key Entities Example (Levis 2000).

Operational
Node

Activity

Organisation

Needline Operational
Information

Element

System
Function

Asset

LAN/
WAN Interface

Link
System

Information
ElementSystem

Element

System

System
component

System
component

Performance
Parameter Set

OPERATIONAL VIEW

SYSTEMS VIEW

is associated
with

is associated
with

implements/
is implemented
by

implements/
is implemented
by

performs/
is performed by

implements/
is implemented by

represents

may represent

maps to

has

is a

contains

Is attached to

enables

contains

transmits

performs/
Is performed by

has

is attached to

Operational
Element

System
Node

UNCLASSIFIED
DSTO-TR-3039

43
UNCLASSIFIED

 (a) Stage 1

 (b) Stage 2

Figure 17. Example Process Steps to Generate C4ISR AF V2.0 Artefacts (Levis 2000).

Create high level
operational concept
graphic with textual
description

Operational
Concept Graphic
OV-1

Operational Concept
(AV1, D1)

Stage 1

Operational Concept
(AV1, D1)

Universal Joint Task List
(D2)

Determine
organisational
relationships

Organisation List
(D3)

Organisational
Relationships (D4)

Command
Relationship
Chart OV-4

Stage 2

Select
organisations

Select
functions

Create
functional

decomposition

Determine
assets Define

operational
elements

Define
operational

nodes

UNCLASSIFIED
DSTO-TR-3039

44

UNCLASSIFIED

Figure 18. Example 5 Stage Process Summary to Generate C4ISR AF V2.0 Artefacts (Levis 2000).

Operational Concept
(AV1, D1)

OV-2 Operational Node
Connectivity Diagram

Universal Joint Task List
(D2)

Complete
Stage 1

Complete
Stage 2

Complete
Stage 3

Complete
Stage 4

Complete
Stage 5

Logical Data
Model OV-7

Organisation List
(D3)

Organisational
Relationships (D4)

Doctrine, tactics,
Procedures (D5)
States and Events
(D7)

System Performance
Attributes (D10)

System functions
(D8)

System descriptions
(D12)

Operational Information
Elements (D6)

Communication Systems
Description (D9)

Migration Systems
(D11)

Operational Information
Exchange Matrix OV-3
Operational Activity to
System Function
Traceability Matrix SV-5

Physical Data Model
SV-11

Systems Functionality
Description SV-4

Systems Interface
Description SV-1

Systems Communications
Description SV-2

Systems Matrix
SV-3

System Information
Exchange Matrix SV-6

System Evolution
Description SV-8

System Technology
Forecast SV-9

System Performance
Parameter Matrix SV-7

Operational
Concept Graphic
OV-1

Command
Relationship
Chart OV-4

Activity
Model OV-5

Operational State
Transition
Description OV-6b

Operational
Rules Model
OV-6c

UNCLASSIFIED
DSTO-TR-3039

45
UNCLASSIFIED

4. Systems Approach to Problem Solving

4.1 Systems Analysis and Design Concept

The importance of purpose, method and context to systems modelling is readily apparent
from the initial discussion thus far. Akin to system modelling, it is similarly essential to
establish a common understanding of problem structuring in the engineering context. The
SE environment encapsulates methods, tools, and people to support staged engineering
activity. This in essence, starts with defining a problem which can be resolved by
engineering a technical system solution, then progressively undertaking a sequence of
activities from analysis to synthesis (i.e. system design) through to construction and V&V
as shown in Figure 19 (adapted from Hawryszkiewycz 1988).

Figure 19. Staged Problem Solving through Systems Analysis and Design.

The terms analysis and synthesis are Greek in origin, where they mean respectively “to take
apart” and “to put together”. Analysis can be described as the way the human mind breaks
down an intellectual or substantial whole into parts. In contrast, synthesis can be described
as the way the human mind combines separate elements or components to form a coherent
whole.

Systems analysis is described as “the study of sets of interacting entities to identify
alternative courses of action to aid a decision maker identify a better course of action and

Problem
Definition
Problem
Definition

Feasibility
Study

Feasibility
Study

Systems
Analysis
Systems
Analysis

System
Synthesis
System

Synthesis System
Build/V&V

System
Build/V&V

Unexpected
problems in

existing
system

System cannot
meet essential

requirements, but
remediation may

be feasible

Design proposals
cannot be

implemented

Not feasible.
Problem needs

redefining

Cannot build
conceptual
system, but
remediation

may be
feasible

UNCLASSIFIED
DSTO-TR-3039

46

UNCLASSIFIED

make a better decision than otherwise might have been made” (Ritchey 1991). In the SE
context, it is essentially a directed enquiry to investigate the system operation in the context
of the system problem and the system stakeholders against the backdrop of the system
environment and the inherent constraints therein.

Analysis is a critical precursor to gain an understanding of the system problem being
addressed, in order to be able to synthesise a description of a proposed or revised system,
and to determine what is required of it. If there is no existing system to be modified, then
the analysis will only provide a set of requirements. These requirements then form the basis
for synthesising a proposed system solution.

If an existing system is to be modified, then the analysis will yield a set of requirements to
guide evolution of the system from its current state to a future desired state. These
requirements form the basis for synthesis of possible modifications to the extant system to
achieve the desired result.

While SE effort can be directed towards creating an entirely new system using
combinations of analysis and synthesis, often the effort is directed towards modifying,
expanding or documenting existing systems.

The scope of a system’s requirements typically includes consideration of:

• input/output requirements (including functional transformations and
input/output interface definitions);

• technology;

• performance;

• cost-benefits;

• trade-offs;

• constraints; and

• system test requirements, considered over a trajectory of time (Wymore 1993).

The system design activity which follows analysis proposes a new system (or a number of
alternatives) that meets these requirements. System design is the aggregation of the process
activities of defining the architecture, components, interfaces, data, and the data flows for a
proposed system implementation to satisfy the system requirements as summarised in
Table 4. If a system already exists, then it can be modified or replaced with a new system.
Once the systems design is finalised, it can be built (Hawryszkiewycz 1988).

UNCLASSIFIED
DSTO-TR-3039

47
UNCLASSIFIED

Table 4 Functions of the System Design Process (adapted from Buede 2000)

Design Function Major Inputs Major Outputs

1. Define system level design
problem

Stakeholder’s inputs Originating requirements

Operational concept

2. Develop system functional
architecture

Originating requirements

Operational concept

Functional architecture

3. Develop system physical
architecture

Originating requirements Physical architecture

4. Develop system
operational architecture

Originating requirements

Functional architecture

Physical architecture

Operational architecture

5. Develop interface
architecture

Operational architecture Interface architecture

6. Define the qualification
system for the system.

Originating requirements

System requirements

Qualification System

Design Documentation

Decision evaluation is also an important part of systems analysis and design. Evaluation
criteria or metrics are needed, and evaluation activity is needed, to provide a basis for
choice among proposed solution alternatives (i.e. perform trade-off activities) that arise
from the systems analysis and design activities (Blanchard & Fabrycky 1998).

Three radically different systems modelling paradigms have been spawned to support
systems analysis and design activities. Each has developed their own definitions, concepts,
methodologies, tools, modelling languages, and diagrammatic forms to apply to problems
amenable to systems analysis and design. Unfortunately, many terms used across the
different paradigms are common, but have different definitions. It is therefore crucial to
understand the context of the modelling in order to understand the semantics associated
with the modelling activity and the modelling outcomes.

4.2 Structured Analysis and Design Paradigm

4.2.1 General Principles

Structured analysis and design techniques are fundamental tools of systems analysis,
developed from classical systems analysis during the 1960’s and 1970’s. They were typically
applied to system problems in SW engineering, where the system solution entailed
significant development of SW components (de Marco 1979).

These techniques were characterised by their use of diagrams to aid communication
between users and developers. Data flow diagrams (DFDs) were typically used to
document the structured analysis, and structure charts (e.g. flow charts) were used to

UNCLASSIFIED
DSTO-TR-3039

48

UNCLASSIFIED

document the structured design (i.e. the SW architecture was documented as the SW code
was implemented).

During the 1980’s, computer-based tools emerged which automated the drawings and kept
track of the information included in the diagrams in a data dictionary. The use of these tools
was coined Computer-aided Software Engineering (CASE).

The essential characteristic of structured analysis is the initial separation of the problem
description from the solution (Dickerson & Mavris 2010). Structured analysis views a
system from the perspective of the data flowing through it. The function of the system is
described by the processes that transform the data. It is reductionist in nature, typified by
creating a hierarchy employing a simple abstraction mechanism (Maier & Rechtin 2002).

The method is process driven, and starts with a purpose and a viewpoint. It takes
advantage of information hiding through successive decomposition analysis, allowing
attention to be focussed on pertinent details at the same level of abstraction for analysis and
design, thus avoiding confusion from looking at other details that are not relevant for the
particular abstraction under scrutiny. As the level of detail increases, the breadth of
information for viewing purposes is reduced, but the integrity of the underlying inter-
relationships is preserved.

The result is a set of related graphical diagrams, process descriptions and data definitions
that describe the transformations that need to take place, and describe the data required to
meet those aspects of a system’s requirements that are being implemented as SW
component (Peters 1987).

Structured design is the creation or synthesis of SW modules (i.e. SW components) in a
module hierarchy based on cohesion and coupling considerations. Cohesion is concerned
with the grouping of functionally related processes into a particular SW module. Coupling
refers to the flow of information or parameters passing through the modules.

The structure chart documents the module hierarchy or calling sequence of the modules.
Best practice in structured analysis and design therefore seeks to minimise the complexity
of the SW implementation of the modules, including the interfaces through optimising
module cohesion and coupling (Yourdon & Constantine 1978). Different structured analysis
and design approaches and supporting computer-based tools have been developed to
support SW and SE activity. Early methods of note included the Structured Analysis and
Design Technique (SADT), and the Structured Systems Analysis and Design Method
(SSADM).

4.2.2 Structured Analysis and Design Technique

SADT is a SW engineering method that performs functional analysis of a given process
using successive layers of decomposition, resulting in a description of an information
system in terms of a hierarchy of functions and its associated data and control relationships.

It uses diagrammatic notation in the form of activity models and data models to
communicate the analysis and design outcomes to assist stakeholders to understand the
functions and relationships of the information system under consideration. Since it provides
a functional view, it can also be used to represent manufacturing and other business
processes and functions in an organisation and their relationships (Marca et al. 1987).

UNCLASSIFIED
DSTO-TR-3039

49
UNCLASSIFIED

Because SADT is focussed on functions and data and control relationships, the technique
can be useful in informing systems analysis and synthesis activities of systems which
contain elements other than just SW or IT. However, the lack of representation of non-
functional concepts means that the approach cannot be used for system synthesis in
isolation from the broader set of system concerns. It also lacks consideration of verification
and validation activity. This is essential to confirm that an acceptable solution has been
implemented within the feasible solution envelope that solves the original problem.

4.2.3 Structured Systems Analysis and Design Method

SSADM was developed by a UK Government office concerned with the use of IT in
government (Eva, 1994). SSADM is a registered trademark of the UK Office of Commerce. It
prescribes another systems approach to the analysis and design of information systems
based on various stages of activity including:

• carrying out feasibility studies - addresses technical, financial, organisational
and ethical concerns;

• investigating the current environment – assumes underlying data will be
relatively unchanged even though a new system may be radically different from
the old system;

• developing business system options – where a set of new business options is
developed offering different ways in which the new system can be produced.

• preparing requirements specifications;

• considering technical system options; and,

• performing logical and physical design.

The method provides explicit guidance on the nature of enquiry to be undertaken, with a
particularly strong business emphasis. Its end products are intended to inform engineers
how to build the system in terms of specific details on the HW and SW, and informs of the
appropriate standards. However, but the construction and verification aspects of the system
are not included in the method. The method also lacks consideration of non-functional
requirements in the same vein as SADT.

In terms of structured analysis and design, the three most important techniques used in
SSADM are:

• Logical Data Modelling – the process of identifying, modelling and
documenting the data requirements of the system being designed. The data are
separated into entities (things about which a business needs to record
information) and relationships (the associations between the entities);

• Data Flow Modelling - the process of identifying, modelling and documenting
how data moves around an information system. Data Flow Modelling examines
processes (activities that transform data from one form to another), data stores
(the holding areas for data), external entities (what sends data into a system or
receives data from a system), and data flows (routes by which data can flow);
and

• Entity Behaviour Modelling - the process of identifying, modelling and

UNCLASSIFIED
DSTO-TR-3039

50

UNCLASSIFIED

documenting the events that affect each entity and the sequence in which these
events occur39 (Yourdon 1989).

SSADM implies that the information system will be developed for in-house use, and that a
starting concept for the system has already been developed based on current organisational
practices. For example, during the feasibility study, the main topics for consideration
include project affordability, compatibility with current organisational practices, and
whether the new system concept will be socially acceptable within the culture of the
organisation.

4.3 Object-Oriented Analysis and Design Paradigm

Object-oriented analysis and design (OOAD) is a radically different SW engineering
approach that models a system as a group of interacting objects. Each object represents
some entity of interest in the system being modelled, and is characterised by its class, its
state (data elements), and its behaviour (Booch et al. 2007) (Maier & Rechtin 2002). Various
models can be created to show the static structure, dynamic behaviour, and run-time
deployment of these collaborating objects. There are a number of different notations for
representing these models, including UML as previously described in Section 3.

Object-oriented analysis (OOA) applies object-modelling techniques to analyse the
functional requirements for a system. Object-oriented design (OOD) elaborates the analysis
models to produce implementation specifications. That is, OOA focuses on what the system
does; OOD on how the system does it.

OOA is the process of analysing a task (also known as a problem domain), to develop a
conceptual model that can then be used to complete the task. The conceptual model that
results from OOA will typically consist of a set of UML use cases, one or more UML class
diagrams, and a number of UML interaction diagrams. It may also include some kind of
user interface mock-up.

During OOD, a developer applies implementation constraints to the conceptual model
produced in object-oriented analysis. Such constraints can include not only constraints
imposed by the chosen architecture but also the non-functional aspects. These consider
transaction throughput, response time, the run-time platform, and the development
environment, as well as those constraints inherent in the nominated programming
language. Concepts in the analysis model are mapped onto implementation classes and
interfaces resulting in construction of a model of the solution domain, which is a detailed
description of how the system is to be built.

Since the design paradigm is SW focussed, it offers few formalisms to consider non-
functional aspects relating to the physical implementation (e.g. technological and
environmental considerations). Additional insight on modelling in an object-oriented
design paradigm is provided in Appendix B.

39 [online] URL: http://en.wikipedia.org/wiki/Structured_analysis ; http://en.wikipedia.org/wiki/SSADM;
http://sharpertutorials.com/design-methodology-and-system-lifecycle/ ; Office of the Government Chief
Information Officer: SSADM v4.2 Structural standards.

http://en.wikipedia.org/wiki/Structured_analysis
http://en.wikipedia.org/wiki/SSADM
http://sharpertutorials.com/design-methodology-and-system-lifecycle/

UNCLASSIFIED
DSTO-TR-3039

51
UNCLASSIFIED

4.4 Service-Oriented Analysis and Design Paradigm

Service-oriented analysis and design (SOAD) is another radically different paradigm, with
its genesis in distributed computing. In SW engineering, a service-oriented architecture
(SOA) is a set of principles and methodologies for designing and developing SW in the
form of interoperable services (Stojanovic, 2005). Rather than defining an API, SOA defines
an interface in terms of protocols and functionality comprising a “service”. SOAD is a SW
engineering methodology focused on the development of SW systems by composition of
reusable services (service-orientation), often provided by other service providers.

SOA therefore provides a uniform means to organise and integrate widely disparate SW
applications, hosted on multiple implementation platforms, and under the control of
different ownership domains, typically in a web-based environment.

SOA provides a way for consumers of services, such as web-based applications, to be aware
of available SOA-based services as shown in Figure 20 (Peraire 2007).

Figure 20. SOA Publish-Subscribe Model (adapted from Peraire 2007).

A service in this context is described as an entity that has a description, and that is made
available for use through a published interface that allows it to be invoked by a service
consumer. It is generally implemented as a coarse-grained, discoverable software entity that
exists as a single instance, and interacts with applications and other services through a
loosely coupled, message based communications model. (Densmore & Bohn, 2007).

An event broker features a catalogue repository that contains meta-data describing events
or services exposed by the various event producers or service providers.

SOA separates functions into distinct units or services, which developers can make
available over a network in order to allow users to combine and reuse them in the
production of SW applications. These services and their corresponding consumers
communicate with each other by passing data in a well-defined, shared format, or by
coordinating an activity between two or more services.

Service-orientation requires loose coupling of services with the operating systems and other

publish/registersubscribe

bind

Broker

Catalogue

Service
Requestor

(Consumer)
Service
Provider

discover

Service
Registry

UNCLASSIFIED
DSTO-TR-3039

52

UNCLASSIFIED

technologies underlying the SW applications. Since it involves composition, it shares many
characteristics of component-based SW engineering, including the composition of SW
systems from reusable components. It differs in one important way, where it adds the
ability to dynamically locate necessary services at run-time. These services may be provided
as web services, but the essential element is the dynamic nature of the connection between
the service users and the service providers.

Since the design paradigm is SW focussed, it offers few formalisms to consider non-
functional aspects relating to the physical implementation (e.g. technological,
environmental).

4.5 Service-Oriented Modelling and Architecture (SOMA)

Service-oriented modelling is the application of modelling for the specification and design
of service-oriented business and SW systems using a variety of architectural styles; these
include enterprise architecture, application architecture, service-oriented architecture, and
cloud computing.

Any service-oriented modelling methodology typically includes a modelling language that
can be employed by both the “problem domain organisation” (e.g. the Business), and
“solution domain organisation” (e.g. the IT Department), whose unique perspectives
typically influence the “service” development life cycle strategy and the projects
implemented using that strategy.

Service-oriented modelling typically strives to create models that provide a comprehensive
view of the analysis, design, and architecture of all “SW entities” in an organisation that can
be understood by individuals with diverse levels of business and technical understanding.
Service-oriented modelling typically encourages viewing SW entities as “assets” (i.e.
service-oriented assets), and refers to these assets collectively as “services” (Bell 2008).

The vendor IBM40 published the Service-Oriented Modelling and Architecture (SOMA)
methodology in 2004 as the first publicly announced Service-oriented Architecture-related
methodology (Asanjani 2004). SOMA refers to the more general domain of service
modelling necessary to design and create SOA. SOMA covers a broader scope and
implements SOAD through the identification, specification and realisation of services;
components that realise those services (i.e. service components); and flows that can be used
to compose services.

SOMA incorporates an analysis and design method that extends traditional object-oriented
and component-based analysis and design methods to include concerns relevant to and
supporting SOA. It consists of three major phases of identification, specification and
realisation of the three main elements of SOA, namely, the services, the components that
realise those services, and the flows that are used to compose the services (Endrei et al.
2004).

SOMA is an end-to-end SOA methodology for the identification, specification, realisation
and implementation of services (including information services), components, and flows

40 IBM is a tool and host-platform developer and vendor; a software developer, and a consultancy service
provider spanning diverse domains including software engineering, enterprise architecture and business
management. [online] URL: http://www.research.ibm.com/.

http://www.research.ibm.com/

UNCLASSIFIED
DSTO-TR-3039

53
UNCLASSIFIED

(processes/composition). It builds on current techniques in areas such as domain analysis,
functional areas grouping, variability-oriented analysis (VOA) process modelling,
component-based development, object-oriented analysis and design and use case
modelling. SOMA introduces new techniques such as goal-service modelling, service model
creation and a service litmus test to help determine the granularity of a service41 (Arsanjani
2004).

SOMA identifies services, component boundaries, flows, compositions, and information
through complementary techniques that include domain decomposition, goal-service
modelling and existing asset analysis.

Again, since the design paradigm is SW focussed, it offers few formalisms to consider non-
functional aspects relating to the physical implementation.

41 [online] URL: http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/.

http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/

UNCLASSIFIED
DSTO-TR-3039

54

UNCLASSIFIED

5. Systems Engineering Concepts

5.1 What is Systems Thinking?

Thus far, the focus of discussion has centred on relating modelling concepts to problem
structuring, and describing the resulting emergence of different systems analysis and
synthesis paradigms within the engineering disciplines. It is equally important to
understand what is a system in the same regard, and what is systems thinking, before
examining the application of the notions in the Defence context.

Systems thinking is a style of thinking and reasoning scientifically about certain classes of
problems, phenomena, events and situations based around the concept of a system. A
plethora of scientific disciplines employ systems thinking to study different types of
problems, spanning both the hard and the soft sciences, ranging from engineering to
physics, mathematics, biology, economics, management science, operations research, and
the social and cognitive sciences. However, the notion of a system can vary markedly from
one scientific discipline to another.

Systems theory is described both as the science of complex systems and the science of
wholes; from every perspective, including the science of how wholes form, how they
stabilise, how they behave, how they function, how they adapt, how they decay, how they
reconfigure, how they become moribund and so on (Hitchens 2007).

General systems theory views the world as a complex system of interconnected parts. In
systems thinking, the components or parts of the system are considered in the context of the
relationships with each other and other systems, rather than in isolation. However, there is
no assertion on the characteristics of the components or parts, other than recognising that
they interact, and that their interaction results in formation of a functional unit with specific
outcomes.

A system (or system-of-interest) is determined by defining a boundary, and deciding which
entities are inside the system and which are outside, and hence part of the external
environment (Blanchard & Fabrycky 1998). Systems can manifest in many forms: natural or
man-made; physical or abstract; in open or closed form.

In each case, these systems share common defining characteristics including:

• A system has structure – it contains parts that are directly or indirectly related to
each other;

• A system has behaviour – it contains processes that transform inputs into outputs
(e.g. energy, matter, data);

• A system has interconnectivity – the parts and processes are connected by structural
and/or behavioural relationships;

• A system’s structure and behaviour may be decomposed via subsystems and sub-
processes to elementary parts and process steps;

• A set of rules may also be applied which determine the structure and/or behaviour
of the system and its parts (Blanchard & Fabrycky 1998).

In the SE context, systems thinking is described in the INCOSE SE Handbook as a way of

UNCLASSIFIED
DSTO-TR-3039

55
UNCLASSIFIED

thinking, where the primacy of the whole is acknowledged. It manifests through discovery,
learning, diagnosis, and dialog that leads to a better understanding of how the (engineered)
systems fit into the larger context of day-to-day life, how they behave, and how to manage
them (INCOSE 2012).

By viewing a problem as an individual part in relation to a larger whole, it can assist to
understand why the problem occurs. The mindset is thus particularly useful for studying
systems and system behaviour, and for problem solving in an engineering context.

5.2 What is a System?

While the terms “system” and “component42” are used widely in the general community,
with many and varied interpretations, these terms have specific significance in the SE
context.

The contemporary engineering-based understanding of a system is a “an assemblage of
inter-related components working together to form a unitary whole towards some common
purpose” (Blanchard & Fabrycky 1998). This is sometimes described as “the whole is more
than the sum of its parts” (Mar 1997). A system can also be a grouping of parts (i.e. inter-
related components) that operate together for a common purpose (Forrestor 1968).

An engineered system has three essential elements:

1. Components: i.e. the operating parts of the system consisting of input, process and
output, where each component can assume a variety of values to describe a system
state as set by some control action and one or more constraints;

2. Attributes: i.e. the properties of the components that characterise the system; and

3. Relationships: i.e. the links between components and attributes.

 The components also possess the following properties from the perspective of the
particular system, where:

1. The properties and behaviour of each component in the system has an effect on the
properties and behaviour of the system as a whole; and

2. The properties and behaviour of each component within the system have an effect
on at least one other component in the system (Blanchard & Fabrycky 1998).

A component of a system in this context, is a subset of the physical realisation (and hence
the physical architecture) of the system to which a subset of the system’s functions have
been allocated to. As with requirements and functions, there is often a hierarchical structure
to the components that comprise the system (Buede 2000).

The INCOSE SE Handbook provides a similar definition of a system as a combination of
interacting elements organised to achieve one or more stated purposes, where it is an
integrated set of elements, subsystems or assemblies that accomplish a defined objective.
These elements can include products (HW, SW, firmware), processes, people, information,
techniques, facilities, services, and/or other support elements (INCOSE 2012). Here the
term system element is equivalent to the term component used in contemporary SE texts

42 The term “component” has been superseded by the term “system element” in the 2014 draft of international
standard ISO/IEC 15288 and ISO/IEE 12207 (both awaiting ratification). This change acknowledges that
components can be independent systems or SoS in different system contexts.

UNCLASSIFIED
DSTO-TR-3039

56

UNCLASSIFIED

such as (Blanchard & Fabrycky 1998) and (Sage & Rouse 2009).

Bounding the system and identifying its external interfaces is critical to establishing the
system identity. The system is bounded by the definition and characterisation of all of the
inputs and controls that enter the system, as well as the outputs that the system must
produce. The external interface is a connection resource for hooking the external systems to
the system. Internal interfaces are the connection resources provided within the system for
hooking one component to another (Buede 2000).

Notably, the notion of a system is much broader in the SE context compared to that in a SW
engineering context pertaining to SW-intensive systems.

5.3 What is Systems Engineering?

5.3.1 Systems Engineering Origins and Purpose

In abstract terms, (Sage 1992) suggests that SE is a purposeful, managed human activity,
where technology is the result of, and represents the totality of the organisation,
application, and delivery of scientific knowledge for the intended enhancement of society.
He frames the purposeful management of this activity against the backdrop of an
organisation interacting with its external environment. Technology management in this
context therefore involves the interaction of science, an organisation, and its environment,
shown conceptually in Figure 21.

Figure 21. Systems Engineering as a Technology Management Concept (adapted from Sage
1992)

This is underpinned by the exchange of information, where different knowledge
perspectives are brought together; knowledge principles are applied to formal problem
solving approaches (particularly in new situations); and knowledge practices are employed
which encapsulate accumulated wisdom and experience into standard operating policies,
directed towards the creation of deliberate technology outcome, i.e. an innovative product
or service as shown in Figure 22 (Sage 1992).

In contemporary terms, a point sometimes overlooked – systems engineering (SE) is about
the engineering of systems.

Engineering as described by (Buede 2000), has morphed into a discipline for transforming

Information

Scie
nc

e
Environment

Technology
Management

Organisation

UNCLASSIFIED
DSTO-TR-3039

57
UNCLASSIFIED

scientific concepts into cost-effective products through the use of analysis and judgement
and deliberate application of resources.

Engineering of systems is described as an engineering discipline that develops, matches,
and trades-off functions and alternate system resources to achieve a cost-effective, life-cycle
balanced product based on the needs of the stakeholders.

Figure 22. Systems Engineering in the Production of Innovative Products and Services (Buede
2000).

As a problem solving approach, Hitchens suggests SE has several objectives:

• To scope the problem space;

• To explore the problem space;

• To characterise the whole problem;

• To conceive remedies;

• To formulate and manifest the best solution achievable in the situation, constraints
and circumstances; and hence

• To solve, resolve or dissolve the whole problem (Hitchens 2007).

The term “systems engineering” first came to the fore in Bell Laboratories in the 1940’s43.

43 A brief history of the origins of systems engineering is provided on the INCOSE website, accessible at URL:
http://www.incose.org/mediarelations/briefhistory.aspx, and in (Buede 2000 p 6.).

Innovative Product or Service

Management System Design Technological System Design

Physical System Design Information System Design

SYSTEMS ENGINEERING KNOWLEDGE

Knowledge Perspective

Knowledge Principles

Knowledge PracticesLearning

http://www.incose.org/mediarelations/briefhistory.aspx

UNCLASSIFIED
DSTO-TR-3039

58

UNCLASSIFIED

This came with the realisation that in many instances, it was no longer possible to rely on
design evolution as the primary means to improve upon a system’s capability. Likewise, the
tools were no longer sufficient to meet the growing demands and increased complexity of
the time, necessitating a new multi-disciplinary approach.

Contemporary SE has evolved as an interdisciplinary field of engineering that specifically
focuses on how to manage engineering activity to design, deliver and support bespoke
complex systems over the duration of their life cycles44. The purpose of this engineering
activity is to transform customer needs, requirements and constraints45 into a realised
system solution, then to maintain the system over its life cycle. To accomplish the difficult
tasks of engineering a complex system, personnel from many disciplines need to be
involved in a team effort, including the system stakeholders as shown in Figure 23.

Figure 23. SE Team Expertise Required for Engineering a System (Buede 2000)

Discipline engineers with knowledge of the technologies associated with the system
concept provide the expertise needed to make design and integration decisions throughout
the development process. Discipline expertise is not only required from traditional fields of
engineering such as electrical, mechanical and civil, but also from the social sciences to
address psychological, informational, physical and cultural issues of personnel involved in
the deployment, operation and maintenance of the system46.

Additional expertise is required for costing, scheduling, project management, risk
management, manufacturing and support purposes. Ignoring any aspect of the system over
its life cycle while engineering the system, can result in negative consequences, up to and
including total system failure (Buede 2000).

44 The notion of the system life cycle is described in Section 5.5.
45 A requirement is one of many statements that constrain or guide the design of the system in such a
way that the system will be useful to one or more of its stakeholders. A specification is a collection of
requirements that completely defines the constraints and performance requirements for a specific
physical entity that is part of the system (Buede 2000).
46 Also known as “human engineering”.

Domain
stakeholders

Management

SE Process

Technology
(Engineering,

Science,
Social

Sciences
Disciplines)

Modelling,
Simulation,

Analysis

UNCLASSIFIED
DSTO-TR-3039

59
UNCLASSIFIED

The failure to identify all functions and constraints early in the development process is a
source of many cost overruns, poor product performance, and schedule delays (Mar 1992).
The earlier the problems are identified, the cheaper they are to address. Early on in the
system design, less of the design is fixed, so there are more options to address the problem
and fewer components may be impacted (Boucher & Kelly-Rand 2011).

The cost and difficulty to remedy defects is known heuristically to increase exponentially
with the stage of life cycle detection, as shown in Figure 24 (Shamieh 2011). It is therefore
far more cost effective to prevent, or identify and remedy design defects as early as
practicable in the design process.

SE therefore focuses on the deliberate design and management of the engineering work
processes, and employment of tools and methods as appropriate, to manage the associated
risk of the activity to achieve the technical, cost and schedule outcomes sought over the life
cycle of the engineered system.

Figure 24. Cost/Defect Comparison with Stage of Life Cycle Detection.

Figure 30 also highlights the criticality of good communication and good team work
throughout the design process to minimise the number of hidden defects. This is to ensure
the multitudes of perspectives are given adequate consideration in a timely manner to
ensure the design progresses smoothly, and as planned towards successful completion.

5.3.2 Basic Notions of SE Process

SE incorporates both technical processes to produce deliberate technical outcomes, as well
as management processes to organise the technical effort, whilst controlling cost, schedule
and risk.

In its simplest form, systems engineering provides a consistent and logical approach to
engineering new system solutions, characterised by:

• A structured and disciplined process that defines problems before seeking solutions;

• A systematic search for solutions that examines trade-offs between alternative
solution sets;

$7,600/defect

$960/defect

$240/defect

$80/defect

Requirements
phase

Design &
implementation

phase

QA/Testing
phase

After product
release

UNCLASSIFIED
DSTO-TR-3039

60

UNCLASSIFIED

• A traceable and disciplined integration process that verifies the product system
meets the original requirements and performs the needed functions; and

• An effective information management system, that provides each team member and
the customer with information concerning the system being generated (Mar 1992).

This structured and iterative process is exemplified by explicit stages of engineering design
activity with typical discernible milestones of achievement such as shown in Figure 25.

Figure 25. Iterative Stages of Systems Design with Trade-offs (adapted from Hoban &
Lawbaugh 1993c)

Work is typically managed within the auspices of an engineering project47, broken up into
structured work packages (i.e. the work breakdown structure (WBS)), and managed using
project management principles to achieve the desired outcomes. These outcomes are
typically are framed in terms of key decision milestones, percentage work complete,
completion of designated project documentation and progressive delivery of system piece-
parts towards achieving project completion.

47 The notion of a project is as described in the Project Management Body of Knowledge publication (PMBOK
2009).

OROR

Input
Requirements

Synthesis
(of

alternatives)

Functional
Analysis

Evaluation &
Decision

(Trade-off)

Description
of System
Elements

• What
• Why • How

Iterative Trade-off

Solutions (e.g.)
• Equipment
• Personnel
• Facilities
• Computer software
• Technical data

OROR

Will
alternatives

work?

Acceptable
Solution?

No

Yes

Yes

No

Mission (e.g.)
• Objectives
• Interoperability
• Environment
• Constraints
• Measures of Effectiveness

Technology Selection Factors (e.g.)
• Hardware
• Software
• Interfaces
• Reliability
• Maintainability
• Personnel/Human Factors
• Survivability
• Security
• Safety
• Standardisation
• Integrated Logistics Support
• EMC/EMI
• Susceptibility
• System Mass Properties
• Produceability
• Transportability
• Computing Resources
• Growth potential

UNCLASSIFIED
DSTO-TR-3039

61
UNCLASSIFIED

The project documentation requirements are guided both by internal process standard
operating procedures (SOPs), and by customer documentation specified to be delivered
under the auspices of the contract, commonly in the form of a Contract Data Requirements
List (CDRL).

The project typically has an organisational structure closely aligned to the WBS, usually a
tree structure, with clusters of personnel assigned to undertake the work outlined in the
different work packages. Project documentation is the product of work outcomes achieved
within each work package (Hoban & Lawbaugh 1993a).

5.3.3 Engineering Management Planning and Control Basics

Technical planning and controls during system development and production can be
extensive, particularly for project-based large complex system development. A list of typical
considerations is provided in Table 5 (adapted from Hoban & Lawbaugh 1993b).

Table 5 Typical SE Management Process and Control Considerations

Role and Process Contribution Control Processes and Other Influences

• The role of the project office (if the SE
development is project based)

• The role and contribution of Logistics
Support Engineering

• The identity and role of the user • Applicable standards

• The identity and role of the Stakeholders • Applicable procedures and training

• The role of the Contracting Office Technical
Representative (if appointed)

• Configuration Baseline control process

• The role and contribution of Systems
Engineering

• Change control process

• The role and contribution of Design
Engineering

• Interface control process

• The role and contribution of Speciality
Engineering

• Control of contracted or subcontracted
engineering

• The role and contribution of Manufacturing
Engineering

• Project Data control and information
management process (i.e. documentation
and other project pertinent)

• The role and contribution of Test
Engineering

• Make-or-buy control process

• The role and contribution of Logistics
Support Engineering

• Parts, materiel and process control

• System definition process • Manufacturing control process

• System analysis and design process • Life cycle cost management control

• System decomposition process • Risk management process

• Trade study process • Quality control

• Use of mathematical models and simulation • Safety control

UNCLASSIFIED
DSTO-TR-3039

62

UNCLASSIFIED

• System qualification process • Security control

• System acceptance process • Contamination control

• EMI/EMC • Reliability and supportability planning and
control

• Survivability and vulnerability • Integrated Logistics support planning and
control

• Technical performance measurement • Control gates (review milestones, decision
governance)

• Reporting process • Integration planning and control

• Internal technical reviews • Verification planning and control

• Tools and resources to be used • Acceptance testing planning and control

 • Validation planning and control

By taking a holistic view of the development effort, SE provides a formalised structured
engineering development process to combine the various technical contributions into a
unified team effort. This unified effort spans the entire life of the system, from initial
concept articulation through analysis and design activity, to production, operation and
support of the engineered system over its life cycle.

5.3.4 Basic Activities and Responsibilities

From the earliest notions of SE, the process has been depicted as spanning typical project
activities as shown in Figure 26 (Hoban & Lawbaugh 1993a).

Figure 26. Systems Engineering Cycle (Hoban & Lawbaugh 1993a).

Project and Mission Requirements/
Needs Definition

Risk Analysis/ Management

Systems Analysis

Concept Development

Verification and Validation

Derived Requirements
Implementation Planning and

Systems Integration

Configuration Management

Technical Oversight

UNCLASSIFIED
DSTO-TR-3039

63
UNCLASSIFIED

These include (Hoban & Lawbaugh 1993a):

1. Project and Mission Requirements/Needs Definition

The process by which the needs of the customer (including parliamentary and
budgetary authorities are determined. This allows the Systems Engineer to define the
requirements for a system that will meet the needs of the customer. The requirements
provide a hierarchical description of the customer’s desired product system as seen by
the Systems Engineer.

The interaction between the customer and the Systems Engineer to develop these
requirements is one way of ensuring the customer perspective is captured, while
ensuring the customer is informed about the value proposition, and the customer can
make a judgement that they are willing to pay for a product system that meets the
specified requirements (Hoban & Lawbaugh 1993b).

2. Risk Analysis/Management

Risk management is an ongoing process to identify and assess the risks involved with
the development and operation of the system, including technical, schedule, cost and
organisational risk. The Systems Engineer is responsible for developing an
implementation plan to control and if possible, reduce the risks incurred by the project.

3. Systems Analysis

Systems analysis involves understanding how the key mission and system functional
elements interact. The mission analysis translates the user’s needs into functional and
performance requirements and design constraints. A functional analysis takes these
requirements and breaks them down to specific tasks.

4. Concept Development

Concept development is a process of making informed trade-offs among various
options to select the one that best meets the requirements and design constraints. This
activity produces a preliminary design and implementation architecture.

5. Derived Requirements Definition

Requirements Definition entails translating mission and functional analysis results,
system operational concepts, and the selected system architecture into a set of system
performance and interface requirements (without presenting an actual design solution).

6. Implementation Planning and Systems Integration

Implementation planning and systems integration are complex activities to produce a
coherent, integrated set of implementation tasks and responsibilities for the detail
design (i.e. of the implementation or solution), development, fabrication, verification,
operation and maintenance of the required system. It requires negotiation between the
system requirements definition personnel and the system implementation personnel
whilst considering the project constraints of schedule and budget, and avoiding
unnecessary risk.

7. Configuration Management

Configuration management is an activity that ensures that controlled definition of all

UNCLASSIFIED
DSTO-TR-3039

64

UNCLASSIFIED

engineering documentation is maintained and the information is distributed to the
appropriated parties in a timely manner. Importantly, this activity is the mechanism by
which the system development process is documented (i.e. the design knowledge is
captured).

8. Technical Oversight

Technical oversight ensures all subsystems work together as intended, and implements
mechanisms to ensure to guarantee the developed and documented architected concept
is not inadvertently changed during the development process. This allows the system
developer to certify that the system (as tested) will meet the customer’s requirements.
This entails a number of reviews and audits that gather consensus from all parties
involved that the effort at any given time is correct and adequately planned for the
continuance of the work.

The Systems Engineer is responsible for communicating the customer’s requirements to
the design organisation as to what to design and build or code. As the requirements are
allocated, they inevitably become linked to the system architecture and product
breakdown, which consists of the hierarchy of project, and its subservient systems,
segments, subsystems, components and elements (Hoban & Lawbaugh 1993b).

The Systems Engineer is responsible for assuring the systems requirements are
understood and correctly implemented by the design organisation, and therefore needs
to work closely with the design organisation over the duration of the project.
Importantly, the Systems Engineer must recognise the initial set of systems
requirements may not be “perfect”, where during the design evolution, or because of
the inability of a subsystem to meet its intended functional and performance
requirements, changes in the systems requirements will be necessitated. These changes
are an essential and normal part of the design process.

9. Verification and Validation

Here, the characteristics and performance of the implemented system are compared to
the requirements and specifications. Tests, analyses and demonstrations are performed
to verify that the hardware and software satisfactorily meet the function and
performance requirements of the system specifications.

The engineering design of complex systems thus involves making many decisions during
the development process. To be successful, these need to made using a rational, explicit,
and traceable process, i.e. the engineering organisation’s instantiation of a SE process. This
is typically expressed within the organisation’s standard operating procedures (SOPs). A
sample of system design decisions supporting SE process activity is provided in Table 6.
Typical project documentation produced during development is described in Table 7.

Table 6 Sample of Decisions Made during System Design (adapted from Buede 2000)

Development Phase Example Decisions in Systems Engineering

Conceptual Design • Should a conceptual design effort be undertaken?

• Which system concept (or mix of technologies)should be

UNCLASSIFIED
DSTO-TR-3039

65
UNCLASSIFIED

the basis of design?

• Which technology for a given subsystem should be chosen?

• What existing hardware and software can be used?

• Is the envisaged concept technically feasible based on cost,
performance, and schedule requirements?

• Should additional research be undertaken before a decision
is made?

Preliminary Design • Should a preliminary design effort be undertaken

• Which specific physical architecture should be chosen
(from several alternatives)?

• Which physical resource should a function be allocated to?

• Should a prototype be built? If so, to what degree of
reality?

• How should verification, validation and acceptance testing
be structured?

Full-scale Design • Should a full-scale design effort be undertaken?

• Which configuration items should be bought rather than
manufactured?

• Which detailed design should be chosen for a particular
component, given that one or more performance
requirements are critical?

Integration &
Qualification

• What is the most cost-effective schedule for
implementation activities?

• What issues should be tested?

• What people, equipment, facilities should be used to test
each issue?

• What models of the system should be developed or
adapted to enhance the effectiveness of integration?

• How much testing should be devoted to each issue?

• What adaptive testing (Fall-back testing in case of failure)
should be planned for each issue?

Product Refinement • Should product improvement be introduced at this time?

• Which technologies should be the basis for the product
improvement?

• What redesign is best to meet some clearly defined
deficiency in the system?

• How should the refinement of existing systems be
implemented, given schedule, cost, performance and risk

UNCLASSIFIED
DSTO-TR-3039

66

UNCLASSIFIED

criteria?

• Are there any external interdependencies affected? If so,
has the impact been accounted for in the schedule, cost,
performance and risk criteria?

Table 7 Sample of Typical Requirements Documentation (Buede 2000).

Document Type Document Contents

Problem Situation or
Mission Element
Need Statement

• Definition of stakeholders and their relationships

• Stakeholder’s description of the problem and its context

• Description of the current system

Systems Engineering
Management Plan
(SEMP)

• Definition of mission requirements

• Definition of the systems engineering development
system (requirements, architectures, interfaces)

Operational Need or
Operational
Requirements
Document or
Originating
Requirements
Document (ORD)

• Definition of the problem needing solution by the
system, including the context and external systems with
which the system must interact

• Definition of the operational concept upon which the
system will be based

• Creation of the structure for defining requirements

• Description of the Stakeholder’s requirements in the
Stakeholder’s language with considerable breadth but
little depth

• Trace of every requirement to a recorded statement or
opinion of the stakeholder.

• Description of trade-offs between performance
requirements, including cost, schedule and operational
effectiveness

System
Requirements
Document or
Mission
Requirements
Document (SRD)

• Restatement of the operational concept on which the
system will be based

• Definition of the external system interfaces and
interactions in engineering terms

• Restatement of the operational requirement in
engineering terms

• Trace of every requirement to the previous document

• Justification of the engineering version of the
requirements in terms of analyses, expert opinions, and
stakeholders meetings

• Description of a test plan for each requirement

UNCLASSIFIED
DSTO-TR-3039

67
UNCLASSIFIED

System
Requirements
Verification or
Systems Acceptance
Document

• Documents analyses to show that the requirements in
the systems requirement documentation are consistent,
complete, and correct, to the degree practicable.

• Demonstrates that there is at least one feasible solution
to the design problem as defined in the system
requirements documentation, and that it has been
achieved.

5.3.5 Documentation in Systems Engineering

As evident from Table 7, formalised capture and management of specific types of
information created and used to support the SE management and technical sub-processes is
a key feature of SE practice. Traditionally, a document-based approach has been used to
convey system requirements, design and test information. This is characterised by the
generation of textual specifications, design documents, test documents and drawings, in
hard copy or electronic file format.

This documentation48 is exchanged between the respective stakeholders, including
customers, users, developers and testers, to solicit input, review and response, and record a
myriad of significant decisions towards forging sufficient common and agreed
understanding. SE practice places particular emphasis on controlling the documentation
and ensuring the document and drawing contents are valid, complete and consistent, and
that the system solution implemented complies with the documentation, including the
originating specifications (Friedenthal et al. 2008).

5.3.6 Formalisation of Systems Engineering as a Discipline

A significant milestone in the formalisation of SE as a discipline came with the publication
by US DoD of the military standard MIL-STD-499 in 1969, and the mandate of its use in
industry for design and development of US Defense major military capability. This had the
impact of re-aligning entire company organisational structures and standard operating
procedures, as well as their skill bases, to facilitate ease of compliance with the directives of
the military standard.

The discipline of SE has continued to evolve, both tools and methods, with various
interpretations and adaptations based on the same theme published in SE Handbooks
written by large science and engineering organisations including NASA, Jet Propulsion
Laboratories, and more recently, by INCOSE (Hoban & Laughbaugh 1993a), (NASA, 2007),
(Jansma 2006), (INCOSE 2012) 49.

Notably, it was not until as recently as 1990 that a professional society was founded for the
discipline: a group of representatives from a number of US corporations coming together to
form the National Council on Systems Engineering (NCOSE). Increasing prominence of SE
outside of the US as a discipline of significance led to the repositioning of the organisation

48 The terms ‘documentation’ and “drawing’ are both ‘information items’.
49 (Buede 2000) describes a number of definitions of systems engineering drawn from pre-eminent sources
including MIL-STD-499A, Sage (1992), Wymore (1993), Forsberg and Mooz (1992) and INCOSE in the 1999
edition of the SE Handbook.

UNCLASSIFIED
DSTO-TR-3039

68

UNCLASSIFIED

as the foremost international representative of the global SE community, and renaming of
the organisation in 1994 as the International Council on Systems Engineering50.

Coinciding with the demise of use of military standards by the US DoD during the 1990’s,
responsibility for formalising and evolving SE process methods and other related
engineering technical and process standards has since been devolved to a number of
international standards organisations and commercial corporate bodies. These include the
International Standards Organisation (ISO)51, the Electronics Industries Alliance (EIA)5253,
and the Institute of Electrical and Electronic Engineers (IEEE) Standards Association54.

The commensurate rise in use of COTS products and use of open standards, replacing
bespoke engineering development using specialised military standards, has led to
numerous proprietary industry-based approaches being adopted as de facto standards. One
of the most prominent of these being that associated with the desktop computing
environment, typified by the use of Microsoft Office™ product suite running on the
Windows Operating System™ to provide basic word processing and spreadsheet
functionality.

Crucially, while SE practice is inherently multi-disciplinary, and draws extensive
contributions from other mainstream engineering disciplines (e.g. electrical engineering,
electronics engineering, computer systems engineering, SW engineering, mechanical
engineering) to achieve the desired technical outcomes, SE has maintained a separate
identity from these other specialised engineering disciplines.

Over the last fifteen years in particular, considerable effort has been devoted to
harmonising the key SE standards (Croll 2002) and compiling and publishing
internationally recognised bodies of knowledge (BOK). The progressive emergence of
discrete bodies of knowledge as separate formal disciplines, from earlier military and
commercial standards to contemporary notions of engineering and enterprise architecture,
are shown in Figure 27.

Key development milestones relating to SE process standards and capability models,
together with the SW engineering counterparts are shown in Figure 2855 (Martin 1998),
ISO/IEC JTC1/SC7/WG7 2002), (Doran 2008). For completeness, the timeline for different
EA frameworks, discussed in Section 9, is also provided in Figure 29 to highlight the
correlation between the respective stages of maturation of SE practice with evolving
maturity of SW engineering practice and EA architecture practice (Hause 2010),
(Friedenthal et al. 2008)56.

50 [online] URL: http://en.wikipedia.org/wiki/International_Council_on_Systems_Engineering ;
http://www.incose.org/
51 [online] URL: http://en.wikipedia.org/wiki/International_Standards_Organization ;
http://www.iso.org/iso/home.html
52 [online] URL: http://en.wikipedia.org/wiki/Electronic_Industries_Alliance#EIA_standards ;
http://www.eciaonline.org/eiastandards/
53 The EIA was renamed from Electronic Industries Association to Electronic Industries Alliance in 1997. The
EIA ceased operations in February 2011, and designated ECIA to continue to develop standards for
interconnect, passive and electro-mechanical electronic components under the ANSI designation of ECIA
standards.
54 [online] URL: http://standards.ieee.org/ ; http://en.wikipedia.org/wiki/IEEE_Standards_Association ;
55 (Sheard & Lake 1998) provides a useful overview of the various SE standards and models of the time, and
discusses similarities and differences in definition, scope and applicability within the respective standards.
56 [online] URL: http://www.bespokesystems.net/ea/timeline/;
http://www.opengroup.org/openca/cert/methods.tpl.

http://en.wikipedia.org/wiki/International_Council_on_Systems_Engineering
http://www.incose.org/
http://en.wikipedia.org/wiki/International_Standards_Organization
http://www.iso.org/iso/home.html
http://en.wikipedia.org/wiki/Electronic_Industries_Alliance#EIA_standards
http://www.eciaonline.org/eiastandards/
http://standards.ieee.org/
http://en.wikipedia.org/wiki/IEEE_Standards_Association
http://www.bespokesystems.net/ea/timeline/
http://www.opengroup.org/openca/cert/methods.tpl

UNCLASSIFIED
DSTO-TR-3039

69
UNCLASSIFIED

Figure 27. Progressive Emergence of Systems Engineering, Software Engineering and
Enterprise Architecture Practice Formal Disciplines.

BOK

Systems
Engineering

Software
Engineering

ICT
Architectures

Enterprise
Architectures

Military
Standards

COTS
standards

BOKBOKBOKBOK

Computing
Science

Management
ScienceInformation

Science

Mathematical
Science

Engineering
Science

BOK BOK
Business
Analysis

BOK

Business
Analysis

Operations
Research

UNCLASSIFIED
DSTO-TR-3039

70

UNCLASSIFIED

Figure 28. Key Development Milestones - SE Standards, System Capability Models, and SW Engineering Standards.

Mil-Std-
499

EIA 632

1969
Mil-Std-

499A

1974
Mil-Std-

499B

1994

(Not released)

EIA/IS
632

1994 1998 ISO
15288

2002

EIA/IS
632

2003

2002

IEEE
1220

1994

(Trial Use) (Full standard)

IEEE
1220

1998

DoD-Std-
1703

1987

DoD-Std-
2167A

1988

DoD-Std-
7935A

1988

Mil-Std-
498

1994

IEEE 1498
/EIA 640

1996

(draft)

J-Std-
016

1997

ISO/IEC
12207

1995

ISO/IEC
19760

2003

ISO/IEC
15504

2002

EIA/IS 731.1
SE CM

2002

ISO/IEC
12207

2002

(Interim
standard)

EPIC SE-
CMM

1994/95

INCOSE
SE CAM

1994/96

EIA/IS 731
SE CM

1998

IEEE
1220

2005

Software
Engineering

Systems
Engineering

Systems
Engineering
Capability

Models

(Industry model)

(Industry model)

CMMI
SE/SW

ISO/IEC
12207

2008

ISO/IEC
15504

2012

Supersedes

Is derived from

UNCLASSIFIED
DSTO-TR-3039

71
UNCLASSIFIED

Figure 29. Key Development Milestones - Enterprise Architecture Frameworks.

ISO/IEC
14252

(POSIX)

TAFIM

JTA

DoDAF
v1

2003
C4ISR

AF

1996

TOGAF v1 TOGAF

2002

DoDAF
v2+

2009+

TOGAF v9+

2009+

Zachman
Framework v1

1987

EAP

1992

FEAF

1999

Enterprise Architecture Frameworks

Zachman
Framework v2

2003

DoD
TRM

1995 UPDM v1

2008

2011
Zachman

Framework v3

FEAF

2003

DAF

2003

AGA v1

2008

MODAF
v1

2005

MODAF
v1.2+

2008+

AUSDAF2

2012

(draft)

1986

DII COE
C4ISR
AF v2

1997
JTAA

UPDM v2

2012

AGA v3+

2011+

FEAF v3+

2012+

Is influenced by

Is supported by

references

Is adopted by

Is superseded by

Is influenced by

Is supported by

references

Is adopted by

Is superseded by

UNCLASSIFIED
DSTO-TR-3039

72

UNCLASSIFIED

In recent times, the SE discipline has drawn heavily from the SW engineering discipline.
However, as shown in Figure 33, the two disciplines maintain separate identities, with
separate bodies of knowledge, as revealed in knowledge repositories such as “The SE Body
of Knowledge” (SEBoK) published by INCOSE (SEBoK 2012); and “The Software
Engineering Body of Knowledge” (SWEBOK) published by IEEE (SWEBOK 2004).

5.3.7 Contemporary Systems Engineering

“Systems Engineering becomes the bridge between the system problems generated by society and
solutions provided by technology” A. Wayne Wymore (Wymore 1993).

Contemporary SE incorporates the concepts and processes utilised widely in industry and
encapsulated in international standards such as ISO/IEC 15288:2008, ANSI/EIA-632:2009,
and IEEE-1220-2005 as shown in Figure 30 (Estefan 2008). The typical context for applying
SE process standards with respect to an organisation or enterprise is shown in Figure 31 as
represented in EIA-632.

INCOSE, the international professional body representing the profession of SE has elected
to support standard EIA 15288:2008 for the practical application of SE concepts and
processes within an organisation or enterprise.

The IEEE 15288 standard describes the enduring concept of a cradle-to-grave life cycle for a
product or system, from initial conception to final disposal, mapped to specific technical
and management process activities spanning different domain areas across the
organisation. Each domain area has its own technical and management process steps, with
required outputs, outcomes and completion criteria as described in Figure 32 (ISO/IEC
JTC1/SC7/WG7 2002).

 Figure 30. Systems Engineering Process Standards and Capability Model Comparison.

System life

ISO/IEC 15288
Process

description

High level
description

Detailed
practices

Le
ve

l o
f d

et
ai

l

IE
EE

 1
22

0

Conceptualise Develop Transition
to operation

Operate,
maintain, or
enhance

Replace or
dismantle

EIA/ANSI 632

Provides a standard for managing a system

Provides a set of integrated processes to
aid a developer in the engineering or re-
engineering of a system

Provides a common framework for
describing the lifecycle of systems

UNCLASSIFIED
DSTO-TR-3039

73
UNCLASSIFIED

Figure 31. Enterprise and Project Context for Applying the EIA-632 SE Process Standard.

Figure 32. Enterprise Context for Applying EIA 15288 Process Standard.

Acquisition SupplyAgreement
Processes

Enterprise
Processes

Project
Processes

Technical
Processes

Special
Processes

System Life Cycle
Processes Management

Investment
Management

Resource Management

Quality Management

Enterprise
Environment
Management

Decision Making

Risk
Management

Project
Planning

Project
Assessment

Configuration
Management

Information
Management

Project
Monitor & Control

Tailoring

Verification Validation Operation Maintenance DisposalTransition

Stakeholder Requirements
Definition

Requirements
Analysis

Architectural
Design

Implementation Integration

Concept
Phase

Development
Phase

Production
Phase

Utilisation Phase

Support Phase
Retirement

Phase

UNCLASSIFIED
DSTO-TR-3039

74

UNCLASSIFIED

While there are still many and varied definitions of SE, the version offered by INCOSE in
their SE Handbook based on ISO/EIA 15288:2008 is widely accepted internationally as
encapsulating the essence of SE. SE is defined by INCOSE as:

“an interdisciplinary approach and means to enable the realization of successful systems. It focuses
on defining customer needs and required functionality early in the system development cycle,

documenting requirements, then proceeding with the design synthesis and system validation while
considering the complete problem including:

• operations
• performance
• test
• manufacturing
• cost and schedule
• training and support and
• disposal.

SE considers both the business and technical needs of all customers with the goal of providing a
quality product that meets the user needs” (INCOSE 2012).

In his 1997 paper, Mar asks probing questions such as what is SE, whether it is a process or
skill code, and what is the role of SE in the engineering of complex systems (Mar 1997).
These questions are still relevant today to Defence.

The INCOSE SE Handbook suggests that SE is a combination of concepts:

• a perspective based on systems thinking;

• a process; and

• a profession (as discussed in para. 5.3.2).

Key tenets include recognising it is a disciplined approach for systematically addressing the
engineering of human-made or technical systems, and it requires the application of
formalised technical and management processes over a system life cycle to achieve an
intended engineering outcome.

5.4 The Systems Engineering Process

Contemporary SE manifests where formalised technical processes are used to define the
requirements for a technology-based system (which needs to be engineered to satisfy an
identified need); to transform the requirements into an effective product imbued with the
required attributes; to permit consistent reproduction of the product where necessary; to
use the product to provide the required services; to sustain the provision of those services;
and to dispose of the product when it is retired from service (ISO/IEC 15288:2008). The
system solution is to be developed on a basis that balances cost, schedule, performance and
risk.

There are many and varied instantiations of the SE process, depending on many and varied
factors including the source and nature of the originating requirement, resourcing
considerations, organisation competencies, regulatory and governance requirements, and
end user considerations. An overview of a typical SE process is illustrated in Figure 33
(Blanchard & Fabrycky 1998). A more detailed and explicit description of the SE process is
provided in IEEE standard 1220-2005 as shown in Figure 34.

UNCLASSIFIED
DSTO-TR-3039

75
UNCLASSIFIED

Figure 33. Typical SE Process Overview (Blanchard 2010).

\

Figure 34. Recursive Process Representation (IEEE-1220-2005).

Understand
The

Objectives

IDENTIFIED
NEED

Define The
System

Requirements

Compare Analysis
&Test Data

With
Requirements

And
Objectives

Test
The

System

Consider
Alternative

Configurations

Choose
The Best

Configuration

Design
The

System

Accomplish
System

Integration

Update
System Characteristics

& Data

Refine

IMPLEMENTED
SYSTEM

Actual
Characteristics

Interface
ControlMeasured

Characteristics

UNCLASSIFIED
DSTO-TR-3039

76

UNCLASSIFIED

Significantly, the process is not linear; it typically is recursive in nature, where increasing
detail is revealed as the requirements and functions are successively decomposed and
verified as the design synthesis is progressed towards detailed implementation. Integration
and verification is also recursive, where the system solution is progressively built up as a
product hierarchy, and verified against the applicable requirements at the respective layers
of decomposition and integration until the final implementation comprising the verified
and validated completed system assembly is achieved (Mar 1992).

The key IEEE 1220 system structural concepts showing the basic system building block, the
resultant product hierarchy produced, and the life cycle processes are illustrated in Figure
35 (Doran 2006). Here the hierarchical nature of the system is prominently shown.

Figure 35. IEEE 1220-2005 Key System Structural Concepts.

The scope of consideration in respect of the problem space and the solution space of
relevance to the organisation or enterprise as described in IEEE 1220-2005 is provided in
Figure 36.

A commercial example of SE technical and management processes and reviews
recommended to manage and control project activity is shown in Figures 37a, 37b, and 37c.
The SQA 2000 Software Quality Assurance methodology©, developed by Coopers and
Lybrand (Coopers & Lybrand 1991, 1995), provides a detailed list of activities, reviews,
deliverables and audits as might typically be used to plan and manage the undertaking of
complex software engineering development and production activity.

UNCLASSIFIED
DSTO-TR-3039

77
UNCLASSIFIED

Figure 36. Key Problem and Solution Space Structuring Concepts (IEEE-1220-2005).

Three
Requirements

View

Operational
View

Functional
View

Physical
View

Performance
Requirements

Functional
Requirements

External
Interfaces

System/
subsystem/
components

Internal
Interfaces

System
elements

- hardware
- software
- personnel
- facilities
- materials
- data
- services
- techniques

Functional
architecture

Design
architecture

System
architecture

Output:
Product

and
process

data
package

Allocations

Allocations

Specification
tree

Product
breakdown
structure

Allocations
Components

Subsystem

System

Problem
Space Solution Space

Natural

Induced

Threats

Operational
scenarios

Required
operational
capability

Measures of
effectiveness

In-service
shortfalls

Distribution

Support

Training

Disposal

Utilisation
environment

Platform

External
systems

Operations

Development
environment

Manufacturing

Verification

Logistics

Others

UNCLASSIFIED
DSTO-TR-3039

78

UNCLASSIFIED

Figure 37a. Coopers & Lybrand SQA 2000 Methodology Overview©.

Initial Project
Planning

Checklist
Mapping

Detailed Risk
Assessment &

Planning

Task
Preparation

Task
Completion

Project
Completion

1.1 Establish Project
Scope & Objectives

1.2 Define Project
Workplan

1.3 Prepare Project
Proposal

Key Deliverables

2.1 Document the
Methodology

2.2 Develop Review &
Audit Framework

2.3 Review the
Framework

3.1 Project
Familiarisation

3.2 Undertake Risk
Assessment

3.3 Detail Findings &
Subsequent Work

4.1Prepare for Detailed
Reviews & Audits

4.2 Implement & Train

5.1 Undertake task
activities

5.2 Complete
Follow-up Activities

5.3 Finalise Task
Conclusions

2

1 3 4 5 6

6.1Analyses Project
Outcome

6.2 Assignment
Completion Report

6.3 Present Report &
Recommendations of
Customer/ Sponsor

6.4 Assignment
Debriefing & Feedback

 Project Planning
Checklist
 Project Work Plan
Project Planning
Worksheet
 Project Proposal

 Tailored Methodology
 New Review & Audit
Framework
 Checklist Profiles

 Project Risk
Assessment
 SQA Strategy Matrix
 Review & Audit Scope
and Objectives

 Tailored Checklists &
Working Papers
 Training Programs

 Completed Checklists
 Phase & Product
Reports & Conclusions
 Task Report

 Assignment
Completion Report
 Project Debriefing

UNCLASSIFIED
DSTO-TR-3039

79
UNCLASSIFIED

Figure 37b. Coopers & Lybrand SQA 2000 Systems Development Life Cycle Overview, Reviews and Audits Schedule© – Part 1 (adapted).

Planning
Requirements

Analysis Design Development Testing Installation &
Integration

Production
Support

1.1 Scoping and
Evaluating Project

1.2 Define Project
Boundaries &
Milestones

1.3 Develop Work
Breakdown Structure

1.4 Prepare Project
Schedules & Budgets

1.5 Prepare Project
Team & Additional
Resources

1.6 Prepare Project Plan

1.7 Project Start-up
Procedures

2.1 Analysis Planning
& Initiation

2.2 Define User
Needs

2.3 Current System
Review

2.4 Functional
Specification
Development

2.5 Request for
Proposal

2.6 Evaluate Tenders

2.7 Solution Definition

3.1 Develop Logical
Design Models

3.2 Design Interfaces

3.3 Design
Subsystems

3.4 Complete System
Support Specification

3.5 Specify Data
Conversion System

3.6 Cost Benefits
Analysis

4.1 Prepare Development
Framework

4.2 Develop System
Databases

4.3 Conduct Detailed
Design

4.4 Establish Operations
Functions

4.5 Complete Migration
Design

4.6 Code & Test
Development
Components

5.1 Complete
Testing Plans &
Materials

5.2 Prepare Testing
Environments

5.3 Perform Tests

5.4 Transfer to
Production System

5.5 Conduct User
Acceptance Testing

21 3 4 5 6 7

6.1 Finalise Migration
Planning

6.2 Prepare New
Procedures

6.3 Migrate Data

6.4 Finalise Migration
Effort

6.5 Project Completion

7.1 Provide System
Support

7.2 Change Request
Feasibility & Initial
Planning

7.3 Perform
maintenance &
enhancements

7.4 Implement Change
Request

UNCLASSIFIED
DSTO-TR-3039

80

UNCLASSIFIED

Figure 37c. Coopers & Lybrand SQA 2000 Systems Development Life Cycle Overview, Reviews and Audits Schedule© – Part 2 (adapted).

Planning
Requirements

Analysis Design Development Testing Installation &
Integration

Production
Support

Reviews

Process Audits

Product Audits

 Software Quality
Plan
 Project Plan
 Planning Phase

21 3 4 5 6 7

 Requirements Analysis
Phase Plan
 Business Model
Walkthrough
 Questionnaires
 Preliminary Solution
Definition
 Software V&V Plan
 Operational/
environmental Issues
walkthrough
 Request for Tender
Document
 Evaluation Hierarchy &
Criteria
Estimates
 Selected Solution
 Requirements Analysis
Phase

 Project Initiation
 Project Planning
 Project
Management &
Control
 Change
Configuration
Management
 Quality System

 Requirements Analysis
 Tender Evaluation

 Design  Development  Testing  Installation & Integration  Production Support

 IT Strategic Plan
 Systems
Development
Methodology
 Project Plan
 Quality Plan
 Software Quality
Management System

 Design Walkthroughs
 Design Specifications
 Security and Control
Specifications
 Conversion
Specifications
 Cost Benefit Analysis
 Design Phase

 Technical Environment
 Operating Environment
 Database Design
Walkthrough
 Technical Design
Walkthrough
 Operational
Requirements
 Operational Security &
Control
 Unit/String Test Results
Walkthrough
 Development Phase
Code Inspections
 Conversion Plan
 Development Phase

 Test Specifications &
Plan
 Test Case Walkthrough
 System Test
Preparation
 System Test Results
 Acceptance Test
Preparation
 Acceptance Test
Results
 Testing Phase

 Installation & Integration
Plan
 Operating Procedures
 Automated Data
Conversion
 Manual Data Conversion
 Systems Acceptance
 Installation & Integration
Phase
 Post Installation &
Integration

 Formal System
 Classification &
Prioritisation
 Planning
Requirements &
Design Changes
 Development &
Testing Changes
 Production Support
Code Inspection
 Change
Implementation
 Production Support
Phase

 Request for Tender
 Software
Requirements
Specification

 Software Design
Description

 Software Code  Test Planning
Documentation
 Test Completion
Documentation
 Functional
Configuration
 Physical Configuration

 User Documentation
 Migration Plan
 Installation &
Integration Readiness

 Production System

UNCLASSIFIED
DSTO-TR-3039

81
UNCLASSIFIED

From a systems perspective, the approach in a SE context can therefore be summarised as:
1. Understand the problem in the broader context before attempting to solve it as a

technical system (including metrics, priorities and constraints, to establish the
feasible solution envelope).

2. Identify and rank (as far as reasonable), all possible technical solutions prior to
selecting an answer (within the feasible solution envelope).

3. Look for hybrid solutions to add to the set of alternatives.
4. Select a technical solution, capture the supporting analysis, and formulate the

subsequent problem at a lower level of decomposition or implement the solution
(adapted from Mar 1997).

5.5 The System Life Cycle

The precise nature of the detailed engineering activities and the order in which they are
performed are encapsulated in the concept of a life cycle model. As previously illustrated in
Figure 38, the standard ISO/EIA 15288:2008 provide a simple, high-level summary of
significant stages in the life of a product or system that is relevant to the organisations
responsible for conceptualising, implementing, using, and supporting the product or
system over its useful life.

Different life cycle models follow different process steps, decision points, and governance,
with different consequences at each step in terms of cost, schedule, risk, and achieved
progress in system implementation. Well known life cycle models include the Royce
Waterfall Model, the Forsberg and Mooz V-Model, and the Boehm Spiral Model as shown
in Figure 38(a), 38(b), and 38(c) respectively (Royce 1970), (Forsberg & Mooz 1992), (Boehm
1988).

Figure 38(a). SE Life Cycle Development Models – Waterfall Model (Royce 1970).

Requirements
Specification

Requirements
Specification

AnalysisAnalysis

DesignDesign

Implementation
(Construction/

Coding)

Implementation
(Construction/

Coding)

VerificationVerification

OperationsOperations

UNCLASSIFIED
DSTO-TR-3039

82

UNCLASSIFIED

 Figure 38(b). SE Life Cycle Development Models – Vee Model (Forsberg & Mooz 1992).

Understand user
requirements.

Develop system
concept and user

validation plan

Develop system
performance

specification and
system verification

plan

Expand performance
specifications into CI

“design-to”
specifications & CI

verification plan

Evolve “design-to”
specifications into

“build-to”
documentation &
inspection plan

Fabricate,
assemble & code

to “Build-to”
Documentation

Demonstrate &
validate system

to user validation
plan

Integrate system &
perform system
verification to
performance
specification

Assemble CIs &
perform CI

verification to CI
“design-to”

specifications

Inspect to “build-to”
documentation

Decomposition and Definition
Int

eg
ra

tio
n a

nd
 V

er
ific

ati
on

Systems
Engineering

Design
Engineering

Time

.

UNCLASSIFIED
DSTO-TR-3039

83
UNCLASSIFIED

Figure 38(c). SE Life Cycle Development Model- Spiral Development (Boehm 1988).

Variations of these basic models, supporting both structured and iterative development,
provide the basis for undertaking SE and SW development activity over the entire system
life cycle. The high-level depiction of life cycle development activities as described in Figure
38 provide a meta-model for the major SE activities over the duration of the system life
cycle, revealing the presence of significant decision-points or governance milestones. It
therefore provides a framework for deliberate detailed planning and management of
activity to attain the technical, schedule, and cost goals for the system57.

The Vee-model as illustrated in Figure 38(b) is typically used within the context of an
Australian Defence Project used to acquire Major Capital Equipment (MCE) for the
Australian Defence Force (ADF).

57 A detailed description of the life cycle methodology for SE is provided in Sage (1992).

UNCLASSIFIED
DSTO-TR-3039

84

UNCLASSIFIED

5.6 The Significance of System Architecture in SE

The term architecture has been used on numerous occasions in this report, with many
different facets; heavily shaped by SW engineering and IEEE 1471 influences.

The notions of systems architect and system architecture have emerged in recent times,
displacing earlier notions of system designer and system design, even though they are not
analogous. The term system architecture is widely used in modern SE, SW and EA parlance
but not necessarily as widely understood.

(Hitchen 2007) offers that basic notions of system architecture arise around ideas of binding
and coupling. Where a number of piece-parts all mutually interact, there is said to be tight
functional binding (i.e. forms a cluster). Where such tight functional binds (i.e. clusters) are
interconnected, the clusters are said to be loosely coupled.

A useful way of conceptualising system architecture suggested by Hitchens is to envisage
the pattern formed by linking clusters of systems and subsystems. Since such clustering and
linking can occur in many different ways, there can be many different patterns, all of which
can ostensibly called system architectures. These are referred to as “viewpoints” of the
system architecture in IEEE 1471 since all connections are simultaneously present. If the
system is particularly large or complex, its system architecture (in its broadest sense) may
be difficult to discern, and may change dynamically over time.

Hitchen suggests that in deliberately engineered systems, the system functional architecture
emerges unaided as an intrinsic part of the system conception and design process; however,
physical configurations are shaped by the constraints of the solution space. System
implementation is therefore concerned with maintaining an effective functional architecture
when mapping it onto a suitable physical configuration, without impeding functional
interactions and functional behaviour. The system architecture indicates connectivity and
potential cohesion since it shows the extent of interconnection, which is the fundamental
aspect of any system – that all its piece-parts are interconnected and contribute towards the
“whole”.

In a SE context, the architecture is delineated by the connections between the piece-parts of
the system (i.e. at the interfaces), since interruption of the connections could prevent the
isolated piece-parts from contributing to the operation of the “whole”, and could therefore
impair performance of the “whole”.

If there are multiple connections such that the severing of one connection did not impair
piece-part interactions, then it may be possible for the piece-parts to continue to operate as a
unified “whole”. This illustrates the principle of redundancy to improve system resilience
(Hitchens 2007).

5.7 Notions of System Hierarchy

The concept of system hierarchy is also very important in SE, manifesting as a physical
architecture. The INCOSE SE Handbook describes a recursiveness within the life cycle
process model that is applicable at each level of the system hierarchy (as previously shown
in Figure 34) as the system implementation progresses through from initial system design
to detailed subsystem, element, component and configuration item design, development
and test.

UNCLASSIFIED
DSTO-TR-3039

85
UNCLASSIFIED

Typical recursive interactions with stakeholders, and process inputs and outputs are
illustrated in Figure 39, with the initial considerations providing a constant backdrop for
consideration throughout the successive process steps and decision points.

Figure 39. Context for Typical Process Flow for Each Level of Decomposition. (Blanchard &
Fabrycky 1998).

The systems engineering design process includes defining all of the system’s requirements
and then bundling them by segmenting and refining into successive specifications for each
of the system’s segments, elements, components, and Configuration Items (CI) respectively.

The development process in SE can therefore be represented as a purposeful decomposition
(or design) process followed by a re-composition (or integration process) (Buede 2000). The
progression of the design occurs as a decomposition of requirements and the operational
architecture, and performing physical to functional allocations at successive stages of
decomposition as shown in Figure 40.

Describe
Needs

Define
Functions that
meet Needs

Define
Requirements

Develop
Alternatives

Select &
Describe
Solution

Elements

V&V

Develop
Decision
Criteria

Goals &
ObjectivesConstraints

CUSTOMER/ACQUIRER – can be assisted by DEVELOPER

SUPPLIER/DEVELOPER

REGULATORS

ACQUIRER &
STAKEHOLDERS

ACQUIRER &
SUPPLIER

SUPPLIER

System description
generated for this level
forms the Requirement for
the next lower level

System description
generated for this level
forms the Requirement for
the next lower level

Reviews & Audits

ACQUIRER

Process Flow for Each Level of Decomposition

ECONOMICS

MARKET-SEGMENT
CONSUMERSFINANCES

ENVIRONMENT

RESOURCES
CORPORATE

POLICY &
STRATEGY CONSTRAINTS

ACQUIRER
CONTEXT

Verified requirements and solution
components at each level of
decomposition/ integration.

Validated when integrated as fully
assembled system solution and
successfully used or operated in customer
context.

ACQUIRER

UNCLASSIFIED
DSTO-TR-3039

86

UNCLASSIFIED

Trade-off studies carried out at each level of decomposition during the design phases are
used to inform of the benefits and pitfalls of design alternatives at each level.
Implementation decisions at each level then inform the set of requirements to direct
implementation of the next lower level in the hierarchy until the design synthesis is
completed.

Figure 40. Design Decomposition of Architectures and Specifications (Buede 2000)

The system hierarchy is often expressed in the form of the resultant design architecture,
where the design architecture is the structure of the components (i.e. solution system
elements) in the system in terms of their interface boundaries, arising as a purposeful
system partitioning into components, or deliberate assignment of components to the
designated system (Hoban & Lawbaugh 1993b). This allows differentiation between those
components over which the acquirer has some semblance of control, as opposed to those
external components that the system has no control over.

Thus three distinct architectures are derived from the initial system’s operating concept or
operational requirement (functional, physical and operational) as part of this decomposition
as shown in Figure 41 (Buede 2000).

The functional architecture defines what the system must do, i.e. the system’s functions and
the data that flows between them. The physical architecture represents the partitioning of
the physical resources available to perform the system functions. The operational
architecture is the mapping of functions to resources.

Operational
Requirement

System
Design

Segment
Design

Element
Design

Component
Design

Operational
Need

System
Operational
Architecture

Segment
Specs.

Segment
Operational

Architectures

Element
Specs.

Element
Operational

Architectures

Component
Specs.

Component
Operational
Architecture

Configuration
Item Specs.

UNCLASSIFIED
DSTO-TR-3039

87
UNCLASSIFIED

Figure 41. Architecture Development in the Engineering of a System (Buede 2000)

A life-cycle physical architecture is illustrated in Figure 42, showing both the physical
architecture of the system solution as well as the physical architecture supporting the
systems engineering activity (Buede 2000).

For many systems, a total of five distinct models are critical for capturing the totality of the
system: environment, data (or information), process, behaviour and implementation.

• The environment model reflects the system boundary, the operational concept, and
the objectives of the system performance;

• The data or information model captures the relationships between among the data
elements that cross the system’s boundary, as well those that are internal to the
system;

• The process model captures the functionality of the system and is used to describe
the functional architecture;

• The behaviour model reflects the control structures in which the systems functions
are embedded;

• The implementation model reflects the overlay of processes and behaviours on the
physical architecture; and

• The operational model reflects the operational architecture (Buede 2000).

These five models need to be integrated to properly define the three architectures of Figure
41.

Operational Concept

Operational Architecture

Physical ArchitectureFunctional Architecture

UNCLASSIFIED
DSTO-TR-3039

88

UNCLASSIFIED

Figure 42. Life-cycle Physical Architecture – Weapons Systems Example (adapted from Buede
2000)

As the design synthesis progresses to lower levels of the hierarchy, and design integration
and verification progresses up the hierarchy towards the highest level, additional insights
can reveal emergent properties which may detrimentally affect the ability to achieve the
desired outcomes. In fact, it may be found belatedly that the desired outcome may not
achievable as initially conceived with the selected implementation.

This may necessitate revisiting the requirements and constraints at each level in the
hierarchy, including the originating need, to reconsider trade-offs in light of the additional
insights. This notion of feedback and iteration to refine the system concept and system
implementation to optimise the outcome in terms of capability, cost, and schedule, is
fundamental to SE.

5.8 System of Interest and Systems of Systems

Your system is someone else’s subsystem and someone else’s system is your subsystem” (Mar 1992).

The term “system of interest” is also used interchangeably with the term “system”, where
this is defined in ISO/IEC 15288:2008 as “the system whose life cycle is under consideration
in the context of the standard”. This definition is also used in the INCOSE SE Handbook

Weapon System

Manufacturing System

Design and Integration System

Operational System

Training System

Logistics Support
System Retirement System

Refinement System

Utilities & Other
Subsystems Cockpit System Vehicle Management

System

Radar

Identification

Controls & Displays

Avionics System

Electronic Warfare

Navigation

Stores Management

Inertial Reference
System

Processing

UNCLASSIFIED
DSTO-TR-3039

89
UNCLASSIFIED

(INCOSE 2012).

This infers for the purpose of applying the SE process, it is also important to:

• Identify the boundary of the “system of interest”,

• Identify the inputs and outputs to the “system of interest “, and

• Identify the functions and performance of the “system of interest” to convert
inputs to outputs to meet the originating requirements (Mar 1997).

External systems are those entities outside the boundary of the “system of interest” which
can interact with the “system of interest” through its external interfaces. All the inputs and
outputs from the “system of interest” flow through its external interfaces to these external
systems, many of which may be legacy (existing) systems. It is therefore important to
properly articulate the system context, which identifies those external entities that can
impact on the “system of interest”, but cannot be impacted by the “system of interest”, as
shown in Figure 43 (adapted from Buede 2000).

Figure 43. Depiction of “System of Interest”, External Systems and Context

Failure to define the “system of interest” appropriately will result in considerable confusion
and the misapplication of SE precepts in the wrong context (Mar 1997). The concepts of
system identity and system boundary, thus exposing the respective external system
interfaces, are therefore essential for the articulation of a system in the SE context. Similarly,
concepts of identity and boundary for the respective system elements (i.e. components) are
also essential for exposing the appropriate internal interfaces.

An example of a high-level context diagram showing the “system of interest” interfacing to
multiple legacy systems which may impact on the design of a car is shown in the following
diagram in Figure 44.

Domain context

External systems

“system of interest”

Is impacted by “system of interest”

External environment

Impacts on, but is not impacted by “system of interest”

No impact on, and is not impacted by “system of interest”

UNCLASSIFIED
DSTO-TR-3039

90

UNCLASSIFIED

Figure 44. Example of System of Interest in Relation to Car Design

The INCOSE Handbook introduces the term “Systems of Systems” (SoS) to differentiate
those “systems of interest” whose system elements are themselves systems – typically
associated with large scale inter-disciplinary problems with multiple, heterogeneous,
distributed systems. SoS are systems in their own right in that they perform functions and
have common purpose that do not reside in any component systems, and properties that
cannot be localised to any component system (Maier 1998).

Rather than designing from top down, as suggested in the simple Vee life cycle model for a
system, SoS are typically formed by bringing together specific individual systems such that
the emergent properties of the collective systems meet the higher level requirements of the
SoS. Systems engineering carried out at the SoS level is sometimes referred to as SOS
engineering (SOSE).

“System of Interest”

360 degree
surround vision

subsystem

Driver-assisted
safety alarm
subsystem

Adaptive cruise
control

subsystem

Predictive
collision

avoidance
subsystem

Automated
braking system

Intelligent
navigation
subsystem

Fleet
management

system
Traffic

management
system

Hybrid/electric
vehicle charging

system

Home
garaging
system

Vehicle
diagnostics

system

GPS location
system Road system

Mobile
communications

network

Integration of electrical,
mechanical, fluids,

electronics, and software
engineering

System of Systems

Multiple software-intensive
subsystems

Car System

UNCLASSIFIED
DSTO-TR-3039

91
UNCLASSIFIED

Originally developed by Maier in 1998, the INCOSE SE Handbook offers the following
characteristics and challenges inherent in SoS:

1. System elements (i.e. component systems) operate independently – if the SoS is
disassembled into component systems, each system within a SoS has the ability to be
independently operational in its own right, (and hence may be subject to differing
requirements, constraints, and priorities);

2. System elements have different life cycles – older system elements may be
scheduled for disposal before newer system elements are deployed;

3. The initial requirements are likely to be ambiguous – the SoS requirements may be
no more explicit than the system element requirements. Thus requirements for a SoS
mature as the system elements mature;

4. Complexity is a major issue – as system elements are added, the complexity of the
system interactions grows in a non-linear manner;

5. Management can overshadow engineering – System elements normally operate
independently in their own right, and are managed independently. Since each
system element has its own product/project office, the coordination of
requirements, budget constraints, schedules, shared resources, interfaces and system
upgrades adds further complexity to the development of a SoS;

6. Fuzzy boundaries can cause confusion – unless the scope of the SoS is specifically
defined and controlled, and the the boundaries of the systems elements are
managed, there is no control of the definition of the external boundaries;

7. SoS engineering is never finished – the SoS does not appear fully formed. Its
existence is evolving with functions being added, modified, or deleted over time.
This means product and project management activity must continue to account for
changes in the various system element life cycles (e.g. introduction of new
technologies or replacement of obsolete system elements). (INCOSE 2012).

Inherent in the definition offered by Maier in 1998, SoS component systems are also
geographically distributed, and therefore can only readily exchange information and not
substantial quantities of mass or energy. This latter characteristic is particularly significant
in terms of its relationship to enterprise architecture practice, which primarily focuses on
information exchange (Hue 2011).

Since a SoS is a conceptual entity rather than a physical entity, there is substantial discretion
in selection of SoS boundaries in an organisation or enterprise as shown in Figure 45,
depending on the binding and coupling criteria elected, but the notion of system hierarchy
is still preserved (Hue 2011).

The usefulness of this conceptual construct is its ability to abstract away from overly
complex detail while conveying key themes and linkages. The level of abstraction at which
a problem is to be solved will determine the boundary of the system of interest. Thus, the
interactions of the system of interest with its wider system context, immediate environment
and wider environment need to be identified and understood.

UNCLASSIFIED
DSTO-TR-3039

92

UNCLASSIFIED

Figure 45. SoS Representation within an Enterprise.

The perception and definition of a particular system or SoS, its architecture, and its
components depends on an observer’s interests and responsibilities. Figure 46 illustrates
important principles including:

• The importance of defined boundaries that encapsulate meaningful need and
practical solution;

• The hierarchical perception of system physical structure;

• That an entity at any level in a hierarchical structure can be viewed as a system;

• That a system comprises a fully integrated, defined set of subordinate systems, (i.e.
components);

• The interactions between components give rise to characteristic properties at a
system’s boundary;

• That humans can be viewed as users external to a system (e.g. car driver and
braking system), and/or as components within a system (e.g. car driver and car)

• That a system may be viewed as both a product (looking inwards at its boundary)
and a set of services (when viewed from outside of its boundary) (ISO/IEC 15228).

SoS
OrganisationSoS

Defence Enterprise

SoS

SoS

SoS

SoS

Project

External Environment
External

Organisation

Platform
System Platform

Sub-System

SoS

SoS SoS

SoS

Same interface
- different fidelity
of representation

System/Sub-System
interdependencies
- Process interface
- Functional interface
- Information interface
- Technical interface
- Physical interface
- Organisation interface

SoS
OrganisationSoS

Defence Enterprise

SoS

SoS

SoS

SoS

Project

External Environment
External

Organisation

Platform
System Platform

Sub-System

SoS

SoS SoS

SoS

Same interface
- different fidelity
of representation

System/Sub-System
interdependencies
- Process interface
- Functional interface
- Information interface
- Technical interface
- Physical interface
- Organisation interface

UNCLASSIFIED
DSTO-TR-3039

93
UNCLASSIFIED

Figure 46. Example System View of a Car in SoS Context

To ensure all system implications are exposed, a complete and holistic system view must be
taken in full context (Sparks 2011). Since the behaviour of a system is dependent on external
interactions and unforeseen circumstances, it behoves to explore all attributes of interest,
including the effect of failures on system behaviour, at the appropriate level of abstraction.

Key systems of purpose can be component systems in multiple SoS that have
complementary functionality. The greater the degree of integration required, the greater the
component system interdependencies, and thus the greater the number of acquisition
interdependencies and other socio-technical interdependencies to be acknowledged and
managed.

The “system of interest” can therefore be significantly larger than the individual component
system being engineered, so that other relevant socio-technical factors including
organisation, process, personnel, economic and political influences are also accounted for in
informing engineering decisions. Thus each key component system in a SoS can no longer
be managed solely in the context of its own engineering environment, but needs to be
examined in a much broader context with respect to the larger encompassing SoSs and their
external environments (Hue 2011).

Additional and ongoing SoS risk management activities, including V&V at the SoS level,
are therefore essential to ensure the desired emergent properties of the SoS are achieved and
sustained, and that no unexpected or detrimental properties emerge, nor required properties
lost, as individual component system elements progress through their respective life cycle
stages.

Broader integration of SoS (referred to as SoSI) within their external environments falls
more within the realms of the social sciences and management science rather than
engineering science, and is therefore out of scope of an engineering-centric process.
However, SoSI still needs to be appropriately managed.

Driver-assisted
safety alarm
subsystem

Adaptive cruise
control

subsystem

Predictive
collision

avoidance
subsystem

Automated
braking system

Intelligent
navigation
subsystem

“System of Interest”

Fleet
management

system

Traffic
management

system
Hybrid/electric

vehicle charging
system

Home
garaging
system

Vehicle
diagnostics

system

GPS location
system Road system

Mobile
communications

network

System of Systems

Car Transport System

Driver

Car luggage

Passengers

Car System

UNCLASSIFIED
DSTO-TR-3039

94

UNCLASSIFIED

5.9 Systems Integration and SoS Integration

In the engineering context, system integration is the bringing together of the detailed
elements of the overall system design into one system through a process of assembly and
testing, and ensuring the elements function together as a system meeting the needs of the
stakeholders with the expected features and attributes, as shown in Figure 47 (Buede 2000),
(Shameih 2011).

Figure 47. Integration and Verification – an Iterative Process (adapted from Shamieh 2011).

Integration

Verification

System installation and
system verification

complete

fully tested components
assembled into subsystems

assembled subsystems

successive
subsystem

installation into
system assembly

verified
subsystems

within system
assembly
context

Driver-assisted
safety alarm
subsystem

Adaptive cruise
control

subsystem

Predictive
collision

avoidance
subsystem

Automated
braking system

Intelligent
navigation
subsystem

Verified
System

“System of Interest”

Validation

validation in SoS
contextFleet

management
system

Traffic
management

system
Hybrid/electric

vehicle charging
system

Home
garaging
system

Vehicle
diagnostics

system

GPS location
system Road system

Mobile
communications

network

System of Systems

Car System

UNCLASSIFIED
DSTO-TR-3039

95
UNCLASSIFIED

In IT, systems integration is the process of linking together different computing systems,
SW applications, and hardware host platforms physically and functionally to act as a
coordinated whole.

For decades, the notion of System Integration (SI) was regarded as a process step within the
SE process; being the final verification activity of the assembled system components against
the originating system specification. Thus, SI test was the penultimate major SE process step
prior to acceptance and delivery of the implemented solution to the customer, where the
solution has required design synthesis over multiple layers of decomposition prior to
building and assembling the solution components.

The concept of SI has morphed in recent times from a specific SE process step to embrace a
much wider notion of purposely bringing together designated piece-parts (principally
drawn from current inventory, or acquired as COTS or MOTS, requiring little or no
adaptation) to form a system with specific emergent properties to fulfil a specific
operational need. This can include circumstances such as retro-fitting an extant system;
replacing an obsolete component with a new component with equivalent form, fit and
function; or evolving a system by adding more components; or forming an entirely new
system by bringing together extant components which were developed for different
purposes.

System integration then includes the activity of joining the selected off-the-shelf subsystems
and components together. If the interfaces are selected are already designed to connect
together, then SI can be reduced to simple assembly and verification activity. If the
interfaces were not explicitly designed to connect together, then additional design activity is
required to provide suitable interface conversion or mapping, entailing either additional
HW engineering or SW engineering activity or both.

This alternate notion of SI is consistent with that from the IT discipline. However, it does
not address the scope of the integration activity required, nor the methodologies that may
be employed to achieve the SI objectives for system solutions that may overlap between the
IT discipline and other technical disciplines.

The latter concept of SI is applicable, for example, when deciding to replace obsolete
batteries in high cost equipment, as a lower cost, shorter schedule, and lower risk
alternative in lieu of re-designing or replacing an entire equipment suite. Here the
requirements may be simple to articulate, without requiring significant engineering
documentation, nor significant broader consideration of other technical or socio-technical
factors. The engineering task may only require minor effort to undertake the design
synthesis, select an off-the-shelf (OTS) solution from a number of suitable alternatives, and
perform system integration test to verify the implemented solution meets the originating
requirement.

In this example, if the replacement batteries were designed for operation in a similar context
to the equipment suite, then emergent properties when installed in the equipment might be
expected to be similar to the obsolete batteries. Thus, only limited design evaluation and
integration test may be warranted. If the range of OTS potential replacements were
designed for operation in a markedly different context, then additional enquiry, test, and
documentation may be warranted to ensure the desired attributes can be realised, and to
minimise the likelihood of latent defects where unexpected and detrimental emergent
properties are encountered in the operating environment.

If no suitable OTS replacements can be found then it may necessitate the raising of a new

UNCLASSIFIED
DSTO-TR-3039

96

UNCLASSIFIED

SE project to design and build a new replacement battery. This approach would therefore
require the more classical application of SI to verify that the implemented solution is fit for
purpose as intended, with a low likelihood of latent defects.

The same notion of SI can also be applied, for example, for the addition of a new radio
capability to an existing fleet of land vehicles. Here, the land vehicles can be considered as
independent systems deployable in their own right, thus integration of a radio into each
vehicle in the fleet will occur at the SoS level. Again, the decision to design and build or buy
OTS will determine the scope of SoS integration (SoSI) required to verify the implemented
solution is fit for purpose as intended.

On a larger scale at the SoS level, a Deployed Force typically comprises extant military
capability elements that are brought together for a specific purpose such as a military
exercise or deployment in a theatre of operations. Here, the Deployed Force can be
considered a SoS, since it is typically comprised of capability elements which are
independent systems in their own right.

In this case, a set of requirements for the deployment may be articulated, but the design of
the Deployed Force is accomplished by military planning processes rather than through
engineering based design synthesis. Some SoS verification may be warranted under some
circumstances, for example, if a military platform is a new capability being introduced into
service; if it has undergone a major upgrade; or if it is being deployed under markedly
different circumstances to that previously encountered or considered.

Because of the large scale of endeavour, it may not be practical to undergo extensive V&V
activity of each potential combination of component systems comprising a Deployed Force.
However, the Deployed Force can undertake at least some SoSI activity to ensure, at least to
a notional level of confidence, that the assembled force will be capable of performing
adequately, with minimal likelihood of unexpected and detrimental emergent properties
which have the potential to compromise military capability.

This V&V activity can include, but is not limited to “Shakedown” activity. Shakedown
activity is sometimes undertaken where a military platform can undertake a series of OT&E
style validation activities when newly deployed into an extant theatre of operations, prior to
commencing active duty. The purpose of the “Shakedown” is to flush out and remedy any
latent defects that manifest under the new circumstances prior to commencing new
operations.

The Program of Major Service Activities (PMSA), a series of regularly scheduled military
exercises undertaken by ADF, not only provides an important venue for training, but also
for performing extended V&V activity supporting SoSI. The PMSA military exercises allow
evaluation of different Force deployment combinations from the respective Services and
selected coalition partners, under different operational conditions, so both strengths and
weaknesses of Force configurations can be identified. This in turn can be used to inform
future Force deployment planning at the SoS level, as well as to inform future capability
development activity at an individual systems level.

5.10 Human Systems Integration

While consideration of human factors has been integral to SE for decades, an integrating
discipline, human systems integration (HSI) has emerged to encourage organisations to
take a more considered view of people interactions. HSI provides a number of principles

UNCLASSIFIED
DSTO-TR-3039

97
UNCLASSIFIED

and methods to help integrate people, technology and organisations with a common
objective towards designing, developing, and operating systems effectively and efficiently.

HSI scope includes management and organisational concepts and processes as they may
interact with the SE processes to achieve cost, safety and performance benefits that might
not otherwise have been considered (Sparks 2012). By considering people as a separate
capability as well as within a capability, the impact of human properties such as human
mental and physical performance, ways of thinking, and reasoning can be explicitly
accounted for (Booher 2003).

Historically, human factors has applied scientific knowledge about human psychological ,
social, physical and biological characteristics to the design and operation of systems in
order to achieve the desired human performance, health, safety and overall system
effectiveness. Human factors is considered by HSI practitioners as a subset of HSI, spanning
the engineering design of equipment, facilities, systems and environments; systems safety;
training; manpower; personnel; health hazards; survivability and mobility. However, HSI
operates in concert with SE principles to ensure human factors are adequately addressed in
the broader context, by providing a systematic process for specifically identifying, tracking
and resolving human related issues, seeking a balanced development of both technological
and human aspects (Sparks 2012).

UNCLASSIFIED
DSTO-TR-3039

98

UNCLASSIFIED

6. Defence Notions of a System

6.1 The Capability System

Defence capability is core to the defence of Australia against direct armed attack and to
protect its strategic interests. In the Defence context, capability is the capacity or ability to
achieve an operational effect. The Defence Capability Development Handbook describes an
operational effect in terms of the nature of the effect and how, when, where and for how
long it is produced (DCDH 2012). As such, Defence capability is a broad socio-technical
concept rather than a prescriptive entity. A socio-technical system is deliberately abstract in
nature, characterised as technical works involving the participation of groups of people in
ways that significantly affect the architectures and the design of those technical works
(Maier & Rechtin 2002).

The Defence Capability Plan (DCP) and the Defence Capability Guide (DCG) are key
planning documents guiding acquisition of new Defence capability (DCP 2012), (DCG
2012). Capability acquisition is managed as a portfolio of projects as described in the DCP
and DCG. For example, the DCP 2012 is the Major Capital Investment Program for
Australian Defence focussing on planned project expenditure over the next four years of the
Government’s Forward Estimates period 2011-12-2015-16. The DCG 2012 provides an
overview of general capabilities and scope of planned future major projects whose approval
dates lie beyond the Forward Estimates period of 2015-16, but can change at any time. The
principle aim of capability development is to develop and maintain the most operationally
effective and cost-efficient mix of Defence capabilities to achieve the Australian
Government’s strategic objectives (DCDH 2012).

Defence has a maturing capability development process drawing from systems engineering
principles as described in the Defence Capability Development Handbook (DCDH 2012). A
capability life cycle is ascribed to each capability system to visualise the life of the capability
system from the identification of a need (i.e. an existing or emerging capability gap) to the
acquisition of a physical capability system which is operated and supported over the life of
the capability system until its eventual disposal. Capability development entails those
activities involved in defining requirements for future capability.

While the SE fundamentals are widely understood within the international SE community,
it is pertinent to ask whether they are shared and widely understood within the Defence
capability development and acquisition community, and if they are applicable in the
Defence context.

What is a system in the Defence context? The term system is used widely in Defence for
many and varied purposes. For the most part, the term is used in a non-technical sense.
However, the DCDH provides expansive definitions of terms used in the context of the
Defence capability development process.

With reference to the capability systems being acquired, the DCDH minimises the use of the
term “system”, instead focussing on the notion of capability. Capability is further
elaborated in the DCDH in terms of a specific set of “fundamental inputs to capability”
(FIC), comprising organisation; personnel; collective training; major systems; supplies;
facilities and training areas; support; and command and management. This is distinct from,
and not to be confused with “Military Capability”, which is the “combination of force

UNCLASSIFIED
DSTO-TR-3039

99
UNCLASSIFIED

structure and preparedness that enables the nation to exercise military power”.

System is defined in (DCDH 2012) as “an integrated composite of people, products, and
processes that provide a capability to satisfy a stated need or objective”. It goes further to
say that “a system is a combination or assembly of HW, SW, principles, doctrines, methods,
ideas, procedures and workforce, or a combination of them, arranged or ordered towards a
common objective”. Thus, the capability system is the combination of these assembled
individual elements in order to achieve the desired operational effect.

Operational effects in a specific theatre of operation are ephemeral in support of achieving
more longer term strategic objectives. This implies the notion of capability system relating
to the deployed force is also ephemeral. This is indeed the case, where the deployed force is
designed and assembled from its component parts to be fit for purpose for each successive
operation.

The capability system does not actually result as an engineering outcome, achieved through
the application of a SE process, complete with engineering style products. Rather it results
from the application of a military planning process. In effect, this means the capability
system is assembled and operated by the end user, although responsibility for individual
components may be assigned to different capability managers. For much of Defence
capability, the capability managers vested with component responsibility reside within the
military services (i.e. Army, Navy, Air Force).

However, with no enduring notion of specific capability systems, there will be no explicit
linkage articulated between individual piece-parts and the capability systems they might be
considered part of. It will therefore be difficult to formally manage any of the piece-parts in
an engineering sense across a managed life cycle if any piece-part in inventory does not
become an actual component of a capability system until it is selected for inclusion. Thus
issues such as interface compatibility, configuration management, and other technical
management considerations cannot be managed on a capability system basis; it is apparent
that they can only be managed at the piece-part level.

For a more enduring notion of a capability system, it would be necessary to prescribe a set
of system elements or components as belonging to particular capability systems in a SoS
context. Only then would it be meaningful to compose a suite of engineering products to
enable technical management of the capability system. However, the precise instantiation of
such a capability system might never be deployed as each deployed force requires specific
tailoring for the specific circumstances at hand.

Notably, most elements of FIC are outside the remit of engineering processes, particularly
with regard to personnel management. So different elements of FIC are subject to different
management processes and governance mechanisms, depending on which organisation(s)
in Defence is responsible for that element.

While the concept of capability may be useful to provide higher-level guidance to assist
framing of requirements for acquisition, it is thus apparent the DCDH notion of a capability
system is not particularly useful in a SE context. It does not relate to a specific system that
can be deliberately engineered and subsequently managed in an engineering sense,
particularly with regard to technical management across an explicit life cycle.

UNCLASSIFIED
DSTO-TR-3039

100

UNCLASSIFIED

6.2 The Materiel System

The materiel system is described in the DCDH as a subset of the capability system,
comprising those aspects of the FIC that are supplied by the acquisition agency. The notion
of the materiel system as a combination of the mission system and the support system is
consistent with the notion described in the ISO/EIA-632 standard, which differentiates
between the end products and the enabling products within the system being acquired.

Since the materiel system only exists for the duration of the acquisition activity, it bears no
relationship to any instance of a specific capability system assembled by the user. Only the
piece-parts being acquired have this association. As such, each materiel system being
acquired would appear to have only indirect relevance to any particular capability system.
The materiel system as such does not have its own managed life cycle, where issues such as
interface compatibility, configuration management and other technical management
considerations are not managed on a materiel system basis.

Since materiel system piece-parts are acquired through the application of a SE process,
engineering style documentation may be available to assist with ongoing support and
technical management of these piece-parts over an explicit life cycle. Specific
documentation is prescribed by the DCDH, where Capability Development Group (CDG)
has responsibility for preparation of Capability Development Documentation (CDD),
comprising an Operational Concept Document (OCD), a Function and Performance
Specification (FPS), and a Test Concept Document (TCD). CDD must be provided for each
MCE project listed in the DCP (DCDH 2012). However, this relates to the materiel system in
its entirety, rather than to individual piece-parts.

Additional SE documentation for materiel system piece-parts may be delivered by the
supplier if listed on the Project Contract Data Requirements List (CDRL). The CDRL is
typically tailored using contracting principles prescribed by the acquisition agency, in most
cases, Defence Materiel Organisation (DMO), which outline mandatory and discretionary
contract activity and product deliverables. The quality and completeness of SE
documentation for any particular project will therefore be dependent both on that supplied
by the Commonwealth, as well as that specified by the Commonwealth, but supplied by the
Supplier for individual piece-parts.

6.3 Major Systems

The term “major system” is also used in the DCDH to describe one of the elements of FIC
within the definition of a capability system. A description rather than a definition is
provided, where it suggests that major systems include significant platforms, fleets of
equipment, and operating systems designed to enhance Defence’s ability to engage military
power. It also notes that major systems can also comprise systems of principal items in their
own right, or equipment that regularly requires more detailed reporting and management.

It is thus apparent that there are many and varied definitions and usages of the term system
in the context of the capability development process. A SE process is applied to acquire
capability system piece-parts within major project boundaries, but not to acquire or
upgrade an actual capability system. It is not so readily apparent which systems are
actually being “system engineered”, who has SE responsibility, and how to differentiate
between SE activity and other stakeholder related activity from a basic SE perspective.

UNCLASSIFIED
DSTO-TR-3039

101
UNCLASSIFIED

Notably, none of the usages of the term system pertaining to DCDH process activity
acknowledge the concept of system hierarchy, nor the pre-existence of any architectural
relationships between systems or system elements of a hierarchical nature. In the absence of
a systems architectural context, this means during acquisition, entities within the materiel
system and the major system can be designated as a system or system element at the
discretion of each project.

For example, a system can be a major platform; a combat system within a major platform; a
radar system within a combat system; or a radar antenna array within a radar system. No
specific criteria is applied. Any such designation attributed during acquisition may well be
retained after delivery to the capability manager. It is therefore likely to retain the
designation during operational service, regardless of its hierarchical relationship to other
piece-parts of related Defence capability.

6.4 Project vs. System Context

6.4.1 Specification Considerations

The starting point for each DCP Project phase is the outcome of a capability gap analysis.
This is performed independent of any originating requirements for an extant capability
being replaced “like for like” or if the capability is to be modified.

Originating requirements are expressed by a project phase in terms of its CDD, including an
OCD and a FPS prepared specifically for that phase. The CDD are frequently not updated
after contract signature for acquisition, and are not maintained after delivery of the
capability. Thus, there is no notion of a persistent set of requirements associated with each
materiel system or capability system that is explicitly managed and evolved over the life
cycle of the capability.

Similarly, for introduction of new Defence capability, during the early phases of the life
cycle prior to the acquisition phase, the capability is described in conceptual form.
Defence’s desire to remain largely solution independent prior to the acquisition to provide
open competition to industry means that the actualised external interfaces to the physical
implementation can differ from the initial abstract form. However, there is little impetus to
update the project CDD to reflect the actualised form as the scope is outside the acquisition
contract.

This is particularly the case where the solution contains COTS components. These may
present external interfaces that may require adaptation elsewhere outside the project
boundary because of funding arrangements, raising the question whether the adaptation is
inside or outside the system of interest, and whether or how the adaptation might be
documented.

This is in contrast to the notion of “system of interest” as described in ISO/IEC 15288 which
has enduring system identity and boundary, with explicit external interfaces (i.e. explicit
input and output interfaces) and set of requirements which are explicitly managed over the
life of the system of interest.

UNCLASSIFIED
DSTO-TR-3039

102

UNCLASSIFIED

6.4.2 Life Cycle Considerations

Since individual systems, subsystems, system elements and equipments are currently
modified or replaced within the auspices of designated Defence project phases, notions of
‘system of interest’ identity and ‘system of interest’ boundaries are project-centric, and
shaped by funding availability and investment priority. They are therefore ephemeral and
can be quite volatile. They have no life cycle as such that can be managed beyond the life of
the project phase, which ceases once the delivered capability is accepted into operational
service. Thus, each capability component can move in and out of different systems of
interest, and different life cycle stages, depending on the individual imperatives of the
subsequent projects and project phases.

Verification and Validation (V&V) activity undertaken within the auspices of a project will
not necessarily be extensible beyond the project boundaries once the materiel system is
delivered and accepted into operational service. Any differences between the delivered
materiel system configuration and any operational system, which comprises different
combinations of capability components, may not be subject to directed V&V activity that
exposes the differences in emergent properties, and hence shortfalls in expected emergent
capability. Thus there may be latent defects which can lie hidden for extended periods of
time until circumstances arise which bring together system elements in new ways which
finally expose the latent defects.

Remediation of more significant latent defects can be problematic as they are typically
reported as capability shortfalls, which can trigger a lengthy and potentially costly process
starting with the next Force Structure Review (FSR). This can require re-evaluation of
strategic guidance, a new entry into the DCP for planning and resourcing, renewed
Government approval, and restart of the capability development process to remedy.

Thus selecting the system boundary of interest for each project will determine the scope of
systems analysis undertaken and hence will affect the associated risk of an adverse
capability outcome at a later date.

6.5 Defence vs. INCOSE System Definition

The Defence definition of system in the DCDH as described above is markedly similar to
that offered in the INCOSE Handbook. The differences may be subtle, but an important
distinction between the two definitions is the extent to which the system of interest can or is
intended to be explicitly identified, in terms of specific system element composition, system
boundary location, input and output interface identification, and explicit functions within
the system boundaries, all suggested by Mar as having particular significance.

UNCLASSIFIED
DSTO-TR-3039

103
UNCLASSIFIED

7. Capability Development Process Context

7.1 Defence Capability Life Cycle Model

What is SE in the Australian Defence context? The Department of Defence utilises a SE-like
process to undertake acquisition of new Defence capability based around the concept of a
Defence capability life cycle as described in Figure 48.

A meticulous description of process and governance requirements for capability acquisition
is published in the DCDH (DCDH 2012). Ostensibly, the generic representation is consistent
with the waterfall model of system acquisition, originally described by Royce in 1970 for
managing the development of large scale SW systems, although individual projects may
adopt alternative acquisition models as described in the INCOSE SE Handbook for selected
components of capability (Royce 1970).

The Capability Systems Life Cycle is used in the DCDH to visualise the life of a capability
system from the initial identification of a capability gap to the acquisition of a physical
capability system, which is operated and supported until disposed of. The key tenet of
capability development is to develop and maintain the most operationally effective and
cost-efficient mix of capabilities to achieve the Government’s strategic objectives.

7.2 Defence Capability Planning Guidance

The Defence Capability Plan (DCP) is the key planning document guiding acquisition of
MCE for Defence. The DCP comprises a list of projects proposed for Government first pass
or second pass approval spanning a rolling 10-year window (DCP 2012). Individual MCE
projects within the DCP have responsibility for undertaking SE activity within the confines
of their respective project boundaries as shown in Figure 49, where the aggregate capability
delivered by the DCP is expected to trend towards achieving that aspired in the Networked
Force 2030 (DWP 2009).

7.3 Defence Capability Life Cycle Responsibilities

A plethora of stakeholders contribute to the capability development process as shown in
Figure 50, with responsibility transitioning between different stakeholders throughout the
capability life cycle.

Notably, while life cycle concepts and language are drawn from the SE discipline, the
DCDH provides little explicit acknowledgement of its SE heritage. Instead, the document
relies on providing explicit instructions relating to each process step to progress through
each of the life cycle stages, identifying specific decision points and governance
responsibilities relating to each of the decision points.

UNCLASSIFIED
DSTO-TR-3039

104

UNCLASSIFIED

Figure 48. Defence Capability Life Cycle.

Needs
Phase

Requirements
Phase

In-Service
Phase

In-Service Support

Conceptual designConceptual design

Preliminary designPreliminary design

Detail design/development/
production/construction

Detail design/development/
production/construction

Limited
Feedback

Limited
Feedback

Operation Use/
And System Support

Operation Use/
And System Support

Disposal
Phase

RetirementRetirement

Systems Engineering Life Cycle Process Stages

Defence Capability Life Cycle Process Stages

Functional Baseline Allocated Baseline Product/
System Baseline

IDENTIFIED
NEED

Limited
Feedback

Capability gap
analysis

DCP entry

FSR
Acquisition

Phase

OCD, FPS, TCD development
RFT to industry for system implementation

UNCLASSIFIED
DSTO-TR-3039

105
UNCLASSIFIED

Figure 49. Multiple Nested Capability Life Cycle Stages Embedded in the Defence Capability Plan.

Strategic Guidance

High level Architectural Guidance

High level SoS, FIC GuidanceInterpret &
decompose

Component
design
/build/test 1

Integration,
verification,
installation &
validation 1

Operational
Capability 1

User requirements
OCD 1, FPS 1

System
design 1

Feedback & change 1

Time

Integrated Defence Architecture linkages to
influence lower level developmental activity

Component
design
/build/test 2

Integration,
verification,
installation &
validation 2

Operational
Capability 2

Feedback & change 2

IDENTIFIED
NEED

DCP Project 1

DCP Project 2

IDENTIFIED
NEED

Strategy Framework Products to influence lower level developmental activity

“Vee 2”

“Vee 1”

Stakeholder input

User requirements
OCD 2, FPS 2

System
design 2

Stakeholder input

Needs phase

Requirements phase

Acquisition phase In-service phase

Feedback & change

Feedback & change

UNCLASSIFIED
DSTO-TR-3039

106

UNCLASSIFIED

Figure 50. Defence Capability Life Cycle Responsibilities.

Needs
Phase

Requirements
Phase

In-Service
Phase

In-Service Support

Disposal
Phase

Acquisition
Phase

Needs
Phase

Requirements
Phase

In-Service
Phase

In-Service Support

Disposal
Phase

Acquisition
Phase

Responsibilities

Strategic Policy/
Force Structure

Review

Strategy
Executive

Ensuring Strategic
Alignment

Capability Needs
Analysis

Capability
Development

Group

Assessment and
Definition of Capability

Requirements

Sponsor changes to Government Approved Requirements
and/or LOT extension

Experimentation/
Service Gap Analysis

Capability
Manager

Advice on
Capability Needs

Point of Accountability to Monitor and Report to Government
on Whole of Capability

Stakeholder in
Needs Phase

Acquisition &
Sustainment

Agencies

Advice on
Acquisition &
Sustainment

Acquire and Sustain the System

Stakeholder in
Needs Phase

Stakeholder
Groups

Advice on
FIC issues Point of Accountability for Delivery of FIC Elements

UNCLASSIFIED
DSTO-TR-3039

107
UNCLASSIFIED

The process also relies extensively on the use of documentation templates to generate the
required products to support the decision points throughout capability development
process. The use of specific documentation tools is prescribed and tailored training is
provided both on the process as well as the tool environment.

The emphasis in the DCDH is therefore on process rather than perspective and profession
as offered in the INCOSE SE Handbook. It is thus not readily apparent to what extent the
SE body of knowledge is inferred, or whether it has any additional relevance over and
above the specific information provided in the DCDH.

UNCLASSIFIED
DSTO-TR-3039

108

UNCLASSIFIED

8. Defence vs. Industry SE Perspective

8.1 Legal and Political Process Influences

Facts of Life:

If the politics don’t fly, the system never will.
Politics, not technology, sets the limits of what technology is allowed to achieve.

Cost Rules.
Affordability is decided by whichever side has the most votes.

The best engineering solutions are not necessarily the best political solutions.
Technical problems become political problems.

With few exceptions, schedule delays are accepted grudgingly; cost overruns are not.

(Maier & Rechtin 2002)

Two different types of decisions are critical to success in system design:

• Value judgements

o Relative value decided by customers and clients, and

• Technical choices

o Technical feasibility and implications decided by technical professionals
(e.g. engineers and architects) (Rechtin 1991).

The client, as sponsor of a major project, can pre-empt or overrule the technical
professionals responsible for implementing the solution, however, no complex system can
be optimum to all stakeholders concerned, nor all functions and performance be optimised
(Rechtin 1991).

Perhaps the most significant difference between Defence and industry is the influence of the
political process in the way that the end-client, i.e. the general public, expresses its value
judgements.

Importantly, the Federal Government is both the major sponsor and the major client of
capability acquisition activity, acting on behalf of the general public. Decisions are made
within the auspices of a formally constituted legal and political process. Ultimately the
general public are able to express their judgement through the election process as to the
perceived value of goods and services provided by the Federal Government. This infers that
value judgements be made by Federal Government representatives on behalf the political
constituency.

High-technology, high-budget, high-visibility, publicly supported programs typically offer
far greater political challenge rather than just technical challenge. In terms of engineering
outcomes, the political process can drive significant design and cost factors such as safety,
security, quantity and reliability, and can influence the choice of technologies to be
employed (Maier & Rechtin 2002).

This is in stark contrast to a commercial project or product development perspective, where
a commercial organisation may sponsor the project or product system design, but the
targeted customers may be different commercial businesses and/or the general public

UNCLASSIFIED
DSTO-TR-3039

109
UNCLASSIFIED

consumer, with different purchasing imperatives and different value judgements. The value
judgement of the customer is exercised in terms of whether the product is purchased or not;
the value to the sponsor is determined by factors such as return on investment, and future
prospects for earnings.

8.2 Sourcing Defence Requirements

Responsibility for Defence capability over its life cycle is distributed across different
organisational segments, with broad dispersion of authority as shown previously in Figure
50. However, responsibility for capability implementation is shared between Defence and
industry.

While many process steps may in principle be common between Defence and industry, the
specific implementation of the SE process, including tools and methodologies employed,
can differ significantly. SE practice for defence applications will necessarily differ from that
supporting commercial product development and support, not the least because of the
nature of the Defence contracting environment, where Defence outsources MCE-related
system implementation and some aspects of sustainment to industry. They also differ in
terms of how the originating requirements are obtained.

A key area of differentiation occurs during system definition when sourcing and analysing
needs, and determining system requirements. In Defence, capability guidance is formalised
by Government approval at numerous stages during the capability development process.

Initial capability guidance is solicited through a formal strategic planning process that
precedes the capability development process58; multiple sources of information are
analysed in the context of Government Policy and fiscal guidance outside the auspices of
the DCDH.

The DCDH prescribes a specific start point in the capability life cycle which occurs at the
start of the Needs phase. A specific process is articulated for sourcing requirements through
the Needs and Requirements phases as described in Figures 51, 52, and 53. Here the focus is
on gathering information required to support Government approval at various stages,
including generation and approval of the RFT documentation package.

Typically during these phases, a series of workshops are held with various stakeholders in
Defence to garner their individual perspectives. These perspectives are aggregated, sorted,
then prioritised through a governance process, where a number of committees of increasing
authority successively review the submissions for approval. Finally, a submission is made
to Government for authorisation to proceed with the next stage. The set of approved
requirements generated through this process is summarised into an OCD and a FPS, which
is included in the RFT documentation package to direct industry implementation.

58 Known as the Strategy Framework 2010 (SF 2010).

UNCLASSIFIED
DSTO-TR-3039

110

UNCLASSIFIED

Figure 51. Capability Development Process Outline – Needs Phase.

Needs
Phase

Reqts.
Phase

Acquis.
Phase

In-
Service
Phase

Disposal
Phase

Strategy
Development

Future
Concepts

5 yearly
Force

Structure
Review

Entry to D
C

P

Project
InitiationLife-of-type

of Force-in-
Being

Goverment
directed
Tasks

Capability Mgr
Experiment. &
Gap Analysis

Needs Phase

UNCLASSIFIED
DSTO-TR-3039

111
UNCLASSIFIED

Figure 52. Capability Development Process Outline – Requirements Phase – Part 1.

Needs
Phase

Acquis.
Phase

In-
Service
Phase

Disposal
Phase

Project
Initiation

Capability
Gate

Review
Board

Requirements Phase to
First Pass

Reqts.
Phase

First Pass Approval

MINDEF
&

MIN FIN
or

SCNS
&

NSC

Options
Review

Committee

Defence
Capability
Committee

& if req.
Defence Capability

Investment
Committee

Options Development

Requirements Development

UNCLASSIFIED
DSTO-TR-3039

112

UNCLASSIFIED

Figure 53. Capability Development Process Outline – Requirements Phase – Part 2.

Needs
Phase

Acquis.
Phase

In-
Service
Phase

Disposal
Phase

Capability
Gate

Review
Board

Requirements Phase to
Second Pass

Reqts.
Phase

Second Pass Approval

MINDEF
&

MIN FIN
or

SCNS
&

NSC

Industry
Solicitation

Defence
Capability
Committee

& if req.
Defence Capability

Investment
Committee

Options
Review

Committee

Requirements Development

First Pass Approval

UNCLASSIFIED
DSTO-TR-3039

113
UNCLASSIFIED

8.3 Sourcing Industry-based Requirements

The Defence approach contrasts starkly to the approach typically undertaken in industry,
particularly for commercial product development.

For commercial applications, market conditions and desired commercial outcomes have
heavy influence on system definition and implementation. When developing products for a
particular market segment, product features, cost, pricing, location, product promotion,
distribution, selling and support all have consideration in shaping the commercial end
product, and managing the product over its life cycle.

Commercial considerations such as market conditions, economic conditions, financial
circumstances, government policy, and legal obligations also shape resource allocation and
planning schedules in order to get the product to market with minimum commercial risk
and with maximum return on investment.

This is regardless of whether the solution development is undertaken in-house (i.e. the
acquirer is the developer), or whether the solution development is outsourced to an external
developer, as previously shown in Figure 31.

8.4 Adaptability to Change

Opportunities to provide feedback and iteration to refine the system concept and its
implementation also differ between Defence and commercial developments.

Within the Defence governance process, a number of capability options are developed by
Defence with varying scope, risk, and costing. These options are offered to Government for
consideration to determine the preferred option to proceed to tender with, thus setting the
scope of the approved MCE Project. The RFT seeks to remain agnostic of the potential
solution envelope as far as possible to allow industry the widest possible scope for
proposing different potential solutions. The tender is awarded on consideration of the best
value to the Commonwealth, and the extent of compliance of the offer against the
originating requirements. Implementation within industry is driven by the need to deliver a
cost-effective and timely solution that can be verified to meet the contracted requirements,
within the agreed contract price and schedule. The approval process is, for the most part,
linear, providing little or no opportunity to iterate and refine the system concept or scope
based on feedback relating to specific implementation considerations, or cross-project or
cross-capability inter-dependencies: a critical feature of the SE process.

Significantly, during the tendering process, each tender response submitted by industry is
required to include a high-level system design proposal to indicate how their offered
solution meets the requirement of the FPS. A form of solution trade-off evaluation is
performed during tender evaluation across the respective tender submissions, where the
successful tender will be the offered system solution that is deemed the most compliant to
the FPS and the terms and conditions of contract, and offering the best value for money for
the Commonwealth.

However, the evaluation process does not allow feedback and adaptation across the range
of system solutions offered in the tender responses to obtain the optimum system
implementation, as would be the case for a cost-benefit trade study or design trade study
not bound by probity and tendering constraints.

UNCLASSIFIED
DSTO-TR-3039

114

UNCLASSIFIED

Since the FPS forms part of the contract terms and conditions for the successful tenderer, a
contract change may be necessitated to adapt to changing circumstances. A change in scope
or increase in budget may require additional Government approval. This can also invalidate
the basis on which the contract was awarded, and can thus expose the Commonwealth to
liability for liquidated damages. These higher order considerations leave little flexibility to
adapt to changing circumstances once the contract has been awarded.

Furthermore, Industry has very limited opportunity to change the implemented capability
once accepted into service unless at the instigation of Defence. Defence, in turn, is primarily
dependent on funding availability for further tendering activity, which is dependent on
subsequent priorities of the Government of the day.

Legal and governance obligations in Defence provide little opportunity for feedback and
adaptation once major decision milestones are achieved, thus limiting flexibility to provide
feedback and thus reshape the passage of implementation. This can present major problems
where prototyping is required for risk mitigation to address areas of high uncertainty.

Funding availability to undertake various studies is also shaped by the governance process,
where different studies are undertaken to support the decision making process as a project
progresses from one process step to the next. Once funds are expended to support a
particular major decision, it is difficult to revisit the supporting argument on which the
decision was made. Additional resources may not be available to revisit the decision criteria
in a timely manner; the required adaptation is typically accommodated by a different
project, at an earlier point in the project acquisition cycle, which still amenable to change.

Since commercial product development is at the discretion of the commercial entity, there is
greater opportunity for feedback and adaptation during initial product implementation and
subsequent management of the product over its life cycle. This allows more rapid concept
and implementation refinement and adaptation to maturing perceptions of market needs,
competitor behaviour, and changing commercial and environmental circumstances over the
product life cycle, to ensure the desired business outcomes are achieved.

Typical SE process steps within the major life cycle stages for Defence and industry are
contrasted in Figures 54, 55 and 5659.

59 Typical industry activities are drawn from (Blanchard & Fabrycky 1998). Defence activities are drawn from
the DCDH (DCDH 2012).

UNCLASSIFIED
DSTO-TR-3039

115
UNCLASSIFIED

Figure 54. Defence and Industry Life Cycle Activities – Needs and Requirements Phases.

MAIN ACTIVITIES

• Needs Identification

• Feasibility Analysis

• Operational Requirement
Determination

• Maintenance & Support Concept
Development

• Evaluation of Design Alternatives

• Selection of Technical Approach

• Test Concept Development

• System Functional Definition

• Project Planning & Management

• Risk Management

• Cost Analysis

Conceptual Design

System
Requirements

Analysis
Functional
Analysis
Requirements

Allocation

Trade-off
Studies

Synthesis

Evaluation

System
Specification

Design
Review(s)

System Level

IDENTIFIED
NEED

Feedback &
Corrective Action

Functional Baseline

Industry activity

Capability Definition

Capability System

Defence activity

DEFENCE MAIN ACTIVITIES

• Needs Identification/analysis

• Feasibility Studies

• Life Cycle Cost Analysis

• Options Development

• (Synthesis)

• Operational Concept
Development

• Functional and Performance
Specification Development

• Test Concept Development

• Acquisition/Procurement
Planning - RFT Preparation

• (Risk Management)

IDENTIFIED
NEED

UNCLASSIFIED
DSTO-TR-3039

116

UNCLASSIFIED

Figure 55. Defence and Industry Life Cycle Activities – Acquisition/Build Phase – Part 1.

MAIN ACTIVITIES

• Functional Analysis

• Requirements Allocation

• Trade-off Studies

• Synthesis

• Test & Evaluation of Design
Concepts (early prototyping)

• Acquisition/Procurement
Planning

• Major Supplier Activities

• Risk Management

• Project Management

MAIN ACTIVITIES

• Subsystem/component design

• Trade-off Studies and
evaluation of alternatives

• Development of engineering
and prototype models

• Verification of manufacturing
and production processes

• Development test & evaluation

• Supplier activities

• Production planning

• Project Management

• Risk Management

Preliminary Design

Refined
Functional
Analysis

Subsystem Level

Refined
Requirements

Allocation

Detailed
Trade-off
Studies

Configuration
Item

Synthesis

Feedback &
corrective action

Evaluation
(Engineering

Models)
Configuration

Item
Specification

Design
Review(s)

OR

COTS/MOTS
Procurement
Specification

Build
or

Buy?

Design/build

Procure

Allocated Baseline

Detail Design/
Development

Configuration
Item

Detailed Design

Detailed
Synthesis

Evaluation
(Prototype
Models)

Review(s)

Component Level

Feedback &
corrective action

OR Procure
COTS/MOTS

Subsystem/System Level

Production/ConstructionProduct Baseline
* Includes
modified

COTS/MOTS

Industry activity
Industry activity

Defence activity

DEFENCE MAIN ACTIVITIES
• Contract Management

• (Risk Management)

• OT&E Planning

DEFENCE MAIN ACTIVITIES
• Contract Management

• (Risk Management)

• OT&E Planning

UNCLASSIFIED
DSTO-TR-3039

117
UNCLASSIFIED

Figure 56. Defence and Industry Life Cycle Activities – Acquisition/Build/Support Phases – Part 2.

Production/Construction

Review(s)

Subsystem Level/System Level

Feedback &
Corrective Action

Component Level

Detail Design/
Development

System Level
Operational Use &
In Service SupportUpdated Product Baseline

Build & Test
System

Components
Subsystem
Assembly

System Installation
& Test

Operational
Test &Evaluation

System
Integration Test

Subsystem
Test

Acceptance
Test

MAIN ACTIVITIES

• Production and/or construction
of system components

• Procurement activities

• Configuration Management
Activities

• Supplier production activities

• Qualification testing

• Acceptance testing

• Interim Contract Support

• System Assessment

• Update documentation

• Project Management

• Risk Management

Industry activity

Defence activity

Defence activity

DEFENCE MAIN ACTIVITIES
• Contract Management
• OT&E

• (Risk Management)

UNCLASSIFIED
DSTO-TR-3039

118

UNCLASSIFIED

9. Enterprise Architecture Concepts

The Defence capability development process operates in tandem with numerous other
management, policy, regulatory and governance frameworks. Of particular significance, the
concept of EA was introduced into Defence some ten years ago to support ICT acquisition
and for MCE acquisition for Defence projects with a significant ICT component, operating
in tandem with the capability development process.

The notion of EA was originally developed in the 1980s as a methodology to aid ICT
technologists to better understand the business needs of their organisations, and hence
better align ICT investment to support the business needs – typically in the absence of more
formalised SW engineering methods60.

EA has since evolved to embrace much wider notions of business process analysis to aid
corporate management. EA principally focuses on the business enterprise (i.e. the
organisation) rather than the notion of a system, and typically spans people, information,
technology and business operations. Since the analysis paradigm is process focussed, it
offers few formalisms to consider non-functional aspects relating to the physical
implementation (e.g. technological, environmental).

EA focuses on relationships between components, with the architecture comprising the set
of relationships of interest within the enterprise in a similar manner to that used SW
engineering methodologies such as the Rational Unified Process (RUP) (Peraire et al. 2007).
Here, the term “component” is used in a general sense of being a part of the enterprise,
without offering further elaboration or definition, or clarification as to what characteristics
or attributes might be of significance.

Typically, an EA manifests as a collection of artefacts, comprising lists, drawings,
documents and/or models which are used to describe the structure and function of an
enterprise in useful ways. Since the EA is inherently conceptual, the architecture
descriptions are also typically conceptual in nature, used for communication purposes to
support management investment decisions rather than to drive a technical process to
implement a specific technical solution.

EA practice can utilise systems thinking, and similar analysis and modelling techniques and
tools can be employed as used in operations research (OR) and SE as described previously
herein.61 However, the notion of EA is still very young compared to established scientific
disciplines, and there is broad variability in EA concepts and application which have yet to
converge to a widely accepted and contemporary body of knowledge. The term EA is used
in a variety of contexts, both as a verb and as a noun, including framework, classification
schema or taxonomy, methodology, and analytic model.

Various EA frameworks have been published by commercial organisations, principally
offering management consulting services or selling computer-based SW applications that
provide tools to support business analysis. Commercial EA initiatives include the Zachman
Framework for Enterprise Architecture (ZF), offered by John Zachman (Zachman 1987); The

60 E.g. IEEE/EIA-12207:2008 Standard for Information Technology – Software Life Cycle Approaches.
61 Differences between systems engineering approaches and enterprise architecture in the Defence context are
examined in more detail in (Hue 2011).

UNCLASSIFIED
DSTO-TR-3039

119
UNCLASSIFIED

Open Group Architecture Framework (TOGAF) offered by The Open Group (Josey 2009),
and the Gartner Enterprise Architecture (GEA) offered by Gartner Inc. (formerly known as
the Meta Framework)(Lapkin 2005), (Bittler & Kreizman 2005)62. Definitions of EA vary
from framework to framework. Commercial EA frameworks typically offer reference
models to frame thinking about the enterprise from different perspectives, however, they
typically are not prescriptive with regards to the range and type of artefacts to be produced,
nor with the artefact format or information content.

There has been strong uptake of EA concepts within Government Defence Organisations in
particular in a number of countries around the world. These include the Department of
Defense Architecture Framework (DoDAF) in the US DOD63; the Ministry of Defence
Architecture Framework (MODAF) in the UK MOD64; the NATO Architecture Framework
(NAF)65 employed by NATO countries; and the Department of National Defence
Architecture Framework (DNDAF)66 developed by the Department of National Defence
and Canadian Forces in Canada. 67

A key differentiator between the commercial EA frameworks and the Defence EA
frameworks is in the provision of definitions and formalisms; the Defence EA frameworks
having far greater emphasis on explicitly defining terms in common usage and providing
supporting formalisms to provide consistency in application to aid governance.

The notion of architecture used by the DoDAF (and widely used in the SE community) is
drawn from the SW-centric definition of the term architecture, defined in IEEE-610.12 and
IEEE-1471 as “the fundamental organisation of a system embodied in its components, their
relationships to one another, and to the environment, and the principles guiding its design
and evolution”. The system in the context of the definition is the same as that used by the
SE community except that the system referred to in the standard is a software-intensive
system. Importantly, the IEEE-1471 standard defines a software-intensive system as any
system where software contributes essential influences to the design, construction,
deployment and evolution of a system as a whole68.

The respective Defence EA frameworks make extensive use of object-oriented modelling
and graphical presentation techniques drawn from the SW engineering discipline as
previously described herein, including those described by the SW graphical modelling
language UML and system graphical modelling language SysML, managed under the
auspices of Object Management Group (OMG).

Recently there has been a move to merge aspects of the various Defence frameworks,

62 A comparison of the Zachman, Gartner, FEA and TOGAF enterprise architecture methodologies is provided
in (Sessions 2007) [online]: http://msdn.microsoft.com/en-us/library/bb466232.aspx.
63 Information on the DoDAF can be found at [online] URL: http://dodcio.defense.gov/dodaf20.aspx (DoDAF
2010) and at https://www.us.army.mil/suite/page/454707 (DoDAF 2009).
64 Information of the MODAF can be found at [online] URL: http://www.modaf.org.uk/ (MODAF 2010).
65 Information on the NAF can be found at [online] URL:
http://www.nhqc3s.nato.int/ARCHITECTURE/_docs/NAF_v3/ANNEX1.pdf (NAF 2007)
66 Information on the DNDAF can be found at [online] URL: http://www.img-ggi.forces.gc.ca/pub/af-ca/index-
eng.asp.
67 A detailed analysis of the respective enterprise architecture frameworks is provided in (Hue 2008).
68 Eeles provides a detailed explanation of various terms referred to in IEEE-1471 including architecture,
system and environment, and their relationship to the RUP and RUP SE modelling environments and software
architecture modelling in a series of articles on architecting (Eeles 2006a), (Eeles 2006b) and (Eeles 2006c). A
detailed description of the process of software architecting is provided in (Eeles & Cripps 2009).

http://msdn.microsoft.com/en-us/library/bb466232.aspx
http://dodcio.defense.gov/dodaf20.aspx
https://www.us.army.mil/suite/page/454707
http://www.modaf.org.uk/
http://www.nhqc3s.nato.int/ARCHITECTURE/_docs/NAF_v3/ANNEX1.pdf
http://www.img-ggi.forces.gc.ca/pub/af-ca/index-eng.asp
http://www.img-ggi.forces.gc.ca/pub/af-ca/index-eng.asp

UNCLASSIFIED
DSTO-TR-3039

120

UNCLASSIFIED

resulting in the creation of the Unified Profile for DoDAF and MODAF (UPDM) SDL.
UPDM defines a standard usage of UML and SysML language constructs across these
Defence architecture frameworks and their respective tool sets to generate the respective
framework artefacts (Hause 2010), (McDaniel 2012), (Okon 2012). A meta-model of UPDM
is provided in Figure 57.

Planning for a Unified Architecture Framework (UAF) to supersede the DoDAF, MODAF,
NAF and DNDAF is already underway, and has been embraced by the broader
international Defence community including US DoD, UK MOD, Swedish DOD, Canadian
DND, and NATO. A timeframe circa 2013 was initially sought for the planned codification
of the UAF as an international standard under the auspices of OMG (Okon 2012), (DoDAF
TWG 2012).

The commercial EA framework TOGAF leverages both MODAF and DoDAF by suggesting
the Defence artefacts can provide useful representations of the enterprise developed using
the TOGAF Architecture Development Method (ADM). They use the tool sets provided by
vendors who support DoDAF and MODAF. However, TOGAF belies the relationships
between the data populating the artefacts, the underpinning analytical methods, and the
engineering processes used to determine the data under the auspices of the MODAF and
DoDAF.

Figure 57 UPDM Meta-Model Based on UML (Dickerson & Mavris 2010)

Exchanged Element

Operational Flow

Item Flow

Operational Activity

Exchange Task Invocation Operational Event Trace

System Interface

Needline

Operational Node

Capability Requirement

Operational Capability Realization

Operational Capability Capability

Operational Task

Trigger

Transition

Operational Node Specification

Operational State Trace

System Node

Exchange Element in Flow

Connection Realises IER

System Interface Implements Needline

Required Data Flows

Consuming Op NodeProviding Op Node

Providing Data Flows

Housed in Asset

Required Capability for Node

Activity Conducted at Node

1 1

1
1..

1

1..

11..

from to

1..
1..

1..

1..

1..

1..

1

1

1..

1

1

11

1 1

1

1
1 1

1

UNCLASSIFIED
DSTO-TR-3039

121
UNCLASSIFIED

10. Defence Enterprise Architecture Context

10.1 Defence Architecture Framework

Along with other allied nations, Australia has also embraced EA, first by Defence, then
across broader Government. EA was introduced into the Australian Department of Defence
circa 2003 under the auspices of the Defence Architecture Framework (DAF) 69. The initial
DAF concept was based on EA concepts developed by META Group70.

While the EA concept in Defence is still evolving, three key thrusts have emerged:

• one relating to artefact presentation,

• one relating to methodology, and

• one relating to reference models and reference architectures.

The DAF, now known as the AUSDAF, essentially comprises a set of templates, containing
specific diagrammatic forms and tables of prescribed information. These templates were
derived from those originally developed by the US DoD under the auspices of the DoDAF.
However, the AUSDAF implementation differs significantly from the DoDAF.

The notion of architecture used by the AUSDAF differs significantly to that used by the
DoDAF. The AUSDAF draws from the IEEE-1471 definition of an architectural description
for SW-intensive systems. The architecture description is a collection of products (i.e.
artefacts or populated templates) to document an architecture. The DAF does not explicitly
acknowledge the existence of an actual system architecture itself. Instead, attention is given
to preparing artefacts drawn from a standardised set of scenario descriptions (i.e. use cases),
re-cast from the perspective of the respective MCE Projects, with a focus on describing the
applicable business (i.e. operational) processes.

In Defence, particular effort is taken to ensure the architecture descriptions remain
conceptual in nature to support RFT preparation; conveying ideas rather than actual system
implementations. They therefore remain largely solution independent. Consequently, this
limits their utility in performing system trade-studies and hence limits the ability to drive
real-world engineering implementation.

The US DoD approach provides significant guidance for the generation and management of
DoDAF related information, and has sought to align architecture practice with their SE
processes to assist in the system implementation, with strong emphasis on system and
component identity, interface management, and information management (Okon 2012),
(McDaniel 2012).

Architecting as described in IEEE-1471, is simply the activities of defining, documenting,
maintaining, improving and certifying proper implementation of an architecture of a SW-
intensive system. Thus, the data required to populate the artefacts can be extracted from
analysis typically undertaken within the SE process; the artefacts providing specific
viewpoints of the system and how it is used from an architecture framework perspective.

69 The initial version of the AUSDAF was referred to as the DAF.
70 META Group merged with Gartner in 2004. [online] URL: http://www.gartner.com/id=486650.

http://www.gartner.com/id=486650

UNCLASSIFIED
DSTO-TR-3039

122

UNCLASSIFIED

The Australian Defence approach is much simpler, comprising a mandate for inclusion of
specific diagrammatic forms and tables in the OCD, one of the CDD documents required
within the capability development process. Instead of similarly following the DoDAF
guidance, AUSDAF guidance is provided in the form of a reference model to provide
context to the AUSDAF templates, as shown in Figure 58.

Figure 58. Defence Architecture Framework Reference Model (Purcell 2009).

A tool set is also prescribed to prepare AUSDAF artefacts. Guidance is provided on tool
usage for artefact creation, where emphasis placed on the use of templates to provide
consistency of presentation of information rather than on coherency or management of
information content. Guidance is also provided for the use of a prescribed set of scenarios to
assist populating OCD document templates, however, the method of collecting, managing
and using the information is at the discretion of the respective projects.

Significantly, the AUSDAF artefacts are used for a different purpose than DoDAF artefacts.
DoDAF artefacts are generated as outcomes of specific directed enquiry, and are used to
inform aspects of the JCIDS capability acquisition process used by US DoD. For example,
they are used extensively, for development and articulation of higher-level pan-
organisational concepts such as their Global Information Grid (GIG), and for pan-
organisational implementation guidance relating to specific system characteristics,
relationships and standards (McDaniel 2012), (FORCEnet 2004a), (FORCEnet 2004b), (Ryder
& Flanigan 2005).

AUSDAF artefacts are project-centric and solution-independent. Their primary use is to
communicate conceptual information to senior decision makers for MCE project funding
approval and governance purposes. They are not intended to form a technical specification

UNCLASSIFIED
DSTO-TR-3039

123
UNCLASSIFIED

nor to document particular analytical outcomes to drive real-world system and detailed
design. AUSDAF artefacts also lack many of the formalisms required to drive real-world
implementation, including the non-functional aspects (e.g. environmental), and SE process
activity such as requirements specification and V&V.

Prior to July 2011, governance in Defence included formal examination of the AUSDAF
artefacts prepared by each DCP Project phase with significant ICT content against a
formalised NCW compliance framework (Knight et al. 2006). However, this review step
was deleted in July 2011 from the capability development governance process, and
responsibility for AUSDAF artefact review was transferred to an EA governance process.

Because of the conceptual nature of the EA diagrammatic representations in the OCD, and
the absence of traceability to the FPS in an engineering sense, the EA artefacts do not
provide information that can be accredited or warranted for use to provide specific
technical guidance for system implementation. Instead, the FPS is developed as an
interpretation of the OCD that is relevant to the required materiel system to be delivered
under contract within the auspices of the particular DCP project phase; no EA artefacts are
mandated or offered for inclusion in the FPS template.

Since the originating OCD is not included as part of the contractual basis for system
implementation, and is not maintained under configuration control over the life cycle of the
delivered materiel system, the EA artefacts do not have direct influence on system
implementation and subsequent life cycle management. Since the FPS provides the
technical basis for the contract, the information in the FPS is warranted for use to direct
system implementation, and is maintained under configuration control until delivery of the
materiel system.71

Since the AUSDAF is artefact focussed rather than data focussed, there is no concept of a
data repository, central or otherwise, nor any concept of a data model. Instead, DCP Project
generated artefacts are archived as project specific documentation (i.e. drawings and text)
along with other project generated documentation. The architecture repository is in effect
virtual, and comprises the aggregation of all the DCP Project-specific artefacts.

An expanded version of the DAF, known as AUSDAF2, to better support the notion of the
Integrated Defence Architecture (IDA) was investigated to provide a greater range of
artefacts, as shown in Figure 59 (Yannopoulos 2010). However, AUSDAF2 has since been
recast to span the same artefacts as DoDAF 2.0. There has been no mention of plans to
introduce a meta-model for AUSDAF2 akin to the meta-model DM2 underpinning the US
DoDAF implementation.

Since the AUSDAF2 approach remains focused on providing consistency in presentation of
information rather than consistency in data content, the changes from version 1.0 have no
impact on analysis requirements for the same artefacts, nor on capability development and
ICT acquisition process and governance.

Importantly, the AUSDAF2 developments do not embrace system-modelling concepts, and
therefore do not provide a pathway towards supporting MBSE specific data-orientated
constructs nor the proposed Unified Architecture Framework.

71 The FPS is not maintained under configuration control subsequent to initial delivery and acceptance into
service for the remainder of the delivered capability’s life cycle.

UNCLASSIFIED
DSTO-TR-3039

124

UNCLASSIFIED

Figure 59. Draft AUSDAF 2 Overview as of 12 November 2012.

UNCLASSIFIED
DSTO-TR-3039

125
UNCLASSIFIED

10.2 Integrated Defence Architecture

In 2008 in response to the Gershon Review (Gershon 2008), the Australian Government
Information Management Office72 (AGIMO), within the Department of Finance and
Deregulation, EA Policy and Concepts, commenced an EA initiative to promote
standardisation of ICT infrastructure and processes across whole-of Government. In
support of this initiative, AGIMO has developed and mandated use of a set of reference
models, collectively known as the Australian Government Architecture (AGA) (AGIMO
2011).

Similarly, the 2009 Defence ICT Strategy sought to strengthen the relationship between
Defence capabilities and Defence ICT products and services, and to provide tighter cost
control, greater efficiencies, and faster decision cycles for ICT investment (ICT 2009). An EA
approach was directed to manage Defence’s ICT portfolio and the notion of the Integrated
Defence Architecture (IDA) was introduced to provide a basis for planning and governance
for ICT architecture development, delivery and maintenance.

A companion document ”The Single Information Environment: Architectural Intent 2010”
was also released to detail the proposed architectural transformation to achieve the
interoperable and networked Future Force (SIE 2010) as envisaged by the Defence White
Paper 2009 (DWP 2009). While the initial impetus of the IDA and SIE was associated with
ICT, the scope has since evolved to embrace a much more substantial portion of ADF’s
military capability. Its scope encompasses any military system that has an external interface
which exchanges information (i.e. is not a mechanical interface - ranging in scale from an
individual soldier to large-scale complex SoS such as the Air Defence Ground Environment
(ADGE).

The IDA scope circa 2012 encompassed all common or shared ICT-related assets, business
strategies, business processes, investment, data, systems and technologies across the whole
of the Defence organisation, spanning the corporate environment, intelligence, and the
warfighting environment. The initial implementation of the IDA focussed on documenting
the extant business architecture, which it defined as the business strategy, governance,
organisation, and key business processes information, as well as the interactions between
these concepts. As such, there were no provisions within the scope of the IDA circa 2012 to
describe extant, future planned, or conceptual ICT infrastructure or other related systems or
components.

A specific initiative was launched to develop the concept of the IDA and the initial business
reference models, and to start populating the business areas with data. The IDA itself is a
reference model as shown in Figure 60, showing the relationships between different
reference models comprising the IDA (Purcell 2010).

The IDA is also represented as shown in Figure 61, indicating the various domains where
individual artefacts are generated, including the warfighter, intelligence and corporate
domains (Yannopolous 2010). Architecture reference guidebooks are also provided for
specific business sub-domains or architecture segments to provide guidance on using the
AUSDAF to prepare architecture descriptions (JIA 2010), (NBA2020+2011), (DCA 2011).

72 [online] URL: http://agimo.gov.au/

http://agimo.gov.au/

UNCLASSIFIED
DSTO-TR-3039

126

UNCLASSIFIED

Figure 60. Integrated Defence Architecture Reference Mode (Purcell 2009).

UNCLASSIFIED
DSTO-TR-3039

127
UNCLASSIFIED

Figure 61. Integrated Defence Architecture Representation (Purcell 2009).

UNCLASSIFIED
DSTO-TR-3039

128

UNCLASSIFIED

Although this EA approach uses certain principles drawn from TOGAF, the initial
approach does not use a single integrated data model encompassing the respective views as
described previously in Table 2. From a modelling perspective, a non-architectural
approach has been taken where a different model is created for each view (i.e. product or
artefact).

A suite of five EA reference models, as previously described in Section 3.3.5 has been
crafted under the auspices of the IDA to provide a taxonomy for sorting, storing and
understanding the information and artefacts that comprise the EA for Defence. Drawn from
the AGAF, these include:

• a Business Reference Model (BRM);

• a Performance Reference Model (PRM);

• a Data Reference Model (DRM);

• a Services Reference Model (SRM); and

• a Technical Reference Model (TRM) (AGAF 2009).

The architecture reference models are not intended to specify individual ICT requirements,
but are intended to provide an abstract representation of the broad requirements of
Defence’s strategic objectives to guide individual projects and business areas (IDA BRM
2011). They are not intended to drive a particular technical process.

The IDA Business Reference Model (BRM) provides a list of definitions where EA is defined
as the organising logic for business processes and infrastructure reflecting the
standardisation of a business operating model; the enterprise is the highest level (typically)
of description of an organisation and typically covers all missions and functions.

Whole of Defence has been partitioned into three business areas:

• Warfighter,

• Intelligence, and

• Corporate.

Each business area contains multiple supporting business domains, which can be further
divided into sub-domains. For example, the Warfighter business area comprises seven
domains:

• Joint,

• Land,

• Air & Space,

• Maritime,

• Intelligence, Surveillance and Reconnaissance (ISR),

• Coalition, and

• Capability Integration.

Domains provide a high-level view of services and capabilities that support enterprise and
operational processes and applications. Capability in the context of a domain, is a business

UNCLASSIFIED
DSTO-TR-3039

129
UNCLASSIFIED

capability, which is an ability that an organisation, person, or system possesses, and
typically requires a combination of organisation, people, processes and technology to
achieve. This definition is different to that used in the DCDH, with significant implications
for governance, so the context of terminology is important when interpreting guidance.

The term EA used in the context of the SIE and the IDA differs from the term architecture
used in the context of the AUSDAF. The SIE introduces the notion of EA as “a means for
aligning Defence capabilities and outputs with Defence’s strategic drivers” with the term
EA defined in the IDA BRM in terms of the organising logic for processes and
infrastructure. The IDA BRM seeks to provide a common structure as a basis for capability
planning, and the development of consistent enterprise processes (IDA BRM 2011).

The IDA BRM goes further to suggest that EA thus establishes a linkage between EA
initiatives, the Strategy Framework, and the capability development process. Reference is
made to a companion document, The NCW Integration and Implementation Strategy (NCWIIS)
(NCWIIS 2010). The NCWIIS was to provide a methodology for the development of
integrated capabilities; however, it still was not implemented some three years later, thus its
future applicability is uncertain.

The IDA BRM also provides a separate definition of architecture which accords with the
IEEE-1471 definition of architecture from a SW engineering perspective, which is an entirely
different notion of architecture from that of EA.

Significantly from an SE and DCDH perspective, the IDA BRM does not include definitions
for the terms “component”, “interface”, “integration”, or “system”, despite the liberal use of
these terms throughout IDA related documentation. It will therefore be difficult to obtain
common understanding between practitioners of the different communities of interest if
they do not appreciate the significant differences in semantics of commonly used
vernacular.

Significantly, each business domain has taken a different implementation approach, with
difference governance regimes applied; there is no overarching guidance on
implementation of the IDA at the highest level. Notably, ICT investment that occurs outside
the DCP is not subject to the capability development process nor the same EA governance.

In terms of EA governance, little specific guidance is prescribed; individual ICT projects
may call for one of more meetings with invited stakeholders to review architectural
artefacts, known as architecture review meetings (ARMs). ARMs are called at the discretion
of each individual project across the three respective EA domains. The purpose, timing,
scope and invitees for each ARM is also determined at the discretion of the respective
project. Attendance is not specifically resourced. Individual projects may also prepare
additional documentation to describe their respective initiatives, but these are typically
crafted in the form of policy guidance rather than in engineering form.

There is, at times, significant overlap of responsibilities and acquisition activity for those
DCP Projects with a significant ICT contribution, delivering new or upgraded capability
into service that is deemed part of the IDA. However, it is not apparent how the IDA
initiative integrates with the mandated DCDH capability development process.

The IDA concept developers stated their expectation that the IDA will be populated with
data generated by the respective MCE Projects as they progress through the capability
development process, supplemented by data provided by the respective Capability
Managers.

UNCLASSIFIED
DSTO-TR-3039

130

UNCLASSIFIED

However the form and format of data required, and future resourcing and management
requirements to support are dependent on future policy directives and funding pertaining
to the IDA. This initiative has not been explicitly resourced within the DCDH capability
development process.

Key notions which are integral to a possible future data-centric EA approach include
transitioning the conceptual notions of EA into real-world instantiations, and addressing
numerous matters including:

• data definitions;

• provision of modelling and analysis guidance (how to and what for);

• governance responsibility;

• risk management;

• resourcing responsibility;

• configuration management responsibility;

• data integrity management (much of which is contextual in nature);

• clarification of vocabulary and semantics;

• quality assurance;

• accessibility of data repositories;

• ownership and management of data;

• articulation of technical processes;

• tool availability and suitability;

• skill and training requirements; and

• other support infrastructure.

All merit further consideration if an enterprise wide data-centric approach is to taken across
whole-of-Defence. These considerations are also pertinent to MBSE.

UNCLASSIFIED
DSTO-TR-3039

131
UNCLASSIFIED

11. MBSE Origins and Concepts

11.1 MBSE Impetus

The document-based approach described in Section 5.3.4 can provide significant rigour in
supporting a SE process. However, it has limitations. Assessing the completeness,
consistency, and traceability of relationships between requirements, analysis, design,
construction and test can be difficult if the information is distributed across multiple
documents, particularly for the larger-scaled and more complex systems. This can make it
difficult to understand different aspects and to assess trade-offs and change impacts.

This in turn can lead to poor synchronisation between system-level requirements and the
system design, and with lower level hardware and software detail design. This can also
make it difficult to maintain or reuse the information for evolving systems and for variants
of the system.

These issues with the document-based approach have spurred the development of
alternate, model-based approaches, drawing from the SW engineering discipline, to
facilitate improved communication between stakeholders, and improve specification and
design precision, system design integration, and reuse of system artefacts. Instead of
documentation, the output from a model-based SE approach is a coherent model of the
system, where the emphasis is placed on evolving and refining the system model using
model-based methods and tools (Friedenthal et al. 2008).

11.2 MBSE Origins

A number of MBSE methodologies have been formalised since the 1980s, coinciding with
the ready availability and widespread adoption of computer workstations and desktop
computing into the mainstream engineering development environment. It has also
corresponded with the emergence of SW engineering as a distinct sub-discipline within the
engineering discipline; SW no longer being the sole purview of the originating computing
science discipline.

These advances have also spurred the development of commercially available Computer
Aided Software Engineering (CASE) tools, the precursors to the most recent generation
MBSE tools which are now widely available, which are themselves SW applications hosted
on a main-frame or desktop computing environment.

As mentioned previously in Section 2, MBSE is a catch-all phrase encompassing a number
of different methodologies supporting the SE discipline in a “model-based” or “model-
driven” context73. A variety of computer-based SE tools can now be purchased to provide
SE process support, as described in Table 8. An overview of various tool vendors
supporting engineering development is provided in Appendix A.

73 (Estefan 2008) notes that some authors use the term Model-Driven System Design (MDSD) interchangeably
with Model-Based Systems Engineering (MBSE), despite subtle differences. The term MDSD is used
synonymously with MBSE in the Estefan report.

UNCLASSIFIED
DSTO-TR-3039

132

UNCLASSIFIED

Table 8. Key Systems Engineering Tools.

Type of Tool Key Features

Requirements Management End-to-end traceability of individual requirements
from original source to lower tier mission, system,
subsystem and component requirements.

Verification Cross-Reference
Management

End-to-end traceability of verification activity
against each individual requirement.

Model-based Engineering
Development

Modelling of system requirements, system
functionality, trade studies, target system
implementation, verification and validation activity,
with end-to-end traceability.

Change Management and
Configuration Management

End-to-end change management and configuration
management of individual items and associated
documentation across an entire system, and across
its life cycle stages.

Automated Documentation
Generation

Generation of pre-formatted project documentation,
including specifications, drawings, V&V procedures,
and project management reports.

Integrated Systems and
Software Engineering

End-to-end traceability and management of all tiers
of engineering and project activity, including
embedded software development and automated
code generation and verification.

While process, method, and tools are integral concerns in the SE development environment,
MBSE is differentiated by its focus on a particular method of enquiry, and the prominent
role of the tool to support the method and drive the process. The process and method are
therefore enabled by the capabilities of the respective system modelling tools.

Despite the prevalence of model-based design methodologies in HW and SW engineering
over the extended period, the extension of these methodologies to the much broader
systems level, specifically attributable within a SE context, has only occurred within the last
decade.

This ostensibly appears to have been spearheaded firstly by OMG member organisations,
then subsequently taken up by INCOSE, through their sponsorship and organisational
support for crucial initiatives including the initial codification of UML and subsequent
support for SysML development.

Vendor response in making available new generation modelling environments based on
UML and SysML has been key to the wide-spread interest, both in industry and
Government, of the potential of new generation MBSE tools to support systems analysis
and design activities. The transition appears to have been assisted by, (and sometimes
confused by), the emergence of the military and commercial EAF, which are variously used
to either complement or replace formal SE process activities, particular in the earlier stages
of systems conceptualisation.

UNCLASSIFIED
DSTO-TR-3039

133
UNCLASSIFIED

In the last decade in particular, SE, SW engineering, business, and EA modelling tool
vendors have expended considerable effort to expand their product suites to support a
multitude of graphical modelling techniques, primarily within the object-oriented
paradigm74, promoted as supporting both EA and business practice, and SE and MBSE
concepts.

Some specific “model-based” or “model-driven” methodologies relating to the SE discipline
are now examined in more detail to highlight the differences between the SE and the non-
SE perspectives.

11.3 MBSE Tool Capabilities

The new generation MBSE tool product suites typically comprise:

• databases to store the required set of information (i.e. model repository);

• a means to define, tag and structure the way data is stored in the database (typically
a using schema);

• a means of querying the database in a structured way and presenting the query
output in a specific display format; and

• a user-friendly graphical interface to allow users to input and modify their data in a
structured way.

The system model is created using the MBSE tool incorporating system specification,
analysis, design, and test information. The model consists of elements that represent
specific information types including requirements, design elements, test cases, and design
rationale, as well as their interrelationships. The primary use of the model is to design a
system that satisfies system requirements and allocates the requirements to the system’s
components. The model elements and interrelationships are stored in the model repository
where they can be separately created, edited, modified and deleted as the design evolves
(Friedenthal 2008).

Automated document generation using pre-defined templates is also inherent functionality
in these tools, depending on the enterprise architecture framework or SE methodology
supported. This allows the model repository information to be viewed from different
perspectives, either as diagrams, tables, drawings or text reports, generated by querying the
model repository.

The new generation MBSE tools typically provide the ability to store and visualise the list of
system requirements comprising the top-tier specification in a database as a requirements
model. These can be analysed and expanded to synthesise lower-tier requirements, linked
to the originating requirements, and also stored in the database forming a requirements
tree. Complete traceability between the respective requirements is therefore inherent
throughout the database forming the requirements model.

74 The CORE SE tool from Vitech Corporation is one notable exception. Vitech offer a proprietary system
design language (SDL) to support SE activities within the CORE SE tool. The CORE tool supports tailoring of
its SDL to create a user-specific profile as a subset of the SDL. Vitech sell DoDAF and MODAF plug-ins for
the CORE tool, which essentially comprises a tailored subset of the SDL supporting the DoDAF and MODAF
graphical modelling capabilities. [online] URL: http://www.vitechcorp.com/.

http://www.vitechcorp.com/

UNCLASSIFIED
DSTO-TR-3039

134

UNCLASSIFIED

The functional allocation and detail design of deeply nested subsystems, equipments and
finally components are supported in the model; visualised using nested System Block
Diagrams. System-to-system behaviour and intra-system dynamics are defined and
elaborated using Interaction Diagrams, Activity diagrams, and State Charts to visualise the
dynamic behaviour, and code can be generated to implement the functionality in a variety
of languages.

A typical user interface in a SysML modelling tool illustrating toolbar access to the different
diagrammatic types is shown in Figure 62.

An example of the user interface presented in the tool “Enterprise Architect” when
modelling in UML to produce SW code is provided in Figure 63.

An example of documentation customisation is provided in Figure 64, where a RTF style
template editor allows the creation and editing of custom RFT templates to define the
required output RFT documentation. An example of report generation capabilities is
illustrated in Figure 65.

UNCLASSIFIED
DSTO-TR-3039

135
UNCLASSIFIED

Figure 62. Altova UModel Tool SysML Graphical User Interface

([online]: URL http://www.altova.com/umodel/sysml.html).

http://www.altova.com/umodel/sysml.html

UNCLASSIFIED
DSTO-TR-3039

136

UNCLASSIFIED

Figure 63. Example of Automated Code Generation from a UML model representation using the SparxSystem’s Enterprise Architect Tool
([online] URL: http://www.sparxsystems.com/platforms/software_development.html).

http://www.sparxsystems.com/platforms/software_development.html

UNCLASSIFIED
DSTO-TR-3039

137
UNCLASSIFIED

Figure 64. Example of a Report Template in a MBSE Tool

 ([online] URL: http://www.sparxsystems.com.au/resources/rtf/template_editor.html).

Figure 65. Example of Automated Documentation Generation using the Altova UModel UML
Modelling Tool

([online] URL: http://www.altova.com/umodel/uml-project-documentation.html).

http://www.sparxsystems.com.au/resources/rtf/template_editor.html
http://www.altova.com/umodel/uml-project-documentation.html

UNCLASSIFIED
DSTO-TR-3039

138

UNCLASSIFIED

11.4 Model-Based Design

One of the earliest examples of an MBSE approach is the Model-based Design Method, a
mathematical and visual method useful to address certain classes of problems, typically to
assist with the design of real-time SW associated with complex control, signal processing
and communication systems.

The Model-based Design Method typically includes the following steps:

• Design and develop a functional model of the SW to meet the specification, typically
expressed in mathematical form.

• Analyse and synthesise system solution building blocks from the functional model
to meet the requirements.

• Simulate the solution building blocks and verify consistency with the specification.

• Integrate the solution building blocks within the system model and verify the
system model meets the specification.

• Develop prototype code based on the system model (or auto-generate code).

• Verify and validate the system solution meets the specification75.

This method is still widely used today, for example, for simulation and subsequent
implementation of real-time embedded SW-based functionality such as control algorithms
in mechatronic systems, utilising programmable microprocessors and Field Programmable
Gate Arrays (FPGAs).

11.5 Model Driven System Design

In recent years, members from both OMG and INCOSE have strongly supported the notion
of Model-Driven System Design (MDSD) to support SW system development. They have
also strongly promoted the virtue of replacing hard copy documentation with the notion of
holding the information in soft copy form in an information repository, in the form of a SW
model (Baker et al. 2000).

The notion of MBSE is predicated on the idea that system design data can be regarded as a
collection of data elements with dedicated relationships. The advent of more powerful
desktop computing environments and relational database SW has enabled the development
of dedicated tools to capture and more easily manipulate the huge quantities of data
associated with large scale and complex system development. The tools also provide a
reporting capability that can generate documentation in specific formats by using database
scripts to populate documentation templates with information stored within the database.

This allows requirements allocation, functional allocation and physical allocation, for
example, to be undertaken by setting up the respective links between the data elements in
the database. Corresponding requirements, functions, and physical architecture details are

75 [online] URL: http://en.wikipedia.org/wiki/Model-based_design;
 URL: http://www.lhpsoftware.com/modelbaseddesign;
URL: http://machinedesign.com/article/model-based-design-for-mechatronics-systems-1121

http://en.wikipedia.org/wiki/Model-based_design
http://www.lhpsoftware.com/modelbaseddesign
http://machinedesign.com/article/model-based-design-for-mechatronics-systems-1121

UNCLASSIFIED
DSTO-TR-3039

139
UNCLASSIFIED

stored as data elements within the database. Where tools allow the capture of the entire
functional and physical architecture of a system, this potentially allows the entire system
solution to be captured electronically in the database Thus database links can be used to
establish complete traceability from specification through to implementation and V&V.
(Halligan 2011).

Application of a consistent model-based methodology for SW implementation over its life
cycle is seen to offer numerous benefits, including better traceability, less ambiguity, and
improved rigor compared with textual approaches, particularly in relation to its ability to
support continuous assessment of consistency between requirements and design
implementation (Baker et al. 2000).

Determining the impact of a proposed change to one of the requirements, functions, or
physical elements is also easier than using hard copy documentation by being able to
navigate electronically through the database via the links to determine the affected
neighbouring data elements.

MDSD can also facilitate easier re-use of standard models and models with recurring design
patterns. These in turn proffer increased productivity, reduce development time, lower
development costs, increase SW reliability, and improve compatibility between SW
implementations, as well improve ease of governance. Using data models and graphic
notation also constrains the representation of a system design to an agreed, predefined set
of engineering concepts with a reduced learning curve that aids common understanding
(Estefan 2008).

Baker asserts the model-driven approach to system design is fundamentally consistent with
the classical notion of SE as described in IEEE 1220, with similar basic life cycle stages as
shown in Figure 66 (Baker et al. 2000).

Figure 66. MDSD Development Phases of a Project.

MDSD Recursive Stages IEEE 1220 Life Cycle Stages

Requirements Analysis
Requirements Validation

Functional Analysis
Functional Verification

Synthesis

Physical Verification

System Definition

Preliminary Design

Detailed Design

Design Qualification

Requirements
Baseline

UNCLASSIFIED
DSTO-TR-3039

140

UNCLASSIFIED

The activities within each of the project phases are represented by Baker as basic sub-
processes as shown in Figure 67, which can be repeated as many times as necessary to
achieve the development objectives of a project.

Figure 67. Typical MDSD Recursive Sub Processes within a Development Phase

In the case of MDSD, the requirements baseline, the functional architecture, and the
physical architecture are revealed in increasing detail in the model as the design and
implementation is progressed. These are informed by successive trade studies, synthesis,
and V&V activity as necessary, towards product or system completion. Logical entities are
first developed, then mapped across to physical implementations.

MDSD is characterised by the following activities where the model is the central repository
for all information used to drive the system solution to its “build-to” baseline (Baker et al.
2000):

• System Definition
- Undertaking of system definition activity to initiate system design, including:

o analysis of customer needs and constraints in the context of both the external
and internal environments, and

o synthesis of the system in broad terms relating to boundaries, functions, and
performance requirements (both environmental and non-environmental)
such that the system can be adequately described in terms of a set of
requirements that will drive the implementation of a suitable system
solution.

 - Compilation in executable form of:
o system, product specifications,
o system, product and subsystem interface specifications,
o preliminary subsystem specifications.

Identify alternatives
& make technology
design decisions

Formulate
models

Analyse test &
existing data

Develop
requirements

Validate
models against
data & analysis

Assess
compliance with

requirements

Built test
articles

Test articles

UNCLASSIFIED
DSTO-TR-3039

141
UNCLASSIFIED

- Production of:
o machine-readable system baseline
o machine readable preliminary “subsystem design” to baseline

- Completion of a system performance model with sufficient detail to respond to
the system requirements.

- Completion of technical reviews, including system model validation that the
system model of the “design-to” baseline is consistent in terms of cost, schedule
and technical performance requirements.

• Preliminary Design
- Undertaking of preliminary design activity to initiate subsystem design activity,

including:
o analysis of system requirements and constraints, and
o synthesis or selection of subordinate subsystems.

- Compilation in executable form of :
o subsystem specifications,
o preliminary lower-tier component interface specifications,
o preliminary lower-tier component specifications.

 - Production of:
o machine-readable subsystem baseline
o machine-readable preliminary “component design” to baseline.

- Completion of subsystem performance models
- Completion of technical reviews including subsystem model validation such that

the models of the “design-to” baseline show preliminary compliance with
specifications.

• Detailed Design
- Undertaking of detailed design activity to complete subsystem design and

models down to the lowest component.
- Compilation in executable form of:

o component specifications
o component interface specifications

 - Production of :
o machine-readable “build-to” baseline for each component.

- Completion of technical reviews including component model validation such
that the models show satisfactory preliminary compliance with performance
specifications and satisfactory final compliance with design constraints.

- Completion of developmental tests and analyses to validate the performance
models such that they show that production articles built to the detailed design
will be compliant with the specifications,

• Design Qualification
- Undertaking of design qualification activity, including validation of

performance models against test data taken on test articles manufactured
according to the “build-to” baseline.

- Completion of technical reviews such that the validated performance models
show satisfactory compliance with performance specifications. (Baker et al.
2000).

UNCLASSIFIED
DSTO-TR-3039

142

UNCLASSIFIED

11.6 Model Driven Engineering

11.6.1 Graphical Modelling Techniques

The recent notion of MBSE has evolved from a SW development methodology known as
Model-driven Engineering (MDE). MDE refers to a range of development approaches in SW
engineering that uses graphical modelling techniques as the primary form of expression.
MDE is characterised by using graphical techniques such as IDEFx diagrams to describe
different aspects of the problem domain and the solution domain based around the notion
of a SW architecture (Schmidt 2006), (Kent 2002)76.

SW architecture, as described in IEEE 1471, has now become a widely accepted conceptual
basis for developing non-trivial SW. The SW architecture is a depiction of a SW program or
computing system within a tool, stored in a structured database in a designated format as a
model, and documented in artefact form, such that it articulates the primary qualities of the
system in order to design and implement the system77.

For many classes of problems, SW models are built by constructing and documenting the
SW architecture to a certain level of detail using graphical techniques. Code is then written
by hand as a separate process step. However, for certain classes of problems, complete
models can be built including executable actions. Thus, code can be generated from the
models ranging from system skeletons to complete, deployable SW products.

Some tools also have the ability to import SW code into the tool and reverse engineer the
code to convert it to diagrammatic form for ease of editing and verification, allowing the
model and the code to remain synchronised throughout the life cycle of the SW.

With the emergence of object-oriented SW languages such as C++ and Java, and the
formalisation of UML and SysML as international modelling standards under the auspices
of OMG, MDE has become very popular today with a wide body of practitioners and
supporting tools. More advanced types of MDE have flourished, leading to the
development of a number of defacto industry standards supported by the respective tool
vendors and/or published under the auspices of OMG.

Importantly, these methodologies encourage consistent application of methodologies and
consistent interpretation of results; the continued evolution of MDE providing an increasing
focus on SW architecture and process automation, rather than on code implementation, to
arrive at the final solution.

11.6.2 Rational Unified Process (RUP)

The Rational Unified Process (RUP) is one such object-oriented SW engineering
methodology that was instrumental in developing and using numerous graphical
diagramming techniques and the accompanying vernacular that have subsequently been
codified by OMG into the SW modelling language UML.

76 [online] URL: http://en.wikipedia.org/wiki/Model-driven_engineering.
77 Software Engineering Institute, Carnegie Mellon, [online] URL:
http://www.sei.cmu.edu/architecture/?location=secondary-nav&source=1358).

http://en.wikipedia.org/wiki/Model-driven_engineering
http://www.sei.cmu.edu/architecture/?location=secondary-nav&source=1358

UNCLASSIFIED
DSTO-TR-3039

143
UNCLASSIFIED

The RUP was originally conceived by Rational Software78 circa 1996 as illustrated in Figure
68. The set of diagrams formally published as UML shows the combined influences from
Booch, Jacobson, who developed Objectory Object-oriented Software Engineering (OOSE),
and Rumbaugh, who developed the Object Modeling Technique (OMT). All three came
together at Rational Software, who spearheaded the co-development of UML in parallel
with the development of the RUP to facilitate clear communication of requirements,
architectures, and design of SW-intensive systems.

Figure 68. Rational Unified Process Evolution Timeline (adapted from Rational 2001).

The RUP was conceptualised as a project-oriented SW engineering process framework, with
an accompanying tool suite to automate large sections of the process. This sought to
support the efficient, cost-effective, and high quality production of large-scale bespoke SW-
intensive systems to meet the needs of its intended end users, but within a predictable
schedule and budget.

Team productivity was said to be enhanced by providing each team member easier access
to a common knowledge base that contained guidelines, templates and tool mentors for all
critical development activities. By having all team members accessing the same knowledge
base, regardless of whether their focus was requirements, design, test, project management,
configuration management or quality management, the RUP offered a common language,
process and view of how to develop SW using best practices in SW development.

A key feature of the RUP is the focus on creation and maintenance of semantically rich
representations of the SW system under development (i.e. models in the common
knowledge repository), rather than producing large quantities of hard copy documentation.

78 The RUP was originally developed by software tool developer Rational Software. Rational Software was
purchased by IBM in 2003 and is now marketed as IBM Rational Software [online] URL: http://www-
01.ibm.com/software/rational/.

Rational
approach

1995

Objectory
Process 3.8

Rational
Objectory

Process 4.0

1996

Rational
Objectory

Process 4.1

1997

Rational
Unified

Process 5.0

1998

Rational
Unified

Process 6.0

1999

Rational
Unified

Process 7+

2005+

2003
IBM purchase of

Rational Software

UML 0.5 UML 1.0 UML 1.2 UML 1.3 UML 2+

OMT
Booch requirements

SQA
process

configuration
& change mgt

business
engineering

performance
testing

project
mgt

real-time SW
development

data
engineering

Objectory UI
design

RUP
customisation

http://www-01.ibm.com/software/rational/
http://www-01.ibm.com/software/rational/

UNCLASSIFIED
DSTO-TR-3039

144

UNCLASSIFIED

RUP is based on the following best practice tenets:

• Develop SW iteratively

• Manage requirements

• Use component-based architectures

• Visually model the SW

• Verify the SW quality

• Control changes to SW (Rational 2001).

Process concepts in RUP are represented using four primary modelling elements as shown
in Figures 69(a) (b) and (c):

• Workers – the “who” – defined in terms of the behaviour and responsibilities of an
individual or group of individuals in a team;

• Activities – the “how” – an activity of a specific worker is a unit of work that an
individual in that role may be asked to perform;

• Artefacts – the “what” – is a piece of information that is produced, modified, or used
by a process;

• Workflows – the “when” – is a sequence of activities that produces an observable
value.

These combine to describe a process in terms of who is doing what, when and how
(Rational 2001).

Figure 69 (a). Worker, Activity and Artefact Representations.

activities

designer

artifact

worker

use case
analysis

use case
analysis

represented by

use case description

UNCLASSIFIED
DSTO-TR-3039

145
UNCLASSIFIED

Figure 69(b). Worker and Activity Representations.

Figure 69(c). Workflow Representation.

The RUP framework essentially spans two dimensions as shown in Figure 70:

1. The horizontal dimension, expressed as a function of time, unveils the life cycle
aspects of the process as it unfolds. This dimension represents the dynamic aspects
of the process, expressed in terms of cycles, phases, iterations and milestones. The
SW lifecycle is broken into cycles, each cycle working on a new generation of the
product.

The RUP divides each development cycle into four consecutive phases:

• Business modelling workflow
• Requirements workflow
• Analysis & Design workflow
• Implementation workflow
• Test workflow
• Deployment workflow
• Project management workflow
• Configuration & change

management workflow
• Environment workflow

resource

Paul

activities

worker

designer Object design

Mary use case author detail a use case

Sylvie design reviewer review the design

Stefan architect architectural analysis
architectural design

Joe use case designer use case design

architect

designer

designer

reviewer

architectural analysis architectural design

use case analysis use case design

object analysis object design

review analysis review design review architecture

describe concurrency describe distribution

UNCLASSIFIED
DSTO-TR-3039

146

UNCLASSIFIED

o Inception

o Elaboration

o Construction

o Transition.

Figure 70. Two-Dimensional Rational Unified Process Framework Representation (Rational
2001).

Each phase concludes with a well-defined milestone – a point in time at which certain
critical decisions must be made, and therefore indicating key goals have been achieved.

Each phase is further broken down into iterations, comprising a complete development
loop resulting in a release (either internal or external) of an executable product, which is a
subset of the final product under development. The product thus grows incrementally
towards the final product. Compared to the traditional Waterfall or Vee process, the
iterative approach is seen to offer numerous advantages, including:

o earlier mitigation of risk

o change is more manageable

o higher level of reuse

o project team’s initial learning curve is reduced, and supports continuous
learning

o improved product quality.

UNCLASSIFIED
DSTO-TR-3039

147
UNCLASSIFIED

2. The vertical dimension of Figure 70 represents the core process activities, which are
grouped logically in terms of the nature of the SW engineering activities. This
dimension represents the static aspects of the process elements, expressed in terms
of activities, disciplines, artefacts and roles. Collectively across the phases, products
are generated including the initial business case, vision document, project plans, risk
assessments, expenditure tracking, schedule tracking, use case model, SW
architecture description, executable SW architectural prototype, SW product
baseline integrated on designated computing platforms, and user manual.

In contrast to the Vee or the Waterfall instantiations of the SE process described earlier in
Section 5.5, the RUP supports the notion of spiral development. The designated process
steps seek to support flexible, iterative SW development and integration in the presence of
uncertain or volatile requirements, while explicitly managing (and hence controlling) the
notion of changing requirements, changing SW configuration, and associated SW
verification testing over the development cycle.

The ability to develop and maintain visual models of the system and its components under
development is fundamental to the RUP. When first released, the RUP was implemented in
a tool suite to automate significant portions of the process; a UML model of the RUP
process was implemented in the Rational Software tool suite to support the process design
and authoring activities.

The RUP places considerable importance on the early development and verification of a
component-based system architecture, and in the case of SW-intensive systems, also the SW
architecture.

Notably, the RUP tools provide a series of UML-based templates for describing the system
and SW architectures based on the concept of multiple architectural views. The design
process supports specific activities to facilitate identifying architecturally significant
elements as well as architectural constraints RUP also provides guidelines on how to make
architectural choices, employing object-oriented concepts of modularity and encapsulation.

Here, the component is intended to be a non-trivial piece of SW (e.g. a SW module, package
or subsystem) that fulfils a clear function, has a clear boundary, and can be integrated into a
well-defined architecture or structure. Component-based development then occurs through
the elucidation of a modular architecture, in which well-formed SW components are
identified, given a separate identity, then individually designed, coded, and tested. The
components, once individually tested, are progressively brought together, and integrated
and tested to form the whole system.

The SW architecture facilitates the articulation of the structure of the SW in terms of its
component modules, as well as the mechanisms and patterns by which they interact.
Concepts such as packages, subsystems and layers are used during analysis and design to
organise components and specify their interfaces (Kruchten 2001).

The components, once developed and verified using this method, can also lend themselves
suitable for reuse in other SW applications, ostensibly to reduce development and
verification effort, and thus improve SW productivity and SW quality.

The prevalence of standardised COTS SW components readily available within SW
frameworks such as CORBA (Common Object Request Broker Architecture), ActiveX, and
JavaBeans, has transformed SW development. SW development has now shifted from
programming SW one line of code at a time (i.e. requiring a top-down design approach) to

UNCLASSIFIED
DSTO-TR-3039

148

UNCLASSIFIED

composing SW by assembling COTS and MOTS SW components with open-source
standardised interfaces (i.e. open architecture), then successively integrating their interfaces
to form the final solution (i.e. bottom up approach).

11.6.3 The RUP SE Process

The Rational Unified Process for Systems Engineering (RUP SE) was released by IBM in
2003 as an extension of the RUP to incorporate notions of systems engineering. RUP SE
sought to improve the quality outcomes of the larger scale systems in particular, as well as
reducing time to implement, cost, and risk. The principal RUP SE process steps across a
system life cycle are shown in Figure 71 (Cantor 2003a).

The RUP SE incorporates an architecture model framework that enables the consideration
of different sets of perspectives (e.g. logical, physical, information), and addresses the
concerns of multiple stakeholders to deliver the system solution. Additional detail is
provided on the framework in Appendix E.

The Rational tool suite was also updated accordingly to accommodate the additional SE
functionality; the tool suite providing a graphical user interface overlaid on information
stored in a database to support graphical diagram creation, editing, storage and retrieval, as
typically shown in Figure 72.

The RUP SE supports classical SE precepts such as the idea of recursive design and
decomposition. It suggests that systems and components can be viewed from two useful
perspectives:

• A “Blackbox” perspective, i.e. viewing the system as a whole, the services it
provides, and the requirements that it meets;

• A “Whitebox” perspective, i.e. viewing the piece-parts or elements that make up the
system.

Thus, the RUP SE provides process steps and a UML-based model framework to support
teams of engineers as they determine the “Blackbox” view of the system, and synthesise an
optimised “Whitebox” system design that meets all the stakeholder needs.

The RUP SE supports the project development of large-scale systems in particular, which
notionally comprise SW, HW, workers and information components, interacting together to
support business operations within an organisation. The project developments typically
have the following characteristics:

• The projects are large enough to require multiple teams with concurrent
development;

• The projects have concurrent HW and SW development;

• The projects have architecturally significant deployment issues;

• The projects include a redesign of the underlying IT infrastructure to support
evolving business processes (Cantor 2003a).

UNCLASSIFIED
DSTO-TR-3039

149
UNCLASSIFIED

Figure 71. RUP SE Life Cycle Representation..

UNCLASSIFIED
DSTO-TR-3039

150

UNCLASSIFIED

Figure 72. Example RUP Tool Graphical User Interface supporting UML Diagram Creation.

Significantly, as the RUP SE is an application of the RUP SW engineering process
framework, the RUP SE retains its SW heritage; the HW component of the system equating
to the IT infrastructure underpinning the SW application, which in turn supports the
business processes of the organisation.

In the context of RUP SE, (Cantor 2003a) also notes that the term system can have a variety
of different meanings, and offers the following clarification:

“A system is a set of resources that provide services that are used by an enterprise to carry out a

business purpose or mission.
System components typically consist of hardware, software, data and workers.

Systems are specified by the services they provide, along with other non-behavioural requirements
such as reliability or cost of ownership.

Designing a system consists of specifying components, their attributes and their relationships.
A system is a set or assemblage of elements that exhibit behaviour collectively” (Cantor 2003a).

The notion of system as described within the RUP SE is consistent with the notion of system
as described in Section 5.2, however, it is much narrower in scope. The utility of the RUP SE
is essentially constrained to the context of SW-intensive systems that can be represented as
a large state machine, underpinned by simplified, generic technology infrastructure,
governed by the insights of computing science and SW engineering.

In addition, the RUP SE lacks the formalisms to support design of a system as a physical

UNCLASSIFIED
DSTO-TR-3039

151
UNCLASSIFIED

entity, which is governed by the laws of physics and classical engineering disciplines such
as electrical, electronic, and mechanical engineering.

11.6.4 Object-Oriented Systems Engineering Methodology (OOSEM)

The INCOSE MBSE Survey provides an overview of another systems modelling
methodology that utilises SysML as the modelling language, known as the Object-Oriented
Systems Engineering Methodology (OOSEM), as illustrated in Figure 73.

OOSEM is a hybrid approach that leverages object-oriented concepts overlaid on a SE
foundation (Lykins et al. 2000). OOSEM was initially conceived to support the design and
development of large, distributed information systems. Maturation of the approach has
been largely driven by INCOSE members with a specific interest in the methodology under
the auspices of the INCOSE OOSEM Working Group, established in 2000.

Figure 73. OOSEM Methodology Overview (Estefan 2008).

The OOSEM methodology incorporates process steps as shown in Figure 74. These closely
resemble well-known SE process activities associated with system design and development
illustrated previously in Figure 30, including:

• Analyse Stakeholder Needs – Concept Phase

• Define System Requirements - Concept Phase

• Define Logical Architecture – Development Phase

• Synthesise candidate solution architectures – Development Phase

Manage
system

development

Define system
requirements &

design

Integrate
& test

system

Stakeholder
requirements

System

Develop
system

components

Hardware

System
architecture
Allocated

requirements

Software
Data

Status
Technical data

Verified
system

components

Test procedures

Procedures

Plan

UNCLASSIFIED
DSTO-TR-3039

152

UNCLASSIFIED

• Evaluate alternative system solutions and optimise – Development Phase

• Verify and validate the system solution – Development Phase

Figure 74. OOSEM Activities and Modelling Artefacts (Estefan 2008).

As in SE, these activities are recursively and iteratively applied at each level in the system
hierarchy. Notably, the concept of production is treated markedly different in the SE
context as compared to the SW context – principally due to the nature of the product.
Production and preparation of a SW application for delivery can take only a few simple
process steps – it can be simple as copying the required application files, installation
instructions and user guide onto non-volatile media, then packaging suitable for postal or
courier despatch.

Similarly, as with other design-driven systems modelling methodologies such as RUP,
OOSEM is focussed on facilitating detailed system implementation, and still requires
disciplined management processes to support each of the activities to be effective, including
risk management, SE management, and configuration management.

The OOSEM representation is implementation-centric in that it assumes the SE process
starts with the provision of stakeholder needs, and it assumes the solution will be largely
implemented in SW. From the Defence context, the SE process does not start with the
provision of Stakeholder Needs as represented in the diagram of Figure 73, but requires
extensive effort using a variety of methods of enquiry to support requirements elicitation
activity, trade studies and evaluation of alternatives as a prelude to RFT issue during the
Needs and Requirements phases. The OOSEM activity is equivalent to the acquisition phase
of the Capability life cycle model in Defence.

Define
System

Requirements

Analyse
Needs

Define
Logical

Architecture

Synthesise
Allocated

Architecture

Evaluate
Alternatives &

Optimise

Verify &
Validate
System

• Causal analysis
• Mission use cases/scenarios

• System use cases/scenarios
• Elaborated context
• Requirements diagrams

• Logical decomposition
• Logical use cases/scenarios
• Logical subsystems

• Node diagrams
• HW, SW, Data Architectures
• System Deployment

• Parametric diagrams
• Trade studies

• Test system
• Test cases

Common Sub-activities

Major SE Development Activities

UNCLASSIFIED
DSTO-TR-3039

153
UNCLASSIFIED

11.7 Industry Impetus for MBSE

“It takes a heck of a lot more than just brilliant engineering to create a smart product that is
successful in the market-place. Research shows that a third of all produced devices do not meet

performance or functionality requirements and that 24% of all projects are cancelled due to
unrecoverable schedule delays. Many times, the reason for a catastrophic system failure is not related

to the system’s engineering design; rather it is due to failures of knowledge or communication.”

 (Shamieh 2011)

One of the significant challenges typically associated with large scale or particularly
complex projects is that of communication and management of information. The larger or
more complex the project, typically:

• the larger the learning curve,

• the more people involved,

• the greater the dispersement and disparity of teams,

• the greater the difficulty in implementation,

• the greater the cost of implementation,

• the greater the difficulty and cost of fault remediation, and hence

• the greater the associated commercial and technical risk.

Poor communication can cause numerous problems, including:

• Lack of clarity of system goals,

• Multiple interpretations of system requirements,

• Missing, overlooked, or contradictory requirements,

• Significant time wasted gathering, sorting and consolidating inconsistent
information from multiple sources,

• Teams working with outdated or inconsistent versions of documents,

• Extensive rework and repeated (and hence wasted) effort,

• Personnel dissatisfaction and disharmony.

Process formalisation can assist to significantly mitigate this risk, however, the greater the
governance effort, the less flexible and responsive the process, and the greater the impost
on cost and schedule. Good communication and collaboration across the stakeholder
community is therefore imperative to ensure engineering endeavour is consistently,
cohesively, and cost-effectively applied across the entire project.

One of the keys to good collaboration is unencumbered access to design information with
known integrity and ownership. When the information generation and usage is
geographically distributed, good information management is critical to the success of the
engineering endeavour.

As indicated in Table 7, a variety of tools supporting different functionality may be utilised
on any given project; no single tool can offer “one size fits all” functionality with a

UNCLASSIFIED
DSTO-TR-3039

154

UNCLASSIFIED

universal database. Information is likely to be distributed across multiple databases. The
project information architecture is therefore of critical import to the collaborative effort.

MBSE tool vendors such as IBM contend that using a unified systems development
environment with a “virtual” information repository such as shown in Figure 75 can assist
to streamline development and testing processes. Miscommunication is reduced by making
it easier for distributed teams to integrate their work and share their knowledge, thereby
increasing yields in terms of quality, time, profitability and customer satisfaction (Shamieh
2011).

Figure 75. Project Information Architecture with Virtual Repository of Design Information to
Improve Collaborative Effort (Shamieh 2011).

Automated documentation functionality to access the virtual information repository is a
key feature of the MBSE-based unified development environment, to streamline the
production of customised reports and ensure the integrity of the information and
consistency of presentation in each report.

Significantly, not all information can remain in electronic form. Some hard copy
documentation may still be required to satisfy contractual obligations, for compliance
reporting, technical reviews, and for project management purposes.

11.8 INCOSE Impetus for a New MBSE Approach

The INCOSE MBSE Focus Group has actively sought to elevate the prominence of
modelling in the SE process to take a central and governing role in the specification, design,
integration, validation and operation of systems. This has been prompted by an
appreciation of the increasing scale and complexity of new system and SoS developments,
and increasing difficulty in managing consistency and maintaining currency in very large
volumes of complex information, typical of military capability.

Repository

Reqmts

Models

Tests

Publishing
System

Templates

Requirements

Model Views

Test Results

Document

Data

UNCLASSIFIED
DSTO-TR-3039

155
UNCLASSIFIED

The new generation EA and MBSE tools support a variety of graphic modelling approaches
specifically to implement information models to capture and manage prescribed
information. Their stated objective is to provide improved decision support for capability
definition, development and acquisition of both military systems and corporate ICT
systems around the world.

These approaches variously utilise BPMN diagrams, IDEFx diagrams, N2 diagrams, entity-
relationship diagrams, UML diagrams, and most recently, SysML diagrams to present
different views of data contained within a model or generated by a model.

Notably, new generation MBSE tools support a variety of object-oriented architecture
description languages based on UML and SysML. These underpin specific modelling
activity for acquisition decision-support, with the capability to generate the plethora of
views defined in the US and UK military architecture frameworks DoDAF and MODAF
respectively.

To improve the cost-benefit of the modelling activity and the quality of decision-support
provided, a recent collaboration between OMG, US DoD and UK MoD has led to the
merging of the information models or schemas79of the DoDAF and the MODAF into a
common and simplified information model, with fewer artefacts.

Challenges have included:

• harmonising the modelling approaches,

• reducing information model complexity;

• promoting model and data reuse and model interoperability; and

• transitioning the stakeholder mindset from being view-centric to becoming more
data-centric.

The rationalised schema common to both MODAF and DoDAF is an integrated data model,
defined in terms of the architecture description language UPDM (Unified Profile for
DoDAF and MODAF). UPDM comprises a selected subset of language constructs and
diagrammatic representations from UML2 and OMG SysML. UPDM has similarly been
adopted by NATO for use in conjunction with their NATO AF.

A similar collaboration has spurred the development of the tool data interchange standard
AP-233 described earlier in Section 3, although this standard is still evolving (IOS 10303-
233:2012).

Although each of these military architecture frameworks prescribes different graphical
representations and sets of artefacts to meet local policy and governance requirements, and
semantics can vary between different nations despite common use of terminology, the
overall trend over the last ten years has seen significant progress in harmonisation of
approaches across the international Defence community. This is despite significant
differences in scale, budget, national policy, governance requirements and acquisition
processes, in order to provide a more cost-effective approach with improved decision
support for capability acquisition.

In Australia, Defence utilises a drawing-oriented approach to produce hard copy artefacts,

79 Previously known as the CADM in versions up to DoDAF v1.5, recently re-released as DM2 in
DoDAF v2.0.

UNCLASSIFIED
DSTO-TR-3039

156

UNCLASSIFIED

with prescribed drawing templates and tool environment to produce the prescribed SE
documentation and EA artefacts in line with policy and governance requirements in
support of the capability development process. This is in contrast to the data-centric
approach using an integrated data model and the UPDM modelling language as advocated
in the US, UK and NATO.

Guidance in Australian Defence is provided in terms of the DCDH, available publically,
together with a set of architecture principles published on the Defence internal network. As
yet, guidance does not specifically articulate MBSE concepts or principles. Guidance is
agnostic to a specific architecture modelling language or information meta-model (i.e.
schema) ; the default being that provided by the mandated tool environment and respective
tool configurations. Similarly, no specific guidance is provided on modelling methods.
Australia is yet to accede to a more data-centric and vendor-neutral approach with
prescribed architecture description language, schema, and modelling methods as used
elsewhere amongst coalition partners.

11.9 SE Perspective on New Generation MBSE Tool Environment

Notwithstanding the increasing availability of new generation MBSE tools and
methodologies, pertinent questions to ask include:

• “who is the user-base for new generation MBSE tools and methodologies in the
Defence context”?

• “for what purpose(s) might this user-base be interested in using these new
generation MBSE tools for”?

MBSE methodologies rely predominantly on diagrammatic techniques to convey the
required information to support detailed system implementation, as opposed to current
convention text-based documentation. By reducing the use of hard copy SE related
documentation in favour of maintaining the information in managed databases with
automated documentation generation capability, the INCOSE MBSE Working Group posits
that MBSE methodologies can offer improved flexibility, consistency and traceability in
documentation generation, and facilitate easier upgrade of the associated information set.

In this regard, the recent focus of interest expressed by the INCOSE MBSE Focus Group on
information management, diagram generation, and automated documentation generation
differs considerably from previous notions of systems modelling within the SE and SW
engineering disciplines, which focussed on problem structuring and analysis, and solution
synthesis.

The system model in the MBSE context would appear to be a repository of information
about the system, where the scope of information stored in the model is shaped by the
schema or information model used to craft the model. This is more akin to an EA model
representation rather than an engineering based system model representation. This is
ostensibly more useful in providing acquisition decision support for governance and
management purposes rather than for analysing and structuring a problem, and informing
system analysis and design activity to drive towards a system solution (although the tools
are capable of doing exactly this).

In other words, specifically pertaining to new generation MBSE practice, and most

UNCLASSIFIED
DSTO-TR-3039

157
UNCLASSIFIED

importantly, the modelling focus has shifted from incorporating information on the system
in the model to compiling an information set about the system; defined by the prescribed
architecture framework schemas, architecture descriptions, and SE documentation required
to support specific policy and governance requirements.

The recent emergence of SysML, with expanded language support for SE-based concepts
such as requirements management and parametrics, and the subsequent codification of
UPDM, coincide with the recent re-emergence of MBSE to the fore to support the new
notions of information management. Notably, this pertains in particular to architectural
information generated within the confines of the respective military EAFs, which are used
to provide capability acquisition decision-support.

11.10 EAF Perspective on New Generation MBSE Tool Environment

As explained previously, most of the EAFs use UML and SysML like graphical diagrams as
artefacts to document the framework outputs. However, EAFs are typically agnostic to both
the underlying process to generate the artefacts, and the purpose for which the artefacts are
to be used for.

EAFs typically do not acknowledge any particular relationship between:

• the originating modelling environment,

• a particular analytical process,

• the artefacts generated, and

• the context for which the artefacts are to be used for (i.e. the purpose of the
modelling activity, e.g. if they are to be used to provide decision support within a
SE process, an IT acquisition process, or an enterprise business process).

In the absence of an overarching engineering process, particular weaknesses of this artefact
or view-centric approach from an engineering perspective include:

• the emphasis on the artefact rather than the analytical method (i.e. model
construction) to generate the data contained within the artefact;

• a corresponding lack of understanding of the integrity of the data; and

• lack of visibility of intended use of the data.

All these are crucial considerations before undertaking any modelling activity.

Similarly, within the Defence community, operations researchers can also use the same
modelling environment, EAFs, and/or UML/SysML-like artefacts to frame and pursue
their respective lines of enquiry. However, similar to the situation using EAFs, it is agnostic
to the SE context, and the intended use can differ substantially from the intent of similar
artefacts generated within a SE or other engineering context. It can therefore be difficult to
reuse artefacts from one modelling application to the next without knowing the heritage
and integrity of the information set represented in each respective artefact.

Notably, tool vendors encourage usage of their tool environments to the widest market
accessible. It is contrary to their commercial interest to constrain their market to one
particular user segment. Over the last decade in particular, this has precipitated the
emergence of a number of EAF tool vendors with backgrounds in either corporate business

UNCLASSIFIED
DSTO-TR-3039

158

UNCLASSIFIED

or commercial IT, who do not have a specific historic association supporting engineering
activity in the Defence military or engineering communities. However, some of these
vendors have been instrumental in forming the OMG and the subsequent codification of
UML.

One such prominent commercial vendor is Microsoft™, who market their Microsoft
Office™ tool suite, comprising a word processing tool, spreadsheet tool and a drawing tool.
This tool suite is one of the preferred tools recommended by Defence to prepare AUSDAF
artefacts in support of the Defence capability development process.

Another example is the commercial EAF, TOGAF. TOGAF is marketed to both the
commercial sector and the Government sector, including Defence, along with a companion
suite of business analysis tools. Since the tools can be used to generate military EAF
compliant artefacts, but are agnostic to SE, these tools fall in the category of EA tools rather
than SE tools.

Notwithstanding, the EA tools may also be suitable for use to support certain types of
engineering activity, particularly for systems analysis and design, provided they are used
by appropriately skilled tool-users, and in the appropriate context.

Notably, in its definition of MBSE provided in Section 2, INCOSE has apparently sought to
differentiate between the broader set of potential users of the same modelling environment
in either a business, IT, OR, or EA context, constraining the application of modelling
techniques and tools to that specifically occurring within a deliberate SE setting. A more
comprehensive survey of MBSE methodologies is provided in (Estefan 2008).

11.11 Clarifying MBSE Perspectives

It is apparent there are multiple MBSE perspectives, somewhat similar, but with different
problem foci and different problem solving approaches:

• A general class of computer-based SE engineering methodologies and modelling
tool environments supporting SE principles and processes, which offer improved
process efficiency with reduced cost, schedule and/or technical risk supporting
bespoke engineering development;

• A general class of computer-based SW engineering methodologies and graphical
modelling tool environments, which offer improved SW engineering development
efficiency supporting bespoke SW development; typically with auto-code
generation capability, and typically hosted on an OTS commodity HW host
platform.

• A unified engineering development environment with a “virtual” information
repository (i.e. database), offering automated documentation or artefact generation
(replacing hard copy documentation);

• A computer-based graphical modelling approach for developing views or artefacts
as defined in military enterprise architecture frameworks such as MODAF and
DoDAF;

• A computer-based modelling tool for developing views for commercial enterprise
architecture frameworks to assist in ICT investment-related and other corporate
business process analyses;

• A computer-based graphical modelling tool to assist in business process analysis;

UNCLASSIFIED
DSTO-TR-3039

159
UNCLASSIFIED

• A computer-based graphical modelling tool used to undertake operations research
and general systems analysis;

• A specific SW engineering development methodology known as Model Driven
System Design, promoted by the MBSE Working Group of INCOSE;

• Specific system modelling methodologies utilising the SysML™ graphical
modelling language.

Notably, in the majority of these computer-based MBSE approaches, the system is assumed
to be software-intensive. It is therefore crucial to understand the context of the usage of the
term MBSE when referring to MBSE concepts and utilising different MBSE resources.

UNCLASSIFIED
DSTO-TR-3039

160

UNCLASSIFIED

12. Mindsets and Perspectives

From this report, it is evident that the various aspects of the capability development process
can be applicable to a very large number of Defence stakeholders, potentially spanning
numerous organisations, either providing inputs to the process, partaking in the process,
managing part of the process, or interested in the output, outcomes, and consequences of
the process in action.

Two decades ago Brian Mar portended that if the basic concepts of SE were not adequately
understood by the workforce, then the practice of SE would struggle to cope with the
envisaged challenges in the 21st Century, including rapidly changing technologies,
modification rather than replacement of existing systems, and fragmentation of engineering
disciplines (Mar 1992).

The INCOSE Handbook goes further to suggest that SE is a profession as much as it is a
process, where exponents engage expansively in systems thinking.

These challenges foretold by Mar have come to bear; but underlying challenges in the
Defence context include resolving:

• who in Defence comprises the SE workforce;

• what level of SE expertise is required to take on the challenge of developing the
Networked Force 2030;

• what level of SE expertise does Defence has;

• where does this SE expertise reside; and

• where should the SE expertise reside?

As previously discussed, in Defence, multiple skills and perspectives are brought to bear in
support of the capability development process as illustrated in Figure 76.

Figure 76. Different Mindsets and Perspectives in Defence.

Enterprise Architect

Systems Engineer

Operations Researcher

Warfighter

“The System”

UNCLASSIFIED
DSTO-TR-3039

161
UNCLASSIFIED

During the Needs phase, extensive input is provided by the warfighter, complemented by
significant contributions from the Defence operations research (OR) community. Systems
analysis is therefore typically undertaken from an OR perspective rather than a SE
perspective. Although there is significant overlap between the professions, different
questions are normally posed by operations researchers compared with systems engineers.

OR encompasses a wide range of problem solving techniques and methods, drawing
extensively from the field of mathematical sciences. OR is typically used to improve
decision-making quality and efficiency. Operations researchers can similarly utilise systems
thinking in their approach to complex problem solving. Scientific modelling is used
extensively, particularly with regard to analysing human-technology interactions and
influences in complex socio-technical systems, including measurement of factors such as
chance and risk with which to predict and compare the outcomes of alternative decisions,
strategies and controls (Taha 2002).

One notable difference between systems analysis in the OR context compared with the SE
context is one of system definition. The notion of “system” in OR can be quite abstract or
conceptual; often deliberately agnostic to any physical instantiation. This is in contrast to
the requirement in SE to be explicit in terms of identifying the specific system of interest,
system boundary locations, system element composition, and required functionality in a
real-world context, in order to achieve specific engineering outcomes.

Similar input is provided by the warfighter and the OR community during the
Requirements phase. SE expertise for preparation of capability development documentation
(CDD) during the Requirements phase is primarily sourced from personnel contracted from
industry to assist in CDD writing. Input may also be provided from DMO participation in
Integrated Project Teams (IPTs), which may be stood up for a specific MCE project phase.
As such, the warfighter has primary SE responsibility for system definition and CDD
articulation during the formative stages of the system life cycle.

The primary focus of the Defence acquisition organisation is on project managing cost and
schedule after contract award to achieve the required contract outcomes. To achieve the
desired engineering outcome, it remains the responsibility of the warfighter to manage the
specific materiel system requirements during the acquisition activity, and it is the
responsibility of the capability manager to manage the requirements of the capability
system over the life of the capability.

This means SE responsibility during the Needs and Requirements phases of the capability
development process is vested with the warfighter. During the acquisition phase, DMO has
primary responsibility for contract management, with the Supplier responsible for system
implementation and verification. After acceptance into operational service, SE responsibility
associated with provision of on-going support is vested with DMO, with management of
the capability system normally vested with the capability manager responsible for
operating the capability.

Thus, it is evident that the majority of contribution to the SE process in Defence, particularly
during the early stages in the life cycle, is undertaken by Defence personnel outside the SE
profession, and without the detailed knowledge base embodied in the SE Body of

UNCLASSIFIED
DSTO-TR-3039

162

UNCLASSIFIED

Knowledge (SEBoK 2012)80. This places particularly strong reliance on the process
articulated in the DCDH, and the DMO acquisition and support processes for successfully
managing the aggregate capability outcomes sought by Defence.

80 The SEBOK has been developed by INCOSE to encapsulate the internationally accepted body of knowledge
relating to SE (SEBOK 2012). The SEBOK is available in Wikipedia form at [online] URL:
http://www.sebokwiki.org/.

http://www.sebokwiki.org/

UNCLASSIFIED
DSTO-TR-3039

163
UNCLASSIFIED

13. MBSE Utility to Defence

13.1 Utility Considerations

SE and MBSE utility to Defence is examined from a variety of perspectives:

• Nature of the problem,

• Nature of the outcomes required,

• Relevance or suitability of the methodologies,

• Ease or difficulty of application of the methodologies,

• Suitability of the MBSE development environment,

• Implications for stakeholders, and

• Implications for governance.

13.2 Defence Problem Space Considerations

Many problems faced by the military cannot be solved by just employing technology-based
solutions. After analysing and determining the nature of the problem, many can be solved
by other means. These can include application of :

• process change;

• organisational change;

• change in personnel capability;

• change in service delivery; and

• improved training and/or resource allocation.

 The fundamental utility of the SE process lies in its ability to provide a formal method to
systematise systems analysis and systems synthesis in a repeatable manner, with defined
decision and quality criteria, to solve a problem that, by its nature, can be solved by arriving
at a technology-based solution. This solution must satisfy the original intention and be fit
for the purpose intended, with its development managed in a deliberate manner to achieve
explicit technical outcomes within budget and schedule expectations.

Spawned from the US Defence and Aerospace industry under the auspices of MIL-STD-499,
the notion of the SE process has specifically evolved to drive technology-centric solutions to
military problems of the ilk faced by Defence, as previously shown in Figure 33 drawn from
international standard IEEE-1220.

Although instantiations of the SE process are many and varied, the fundamental concepts of
system identity, system hierarchy, system life cycle, and the need to establish a
requirements baseline, with recursive analysis and synthesis activity followed by
verification and validation and support activities remains unchanged. The basic tenets of
SE, to ensure “the right solution is built”, and “the solution is built right”, are thus both

UNCLASSIFIED
DSTO-TR-3039

164

UNCLASSIFIED

robust and enduring, and remain relevant to the engineering of Defence capability systems
of the 21st Century.

Military capability can manifest in many forms, but it is self-evident that technology-based
military systems must undergo an engineering process of some form in order to achieve the
intended technical outcomes. This engineering process must contain sufficient formalisms
and rigour to address the entire scope of the problem at hand, whilst bounding the scope of
the problem to the minimum necessary to ensure a feasible, timely, quality and cost-
effective technical solution can be achieved. This is to occur in the circumstances where the
solution is to be effected as an actual physical technical system which can be used by people
to achieve intended outcomes, rather than by other means.

By definition, an engineered product or technology-based system is at the heart of a
Defence capability system, being one of the FIC elements; military capability being defined
in socio-technical terms as the integrated composite of people, products and process. The
remaining socio-technical FIC elements help shape both the requirements space and the
constraint space associated with the capability system.

The scope of technical considerations then spans properties and performance of all HW,
SW, facilities, materials, data, services and techniques combined, and requires application
of commensurate management considerations as shown in Figure 35 drawn from
international standard ISO/IEC 15288 to achieve the intended outcomes.

Most importantly, it must be possible to explicitly establish the system boundary of the
engineered capability system, along with the specific configuration items that are
components attributed as belonging to the system, and occurring within the system
boundary, so that the nature of the interactions can be appropriately accounted for, and the
interdependencies suitably managed.

It is therefore of critical significance that the Defence capability development activity
continues to remain agnostic to notions of specific system identity and system boundaries
in the SE context. Use of Project boundaries in lieu of SoS or system boundaries, belie the
ability to manage key system interactions and key system interfaces over time, across
multiple projects and project phases.

Also importantly, but not always apparent, those remaining elements of FIC associated
with a particular Defence Capability System are not shaped by engineering processes,
despite the fact that they are interdependent. Organisation, personnel, training, and
command and management result from the application of other military planning and
organisational management processes within the enterprise and are therefore external to the
Defence instantiation of the SE process.

13.3 MBSE Process Considerations

As suggested above, technical systems can manifest in many different forms with many
different properties, spanning for example:

• mechanical and electro-mechanical;

• electrical and electronics;

• optical and electro-optical;

UNCLASSIFIED
DSTO-TR-3039

165
UNCLASSIFIED

• microwave;

• acoustic;

• magnetic;

• firmware;

• middleware; and

• software.

Each engineering discipline requires application of different specialist techniques to
contribute to the overall progression of the SE activity. However, all engineering activity
undertaken within the respective specialist disciplines still falls under the general umbrella
of the SE process. It is therefore crucial to understand the nature of the problem first, and
the type of analysis and synthesis required. It is also essential to factor the likely nature of
the technology solution, the SE development environment needed, and associated risk,
when first planning and resourcing the engineering activity. This also includes being able to
assemble an appropriately staffed and skilled team to undertake the activity.

It is evident that Defence and industry have markedly differing perspectives: one seeking to
explore the problem space from an acquirer’s perspective, and hence elicit requirements
whilst refraining from forming a specific solution; the other focussing on exploring the
solution space from a supplier’s perspective, with specific intent to elicit potential solutions.
The methods of enquiry for Defence and industry will therefore differ markedly between
the two mindsets and the differing responsibilities.

This difference in stance is a crucial differentiator between Defence and industry, having
profound impact on many different considerations including:

• the utility and relevance of methods

• the utility and relevance of tools;

• what analytical techniques are employed;

• what skillsets are brought to bear;

• what information is required;

• what outcomes are sought;

• what governance is applied;

• what information is generated;

• who owns the information;

• how the information is managed;

• in what form is the information required; and,

• what decisions are sought.

A critical dichotomy between the Defence approach to capability acquisition and classical
SE is with regard to the mindset applied towards shaping the solution space. An essential
part of the SE process is the effort directed towards trade-off analysis in shaping the final
solution; considering the range of possibilities, and optimising decisions to obtain the best
outcome after consideration of cost, risk, schedule, performance and quality factors and/or

UNCLASSIFIED
DSTO-TR-3039

166

UNCLASSIFIED

constraints.

Defence has a mandate to remain largely conceptual in the RFT documentation for
capability acquisition, primarily constrained to describing solution classes rather than a
specific system solution. The reliance on tenderers to offer different system design solutions
to meet the abstract concepts described in the RFT, limits Defence to choosing a specific
system solution offered within the constraints of the RFT scope, regardless of whether any
of the solutions offered by the tenderers provides the best possible outcome for Defence as a
whole.

The inability of a Defence Project to reconsider the ramifications of a proposed techncial
solution and refine the proposed system design based on the additional information
brought to hand is a fundamental break point in the SE process, particularly as it may
contain unconsidered ramifications on the remaining elements of FIC. As such, any system
development methodologies that rely on articulating an initial concept for system
implementation, then refining the concept with more and more detail as the design
progresses through successive decomposition, are outside the remit of the Defence
contribution to capability development.

The responsibility for successful implementation of the Defence materiel system within the
auspices of a Defence MCE Project falls on the winning tenderer, despite interdependencies
with the other elements of FIC, and despite the tenderer’s inability to reshape the remain
elements of FIC. A feedback mechanism is implied, although it is actually decoupled,
between the successful tenderer’s system design activity and other Defence management
activity to accommodate unanticipated ramifications of the system design for the remaining
FIC elements, and to factor in other Defence Project and Defence capability
interdependencies.

The successful tenderer in industry is also constrained to determining a system solution
within the approved boundaries set by the DCP Project and approved government funding.
This mindset also exacerbates the potential of a tendered solution being incompatible with
existing legacy systems. Ensuring the right solution is built is thus out of scope of the actual
system design activity. Capability shortfalls of note between the contracted implementation
and the actual requirement, which are outside the auspices of the authorised Defence
Project activity, are typically relegated for separate consideration by Government at a later
date.

Ultimately, the focus of MBSE methodologies such as RUP SE and OOSEM is on arriving at
a good quality SW system solution to the problem at hand, through a process of supporting
feedback, design refinement and decomposition. They are thus are solution-centric, and fall
within the purview of technically-oriented SW engineering specialists.

Defence attention, on the other hand, as the acquirer, is directed towards understanding
and articulating the nature of problem to be solved, typically expressed in terms of
customer needs and requirements. Defence’s perspective is therefore problem-centric,
which falls within the purview of (non-technical) strategic analysts and operations
researchers. Any solution classes suggested by Defence are typically generic in nature so as
not to prescribe a specific implementation.

The problem-centric perspective of Defence, together with the lack of impetus in Defence to
construct and manage models of actual system implementations; a paucity of SE know-
how; and the inability to provide feedback, design refinement and influence decomposition,

UNCLASSIFIED
DSTO-TR-3039

167
UNCLASSIFIED

renders notions of a recursive MBSE process ineffectual under these conditions of
tendering. Closer collaboration between Defence as the acquirer, and industry as the
supplier, is a necessary precursor to accommodate notions of recursive feedback and design
refinement across the acquirer/supplier boundary to realise better acquisition outcomes.

The use of Integrated Product Teams (IPT) comprising both the acquirers and suppliers is
one such collaborative approach that has proven successful in the US for defence capability
acquisition. This has been codified by DoD through the publication of the Integrated
Product and Process Development (IPPD) Handbook (DoD IPPD Handbook 1998). One of
the key tenets of IPPD is multidisciplinary teamwork through IPTs. IPPD uses three core
principles of integrated teaming, shared vision, and concurrent engineering, where:

• integrated processes emphasise parallel rather than serial development;

• these processes for developing the product and for developing product-related life
cycle processes, such as the manufacturing process and support process, are
integrated and conducted concurrently;

• these processes accommodate the information provided by stakeholders
representing all phases of the product lifecycle from both business and technical
perspectives; and

• processes for effective teamwork are effected (Dickinson et al. 2008).

Closer collaboration between Defence and industry also provides a valuable learning
opportunity for all parties concerned to expand their knowledge bases and better
understand opposing perspectives.

13.4 MBSE Tool Considerations – Analytic Capability

Notwithstanding Defence capability acquisition process guidance, commercial MBSE tools
support a range of analytical techniques that can be usefully applied conceptually, without
requiring actual physical instantiations in the real world. Similar to trade-off analyses, the
ability to create system models of various notional systems, as well as real-world
implementations, allows an analyst to explore the manifestation of a client’s problem space,
the boundaries of the feasible solution space; and to articulate the constraint space. The
modelling environment provides the means to describe problems in detail in a form
amenable to support systems analysis, with the ability to compare function and
performance, and potential fitness for purpose of various notional system configurations to
resolve the original problem posed.

The MBSE tool capabilities allow important analytical insights to be distilled including:

• who are the users of the system;

• what are the users of the system doing;

• what are the objects in the real world;

• what are the associations between the objects in the real world;

• what use cases are relevant;

• what use cases are sufficient;

UNCLASSIFIED
DSTO-TR-3039

168

UNCLASSIFIED

• what objects are relevant for each use case;

• how do the objects behave for each use case;

• how can objects within a use case collaborate with each other;

• how well does the system perform;

• how can real-time control be implemented;

• how can the system be built (i.e. trade options); and

• how is the system built.

These objects can represent a huge variety of “things” that are relevant to the manifestation
of the system, both concrete and abstract. These can include individual FIC elements,
resources, information, process steps, functions, metrics, and states of existence –
depending on the vocabulary of the SDL supported by the tool, and the selective tailoring
of the SDL in the form of a published and managed database schema or meta-model,
scoping the information set of interest.

Similarly, MBSE tools can typically report the results of the analyses in a range of suitable
engineering style artefacts, in both textual and graphical form, including textual notation,
tabular notion, N2 diagrams, IDEFx diagrams, and Entity-Relationship diagrams. A UPDM
based Relationship Matrix from the Sparxsystem EA tool Enterprise Architect showing cross-
referencing capabilities is illustrated in Figure 77.

UNCLASSIFIED
DSTO-TR-3039

169
UNCLASSIFIED

Figure 77. UPDM-based Relationship Matrix showing Traceability Links of Interest

[online] URL: http://www.sparxsystems.com/products/mdg/tech/dodaf-modaf/index.html.

http://www.sparxsystems.com/products/mdg/tech/dodaf-modaf/index.html

UNCLASSIFIED
DSTO-TR-3039

170

UNCLASSIFIED

As the database is successively populated with information (architectural elements) as
defined by the schema, an information repository is built up of the entities and their
relationships, spanning both source data and analytic output data, within the defined scope
of problem under consideration, and within the ascribed solution space (can be actual or
conceptual; feasible or non-feasible).

The ability of the MBSE tools to articulate the various relationships between the information
describing both the problem space and the solution space in a structured and repeatable
way is therefore of particular utility to systems analysis.

Depending on the knowledge representation techniques supported by the MBSE tools, the
information in the repository can be drawn from to support further analysis or to populate
numerous templates for display as artefacts, for example, as framed by the various
enterprise architecture frameworks.

An example tool user interface to access the different diagram types and presentation
formats in MODAF and DoDAF is shown in Figure 78.

Figure 78. MBSE Tool Sparx System Enterprise Architect Tool User Interface to Access
DoDAF-MODAF Diagram types ([online] URL:
http://www.sparxsystems.com/downloads/pdf/DoDAF-MODAF.pdf).

http://www.sparxsystems.com/downloads/pdf/DoDAF-MODAF.pdf

UNCLASSIFIED
DSTO-TR-3039

171
UNCLASSIFIED

An example of the DoDAF 1.0 CADM integrated data model is shown in Figure 79,
depicted using the architectural style of IEEE-1471. This database schema prescribes both
the entities and the relationships of interest on which information is sought, for example,
pertaining to specific US DoD Program acquisition activity. The aggregate set of data (i.e.
architectural elements) is stored in an information repository (i.e. a database) for
subsequent retrieval and display in the form of DoDAF architecture products or artefacts
(OASD 2006).

The data set, in the example of a US DoD Program acquisition activity will typically
include:

• a set of users of the system;

• a set of objects within the operating environment;

• a set of associations between the objects (including behaviours);

• a set of use cases and their descriptions;

• a set of components comprising the system elements; and

• a set of performance metrics.

Most importantly, in the case of the US DoD, information garnered for storage in the MBSE
tool information repository is derived from concurrent Program SE-based acquisition
activity, and is used to provide process decision support to shape the US DoD capability
acquisition outcomes81.

The example of Figure 80 provides an indication of the types of knowledge representation
techniques and display formats that can be supported within an MBSE tool to generate
different DoDAF views of the data in the database. Descriptions of corresponding key
CADM entities in the CADM Meta-model are provided in Figure 81. The corresponding
mapping of these key CADM entities to the respective DoDAF diagrams is shown in Figure
82 (OASD 2006).

A list of UML diagrams supporting knowledge representation formats conforming to
DoDAF architecture product requirements is provided in Appendix F of this report.

81 U.S. Defense capability acquisition is carried out under the auspices of US DoD Directive 5000.01 and DoD
Instruction 5000.02, (DoDD 5000.01 2007), (DoDI 5000.02 2008). Briefs on the underlying US DoD SE-
oriented method known as Joint Capabilities Integration and Development System (JCIDS) is provided in
(Ryder & Flanigan 2005) and (Dickerson & Mavris (2010).(Dickerson & Mavris 2010) also provided a brief on
the UK MOD Acquisition Operating Framework, which uses similar capability-based acquisition principles to
the US JCIDS.

UNCLASSIFIED
DSTO-TR-3039

172

UNCLASSIFIED

Figure 79. DoDAF 1.0 Core Architecture Data Model Example (OASD 2006).

UNCLASSIFIED
DSTO-TR-3039

173
UNCLASSIFIED

Figure 80. MBSE Tool Graphical Output Example Supporting DoDAF Knowledge
Representations (OASD 2006).

UNCLASSIFIED
DSTO-TR-3039

174

UNCLASSIFIED

Figure 81. DoDAF Taxonomies and Entity Definitions (OASD 2006).

UNCLASSIFIED
DSTO-TR-3039

175
UNCLASSIFIED

Figure 82. Mapping of DoDAF Taxonomies and Entity Definitions to Framework Views
(OASD 2006).

UNCLASSIFIED
DSTO-TR-3039

176

UNCLASSIFIED

13.5 MBSE Tool Implications

Similar to the case of the US DoD, the data set in the context of a Defence MCE Project
should also contain, for example:

• the set of users of the system;

• a set of objects within the operating environment;

• a set of associations between the objects;

• a set of use case descriptions;

• a set of components comprising notional or abstract system elements; and

• a set of performance metrics.

Data definitions are therefore required to elucidate without ambiguity each data item
within the data model (both data elements and relationships between data elements), as
well as to elucidate the entire data set populating the data model. This is essential to
facilitate shared understanding of the analytic artefacts produced by interrogating the
model.

It is requisite that all data entered into the same model be consistent with the data
definitions, and that they are agreed and understood by both the modellers entering the
data, and the respective users of the artefacts. It is also requisite that the integrity of each
data item is known; the data is sufficient; it is in the correct format; and that it is suitable for
use in the context intended. These requisites are no different to the employment of any
other modelling or analytical techniques to inform decisions relating to capability
acquisition.

This raises a number of important questions with respect to such an information repository
from a Defence perspective:

• who are the tool-users?

• why are they using the tool?

• what capabilities in the tool are being used?

• what are the tool outputs?

• what methodologies are being employed?

• what are the perceived benefits of using the tool?

• what is the scope of information to be stored in the repository?

• how is the information to be stored – i.e. as data or as artefacts?

• what format is the information to be stored in?

• can the information be stored in the right format?

• what is the data to be used for ?

• can specific useful information sought be searched for and easily found?

• can the information be retrieved and displayed in the right knowledge
representation format?

UNCLASSIFIED
DSTO-TR-3039

177
UNCLASSIFIED

• who is responsible for data entry?

• what skills are required to enter in data?

• who is responsible for interrogating the database and performing systems analysis?

• what skills are required to interrogate and interpret the data?

• how does this information relate to the capability acquisition activity?

• who is responsible for the creation and maintenance of the meta-model or schema?

• how extensible is the meta-model or schema?

• where does the data come from to populate the meta-model or schema?

• how scalable the information repositories are ?

• how shareable is the data in the information repositories?

• how re-usable is the data in the information repositories?

• how does this relate to future MBSE development directions?

13.6 MBSE Tool Considerations - Capability Development Process

The INCOSE MBSE Working Group impetus for MBSE has been to raise the prominence of
models in the engineering process to a central and governing role in the specification,
design, integration and validation. As described earlier in Section 7, Defence effort during
the earliest stages of a capability life cycle is focussed on:

• scoping the extent of the problem to be addressed during a specific Project phase;

• scoping the extent of the solution space in terms of affordability, workforce
implications, and perceived risk;

• crafting an RFT documentation package to solicit an industry provided materiel
solution; and

• obtaining Government approval to proceed with the tendering to industry for a
materiel solution against the approved CDD.

Currently, the approval process is documentation-centric; key documentation products
summarising the capability within the CDD being the OCD, the FPS, and the TCD pertinent
to the particular MCE Project phase. Together, these three documents provide the basis of
the capability development proposals for different options for progression through Defence
committees and presentation to Government for approval to proceed to contract
acquisition.

The operational concept described in the OCD is deliberately abstract in nature, and is
primarily textual, supplemented with some illustrative diagrams. Its principle purpose is to
provide an acquirer’s point of view. Information is typically presented and collated using
corporate word processing and drawing tools provided as part of the Defence Desktop
computing Common Operating Environment (COE).

As such, the information contained in the resultant document does not lend itself suitable
for representation in a relational database, neither as a list of requirements that needs to be

UNCLASSIFIED
DSTO-TR-3039

178

UNCLASSIFIED

explicitly managed on an ongoing basis, nor as a set of entities and relationships as might
be defined in a data model that can usefully portray linkages in meaningful way, for
example, to specific requirements in the FPS or other project information for auditing or
compliance purposes.

The test concept described in the TCD is also abstract in nature; its purpose to outline the
general principles to be applied and the scope of the testing sought for the contracted
project activity. Again, this information is primarily textual in nature, and is typically
prepared using the same tools as the OCD within the Desktop computing COE.

Similar to the OCD, the information does not lend itself suitable for representation in a
relational database, nor does it contain information that needs to be explicitly managed on
an ongoing basis, or that can be usefully linked in meaningful ways to other contract
information, for example, to support improved traceability or compliance.

The FPS, on the other hand, comprises the head specification for the contract placed on
industry for acquisition of the offered industry solution. Because the FPS specifies
requirements in list form, the information is suitable for entry into a relational database,
either part of a dedicated requirements management tool, or an MBSE tool with
requirements management capability. Defence has utilised the Telelogic DOORS
requirements management tool for many years to manage the configuration of each FPS,
providing a strong track record of demonstrated utility for use of a requirements
management tool.82

Traceability from the FPS to subservient specifications and to corresponding V&V activity is
essential, both to ensure the right solution is built, and ensure the solution is built right. The
Verification Assurance Cross-Reference Matrix (VACRM), linking individual requirements
to specific verification activity, is a crucial artefact listed within the CDRL, to be provided
by industry to support compliance monitoring and contract governance.

Any changes in FPS requirements after contract award must be within Government
approved scope, and accompanied by a contract change proposal. This in turn precipitates
change control procedures within the industry-based Prime Contractor to ensure the
changes are promulgated appropriately throughout the subsequent SE process activity, and
they are traceable such that the changes are reflected in the delivered solution, and can be
confirmed during the V&V activity.

A tool with the ability to automate specification and V&V traceability could ostensibly be a
useful management and governance aid, provided the cost of the tool license and the
complexity of use did not mitigate against its utility. However, responsibility for the
VACRM lies with industry. As such, it is apparent that there is no requirement for Defence
to duplicate this capability for compliance or governance purposes.

Similarly, there are no formalised contractual or management linkages between the contents
of the OCD nor the TCD, and subsequent SE management activity or V&V activity
undertaken, either by industry or Defence. Since there is no Defence governance
requirement for formal verification activity to be performed against the OCD, either by
Defence or industry, and the configuration of the OCD is not maintained after contract
award, there is no impetus to inform whether the original OCD intent was actually met by

82 Specific evaluation of the merits or limitation of individual tools currently used by Defence, such as the
Telelogic DOORS™ requirements management tool, the Vitech CORE™ SE tool, the IBM System Architect™
tool, Microsoft Visio™, and Microsoft Office™, is out of scope of this report.

UNCLASSIFIED
DSTO-TR-3039

179
UNCLASSIFIED

the delivered solution. This negates the benefit of using a requirements management tool or
a specialist MBSE tool to facilitate improved traceability and configuration management,
linking the OCD and TCD through the design and V&V activity. The current approach
using a general-purpose word processor to prepare the text-based documentation within
the OCD and the TCD would appear to suffice.

The current document-centred approach for Defence project governance, both up to
contract award and during the acquisition phase offers benefits over a database approach
with regard to:

• it is much simpler to use,

• is easier to distribute for review to the multitude of stakeholders contributing to the
governance process,

• it does not require specialist training and support, and

• does not require the additional expense of a specialised tool license to use outside
the scope of the Defence-wide, standardised Desktop computing COE.

Defence has expressed interest in exploring the potential of MBSE tools and their
underlying databases to improve the analytical rigour supporting CDD development.
MBSE tools, as opposed to EA tools, have been used to generate some AUSDAF artefacts
from a common database for inclusion in some CDD as an initial step. Another initiative
has also trialled the use of MBSE tool scripts to generate project-specific CDD inclusive of
the requisite AUSDAF artefacts. However, the broader potential benefit of MBSE will be
constrained in a project-centric, document-centric governance regime.

Revisiting the initial notion of a methodology as described in Figure 1, realising the benefits
of a MBSE methodology by Defence will require some fundamental conditions to be
satisfied, spanning:

• the capability development processes, methods and formalisms employed,

• the environment in which the MBSE tools are deployed, and

• the knowledge base and skills of the process participants.

Notwithstanding, a document-centred approach by Defence prior to RFT issue does not
preclude the use of MBSE tools by Defence to provide the requisite analysis and decision
support within the capability development process, when progressing from initial
beginnings to implementation and support across the various lifecycle stages of the
capability.

13.7 MBSE Tool Considerations – AUSDAF

As suggested in Section 13.4, a number of MBSE tools provide SDL vocabulary support for
the database schema or integrated data model underpinning EAFs such as the US DoDAF
and the UK MODAF. They also provide the ability to generate DoDAF and/or MODAF
compliant artefacts from the populated databases.

As described in Section 10, the notion of architecture adopted for the AUSDAF differs
significantly from that of the DoDAF and the MODAF. The AUSDAF does not prescribe a
specific database meta-model, nor does it provide specific definitions for vocabulary

UNCLASSIFIED
DSTO-TR-3039

180

UNCLASSIFIED

represented in AUSDAF artefacts. Users of the AUSDAF are given flexibility to choose from
either or both the DoDAF and MODAF artefacts, and therefore are not constrained to a
particular EAF SDL vocabulary or EAF semantics, nor a specific EAF set of artefacts.
Finally, the AUSDAF architecture repository comprises an archive of aggregated project
artefacts rather than a repository of data attributed to the architecture, so the information
contained within the artefacts remains decoupled and independent of the existence of the
AUSDAF artefacts.

In the absence of a defined SDL or specific methodology, any tool output will essentially
mimic the data entered into the tool; the information may be presented in alternate ways or
it might conform to particular textual or graphical formats consistent with the DoDAF or
MODAF artefacts. This essentially means that the tool is being used as a drawing and/or
information formatting tool rather than being used as an analytical tool to produce specific
and/or cross-correlated analytic outputs.

Not all AUSDAF artefacts may necessarily be produced using the same tool and with the
same semantics; it is therefore not be possible to discern which information may be cross-
correlated between the different AUSDAF artefacts. In the absence of an integrated data
model, problems with lack of data cohesion are compounded if the specific project context
is not evident. As both context and semantics will differ from project to project, from one
tool to another, and from one tool-user to another, the database content in any of the tools
will not necessarily be consistent over time or be readily re-usable. Re-usability will depend
on the information source, whether data ownership and integrity can be established, and
whether the information is being actively managed, and by whom.

Differences between the AUSDAF constructs and MBSE tool capabilities will be
compounded if any future updates to AUSDAF propose to introduce additional artefacts
over and above that of the MODAF and the DoDAF. If MBSE tool capabilities are not taken
into account, and any new AUSDAF artefacts diverge significantly from the MODAF and
DoDAF, the new generation MBSE tools may not necessarily be able to provide adequate
SDL support, nor be capable of supporting the new presentation formats, which will further
limit the potential utility of the tools to generate AUSDAF-compliant artefacts.

As previously suggested in Section 10, it is apparent that the current AUSDAF and
proposed future developments do not embrace data-oriented system modelling concepts
and notions of information management. The need for specialised licenses and training, and
associated additional cost, along with restricted usage as a drawing tool, also casts question
on the potential utility and value of new generation MBSE tools to support future AUSDAF
artefact preparation.

13.8 MBSE Tool Considerations - IDA

Similar to the AUSDAF, the notion of architecture in the IDA context differs significantly
from that of the DoDAF and MODAF. In particular, the IDA has focussed specifically on
the notion of a business architecture rather than physical infrastructure, with particular
emphasis on business process activity modelling. The activity is entirely agnostic to notions
of SE or SW engineering, and formal process linkages to infrastructure acquisition activity
and governance requirements are not readily apparent.

Since the IDA utilises reference models in lieu of an integrated data model or meta-model, it

UNCLASSIFIED
DSTO-TR-3039

181
UNCLASSIFIED

has no association with any SDL or ADL, and does not align semantically, neither within
domains within the IDA, nor with capability development process vocabulary and
concepts. Thus, there is no correlation between information contained in IDA specific
artefacts and MCE Project generated artefacts.

Again similar to the AUSDAF instantiation, in the absence of a SDL or methodology for the
IDA, any tool output will essentially mimic the data entered in the tool. This means the tool
is again being used as a drawing and/or information formatting tool rather than an analysis
tool to produce analytic outputs relating to the IDA. The intrinsic value of using modelling
tools of the ilk of MBSE in the context of the IDA is not readily apparent in the current
instantiation of the IDA.

13.9 System Modelling Challenges

As evident in the discussion thus far, system modelling using modelling languages such as
UML and SysML, and applying MBSE analytical precepts, is not a panacea for quickly and
efficiently describing the Defence problem space, and investigating solution space
possibilities. How the model is to be constructed and populated with data, by whom, and
why, are of paramount importance in the systems modelling environment.

The nature of the problem being structured has direct bearing on the suitability and
relevance of individual data elements in a data model, and the significance of any particular
subset of relationships. It can affect the class structure of objects in the database, and
inheritance properties of note. The availability, suitability and quality of source data to
populate the data model, and alignment of semantics, are also of critical import.

When setting up a model for a particular MCE Project, it is important to establish the scope
of the model, and to understand any interdependencies between different Project models,
both in terms of common data elements in the data model, and/or common source data to
populate the models.

If modelling is only undertaken within the confines of a specific project, then there can be
considerable latitude in tailoring data elements in the model to suit the specific problem at
hand. However, for the most part, projects cannot be considered in isolation due to the
presence of extensive cross-project and capability interdependencies; pervasive right across
the DCP, across all three Services and Joint, and across all elements of FIC. Project-specific
models may also be at a different stage of development, affecting availability and quality of
information available for analysis at any particular point in time.

This raises many questions regarding managing the exchange and reuse of data between
models, including consideration of:

• model understandability,

• data format,

• data searchability and retrievability,

• data suitability

• data semantics,

• data structures,

UNCLASSIFIED
DSTO-TR-3039

182

UNCLASSIFIED

• data integrity,

• data ownership,

• data configuration management,

• data quality,

• data validation, and

• data archiving.

Pan-project process support is therefore requisite to manage both the modelling
environment, and the aggregate data set (i.e. information repository) to leverage benefit
from a systems modelling environment in support of improved capability acquisition
outcomes. The ability of the MBSE tools to handle the very large scale and complexity of the
multi-project data set must also be established.

13.10 MBSE Possibilities for Defence

Defence already provides process and graphical tool support, including training and tool
licenses, for both capability development and acquisition and for EA purposes. One of the
prescribed tools is UML or SysML capable83, however, the focus of training is centred
around using the tool to draw DoDAF or MODAF artefacts rather than on the underlying
modelling language or analytical capabilities. The question of MBSE tool utility therefore
centres around the perceived benefits for Defence of transitioning from a general purpose
document and drawing production working environment to storing individual data items
as objects or blocks in a managed database in a UML or SysML tool-based distributed
modelling environment.

It is apparent that the capabilities of the new-generation SysML-based MBSE tools are
essentially similar to their UML-based predecessors; the scope of application being
extended beyond the traditional notion of a SW system to a more generalised notion of a
system, albeit still SW-centric.

As previously discussed in Section 3, SysML is intended to provide superior language
support compared with UML to cater for an extended range of SE process steps, and
provides improved robustness to cater for other types of systems other than just SW-
intensive systems. The recent MBSE tool upgrades to support the UPDM data constructs
indicate that tool support to generate the variety of MODAF and DoDAF artefacts will
continue to be provided into the future in support of the organisations respective
acquisition processes, and the focus will continue to be data-centric.

An AUSDAF meta-model of key architectural elements is a mandatory precursor to
realising the analytical benefit inherent in a multi-project distributed MBSE modelling
environment. This would pave the way for supporting notions of pan-organisational data
management and knowledge management of key information (i.e. data items or
architectural elements) - facilitating common data definitions, common semantics, data
consistency, data ownership, data configuration control, and data integrity management
within the capability development process.

83 The native ADL within the CORE SE™ tool is proprietary. The IBM Rhapsody System Architect™ tool
supports both UML and SysML. Visio and Microsoft Office™ do not support an ADL.

UNCLASSIFIED
DSTO-TR-3039

183
UNCLASSIFIED

This ostensibly would allow key architectural data to be correlated and re-used in different
SoS context, across multiple DCP project boundaries, whilst preserving contextual integrity,
and allowing the same data to be promulgated to whichever SoS(s) that might be
applicable.

An information repository in the form of an enterprise-wide virtual database populated
with key project independent and pervasive architectural elements (i.e. in a pan-
organisation, configuration controlled, distributed database of entities and relationships) is
also prerequisite.

A tiered approach of abstraction based on types of decisions supported would assist to
mitigate the scope and complexity of such an undertaking, where different information (i.e.
architectural elements) may be relevant to support different types of decisions, depending
on the perspective of organisational responsibility (e.g. system or SoS perspective).

A SoS or Project architecture, in such a setting, would comprise the relevant subset of pan-
organisation data or architectural elements at the appropriate level of abstraction, spanning
the people, processes, systems, and/or organisations and inter-relationships applicable
from the specific SoS or Project perspective.

MBSE tools have the potential to address a wide range of capability acquisition concerns,
ranging from articulation of issues, investigation of problems, evaluation of different
organisational structures and processes, evaluation of technical system alternatives for
form and fitness for purpose, checking for logical consistency, examining the merits of
different functional to physical allocations, examining environmental constraints,
examining parameter sensitivities to system performance, and distilling key architectural
requirements, constraints and interdependencies.

MBSE tools have the potential to provide improved decision support by providing a more
structured and formalised approach to systems analysis, which is inherently traceable and
repeatable. By providing a Project with the ability to examine the ramifications of various
solution alternatives, particularly taking into account other Project and Capability
interdependencies, can provide valuable feedback to improve the robustness of the FPS
issued to industry in the RFT package for capability acquisition. The tools can also be used
to examine the relative merits of alternative FIC element proposals to assist shaping other
Defence planning processes to optimise the capabilities outcomes.

UNCLASSIFIED
DSTO-TR-3039

184

UNCLASSIFIED

14. Conclusions

The underpinning fundamentals of SE and MBSE have been scrutinised in this report in the
context of the current Defence capability development process and enterprise architecture
initiatives. The capabilities, relevance, and utility of next generation MBSE tools and
methodologies have then been examined, contrasting Defence and industry perspectives to
reveal potential implications for Defence.

MBSE is proffered by modelling tool vendors to provide improved ability to cope with the
more onerous demands of engineering the larger scale and more complex systems as
aspired in Defence. MBSE tool vendors posit that MBSE methodologies can offer improved
flexibility, consistency and traceability, and facilitate easier upgrade of the associated
information set.

However, it is evident there are multiple overlapping MBSE perspectives, somewhat
similar, but with different problem foci and different problem solving approaches. These
range from a general class of computer-based system and software engineering
methodologies supporting bespoke engineering development; to computer-based
modelling and analysis supporting operations research; to generating artefacts in
accordance with military and commercial enterprise architecture frameworks. If no
common agreement can be reached, these differences in perspective can introduce
considerable ambiguity within the Defence stakeholder community; this can potentially
exacerbate rather than resolve the problems at hand.

It is also evident there is a major divide between Defence, as the customer, and industry as
the supplier, in terms of mindsets, skill sets, scale of endeavour, process requirements,
constraints and responsibilities. The methods of enquiry and utility of MBSE tools for
Defence and industry will therefore differ markedly between the two mindsets and the
differing responsibilities.

The differing utility of SE expertise as perceived by Defence and industry is a major
differentiator. Due to the distributed responsibilities within the overall Capability Lifecycle,
Defence does not have a unified SE approach, with the potential to decouple the capability
development process from the traditional systems engineering approach. This in turn
introduces additional challenges, and can negate other efforts towards achieving the
desired decision outcomes.

Defence faces a number of challenges in developing and applying sufficient SE knowledge
and experience both at the high-end platform and the System of Systems engineering levels
to effect any major improvement to capability acquisition outcomes. The current approach
to capability development does not explicitly define the role of SE, instead, relying on
process description in the Defence Capability Development Handbook to drive the
capability development and acquisition process. Process governance relies on extensive
scrutiny by numerous stakeholders from many perspectives, however, there is no
independent scrutiny from a SE perspective to ensure the SE precepts are preserved.

The need to undertake systems analysis is inherent but not explicitly acknowledged within
Defence. Of particular import, the capability development and acquisition process is
document-centric and governance-oriented. Early capability definition activities are centred
on development of the documentation and supporting governance requirements rather
than following a traditional SE approach.

UNCLASSIFIED
DSTO-TR-3039

185
UNCLASSIFIED

Critically, systems analysis in the context of SE cannot be undertaken without SE knowhow.
A paucity of SE expertise to garner the multitude of inputs and couch them in the
appropriate SE perspectives during the early stages of capability definition can lead to
major weakness in the application of the capability development and acquisition process
within Defence.

The desire to remain largely conceptual, to allow Defence industry flexibility to offer
different competitive solution proposals, is a fundamental constraint in the application of
the SE process within Defence. This problem-centric mindset belies the underlying need for
system synthesis on a larger scale, with feedback and refinement, taking into account the
multitude of project and capability interdependencies and constraints, to ensure the
resultant RFT package tendered to Defence industry to deliver each new or modified
Defence system is robust in its requirements, and can be mapped to a feasible solution
space.

Defence industry on the other hand, has responsibility for developing and delivering a
system solution back to Defence. It must therefore have a system solution focus, and
provide an appropriate SE development environment to support synthesis, construction,
integration and verification of the system solution as specified under contract. The
imperative for Defence industry is therefore very different to that of Defence, with
markedly different decision support and governance requirements.

The scale of endeavour also has significant implications in terms of the complexity of the
problem space and the type of decision support required. Defence has responsibility for
managing concurrent development of a multitude of projects, all at differing stages of
progress. The degree of abstraction and applicability of relationships and interdependencies
differ markedly in the DCP capability planning environment compared with an individual
Project contracting environment. The architectural elements and relationships relevant to
DCP planning will therefore also differ markedly from those of particular relevance to
Defence industry under contract during capability acquisition.

The process duality of the capability development process and enterprise architecture
activity, with separate vocabulary and semantics, also creates the potential for a schism in
terms of information traceability and management. The inability to tag individual
information pertaining to each architectural element as to its origin and original intent,
whether engineering derived or EA derived, and the absence of a common information
model or meta-model can introduce ambiguity in the data set, rendering information
unsuitable for reuse or sharing beyond its original purpose for creation.

Finally, it is important to distinguish between the concept of a methodology that is
facilitated by a tool environment and the analytical capability of a tool modelling
environment. The established MBSE methodologies such as RUP SE and OOSEM are
modelling language dependent and implementation focussed, and thus may offer potential
cost savings and efficiencies in industry. However, they do not address the problem space
posed to Defence. These established methodologies are therefore not necessarily suited for
adoption in the Defence context.

Notwithstanding, MBSE tools can provide a powerful analytic capability to cope with
significant design complexity, particularly to investigate capability and project
interdependencies and propagation of capability system properties and behaviour. This is
contingent on the system models being set up correctly, used by knowledgeable
practitioners, and the results are used in the correct context.

UNCLASSIFIED
DSTO-TR-3039

186

UNCLASSIFIED

MBSE tools supporting object-oriented analysis are particularly useful as they support a 1:1
correlation between objects in the modelling world and real world items. This facilitates
ease of aggregation and decomposition of systems and system piece-parts whilst preserving
the properties and behaviour of the individual piece-parts, irrespective of the
acquirer/supplier perspective, and irrespective of project boundaries. Object-oriented
analysis can also provide a powerful means of predicting possible emergent behaviours
arising from different interactions of the piece-parts in a complex, multidisciplinary
environment.

From a Defence enterprise architecture perspective, the new generation MBSE tools provide
a useful means to create Defence Architecture Framework (DAF) artefacts using templates.
However, these artefacts are not intended to form a specification, and lack many of the
formalisms to drive real-world system implementation. Version 2 of AUSDAF incorporates
the artefacts from Version 2 of the US military enterprise architecture framework DoDAF,
although underpinning formalisms such the underlying DoDAF data model have not been
incorporated.

The MBSE tools are evolving to support future developments of the MODAF and DoDAF
towards a common Unified Architecture Framework, embracing data-centric system
modelling concepts. The AUSDAF2 view-based orientation does not provide a pathway
towards supporting MBSE data-oriented constructs, nor the Unified Architecture
Framework as proposed by collaborating partners including U.S. DoD, UK MOD, Swedish
DOD, Canadian DND and NATO.

A separate study is recommended to investigate these issues further, including:

• the implications to Australian Defence capability development and acquisition,
and Defence enterprise architecture initiatives, of the Unified Architecture
Framework proposed developments;

• the feasibility and selection criteria of different information elements for
incorporation in an enterprise-wide repository, and associated knowledge
management process support requirements, to achieve improved Defence
networked Force integration outcomes; and

• provision of formal methodology guidance to leverage the potential of new-
generation MBSE tools to achieve improved Defence capability acquisition and
integration outcomes.

UNCLASSIFIED
DSTO-TR-3039

187
UNCLASSIFIED

15. References

AGAF 2009 Australian Government Information Management Office,
Australian Government Architecture Framework, Version 3.0,
Commonwealth of Australia, Canberra, Australia, 2009.

[online] URL: www.finance.gov.au/e-government/strategy-
and-governance/australian-government-architecture.html

AGIMO 2011 Australian Government Architecture Reference Models, Version 3,
Australian Government Information Management Office
(AGIMO), Australian Government Department of Finance and
Deregulation, Canberra, ACT, August 2011.

[online] URL: http://agimo.gov.au/files/2012/04/AGA_RM_v3_0.pdf

ANSI/EIA
632:2009

Standard, Processes for Engineering a System, Electronic Industries
Alliance, Virginia, USA, 2009.

Arsanjani 2004 Arsanjani, Ali, Service-oriented modeling and architecture, IBM
developerWorks e-zine, IBM, Software Group, 9 November
2004.

[online] URL:
http://www.ibm.com/developerworks/webservices/library/ws-soa-
design1/

Baker et al. 2000 Baker, Loyd, Clemente, Paul, Cohen, Bob, Permenter, Larry,
Purves, Bryon, and Salmon, Pete; Foundational Concepts for Model
Driven System Design, White Paper, INCOSE Model Driven
System Design Interest Group, International Council on Systems
Engineering, 15 July 2000.

Bell 2008 Bell, Michael, Service-Oriented Modeling (SOA): Service Analysis,
Design, and Architecture, John Wiley & Sons, 2008.

Bittler &
Kreizman 2005

Bittler, R. Scott and Kreizman, Gregg, Gartner Enterprise
Architecture Framework: Evolution, 2005, Gartner Inc., 21 October
2005.

[online] URL:
http://www.gartner.com/DisplayDocument?docCode=130849&ref=g_f
romdoc

Bittner & Spence
2002

Bittner, Kurt and Spence, Ian, Use Case Modeling, Addison-
Wesley Professional, 2002.

Blanchard &
Fabrycky 1998

Blanchard B.S. and Fabrycky W.W., Systems Engineering and
Analysis, Third Edition, Prentice Hall International Series in
Industrial and Systems Engineering, New Jersey, 1998.

Boehm 1988 Boehm, Barry W., A Spiral Model of Software Development and
Enhancement, Computer, pp. 61-72, May 1988.

http://www.finance.gov.au/e-government/strategy-and-governance/australian-government-architecture.html
http://www.finance.gov.au/e-government/strategy-and-governance/australian-government-architecture.html
http://agimo.gov.au/files/2012/04/AGA_RM_v3_0.pdf
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.gartner.com/DisplayDocument?docCode=130849&ref=g_fromdoc
http://www.gartner.com/DisplayDocument?docCode=130849&ref=g_fromdoc

UNCLASSIFIED
DSTO-TR-3039

188

UNCLASSIFIED

Booch et al. 1999 Booch, Grady, Rumbaugh, James, and Jacobson, Ivar, The
Unified Modeling Language User Guide, Rational Software
Corporation, Addison Wesley Longman Inc., 1999.

Booch et al. 2007 Booch, Grady, Maksimchuk, Robert A., Engel, Michael W.,
Young, Bobbi J., Conallen, Jim, and Houston, Kelli A., Object-
Oriented Analysis and Design with Applications (Third Edition),
Addison-Wesley, Massachusetts, 2007.

Booher 2003 Booher, H., Handbook of Human Systems Integration, Wiley, 2003.

Boucher & Kelly-
Rand 2011

Boucher, Michelle and Kelly-Rand, Colin, System Design Get it
Right the First Time, White Paper, Aberdeen Group Group,
August 2011.

[online] URL: http://www.aberdeen.com/Aberdeen-
Library/7121/RA-system-design-engineering.aspx

Bowler 2010 Bowler, Mark, Introduction to NCOIC Net-Centric Patterns,
NCOIC, October 27, 2010.

[online] URL:
http://www.dtic.mil/ndia/2010systemengr/WednesdayTrack
3_10955Bowler.pdf

Box 1979 Box, G.E.P., Robustness in the strategy of scientific model building,
Robustness in Statistics, R.L. Launer and G.N. Wilkinson,
Editors., Academic Press, New York, 1979.

BPMN 2011 Standard, Business Process Notation Modeling, version 2.0, formal
2011-01-03, Object Management Group, January 2011.

[online] URL: http://www.omg.org/spec/BPMN/2.0/PDF

Buede 2000 Buede, Dennis M., The Engineering Design of Systems: Models and
Methods, First Edition, Wiley Series in Systems Engineering and
Management, John Wiley & Sons Inc., 2000.

Buede 2009 Buede, Dennis M., The Engineering Design of Systems: Models and
Methods, Second Edition, Wiley Series in Systems Engineering
and Management, John Wiley & Sons, Inc., 2009.

C4ISRAF 1997 C4ISR Architectures Working Group, C4ISR Architecture
Framework Version 2.0, U.S. Department of Defense, 18 December
1997.

Cantor 2003a Cantor, Murray, Rational Unified Process for Systems Engineering
Part 1: Introducing RUP SE Version 2.0, The Rational Edge e-zine,
IBM Software Group, August 2003.

Cantor 2003b Cantor, Murray, Rational Unified Process for Systems Engineering
Part I1: System Architecture, The Rational Edge e-zine, IBM Software
Group, September 2003.

Cantor 2003c Cantor, Murray, Rational Unified Process for Systems Engineering

http://www.aberdeen.com/Aberdeen-Library/7121/RA-system-design-engineering.aspx
http://www.aberdeen.com/Aberdeen-Library/7121/RA-system-design-engineering.aspx
http://www.dtic.mil/ndia/2010systemengr/WednesdayTrack3_10955Bowler.pdf
http://www.dtic.mil/ndia/2010systemengr/WednesdayTrack3_10955Bowler.pdf
http://www.omg.org/spec/BPMN/2.0/PDF

UNCLASSIFIED
DSTO-TR-3039

189
UNCLASSIFIED

Part II1: Requirements Analysis and Design, The Rational Edge e-
zine, IBM Software Group, October 2003.

Carson et al.
2009

Carson, Chris, Fitzgerald, Mike and Hallen, Sue, Model Driven
Development with SysML, tutorial presentation slides, INCOSE
2009, International Council on Systems Engineering, June 2009.

Chang 1990 Chang, Chen Chung and Keisler, H. Jerome, Model Theory.
Studies in Logic and the Foundations of Mathematics (3rd ed.).
Elsevier, 1990.

Chen 1976 Chen, Peter Pin-Shan, The Entity-Relationship Model: Towards a
Unified View of Data, ACM Transactions on Database Systems,
1976.

Coopers &
Lybrand 1991

SQA 2000 Methodology Overview, SQA Version 1.3, Coopers and
Lybrand, 1991.

Coopers &
Lybrand 1995

System Development Life Cycle – Overview Reviews and Audits
Schedule, , SQA 2000 Version 1.3, Coopers and Lybrand, 1995.

Croll 2002 Crollo, Paul R.84, Interoperability of Systems Engineering Standards
– Harmonizing World and National Perspectives, presentation
slides, NDIA Systems Engineering Conference 2002, 24 October
2002.

Dandashi et al.
2006

Dandashi, Fatma, Siegers, Rolf, Jones, Judith, and Blevins, Terry,
The Open Group Architecture Framework (TOGAF) and the US
Department of Defense Architecture Framework (DoDAF), W061,
The Open Group, November 2006.

DCA 2011 Defence Corporate Architecture (DCA) Part 1 – A Business View,
Version 1.1 (draft), Chief Information Officer Group, Australian
Government Department of Defence, Canberra, ACT, 20 June
2011.

DCDH 2012 Defence Capability Development Handbook 2012, Version 1.0,
Australian Government Department of Defence, Defence
Publishing Service, Canberra, ACT, 2012.

DCP 2012 Defence Capability Plan Public Version 2012, Capability
Development Group, Australian Government Department of
Defence, Defence Publishing Service, Canberra, ACT, 15 May
2012.

[online] URL:
http://www.defence.gov.au/publications/CapabilityPlan2012.
pdf

de Marco 1979 de Marco, Tom, Structured Analysis and System Specification,
Yourdan Inc., 1979.

Densmore & Densmore, James and Bohn, Tim, An engineering paradigm for

84 Presented by Croll in 2003 in his capacity as Chair, IEEE Software Engineering Standards Committee, and
Vice Chair, ISO/IEC JTC/SC7 U.S. TAG.

http://www.defence.gov.au/publications/CapabilityPlan2012.pdf
http://www.defence.gov.au/publications/CapabilityPlan2012.pdf

UNCLASSIFIED
DSTO-TR-3039

190

UNCLASSIFIED

Bohn 2007 Service Oriented Architecture, IBM developerWorks e-zine, IBM
Software Group, 15 May 2007.

de Villiers 2001 de Villiers, DJ, Using the Zachman Framework to Assess the
Rational Unified Process, The Rational Edge e-zine, Rational
Software, March 2001.

[online] URL:
http://www.ibm.com/developerworks/rational/library/conte
nt/RationalEdge/mar01/UsingtheZachmanFrameworktoAsses
stheRUPMar01.pdf

Dickerson &
Mavris 2010

Dickerson, C.E. and Mavris D.N., Architecture and Principles of
Systems Engineering, Complex and Enterprise Systems
Engineering Series, CRC Press, 2010.

Dickinson et al. Dickinson, David, Vandeville, Joe, and McDonough, Mike,
Making IPPD Real, Northrup Grumman presentation,
Proceedings of CMMI Conference 2008, November 2008.

[online] URL:

http://www.dtic.mil/ndia/2008cmmi/Track2/Thursday/AM/7152VAN
DEVILLE.pdf

DNDAF 2012 DND/CF Architecture Framework (DNDAF) version 2.04, Canadian
Department of National Defence, 2012.

[online] URL: http://www.img-ggi.forces.gc.ca/pub/af-
ca/index-eng.asp

DoDAF 2009a DoDAF Architecture Framework Working Group, The
Department of Defense Architecture Framework (DoDAF) Version 2.0
Volume 1: Introduction, Overview, and Concepts, Manager’s Guide,
U.S. Department of Defense, 28 May 2009.

[online] URL: https://www.us.army.mil/suite/page/454707

DoDAF 2009b DoDAF Architecture Framework Working Group, The
Department of Defense Architecture Framework (DoDAF) Version 2.0
Volume 2: Architectural Data and Models Architect’s Guide, U.S.
Department of Defense, 28 May 2009.

[online] URL: https://www.us.army.mil/suite/page/454707

DoDAF 2009c DoDAF Architecture Framework Working Group, The
Department of Defense Architecture Framework (DoDAF) Version 2.0
Volume 3: DoDAF Meta-model Physical Exchange Specification
Developer’s Guide, U.S. Department of Defense, 28 May 2009.

[online] URL: https://www.us.army.mil/suite/page/454707

DoDAF 2010 Deputy Chief Information Officer, The DoDAF Architecture
Framework Version 2.02, U.S. Department of Defense, August
2010.

[online] URL: http://dodcio.defense.gov/dodaf20.aspx

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/mar01/UsingtheZachmanFrameworktoAssesstheRUPMar01.pdf
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/mar01/UsingtheZachmanFrameworktoAssesstheRUPMar01.pdf
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/mar01/UsingtheZachmanFrameworktoAssesstheRUPMar01.pdf
http://www.dtic.mil/ndia/2008cmmi/Track2/Thursday/AM/7152VANDEVILLE.pdf
http://www.dtic.mil/ndia/2008cmmi/Track2/Thursday/AM/7152VANDEVILLE.pdf
http://www.img-ggi.forces.gc.ca/pub/af-ca/index-eng.asp
http://www.img-ggi.forces.gc.ca/pub/af-ca/index-eng.asp
https://www.us.army.mil/suite/page/454707
https://www.us.army.mil/suite/page/454707
https://www.us.army.mil/suite/page/454707
http://dodcio.defense.gov/dodaf20.aspx

UNCLASSIFIED
DSTO-TR-3039

191
UNCLASSIFIED

DoDAF TWG
2012

Department of Defense Architecture Framework (DoDAF) v2.0
Technical Working Group (TWG) Overview, presentation slides,
Department of Defense Human Resources Management, 2012.

[online] URL:
http://www.dodenterprisearchitecture.org/program/Docume
nts/UPDM%20Tutorial%20DoD%20EA%20M%20Hause%20[Co
mpatibility%20Mode].pdf

DoDD 5000.01
2007

Department of Defense Directive (DoDD) Number 5000.01, The
Defense Acquisition System, Undersecretary of Defense for
Acquisition and Technology, U.S. Department of Defense, 20
November 2007.

DoDI 5000.02
2008

Department of Defense Instruction (DoDI) 5000.02, Operation of
the Defense Acquisition System, U.S. Department of Defense, 8
December 2008.

DoD IPPD
Handbook 1998

DoD Integrated Product and Process Development Handbook, Office
of the Undersecretary of Defense (Acquisition and Technology),
US Department of Defense, August 1998.

Doran 2006 Doran, Teresa, IEEE 1220: for Practical Systems Engineering, IEEE
Computer, 39:92, January 2006.

Doran 2008 Doran, Teresa, Systems and Software Life Cycle Process Standards:
Foundation for Integrated Systems and Software Engineering,
National Defense Industrial Association, 11th Annual Systems
Engineering Conference, 23 October, 2008.

DWP 2009 Defence White Paper 2009 Defending Australia in the Asia Pacific
Century: Force 2030, Australian Government Department of
Defence, Defence Publishing Service, Canberra, ACT, 2009.

[online] URL: http://www.defence.gov.au/whitepaper

Eeles 2006a Eeles, Peter, What is a software architecture?, IBM
developerWorks e-zine, IBM Software Group, 15 February, 2006.

[online] URL:
http://www.ibm.com/developerworks/rational/library/feb06
/eeles/

Eeles 2006b Eeles, Peter, Characteristics of a software architect, IBM
developerWorks e-zine, IBM Software Group, 15 March, 2006.

[online] URL:
http://www.ibm.com/developerworks/rational/library/mar0
6/eeles/index.html

Eeles 2006c

Eeles, Peter, The benefits of software architecting, IBM
developerWorks e-zine, IBM Software Group, 15 May, 2006.

[online] URL:
http://www.ibm.com/developerworks/rational/library/may0
6/eeles/index.html

http://www.dodenterprisearchitecture.org/program/Documents/UPDM%20Tutorial%20DoD%20EA%20M%20Hause%20%5bCompatibility%20Mode%5d.pdf
http://www.dodenterprisearchitecture.org/program/Documents/UPDM%20Tutorial%20DoD%20EA%20M%20Hause%20%5bCompatibility%20Mode%5d.pdf
http://www.dodenterprisearchitecture.org/program/Documents/UPDM%20Tutorial%20DoD%20EA%20M%20Hause%20%5bCompatibility%20Mode%5d.pdf
http://www.defence.gov.au/whitepaper
http://www.ibm.com/developerworks/rational/library/feb06/eeles/
http://www.ibm.com/developerworks/rational/library/feb06/eeles/
http://www.ibm.com/developerworks/rational/library/mar06/eeles/index.html
http://www.ibm.com/developerworks/rational/library/mar06/eeles/index.html
http://www.ibm.com/developerworks/rational/library/may06/eeles/index.html
http://www.ibm.com/developerworks/rational/library/may06/eeles/index.html

UNCLASSIFIED
DSTO-TR-3039

192

UNCLASSIFIED

Eeles & Cripps
2009

Eeles, Peter and Cripps, Peter, The Process of Software
Architecting, Addison-Wesley Professional, 2009.

[online] URL:
http://www.processofsoftwarearchitecting.com/index.php

EIA/IS
731.1:2009

Standard, Systems Engineering Capability Model, Electronic
Industries Alliance, 2009.

Endrei et al. 2004 Endrei, Mark, Ang, Jenny, Arsanjani, Ali, Chua, Sook, Comte,
Phillippe, Krogdahl, Poei, Luo, Min, Newling, Tony, Patterns:
Service-oriented Architecture and Web Services, IBM International
Technical Support Organisation, ibm.com/redbooks, 2004.

[online] URL:
http://www.redbooks.ibm.com/redbooks/SG246303/wwhelp
/wwhimpl/js/html/wwhelp.htm

Estefan 2008 Estefan, Jeff A., Survey of Candidate Model-Based Engineering
(MBSE) Methodologies Rev. B, INCOSE MBSE Initiative,
International Council on Systems Engineering (INCOSE), 23
May 2008.

[online] URL:
http://www.omgsysml.org/MBSE_Methodology_Survey_Rev
B.pdf

Eva 1994 Eva, Malcom, SSADM Version 4: A User’s Guide (2nd Ed),
McGraw-Hill, 1994.

Fatolahi &
Shams 2006

Fatolahi, Ali & Shams, Fereidoon, An investigation into applying
UML to the Zachman framework, DOI 10.1007/s 10796-006-7977-8,
Inf Syst Front 8:133-143, Springer, 2006.

[online] URL: http://isa.sbu.ac.ir/sources/papers/003-
fatolahi.pdf

FEA 2012 The Common Approach to Federal Enterprise Architecture, U.S.
Department of Treasury, 2 May 2012.

FEAF 2001 Federal Architecture Working Group, A Practical Guide to Federal
Enterprise Architecture Version 1.0, Federal Chief Information
Officer Council, U.S. Department of the Treasury, February
2001.

FORCEnet 2004a FORCEnet Architecture & Standards Volume I Operational &
Systems View Version 1.4, Office of the Chief Engineer SPAWAR
05, U.S. Department of Defense, 30 April 2004.

FORCEnet 2004b FORCEnet Architecture & Standards Volume II Technical View,
Office of the Chief Engineer SPAWAR 05, U.S. Department of
Defense, 30 April 2004.

Forrestor 1968 Forrestor, Jay W., Principles of Systems, Wright-Allen Press Inc.,
1968.

http://www.processofsoftwarearchitecting.com/index.php
http://www.redbooks.ibm.com/redbooks/SG246303/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG246303/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf
http://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf
http://isa.sbu.ac.ir/sources/papers/003-fatolahi.pdf
http://isa.sbu.ac.ir/sources/papers/003-fatolahi.pdf

UNCLASSIFIED
DSTO-TR-3039

193
UNCLASSIFIED

Forsberg &
Mooz 1992

Forsberg, Kevin and Mooz, Harold, The Relationship of Systems
Engineering to the Project Cycle, Engineering Management
Journal, Vol. 4, No. 3, pp. 36-43, September 1992.

Frakes et al. 2005 Frakes, William B. and Kang, Kyo, Software Reuse Research:
Status and Future, IEEE Transactions on Software Engineering,
Vol. 31, No. 7, July, 2005.

Frankel et al.
2003

Frankel, David S., Harmon, Paul, Mukerji, Jishnu, Odell, James,
Owen, Mark, Rivitt, Pete, Rosen, Mike and Soley, Richard Mark,
The Zachman Framework and the OMG’s Model Driven Architecture,
Business Process Trends White Paper, Object Management
Group, September 2003.

[online] URL: http://www.omg.org/mda/mda_files/09-03-
WP_Mapping_MDA_to_Zachman_Framework1.pdf

Friedenthal et al.
2006

Friedenthal, Sanford, Moore, Alan and Steiner, Rick, OMG
Systems Modeling Language (OMG SysML™) Tutorial, tutorial
presentation slides, INCOSE 2006, International Council of
Systems Engineering, 11 July 2006.

[online] URL: http://www.omgsysml.org/INCOSE-
OMGSysML-Tutorial-Final-090901.pdf

Friedenthal et al.
2008

Friedenthal, Sanford, Moore, Alan and Steiner, Rick, A Practical
Guide to SysML The Systems Modeling Language, The Morgan
Kaufman OMG Press, 2008.

Gamma et al.
1994

Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides,
John, Design Patterns Elements of Reusable Object-oriented Software,
Addison-Wesley Professional Computing Series, USA, 1994.

Gershon 2008 Gershon, Sir Peter, Review of the Australian Government’s Use of
Information and Communication Technology, Department of Finance
and Deregulation, The Australian Government Information
Management Office, August 2008.

[online] URL: http://www.finance.gov.au/publications/ict-
review/docs/Review-of-the-Australian-Governments-Use-of-
Information-and-Communication-Technology.pdf

Gomma 2011 Gomma, Hassan, Software Modeling & Design UML, Use Cases,
Patterns, & Software Architectures, Cambridge University Press,
2011.

Gregory 1993 Gregory, Frank Hutson, Cause, Effect, Efficiency and Soft Systems
Models, Journal of the Operational Research Society 44 (4), pp
149-168, 1993.

Halligan 2011 Halligan, Robert, Model Based Systems Engineering – A New
Methodology or an Old One in a New Jacket, SysEN #031, Project
Performance International Newsletter, May 2, 2011.

Hause 2006 Hause, Matthew, The SysML Modelling Language, Fifth European

http://www.omg.org/mda/mda_files/09-03-WP_Mapping_MDA_to_Zachman_Framework1.pdf
http://www.omg.org/mda/mda_files/09-03-WP_Mapping_MDA_to_Zachman_Framework1.pdf
http://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf
http://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf
http://www.finance.gov.au/publications/ict-review/docs/Review-of-the-Australian-Governments-Use-of-Information-and-Communication-Technology.pdf
http://www.finance.gov.au/publications/ict-review/docs/Review-of-the-Australian-Governments-Use-of-Information-and-Communication-Technology.pdf
http://www.finance.gov.au/publications/ict-review/docs/Review-of-the-Australian-Governments-Use-of-Information-and-Communication-Technology.pdf

UNCLASSIFIED
DSTO-TR-3039

194

UNCLASSIFIED

Systems Engineering Conference, September, 2006.

Hause 2010 Hause, Matthew, Model-Based Systems of Systems Engineering with
UPDM, White Paper, Atego, 2010.

[online] URL: http://www.omg.org/ocsmp/Model-
Based_System_of_Systems_Engineering_with_UPDM.pdf

Hause 2012 Hause, Matthew, Introducing Artisan Studio, tutorial presentation
slides, Systems Engineering Test & Evaluation Conference,
Brisbane, Australia, 2012.

Hause et al. 2012 Hause, Matthew, Brookshier, Daniel and Bleakley, Graham,
UPDM – Unified Profile for DoDAF/MODAF, presentation slides,
UPDM Group, Object Management Group, April 2012.

[online] URL:
http://www.dodenterprisearchitecture.org/program/Docume
nts/UPDM%20Tutorial%20DoD%20EA%20M%20Hause%20[Co
mpatibility%20Mode].pdf

Hawryszkiewycz
1988

Hawryszkiewycz, I.T., Introduction to Systems Analysis and
Design, University of Technology, Sydney, Prentice Hall of
Australia Pty. Ltd., 1988.

Hilliard 2000 Hilliard, Rich, Impact Assessment of IEEE 1471 on The Open Group
Architecture Framework, discussion paper, March 30, 200085.

Hitchens 2007 Hitchens, Derek K., Systems Engineering A 21st Century Systems
Methodology, Wiley Series in Systems Engineering and
Management, John Wiley & Sons Ltd., 2007.

Hoban &
Lawbaugh 1993a

Hoban, Francis T. and Lawbaugh, William M. (editors), Readings
in Systems Engineering, What is a System? NASA’s Phased Project
Description, SP-6102,National Aeronautic and Space
Administration Scientific and Technical Information Program,
Washington D.C., pp. 24-34, 1993.

Hoban &
Lawbaugh 1993b

Hoban, Francis T. and Lawbaugh, William M. (editors), Readings
in Systems Engineering, Management Issues in Systems Engineering,
SP-6102, National Aeronautic and Space Administration
Scientific and Technical Information Program, Washington D.C.,
pp. 35-77, 1993.

Hoban &
Lawbaugh 1993c

Hoban, Francis T. and Lawbaugh, William M. (editors), Readings
in Systems Engineering, The Systems Engineering Overview and
Process, SP-6102, National Aeronautic and Space Administration
Scientific and Technical Information Program, Washington D.C.,
pp. 8-22, 1993.

Hue 2008 Hue, M.A., Architecture Practice in Defence – Realising the Seamless
NCW Force, System Engineering Society of Australia, Newsletter
No. 47, October 2008, pp 34-46.

85 This discussion paper was prepared on behalf of The Open Group. Hilliard was a member of the IEEE
Architecture Working Group and editor for IEEE 1471 at the time.

http://www.omg.org/ocsmp/Model-Based_System_of_Systems_Engineering_with_UPDM.pdf
http://www.omg.org/ocsmp/Model-Based_System_of_Systems_Engineering_with_UPDM.pdf
http://www.dodenterprisearchitecture.org/program/Documents/UPDM%20Tutorial%20DoD%20EA%20M%20Hause%20%5bCompatibility%20Mode%5d.pdf
http://www.dodenterprisearchitecture.org/program/Documents/UPDM%20Tutorial%20DoD%20EA%20M%20Hause%20%5bCompatibility%20Mode%5d.pdf
http://www.dodenterprisearchitecture.org/program/Documents/UPDM%20Tutorial%20DoD%20EA%20M%20Hause%20%5bCompatibility%20Mode%5d.pdf

UNCLASSIFIED
DSTO-TR-3039

195
UNCLASSIFIED

Hue 2011 Hue, M.A., Enterprise Architecture Practice and Systems
Engineering – Grappling with the Void, Proceedings of the Systems
Engineering and Test Evaluation Symposium, SESA, 2011.

ICT 2009 Defence Information and Communications Strategy 2009, Chief
Information Officer Group, Australian Government Department
of Defence, Defence Publishing Service, Canberra, ACT, July
2009.

IBM UPDM 2012 UPDM DoDAF 2.0 Tutorial Overview, presentation slides, IBM
Corporation, 6 February 2012.

[online] URL:
http://www.ibm.com/developerworks/wikis/display/Rhapso
dy/UDDM+DoDAF+2.0+Tutorial+Overview

IDA BRM 2011 Directorate of Business Architecture, Integrated Defence
Architecture Business Reference Model v1.0, Chief Information
Officer Group, Australian Government Department of Defence,
Canberra, ACT, 2011.

IDEF1X 1993 Standard, Integration Definition for Information Modelling
(IDEF1X), Federal Information Processing Standards Publication
184, National Institute of Standards and Technology, 21
December 1993.

[online] URL: http://www.idef.com/pdf/Idef1x.pdf

IEEE 610.12-1990 Standard, IEEE Standard Glossary of Software Engineering
Terminology, Computer Society of the IEEE, 28 September 1990.

IEEE 1220-2005 Standard, IEEE Standard for Application and Management of the
Systems Engineering Process, Computer Society of the IEEE, New
York, 9 September 2005.

INCOSE 2012 Systems Engineering Handbook – A Guide for System Life Cycle
Processes and Activities, v.3.2, INCOSE-TP-2003-002-03.2.2,
International Council on Systems Engineering (INCOSE), San
Diego, CA, 14 November 2012.

ISO 10303-
233:2012

Standard, Industrial automation systems and integration – Product
data representation and exchange Part 233: Systems engineering,
International Organization for Standardization, Geneva, 2012.

ISO/IEC
15288:2008

Standard, Systems and software engineering – System life cycle
processes, International Organization for Standardization,
Geneva, 2008.

ISO/IEC
1471:2000

Standard, Recommended Practice for Architectural Description of
Software-intensive Systems, International Organization for
Standardization, Geneva, 2000.

ISO/IEC 19501-
1:2012(E)

Standard, Information technology – Object Management Group
Unified Modelling Language (OMG UML) Infrastructure,
International Organization for Standardization, Geneva, April

http://www.ibm.com/developerworks/wikis/display/Rhapsody/UDDM+DoDAF+2.0+Tutorial+Overview
http://www.ibm.com/developerworks/wikis/display/Rhapsody/UDDM+DoDAF+2.0+Tutorial+Overview
http://www.idef.com/pdf/Idef1x.pdf

UNCLASSIFIED
DSTO-TR-3039

196

UNCLASSIFIED

2012.

[online] URL: http://www.omg.org/spec/UML/ISO/19505-
1/PDF/

ISO/IEC 19501-
2:2012(E)

Standard, Information Technology – Object Management Group
Unified Modelling Language (OMG UML) Superstructure,
International Organization for Standardization, Geneva, April
2012.

[online] URL: http://www.omg.org/spec/UML/ISO/19505-
2/PDF/

ISO/IEC/IEEE
42010-2011

Standard, Systems and Software Engineering – Architecture
Description, International Organization for Standardization,
Geneva, 2011.

ISO/IEC
JTC1/SC7/WG7
2002

ISO/IEC JTC 1/SC 7/WG 7 N0560, Systems Engineering Study
Report 2002, International Organization for Standardization,
Geneva, 2002.

Jansma & Jones
2006

Jansma, Patti A. and Jones, Ross M., Advancing the Practice of
Systems Engineering at JPL, IEEE Aerospace Conference, Big Sky,
Montana, 4-11 March 2006.

[online] URL: http://trs-
new.jpl.nasa.gov/dspace/handle/2014/40111

Jensen et al. 2011 Jensen, Jeff C., Chang, Danica H. and Lee, Edward A., A Model-
Based Design Methodology for Cyber-Physical Systems, Proceedings
of 7th International Wireless Communications and Mobile
Computing Conference (IWCMC), IEEE, pp. 1666-1671, July
2011.

JIA 2010 Joint Intelligence Architecture - Architecture Reference Book, v1.0
(draft for discussion), Chief Information Officer Group,
Australian Government Department of Defence, Canberra, ACT,
7 July, 2010.

Jones et al. 2011 Jones, N. A., Ross, H., Lynam, T., Perez, P., and Leitch, A.,
Mental models: an interdisciplinary synthesis of theory and methods.
Ecology and Society 16(1), p 46, 2011.

[online] URL:
http://www.ecologyandsociety.org/vol16/iss1/art46/

Josey 2009 Josey, Andrew, TOGAF™ : A Comprehensive Overview, The Open
Group, 2 March 2009.

Kent 2002 Kent, Stuart, Model Driven Engineering, Proceedings of the Third
International Conference: Integrated Formal Methods, 2002.

Knight et al. 2006 Knight, Michele, Vencel, Les, and Moon Terry, A Network Centric
Warfare (NCW) Compliance Process for Australian Defence, DSTO-
TR-1928, DSTO Edinburgh, SA, August 2006.

Kobryn & Kobryn, Cris and Sibbald, Chris, Modeling DoDAF Compliant

http://www.omg.org/spec/UML/ISO/19505-1/PDF/
http://www.omg.org/spec/UML/ISO/19505-1/PDF/
http://www.omg.org/spec/UML/ISO/19505-2/PDF/
http://www.omg.org/spec/UML/ISO/19505-2/PDF/
http://trs-new.jpl.nasa.gov/dspace/handle/2014/40111
http://trs-new.jpl.nasa.gov/dspace/handle/2014/40111
http://www.ecologyandsociety.org/vol16/iss1/art46/

UNCLASSIFIED
DSTO-TR-3039

197
UNCLASSIFIED

Sibbald 2004 Architectures, White Paper, Telelogic, 25 October 2004.

[online]: URL:
http://www.incose.org/mdwest/presentations/DoDAF050525.
ppt

Kruchten 1995 Kruchten, P., The 4+1 view model of architecture, IEEE Software, 12
(6), pp. 42-50, November 1995.

Landherr 1997 Landherr, Stefan, Software Engineering Issues, Proceedings of
Defence Seminar on Indigenous Software Support, Australian
Government Department of Defence, Canberra, 21 November,
1997.

Lapkin 2005 Lapkin, Anne, Gartner’s Enterprise Architecture Process and
Framework Help Meet 21st Century Challenges, 8 November 2005.

[online] URL:
http://www.gartner.com/resources/133100/133132/gartners_
enterprise_architec_133132.pdf

Levis 2000 Levis, Alexander H., C4ISR Architecture Framework and
Implementation, DSTO Salisbury Course Notes, 25 February
2000.

Lieberman 2003a Lieberman, Ben, The art of modeling Part I: Constructing an
analytical framework, Rational Edge e-zine, IBM Rational
Software, August 2003.

[online] URL: http://www.docin.com/p-71440586.html

Lieberman 2003b Lieberman, Ben, The art of modeling Part II: Model organisation and
construction, Rational Edge e-zine, IBM Rational Software,
November 2003.

[online] URL:
http://www.ibm.com/developerworks/rational/library/conte
nt/RationalEdge/nov03/f_art_bl.pdf

Lieberman 2004 Lieberman, Ben, The art of modeling Part III: Visual composition,
Rational Edge e-zine, IBM Software Group, January 2004.

[online] URL:
http://www.biologicsoftwareconsulting.com/articles/Art%20o
f%20Modeling%20III.pdf

Long 2010 Long, David, A Model-Based SE Roadmap for Developing DoDAF
2.0 Architectures, Tutorial Presentation, Systems Engineering and
Evaluation Conference, 2010.

Long & Scott
2011

Long, David, and Scott, Zane, A Primer for Model-Based Systems
Engineering, 2nd Edition, Vitech Corporation, October 2011.

[online] URL:
http://www.vitechcorp.com/resources/MBSE.shtml

Lykins et al. 2000 Lykins, Howard, Friedenthal, Sanford and Meilich, Abraham,

http://www.incose.org/mdwest/presentations/DoDAF050525.ppt
http://www.incose.org/mdwest/presentations/DoDAF050525.ppt
http://www.gartner.com/resources/133100/133132/gartners_enterprise_architec_133132.pdf
http://www.gartner.com/resources/133100/133132/gartners_enterprise_architec_133132.pdf
http://www.docin.com/p-71440586.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/nov03/f_art_bl.pdf
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/nov03/f_art_bl.pdf
http://www.biologicsoftwareconsulting.com/articles/Art%20of%20Modeling%20III.pdf
http://www.biologicsoftwareconsulting.com/articles/Art%20of%20Modeling%20III.pdf
http://www.vitechcorp.com/resources/MBSE.shtml

UNCLASSIFIED
DSTO-TR-3039

198

UNCLASSIFIED

Adapting UML for an Object Oriented Systems Engineering Method
(OOSEM), Proceedings of the Tenth Annual International
Symposium of the International Council on systems
Engineering (INCOSE), 2000.

Maier 1998 Maier, M. W., Architecting Principles for Systems-of-Systems,
Systems Engineering, 1:4, pp 267-284, 1998.

Maier & Rectin
2002

Maier, Mark W., & Rechtin, Eberhardt, The Art of Systems
Architecting, Second Edition, CRC Press, 2002.

Mar 1992 Mar, B.W., Systems Engineering Basics, Proceedings of the
National Council of Systems Engineering, 1992.

Mar 1997 Mar, B.W., Back to Basics Again – A Scientific Definition of Systems
Engineering, Proceedings of the Seventh Annual International
Symposium of The International Council on Systems
Engineering (INCOSE), 1997.

Mar & Morais
2002

Mar, Brian W., and Morais, Bernard G., FRAT – A Basic
Framework for Systems Engineering, Proceedings of the Twelfth
Annual International Symposium of The International Council
on Systems Engineering (INCOSE), August 2002.

Marca et al. 1987 Marca, D., & McGowan, C., Structured Analysis and Design
Technique, McGraw-Hill, 1987.

Martin 1998 Martin, James N., Overview of the EIA 632 Standard – “Processes
for Engineering a System” Proceedings of INCOSE, 30 September
1998.

McDaniel 2012 McDaniel, David, History of the DoDAF to 2.02, Proceedings of
Workshop for ACT-IAC EA SIG, Architecture & Infrastructure
Directorate, Office of the Chief Information Officer, U.S.
Department of Defense, 20 July 2012.

[online] URL:
http://www.actgov.org/knowledgebank/newknowledgebank
/Events%20Programs%20and%20Initiatives/OSD%20DoDAF%
20History%20-%20David%20McDaniel-OSD%2007-20-12.pdf

MIL-STD-499B Military Standard, Systems Engineering Management (draft), U.S.
Department of Defense, 24 August 1993.

Muchandi 2007 Muchandi, Veer, Applying 4 + 1 View Architecture with UML 2,
white paper, FCG Software Services, 2007.

[online] URL:

http://www.sparxsystems.com/downloads/whitepapers/FCG
SS_US_WP_Applying_4+1_w_UML2.pdf

MODAF 2010 MOD Architecture Framework v1.2, UK Ministry of Defence, May
2010.

[online] URL: https://www.gov.uk/mod-architecture-
framework

http://www.actgov.org/knowledgebank/newknowledgebank/Events%20Programs%20and%20Initiatives/OSD%20DoDAF%20History%20-%20David%20McDaniel-OSD%2007-20-12.pdf
http://www.actgov.org/knowledgebank/newknowledgebank/Events%20Programs%20and%20Initiatives/OSD%20DoDAF%20History%20-%20David%20McDaniel-OSD%2007-20-12.pdf
http://www.actgov.org/knowledgebank/newknowledgebank/Events%20Programs%20and%20Initiatives/OSD%20DoDAF%20History%20-%20David%20McDaniel-OSD%2007-20-12.pdf
http://www.sparxsystems.com/downloads/whitepapers/FCGSS_US_WP_Applying_4+1_w_UML2.pdf
http://www.sparxsystems.com/downloads/whitepapers/FCGSS_US_WP_Applying_4+1_w_UML2.pdf
https://www.gov.uk/mod-architecture-framework
https://www.gov.uk/mod-architecture-framework

UNCLASSIFIED
DSTO-TR-3039

199
UNCLASSIFIED

NAF 2007 NATO Architecture Framework v3, Annex 1 to AC/322-
D(2007)0048, NATO Consultation, Command and Control
Board, 2007.

NASA 2007 NASA Systems Engineering Handbook, NASA/SP-2007-6105 Rev
1, National Aeronautics and Space Administration, NASA
Centre for AeroSpace Information, 31 December 2007.

[online] URL:
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/2008000
8301_2008008500.pdf

NBA2020+ 2011 Directorate of Business Architecture, Networked Battlespace
Architecture 2020+ Architecture Reference Book, Version 1.1, Chief
Information Officer Group, Australian Government Department
of Defence, Canberra, ACT, 15 April 2011.

NCOIC 2008 NCOIC Interoperability Framework (NIF™) and NCOIC Patterns
Overview, presentation slides, NCOIC, August 2008.

[online] URL:
https://www.ncoic.org/technology/deliverables/nif/NIF.ppt#
488

NCWIIS 2010 Director Network Centric Warfare Development, Network
Centric Warfare Integration and Implementation Strategy 2010,
Capability Development Group, Australian Government
Department of Defence, Defence Publishing Service, Canberra,
ACT, 2010.

OASD 2006 DOD’s Core Architecture Data Model (CADM) Version 2.0
Overview, presentation slides, Silver Bullet Solutions Inc., 25
April 2006.

(prepared for OASD U.S. Department of Defense under contract
DAAB07-03-D-B009 (CISA)

Okon 2012 Okon, Walt, Unified Architecture Framework DoDAF Strategic
Direction, Architecture & Interoperability Directorate, Office of
the Chief Information Officer, U.S. Department of Defense, 20
July 2012.

[online] URL:
http://www.actgov.org/knowledgebank/newknowledgebank
/Events%20Programs%20and%20Initiatives/OSD%20DoDAF%
20Unified%20Architecture%20Framework%20-
%20Walt%20Okon-OSD%2007-20-12.pdf

Peraire et al.
2007

Peraire, Cecile, Edwards, Mike, Fernandes, Angelo, Mancin,
Enrico, and Carroll, Kathey, The IBM Rational Unified Process for
System z, IBM International Technical Support Organisation,
ibm.com/redbooks, July 2007.

Peters 1987 Peters, Lawrence, Advanced Structured Analysis and Design,
Prentice-Hall Series in Software Engineering, New Jersey, 1987.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008301_2008008500.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008301_2008008500.pdf
https://www.ncoic.org/technology/deliverables/nif/NIF.ppt#488
https://www.ncoic.org/technology/deliverables/nif/NIF.ppt#488
http://www.actgov.org/knowledgebank/newknowledgebank/Events%20Programs%20and%20Initiatives/OSD%20DoDAF%20Unified%20Architecture%20Framework%20-%20Walt%20Okon-OSD%2007-20-12.pdf
http://www.actgov.org/knowledgebank/newknowledgebank/Events%20Programs%20and%20Initiatives/OSD%20DoDAF%20Unified%20Architecture%20Framework%20-%20Walt%20Okon-OSD%2007-20-12.pdf
http://www.actgov.org/knowledgebank/newknowledgebank/Events%20Programs%20and%20Initiatives/OSD%20DoDAF%20Unified%20Architecture%20Framework%20-%20Walt%20Okon-OSD%2007-20-12.pdf
http://www.actgov.org/knowledgebank/newknowledgebank/Events%20Programs%20and%20Initiatives/OSD%20DoDAF%20Unified%20Architecture%20Framework%20-%20Walt%20Okon-OSD%2007-20-12.pdf

UNCLASSIFIED
DSTO-TR-3039

200

UNCLASSIFIED

Pidd 2004 Pidd, Michael, Editor, Systems Modelling Theory and Practice, John
Wiley and & Sons Ltd., 2004

PMBOK 2009 A Guide to the Project Management Body of Knowledge (PMBOK®)
– Fourth Edition, Project Management Institute, January 2009.

[online] URL: http://www.pmi.org/PMBOK-Guide-and-
Standards.aspx

Purcell 2009 Purcell, CDRE Mark, RAN, Delivery of a Single Enterprise
Architecture, presentation slides, MilCIS, 2009.

[online] URL:

http://www.milcis.com.au/milcis2009pdf/presentations/3.4b
%20-%20Mark%20Purcel1.pdf

Quatrani &
Palistrat 2006

Quatrani, Terry and Palistrat, Jim, Visual Modeling with IBM
Rational Software Architect and UML, developerWork Series, IBM
Press, 26 May 2006.

Rational 2001 Rational Unified Process Best Practices for Software Development
Teams, Rational Software White Paper, TP026B, Rev 11/01,
Rational Software, 2001.

Rechtin 1991 Rechtin, Eberhardt, Systems Architecting Creating & Building
Complex Systems, Prentice Hall Inc., New Jersey, 1991.

Ritchey, 1991 Ritchey, Dr. Tom, Analysis and Synthesis On Scientific Method –
Based on a Study by Bernhard Riemann, Systems Research, Vol. 8,
No. 4, pp 21-41, Thesis Publishers, 1991.

Rosenblueth &
Norbet (1945)

Rosenblueth, Arturo and Wiener, Norbert, The Role of Models in
Science, Philosophy of Science, Vol. 12, No. 4, pp 316-321,
University of Chicago Press, October 1945.

Royce 1970 Royce, W., Managing the Development of Large Software Systems,
Proceedings of IEEE WESCON 26, August 1970, Institute of
Electrical and Electronic Engineers Inc., pp 1-9.

Ryder &
Flanigan 2005

Ryder, Chris and Flanigan, Dave, Applying the Systems
Engineering Method for the Joint Capabilities Integration and
Development System (JCIDS), presentation slides, 8th Annual
Systems Engineering Conference, National Defence Industry
Association, 27 October 2005.

[online] URL:

http://www.dtic.mil/ndia/2005systems/thursday/ryder.pdf

Sage 1992 Sage, Andrew P., Systems Engineering, Wiley Series in Systems
Engineering, John Wiley & Sons Inc., 1992.

Sage & Rouse
2009

Sage, Andrew P. and Rouse, William B., Handbook of Systems
Engineering and Management, Second Edition, John Wiley & Sons
Inc., NJ, 2009.

Sayles 2003 Sayles, Allen., Development of Federal Enterprise Architecture

http://www.pmi.org/PMBOK-Guide-and-Standards.aspx
http://www.pmi.org/PMBOK-Guide-and-Standards.aspx
http://www.milcis.com.au/milcis2009pdf/presentations/3.4b%20-%20Mark%20Purcel1.pdf
http://www.milcis.com.au/milcis2009pdf/presentations/3.4b%20-%20Mark%20Purcel1.pdf
http://www.dtic.mil/ndia/2005systems/thursday/ryder.pdf

UNCLASSIFIED
DSTO-TR-3039

201
UNCLASSIFIED

Framework using the IBM Rational Unified Process and the Unified
Modeling Language, The Rational Edge e-zine, Rational Software
Corporation, January 2003.

[online] URL:
http://www.ibm.com/developerworks/rational/library/conte
nt/03July/2500/2787/2787_arch_framework.pdf

Schmidt 2006 Schmidt, Douglas C., Model-Driven Engineering, IEEE Computer,
Vol. 39, No. 2, pp. 25-31, February 2006.

SEBoK 2012 Pyster, A., D., Olwell, N., Hutchison, S., Enck, J., Anthony, D.
Henry and A. Squires (eds.). Guide to the Systems Engineering
Body of Knowledge (SEBoK) version 1.0.1. Hoboken, NJ: The
Trustees of the Stevens Institute of Technology ©2012, 2012.

 [online] URL:
http://www.sebokwiki.org/1.0.1/index.php?title=Main_Page

SEF 2001 Systems Management College, System Engineering Fundamentals,
Department of Defense, Defense Acquisition University Press,
Fort Belvoir, Virginia, 2001.

Sessions 2007 Sessions, Roger, A Comparison of the Top Four Enterprise
Architecture Methodologies, Object Watch, May 2007.

[online] URL: http://msdn.microsoft.com/en-
us/library/bb466232.aspx

SF 2010 Strategy Policy Division, Strategy Framework 2010, Australian
Government Department of Defence, Defence Publishing
Service, Canberra, ACT, 2010.

Shamieh 2011 Shamieh, Cathleen, Systems Engineering for Dummies, IBM
Limited Edition, Wiley Publishing Inc., Indianapolis, 2011.

Sheard & Lake
1998

Sheard, Sarah A. and Lake, Jerome G., Systems Engineering
Standards and Models Compared, Proceedings of the Eighth
International Symposium on Systems Engineering, Vancouver,
Canada, pp. 589-6051998.

SIE 2010 Single Information Environment (SIE) Architectural Intent 2010
Integrated Defence Architecture, Chief Information Officer Group,
Australian Government Department of Defence, Defence
Publishing Service, Canberra ACT, 2010.

Sparks 2012 Sparks, E., Course Notes for Human Systems Integration, Defence
Academy of the United Kingdom, Defence College of
Management and Technology, 2012.

Sparx Systems
2007a

Using UML Part One – Structural Modeling Diagrams, UML
Tutorials white paper, Sparx Systems, 2007.

[online] URL:

http://www.sparxsystems.com/downloads/whitepapers/UM
L_Tutorial_Part_1_Introduction.pdf

http://www.ibm.com/developerworks/rational/library/content/03July/2500/2787/2787_arch_framework.pdf
http://www.ibm.com/developerworks/rational/library/content/03July/2500/2787/2787_arch_framework.pdf
http://www.sebokwiki.org/1.0.1/index.php?title=Main_Page
http://msdn.microsoft.com/en-us/library/bb466232.aspx
http://msdn.microsoft.com/en-us/library/bb466232.aspx
http://www.sparxsystems.com/downloads/whitepapers/UML_Tutorial_Part_1_Introduction.pdf
http://www.sparxsystems.com/downloads/whitepapers/UML_Tutorial_Part_1_Introduction.pdf

UNCLASSIFIED
DSTO-TR-3039

202

UNCLASSIFIED

Sparx Systems
2007b

Using UML Part Two – Behavioural Modeling Diagrams, UML
Tutorials white paper, Sparx Systems, 2007.

[online] URL:

http://www.sparxsystems.com/downloads/whitepapers/UM
L_Tutorial_Part_2_Introduction.pdf

Sowa et al. 1992 Sowa, J.F., and Zachman, J.A., Updated version of Zachman EAF.
Extending and Formalising the Framework for Information Systems
Architecture, IBM Systems Journal: Volume 31, Number 3, Page
590, 1992.

Stojanovic 2005 Stojanovic, Zoran, A Method for Component-Based and Service-
Oriented Software Systems Engineering, Doctoral Dissertation,
Delft University of Technology, The Netherlands, 2005.

SWEBOK 2004 Abran, Alain and Moore, James W. (Executive Editors),
SWEBOK Guide to the Software Engineering Body of Knowledge,
IEEE Computer Society, USA, 2004.

[online] URL:
http://www.computer.org/portal/web/swebok/

SysML 2006 Standard, OMG Systems Modeling Language (OMG SysML™)
Specification, ptc/06-05-04, Object Management Group, May
2006.

[online] URL:
http://www.sysml.org/docs/specs/OMGSysML-FAS-06-05-
04.pdf

SysML 2012 Standard, OMG Systems Modeling Language (OMG SysML™)
Version 1.3, formal/2012-06-01, Object Management Group, June
2012.

[online] URL: http://www.omg.org/spec/SysML/1.3/PDF/

Taha 2002 Taha, Hamdy A., Operations Research: An Introduction, Seventh
Edition, Prentice Hall Inc., New Jersey, 2002.

TOGAF 2009 The Open Group Architecture Framework Version 9 “Enterprise
Edition”, The Open Group, 2009.

[online] URL: http://www.opengroup.org/architecture/togaf/

UML 2011a Standard, OMG Unified Modeling Language™ (OMG UML),
Infrastructure Version 2.4.1, formal/2011-08-05, Object
Management Group, August 2011.

[online] URL:
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

UML 2011b Standard, OMG Unified Modeling Language™ (OMG UML),
Superstructure Version 2.4.1, formal/2011-08-06, Object
Management Group, August 2011.

http://www.sparxsystems.com/downloads/whitepapers/UML_Tutorial_Part_2_Introduction.pdf
http://www.sparxsystems.com/downloads/whitepapers/UML_Tutorial_Part_2_Introduction.pdf
http://www.computer.org/portal/web/swebok/
http://www.sysml.org/docs/specs/OMGSysML-FAS-06-05-04.pdf
http://www.sysml.org/docs/specs/OMGSysML-FAS-06-05-04.pdf
http://www.omg.org/spec/SysML/1.3/PDF/
http://www.opengroup.org/architecture/togaf/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

UNCLASSIFIED
DSTO-TR-3039

203
UNCLASSIFIED

[online] URL:
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

UPDM 2012 Standard, Unified Profile for DoDAF and MODAF (UPDM)
Version 2.0, Object Management Group, January 2012.

[online] URL: http://www.omg.org/spec/UPDM/2.0/PDF/

VA 1992 A Tutorial on the Zachman Framework for Enterprise Architecture,
presentation slides, US Department of Veterans Affairs, 1992.

Weilkiens 2006 Weilkiens, Tim, Systems Engineering with SysML/UML Modeling,
Analysis, Design, The OMG Press, 2006.

White 2004 White, Stephen A., Process Modeling Notations and Workflow
Patterns, White Paper, IBM Corporation, January 2004.

[online] URL:
http://www.omg.org/bpmn/Documents/Notations_and_Wor
kflow_Patterns.pdf

Wymore 1993 Wymore, A. Wayne, Model-Based Systems Engineering: an
introduction to the mathematical theory of discrete systems and to the
tricotyledon theory of systems design, CRC Press Inc. Florida, 1993.

Yannopoulos et.
al. 2010

Yannopoulos, Matt and King, Graham, The Integrated Defence
Architecture, The Models and their Value, presentation slides,
MilCIS, 2010.

[online]: URL

http://www.milcis.com.au/milcis2010pdf/MilCIS2010presenta
tions/1.4b%20-%20Graham%20King.pdf

Yourdan 1989 Yourdan, Edward, Modern Structured Analysis, Yourdan Press
Computing Series, 1989.

Yourdan &
Constantine 1978

Yourdan, Edward & Constantine, Larry L., Structured Design
Fundamentals of a Discipline of Computer Program and Systems
Design, Yourdan Press, New York, 1978.

Zachman 1987 Zachman, J.A., A framework for information systems architecture,
IBM Systems Journal , 26(3), pp 276-292, 1987.

Zachman 2003 Zachman, John A., The Zachman Framework™: A Primer for
Enterprise Engineering and Manufacturing, e-book, Zachman
International, March 2003.

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.omg.org/spec/UPDM/2.0/PDF/
http://www.omg.org/bpmn/Documents/Notations_and_Workflow_Patterns.pdf
http://www.omg.org/bpmn/Documents/Notations_and_Workflow_Patterns.pdf
http://www.milcis.com.au/milcis2010pdf/MilCIS2010presentations/1.4b%20-%20Graham%20King.pdf
http://www.milcis.com.au/milcis2010pdf/MilCIS2010presentations/1.4b%20-%20Graham%20King.pdf

UNCLASSIFIED
DSTO-TR-3039

204

UNCLASSIFIED

Appendix A: Tools in the SE Development Environment

A.1. Introduction

Numerous tools are available in the form of SW applications, hosted on general-purpose
desktop computers, to support the various activities within the SE process. Some simple
tools are available as freeware, downloadable from the Internet; other more specialised
tools require SW license purchase to use, some of which can be very expensive86.

These tools offer a wide variety of functionality, typically tailored to specific domain
disciplines to support the methods of enquiry, synthesis, and process responsibilities
associated with the particular work in progress.

EA tools can typically support generation of a number of diagrams which can describe
numerous aspects of an organisation, from the operation of business processes,
organisational structure, information flows, IT systems and technical infrastructure. They
can be useful to describe, analyse and visualise relationships between business domains,
which can allow stakeholders to assess and communicate the impact of organisational
decisions or changes within or between domains. The tools typically support different
viewpoints to address different stakeholder concerns, to make comparisons and to highlight
cause and effect relationships.

In contrast, SE, SW engineering, and MBSE tools typically provide significant engineering
process support, from initial articulation of requirements, to system synthesis,
implementation and V&V. Information is typically stored in a database with an integrated
data model schema, where it can be viewed from various viewpoints as required for
decision support. An example of the Rational range of SE management tools provided by
IBM is shown in Figure A.1. An example of the Atego Artisan Studio tool interoperability
support in the engineering development environment is provided in Figure A.2.

Some examples of commercial tools are provided in the following Table A.1. Additional
information on vendors and tools specifically supporting SysML can be found at the OMG
web-site located at URL: http://www.omgsysml.org/.

86 For example, a SW license priced at $50,000 for a single seat can cost an organisation several million dollars
for a Corporate license.

http://www.omgsysml.org/

UNCLASSIFIED
DSTO-TR-3039

205
UNCLASSIFIED

Figure A.1. Range of IBM Tools Supporting Collaborative System Life Cycle Process Management (Carson et al. 2009).

UNCLASSIFIED
DSTO-TR-3039

206

UNCLASSIFIED

Figure A.2 Example of Artego Artisan Studio Tool Interoperability in the SE Environment (Hause 2012).

UNCLASSIFIED
DSTO-TR-3039

207
UNCLASSIFIED

Table A.1 Snapshot of Tool Vendors and Products.

Tool Name Vendor Information [online] URL:
Enterprise Architecture Tools
Artisan Studio Atego http://www.atego.com/products/artisan-studio/

Tool supports UML, SysML, UPDM modelling
languages.
Tool interfaces with IBM Rational DOORS® tool.

ABACUS Avolution http://www.avolution.com.au/releases/0809_arc
himate.html
Drawing tool. Tool supports Archimate®
modelling language.

IBM® Rational®
System Architect®

IBM
Corporation

http://www-
01.ibm.com/software/awdtools/systemarchitect/
Modelling tool supports UML.

Office® Microsoft http://office.microsoft.com/en-au/?CTT=97
Drawing tool. Method uses Word, EXCEL and
PowerPoint templates. Modelling language
agnostic.

Visio® Microsoft http://office.microsoft.com/en-au/visio/
Drawing tool. Method uses stencils and templates.
Modelling language agnostic.

BPMN® OMG http://www.omg.org/spec/BPMN/
Modelling language standard.

iServer Process
Modeller

Orbus
Software

http://www.orbussoftware.com/business-
process-analysis/iserver/process-modeler
Drawing tool supports BPMN modelling language
standard. Method uses MS Visio stencils and
templates.

SmartDraw SmartDraw http://www.smartdraw.com/
Drawing tool. Modelling language agnostic.

Enterprise
Architect

Sparx
Systems

http://www.sparxsystems.com.au/products/mdg
/tech/archimate/archimate.html
Modelling tool supports Archimate®, BPMN,
UML, SysML, and UPDM modelling languages.
Tool interfaces with IBM Rational DOORS®.

Archimate® The Open
Group

http://www.opengroup.org/subjectareas/enterpri
se/archimate
Modelling language standard.

Engineering Tools
IBM Rational®
Requirements
Composer®

IBM
Corporation

http://www-01.ibm.com/software/awdtools/rrc/

IBM® Rational®
DOORS®

IBM
Corporation

http://www-
01.ibm.com/software/awdtools/doors/

SE Tools

http://www.atego.com/products/artisan-studio/
http://www.avolution.com.au/releases/0809_archimate.html
http://www.avolution.com.au/releases/0809_archimate.html
http://www-01.ibm.com/software/awdtools/systemarchitect/
http://www-01.ibm.com/software/awdtools/systemarchitect/
http://office.microsoft.com/en-au/?CTT=97
http://office.microsoft.com/en-au/visio/
http://www.omg.org/spec/BPMN/
http://www.orbussoftware.com/business-process-analysis/iserver/process-modeler
http://www.orbussoftware.com/business-process-analysis/iserver/process-modeler
http://www.smartdraw.com/
http://www.sparxsystems.com.au/products/mdg/tech/archimate/archimate.html
http://www.sparxsystems.com.au/products/mdg/tech/archimate/archimate.html
http://www.opengroup.org/subjectareas/enterprise/archimate
http://www.opengroup.org/subjectareas/enterprise/archimate
http://www-01.ibm.com/software/awdtools/rrc/
http://www-01.ibm.com/software/awdtools/doors/
http://www-01.ibm.com/software/awdtools/doors/

UNCLASSIFIED
DSTO-TR-3039

208

UNCLASSIFIED

Vitech CORE® Vitech
Corporation

http://www.vitechcorp.com/products/core.shtml
Tool has proprietary SDL.

SW Engineering Tools
OSATE Carnegie

Mellon
Software
Engineering
Institute

http://www.aadl.info/aadl/currentsite/
Tool supports SAE AADL modelling language.

Eclipse UML2
Tools

Eclipse
Foundation

http://www.eclipse.org/modeling/mdt/?project=
uml2
Tool supports UML modelling language.

ER/Studio® XE2

Embarcadero http://www.embarcadero.com/products
Tools support UML modelling language.

IBM® Rational®
RequisitePro

IBM
Corporation

http://www-
01.ibm.com/software/awdtools/reqpro/

IBM® Rational®
Rhapsody®
Architect for
Software

IBM
Corporation

http://www-
142.ibm.com/software/products/us/en/ratirhapa
rchforsoft
Tool supports UML modelling language.

IBM® Rational®
Team Concert™

IBM
Corporation

http://www-
01.ibm.com/software/rational/products/rtc/

Architecture
Analysis and
Design Language
(AADL)

SAE http://www.sei.cmu.edu/architecture/tools/inde
x.cfm
Modelling language standard.

New Generation MBSE Tools (SysML-based)
UModel® Altova http://www.altova.com/umodel.html

Tool supports BPMN, UML, SysML modelling
languages.
Tool interfaces to Visual Studio and Eclipse.

Artisan Studio Atego http://www.atego.com/products/artisan-studio/
Tool supports UML, SysML, UPDM modelling
languages.
Tool interfaces with IBM Rational DOORS® tool.

IBM® Rational®
Rhapsody®
Architect for
Systems Engineers

IBM
Corporation

http://www-
142.ibm.com/software/products/us/en/ratirhapa
rchforsystengi
Tool supports both UML and SysML modelling
languages.

MagicDraw No Magic http://www.nomagic.com/products/magicdraw.
html
Tool supports BPMN, UML, SysML, UPDM
modelling languages.

Enterprise
Architect

Sparx
Systems

http://www.sparxsystems.com.au/products/mdg
/tech/archimate/archimate.html
Modelling tool supports Archimate®, BPMN,

http://www.vitechcorp.com/products/core.shtml
http://www.aadl.info/aadl/currentsite/
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.embarcadero.com/products
http://www-01.ibm.com/software/awdtools/reqpro/
http://www-01.ibm.com/software/awdtools/reqpro/
http://www-142.ibm.com/software/products/us/en/ratirhaparchforsoft
http://www-142.ibm.com/software/products/us/en/ratirhaparchforsoft
http://www-142.ibm.com/software/products/us/en/ratirhaparchforsoft
http://www-01.ibm.com/software/rational/products/rtc/
http://www-01.ibm.com/software/rational/products/rtc/
http://www.sei.cmu.edu/architecture/tools/index.cfm
http://www.sei.cmu.edu/architecture/tools/index.cfm
http://www.altova.com/umodel.html
http://www.atego.com/products/artisan-studio/
http://www-142.ibm.com/software/products/us/en/ratirhaparchforsystengi
http://www-142.ibm.com/software/products/us/en/ratirhaparchforsystengi
http://www-142.ibm.com/software/products/us/en/ratirhaparchforsystengi
http://www.nomagic.com/products/magicdraw.html
http://www.nomagic.com/products/magicdraw.html
http://www.sparxsystems.com.au/products/mdg/tech/archimate/archimate.html
http://www.sparxsystems.com.au/products/mdg/tech/archimate/archimate.html

UNCLASSIFIED
DSTO-TR-3039

209
UNCLASSIFIED

UML, SysML, and UPDM modelling languages.
Tool interfaces with IBM Rational DOORS®.

VP-UML Visual
Paradigm

Tool supports BPMN, UML, SysML modelling
languages.

Vitech
GENESYS™

Vitech
Corporation

http://www.vitechcorp.com/products/genesys.sh
tml
Tool supports the Vitech STRATA methodology.
Tool supports SysML modelling language.

http://www.vitechcorp.com/products/genesys.shtml
http://www.vitechcorp.com/products/genesys.shtml

UNCLASSIFIED
DSTO-TR-3039

210

UNCLASSIFIED

Appendix B: Object-oriented Modelling Language
Origin and Concepts

B.1. Object-Oriented Programming Language Paradigm – Origin

A form of expression in terms of objects was evolved during the 1980s and 1990s; the main
building block of SW being an object or a class. When first introduced, a number of
proprietary approaches were developed using different diagramming techniques to provide
visualisation of the SW systems. However, the rapid uptake in the SW engineering and IT
communities spawned the formation of a consortium in 1989 called “The Object
Management Group” (OMG)87. OMG initially comprised eleven large IT vendors, including
Sun Microsystems, Apple Computer, IBM, Hewlett-Packard and Data General. OMG has
since assumed responsibly for specification and management of numerous international
standards, and owns numerous trademarks which have subsequently shaped the object-
oriented paradigm.

The goal of OMG from the outset was to create a heterogeneous distributed object standard
to encourage development of conforming products providing true interoperability between
products. This was to be achieved by developing a specification for a common and
interoperable object model with methods and data that work using “all types of
development environments” and “all types of data” (presumably amongst the consortium
members in the first instance) 88. The desire was to create a defacto graphical modelling
language for SW development that provided the semantics and notation for object-oriented
problem solving (Dickerson & Mavris 2010).

The formal publication of graphical modelling language UML as ISO/IEC 19501 in 1997 by
OMG marked a significant milestone in SW modelling and SW development. UML was
initially developed by a consortium of large IT vendors separate from OMG, including IBM,
Microsoft, Hewlett-Packard and Oracle Corporation. This was spearheaded by Booch,
Rumbaugh and Jacobson89 from Rational Software. Their primary objective was to combine
and streamline several of the second generation proprietary approaches to provide a
common object-oriented language construct that was non-vendor specific; possibly to
encourage uptake and promote broader acceptance of the radically different object-oriented
mindset. They then sought formal publication under the umbrella of OMG to facilitate the
widespread adoption of UML across the international engineering and IT communities.

87 [online] URL: http://en.wikipedia.org/wiki/Object_Management_Group; URL:
http://www.omg.org/spec/UML/
88 [online] URL: http://en.wikipedia.org/wiki/Object_Management_Group; URL:
http://www.omg.org/spec/UML/
89 Rumbaugh originally developed the OMT methodology, Booch developed OODA, and Jacobson developed
Objectory OOSE The UML notation is a union of the graphical syntax of OMT, OODA, and Objectory,
including notions of use cases from Objectory, class diagrams from OMT and OODA, state-machine diagrams
from OODA and OMT, as well representations from OMT, OODA, Objectory and other methods.

http://en.wikipedia.org/wiki/Object_Management_Group
http://www.omg.org/spec/UML/
http://en.wikipedia.org/wiki/Object_Management_Group
http://www.omg.org/spec/UML/

UNCLASSIFIED
DSTO-TR-3039

211
UNCLASSIFIED

B.2. Developing an Object-Oriented Architecture

Because the object and class groupings are discretionary and abstract notions in software
engineering, the portrayal of an object-oriented system requires particular consideration,
for example to decide:

• what would be a good object-oriented architecture (i.e. SW structure or composition
and organisation of the SW piece-parts);

• what artefacts should be created; what properties or attributes are relevant;

• how and where the interfaces should be defined; and

• how should the properties and attributes be measured.

The UML graphical modelling language provides a standardised way and vernacular using
numerous complementary perspectives to visualise a systems architecture, including in
terms of its:

• activities,

• actors,

• business processes,

• logical components,

• database schemas,

• programming language statements, and

• SW components (some of which may be reused, or be reusable, or adhere to
particular design patterns).

It has been specifically crafted to cater for the entire SW life cycle, including visualising,
specifying, constructing, and documenting SW-intensive systems, from single user, single
process SW applications to multiple user, concurrent, distributed SW-intensive systems
(Booch et al. 1999).

UML is typically used to support faster and more cost-effective realisation of high quality,
complex custom SW applications. The HW inferred is typically the host platform
environment and other IT and telecommunications (i.e. ICT) infrastructure, such as
databases and/or application and network servers. These subsystems and components can
be readily procured off-the-shelf (OTS), either COTS or MOTS, and utilise commonly used
standards (either open or proprietary) in their HW and SW products. This facilitates ease of
selection to provide interface compatibility between piece-parts, with the required
functionality, to enable assembly of a SW-intensive system with little or no customisation of
the HW environment.

A plethora of vendor tools and methods supporting SW, systems and enterprise
architecture modelling has since been spawned based on UML and newer generation
object-oriented programming languages. This has led to the creation of a global user base of
object-oriented SW and object-oriented modelling expertise spanning both the commercial
and the Defence sectors. It has also stimulated interest in developing object-oriented
modelling concepts further for application to a broader set of systems problems in

UNCLASSIFIED
DSTO-TR-3039

212

UNCLASSIFIED

engineering and larger concerns affecting entire enterprises.

A sample of vendors and tools is provided in Appendix A to this report.

B.3. Object-Oriented Modelling with UML

Originally released in 1997, UML90 is a specification for graphical diagrams to support
object-oriented development methods such as Model Driven Architecture (MDA) and
Model Driven Development (MDD). Version 2.4.1, released in 2011, describes 14 different
basic diagram types, organised into two categories as follows (UML 2011a) (UML 2011b)
(Gomma 2011)91:

1. Structural diagrams – are used to define the static architecture. These comprise
static constructs such as “classes”, “objects”, and “components”, and the
relationships between these constructs, illustrated in the form of:

• Class diagrams (or structural diagrams) – these define the basic building
blocks of the model, describing the structure of a system in terms of the
system’s classes, their attributes, and the relationships among the classes;

• Object diagrams – show how instances of structural elements are related, i.e.
they show a complete or partial view of the structure of the modelled
system at a specific time;

• Profile diagrams – are used at the meta-model level to show stereotypes as
classes with the <<stereotype>> stereotype , and profiles as packages with
the <<profile>> stereotype;

• Package diagrams – are used to describe how a system is split into “logical
groupings” or packages by showing the dependencies among these
groupings;

• Composite Structure diagrams – are used to model the internal parts
contained within a class and the collaborations relationships between the
parts that the internal structure makes possible;

• Component diagrams – depict the components used to assemble and realise
a physical system, including their interfaces and dependencies, both in
“white box” and “black box” form;

• Deployment diagrams – show the mapping of the SW onto the HW and to
depict the HW topology in a real-world setting.

2. Behavioural diagrams – are used to represent the dynamic architecture. These
comprise behavioural constructs such as activities, states, timelines, and the
messages that are exchanged between different objects. These diagrams are used
to represent the interactions between various model elements and instantaneous
states over a specific time period. These are illustrated in the form of:

• Use case diagrams – depict the use cases and actors tied to detailed scenario
descriptions. They are used to reason about the desired behaviour of the

90 UML Version 1.4.2 was released as international standard ISO/IEC 19505 in 2005.
91 [online] URL: http://en.wikipedia.org/wiki/Unified_Modelling_Language

http://en.wikipedia.org/wiki/Unified_Modelling_Language

UNCLASSIFIED
DSTO-TR-3039

213
UNCLASSIFIED

system as seen by its end users and other stakeholders.

• Activity diagrams – similar to flow charts, these depict program flows and
complex business logic, including actions, decision points, branching,
merging and parallel processing;

• State Machine diagrams – depict the instant states of an object defined by a
class;

• Communication diagrams – show communication between objects at
runtime during a collaboration sequence;

• Sequence diagrams – show a sequence of messages passed between objects
on a vertical timeline;

• Timing diagrams – these specifically address modelling of performance.
They depict the amount of time allowed for a participant to receive events
and and switch between the states, and how long a participant can stay in a
specific state;

• Interaction Overview diagrams – provide an overview of how several
interactions work together to implement a system concern.

Definitions and specific examples of UML diagrams are provided in Appendix C to this
report.

The concept of design patterns is also well supported in UML. When viewed from the
outside, a design pattern is rendered as a parameterised collaboration, providing a set of
abstractions whose structure and behaviour work together to perform a useful function.

The collaboration’s parameters name the elements that a user of this pattern must bind.
When viewed from the inside, the design pattern is the collaboration, and is rendered in
terms of its structural and behavioural parts. The inside of the collaboration can be
modelled in UML using a set of class diagrams for the structural aspect, and a set of
interactions for the behavioural aspect. The collaboration’s parameters name certain of these
structural elements; when the design pattern is bound in a particular context, these
structural elements are instantiated using abstractions from that context (Booch 1999).

B.4. The 4 + 1 Architecture View using UML2

Using UML2 notation, the architecture of a SW system can be represented in graphical form
as a combination of:

• The structural elements and their interfaces that comprise or form the SW
system;

• The behaviour represented by collaboration among the structural elements; and

• The composition of structural and behavioural elements into larger subsystems,
where such compositions are guided by desired abilities (non-functional
requirements) such as usability, maintainability, performance, and security,
which apply across all the functional elements.

These are brought together in a 4 + 1 View Architecture Representation developed by

UNCLASSIFIED
DSTO-TR-3039

214

UNCLASSIFIED

Krutchens at Rational Software as illustrated in Figure B.1; each architecture view
highlighting information relevant to different stakeholders, masking the remaining
information that is not relevant, but preserving the integrity of all the information collated
within the SW architecture (Krutchen 1995), (Muchandi 2007).

Figure B.1. 4 + 1 View Architecture Representations.

The Logical View of the SW application architecture describes the kinds of objects that are
used to realise the system implementation It provides a functional decomposition
perspective of the Application, and is used to support functional analysis at different levels
of abstraction. The Logical View provides an object-oriented representation of the
application’s functionality in terms of its structural elements, key abstractions and
mechanisms, separation of concerns, and distribution of responsibilities as shown in Figure
B.2. The logical architecture can be represented at different levels of abstraction, and
progressively evolved through recursive iterations.

The SW application can be logically partitioned in two dimensions, either vertically into
significant functional areas (allocated to specific subsystems), or horizontally into layers of
different responsibility (e.g. service layer, data access layer, security layer, and API layer, as
may defined in a designated reference model). Here, structural elements are represented as
classes or objects and their relationships.

The Process View of the SW Application architecture provides a process decomposition
perspective. A process is a group of tasks that form an executable unit: a SW system is
partitioned into sets of tasks. Each task is a thread of control that executes with
collaboration among different structural elements (as represented in the Logical View). It is

Logical View

PHYSICALCONCEPTUAL

Implementation View

Deployment ViewProcess View

Class, Object, Package, Composite
Structure, State Machine diagrams

Use Case View

Performance
Scalability
Throughput

Functionality
Configuration
Management

Component diagrams

Sequence,
Communication,
Activity, Timing,

Interaction Overview
diagrams

Deployment diagrams

Use Case, Activity
diagrams

Scenarios

UNCLASSIFIED
DSTO-TR-3039

215
UNCLASSIFIED

therefore able to show the main abstractions from the Logical View executing over a thread
as an operation as shown in Figure B.3.

Figure B.2. Modelling the Logical View with UML2.

Figure B.3. Modelling the Process View with UML2.

 The Implementation View provides a subsystem decomposition perspective. This is a view
of the system’s architecture that encompasses the components used to assemble and realise
the actual physical system. This view supports configuration management of the SW
modules and their organisation in the development environment, where the SW is
packaged into components that can be developed and tested both separately and together
as an assembled system.

MODELING LOGICAL VIEW WITH UML2

Package
diagrams

Composite
structure
diagrams

Class
diagrams

Object
diagrams

State
diagrams

1. Start with class diagrams to model the
system.

2. Use package diagrams to logically group
diagrams.

Optional use
3. Object diagrams when relationships

between classes need to be explained
through instances.

4. State charts when internal states of a
specific class are to be explained,

5. Composite structures when parts of a
class and relationships between parts
are to be modelled,

MODELING PROCESS VIEW WITH UML2

Activity
diagrams

Interaction
overview
diagrams

Sequence
diagrams

Timing
diagrams

1. Use either Sequence or Communication
diagrams for modelling simple
interactions in use case realisations.

Optional use
2. Add Activity diagrams to realise

scenarios where business logic is a
sequence of actions and involves
branching and parallel processing.

3. Add timing diagrams when modelling for
performance.

4. For complex scenarios that can be
composed of other scenarios, use
interaction overview diagrams.

Scenario

Communication
diagrams

UNCLASSIFIED
DSTO-TR-3039

216

UNCLASSIFIED

The Deployment or Physical View depicts the mapping of the SW application onto the host
HW platform, and reveals the HW topology as processing nodes on which the SW is
executing. It therefore depicts the physical disposition of the artefacts in the real-world
setting.

The Use Case View brings together the other four views in the context of a scenario, and
describes the behaviour of the system as seen by its end users and other stakeholders in the
scenario.

B.5. Systems Modelling Language (SysML) – Origins

In simple terms, SE92 entails the specification, design, implementation and verification of
engineering solutions to systems problems, where the solution is realised as a technical
system. The solution implementation may or may not contain significant HW content, and
may often require HW customisation as well as SW development.

While the UML standard purports to support the engineering development of entire
systems, it is essentially SW-centric, supporting various computer-aided SW engineering
(CASE) methodologies. Notably, the language constructs do not support many of the
broader notions in model-based SE including system requirements; system verification and
validation; engineering and project management, and other underlying management
disciplines, including configuration management, quality management, security
management, and intellectual property management.

Similarly, the SW language constructs do not support the subordinate disciplines of
electrical/electronic HW engineering and mechanical engineering with regard to
specialised design, prototyping, construction, design verification, environmental
qualification, production manufacturing, and logistics support; all of which are relevant to
underpin notions of model-based SE.

At the time UML was being developed, the advantages of using a standard modelling
language to tackle complex SW engineering problems were also visible to key members in
the broader international SE community. This prompted the International Council on
Systems Engineering (INCOSE) to approach OMG to propose a joint development to define
a general purpose modelling language based on UML, but dedicated to SE, supporting the
notion of “MBSE”93.

In 2001, INCOSE in collaboration with OMG initiated the development of an OMG
specification for a customised version of UML specifically for MBSE usage, changing some
of the concepts and deleting superfluous constructs, together with adding some SE specific
UML extensions. Widespread contributions to the specification and implementation of
SysML were received from INCOSE, international IT and modelling tool vendors, Defence
industry, commercial engineering organisations, and academia. These included Motorola,
Northrop Grumman Corporation, Telelogic AB, Artisan Software Tools, IBM, The Boeing
Company, Lockheed Martin Corporation, BAE SYSTEMS, Ratheon, THALES, Israel Aircraft
Industries, National Aeronautics and Space Administration (NASA), and Georgia Institute
of Technology.

92 A detailed examination of SE processes is provided in Section 5 – Systems Engineering Concepts.
93 [online] URL: http://en.wikipedia.org/wiki/Systems_Modeling_Language; URL: http://www.omgsysml.org/

http://en.wikipedia.org/wiki/Systems_Modeling_Language
http://www.omgsysml.org/

UNCLASSIFIED
DSTO-TR-3039

217
UNCLASSIFIED

The resultant Systems Modelling Language implementation, OMG SysML94, was finally
released in 2007. The current version of OMG SysML is v 1.3, which was released in June,
2012, based on UML 2.3, released in May 2012 (SysML 2012) . The relationship between
UML and SysML is illustrated in Figure B.4. Differences in diagrammatic support between
the two standards are shown in Figure B.595 (Hause 2006).

Figure B.4. Relationship between UML and SysML Language Constructs.

Figure B.5. Diagram Support for UML2 vs. SysML.

Because OMG SysML is specified as a profile of UML, which has come the defacto industry
standard for modelling SW-intensive systems, OMG SysML has been implemented as a
plug-in for a number of UML modelling tools. A number of other IT vendors have also

94 Two iterations of the SysML specification were released for implementation, known respectively as SysML
and OMG SysML. The first iteration of SysML was made available as an open source specification. This was
later refined and re-released as OMG SysML to differentiate between the two versions. OMG SysML is a
trademark owned by OMG. The term SysML is used interchangeably with OMG SysML in this report unless
specifically stated otherwise.
95 [online] URL: http://www.sysml.org

SysML
diagram

Structure
diagram

Behaviour
diagram

Requirement
diagram

Activity
diagram

Parametric
diagram

Block
definition
diagram

Internal
block

diagram

Package
diagram

Use case
diagram

State
machine
diagram

Sequence
diagram

Same as UML2

Modified from UML2

New diagram type

not
required by

SysML

UML2
SysML

UML
reused by

SysML

SysML
extensions

to UML

http://www.sysml.org/

UNCLASSIFIED
DSTO-TR-3039

218

UNCLASSIFIED

announced plans for updating their modelling tools to support SysML96. A wide UML user
base with broad vendor tool support is therefore already established to facilitate ready
uptake of this latest development supporting notions of MBSE.

Similarly, because OMG SysML is a derivative of UML 2, it was crafted to support exchange
of SysML models using the OMG developed XML Metadata Interchange (XMI) standard,
also used for UML model exchange.97
OMG is also progressing development of the new ISO 10303/AP-233 data exchange format
standard (known as STEP, Standard for the Exchange of Product model data) for
exchanging and sharing information between other SE applications and tools. The intent of
AP-233 is to support the entire system development cycle ranging from requirements
definition to system verification and validation. Different application areas range from
engineering analysis, algorithm design, planning tools, testing tools, software design,
mechanical computer-aided design (CAD) and electrical computer aided engineering (CAE)
(Hause 2006), (Friedenthal 2008).

STEP provides a neutral computer interpretable representation of product data throughout
the life cycle of a product, independent of any particular system. STEP is actually a suite of
international standards built around an integrated architecture of domain specific
application protocols (AP) and generic integrated resources. The AP’s break STEP into
manageable and comprehensible "chunks" that can be more readily implemented.
However, the language constructs between AP-233 and SySML are not entirely aligned, as
shown in Figure B.698, particularly relating to engineering management concerns.

Figure B.6. SysML/AP-233 Data Overlaps.

96 Lists of tool vendors who support, or have announced plans to support SysML and OMG SysML can be
found on the SysML Forum and OMG SysML Forum websites [online] URL: http://www.sysmlforum.com/and
URL: http://www.omgsysml.org/ respectively.
97 Different modelling tool vendors have interpreted the XMI standard differently. The resulting
incompatibilities make it difficult to pass models from one tool vendor to another using XMI.
98 [online] URL: http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-
ap233:mapping_between_sysml_and_ap233).

lifecycle stages
eng config mgt

organisations

approval, security status

change mgt
requirements mgt

property-based
requirements

issue mgt

risk mgt

AP233 SysML
classification

system structures/ blocks
V&V

views & viewpoints

activities allocations
text-based requirements

model organisation

Interfaces/ports & flows

function models

state machines

property & units

parametrics

diagrams

schedule

http://www.sysmlforum.com/
http://www.omgsysml.org/
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-ap233:mapping_between_sysml_and_ap233
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-ap233:mapping_between_sysml_and_ap233

UNCLASSIFIED
DSTO-TR-3039

219
UNCLASSIFIED

A number of specific MBSE methodologies are now being developed using the respective
MBSE tools and systems modelling languages.

B.6. Systems Modelling Language (SysML) – Concepts

The primary goal set by INCOSE for SysML was to define:

“a standard modelling language for systems engineering to analyse, specify, design, and verify
complex systems, is intended to enhance system quality, improve improve the ability to exchange

systems engineering information amongst tools, and help bridge the semantic gap between systems,
software, and other engineering disciplines”.

This MBSE approach sought to provide the ability to model a much wider range of systems,
encompassing HW, SW, information processes, personnel, and facilities, not just SW-
intensive systems. It is purported to support SE process activities across the entire system
life cycle including specification, analysis, design, verification and validation activities for a
broad range of systems and SoS types. However, the language constructs thus far still focus
only on driving the technology solution. They do not explicitly include non-technical SE
process considerations such as engineering management and project management, which
focus on SE process activity management, and cost, schedule and risk reporting and
management.

Since SysML removes many of the SW-centric constructs, only re-using seven of UML 2’s
fourteen diagrams, the overall language is smaller than UML. With fewer overall constructs
and fewer diagrams, SysML aims to be easier to learn and apply compared with UML. With
fewer restrictions than UML, the semantics are also aimed to be more expressive and
flexible. Also important, these language constructs have been deliberately aligned with
IEEE-1471-2000 recommended practice for architectural descriptions of SW-intensive
systems and ISO/IEC 42010-2010 Systems and Software Engineering – Architecture
Description to promote semantic consistency.

SysML has overcome some significant limitations in UML providing important additional
functionality supporting SE notions of process. Two new diagram types have been added, a
requirements diagram and a parametrics diagram. Expanded ability for allocation tables
allows requirements allocation, functional allocation, and structural allocation to be derived
dynamically from SysML allocation relationships. The flexible tabular formation of the
allocation tables facilitates automated traceability tracking, and hence automated
verification and validation tracking, and gap analysis99.

The requirements diagram supports the broader notion of requirements engineering, a sub-
discipline with SE. In particular, it aims to provide for efficient capture of functional,
performance and interface requirements, whereas UML constrains requirement articulation
within the context of the particular set of use cases, which typically only describe a limited
number of high-level functions.

The parametric diagram is used to explicitly define performance and quantitative
constraints to facilitate performance analysis and quantitative analysis, whereas UML
language constructs do not readily support these notions.

99 Detailed insight into the specific features of the SysML modelling language and its application to MBSE is
provided in (Friedenthal et al. 2008).

UNCLASSIFIED
DSTO-TR-3039

220

UNCLASSIFIED

Another significant change from UML is the introduction of the “block” as an element, to be
used in lieu of an “object” or “class”. The “block” is conceptually a “black box”
representation of a system piece-part. The “block” concept better represents the expanded
SE notions of HW, SW, data, processes, personnel and facilities. Blocks can be components,
subsystems or systems, thus allowing a system to be portrayed as an ordered composite of
building blocks or “black boxes”, supporting the SE notion of system hierarchy and
recursive decomposition.

Similarly, the concept of a “flow port” has been introduced in SysML to describe what can
go in or out of a block at its interfaces, whether it be data, energy, or physical matter, thus
providing the ability to explicitly portray interfaces with a commensurate scale of
abstraction.

UNCLASSIFIED
DSTO-TR-3039

221
UNCLASSIFIED

Appendix C: UML and SysML Common Terms and
Diagrams

C.1. Object-Oriented Problem Solving – Overview

The construction of a model is at the heart of object-oriented problem solving. The model
serves to abstract the essential details of the underlying problem from its usually very
complex real world environment. Thus in modelling terms, the model is the abstraction of
the problem, and the domain is the actual world from which the problem comes.

UML enables all stakeholders, from business analysts to programmers, to communicate
about a SW design using a common vocabulary; the more complex the system, the greater
the importance of communication among everyone involved in creating and deploying the
resultant system implementation.

UML and SysML diagrams can be used in two ways:

• To specify models from which to construct an executable system (forward
engineering),

• To reconstruct models from parts of an executable system (reverse engineering).

Two different approaches can be adopted to model a system at different levels of
abstraction:

• Presenting diagrams with different level of detail against the same model, or

• By creating models at different levels of abstraction with diagrams that trace
from one model to another.

C.2. Important Terms and Concepts

An introduction to object-oriented modelling concepts and UML basic terms is provided in
a series of IBM developerWorks e-zines, collated and published as a single book by IBM
Press (Quatrani & Palistrat 2006). To use UML as a modelling language, it is essential to
have a deep understanding of the terms and concepts as can be found in texts and tool
vendor tutorials, for example, in (Booch et al. 1999), (Bittner & Spence 2002), (Weilkiens
2006), (Booch et al. 2007), (Sparx 2007a), (Sparx 2007b), (Friedenthal 2008).

In the context of UML, a “system” is a collection of subsystems organised to accomplish a
purpose – described by a set of models, possibly from different viewpoints. A “subsystem”
is a grouping of elements, of which some constitute the specification of behaviour offered
by the other contained elements.

A UML “model” is a semantically closed abstraction of a system such that it represents a
complete and self-consistent simplification of reality, created in order to better understand
the system. The “system” is the “thing” which is the implemented outcome100; which can be
viewed from different perspectives by different models, with those views visually

100 Also sometimes called “target system”.

UNCLASSIFIED
DSTO-TR-3039

222

UNCLASSIFIED

presented in the form of diagrams. The diagrams are graphical projections into the elements
that make up a system.

An object-oriented model composed in UML consists of “objects” that interact by sending
each other “messages”. Objects have things they know (“attributes”), and things they do
(“behaviours” or “operations”), where the value of an object’s attributes determines its
“state”. A “class” wraps attributes (data) and behaviours (methods or functions) into a
single entity. Objects are “instances” of classes. A “role” is a behaviour of an entity
participating in a particular context.

A “Class Diagram” gives an overview of a system by showing its classes, interfaces, and
collaborations, and the relationships between them; they show what interacts, but not what
happens when they do interact.

The “package” in UML is a general purpose mechanism for organising logically related
modelling elements into groups. Importantly, it provides the ability to scale up and provide
a higher degree of abstraction whilst maintaining the integrity of the relationships between
the elements within the package. It is particularly useful for visualising, specifying,
constructing and documenting large systems involves manipulating potentially large
numbers of classes, interfaces, components, nodes, and diagrams (Booch et al. 1999).

An “interface” is a named collection of operations that are used to specify a service of a
class or component. A class may realise many interfaces, so each instance of that class must
therefore support all those interfaces. However, an interface may only present one or more
of its interfaces as being relevant in a particular context. Each interface represents a role that
the object plays, where the role names a behaviour of an entity participating in a particular
context.

A “component” is a module of code, where the component diagram shows the physical
instantiation of the class diagrams. The physical HW is made up of “nodes”, where each
component belongs on a node. Deployment diagrams show the physical configurations of
HW and SW.

A “use case” is a summary of “scenarios” for a single task or goal, where a “scenario” is a
description of what happens if there is an interaction between the system and the external
environment. An “actor” is “who” or “what” initiates the events involved in that task, i.e.
they are roles that people or objects play. The connection between an actor and a use case is
known as a “communication association”.

The “Use Case Diagram” is a collection of actors, use cases and their communications. It
describes what a system does from the standpoint of an external observer; the emphasis on
“what” the system does rather than “how”. Use case diagrams are prominent in UML
modelling where they can be useful to determine new requirements during analysis and
design activity, as well as suggesting suitable test cases for the scenarios for V&V activity.

The “stereotype” is also an important concept in UML modelling where a stereotype
defines how a model element may be extended, and enables the use of platform or domain
specific terminology or notation in lieu of, or in addition to, the ones used for an extended
meta-class.

UNCLASSIFIED
DSTO-TR-3039

223
UNCLASSIFIED

C.3. Tool User Interface

Examples of a tool user interface to construct and view a model of a banking system from
different diagrammatic perspectives are shown in Figures C.1 and C.2. The model tree view
of Figure C.2 provides an overview of the project, organised by the relationships between
individual diagrams. The diagram tree sorts the contents of the model by diagram type to
facilitate data analysis, depending on the nature of the enquiry. A dialog box to enter in text
-based requirements and to edit properties is shown in Figure C.3.

Figure C.1. Example of UML Tool User Interface showing the Model Tree and Diagram Tree
Perspectives

[online] URL: http://www.altova.com/umodel/visual-modeling.html).

http://www.altova.com/umodel/visual-modeling.html

UNCLASSIFIED
DSTO-TR-3039

224

UNCLASSIFIED

Figure C.2. Example Tool User Interface to the Totality of the UML Modelling Environment

([online] URL: http://www.embarcadero.com/products/er-studio)).

http://www.embarcadero.com/products/er-studio

UNCLASSIFIED
DSTO-TR-3039

225
UNCLASSIFIED

Figure C.3. Example of SysML Tool User Interface to enter or edit Requirement Properties
([online] URL: http://www.visual-
paradigm.com/support/documents/vpumluserguide/1281/158/6516_creatingrequ.html)

.

http://www.visual-paradigm.com/support/documents/vpumluserguide/1281/158/6516_creatingrequ.html
http://www.visual-paradigm.com/support/documents/vpumluserguide/1281/158/6516_creatingrequ.html

UNCLASSIFIED
DSTO-TR-3039

226

UNCLASSIFIED

C.4. UML Diagrams

C.4.1 UML2 Object and Class and Diagrams

Examples of different types of UML2 modelling diagrams are provided in Figures C.4. to
C15.

The Class Diagram provides an overview of the target system by describing the objects and
classes inside the system, and the relationships between them. It can be used in different
ways, for example, from modelling domain-specific data structures to the detailed design of
the target system. The class model can be reused in the Interaction Diagram for modelling
the detailed design of the dynamic behaviour.

A simple example of a Class Diagram is shown in Figure C.4 (a). with the Object Diagram
showing an instantiation of the class Department in Figure C.4(b). The Object Diagram
shows a snapshot of instances of things in Class Diagrams. Similar to Class Diagrams,
Object Diagrams show the static design of the system, but from the real or prototypical
view.

Class diagram – University Department

 (b) Object Diagram – Maths Department

Figure C.4. Example of a UML2 Class Diagram and associated Object Diagram

([online] URL: http://edn.embarcadero.com).

http://edn.embarcadero.com/

UNCLASSIFIED
DSTO-TR-3039

227
UNCLASSIFIED

C.4.2 UML2 Package Diagram

The Package Diagram of Figure C.5 shows the arrangement and organisation of model
elements in larger scale projects, both in terms of the structure and the dependencies
between lower-tier sub-systems or modules.

Figure C.5. Example of a UML2 Package Diagram

([online] URL: http://www.uml-diagrams.org/package-diagrams-examples.htm).

http://www.uml-diagrams.org/package-diagrams-examples.htm

UNCLASSIFIED
DSTO-TR-3039

228

UNCLASSIFIED

C.4.3 UML2 State Chart and Activity Diagram

Examples of a State Chart Diagram and an Activity Diagram associated with using an
Automatic Teller Machine (ATM) are shown in Figures C.6 and C.7. A State Chart or State
Machine Diagram can show the history of an entity, where the behaviour is not only
dependent on its input, but it is also dependent on its previous state. The State Machine
Diagram can also show the different states of an entity, and how the entity might respond
to various events by changing from one state to another.

Figure C.6. Example of a UML2 State Chart showing ATM Operation

([online] URL: http://edn.embarcadero.com).

http://edn.embarcadero.com/

UNCLASSIFIED
DSTO-TR-3039

229
UNCLASSIFIED

The Activity Diagram of Figure C.7 is used to describe the flow of control of the target
system, incorporating business rules and operations.

Figure C.7. Example of a UML2 Activity Diagram showing ATM Operation

([online] URL: http://edn.embarcadero.com).

http://edn.embarcadero.com/

UNCLASSIFIED
DSTO-TR-3039

230

UNCLASSIFIED

C.4.4 UML2 Sequence Diagram

The Sequence Diagram, as shown in Figure C.8, models the collaboration of objects based
on a time sequence. It shows how objects interact with others in a particular scenario of a
use case.

Figure C.8. Example of a UML2 Sequence Diagram showing part of a Leisure Complex Booking
System

([online] URL: http://www.visual-paradigm.com/VPGallery/diagrams/Sequence.html).

http://www.visual-paradigm.com/VPGallery/diagrams/Sequence.html

UNCLASSIFIED
DSTO-TR-3039

231
UNCLASSIFIED

C.4.5 UML2 Communication Diagram

Similar to a Sequence Diagram, a Communication Diagram, as shown in Figure C.9 is also
used to model the dynamic behaviour of the use case. However, it focusses more on
showing the collaboration of objects rather than the time sequence.

Figure C.9. Example of a UML2 Communication Diagram, part of the Leisure Centre Booking
System

([online] URL: http://www.visual-paradigm.com/VPGallery/diagrams/Collaboration.html).

http://www.visual-paradigm.com/VPGallery/diagrams/Collaboration.html

UNCLASSIFIED
DSTO-TR-3039

232

UNCLASSIFIED

C.4.6 UML2 Timing Diagram

The Timing Diagram, as shown in Figure C.10, shows the behaviour of objects in a given
period of time. The Timing Diagram is a special form of Sequence Diagram, but the axes are
reversed so that time increased from left to right in the diagram, and lifelines are shown in
separate compartments arranged vertically.

Figure C.10. Example of a UML2 Timing Diagram, part of a Safety Inspection System

([online] URL: http://www.visual-paradigm.com/VPGallery/diagrams/TimingDiagram.html).

http://www.visual-paradigm.com/VPGallery/diagrams/TimingDiagram.html

UNCLASSIFIED
DSTO-TR-3039

233
UNCLASSIFIED

C.4.7 UML2 Interaction Overview Diagram

The Interaction Overview Diagram, as shown in Figure C.11, provides an overview of the
flow of controls of the interactions. It is a variant of the Activity Diagram where the nodes
are the interactions or interaction occurrences. It describes interactions where messages and
lifelines are hidden.

Figure C.11. Example of a UML2 Interaction Diagram, part of a Safety Inspection System
([online] URL: http://www.visual-
paradigm.com/VPGallery/diagrams/InteractionOverviewDiagram.html).

http://www.visual-paradigm.com/VPGallery/diagrams/InteractionOverviewDiagram.html
http://www.visual-paradigm.com/VPGallery/diagrams/InteractionOverviewDiagram.html

UNCLASSIFIED
DSTO-TR-3039

234

UNCLASSIFIED

C.4.8 UML2 Component Diagram

The Component Diagram, as shown in Figure C.12, assists to model the physical aspects of
an object-oriented SW system. It includes the SW architectures of the SW components and
the dependencies between them (both source code and run-time components).

Figure C.12. Example of a UML2 Component Diagram, part of a Safety Inspection System
([online URL: http://www.visual-paradigm.com/VPGallery/diagrams/Component.html).

http://www.visual-paradigm.com/VPGallery/diagrams/Component.html

UNCLASSIFIED
DSTO-TR-3039

235
UNCLASSIFIED

C.4.9 UML2 Deployment Diagram

The Deployment Diagram, as shown in Figure C.13, is also used to model the physical
aspect of an object-oriented SW system, where it provides a static view of the run-time
configuration, and provides visualisation of the distribution or mapping of the SW
components onto the respective HW configurations that host the SW.

Figure C.13. Example of a UML2 Deployment Diagram

([online] URL: http://www.visual-paradigm.com/VPGallery/index.html)

http://www.visual-paradigm.com/VPGallery/index.html

UNCLASSIFIED
DSTO-TR-3039

236

UNCLASSIFIED

C.4.10 UML2 Composite Structure Diagram

The Composite Structure Diagram, as shown in Figure C.14, shows the internal structure,
including parts and connectors of a structured classifier or collaboration.

Figure C.14. Example of a UML2 Composite Diagram of a Safety Inspection System

([online] URL: http://www.visual-
paradigm.com/VPGallery/diagrams/CompositeStructureDiagram.html).

http://www.visual-paradigm.com/VPGallery/diagrams/CompositeStructureDiagram.html
http://www.visual-paradigm.com/VPGallery/diagrams/CompositeStructureDiagram.html

UNCLASSIFIED
DSTO-TR-3039

237
UNCLASSIFIED

C.4.11 UML2 Use Case Diagrams

Use Case Diagrams are created for describing the behaviour of the target system from an
external point of view as shown in Figure C.15.

Figure C.15. Example of a UML2 Use Case Diagram

 ([online] URL: http://www.visual-paradigm.com/VPGallery/diagrams/UseCase.html).

C.5. SysML Diagrams

C.5.1 SysML System Block Definition Diagram

Shortcomings in the use of the UML modelling languages, and changes between the UML 2
and SysML modelling languages to overcome these shortfalls are described in (Hause 2006).
Similar to modelling in UML, a deep understanding of the concepts and terms in SysML is
prerequisite to modelling using SysML or the UPDM language profile, as can be found in
numerous text books and tool vendor tutorials including (Weilkiens 2006), (Friedenthal et
al. 2006), (Friedenthal et al. 2008), (Carson et al. 2009) and (IBM UPDM 2012).

http://www.visual-paradigm.com/VPGallery/diagrams/UseCase.html

UNCLASSIFIED
DSTO-TR-3039

238

UNCLASSIFIED

Additional diagrams offered by the SysML language over and above UML include
Requirements Diagrams, System Block Definition Diagrams and Parametric Diagrams, as
shown in the examples of Figures C.16 to C.21.

SysML uses the concepts of a block to specify hierarchies and interconnections within a
system design as shown in Figure C.16. It can also describe relationships between blocks
such as composition, association and specialisation.

Figure C.16. Example of a SysML System Block Definition Diagram
([online] URL: http://www.altova.com/umodel/sysml.html#BlockDef).

http://www.altova.com/umodel/sysml.html#BlockDef

UNCLASSIFIED
DSTO-TR-3039

239
UNCLASSIFIED

C.5.2 SysML Requirements Diagram

The Requirements Diagram, as shown in Figure C.17, describes the functional, performance
and interface requirements, including physical properties and constraints, typically not
captured in the UML Use Case Diagrams.

Figure C.17. Example of a SysML Requirements Diagram

 ([online] URL: http://www.altova.com/umodel/sysml.html#Requirements).

http://www.altova.com/umodel/sysml.html#Requirements

UNCLASSIFIED
DSTO-TR-3039

240

UNCLASSIFIED

C.5.3 SysML Package Diagram

The SysML Package Diagram as shown in Figure C.18 is similar to the UML Package
Diagram in that it shows grouping of elements within a hierarchical structure.

Figure C.18. Example of a SysML Package Diagram

([online] URL: http://www.altova.com/umodel/sysml.html#Package).

http://www.altova.com/umodel/sysml.html#Package

UNCLASSIFIED
DSTO-TR-3039

241
UNCLASSIFIED

C.5.4 SysML Internal Block Diagram

The SysML Internal Block Diagram, as shown in Figure C.19, shows the internal structure of
a block, together with its properties and connectors.

Figure C.19. Example of a SysML Internal Block Diagram
([online] URL: http://www.altova.com/images/shots/UML_SysMLInternalBlock6.gif).

http://www.altova.com/images/shots/UML_SysMLInternalBlock6.gif

UNCLASSIFIED
DSTO-TR-3039

242

UNCLASSIFIED

C.5.5 SysML Parametric Diagram

The SysML Parametric Diagram, as shown in Figure C.20, provides a means to capture
system constraints such as performance, reliability, and physical properties.

Figure C.20. Example of a SysML Parametric Diagram

 ([online] URL: http://www.altova.com/umodel/sysml.html#Parametric).

http://www.altova.com/umodel/sysml.html#Parametric

UNCLASSIFIED
DSTO-TR-3039

243
UNCLASSIFIED

C.5.6 SysML Use Case Diagrams

The SysML Use Case Diagram, as shown in Figure C.21, provide the same features as the
UML Use Case Diagram, but adds an allocation relationship element.

Figure C.21. Example of a SysML Use Case Diagram

([online] URL: http://www.altova.com/umodel/sysml.html#UseCase).

http://www.altova.com/umodel/sysml.html#UseCase

UNCLASSIFIED
DSTO-TR-3039

244

UNCLASSIFIED

Appendix D: Zachman Framework for Enterprise
Architecture Overview

D.1. Introduction

The usefulness of a logical construct or architecture for defining and controlling the
interfaces and integration of system components systematically across an entire enterprise
was recognised as early as the 1980’s, when Zachman released his seminal paper on a
framework for information systems architecture, known as The Zachman Framework for
Enterprise Architecture (ZF) (Hue 2008), (Zachman 1987)101. Notably, the ZF is tool, method
and process agnostic, instead, describing a number of different lenses or filters to view
different aspects of the enterprise from different stakeholder perspectives.

D.2. Zachman Framework Reference Model

The mainstay of the ZF is the ZF reference model as shown in Figure D.1, which prescribes
a composite of different views of an enterprise, reflecting different stakeholder’s
perspectives (Zachman 2003), (Frankel et al. 2003), (VA 1992).

Figure D.1. Zachman Framework Reference Model (VA 1992)

101 Zachman was employed by IBM at the time, and his seminal paper was published in the IBM Systems
Journal (Zachman 1987).

Contextual

Conceptual

Logical

Physical

As Built

Functioning

Contextual

Conceptual

Logical

Physical

As Built

Functioning

Why

Why

Who

Who

When

When

Where

Where

What

What

How

How

UNCLASSIFIED
DSTO-TR-3039

245
UNCLASSIFIED

The reference model provides an ontology for classifying the basic elements in the
enterprise architecture, which collectively collates to become a form of knowledge
representation about the enterprise. In the ZF, different analytical techniques can be
employed to address the specific questions asked of the enterprise associated with each cell
in the reference model. In this reference model, the columns have no order; each column
has a simple basic model; the basic model of each column is unique (most are independent);
each row represents a distinct view; and each cell is unique.

Different methods of enquiry, analytical techniques and tools can be used to address the
enterprise-wide problem space, partitioned into specific focus areas as represented by each
cell in the reference model. Different textual and graphical diagrammatic representations
are used to record the output or outcomes of the activities as appropriate to the respective
topics. However, the focus of the framework is based around the type of questions to be
asked, rather than the means by which the insights and answers might be garnered.

In this case, the questions supported by the framework include who, what, when, where,
why, and how in the context of different stakeholders views of the enterprise as follows:

• Planner’s View: Scope

o Focus: external requirements and drivers.

o Purpose: to ensure designated business goals, objectives and performance
measures are aligned; identify and align high-level business functions; high-
level data classes related to each function; stakeholders related to each
function; cycles and events related to each function.

o Utilises business functional modelling.

• Owner’s View: Enterprise Model

o Focus: Business function allocation and elimination of function overlap and
ambiguity.

o Purpose: to ensure designated policies, procedures and standards associated
with business processes are aligned; identify and align the respective
business processes; roles and responsibilities, and locations associated with
each process; events for each process and sequencing of integration and
process improvements.

o Utilises business process models.

• Designer’s View: System Model

o Focus: requirements definition and project management.

o Purpose: to ensure designated policies, standards and procedures associated
with a business rule model are aligned; provide a logical representation of
information systems and their relationships; logical data models of data and
data relationships underlying designated information; logical representation
of access privileges constrained by roles and responsibilities; logical
representation of the distributed system architecture for designated
locations; and logical events and their triggered responses are constrained
by business events and their responses.

o Utilises logical models.

UNCLASSIFIED
DSTO-TR-3039

246

UNCLASSIFIED

• Builder’s View: Technology Model

o Focus: Solution definition, development, and management.

o Purpose: to ensure designated business rules are constrained by information
system standards; provide specifications of applications that operate on
particular technology platforms; database management systems type
requirements which are constrained by logical data models; specification of
the network.

o Utilises physical models.

• Integrator’s View: As Built

o Focus: as built configuration management during system deployment.

o Purpose: to ensure designated business rules are constrained by specific
technology standards; SW applications coded to operate on specific
technology platforms; data definitions constrained by physical data models;
access privileges coded to control access to specific platforms and
technologies; network devices configured to conform to node specifications;
timing definitions coded to sequence activities on specific platforms and
technologies.

o Scrutinises real-world implementation.

• User’s View: Functioning Enterprise

o Focus: functioning enterprise, operations management, and evaluation.

o Purpose: to ensure operating characteristics of specific technologies are
constrained by standards; verify computer instructions are functioning
correctly; verify data values are stored correctly in databases; verify
designated personnel and key stakeholders are working well within their
roles and responsibilities; verify the network is sending and receiving
messages appropriately; and verify timing and sequencing of activities is
correct.

o Scrutinises real-world implementation (VA 1992), (Sowa & Zachman 1992).

A methodology for the practical implementation of the ZF to analyse the business
within an enterprise using a commercial tool suite was developed by Rational Software
in 2001, based on the capabilities of the Rational tool suite. The mapping of enterprise
formalisms to ZF cells is shown in Figure D.2, with the associated mapping of RUP
formalisms aligned to ZF cells is shown in Figure D.3 (de Villiers 2001). An example of
UML tool support provided for the ZF is provided in Figure D.4.

UNCLASSIFIED
DSTO-TR-3039

247
UNCLASSIFIED

 Data

(What)

Function

(How)

Network

(Where)

People

(Who)

Time

(When)

Motivation

(Why)

Scope View List of
things

important to
the

enterprise.

List of
processes

the
enterprise
performs.

List of locations
where the
enterprise
operates.

List of
organisational

units.

List of
business

events/cycles.

List of
business

objectives.

Owner’s
View

Entity
relationship

diagram.

Business
process
model

(physical
data flow
diagram).

Logistics
network (nodes

and links).

Organisational
chart with
roles, skill

sets, security
issues.

Business
master

schedule.

Business
rules.

Designer’s
View

Data model
(converged

entities,
fully

normalised).

Essential
data flow
diagram,

application
architecture.

Distributed
system

architecture.

Human
interface

architecture
(roles, data,

access).

Dependency
diagram,
entire life

history
(process

structures).

Business
rule model.

Builder’s
View

Data
architecture
(tables and
columns)
map to

legacy data.

System
design:

structure
chart,

pseudo
code.

System
architecture
(hardware,

software types).

User interface
(how the

system will
behave),
security
design.

“Control
flow”

diagram
(control

structures).

Business
rule design.

Detailed
View

Data design
(de-

normalised)
physical
storage
design.

Detailed
program
design.

Network
architecture.

Screens,
security

architecture
(who can see

what?).

Timing
definitions.

Rule
specification
in program

logic.

Operational
View

Converted
data.

Executable
programs.

Communication
facilities.

Trained
people.

Business
events.

Enforced
rules.

Figure D.2. Mapping of Enterprise Formalisms to the Zachman Framework (de Villiers 2001).

UNCLASSIFIED
DSTO-TR-3039

248

UNCLASSIFIED

Figure D.3. Mapping of RUP Formalisms to the Zachman Framework (de Villiers 2001).

UNCLASSIFIED
DSTO-TR-3039

249
UNCLASSIFIED

Figure D.4. Example of Zachman Framework UML Tool Support provided by Sparx Systems
Enterprise Architect Tool
([online] URL: http://www.sparxsystems.com.au/products/mdg/tech/zachman/index.html).

http://www.sparxsystems.com.au/products/mdg/tech/zachman/index.html

UNCLASSIFIED
DSTO-TR-3039

250

UNCLASSIFIED

Appendix E: Rational Unified Process for Systems
Engineering (RUP SE) Overview

E.1. Introduction

The Rational Unified Process for Systems Engineering (RUP SE) was released by IBM in
2003 as an extension of the RUP to incorporate notions of systems engineering (Cantor
2003a), (Cantor 2003b), (Cantor 2003c). The RUP SE embraces life cycle stages in a similar
manner to the RUP, but expresses them in a modelling context as system model levels
rather than within a process framework as for RUP. It similarly uses notions of “Black box”
and “White box” to reflect different decomposition perspectives, but has a much broader
perspective than SW implementation, introducing different viewpoints to incorporate and
represent different stakeholder perspectives.

E.2. RUP SE Representations

The RUP SE embraces the SE notion of system decomposition to provide a basis for
separating different concerns, thus allowing different teams of people to contribute
different reasoning about the system, without compromising the integrity of the
interdependencies of the different perspectives. It also introduces additional vernacular to
assist framing different perspectives.

The SE RUP supports system decomposition from two different perspectives:

• Logical decomposition into further logical systems, subsystems and components;
and

• Physical system components that make up the delivered system.

The RUP SE system model has two dimensions:

• Viewpoint dimension: the context for addressing a limited set of quality concerns;
and

• Model level dimension: comprising a set of UML diagrams that capture a specific
level of design detail.

Here the RUP SE system model is a representation of the system including a set of views
that capture all areas of concern, levels of specificity, and model entity relationships,
described using UML graphical modelling techniques. Different levels of the model are
constructed in terms of the degree of abstraction employed, either to hide detail, or to be
more specific and expose more detail, thus presenting different viewpoints.

A View of the model shows entities that a relevant from a particular viewpoint: thus the
intersection of viewpoint and level of model abstraction will reveal views of the model
relevant to that viewpoint or concern at that level of abstraction (Cantor 2003a).

The RUP SE framework therefore prescribes various model viewpoints as described in
Table E.1.

UNCLASSIFIED
DSTO-TR-3039

251
UNCLASSIFIED

Table E.1. RUP SE System Model Viewpoints (Cantor 2003a).

Viewpoint Expresses Concern

Worker Roles and responsibilities of system
workers

• Worker activities

• Automation decisions

• Human/system interaction

• Human performance
specifications

Logical Logical decomposition of the
system as a coherent set of UML
subsystems that collaborate to
provide the desired behaviour.

• Adequate functionality to
realise use cases

• Extensibility and
maintainability

• Internal Reuse

• Good cohesion and
connectivity

Physical Physical decomposition of the
system and specification of the
physical components

• Adequate physical
characteristics to host
functionality and meet
supplementary
requirements

Information Information processed and stored
by the system

• Sufficient capacity to store
data

• Sufficient throughput to
provide timely access to the
data

Process Threads of control which carry out
the computation elements

• Sufficient partitioning of
processing to support
currency and reliability
needs.

Additional domain-specific viewpoints can be included as relevant to provide additional
direction for system implementation, including but not limited to safety, security,
mechanical, environmental considerations. These viewpoints represent different areas of
concern in the system architecture that must be addressed during implementation.

In addition to the viewpoints, different levels of levels of specification within the model are
accommodated, akin to the SE notion of life cycle stages, to reflect the evolution of the
design from a general, abstract specification initially, to more detailed specifications as the
design and implementation is progressed towards the final physical realisation. The RUP
SE model levels are as described in Table E.2.

UNCLASSIFIED
DSTO-TR-3039

252

UNCLASSIFIED

Table E.2. RUP SE Model Levels (Cantor 2003a).

Model Level Expresses

Context The system and its actors.

Analysis Initial system partitioning in each of the
viewpoints to establish the conceptual
approach.

Design Realisation of the analysis level to hardware,
software, and people.

Implementation Realisation of the design model into specific
configurations.

Finally, the system architecture of the SW system is captured in a set of views that expresses
the architecture from different viewpoints and model levels as shown in Table E.3. Each cell
in the table provides a separate view of the system, whilst maintaining the integrity of the
interrelationships between the individual entities that make up the entirety of the SW
system.

Table E.3. RUP SE Model Framework for SW Intensive Systems (Cantor 2003a).

Model Level Model Viewpoints

Worker Logical Information Physical Process

Context UML
organisation
view

System
context
diagram

Enterprise
data view

Enterprise
locality
(distribution
of enterprise
resources)

Business
processes

Analysis Generalised
system
worker view

Subsystem
view

System data
view

System
locality view

System
process
view

Design System
worker view

Subsystem
class views,

Software
component
views

System data
schema

Descriptor
node view

Detailed
process
view.

Implementation Worker role
specifications
and
instructions

Configurations: deployment diagram with hardware and
software system components

UNCLASSIFIED
DSTO-TR-3039

253
UNCLASSIFIED

Importantly, activity moving down model levels is recursive, adding more and more
specificity to the model; in SE fashion, the model elements at one level establish the
requirements at the next level down. Each model level therefore realises the requirements
articulated at the higher levels above.

Therefore:

• The context model level reveals the general high level requirements;

• The analysis model level reveals how the requirements specified in the context
model are met;

• The design model reveals how requirements arising from the system analysis model
are met; and

• The implementation model level meets the design specification.

An overview of the RUP SE process is shown in Figure E.1, highlighting the recursive
nature of the design and synthesis activity during decomposition.

Figure E.1. RUP SE Process Overview (Estefan 2008).

UNCLASSIFIED
DSTO-TR-3039

254

UNCLASSIFIED

Appendix F: UML Tool Support for DoDAF

An example of tool support provided for the DoDAF and MODAF using the UPDM ADL is
provided in Figure F.1. An overview of the relationships between the primary DoDAF
entities and the respective DoDAF artefacts is shown in Figure F.2. Examples of UML2
artefacts are provided in Figures F.3 and F.4. UML support for DoDAF artefacts is described
in Table F.1.

Figure F.1. Example of Tool Support for MODAF and DoDAF Artefacts using UPDM
([online} URL: http://www.sparxsystems.com/products/mdg/tech/dodaf-modaf/index.html)

http://www.sparxsystems.com/products/mdg/tech/dodaf-modaf/index.html

UNCLASSIFIED
DSTO-TR-3039

255
UNCLASSIFIED

Figure F.2. Example of the Top-Level UML2 Package Diagram Organising the DoDAF Views
(Kobryn & Sibbald 2004).

UNCLASSIFIED
DSTO-TR-3039

256

UNCLASSIFIED

Figure F.3. Example of an OV-1 Implemented using a UML2 Class Diagram (Kobryn & Sibbald
2004).

UNCLASSIFIED
DSTO-TR-3039

257
UNCLASSIFIED

Figure F.4. Example of an OV2 Implemented Using a UML2 Composite Structure Diagram
(Kobryn & Sibbald 2004).

UNCLASSIFIED
DSTO-TR-3039

258

UNCLASSIFIED

Table F.1. UML Support for DoDAF Artefacts (Kobryn & Sibbald 2004).

Applicable
View

Framework
Artefact

Framework
Artefact Name

General Description UML Diagrams

All Views AV-1 Overview and
Summary
Information

Scope, purpose, intended
users, environment
depicted, analytical
findings.

Text (or DOORS)
documents.

All Views AV-2 Integrated
Dictionary

Data Repository with
definitions of all terms
used in all artefacts.

UML model
queries + report
generator.

Operational OV-1 High-Level
Operational
Concept Graphic

High-level
graphical/textual
description of operational
concept.

Class or Use
Case Diagram.

Operational OV-2 Operational
Node
Connectivity
Description

Operational nodes,
operational activities
performed at each node,
connectivity and
information exchange
needlines between nodes.

Composite
Structure
Diagram.

Operational OV-3 Operational
Information
Exchange Matrix

Information exchanged
between nodes and the
relevant attributes of that
exchange.

UML model
queries + report
generator.

Operational OV-4 Organisational
Relationships
Chart

Organisational, role or
other relationships
among organisations.

Class Diagram.

Operational OV-5 Operational
Activity Model

Operational activities,
relationships amongst
activities, inputs and
outputs.

Activity diagram
with Object
Flows.

Operational OV-6a Operational
Rules Model

One of three products
used to describe
operational activity
sequence and timing –
identifies business rules
that constrain operation.

Text (or DOORS)
document linked
to Activities.

Operational OV-6b Operational
State Transition
Diagram

One of three products
used to describe
operational activity
sequence and timing –
identifies business
process responses to
events.

State Machine
Diagram.

Operational OV-6c Operational
Event-Trace
Description

One of three products
used to describe
operational activity
sequence and timing –
traces actions in a
scenario or sequence of

Sequence
Diagram.

UNCLASSIFIED
DSTO-TR-3039

259
UNCLASSIFIED

events and specifies
timing of events.

Operational OV-7 Logical Data
Model

Documentation of the
data requirements and
structural business
process rules of the
Operational View.

Class Diagram.

Systems SV-1 Systems
Interface
Description

Identification of systems
and systems components
and their
interconnections, within
and between nodes.

Composite
Structure
Diagram.

Systems SV-2 Systems
Communication
Description

System nodes and their
related communications
lay-downs.

Composite
Structure
Diagram.

Systems SV-3 Systems-
Systems Matrix

Relationships among
systems in a given
architecture showing
relationships of interest,
e.g. system-type
interfaces, planned vs.
existing relationships.

DOORS
Traceability View
automatically
populated as
interfaces are
defined in model.
(now also
supported by
SysML).

Systems SV-4 Systems
Functionality
Description

Functions performed by
the systems and the
information flow among
system functions.

Activity Diagram
with Object
Flows.

Systems SV-5 Operational
Activity to
Systems
Function
Traceability
Matrix

Mapping of systems back
to operational capabilities
or of system functions
back to operational
activities.

DOORS
Traceability View
automatically
populated as
allocation is
performed in
model.

Systems SV-6 Systems Data
Exchange Matrix

Provides details of system
data being exchanged
between systems.

UML model
queries + report
generator.

Systems SV-7 Systems
Performance
Parameters
Matrix

Performance
characteristics of each
system(s) hardware and
software elements, for the
appropriate timeframe.

UML model
queries + report
generator
Or linked
DOORS
document(s).

Systems SV-8 Systems
Evolution
Description

Planned incremental
steps towards migrating a
suite of systems to a more
efficient suite, or towards
evolving a current system
to a future
implementation.

Project planning
document linked
to model
elements.

Systems SV-9 Systems
Technology

Emerging technologies
and hardware/software

Text (or DOORS)
document.

UNCLASSIFIED
DSTO-TR-3039

260

UNCLASSIFIED

Forecast products that are
expected to be available
in a given set of
timeframes, and that will
affect the future
development of the
architecture.

Systems SV-10a Systems Rules
Models

One of three artefacts
used to describe the
system activity sequence
and timing – responses of
a system to events.

Text (or DOORS)
document linked
to System
Functions.

Systems SV-10b System State
Transition
Diagram

One of three artefacts
used to describe the
system activity sequence
and timing – Responses
of a system to events.

State Machine
Diagram.

Systems SV-10c System Event-
Trace
Description

One of three artefacts
used to describe the
system activity sequence
and timing – System-
specific refines of critical
sequences of events and
the timing of these
events.

Sequence
diagram.

Systems SV-11 Physical schema Physical implementation
of the information of the
Logical Data Model, e.g.
message formats, file
structures, physical
schema.

Class Diagram.

Technical TV-1 Technical
Standards
Profile

Extraction of standards
that apply to a given
architecture.

Text (or DOORS)
document linked
to Systems.

Technical TV-2 Technical
Standards
Forecast

Description of emerging
standards that are
expected to apply to the
given architecture within
an appropriate set of time
frames.

Text (or DOORS)
document linked
to Systems.

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. DLM/CAVEAT (OF DOCUMENT)

2. TITLE

An Analysis of SE and MBSE Concepts to Support Defence
Capability Acquisition

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

 Document (U)
 Title (U)
 Abstract (U)

4. AUTHOR(S)

Meredith Hue

5. CORPORATE AUTHOR

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111 Australia

6a. DSTO NUMBER
DSTO-TR-3039

6b. AR NUMBER
AR- 016-126

6c. TYPE OF REPORT
Technical Report

7. DOCUMENT DATE
September 2014

8. FILE NUMBER
2014/1108347/1

9. TASK NUMBER
ERP 07/369

10. TASK SPONSOR
CJOAD

11. NO. OF PAGES
260

12. NO. OF REFERENCES
179

13. DOWNGRADING/DELIMITING INSTRUCTIONS

Not applicable

14. RELEASE AUTHORITY

Chief Joint and Operations Analysis Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT
No Limitations

17. CITATION IN OTHER DOCUMENTS Yes
18. DSTO RESEARCH LIBRARY THESAURUS http://web-vic.dsto.defence.gov.au/workareas/library/resources/dsto_thesaurus.htm

capability development, methodology, systems engineering, complex systems, enterprise architecture, operations research

19. ABSTRACT
System modelling has been an enduring method of enquiry supporting systems analysis and design synthesis in systems engineering
for decades. New generation systems modelling tools provide sophisticated modelling capability, coined Model-based Systems
Engineering (MBSE). The underpinning fundamentals of systems engineering and MBSE are scrutinised in the context of the current
Defence capability development process and enterprise architecture initiatives. The capabilities, relevance, and utility of new generation
MBSE tools and methodologies are then examined, contrasting Defence and industry perspectives to reveal potential implications for
Defence. Potential benefits to Defence are highlighted together with potential issues of concern. Related aspects of software engineering,
enterprise engineering, enterprise architecting and operations research are also clarified to assist unravelling some of the complexities
and interdependencies between the respective professional disciplines.

Page classification: UNCLASSIFIED

http://web-vic.dsto.defence.gov.au/workareas/library/resources/dsto_thesaurus.htm

	ABSTRACT
	Executive Summary
	Author
	Contents
	Abbreviations and Acronyms
	1. Introduction
	1.1 Report Impetus
	1.2 Scope

	2. Concepts of Methodology and the SE Development Environment
	2.1 Significance of Methodology
	2.2 Significance of Scale

	3. System Modelling Concepts
	3.1 Modelling Concepts in Engineering
	3.2 Modelling vs. Simulation
	3.3 What is a Model?
	3.4 Programming Language Concepts
	3.5 Modelling Language Concepts

	4. Systems Approach to Problem Solving
	4.1 Systems Analysis and Design Concept
	4.2 Structured Analysis and Design Paradigm
	4.3 Object-Oriented Analysis and Design Paradigm
	4.4 Service-Oriented Analysis and Design Paradigm

	5. Systems Engineering Concepts
	5.1 What is Systems Thinking?
	5.2 What is a System?
	5.3 What is Systems Engineering?
	5.4 The Systems Engineering Process
	5.5 The System Life Cycle
	5.6 The Significance of System Architecture in SE
	5.7 Notions of System Hierarchy
	5.8 System of Interest and Systems of Systems
	5.9 Systems Integration and SoS Integration
	5.10 Human Systems Integration

	6. Defence Notions of a System
	6.1 The Capability System
	6.2 The Materiel System
	6.3 Major Systems
	6.4 Project vs. System Context
	6.5 Defence vs. INCOSE System Definition

	7. Capability Development Process Context
	7.1 Defence Capability Life Cycle Model
	7.2 Defence Capability Planning Guidance
	7.3 Defence Capability Life Cycle Responsibilities

	8. Defence vs. Industry SE Perspective
	8.1 Legal and Political Process Influences
	8.2 Sourcing Defence Requirements
	8.3 Sourcing Industry-based Requirements
	8.4 Adaptability to Change

	9. Enterprise Architecture Concepts
	10. Defence Enterprise Architecture Context
	10.1 Defence Architecture Framework
	10.2 Integrated Defence Architecture

	11. MBSE Origins and Concepts
	11.1 MBSE Impetus
	11.2 MBSE Origins
	11.3 MBSE Tool Capabilities
	11.4 Model-Based Design
	11.5 Model Driven System Design
	11.6 Model Driven Engineering
	11.7 Industry Impetus for MBSE
	11.8 INCOSE Impetus for a New MBSE Approach
	11.9 SE Perspective on New Generation MBSE Tool Environment
	11.10 EAF Perspective on New Generation MBSE Tool Environment
	11.11 Clarifying MBSE Perspectives

	12. Mindsets and Perspectives
	13. MBSE Utility to Defence
	13.1 Utility Considerations
	13.2 Defence Problem Space Considerations
	13.3 MBSE Process Considerations
	13.4 MBSE Tool Considerations – Analytic Capability
	13.5 MBSE Tool Implications
	13.6 MBSE Tool Considerations - Capability Development Process
	13.7 MBSE Tool Considerations – AUSDAF
	13.8 MBSE Tool Considerations - IDA
	13.9 System Modelling Challenges
	13.10 MBSE Possibilities for Defence

	14. Conclusions
	15. References
	Appendix A: Tools in the SE Development Environment
	A.1. Introduction

	Appendix B: Object-oriented Modelling Language Origin and Concepts
	B.1. Object-Oriented Programming Language Paradigm – Origin
	B.2. Developing an Object-Oriented Architecture
	B.3. Object-Oriented Modelling with UML
	B.4. The 4 + 1 Architecture View using UML2
	B.5. Systems Modelling Language (SysML) – Origins
	B.6. Systems Modelling Language (SysML) – Concepts

	Appendix C: UML and SysML Common Terms and Diagrams
	C.1. Object-Oriented Problem Solving – Overview
	C.2. Important Terms and Concepts
	C.3. Tool User Interface
	C.4. UML Diagrams
	C.5. SysML Diagrams

	Appendix D: Zachman Framework for Enterprise Architecture Overview
	D.1. Introduction
	D.2. Zachman Framework Reference Model

	Appendix E: Rational Unified Process for Systems Engineering (RUP SE) Overview
	E.1. Introduction
	E.2. RUP SE Representations

	Appendix F: UML Tool Support for DoDAF
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

