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1 SUMMARY 

The primary goal of this research project was to explore an alternative to conventional network 
defense based on attacking an adversary’s timeliness. This involved devising methods and 
techniques to increase attacker workload and operate through attacks even if the attacks are 
never detected. The research has resulted in a new way to structure distributed systems based on 
a non-deterministic defense-in-depth. This defense combines a series of breakthrough 
technologies that collectively provide an insurmountable barrier to the tactical viability of 
Advanced Persistent Threats (APT’s). The ideas have been incorporated into a clean-slate, proof-
of-concept operating system -- Bear -- that operates on Dell workstations, ARM embedded 
processors, and large-scale multicore blade-servers. To operate through attacks on multi-
processors, a system of fault-tolerance was devised that dynamically regenerates processes in 
response to failures or inconsistent behavior. This method relocates regenerated processes to 
areas of the network that are uncompromised and includes resource management algorithms that 
dynamically restructure concurrent computations to avoid potential threats.  

2 INTRODUCTION 

Our method for mitigating APT’s is based on a non-deterministic defense-in-depth in which a 
collection of innovative technologies are applied, either in isolation or in combination, to 
successively increase attacker workload and operate through attacks. These techniques prevent 
an adversary from operating on timescales that lie within the tempo of US military operations. In 
outline, the mitigation methods realized by these technologies are: 

1. Non-deterministic refresh to deny surveillance, privilege escalation, and persistence [1].
2. Code size and attack surface minimization to reduce vulnerabilities [1].
3. MULTICS-style protection based on 64-bit extended paging tables (EPT) [1].
4. Diversity to deny reverse engineering and throttle vulnerability amplification [2].
5. Full memory encryption to deny access to code and data in memory and shrink the

protection boundary to the chip boundary [3-6].
6. Network hiding to dynamically change network properties [7,8].
7. Camouflage to deny system identification [9].
8. Hardware hiding to own and control the base of trust [10].
9. Course-grain forensics to allow discovery of zero-day exploits [11].
10. Resilience through dynamic process regeneration and remapping to operate through

attacks [12-19].

This body of knowledge has been published in 3 Ph.D. theses [3,7,12], 1 M.Sc. thesis [1], 13 
published papers, and 8 technical reports. All of these publications are available through 
password-protected access at: 

http://engineering.dartmouth.edu/~d1266j2/styled/index.html 
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At the time of writing, the research component of one additional Ph.D. thesis on hardware hiding 
has been completed, together with an additional paper; thesis preparation is in progress. In 
addition, this work leverages contributions associated with a complementary ongoing project, 
“Resilient Diffusive Clouds” under the DARPA MRC program. These contributions are 
mentioned briefly in this report, solely for clarity and completeness in understanding the overall 
vision of the project.  

It is not the goal of this report to repeat either the material or the extensive bibliographies 
provided in the project publications, but rather to provide a cohesive explanation of the body of 
work taken in its entirety. This entirety is embodied in a new, clean-slate, proof-of-concept 
concurrent operating system – Bear – that operates on Dell workstations (9010/9020), ARM 
embedded processors (M4/A8/A9), a system-on-a-chip device (Xilinx Zynq), and large-scale 
multi-core blade servers (Dell PowerEdge). It must be recognized however, that the findings are 
distributed over this collection of architectures not ported to each of them. The reason for this 
distinction is that, at the time of the research, all of the needed underlying hardware capabilities 
were not available on any single platform. For example, Intel processors provided virtualization 
and protection support for guest operating systems (VT-x) and devices (VT-d); this was not 
available on ARM processors. Similarly, on-chip encryption/decryption engines and FPGA 
technology were available on ARM-based devices but not Intel processors with virtualization. 
Only recently, within the few months, has there been a confluence of these technologies, with 
both Intel and Xilinx recently announcing future offerings that will combine all the needed 
capabilities into a single processor design – thereby opening the door to an eventual integration 
of the techniques within a operating single system available on multiple hardware platforms. 

The Attacking Time project is delineated by a focus on multi-processor, but single core, 
implementations, with preliminary explorations of some areas -- in particular network hiding 
(Method #6) and resilience (Method #10) – conducted on Linux. The Linux work was 
necessitated by the fact that a mature version of the Bear system, that could accommodate the 
ideas, was under development concurrently and not of sufficient stability to support development 
until the latter part of the project. The MRC project is projecting the technologies into multi-
core, multi-processor systems (cloud computing) while introducing native implementations of 
resilience. 

3 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 ASSUMPTIONS. 

At the outset of the project, team members already had extensive experience with the 
combination of vulnerabilities, exploitation methods, and TTP’s that have, only recently, 
received the unclassified DARPA designation “Advanced Persistent Threat” (APT). The starting 
assumption was a threat-model that directly encapsulates the core notions of this designation as 
illustrated in Figure 1. An APT involves several steps that may include surveillance to determine 
if a vulnerability exists [20], use of an appropriate exploit or other access method [20], privilege 
escalation [21], removing exploit artifacts, and hiding behavior [22]. Surveillance may involve 
obtaining a copy of the binary code and using reverse engineering [23,24] or fuzzing [25] to 
facilitate a broad range of attack vectors including return oriented programming [26]. The 
implant then persists for a time sufficient enough to carry out some malicious effect, obtain 
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useful information, or propagate intrusion to other systems. The ubiquitous use of a small 
number of operating system types and versions in distributed systems and clouds, has the effect 
of amplifying vulnerabilities: an exploit developed against one version may be used against any 
host using a similar version.  

Figure 1: APT Threat Model 

A central aspect of this process is timeliness: the value of information is always qualified by 
time. For example, a cyber attack, using a network of APT’s, on the air tasking process 
associated with a military mission would have little utility if it is not perpetrated within the finite 
timescale (24 - 72 hrs) covered by the ATO planning and execution process. Figure 2 shows the 
attackers process from the perspective of timeliness. 

Figure 2: Timeliness in the Attack Process 
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Unlike the time to execute an exploit or effect, the time spent in surveillance and persistence may 
range from minutes to months or even years depending upon the intended effect. Moreover, the 
presence of an intrusion may never be detected by network defenses but instead may be 
recognized indirectly due to either a deviation from expected behavior, the adversary’s execution 
of some D5 effect, or derived from other intelligence sources (SIGINT, HUMINT, etc). 
Unfortunately, it is precisely the short-timescale areas designated in Figure 2 that are the domain 
of anomaly and rule-based intrusion detection systems (IDS) and the associated correlation tools. 
For rule-based detectors, there is no defense against zero-day attacks – if an exploit has not been 
used before, there will be no rule or derivative rule that renders it detectable. Sadly anomaly 
detectors also fail due to a sad truism: 

Not all malicious attacks are anomalous, and not all anomalies are malicious. 

In other words, good APT’s will hide their behavior and false alarms will obscure their activities. 
Current operating system designs have sought to utilize a static base of trust and extend 

trust into software through deliberate layering to combat such threats [27]. Unfortunately, a wide 
variety of vulnerabilities have appeared that undermine kernel security allowing attackers to 
implant code, hide, and persist at the highest levels of privilege [28]. The number of 
vulnerabilities is directly correlated with the size of the code base [29], indicating that there is 
substantial value in the intellectual process of reducing the attack surface; most current operating 
system designs run into millions of lines of code. Moreover, they compound the opportunity for 
compromise by granting device drivers unnecessary levels of privilege in order to attain, what in 
recent years has become, diminishing returns in performance. 

3.2 METHODS AND PROCEDURES. 
3.2.1  Core Ideas. Recall that our approach assumes that adversaries will conduct surveillance, 
will be successful in gaining access, will obtain critical system code for reverse engineering, and 
will persist undetected to carry out effects at a later date. To mitigate the risks associated with 
APT’s, we non-deterministically discard the current kernel, user processes, and device drivers 
(Method #1). They are replaced by new instances, bootstrapped in the background from read-
only gold standards. The cumulative effect of this change in design style is to increase attacker 
workload by continually invalidating surveillance data and denying persistence over time-scales 
consistent with tactical missions. Unlike other approaches to computer security, no attempt is 
made to detect intrusions: instead, we focus on continually validating, preserving, and re-
establishing the ability of a mission to proceed.  

These concepts have been incorporated into the x86, 64-bit version of the Bear operating 
system. The full system is depicted in Figure 3 and is composed of a minimalist micro-kernel 
with an associated hypervisor that share code extensively to reduce the attack surface (Method 
#2). The core functions of scheduling user processes and protecting them from each other are 
handled by the micro-kernel. All processes and layers are hardened by strictly enforcing 
MULTICS-style read, write, and execute protections that only recently became available using 
64-bit x86 address translation hardware (Method #3). This calculated reduction in versatility is 
unlikely to impact military applications but explicitly removes vulnerabilities associated with 
code execution from the heap or stack.  

All potentially contaminated user processes, device drivers and services are executed 
with user–level privileges and are strictly isolated from the micro-kernel via a message-passing 
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interface. A notional system task mediates between processes and the kernel to implement the 
interface. Unlike a conventional rendezvous mechanism in which processes block until 
synchronization, this asynchronous buffered design provides a single uniform treatment of 
system calls, inter-process, and inter-processor communication. The interface also supports 
distributed computing through an MPI-like programming model that maps processes to 
processors using a user level demon, rMP.   

Figure 3. The Bear Operating System Layers 
To deny persistence in compromised device drivers and services, the micro-kernel randomly and 
non-deterministically regenerates them from gold-standard images resident in a trusted read-only 
file store. This store is currently realized by loading all system code directly into a read-only 
RAM-disk using an iPXE NIC-assisted boot process.  The file system is accessible only from the 
kernel and hypervisor; however, it could alternatively be realized via read-only memory (ROM) 
or via an out-of-band, write-enabled channel to flash on new hardware. Unlike the MINIX re-
incarnation process, regeneration is carried out without regard to the perceived fault or infection 
status. User processes can also be refreshed through pre-arranged or designated schedules; for 
example, every few hours, at night, or just prior to a tactical mission. 

To deny persistence in the micro-kernel, it is also non-deterministically refreshed from a 
gold-standard image in the trusted file store, but by the hypervisor. Unlike traditional 
hypervisors, which are intended to support a general virtual machine execution environment, this 
minimalist hypervisor is designed to support only the operations required to bootstrap a new 
micro-kernel and change its network properties (e.g. IP & MAC address) so as to invalidate an 
adversary’s surveillance data. The current running and bootstrapping instances of the micro-
kernel are isolated in hardware through extended page tables, implemented with Intel VT-x 
extensions. Similarly, the network card is isolated through a mapping scheme based on Intel VT-
d extensions.  

Protecting the Micro-kernel. The micro-kernel architecture leverages the latest x86-64 
address translation hardware to provide isolation and MULTICS-style read, write, and execute 
(R/W/X) privileges for processes.  Recent x86-64 processors no longer support segmentation, but 
they do feature control bits that enable the kernel to allow or deny reading, writing, and 
execution of a particular memory page.  This is achieved using three protection bits in x86-64 
page table entries: To isolate user processes from the kernel, the kernel clears the user/supervisor 
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bit (U/S, bit 2) on its own pages.  If any user process attempts to read, write, or execute code in 
these pages, the processor traps to the kernel.  Bear enforces protections for process memory 
using the read/write (R/W) and execute disable (XD) bits.  When a process is loaded, the bits are 
set so that the process text (code) is readable/executable. Conversely, process data and stack are 
designated readable/writeable. These decisions yield a protected address space where the 
permission bit configurations are also shown below in Table 1.  

Table 1: Page Table Protection Configurations 

Memory Type U/S 
Bit 
Value 

R/W 
Bit 
Value 

XD 
Bit 
Value 

User Process 
Text 

1 0 0 

User Process 
Data 

1 1 1 

User Process 
Stack 

1 1 1 

Kernel Text 0 0 0 
Kernel Data 0 1 1 
Kernel Stack 0 1 1 

rMP – remote Message Passing API. The memory space of each process is strictly 
isolated from that of other processes and the micro-kernel by page protections. All processes 
interact via a simple MPI-like asynchronous message-passing interface. This allows the same 
isolation ideas to be used for inter-process communication within the same processor, across 
multiple processors, and between user processes and the kernel. The interface provides only two 
asynchronous, blocking, communication primitives:  

• msgsend(dest, &sendbuffer, size) – send a message from sendbuffer of length size bytes
to process dest.

• msgrecv(src, &recvbuffer, size, &status) – receive a message from process src (or ANY
process) into recvbuffer of length size; status is a structure designating the source of the
message and its length, messages that are larger than size are truncated.

Both primitives are realized using software interrupts that isolate user-processes from the micro-
kernel. All messages are buffered in the kernel at the receiver. The msgsend operation causes a 
process to be blocked until a message is sent (i.e. injected into the kernel, if the receiver is at the 
same host, or the network if it is on a remote host). Return from this primitive allows the 
sendbuffer to be re-used. The msgrecv operation causes a process to be blocked until a message 
is transferred into the recvbuffer from the kernel. System calls, such as -- fork(), exec(), and 
exit() -- are implemented directly in the kernel which is capable of modifying kernel data 
structures (e.g. pages, scheduling queue’s etc); distributed computing is achieved by forwarding 
messages to a remote host via a mapping process rMP (c.f. Figure 1). All of our work on 
resilience (Method #10) was explored using MPI implementations of these primitives on Linux. 

The micro-kernel leverages user-space separation of privilege to minimize kernel size. 
In this approach, device drivers are given only the access rights needed to operate.  Thus they 
require no kernel intervention other than startup in order to execute.  This allows system calls 
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serviced by user-space processes – the network stack, the file-system, and so on – to operate 
entirely in user-space.  Borrowing terms used by MINIX, the system call policies remain in user-
space, but are joined by the system call mechanisms, in the form of entire device drivers.  
Consequently, a significant amount of privileged code is excised from the kernel, creating a 
small attack surface with few entry points. 

It is instructive to contrast this approach with that used in MINIX: a number of user-level 
tasks service system calls.  These tasks – such as the process manager, file-system, info server, 
and so on – enforce system call policies and carry out bookkeeping, but they do not contain the 
actual mechanisms to carry out a system call.  That is left up to either drivers or the kernel. 
However, even drivers are reliant on kernel code to perform their functions, and they have their 
own set of system calls that are directly serviced by the kernel.  The result is a small reduction in 
kernel code and data, but a significant increase in complexity.  

Attack Mitigation. Despite efforts to insulate the kernel from user processes, there are still 
methods to get code into the kernel memory space.  For instance, while carrying out inter-
process communication, the kernel may buffer user data in kernel memory-space.  Furthermore, 
a hardware implant could potentially inject code directly into kernel memory.  Once kernel 
memory is contaminated, an attacker need only find a method to divert kernel execution to this 
code.   

Bear’s treatment of kernel memory is designed to expressly deny this avenue of attack. 
At all levels, Bear enforces the policy that no memory region may be both writeable and 
executable simultaneously.  In the Bear kernel, there are four classes of buffers: those created by 
the kernel’s small-memory allocator, those created by the kernel’s large-memory (page) 
allocator, static buffers in the kernel binary, and temporary buffers located on the kernel stack. 
The small-memory allocator is used to dynamically allocate space for data structures within the 
kernel (e.g., message buffers, process structures, hash tables, linked lists, etc.).  All memory 
regions returned by the small-memory allocator are protected from execution using the XD bit in 
kernel page tables.  The large-memory allocator provides free pages (or multiple pages) for 
process or kernel use.  If used by the kernel, pages from this allocator are protected from 
execution via the XD bit in the kernel page tables.  Static buffers in the binary and dynamic 
buffers on the kernel stack are similarly protected from execution via the XD bit in the kernel 
page tables.  Thus, no buffers have both write and execute permissions enabled. 

It is well known that robust memory protections are not enough to secure a system from 
return-oriented programming (ROP) even in the presence of non-executable buffers. These 
attacks leverage small sections of the code already resident in memory, known as gadgets.  The 
payload of a ROP exploit is a series of specially crafted return addresses, which link together 
gadgets to perform whatever action the attacker desires.  ROP exploit development is facilitated 
by a large codebase, such as GNU Libc (glibc).  

To increase the difficulty of crafting these attacks, we emphasize the reuse of common 
data structure abstractions throughout kernel and hypervisor so as to reduce the attack surface 
and a collection of techniques that introduce diversity into binaries (c.f. Methods 4 and 5 
below).  Generic implementations of common data structures, including a linked list and hash 
table, were created with flexibility in mind.  Application-specific data is always stored in these 
structures through the use of opaque void pointers, and application-specific functionality is 
added through the use of function pointers in the API.  The result is lean, robust, multi-purpose 
code; for example, the function for removing a process from the scheduler is also the function for 
removing an element from a hash table. 
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Mitigation of Corrupted Device Drivers. Unfortunately, device drivers are a frequent 
source of vulnerability; they are always resident and often developed by third-party vendors, 
whose priorities are fast turnaround, inter-operability and performance, rather than security. 
Recall that the Bear micro-kernel refreshes each device driver at nondeterministic intervals. This 
allows the kernel to operate through attacks, preserving trust while denying the attacker the 
ability to persist over tactically relevant timescales. The upper and lower bound on the duration 
of a device driver instance is configurable, and could be set higher or lower based on threat or 
mission deadlines.  Driver refresh is achieved by interrupting the driver, freeing its memory, and 
re-allocating new resources for its replacement.  The kernel then loads the driver’s gold-standard 
image from a protected, read-only store.  As a result, compromised drivers are not able to persist 
over long time-scales. Once driver regeneration is complete, the kernel schedules the driver, and 
normal operation is resumed.  Although the hardware state is lost, this is not typically 
detrimental to a system functioning.  In a server environment, it may involve a few dropped 
packets, but these will be re-transmitted by normal protocols.  Down-time associated with 
refreshing the driver could be minimized by creating the new driver process in the background 
using underutilized computing cores, although this has not yet been necessary. 

The main objectives for driver design in Bear are to protect the operating system from 
corruption, encapsulate the device driver using hardware mechanisms, and facilitate on-the-fly 
refresh of the drivers.  Putting the driver in an isolated user-level process and utilizing process 
refresh techniques accomplishes most of these goals.  Unfortunately, a compromised device 
driver has unique hardware resources at its disposal that open up avenues of attack not available 
to most user processes.   

Traditionally, the x86 architecture provides four rings (or levels) of privilege, numbered 0 
through 3.  Processes on the outside ring are the least-privileged and have no access to critical 
functionality, while the innermost ring has full privileges.  For obvious reasons, user processes 
usually reside in the outermost ring 3, and the operating system resides in ring 0.  When 
considering where to put device drivers, rings 1 and 2 appear to be likely candidates. 
Unfortunately, upon close inspection of hardware support for rings 1 and 2, it was discovered 
that ring 0 is not truly protected from code running in the intermediate rings.  Intel's memory 
management unit only supports two access levels – user (ring 3) and supervisor (rings 0, 1, and 
2).  Thus, code running in rings 1 and 2 has exactly the same memory access privileges as the 
kernel.  This violates one of Bear’s primary design principles – namely, complete isolation of 
device driver code from the kernel. We thus chose instead to place device drivers in ring 3. 
Rings 1 and 2 actually provide few meaningful benefits compared to ring 0. In contrast, ring 3 
provides complete isolation from the kernel through hardware mechanisms. 

Until recently, drivers were able to command a device to read/write to any physical 
address via DMA.  In most modern PCs, only the number of address lines on the bus limits a 
peripherals access to memory.  Thus, on most machines, devices can read or write to any 
address.  Mechanisms to limit DMA access have recently become available in COTS hardware. 
The centerpiece of device protection is the input/output memory management unit (IOMMU), 
which provides a layer of address translation and access control between devices and physical 
memory.  On Intel platforms, the IOMMU is part of a larger set of device virtualization 
technologies known as VT-d.  For systems that do not support VT-d we provide a simple 
mapping scheme that is consistent with a full VT-d implementation. At the time of writing a full 
VT-d implementation for the E1000 NIC was close to completion. 
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Protecting the Hypervisor. Recall that the normal role of virtualization is to share the 
underlying hardware between multiple operating system instances. In contrast, the Bear 
hypervisor exists primarily to undermine network surveillance, deny persistence in the micro-
kernel, and reestablish trust. Re-establishing trust is performed by periodically reloading the 
micro-kernel from gold-standard images located in the read-only store. This has the effect of 
expunging root-kits, bots, or other malware.  Additionally, the hypervisor strives to utilize all 
available hardware mechanisms to provide protection for both itself and the kernel. 

To mitigate the threat of well-timed attacks, the hypervisor refreshes the kernel at 
nondeterministic intervals.  The upper and lower bound on the duration of a kernel instance is 
configurable, and could be set higher or lower based on the threat environment.  To achieve 
kernel refresh, the hypervisor assumes control of the system, frees the memory associated with 
the previous kernel, and allocates resources for the next kernel.  The hypervisor then loads the 
kernel binary from the trusted store and relinquishes control to the kernel, which boots and 
resumes normal operation.  Due to its code size, the microkernel boots in less than 1 second; 
consequently, there was little reason to leverage multiple cores to perform booting in the 
background as originally expected [c.f. Method #6 and Reference 8].  

The hypervisor also provides protection for the kernel by leveraging extended page tables 
(EPT).  EPT is a hardware address translation capability present in newer Intel CPUs (AMD has 
similar technology).  EPT provides an extra layer of address translation that is transparent to the 
guest operating system. This allows a hypervisor to manage physical memory while giving the 
guest the illusion of physical memory access.  EPT also allows the hypervisor to control what 
type of operations are allowed for a given memory region, opening the door to protection of the 
kernel. 

Bear’s hypervisor configures EPT to provide read/write/execute controls on both the 
kernel code and static data.  Thus, any attempt to patch the kernel or execute code located in a 
static buffer will result in a trap to the hypervisor.  At that point, the hypervisor can refresh the 
kernel or take an alternative action, such as invoke forensic tools.  Hypervisor memory is 
inaccessible from the guest. 

3.2.2  Diversity (Method #4). Our work on diversity is supported under the DARPA MRC 
program; it is mentioned here only for completeness and to allow a recognition of why non-
deterministic refresh is central to the mitigation of APT’s: The refresh process uses a radical new 
diversifying technology for binary images that introduces non-deterministic changes to every 
binary image used by the operating system including both the hypervisor and kernel. Source-to-
source transformations add small random changes to every source-code block. Subsequently, at 
load time, every function is allocated to a random location in virtual memory as it is copied out 
of the read-only trusted file store. Diversity disrupts the entry point used to execute a malicious 
implant, the exit point used to return from an implant to normal operation, and all blocks within 
any function used for inline patching. The impact of this process is to ensure that every time a 
user process, device driver, service, kernel or hypervisor is loaded, it employs a completely 
unique binary image. This ensures that any reverse engineering conducted to craft exploits or 
embed code in the binary will only operate for a short window in time – the window between 
refreshes. Since the development cycle for zero-day exploits is often counted in months or years. 
This prevents remote exploitation on the timescales of tactical missions. Moreover, it eliminates 
vulnerability amplification by ensuring that every image on distributed system or cloud is 
unique.  
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3.2.3  Memory Encryption (Method #5).   Michael Henson, who was supported under an Air 
Force scholarship, conducted the work associated with this method while thesis supervision was 
supported by the Attacking Time project. Experimental work was conducted on an ARM A8 
processor. Since this processor does not support virtualization, the research was incorporated in a 
kernel-only version of the Bear system.  

Recently, a new generation of commodity processors have appeared that include security 
technologies, such as encryption engines, on-chip within the trusted boundary provided by the 
processor. These processors include the Intel i7, AMD bulldozer, and multiple ARM variants, 
including the A8 and A9. The creation/use of such processors begs the question: Can these 
technologies be leveraged with sufficiently low overhead in order to improve operating system 
security? This work explored the idea of enhancing security through memory encryption. In 
particular, it introduced three new technologies: 

• Static Encrypted Processes: This technology employs one-time decryption within the
trusted boundary of the chip. Since the one-time cost of encryption is amortized over the
life of a programs execution, its overhead is negligible. The technique can be used to
protect industrial control systems employing microcontrollers and other real-time
processors. These devices typically lack memory management and make little to no use of
cache.

• Dynamic Encrypted Processes: This technology provides a general, full memory
encryption mechanism for code and data. It is appropriate to any multi-tasking operating
system that employs a memory management unit (MMU) and cache including smart phone
and other mobile computing devices.  Two micro-benchmark programs targeting the
specific areas where overhead is introduced (context switching and cryptopaging of heap
and code) showed reasonable performance impact of approximately .12% and 1.2% per
minute respectively given a page size of 4 KB and typical mobile smartphone workloads.

• Mutually Distrusting Processes: This technology extends dynamic encrypted processes to
protect processes from each other by uniquely keying each process. At its finest granular
level, this technique induces a performance penalty of approximately 1920 cycles or 2.4
microseconds per context switch (~ 480 microseconds per minute) for the key search—an
extremely small overhead for the additional protections afforded.

Collectively, these technologies increase attacker workload by ensuring that both code and data 
are always encrypted outside the trust boundary afforded by the processor. To overcome this 
barrier requires physical access to the device and exotic reverse engineering techniques, such as 
acid etching, that are generally the domain of only a few, highly skilled, internationally 
recognized, specialists in reverse engineering. A side-effect of the approach is that it introduces 
another form of non-determinism by introducing a synthetic form of diversity into code and data: 
every processor’s image is completely different in RAM. This makes it significantly more 
difficult to determine the vulnerabilities present on a particular system, use the same attack 
vector against multiple hosts, or steal sensitive code and data, perform reverse engineering of 
code, modify data, and inject code. The core contributions of this work were: 

• The first practical full-memory encryption system implemented on a general-purpose
commodity processor.

• A survey and comparative analysis of memory encryption techniques covering three
decades of research with proposed solutions; these employ widely varying assumptions and
experimental conditions.
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• A collection of novel memory encryption techniques providing synthetic diversity and
increasing attacker workload. These techniques protect against software and hardware
based confidentiality and integrity attacks; the techniques are portable to currently
deployed general-purpose, security-enhanced processors.

• Analytical results that include performance benchmarks and analysis on the overhead of
memory encryption down to process segment granularity.

• Empirical evidence and analytical analysis that demonstrate protection through memory
encryption against confidentiality and integrity attacks.

• Techniques to employ self-modifying code within the memory hierarchy to achieve
memory encryption.

The techniques and technologies have been demonstrated in proof-of-concept implementations 
and exemplars.  Memory encryption has been implemented on the ARM Cortex A8 processor to 
provide automatic and transparent protection for applications. This is achieved through 
extensions to the Bear microkernel.  These extensions involve modifications to linker scripts, 
initialization, process creation and context switching routines as well as new modules for 
interfacing with the A8’s on-chip encryption decryption unit (EDU).  The ideas have been 
demonstrated by encrypting processes while they reside in external RAM (eRAM) thereby 
adding synthetic diversity.  The concepts cover application deployment regimes that range from 
unsophisticated microcontrollers, with no memory management unit (MMU) and cache, to full-
functioned multi-processing operating systems utilizing a memory management unit (MMU) and 
L1/L2 cache.  Various granularities of protection are considered from a complete code base to 
individual process.  Finally, exception-handling routines have been developed and experiments 
executed to understand the protections afforded against code and data injection.  

The work extends the base of technologies available for trusted computing.  While 
definitions of trusted computing abound, in this work it was defined as the process by which a 
trusted subset (software and hardware) of a system, known as the trusted computing base (TCB) 
is amplified to provide security assurances about the operation of the larger application or 
system. Hardware components of the traditional TCB include encryption coprocessors, random 
number generators, and small amounts of protected space for operation on sensitive code and 
data.  The main application of trusted computing in operating systems design is for “trusted 
boot” in which the TCB checks the integrity of each component in the boot process, perhaps 
halting the boot process when a problem is discovered. Additionally, the TCB has been used as a 
means for providing digital rights management.  While the underlying security and integrity of 
hardware are often assumed to be axiomatic by those programming higher layers, this is not 
typically the case. The inclusion of security hardware within commodity processors means that 
these general purpose CPUs may now be treated as part of the TCB.  While the processor 
boundary may not have been designed to meet stringent guidelines, such as the PCI, it does, 
however, provide natural barriers to penetration and observation. This work sought to expand 
upon current trusted computing capabilities such as trusted boot by continuing to protect 
applications dynamically as they execute.  While memory encryption provides significant 
protection against multiple attack vectors, it should be used as part of the non-deterministic 
defense-in-depth strategy and include other trusted computing capabilities such as trusted boot as 
well as encryption of data-at-rest.   

Any security can be circumvented given enough resources and motivation and memory 
encryption is no exception.  The goal of the work, to increase attacker workload, can be applied 
under two alternative scenarios:  In any time-sensitive operation, as occurs on the battlefield, an 
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increase in attacker workload serves to force the adversary outside of the useful timeframe of any 
sensitive data collected.  For a commercial example, the increased workload would influence the 
attacker to choose a weaker attack surface, on a different device (preferably at another business). 

3.2.4  Network Hiding (Method #6).  Stephen Kuhn, who was supported under an Air Force 
scholarship, conducted the work described in this method while thesis supervision was supported 
by the Attacking Time project. The work was conducted on Linux since the Bear system was in 
its early stages of development when the method was explored; the underlying mechanisms that 
enable this technology (Methods #1-4) were eventually incorporated into the Bear system, 
however the work was not retargeted since no new research insights could be gleaned from such 
an activity. 

Offering assured and available Internet services is a key challenge faced by, service 
providers, the military, and commercial corporations. These services include web hosting, file 
storage, remote software access, and central database access. The concentration of information at 
servers makes them a primary target for adversaries to exploit, forcing providers to expend 
considerable resources in protecting them. Typical defense mechanisms use rule based methods: 
a combination of intrusion detection systems, firewalls, and virus scanners, at the network level. 
In corporate and military environments additional host base systems are commonly deployed 
such as virus scanners, root-kit detectors, file-system integrity checkers, anomaly detectors, and 
more recently website application firewall software. The shortcoming of these defenses, 
especially in the presence of zero-day exploits, has already been mentioned.  

The challenge of internet addressing and administrating Domain Name Services or DNS, 
leads most systems administrators to assign static addresses to their servers. Static address 
assignment allows DNS servers to maintain long update cycles, preventing services from 
appearing offline and unnecessary traffic. Since a DNS server caches previous address lookups, 
there is a significant performance advantage from a server remaining in place. Unfortunately, 
this presents a static observable target for adversaries to analyze using network scanners such as 
NMAP and Nessus. This surveillance process provides a roadmap to the available vulnerabilities 
and allows appropriate exploits to be isolated or developed. After access is gained, persistence on 
the static target allows stable reentry point to carry out effects. 

The combination of stationary targets, undetectable malicious software, and the small 
timescales over which a host is exploited allows the attacker to operate inside the defenders 
OODA loop. The network hiding method non-deterministically moves servers around the IP 
space of a network to deny surveillance and periodically reconstitutes them to deny persistence. 
As in our other methods, the goal is to increase attacker workload to the point where the 
timeliness of attacks is significantly longer than the timescale of day-to-day operations, making 
attacks irrelevant even if they are successful and never detected. 

Our proof-of-concept network hiding provides web services through Apache and is based 
on server relocation and reconstitution operations. The server’s location is periodically migrated 
within the local enclave IP space and into alternative enclaves, potentially behind differing 
boundary defenses, using multiple network interface cards (NIC’s). This has the effect of 
presenting a moving target to adversaries, while maintaining connectivity to local clients.  

Leveraging the KVM hypervisor technology, the server was repeatedly reconstituted to a 
fresh service state, using a different operating system image, akin to a full system reinstall (c.f.  
Method #4). This has the effect of changing the attack surface while ensuring that malicious 
code is removed without attempting to detect its presence. This reconstitution denies persistence 
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over long timescales while falsifying any existing surveillance information that the attacker may 
somehow have garnered. These operations can be carried out at random intervals and times (c.f. 
Method #3). This presents a completely non-deterministic view of the network structure from 
outside an organizations local area network, while maintaining availability within it. The 
approach presented several technical challenges, in particular how to: 

• Control server relocation and reconstitution,
• Preserve connectivity with existing clients, and
• Advertise service so that currently unconnected, but authorized, clients are able to locate

and connect to the server.
Each server can be assigned one out of several network interface cards (NIC’s), and each NIC is 
connected to a separate logical enclave assumed to be behind a unique firewall/proxy server. 
Each logical enclave has a DHCP server that serves IP addresses randomly from a large non-
routable IP space, orders of magnitude larger than the number of hosts located in the enclave. A 
non-deterministic finite state machine (FSM) was used to control network hiding: it generated a 
new virtual machine in the background of the currently running instance, assigned it a new NIC 
card, and bootstrapped the operating system onto it. After a non-deterministic time, control was 
quickly switched to the new virtual machine. The old virtual machine was allowed to continue 
execution so as to service existing open connections; it terminated when they were all closed or a 
bounding timeout occurred.  The process is implemented through KVM hypervisor commands to 
define, start, undefine  (or remove), and destroy  (or terminate execution) virtual machines. 
These operations were subsequently built into the Bear hypervisor. 

A private DNS server was used by the FSM to allow clients to locate a server after it has 
migrated around the network. Beyond the simple lookup of IP-addresses, the latest DNS 
implementations, such as BIND provide enhanced functionality for dynamically configuring 
name references. This involves the update of two components of the DNS record: the CNAME, 
describing translations between names, and the ‘A’ records, translating names to IP addresses. 
Each virtual server must be uniquely named, however, from the viewpoint of external clients; all 
servers must be accessed through a single consistent name. The CNAME reference system 
allows this aliasing by creating a name that references another name. The result is a two-step 
process for resolving generic service names, such as www.myserver.org. The DNS server 
resolves the alias from www to the unique server name and then resolves the unique server name 
and returns the numeric IP address. 

Dynamic DNS or DynDNS provides the control software to dynamically push updates to 
a DNS server when a new address is selected. DynDNS was originally invented to support home 
users on modems whose addresses frequently change. Previously the only modality for effecting 
updates required modifying the static configurations of the BIND/DNS server and fully restarting 
the system, causing a loss of service. Applying updates through the DynDNS mechanism allows 
the method to maintain a consistent server presence, while virtual machines and their associated 
IP addresses may change. 

The network hiding method was successfully demonstrated in the presence of all three 
core types of web content under Apache: Static pages of plain html, Streaming pages containing 
video or file transfers, and stateful pages involving server side applications that maintain state on 
the server (e.g. shopping carts). 

3.2.5  Camouflage (Method #7). Most traffic in modern networks is between clients and 
designated servers, rather than client-to-client. As a result, servers represent high-value targets 
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for exploitation. Before a server vulnerability can be exploited, however, it must first be 
discovered and a clear picture of the operating environment on the server must be developed. 
The goal of this method is to increase attacker workload by camouflaging servers to appear to be 
running a different, potentially vulnerable operating system, encouraging the use of a known, 
detectable exploit.  

Several different tools are available for operating system and service detection; two of the 
most popular of these are NMAP and Nessus mentioned previously. At their core, these scanners 
operate due to an inherent issue in protocol specification and implementation: protocol 
specifications typically leave many implementation details up to the developer. This allows for 
multiple implementation strategies and ideas to be used in alternative products. When these 
design details diverge between competing systems, the differences can be observed by merely 
using the protocol and system fingerprinting can be achieved. NMAP and Nessus both exploit 
the differences in implementation details for their discovery process. For example, for operating 
system detection they have databases specifying which details are expected on which system. By 
examining the response to normal TCP/IP traffic, they discern which operating system the 
responses must have originated from. Similar systems exist for application-layer protocols in 
Nessus.  

Since detection is achieved by examining implementation differences, it is possible to 
create deception by modifying responses to normal traffic. Early uses of this idea, implemented 
in Morph, were able to transparently camouflage a system to appear as Windows 2000, 
OpenBSD, or Linux 2.4. The concept has also been used in FreeBSD, which scrubs its 
fingerprint so that it is not detectable by scanners. Linux 2.4 provides a program called IP 
Personality that allows it to take on alternative operating system characteristics (IP Personality). 
All of these packages focus on manipulating TCP/IP protocol details to prevent operating system 
detection. 

The technology developed under this method provides a general camouflage capability 
that presents a false server fingerprint. The capability is implemented as a table-driven finite state 
machine that operates across the entire protocol stack, simultaneously falsifying both operating 
system and service properties. It follows the normal transitions of the protocol stack but emits 
responses associated with an alternative system so as to provide camouflage. The false 
fingerprint may be created to provide known vulnerabilities, that if exploited can trigger an alert 
or honeypot the attacker. The camouflage has been demonstrated by disguising a Microsoft 
Exchange 2008 server running on Windows Server 2008 RC2 to appear as a Sendmail 8.6.9 
server running on Linux 2.6. Both the NMAP and Nessus network scanners were deceived into 
incorrectly identifying the Exchange server. It is important to recognize that camouflage need not 
be a perfect deception: it is sufficient to sow enough confusion that an attacker is unable to take 
timely actions. 

3.2.6  Hardware Hiding (Method #8).  In 2010 Xilinx, the leader by market share for FPGA 
products, announced its first-in-class Zynq “Extensible Processing Platform” (EPP).  Zynq, 
shown in Figure 4, combines rich FPGA logic with a dual-core ARM Cortex-A9 processor 
contained within the trusted boundary of a common die. The ARM’s dual-core Cortex-A series is 
the same architecture used in Apple’s iPhones. In 2011 Altera, number two by market share, 
answered the Zynq with their Hard Processor System (HPS) product – a similarly equipped dual-
core ARM Cortex-A9 processor with FPGA logic and a comparable peripheral set. Xilinx’s 
Zynq processor became commercially available in the third quarter of 2012.  Altera’s product 
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was released in the middle of 2013. These devices are now being rapidly adopted as a general 
building block for a broad range of embedded systems applications including automobile driver 
assistance, factory automation, consumer electronics, military radios, medical imaging, broadcast 
cameras, and both wired and wireless communications (including routers and switches). In 2014 
Xilinx and Altera announced next-generation devices that include additional logic, higher clock 
speeds, and 64-bit ARM Cortex A-50 processors. In 2014 Intel announced next-generation 
XEON processors with on-chip FPGA logic. 

Figure 4: The Zynq System-on-a-chip Architecture 

From a security perspective the impact of onboard FPGA logic is to make it possible to load 
hardware designs in addition to firmware and software onto the Zynq. As a result, security 
mechanisms can be embedded in a system in a way that is not visible to software running on the 
processor or embedded within flash (such as a malicious implants). In addition, the availability 
of on-chip encryption hardware opens the door to integration of full memory encryption 
(Method #5). These devices are not simply an incremental design evolution to embedded 
processors, but the onset of a radical new way to structure systems: They open the door to a new 
generation of secure operating systems and embedded applications, where core system 
components are completely hidden in hardware.  

The vulnerability of operating systems is often characterized as a “race to the bottom” of 
the software stack: if an APT is able to gain the lower most privileged levels of execution, it is 
able to hide. By hiding operating system structures read-only in hardware it is possible to own 
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the base of the stack in hardware and thereby guarantee that APTs are observable. This method 
has been explored from several different perspectives in this project.  Operating system internals, 
such as the Bear scheduler and all associated process structures, have been directly implemented 
in the FPGA providing not only higher levels of security, but also increased performance.  In 
addition, a proof of concept hardware monitor has been implemented that continually hashes 
process code from the FPGA – thereby allowing detection of code patching. The maturity of the 
available co-design tools was also assessed as part of these efforts and the resulting performance 
tradeoffs were quantified.   
 
3.2.7  Course-Grain Forensics (Method #9).  Stephen Kuhn, who was supported under an Air 
Force scholarship, conducted the work described in this method while thesis supervision was 
supported by the Attacking Time project. The work was conducted on Linux since the Bear 
system was in its early stages of development when the method was developed; the underlying 
mechanisms that enable this technology (Methods #1-4) are integrated into the current Bear 
hypervisor. 

The use of a minimalist hypervisor in the Bear system opened the door to discovery of 
zero-day exploits. The approach leverages the hypervisors ability to introspect into a virtual 
machine, running on top of it, and observe its state. Unfortunately, to maintain an account of 
malicious process actions, current hypervisors track every byte in memory transactions, 
significantly reducing system performance. To alleviate this burden, this work employs a novel 
course-grain, low overhead, tracking technology that can be incorporated within message-
passing microkernels. The technology lowers the recording burden by storing only those actions 
designating the trail of progress that can potentially originate from an exploit. This trail provides 
a new course-grained forensics technique for exploit discovery that correlates message traffic 
with process actions.  This approach uses the following core technologies: 

• Memory Introspection: A memory translation technology that makes it possible to 
observe arbitrary memory locations within a running microkernel from the hypervisor and 
decode the resulting information. This represents an enabling technology for new tools that 
are able to decode the content of memory, monitor all running processes, and/or unwind the 
function call stack. All of these higher-level tools can operate from the safety of an outside 
observer, the hypervisor, to prevent tampering with the results by any malicious code 
present in the kernel or higher layers of the system.  

• Event Tracking: A low-overhead tracking technology that provides detection and 
recording for events of interest for later analysis. This technology is not provided by 
hardware on Intel 64-bit architectures. Events that are of particular interest in exploit 
discovery are: process creation and inter-process communication. 

• Network Tracking: A low-overhead tracking technology that allows course-grain 
recording of network events. The record of these events provides the ability to correlate 
process creation history with network traffic/messages.  

• Automated Exploit Discovery: An automated, high-speed correlation technology that 
combines the history of process creation with the history of network traffic. This 
technology rests upon a unique database addressing scheme that facilitates identification of 
all packets that may have been associated with an intrusion, assuming an anomalous event 
has been identified.  It also illuminates what actions were taken by the attacker on the 
system after the intrusion.  
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Collectively these technologies are used to provide:  

• Operating system mechanisms to associate messages with process genealogy. This work 
involved novel techniques for observing virtual machine state, recording and correlating 
recorded network traffic.  

• Exploit discovery techniques and algorithms based on indexed, course-grain tracking of 
processes and elimination of messages. The latter significantly reduces the search space 
associated with exploit discovery.  

• An experimental study of forensic exploit discovery that locates test exploits against a 
known ground truth and quantifies the overheads associated with introspection, tracking, 
and traffic elimination. 

 
3.2.8  Resilience (Method #10).  This final method is concerned with resilience: the ability of a 
distributed application to operate through faults, errors, and computer network attacks. The 
applications are assumed to operate on multiple processors and share information through 
message-passing in a manner consistent with the industry standard -- MPI. Since computer 
systems are increasing in scale across the board—the number of processors per computer, the 
amount of memory, the speed and capacity of networks, etc. – a central goal is scalability: The 
ability to scale an application with the available technology. Two key questions were of central 
importance: 

1. How do we design an application that will operate through failures and attacks even if 
they are never detected?  

2. How to automate process management of distributed applications in a scalable manner? 
The work described here was developed at a time when the Bear operating system was in its 
early stages of development. Thus to make progress, it was developed on top of Linux using the 
rMP message passing primitives described previously. These primitives were implemented using 
macros that expanded directly into OpenMPI communication primitives. Thus all of this work 
transfers directly to the Bear operating system which provides a native implementation of rMP.  

A variety of approaches have emerged to provide reliability for distributed applications 
that rely on the static replication of resources. These include checkpoint/restart, process 
migration, and process replication. In contrast, computational resiliency provides reliability 
through dynamic replication of resources.   The Scalable Concurrent Programming Library 
(SCPlib), developed at Syracuse University in the late 1990‘s, was an early proof-of-concept for 
distributed and dynamic process replication.   SCPlib was a library that allowed application 
programmers to build resilient process groups and enable process failure detection with dynamic 
process regeneration.  However, the main conclusion from this research was that resiliency is too 
complicated for application programmers.  To be practical, the concepts need to be provided to 
distributed applications automatically and transparently. 

Figure 5 shows the relative impact of resiliency and static replication on the reliability of 
applications under attack.  Static replication alone provides graceful performance degradation to 
the point of failure because each attack reduces the number of replicas permanently.   In 
contrast, resiliency dynamically reconstitutes the desired number of  process  replicas  after  each  
attack,  allowing  the  application to continue operation with the same level of assurance.  The 
malicious actions have no long-term effect. 
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Figure 5.  Computational Resiliency and Static Replication 
 
The approach in this project built on the concept of resilience introduced in the SCPlib research 
but provides automatic and transparent resilience for large-scale concurrent applications. This 
approach is achieved by implementing resiliency mechanisms within the operating system.  A 
collection of novel operating system technologies have been designed to dynamically replicate 
processes, automatically detect inconsistencies in their behavior, and transparently restore the 
level of resiliency as the computation proceeds.    Figure 6 illustrates how this strategy is 
achieved.   At the application level, three processes share information using message passing. 
The underlying operating system directly implements a resilient view that replicates each 
process and organizes communication between the resulting resilient process groups. Individual 
processes within each group are mapped to different computers to ensure that a single failure 
or attack cannot impact an entire group. 
 

 
 

Figure 6.  Dynamic process regeneration 
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The base of the figure shows how the process structure responds to failure or attack. 
The figure assumes that an attack is perpetrated against processor 3, causing processes 1 and 2 to 
fail or to portray communication inconsistencies with other replicas within their group.    
Failures are detected by communication timeouts and message comparison.  These failures 
trigger automatic process regeneration; the remaining consistent copies of processes 1 and 2 
dynamically regenerate a new replica and migrate it to processors 4 and 1, respectively.  As a 
result, process resiliency is reconstituted, and the application continues operation with the same 
level of assurance. 

In order to achieve this approach, several features are required that are not directly 
available in modern operating systems.  Process replication is needed to transform single 
processes into process groups. Point-to-point communication between application processes must 
be replaced by group communication between process groups. Mechanisms to detect process 
failures and inconsistencies must be available to initiate process regeneration, and process 
migration is required to move a process from one processor to another.  Finally, as processes 
move around the architecture, it is necessary to provide control over where processes are 
mapped.  In order to prevent prohibitive communication costs,  process  management  policies 
are  used  to  maintain  locality within process groups.   This tactic enables locality-based 
failure detection, in which transit delays from replicated messages are used to predict an 
upper bound on the delay for communication timeouts. 

These basic resiliency capabilities add complexity to process management. Scalable 
solutions require distributed and automated implementation. Process scheduling algorithms must 
meet both  resiliency  and  performance  requirements: (1) Maintain locality between processes 
in the same process group. (2) Map process replicas to different processors. (3) Distribute the 
load across the system. 

The method developed involves novel operating system technologies that provide 
resilience for distributed applications. The significant contributions concern resiliency 
mechanisms and policies associated with a resilient message-passing technology, rMP.  The 
resiliency mechanisms achieve process replication, adaptive failure detection, and dynamic 
process regeneration automatically and transparently within an operating system.   Resiliency 
policies are explored through design and evaluation of alternative algorithms for distributed 
process scheduling.  Finally, an analytical framework has been developed to enable concrete 
reliability analysis of the proposed approach to resilience.  The contributions of this work 
include: 

• A Linux  prototype  of  the  rMP  technology  t h a t  provides  a  resilient  application
programming interface (API) and constitutes a minimalist alternative to the Message
Passing Interface (MPI). The API is implemented through a kernel-level communication
module that provides applications with automated resiliency mechanisms.

• A collection of failure detection algorithms based on adaptive communication timeouts
and message comparison. Adaptive failure detection uses process group locality as a
basis to detect anomalies in message delay during group communication.
Comparison of replicated messages allows detection of process inconsistencies through
majority voting.

• Replication   and   migration   mechanisms   enable   transparent   regeneration   of
message-passing processes.  Regeneration is accomplished by blending prior work in
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Linux-based migration with the distributed communication support of the rMP 
technology. 

• The problem of non-determinism in resilient applications is introduced  and explored.  
Non-deterministic processes pose a significant challenge for replication technologies.  A 
preliminary solution is proposed that preserves resiliency for rMP applications. 

• An analytical framework is presented that includes a collection of performance 
benchmarks and analyses that allow the overhead of resilience to be evaluated. 

• Resilient process management policies are explored through a comparative analysis of 
robotic swarming algorithms for distributed process scheduling. Swarming algorithms 
enable distributed processes to achieve a common goal while imposing swarm cohesion 
(i.e. locality between members of a swarm).  The basis for the comparison is a novel  set  
of  benchmarks  with  an  associated sensitivity analysis that capture the primary 
attributes of the process management problem. 

• A novel DIFFUSE algorithm is presented, inspired by the notions of heat diffusion and 
robotic swarming. Heat diffusion is emulated to distribute processes across scalable 
computer architecture. Robotic swarming techniques are used to maintain locality 
between replicated processes. This work combines concepts from both perspectives to 
integrate the goals of resilience and performance in a single strategy. 

• A second analytical framework is developed to perform reliability analysis of the rMP 
design with respect to common fault and threat models 

 
 

4 RESULTS AND DISCUSSION 
 
4.1 CORE RESULTS.  
The core results from the project are constituted in proof-of-concept prototypes that realize the 
concepts and methods described in Section 3. However, some particularly noteworthy aspects of 
these implementations are described here.  

The expected number of potential vulnerabilities in a code base is roughly proportional to 
the number of lines of code [29]: approximately 0.16 errors per thousand lines. The Bear kernel 
and hypervisor were designed to extensively share code in order to minimize the attack surface 
(Method #2).  As noted earlier, these have considerable overlap in functionality.  For example, 
memory management, PCI device auto-detection, and interrupt configuration must be performed 
at both levels.  Accordingly, the Bear source code consists of self-contained modules that can be 
compiled and used in either the hypervisor or the kernel to provide these services.  Furthermore, 
these code modules share generic implementations of well-known data structures, including a 
linked list and a hash table.  These flexible implementations eliminate code redundancy. 

To demonstrate the relative size of the Bear attack surface, we compare the number of 
lines of code (LOC) in the kernel and hypervisor with those of other state of the art systems.  The 
lines of code were counted using the open-source code analyzer cloc using only C sources and 
assembly code.  As a result, the Bear results are accurate while the other results represent a 
lower-bound. Collectively, the Bear hypervisor and micro-kernel combined offered three orders 
of magnitude less code than monolithic solutions at the time of publication. This results into a 
correspondingly small attack surface that aggressively applies the latest hardware protection 
mechanisms, with a small number of predicted vulnerabilities. 
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Table 2: Kernel Comparison – Lines of Code 

Kernel Lines of Code 
Bear Kernel 9,454 (7,399 

shared) 
Linux Kernel 10,639,311 
FreeBSD 3,707,252 
MINIX 3.2.0 16,109 

Table 3: Hypervisor Comparison – Lines of Code 

Hypervisor Lines of Code 
Bear Hypervisor 8,701 (7,399 shared) 
Xen 4.1 262,191  (+ Dom0 

kernel) 
VMWare ESX >150,000  (+ service 

terminal) 

The number of lines of code in the 64-bit hypervisor and microkernel combined was 10,756 at 
the time of publication, two-thirds the size of the 32-bit MINIX kernel, with an expected defect 
incidence of less than two errors for a mature code base. The corresponding attack surface for the 
micro-kernel executable image was 62.02 Kbytes, the hypervisor was 54.78 Kbytes, bringing the 
combined attack surface size to 116.8 Kbytes. On ARM processors the microkernel is less than 
3000 lines of code. Even with anticipated multicore expansions we would not expect the size of 
the system and attack surface to grow beyond double these numbers. This is easily capable of 
residing in a modern cache in its entirety. 

Despite the desire for secure systems, the reality is that no system will see practical use 
without acceptable performance. To establish a baseline, the Bear system was benchmarked 
against Ubuntu Linux using the standard AIM9 benchmarking suite; the results are shown in 
Table 5. Bear was set to context switch every 10msec by default; therefore the Add benchmark, 
for example, involves approximately 15,000 context switches. Although this number is small 
compared to the number of addition operations, the benchmark would highlight adverse 
performance in memory management or interrupt handling. In contrast, Linux includes 
optimizations not present in Bear that allow processes to run for longer time slices based on the 
system state.  

Obviously, our presumption is that Bear will be slower: the Linux kernel was released in 
1991 and has been under continuous improvement and optimization ever since. In contrast, Bear 
is a research prototype developed primarily to explore resilience over the last two years. In 
addition, Bear used a simple file system and a simple, slow disk driver as a stopgap measure 
until a more suitable read-only file store could be integrated.  Thus, benchmarks such, as fork 
and exec, involving file operations are dominated by the disk driver’s (lack of) performance.  
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Table 4: Performance Comparison 

Routine Ubuntu 
12.04 

Bear w/o 
Hypervisor 

Bear with 
Hypervisor 

Add 144 sec 150 sec 151 sec 
Mul 250 sec 263 sec 261 sec 
Div 1335 sec 1807 sec 1812 sec 
Fork 0.3 sec 3.2 sec 3.2 sec 
Exec 0.3 sec 3.2 sec 3.2 sec 

 
 Our primary conclusion is that the additional overhead created by the hypervisor, our 
source of kernel resilience, is negligible. All 5 tests show that enabling the hypervisor does not 
lead to a significant performance loss – either in time or CPU cycles. Furthermore, Ubuntu 12.04 
running on a Linux kernel 2.6.38-15-generic is only 5% faster than Bear on the core Add and 
Mul benchmarks.  As expected, the optimizations present in Ubuntu result in better performance 
on other benchmarks.  However, there exist simple optimizations to e.g., Bear’s admittedly naïve 
implementations of fork and exec, that could substantially increase performance with little effect 
on attack surface.  
 
4.2 MEMORY ENCRYPTION (METHOD #5) 
Our research associated with memory encryption solves the problem of increasing attacks on 
data in use in memory (e.g. cold boot attacks, memory scraper viruses, bus snooping and 
injecting, etc.) which has been exacerbated by the growing size of memory, changing usage 
models which invalidate old assumptions of volatility and increasing adoption of full disk 
encryption (FDE).  In order to mitigate this problem, the idea of increasing the artificial diversity 
of RAM in order to increase attacker workload to the point where the costs of attack outweigh 
the benefits via memory encryption was explored.  In this way, commercial systems can be 
protected since criminals typically target the most vulnerable systems.  Further, time sensitive 
information such as that used in military operations would not be available to attackers until after 
its useful life (e.g. after a mission is complete).  

While there have been three decades of research into memory encryption, that research 
has focused primarily on the design of the ideal monolithic processor with a hardware engine 
integrated into the fetch-decode-execute gateway.  Other, more recent research has focused on 
software only approaches but these have proven too costly in overhead.  However, recently there 
has been a commoditization of security hardware into processors such as the Intel AES-NI and 
various ARM architectures.  The hypothesis in this work was that memory encryption could now 
be implemented with acceptable overheads using this nascent security hardware.  
  The hypothesis was explored through the various prototypes described in Section 3.2.3 
from static encrypted processes (SEP) and through dynamic (DEP) and mutually distrusting 
processes (MDP). SEP sought to introduce synthetic diversity into memory to protect 
microcontrollers and other real-time processors commonly used in industrial control systems (e.g. 
lacking a memory management unit and little to no cache) via a one-time decryption into 
internally protected space.  This technique produced very little overhead. DEP sought to 
introduce synthetic diversity into memory to protect smart phone and other mobile computing 
devices characterized by multitasking operating systems including memory management units 
and cache.  For the first time in the memory encryption literature, implementation on commodity 
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hardware enabled exploration of protection at process segment granularity.  Protection of code 
and the PCB-stack data was transparent to processes (and developers) and the overhead was 
quite modest since that overhead was only experienced at context switch time (approximately 
200 times per minute).  Protection of heap objects is transparent for objects that fit into iRAM.  
However, for large structures that do not display temporal/spatial locality changes were required 
to application code and the protection was more expensive. Still, the results were better than 
those in the literature.  Further, heap objects that fit into iRAM demonstrated better performance 
than unprotected versions since iRAM has shorter access times than eRAM.  Finally, the DEP 
approach was extended to protect mutually distrusting processes (MDP) from each other via an 
increase in key granularity (i.e. a unique key per process) resulting in a very modest (~1900 
cycles) increase in overhead. 

These techniques protect against software and hardware based confidentiality and 
integrity attacks and are portable to currently deployed general-purpose, security-enhanced 
processors.  An analytical framework was presented to include performance benchmarks and 
analyses on the overhead of memory encryption at process segment granularity.  This work is 
the first in the genre to identify and explore the integrity protections afforded by memory 
encryption.  The problem of self-modifying code associated with memory hierarchy interaction in 
a memory encryption system was introduced and explored.  Finally, memory encryption 
techniques were explored through a comparative analysis of three decades of research and 
proposed solutions.  Widely varying assumptions and experimental conditions were controlled to 
provide a basis for comparison of that research. 

These systems and techniques were demonstrated in proof-of-concept implementations 
and exemplars.  Memory encryption has been implemented to provide automatic and transparent 
protection for applications. This transparency is achieved through extension of a secure 
microkernel that was ported to an ARM Cortex A8 processor.  The techniques have been 
implemented as modifications to linker scripts, initialization, process creation and context 
switching routines as well as new modules for interfacing with the encryption decryption unit 
(EDU).  These techniques have been demonstrated by encrypting processes while they reside in 
external RAM (eRAM) thereby adding synthetic diversity.  The implementations cover a range 
from an unsophisticated processor with no memory management unit (MMU) and cache to one 
with an MMU and 192 KB of L1/L2 cache.  Additionally, various granularities of protection are 
explored.  Finally, exception-handling routines have been developed and experiments executed 
to understand the protections afforded against code and data injection.  The low overhead results 
for typical workloads (~1.3%) and ability to easily optimize even the worst-case examples to 
~7% overhead indicate that memory encryption is viable today on security-enhanced commodity 
processors.  
 
4.3 HARDWARE HIDING (METHOD #8).  
Several results particularly notable from our work with hiding in hardware on the Zync 
processor: 
 

• A hidden hardware scheduler significantly decreased the operating system attack surface 
hiding up to 90% of the core kernel logic and data structures in the FPGA.  

• There was a simultaneous improvement in performance: up to 50% for hand-coded 
VHDL. 
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• When pushing data from the processor to the FPGA fabric, there were architectural
limitations in the processor-FPGA interconnect that limited performance.

• FPGA logic utilization was extremely low, only 2-5% for the scheduler, allowing
significant room for expansion in the use of the FPGA.

• The Xilinx Vivado design suite is advancing the state-of-the-art of integrated C/HDL co-
design. Currently, however, the C, HDL, and high-level synthesis (HLS) tool chains are
not integrated sufficiently to support fully automated transformation of C-code into
FPGA bit-streams.

• There are several constraints in HLS based on incomplete support for the high-level
languages that limit its utility.

• There are additional limitations to HLS interfaces between the processor and FPGA that
inhibit performance of transformed code; the current generation of HLS tools resulted in
a 50% reduction in performance over the hand-coded VHDL.

• A sha256 hardware monitor performed at 40 times the performance of an equivalent C
code implementation and was hidden in the FPGA.

Our general conclusion is that the current co-design tools are inadequate for complex systems 
efforts in which hardware specification, in a high-level language such as C, is automatically 
translated into combination processor-FPGA implementations. Instead there are two separate 
functional tool chains: standard ANSI-C compilers for the dual-core A9, and Verilog/VHDL for 
the FPGA fabric. However, it is possible to accelerate application of the technology base for co-
design through the exploration of new hidden security mechanisms. We believe that good 
exemplars will point the way for early adoption of system-on-a-chip devices in DoD 
applications.  

5 CONCLUSIONS 

Military systems have gained tremendously from the cost and flexibility benefits afforded by 
widespread adoption of commercial off the shelf (COTS) technology -- to the point where it is 
now difficult to imagine how we might operate, with similar levels of assurance and efficiency, 
using non-COTS methods. However, in times of tension, critical mission capabilities must 
continue to operate, even if major components of “the network” are unavailable and the systems 
upon which we rely are repeatedly compromised by error, fault, or malicious action. It therefore 
behooves us to apply Occam’s razor to pare back the layers of complexity that have been thrust 
upon us by commercial vendors, in light of the controlled environment in which DoD operates, 
to selectively improve resilience and increase attacker workload. 

Our approach is to use COTS subsystems, accepting their imperfections, but augmenting 
them with ideas from the fault-tolerance, distributed computing, and encryption communities. 
The research described here has explored how we might pursue this goal using three basic non-
deterministic precepts:  

• Don’t trust what you have – continually validate, replicate and regenerate,
• Don’t advertise what you do – continually hide and camouflage, and
• Don’t be predictable – instead be mobile and non-deterministic.
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The Bear system uses overlapping regenerative techniques, combined at every layer of the 
system, from the user to the hardware. These methods deny surveillance by continually 
invalidating surveillance data, hiding in the network, and using camouflage. Persistence is denied 
by non-deterministically replacing, refreshing, replicating, diversifying, and/or relocating 
components so as to continually re-establish trust. The methods can be incorporated individually, 
as independent modes, or collectively and continuously for critical missions. 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

ANSI American National Standards Institute 
APT Advanced Persistent Threat – cyber implant that persists and hides 
ARM  Advanced RISC Machines – a type of computer processor 
BIND  Domain Name Service software 
CPU  Central Processing Unit 
COTS  Commercial of the shelf  
DEP Dynamic Encrypted Processes – encryption technology 
DHCP Dynamic Host Configuration Protocol  
DNS Domain Name Service 
EPP Extensible Processing Platform – a type of processor 
EPT  Extended Page Tables  
eRAM external Random Access Memory  
FDE Full Disk Encryption 
FPGA Field Programmable Gate Array 
FSM Finite State Machine  
HLS  High Level Synthesis 
HPS Hard Processor System – a type of processor 
HUMINT Human Intelligence  
IDS  Intrusion Detection System  
IOMMU input/output memory management unit 
IP Internet Protocol 
KVM Kernel-based Virtual Machine 
MAC Address Media Access Control Address – identifies a network interface 
MDP Mutually Distrusting Processes – encryption technology 
MINIX mini-Unix -- a micro-kernel based operating system 
MMU  Memory Management Unit 
MPI Message Passing Interface software system 
MULTICS Multiplexed Information and Computing Service – an operating system 
NMAP Network Mapper software 
OODA  Observer Orient Decide Act  -- decision cycle  
RAM Random Access Memory 
ROM Read-only memory 
ROP Return Oriented Programming – a form of cyber attack 
rMP resilient Message Passing software system 
SEP Static Encrypted Processes – encryption technology 
SIGINT Signals Intelligence  
TCB Trusted Computing Base 
TTP Tools, Techniques, and Procedures  -- operational aspects 
VHDL VHSIC Hardware Description Language  
VT-d Intel virtualization technology for Directed I/O (devices) 
VT-x Intel virtualization technology 
XD-bit  Execute Disable bit (or NX– no execute) – a form of memory protection 

Approved for Public Release; Distribution Unlimited
29


	1 SUMMARY
	2 INTRODUCTION
	3 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 ASSUMPTIONS.
	3.2 Methods and Procedures.

	4 RESULTS AND DISCUSSION
	4.1 Core Results.
	4.2 Memory Encryption (Method #5)
	4.3 Hardware Hiding (Method #8).

	5 CONCLUSIONS
	6 REFERENCES
	LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS



