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Abstract

This project focused on DDDAS-motivated developments in support of space weather monitoring and
prediction. The project involved four interrelated tasks relating to physics-driven adaptive modeling, adap-
tive data assimilation with input reconstruction, event-based sensor reconfiguration, and optimization of
scheduling. For data assimilation, the emphasis has been on model refinement. The problem of estimat-
ing the eddy diffusion coefficient using total electron content measurements has led to new techniques for
determining the essential modeling details needed by the retrospective cost model refinement technique.
For spacecraft design, multidisciplinary optimization design techniques were applied to the design of small
satellites accounting for multiple vehicle subsystems. For download scheduling, optimization techniques
were used to account for multiple spacecraft and ground stations.
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1 Project Objectives

Space weather can have a catastrophic effect on operational satellites and ground systems. The ability to
monitor space weather is thus important to both the U.S. civilian and military infrastructure. With this
motivation in mind, this project addresses aspects of each of the four DDDAS science and technology
Frontiers. For the Applications Modeling Frontier, we consider physics-driven adaptive modeling, where
current conditions elicit the need for an appropriate physics model. For the Mathematical and Statistical
Algorithms Frontier, we consider adaptive data assimilation with input reconstruction, where the ability
to reconstruct inputs can enhance the ability to estimate the state of a system and improve the accuracy of
the underlying model. For the Application Measurement Systems and Methods Frontier we consider event-
based sensor reconfiguration, where a measurement system modifies its functionality based on operational
priorities. For the Advances in Systems Software Frontier we consider hierarchical closed-loop scheduling,
where communication links and their constraints are accounted for in both autonomous agent-based and
centralized software systems.

2 Summary of Main Results

2.1 Model Refinement and Input Reconstruction

For modeling the ionosphere-troposphere, we use the Global Ionosphere-Thermosphere Model [77], which
is a CFD code with atmospheric chemistry, as the basis for data assimilation, input estimation, and subsystem
identification. These objectives were addressed by applying a specialized technique that is being developed
under this project. This technique is called retrospective-cost-based adaptive input and state estimation
(RCAISE). We applied RCAISE to GITM in order to estimate unknown drivers (inputs) to the ionosphere-
thermosphere [2, 24]. This approach complements ensemble-based methods as in [66], which applies the
ensemble code DART to GITM, since the main goal of RCAISE is to estimate the unknown input rather than
obtain estimates of all model states. Since RCAISE is not an ensemble code, it is highly computationally
efficient compared to DART, but, unlike DART, it provides best estimates rather than a probability density
function. A related approach was previously demonstrated in [25] to identify a subsystem cooling model
whose dynamics are inaccessible in the sense that neither the input nor the output of the cooling subsystem
dynamics are measured.

Much of this effort has focused on determining the essential modeling details required by RCAISE for
both input estimation and model refinement. For linear systems, this information is well understood. How-
ever, for application to space weather modeling, GITM is both extremely nonlinear and high dimensional.
Our goal is thus to extract the essential modeling details from numerical simulations. For earlier studies,
numerical testing was used to determine this information. However, an additional goal was to estimate
the eddy diffusion coefficient (EDC) using total electron content (TEC) data. TEC data is available from
ground stations located worldwide, and thus RCAISE is able to work with multiple measurements. Numeri-
cal testing has shown that estimating this modeling information is computationally expensive, and thus more
efficient methods are needed.

In previous work, RCMR was used in [25] to estimate NOx cooling profile using GITM and simulated
spacecraft measurements. This study was limited to a one-dimensional version of GITM. RCMR was sub-
sequently used in [18] to estimate the photoelectron heating coefficient in a fully three-dimensional version
of GITM using both simulated and real satellite measurements. The applications in [25] and [18] demon-
strated the ability of RCMR to adaptively refine a nominal model by iteratively updating an estimate of an
unknown parameter modeled by an adaptive subsystem model. This parameter is modeled as an unknown
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Figure 1: Retrospective Cost Model Refinement (RCMR) architecture. The main physical system is inter-
connected by means of feedback with an unknown subsystem that models the uncertainty in the physical

system. RCMR uses the model output error z
4
= y0 − ŷ0 to adjust the adaptive subsystem model to estimate

the unknown subsystem. The update algorithm is based on retrospective cost optimization.

subsystem, as shown in Figure 1, where the input signal ŷ and output signal û of the unknown subsystem
are not measured and thus cannot be used to estimate the unknown subsystem.

Alternatively, for the objective of estimating an unknown external input, RCAISE was used in [2] to
estimate the unknown driver F10.7 in a fully three-dimensional version of GITM using both simulated and
real satellite measurements. In this case, as shown in Figure 2, the adaptive driver estimator is updated to
obtain an estimate ŵ of the unknown driver w. These studies demonstrated that RCMR and RCAISE can
effectively use data parameter, state, and input estimation within the context of a highly nonlinear, large-
scale model consisting of thousands of state variables.

2.2 Estimation of the Eddy Diffusion Coefficient

In this section we briefly describe work where the goal is to estimate the eddy diffusion coefficient (EDC)
of the thermosphere. The drag force felt by low-Earth orbiting objects is linearly proportional to the mass
density of the thermosphere. Uncertainties in thermospheric mass density variations are the major limit-
ing factor for precise low-Earth orbit determination. The perturbation of the thermospheric mass density is
strongly controlled by the energy deposited into the upper atmosphere. The difference in the thermosphere
mass density responses to different sources of energy input has been investigated, and the spatial and tem-
poral variations of the thermospheric mass density during a series of idealized substorms were studied using
the Global Ionosphere Thermosphere Model (GITM) [64]. The mass density response to different types of
energy inputs was shown to have strong local time dependence. In addition, the thermosphere mass density
response to different sources of energy input is a slightly nonlinearly system, and the non-linearity grows
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Figure 2: Retrospective Cost Adaptive Input and State Estimation (RCAISE) architecture. RCAISE uses the

estimation error z
4
= y0 − ŷ0 to adjust the adaptive driver estimator, which is used to construct an estimate

ŵ of the unknown driver w. The update algorithm is based on retrospective cost optimization.

with the level of energy input.

The Eddy diffusion coefficient represents the mixing of the lower thermosphere composition. By control-
ling the thermo-conductions and the altitudes where the species begin to diffuse according to their particular
scale height, variations in the Eddy diffusion coefficient strongly affect the upper thermosphere, and hence
the ionosphere total electron content (TEC), which is a key parameter in the ionosphere. A goal of this work
is to understand how EDC affects TEC. The effect of EDC variations on TEC was investigated in detail
under various solar conditions, including the dependence of EDC on the F10.7 index.

The thermosphere composition change has a strong effect on the thermosphere mass density response,
especially in the oxygen/helium transition region; however, most physical models do not include the effect
of helium. To better represent the thermosphere mass density perturbations during geomagnetic storms, the
helium component is implemented in the GITM model. In ongoing research, the morphology of helium
simulated by the GITM model is being investigated and compared with measurement from the Atmosphere
Explorer (AE) satellite.

The parameter EDC plays a key role in GITM and many CFD (computational fluid dynamics) codes.
In particular, EDC in GITM models the turbulent mixing in the upper atmosphere. According to the mass
continuity and the momentum equations, the altitude profile of the neutral constituents changes from fully
mixing at lower altitudes, where turbulent mixing prevails, to molecular diffusion at higher altitudes (above
110 km). The value of EDC represents the intensity of the turbulent mixing, which is a key factor in
controlling the upper atmosphere composition profiles.

In practice, it is challenging to estimate EDC from ground-based and satellite measurements [39, 58,
83], and efforts to estimate the value of EDC based on theoretical analysis have been made by [1, 41, 73]
Estimates of the EDC value based on measurements and/or theoretical modeling range from 25 to 1000

3
DISTRIBUTION A: Distribution approved for public release.



m2/sec. In view of these diverse estimates, it is desirable to develop techniques that can estimate EDC
based on the available data.

Figure 3: Simulated Ground Locations for Total Electron Count Measurements. Each ”+” denotes the
location of a simulated ground location for measurements of total electron count (TEC). Simulated data
from these locations is used by RCMR to estimate the eddy diffusion coefficient in the thermosphere.

RCMR and RCAISE depend on modeling information about the system being considered; this modeling
information can be viewed as a reduced-order model, or as tuning parameters, since often only a small
number of parameters are needed. For a low-dimensional linear system, the required modeling information
can be extracted in the form of the impulse response. For DDDAS applications, however, our interest is in
high-dimensional nonlinear systems, such as the thermosphere as modeled by GITM, where the number of
states may be as large as 107. GITM is implemented by a FORTRAN code that captures diverse physics
including fluid dynamics, thermodynamics, chemical kinetics, and electrodynamics. For this application, no
analytical model is available, and it is not possible to analytically extract the required modeling information
due to the complexity of the physics. Therefore, we typically implement RCMR and RCAISE using a
small number of tuning parameters determined by numerical testing. As we have found in relation to the
estimation of EDC using TEC measurements, this approach is inefficient.

What is needed to make RCMR/RCAISE a truly practical tool is a reliable, systematic, and easily imple-
mentable technique for obtaining the tuning parameters required by RCMR/RCAISE. One approach, which
we have tested on low-order examples, involves iterative refinement of the tuning parameters that comprise
the filter Gf . For a fixed data window, initial tuning parameters are chosen and used to obtain a subsys-
tem model. This subsystem model is merged with main system model, and the resulting “closed-loop”
impulse response is computed. The impulse response parameters are then used as tuning parameters within
an updated filter Gf for re-estimating the unknown subsystem, and the process repeats using the same data
window used in previous iterations. Tests have shown that this iterative filter refinement approach provides
fast response from a possibly poor initial choice of Gf and is efficient in the sense that only limited data
window is needed.

To illustrate this technique, consider a 2nd order linear system where A11 is uncertain. We assume that
the nominal model of Â is such that Â11−A11 = ∆A11 = 1. We constructGf from the impulse response of
transfer function from û to ŷ0. In subsequent iterations, Gf is refined using the updated value of Â. Figure
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(a) (b)

Figure 4: (a) RCMR estimate of ∆A11 with iterative filter refinement. The filter Gf is refined after each
iteration based on the updated estimate of ∆A11. Note that the data window for each iteration consists of
only 10 time steps, RCMR is switched on after 5 time steps, and one-step estimation of the estimate of ∆A11

is achieved at the 3rd iteration. (b) Estimate of ∆A11 at the end of each iteration. After each iteration, Gf is
refined using the updated estimate, and is used in the next iteration.

4(a) shows the estimate of ∆A11 in each iteration. Figure 4(b) shows the estimate of ∆A11 at the end of
each iteration.

This Gf refinement technique has the added advantage that refinement of Gf is implemented on the same
data set, and thus only a small amount of data is required to increase the rate of convergence. The final refined
filterGf is then used on the remaining data set. For nonlinear systems, this technique can simplify the numer-
ical testing procedure for constructing Gf . If successful on large-scale applications such as GITM, this iter-
ative filter refinement technique will significantly simplify the implementation of RCMR/RCAISE on new
and challenging applications. In particular, this technique will facilitate the application of RCMR/RCAISE
with greater assurance of success.

2.3 Cubesat Technology

An additional component of this project was the development of post-launch calibration techniques for
spacecraft that collect data for atmospheric modeling. This effort ties into the development of Cubesats
at the University of Michigan, several of which are currently in orbit [11, 22, 78]. New techniques were
developed for calibrating on-board sensors after the spacecraft reaches its specified orbit. In particular,
low-cost photoelectric and magnetic-field sensors typically lose calibration due to the launch and space
environment. Through a combination of physics modeling and data analysis, it is shown in [89] that the
accuracy of on-board sensors can be enhanced through ground-based re-calibration. This re-calibration
accounts for time-varying electrical and magnetic fields, the Earth’s spatially varying magnetic field, and
sensor degradation.

Additional research has focused on design studies for spacecraft configurations. In particular, multidis-
ciplinary design optimization techniques were applied in [51] to optimize multiple spacecraft subsystems,
including power and communications subsystems. In addition, a study of photovoltaic power generation
constraints due to spacecraft solar panel geometry, orbital effects, and self-induced shadowing is described
in [61].
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2.4 Scheduling for Satellite Data Downloading

The last component of this project addresses the challenges that arise from transferring data from a con-
stellation of satellites. Data transfer is limited due to power and energy constraints, orbit trajectory, and
the location, gain, and field of view of available ground-based stations. This leads to a capacity-constrained
scheduling problem. These issues were addressed by developing real-time scheduling algorithms for model-
ing and optimizing space networks to optimize communication capacity [86, 88]. Research includes detailed
investigations of download-scheduling techniques for configurations involving multiple satellites and ground
stations [19, 62, 87].

2.5 Student Training

This project partially supported several students who received the Ph.D. degree, namely, Sara Spangelo,
John Springmann, and Asad Ali, as well as postdoc Angeline Burrell. Continuing students include Ankit
Goel in Aerospace Engineering as well as postdoc XianJing Liu. Brian Lemay and Jeremy Castaing are
expected to complete their Ph.D. degrees in 2016 and 2017, respectively.

Two students supported by this project were recognized for their technical contributions. John Spring-
mann was the winner of the Student Paper Competition at the AIAA 2013 Small Satellite Conference
for [90]. Jeremy Castaing received honorable mention in the Student Paper Competition at the AIAA 2014
Small Satellite Conference for [19].

3 Background: Space-Weather Monitoring for Safety and Reliability

The near-Earth environment, in particular, the ionosphere-thermosphere, changes in response to solar phe-
nomena. These phenomena include massive ejections of charged particles, which can disrupt the upper
atmosphere and magnetic field of the Earth. These changes can have catastrophic effects of various types.
First, changes in electrical properties affect the transmission of radio waves, which degrades the accuracy
of GPS. Next, changes in density and wind speed affect the orbits of both operational satellites and de-
bris. These orbital changes make it difficult to predict the possibility of collisions and take evasive action.
Collisions have destructive consequences, and lead to more debris, which further exacerbates the problem.
Finally, space weather can induce ground currents, which can destroy electrical transformers. The arti-
cle [53] describes the potentially catastrophic consequences of such events, which have occurred several
times during the last century and whose reoccurrence is thought to be inevitable.

The accuracy of predictions of satellite trajectories through the upper atmosphere depends on the ac-
curacy of the drag model. The drag force Fd is modeled by Fd = −1

2ACdρ‖Vs − Vw‖2, where A is the
projected surface area of the satellite, Cd is the drag coefficient, ρ is the density, Vs is the velocity of the
satellite, and Vw is the velocity of the upper atmospheric wind that the satellite encounters. In the upper
atmosphere, the wind is typically 200-400 m/s, while the satellite orbital velocity is on the order of 7500
m/s; therefore, the wind is typically ignored. During strong upper atmospheric storms, however, the winds
can increase beyond 1000 m/s. The density ρ is even more variable. For example, from night to day, ρ
can increase by a factor of two. This means that as the satellite orbits (in 90 minutes), it traverses from
the sunlit dayside to the colder nightside, encountering very different drag conditions. Furthermore, from
solar minimum conditions, when the sun is dimmest in X-ray wavelengths, to solar maximum (5-6 years
later), when it is brightest in those wavelengths, the nominal density can increase by more than an order of
magnitude. Density can also increase dramatically on short time-scales; for example, during a storm ρ has
significant localized structure and, globally averaged, can increase by a factor of two or three in just a few
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hours (3-4 orbital periods). These types of storms cause the Joint Space Operations Center to miscalculate
the trajectories of thousands of objects, and days of effort are needed to re-acquire their orbital positions.

Fig. 5 illustrates the variation in ρ observed by the CHAMP satellite [10] over four days, during which
two large storms occurred. The upper plot shows 1-minute averaged data, while the lower plot shows data
averaged over a 90-minute orbit. The maximum density observed by the satellite is roughly 28 × 10−12

kg/m3, while the smallest density is about 4×10−12 kg/m3, that is, a factor of seven smaller. The variability
observed over the orbit in the upper plot is a result of the satellite passing through the warm summer dayside
into the cold winter nightside. When the data are averaged over an orbit, increases during the storm times
are apparent. The rises are very fast, and ρ approximately doubles over the course of a few hours.

Empirical models of the upper atmospheric density are used to predict orbital trajectories. Since these
empirical models were found to lack the ability to accurately estimate ρ, the Department of Defense launched
approximately 200 spheres, which simply orbit the Earth and are affected by the drag. Their position is
determined by radar twice a day, so that the empirical models can be “corrected” by scaling to compensate
for the global error. Although these empirical models are easy to run, they are crude and have limited
accuracy.

The most proactive approach to dealing with the effects of space weather is to sense disturbances at the
earliest possible stage and take evasive action. Long-term (up to three-day) prediction requires measure-
ments of solar activity collected by spacecraft in solar orbit as well as spacecraft at the Lagrangian point that
monitor the solar wind. These sensors provide advance knowledge of solar storms, which can then be used
to predict the impact on the ionosphere-thermosphere. The project that we propose focuses on one com-
ponent of the space weather problem, namely, monitoring of the ionosphere-thermosphere. As we describe
below, this objective requires multiple transformative advances in DDDAS.

4 Relevance of DDDAS to Space Weather Monitoring

The long-term motivation for this DDDAS project is to develop a constellation of Cubesats that can provide
data to dynamically monitor the ionosphere-thermosphere. A constellation of approximately 40 Cubesats in
different orbits would provide the ability to monitor the atmosphere in a global 24/7 manner. Each Cube-
sat would be equipped with a suite of sensors for monitoring properties of the ionosphere-thermosphere.
Data would be stored on-board and communicated to the ground where it could be used for modeling and
prediction.

The operation of this constellation, however, requires multiple transformative advances in DDDAS. For
starters, each Cubesat has limited energy and power, which constrains the ability of each Cubesat to send
and receive data. The power needed for communication depends partially on the ground station, and ground
stations vary widely in their ability to send and receive data as well as their availability, which can change
from hour to hour. Further complicating the communication problem is the fact that each Cubesat is in a
different orbit and has only partial information about the availability of ground stations along its path. At
the same time, the ground controller has limited ability to communicate with each Cubesat to update it on
ground-station availability.

While these issues suggest the dynamic nature of the problem of the data collection problem, the DDDAS
nature of the problem becomes much more complex when the dynamics of the atmosphere are taken into
account. Consider, for example, the following scenario. Each Cubesat has an on-board GPS system, and it
also has some computational ability that it can use to predict its own location. When a Cubesat’s predicted
location varies significantly from its measured position, it can infer the presence of perturbations to the
atmospheric density. The Cubesat can then begin to collect data at higher resolution than normal and, at the
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same time, must determine an efficient means for transmitting its data to a ground station. The transmitted
data are ultimately collected centrally, where it can be used for data assimilation. The results of the data
assimilation, which must be performed at nearly a real-time rate, can be used to determine whether the
disruption to the ionosphere-thermosphere is significant. If so, additional Cubesats can be enlisted to begin
data collection in an optimal configuration and at an enhanced rate, while the downlinking for each Cubesat
must be scheduled “on the fly” based on priorities set by the data assimilation.

This is only one scenario demonstrating how sensing, scheduling, data assimilation, and analysis of the
results must work together to monitor the ionosphere. The key point is that each component of this system
is dynamic and data driven, and that data assimilation must interact with data collection and vice versa in
real time. This application thus reflects the goals, challenges, and opportunities of the DDDAS paradigm.

DDDAS seeks transformative advances in four frontiers, namely, Applications Modeling, Mathemati-
cal and Statistical Algorithms, Application Measurement Systems and Methods, and Advances in Systems
Software. Research in each frontier is motivated by the dynamic data-driven aspects of the Cubesat con-
stellation, data assimilation, and space weather conditions, all of which are essential to the overarching goal
of monitoring space weather in real time. To achieve the required advances in each frontier, the following
sections describe relevant research in each area. Each section describes the motivation for DDDAS-related
research within the context of space weather monitoring along with recent research advances.

5 DDDAS Frontier: Applications Modeling

5.1 Context and Motivation within DDDAS

The foundation for space weather monitoring is a first principles model of the upper atmosphere, namely,
the Global Ionosphere-Thermosphere Model (GITM) [77], which provides the basis for data assimilation
algorithms. GITM is a 3-dimensional spherical code that solves the Navier-Stokes equations for the thermo-
sphere. These types of models work better than empirical (ad hoc “correction”) models because they capture
the dynamics of the system instead of snapshots of steady-state solutions, which are what most empirical
models provide. Furthermore, first principles models, such as GITM, model the winds that can influence the
drag. In order to accurately predict ρ and Vw in the upper atmosphere, GITM considers the densities of N2

and O2, which are the main constituents at 100 km altitude, and NO, which becomes more dominant in the
upper atmosphere.

GITM is different from most models of the atmosphere in that it solves the full vertical momentum
equation instead of assuming that the atmosphere is in hydrostatic equilibrium, where the pressure gradient
is balanced by gravity. While this assumption is fine for the majority of the atmosphere, in the auroral zone,
where significant energy is dumped into the thermosphere on short time-scales, vertical accelerations often
occur. This heating causes strong vertical winds that can significantly lift the atmosphere [30].

The grid structure within GITM is fully parallel, using a block-based, two-dimensional domain decom-
position in the horizontal coordinates [70, 71]. The number of latitude and longitude blocks can be specified
at runtime, so the horizontal resolution can easily be modified. GITM has been run on up to 256 processors
with a resolution as fine as 0.31◦ latitude by 2.5◦ longitude over the entire globe with 50 vertical levels,
resulting in a vertical domain from 100 km to roughly 600 km. This flexibility will allow us to validate
accuracy by running data assimilation and input reconstruction at various levels of resolution.

It is possible to “fly” satellites through GITM. By listing the times and locations of measurement points,
GITM can track the path of a satellite, outputting simulated data at the specified times and positions. This
feature simplifies implementation and validation of data assimilation and input estimation. Fig. 5 shows
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GITM simulation results during the four days corresponding to the CHAMP data. These results were output
every minute from the simulation at the CHAMP location for direct comparison with the satellite. This type
of comparison allows us to see how the simulation is reproducing storms in the upper atmosphere.

Because drivers are important to the upper atmosphere, GITM can be driven by a wide variety of solar
brightness models [45, 74, 95, 100] and measurements [20, 98, 99]; auroral specifications [40, 42, 69]; and
high-latitude electric potential models [37, 43, 79, 97]. In addition, the assimilative mapping of ionospheric
electrodynamics (AMIE) technique [13, 55, 56, 75, 76, 80] can be used to more accurately estimate the high-
latitude aurora and electric potential.

5.2 Physics-Driven Adaptive Modeling (PDAM)

The thermosphere and ionosphere mark the true transition of the atmosphere to the space environment. The
top of the thermosphere (the exosphere) is where the collision frequency of the neutral particles drops low
enough that it becomes difficult to describe them as fluids. In the lower thermosphere, the neutrals are
still dominated by dynamics, such as solar tidal forcing, but, as altitude increases, and the density of ions
also increases, the neutrals becomes more strongly controlled by ion forcing. Also, the density of the gas
becomes so low that the flow speeds can become quite large, reaching over 1000 m/s on occasion. This
speed is comparable to the sound speed, so it is possible to get supersonic flows in the upper atmosphere.
Furthermore, because the flows and sound speed can be so large, the dynamics of the upper atmosphere are
truly global—waves propagate from one side of the Earth to the other in just a few hours. This means that
models need to consider the global system and not just focus on regional dynamics.

Ions, because they are charged particles, are driven by electric fields, which are much stronger than forces
such as gravity and the gradient in pressure. The electric forces are so strong that the ions quickly reach an
equilibrium velocity that can have a significant amount of small-scale spatial structure [54]. The neutrals,
on the other hand, have much more inertia and are slow to react, so the ions serve to transfer momentum
and energy (through friction) to the neutrals [29, 57]. This transference often happens on small scales in
regions of large electron densities and strong electric fields, that is, in the auroral zone [31]. The heating on
small scales causes localized perturbations in the thermospheric (neutral) temperature and pressure, which
increase winds and eventually causes a global disturbance [12]. Therefore, it is often important to be able to
capture small-scale dynamics. The problem is that the global-scale phenomena need to be captured as well.

Further complicating the issue is the fundamental modeling of the aurora and how it deposits energy
into the thermosphere and ionosphere. The aurora, in essence, is a beam of electrons that is shot into
the thermosphere. Many researchers have simulated how the atmosphere reacts to this beam of energy,
and parameterized how this phenomenon deposits energy into the system [34, 38]. However, there are
aspects of this process that are often simplified and are not taken into account when simulating active time
periods. For example, models of the auroral energy deposition typically use a static thermosphere that is
not disturbed [84]. The composition is typically static in the models, so the aurora precipitates into the
same atmosphere continually. What really happens, though, is that, as the electrons penetrate into the
atmosphere, heat is deposited, preferentially lifting the heavier species (such as N2 and O2), which changes
the collision frequency between the beam of electrons and the atmosphere [17, 91, 92]. This is normally not
a large concern since the amount of energy deposited is not substantial enough to change the composition
significantly, but during large auroral events, this feedback should be considered.
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6 DDDAS Frontier: Mathematical and Statistical Algorithms

6.1 Context and Motivation within DDDAS

The ionosphere and thermosphere are strongly driven by the Sun. This means that the evolution of the
thermosphere depends primarily on the input from the Sun rather than its current state. In other words, the
effect of an initial state tends to be “washed away” by the input. Consequently, estimates of solar drivers
can greatly enhance the accuracy of state estimates obtained from data assimilation with unknown inputs.
Obtaining accurate estimates of these drivers represents an application and challenge to DDDAS concepts
and technology.

In the case of the upper atmosphere, the extreme ultraviolet radiation produces photo-ionization, which
in turn, through chemistry and heating, drives the properties of the ionosphere and thermosphere. Since
a significant portion of the EUV and X-ray radiation is absorbed in the atmosphere, it is not possible to
measure the flux from the ground. Instead, a proxy is used. The flux solar irradiance at a wavelength of 10.7
cm (called F10.7) is thus measured on the ground and used to estimate the solar spectrum in the 0-150 nm
range. The unit of F10.7 is 10−22 W/Hz/m2, which is equivalent to 1 solar flux unit.

Although good estimates of F10.7 can enhance data assimilation in the ionosphere-thermosphere, esti-
mates of F10.7 are infrequent (for example, once per day) and approximate. This situation motivates the
need to estimate F10.7 concurrently with the states. This is a problem of input estimation.

6.2 Retrospective Cost Adaptive Input and State Estimation (RCAISE) for DDDAS

State estimation techniques, such as the Kalman filter and its numerous variants, use measurements to re-
cursively refine state estimates. In the simplest case, the system of interest has the form

x(k + 1) = Ax(k) +Bu(k) + w(k), (6.1)

y(k) = Cx(k) + v(k), (6.2)

where x(k) is the state and y(k) is the available measurement. The input to the system is modeled as a
combination of a known deterministic signal u(k) and an unknown stochastic signal w(k). The known
deterministic signal u(k) is injected numerically into the observer (not shown here), which uses knowledge
of the statistics of w(k) and the sensor noise v(k) as well as knowledge of the matrices A and C to obtain
an estimate x̂(k) of the state x(k). This is how an estimator works. In practice, however, the deterministic
input u(k) is often unknown, or at least partially uncertain. A common practice is thus to treat u(k) as part
of the stochastic input w(k). This approach, however, can yield poor state estimates for the simple reason
that the characteristics of u(k) may be quite different from the assumed statistics of w(k).

Because of uncertainty in u(k), extensive research has been devoted to developing extensions of the
Kalman filter that are either insensitive to knowledge of the deterministic input or that attempt to estimate
this signal in addition to the states. These techniques are referred to as unbiased Kalman filters, unknown
input observers, input estimators, and state estimators with input reconstruction. The literature is extensive
[14, 36, 49, 59, 60, 72, 94, 96, 101], but no unified techniques have yet emerged, and application to large-
scale data assimilation has been limited.

The importance of input estimation is due to the fact that, for many systems, the effect of the initial state
decays, and thus the asymptotic response is governed entirely by the forcing. In the linear case, systems with
this property are asymptotically stable. In the nonlinear case, these systems are called incrementally stable
or contractive, and the relevant phenomenon is called entrainment [9, 81, 85]. The presence of entrainment
suggests that, at least in some cases, the accuracy of state estimation can be greatly enhanced by the ability
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to perform input estimation. The goal of this research on data assimilation is thus to reconstruct the inputs
to the system concurrently with the estimates of the state. If the inputs can be estimated recursively, then
the accuracy of the input reconstruction can be significantly enhanced in comparison with state estimation
alone.

In support of the DDDAS Frontier Mathematical and Statistical Algorithms, this task is
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Figure 5: The atmospheric density ρ at 407 km altitude
measured by the CHAMP satellite (solid line) along with
simulation results from GITM (dashed line). The up-
per plot show one-minute values of the results, while the
lower plot shows orbit-averaged (i.e., 90-minute) values.

focusing on the development and application of Retrospective Cost Adaptive Input and State Estima-
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tion (RCAISE) [26]. The RCAISE architecture is shown in Figure 6, where the error z(k) represents the
difference between measured and estimated quantities in the ionosphere-thermosphere. RCAISE is an out-
growth of research we have performed on adaptive control and model refinement using the retrospective
optimization technique described in [25, 28, 46–48, 65, 82, 93].

[t]Figure 6: State and input estimation architecture.
Based on the estimation error z = y − ŷ, the adap-
tive algorithm adjusts the the feedback block, which
estimates the unknown input u.

Within the context of data assimilation for large-
scale applications, input estimation can be performed
by applying ensemble Kalman filter techniques [3–
7, 16, 52, 63]. These techniques employ an ensem-
ble of simulations, which can be chosen to include a
distribution of representative values of the unknown
input. The computational burden of this approach
thus increases in relation to the number of ensem-
ble members. Unlike ensemble filtering, however,
RCAISE uses a single simulation model as the ba-
sis of both state estimation and input reconstruction.
Consequently, unlike particle filters, RCAISE is an
ensemble-free technique for data assimilation with
input reconstruction. The price paid for this conve-
nience, however, is the lack of an error distribution
on the estimated input.

The prior literature on state estimation with
input estimation [14, 36, 49, 60, 72, 94, 96, 101] pro-
vides alternative techniques for this problem. How-
ever, these techniques are largely confined to lin-
ear systems, whereas DDDAS applications, such
as space weather monitoring, are typically highly
nonlinear. For systems with nonlinear dynamics,
RCAISE does not rely on an analytical model of the
system, requiring only the ability to update the simu-
lation of the system, and this simulation can be in the form of a large-scale computer code, such as GITM.

6.3 Earlier Research Results

We now summarize recent results describing the application of RCAISE to the ionosphere-thermosphere.
An overview is given in [24]. The objective of input estimation supports the goals of DDDAS by enhancing
prediction accuracy. In particular, state and input estimation are considered in [2] based on the 3D GITM
model with both synthetic and real measurements. Here we consider the case of real measurements from
the CHAMP satellite.

This study is motivated by the fact that radio propagation and satellite drag are affected by the Sun’s
influence on the ionosphere and thermosphere. In particular, extreme ultraviolet (EUV) and X-ray radiation
produce photo-ionization, which, in turn, through chemistry and heating, drives the formation of the iono-
sphere and shapes the thermosphere. In addition, the effect of the EUV and X-ray radiation is sufficient to
render the ionosphere-thermosphere a strongly driven system [9, 81, 85].

Since a significant portion of EUV and X-ray radiation is absorbed by the atmosphere, it is not possible
to measure these quantities from the ground. Instead, a proxy is used. The most common proxy for EUV
and X-ray radiation is the flux solar irradiance at a wavelength of 10.7 cm (F10.7), which is measured (in
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units of 10−22 W Hz−1 m−2 = 1 solar flux unit (SFU)) by the Dominion radio observatory in Penticton,
Canada [68]. A shortcoming of this technique is that F10.7 does not have a one-to-one correlation with each
of the wavelengths in the EUV and X-ray bands, and thus the measured F10.7 is often a misrepresentation of
the true solar spectrum.

Although our ultimate goal is to estimate the true flux in multiple EUV and X-ray wavelength bins, a
more attainable intermediate goal is to estimate the value of F10.7 that best characterizes the ionosphere and
thermosphere. The ability to estimate F10.7 from alternative measurements can provide a cross check on the
available measurements, while also providing an illustrative proof-of-concept demonstration of RCAISE as
a first step toward estimating X-ray and EUV in multiple bands. Furthermore, current models do not fully
capture the dynamics of the ionosphere-thermosphere, in which case F10.7 can be used as an input to the
model in order to eliminate the errors between real measurements and synthetic (simulated) measurements.
This study thus attempts to specify F10.7 based on simulated measurements of the atmosphere as well as
with real satellite data. The specified F10.7 can then be used to obtain improved estimates of the state of the
ionosphere and thermosphere globally and possibly predict its future evolution. This is a problem of state
and input estimation.

To estimate F10.7, we use the Global Ionosphere Thermosphere Model (GITM) [77]. GITM simulates the
density, temperature, and winds in the thermosphere and ionosphere across the globe from 100 km to 600
km altitude, depending on the solar conditions at the time. The main inputs to GITM are the high-latitude
electrodynamics (i.e., the aurora and the associated electric fields), tides from the lower atmosphere, and the
brightness of the sun at various wavelengths, which can be proxied through the use of F10.7. GITM solves
for the chemistry, dynamics, and thermodynamics of the upper atmosphere self-consistently by accounting
for interactions among various species of ions and neutrals.

In [2] we used the retrospective cost adaptive state estimation (RCAISE) technique [27] to estimate the
unknown solar driver F10.7 using the Global Ionosphere-Thermosphere Model and satellite measurements.
RCAISE assumes that the input to the system is unknown, and uses retrospective optimization to construct an
input to the adaptive estimator that minimizes the retrospective cost function. The retrospectively optimized
input is then used to asymptotically drive the error between the measured output and the estimator output
to zero. In this way, RCAISE asymptotically estimates the unknown input to the system and the unknown
states of the system. A useful feature of RCAISE is that an explicit nonlinear or linearized model is not
required. In addition, unlike ensemble-based data-assimilation algorithms [8, 33, 50], RCAISE uses only
one copy of the system model and thus is ensemble-free.

For the case of real satellite data case, the neutral mass density data measured by CHAMP (the “truth
data”) is labeled y(k), while the neutral mass density data measured by GRACE is labeled yG(k). First, we
run GITM with the measured F̄10.7(k) and record the neutral mass density at CHAMP locations and GRACE
locations, which are labeled ŷm(k) and ŷG,m(k), respectively. Next, we combine RCAISE and GITM, and
use y(k) to estimate F̄10.7(k) and states. The neutral mass density output from GITM with RCAISE at
CHAMP and GRACE locations are labeled ŷ(k) and ŷG(k), respectively. Note that data from GRACE
are used only as a metric for assessing the accuracy of state estimates, and are not used by RCAISE. We
further divide this setup into two cases. First, in RCAISE, we use GITM with photoelectron heating. When
photoelectron heating is used in GITM, then the neutral density output from GITM at CHAMP locations
using measured F̄10.7(k) closely matches CHAMP neutral density measurements. However, it should be
noted that the photoelectron heating efficiency coefficient that yields low error between GITM and CHAMP
is obtained by trial and error, and cannot be calculated or measured. In the second case, in RCAISE, we
use GITM without photoelectron heating. In this case, GITM with measured F̄10.7(k) yields a large error
between the outputs from GITM at CHAMP locations and CHAMP measurements. In this case, RCAISE
will use ˆ̄F10.7(k) as an input to GITM in order to correct the errors between CHAMP measurements and
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the output from GITM at CHAMP locations, and thus account for the inaccuracies incurred by removing
photoelectron heating from GITM.

(a) Output-matching performance of RCAISE for GITM us-
ing driver estimates.

(b) State-estimation performance of RCAISE for GITM.

Figure 7: (a) µ90,y(k), µ90,ŷ(k), µ90,ŷm
(k), σ90,y(k), σ90,ŷ(k), and σ90,ŷm

(k) for the case of real CHAMP satellite
data and GITM with photoelectron heating. For this example, GITM with RCAISE yields 6% lower RMS(z) compared
to GITM with measured F̄10.7(k). (b) This plot shows µ90,yG

(k), µ90,ŷG
(k), µ90,ŷG,m

(k), σ90,yG
(k), σ90,ŷG

(k), and
σ90,ŷG,m

(k) for real GRACE satellite data and the case of real CHAMP satellite data and GITM with photoelectron
heating. For this example, GITM with RCAISE yields 11% reduction in RMS(zG) compared to GITM with measured
F̄10.7(k).

Let p(k) ∈ R be an arbitrary signal, and let T be a positive integer. Then, for all k ≥ T , define the
windowed average of the signal p(k) as

µT,p(k)
4
=

1

T

k∑
i=k−T+1

p(i),

where T is the interval over which the signal is averaged. Similarly, for all k ≥ T , define the windowed
standard deviation of the signal p(k) as

σT,p(k)
4
=

√√√√ 1

T

k∑
i=k−T+1

(p(i)− µT,p(i))2.

The root mean square value of p(k) is denoted by RMS(p).

When GITM is used with RCAISE, we keep ˆ̄F10.7(k) at a constant value of 100 SFU for the first 24 h,
after which RCAISE is turned on. This allows the response due to initial conditions to decay significantly.
We implement GITM on four processors with a resolution of 5◦ latitude by 5◦ longitude. The time step for
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Figure 8: Measured and estimated F̄10.7(k) for the case of real CHAMP satellite data and GITM with
photoelectron heating. This plot shows that µ

1440,ˆ̄F10.7
(k) (the average of ˆ̄F10.7(k) over 1 day) converges to

within 6 SFU (solar flux units) of the measured values of F̄10.7(k) in 72 h.

GITM is set at 2 sec, and RCAISE is used to update ˆ̄F10.7(k) every 60 sec. In all figures in this section, the
vertical black line indicates when RCAISE is switched on. Finally, the numerical experiments consider the
period from 2002-11-24 to 2002-12-06.

We consider the case where the truth data are recorded by CHAMP from 2002-11-24 to 2002-12-06 and
we use GITM with photoelectron heating. We calculate the RMS of z(k) after 144 h in order to minimize the
effect of transients in ŷ(k) generated during the convergence of the adaptive subsystem. First, we consider
the measurements from CHAMP. Figure 7(a) shows the windowed mean and variance of y(k), ŷ(k), and
ŷm(k). For this example, GITM with measured F̄10.7(k) yields RMS(z) = 6.5 × 10−13, and GITM with
RCAISE yields RMS(z) = 6.1 × 10−13. In other words, GITM with RCAISE yields 6% reduction in
RMS(z) compared to GITM with measured F̄10.7(k).

Figure 8 shows the measured and estimated F̄10.7(k). This plot shows that µ
1440,ˆ̄F10.7

(k) (the average of
ˆ̄F10.7(k) over 1 day) converges to within 6 SFU of the measured values of F̄10.7(k) in 72 h.

Finally, we consider data from GRACE to assess the quality of the state estimates. Define zG(k)
4
=

yG(k) − ŷG(k). Figure 7(b) shows the windowed mean and variance of yG(k), ŷG(k), and ŷG,m(k). For
this example, GITM with measured F̄10.7(k) yields RMS(zG) = 4 × 10−13, whereas GITM with RCAISE
yields RMS(zG) = 3.6 × 10−13. Therefore, GITM with RCAISE yields 11% reduction in RMS(zG)
compared to GITM with measured F̄10.7(k).

7 DDDAS Frontier: Application Measurement Systems and Methods

7.1 Context and Motivation within DDDAS

The in-situ measurements required for GITM are difficult to make. First, they must be made in space, that is,
in the ionosphere and thermosphere. Space is a harsh environment where extreme thermal fluctuations, high
vacuum levels, and high-energy radiation require specialized, hardened electronics and systems. These spe-
cialized space-based sensors are expensive to build. Also, launches are infrequent and expensive. Second,
these measurements are multiscale in time and space. At orbital velocities (∼ 8 km/s), steep gradients in
the thermosphere approach rapidly and require fast sampling. Our measurement environment is on a global
scale, covering more than 577 million square kilometers. This is beyond current sensing and space system
capabilities.
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A potentially desirable feature of the system under study, the thermosphere, is the event-driven nature
of the system; solar storms drive thermospheric changes. Storm-time dynamics are the least understood
and, consistent with the goals and vision of DDDAS, that is precisely when high resolution data is most
valuable to the data assimilation software. Thus, a collaboration between the applications modeling (GITM)
and the system operating and tasking the satellites is needed to task the sensing systems (satellites) in real
time in order to adjust sensing capabilities while accounting for physical constraints on the satellites such as
power availability. In space systems, the science team and the satellite operations team are often not tightly
coupled, residing in separate locations, and communication between them is slow. It can take days to weeks
to re-task the satellite for new, advanced operational modes. Thus, our effort to enable real-time tasking of
the satellites by the modeling system represents a novel and highly nontrivial advance in capability.

The foundation for our space weather monitoring effort is a low-cost satellite constellation composed of
Cubesats, an industry standard satellite form factor that has a space-qualified launch vehicle interface, the
P-Pod [15, 67]. More than fifty Cubesats have flown on rockets from the US, Europe, and Asia, and are
being built by institutions ranging from universities to Government space programs (NASA) to established
aerospace corporations such as Lockheed Martin and Boeing. At the University of Michigan, we have
developed and launched several Cubesat missions for space weather research and technology demonstration.
Developed for the National Science Foundation, two satellites for the Radio Aurora Explorer (RAX) mission
were launched in 2010 and 2011, respectively, to study plasma instabilities that lead to magnetic field-
aligned irregularities of electron density in the lower polar thermosphere (80–300 km) [11]. RAX-2 is
currently fully operational and supporting bistatic radar experiments with transmitters located in Alaska
and Canada. We are also developing CADRE, the Cubesat-investigating Atmospheric Density Response
to Extreme driving, to make measurements specifically for thermospheric modeling and data assimilation.
CADRE will be ready for launch in late 2013 [22, 78].

GITM requires neutral densities of the main constituents of the thermosphere, in particular, the neutral
winds, the ion densities of the main ions, and the ion flows. Instruments are available for obtaining these
measurements. The Ionospheric Miniaturized Electrostatic Analyzer (iMESA) provides electron density and
temperature measurements using a miniaturized electrostatic spectrum analyzer [32]. The Gated Electro-
static Mass Spectrometer (GEMS) is based on an electrostatic energy analyzer and provides thermospheric
composition data [44]. These sensors are compatible with the Cubesat form factor [35].

We thus have a challenging, multiscale sensing requirement from our advanced model system that is not
possible with current technology. The foundation for this sensing system is a constellation of approximately
40 low-cost Cubesat-based sensors. Cubesats are extremely inexpensive compared to traditional, mono-
lithic satellites and thus provide an enabling technology for distributed sensor networks in space. However,
fundamentally new capabilities are needed to enable this system.

7.2 Research Effort: Event-Based Sensor Reconfiguration (EBSR)

Within the DDDAS Frontier Application Measurement Systems and Methods, we are developing a new
capability to support space-based, multiscale measurements, namely, event-based sensor reconfiguration
(EBSR). We consider sensing platforms and support systems that are reconfigurable. For example, dynamic
elements could include data-collections rates, sensor selection, sensor physical distribution, and sensor di-
rectionality. Consistent with DDDAS, sensor reconfiguration is most advantageously based on events, both
physical from the environment and feedback-based from the data assimilation and operations system. This
will enable closed-loop, real-time sensor-system modification consistent with DDDAS goals and vision. Al-
though motivated by the space-based domain, the fundamental characteristics of EBSR can be summarized
in terms of three primary elements: 1) the system must be able to reconfigure; 2) the system must be able
to determine when to reconfigure; and 3) the system must collect relevant telemetry and data to inform the
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determination system.

Figure 9: The Radio Aurora Ex-
plorer (RAX) triple Cubesat devel-
oped at the University of Michigan.

Our work this past year emphasized in-field sensor calibration, which
addresses elements 1) and 3). Calibration is the development of a transfer
function that maps sensor readings to actual (that is, physical) values as
well as a quantification of the errors in the sensor measurements. By
definition, reconfiguration changes systems properties, and this typically
requires sensor recalibration. Thus, by performing in-field calibration,
we can extend our capabilities for reconfiguration.

7.2.1 Magnetometer Calibration

We finalized our method for in-field, attitude-independent magnetometer
calibration, which includes the effect of time-varying bias due to elec-
tronics on-board a vehicle. The calibration estimates magnetometer scale
factors, non-orthogonality, and both constant and time-varying bias. The
unique contribution of this effort is the estimation of time-varying mag-
netometer bias due to nearby electronics. It is accomplished by includ-
ing vehicle telemetry in the measurement model and estimating constant
parameters that map time-varying currents to magnetometer bias. Cali-
bration was demonstrated based on flight data from the RAX-1 satellite,
and was shown to significantly reduce the uncertainty of off-the-shelf
magnetometers embedded within the satellite and subject to spacecraft-
generated fields. This method simplifies the satellite design process by
reducing the need for booms and expensive magnetic cleanliness, result-
ing in reduced satellite development time and cost. In addition to on-orbit
magnetometers, the calibration method is applicable to air, ground, and
water navigation.

The developed model is given by

B̃x = aBx + x0 +

r∑
i=1

si,x̃Ĩi + ηx, (7.1)

B̃y = b[By cos(ρ) +Bx sin(ρ)] + y0 +
r∑

i=1

si,ỹ Ĩi + ηy, (7.2)

B̃z = c[Bx sin(λ)+By sin(φ) cos(λ)+Bz cos(φ) cos(λ)]+z0+
r∑

i=1

si,z̃ Ĩi+ηz.

(7.3)
The recalibration procedure estimates magnetometer scale factors, non-
orthogonality, and constant as well as time-varying bias. The time-
varying bias is captured in the term,

∑r
i=1 si,j Ĩi, j ∈ {x̃, ỹ, z̃}, where

si,j is the coefficient that maps the i-th current measurement Ĩi to the
magnetic field in the j-th magnetometer axis, and r is the number of current measurements included in the
model. Although current measurements are required for re-calibration, on-board current sensors are typi-
cally part of spacecraft health monitoring. Hence inclusion of the current measurements in the recalibration
does not require additional sensors for the purpose of recalibration. Most importantly, this model does not
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require any knowledge about the layout of the electronic components; the recalibration requires only current
measurements, magnetometer measurements, and the expected magnitude of the geomagnetic field.

The calibration model was applied to data from the RAX-1 satellite [23]. From the data presented in
Figure 7.2.1, we found that currents produced by the solar panels degrade the magnetometer measurements.
There are four body-mounted solar panels on RAX-1, and we include measurements of the current in each
panel. From further experimentation with the on-orbit data, we have seen that a fifth element, the current
drawn from the battery, degrades the measurements [89]. Therefore, we include these five current measure-
ments in the magnetometer model.

The results of the calibration are shown in Figure 11. Figure 11(a) shows the magnitude of the corrected
measurements overlaid with the expected field magnitude, Figure 11(b) shows the difference between the
measured and expected magnitudes, and Figure 11(c) is a histogram of the difference. Figures 11(a) and
11(b) show the significant improvement of the magnetometer data compared to the corresponding time-
invariant calibration results shown in Figures 10(b) and 10(c). The root mean squared error (RMSE) of the
measurements after calibration for time-invariant errors is 903 nT, where error is defined as the difference
between the expected magnitude and the magnitude of the corrected measurements. After calibration with
time-varying bias, the RMSE is reduced to 174 nT, an improvement factor of 5.2. This factor corresponds
to an order of magnitude improvement in angular accuracy.

The resolution of the raw magnetometer measurements is 128 nT along each axis. The resolution of the
corrected sensor readings in the orthogonal frame is transformed by the scale factors and non-orthogonality
angles. After transformation of the 128 nT resolution with the calibration parameters, the resolution of the
calibrated sensor is 144, 143, and 111 nT along the x, y, and z axes, respectively. This results in a 231
nT resolution on the magnitude of the corrected measurements. The RMSE of the calibrated data is only
174 nT, which is below the sensor resolution of 221 nT and indicates that the accuracy of the calibrated
measurements has approached the precision limit of the sensor.

We have developed a method for on-orbit, attitude-independent magnetometer calibration that includes
time-varying bias due to nearby electronics. Existing time-invariant calibration methods have been extended
by including current measurements in the sensor model, and the resulting calibration method estimates both
time-invariant errors and time-varying bias due to on-board electronics. The time-varying bias is estimated
by mapping current to magnetometer bias through constant parameters. The calibration parameters are
estimated using an iterative least-squares minimization, and only the magnetometer measurements, current
measurements, and the expected magnitude of the geomagnetic field are required for the calibration.

The usefulness of the calibration has been demonstrated by application to on-orbit data. In application
to the RAX-1 satellite, the calibration successfully mitigates magnetometer bias due to the satellite power
system. The calibration improved the RMSE of magnetometer measurements from 792 nT to 219 nT,
providing an order of magnitude improvement in angular attitude accuracy.

Traditionally, time-varying bias is mitigated by either using a boom to physically separate the magne-
tometer from the spacecraft, or by using design and manufacturing practices to minimize the influence of
electronic components on magnetometers. Such design practices increase design time and cost, and physical
separation of a magnetometer from on-board electronics may not be possible as satellites continue to de-
crease in size. The algorithm presented in this work effectively replaces such design practices with improved
processing of the sensor measurements. The algorithm utilizes current sensors throughout the spacecraft,
which are sampled at the same time as the magnetometers. Therefore, inclusion of current sensors and the
ability to sample the sensors simultaneously for the purpose of calibration should be considered in the de-
sign phase of the vehicle. Although the calibration is a batch method, parameters can be uploaded to the
spacecraft for real-time magnetometer correction, and real-time implementation will be developed in future
work. The calibration has been applied to satellite-based magnetometers in this work, but this algorithm is
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(a) Magnitude of the raw, uncalibrated measurements (µT) overlaid with the
expected field magnitude using the IGRF model.

(b) Magnitude of the measurements after correcting for time-invariant errors
(µT). The differences between the measured and IGRF magnitudes are shown
in Figure 7.2.1.

(c) The difference (µT) versus time. The sun indicator takes the value of one
when RAX-1 is in the sun, and zero when in eclipse, which shows when the
solar panels are illuminated and generating current.

Figure 10: Data from the RAX-1 PNI MicroMag3 magnetometer. The x-axis of each plot shows time
elapsed since the start of the data set, 01-Dec-2010 08:30:46 UTC.
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(a) The magnitude of the corrected measurements (µT) versus time (minutes).
The magnitude of the expected magnetic field is overlaid.

(b) Difference between the corrected measured field magnitude and the ex-
pected magnitude (µT)

(c) Histogram of the difference between the measured
and expected magnitudes (nT). There are 5,405 total
data points.

Figure 11: Results of the calibration to estimate both constant errors and time-varying magnetometer bias.
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applicable to other magnetometer applications on a variety of platforms.

7.2.2 On-Orbit Calibration of Photodiodes for Attitude Determination

We developed a method for on-orbit calibration of photodiodes for sun sensing in an attitude determination
system [90]. The calibration estimates the scale factors and alignment angles of the photodiodes, resulting
in higher attitude determination accuracy than achieved with the pre-flight calibration parameters. The cali-
bration is implemented with an extended Kalman filter to simultaneously estimate spacecraft attitude and the
calibration parameters. This approach, as opposed to an attitude-independent method, enables the calibra-
tion of an arbitrary number of photodiodes mounted in any orientation on the spacecraft and facilitates the
use of an attitude-dependent Earth albedo model. The method is demonstrated by application to flight data
from the RAX-2 satellite and results in an average angular improvement of 10◦ in sun vector measurements
with the photodiodes. Attitude determination accuracies of below 1◦ in each axis are demonstrated using
the calibrated photodiodes in combination with a low-cost three-axis magnetometer and rate gyroscope.

8 DDDAS Frontier: Advances in Systems Software

8.1 Context and Motivation

Previously, we discussed the need for new methods for collecting, analyzing, and using data gathered from
the ionosphere-thermosphere to monitor space weather and thus better predict the orbital motion of large
space objects. To successfully meet the goals outlined in these three sections, we also need to develop new
models for scheduling and communicating policies on how to transmit these data to Earth.

Although we have posed (and will continue to discuss) this problem in the context of Cubesat data
collection, the results that we are developing have much broader applicability. Specifically, we consider
problems in which we have multiple clients (e.g., Cubesats) and multiple servers (e.g., ground stations).
The clients are largely controlled by a central manager who provides policies to guide behavior; the clients
in turn make local decisions based on these policies as well as on environmental factors that they experience
(for example, a Cubesat might gather more data than originally planned if significant variation between its
expected and observed location were detected). The central manager has discrete and possibly infrequent
opportunities to communicate with the clients to update the policies. Finally, the clients are dependent on
the servers, which themselves may be controlled by external agents, may have conflicts with other users,
and may be subject to uncertainty in their availability and their performance characteristics. Problems of
this type can be found in computing systems, telecommunication systems, energy systems, UAV systems,
and many more real-world contexts. To address these fundamental, challenging, and widely applicable
scheduling problems, we are developing heuristics, optimization-based algorithms, and simulation tools for
hierarchical closed-loop scheduling (HCLS). Our work towards these goals is described below.

8.2 Modeling Space Communication Networks

We have developed a general, analytical framework for modeling an operational satellite mission. We define
a framework as a set of reusable elements and templates for describing dynamics, constraints, and goals.
The framework analytically represents the dynamic interaction of states (such as position, energy, and data)
and subsystem operations (such as communication and energy management) of an operational satellite. It
captures mission constraints, which are often called requirements, that specify minimum performance levels.
It also enables analytical expression of objectives, which are goals of the mission to be max- imized. The
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framework is generic and modular such that it is capable of supporting a variety of mission architectures and
scenarios.

8.2.1 Model Elements

The four main elements of the framework are parameters, states, subsystems, and the schedule. Elements
are constant or time-dependent, time notation is omitted for simplicity.

Parameters – A parameter, p, is a model input that provides numerical values to dynamically model sys-
tem states and subsystem functions. Let P be the set of all model parameters, where p ∈ P . Examples
parameters are orbital parameters, ground station locations, and Tf .

States – A system state is a model variable, and is defined as the information at some initial time that,
combined with the input (parameters and the schedule) for all future time, uniquely determines the output for
all future time [21]. Let X = [x1, ..., xk, ...xm]T be the vector of all the system state variables, where there
are m variables. Example states include on-board resources such as energy and payload data. Opportunities
for mission operations such as payload operation and ground station availability are also system states.
An opportunity is modeled as binary, o ∈ {0, 1}, where a value of one indicates an opportunity and zero
indicates no opportunity.

Subsystems – A subsystem, s, performs functions on states. Let S be the set of all subsystems. A single
function operates on state k and is denoted fs,j,k ∈ F , where j ∈ Js is the function index, and Js is the set
of all function indices. fs,j,k is an element of the set of functions, F .

Schedule – The schedule, U(t), is a series of time-dependent events that describes how and when the sub-
system functions operate on the states. Events are scheduled when there are opportunities. For example, a
data download event may occurs when there is a line of sight between a ground station and satellite. The
schedule is designed to achieve the mission objectives while satisfying the mission constraints. The schedule
may be an output (e.g. when a solver is used to find an optimal schedule) or an input (e.g. when simulating
a given schedule to test performance).

8.2.2 Framework Formulation

The model is formulated as a conventional optimization problem in Eqs. 8.1-8.4. Mission objectives,
represented in Eq. 8.1, maximize the total transfer of a mission-specific system state, x∗, a component of X,
over the planning horizon. The decisions in the optimization problem are when and how the events occur,
which are captured in the schedule, U(t), which is an output of the optimization problem as formulated
here. The constraints in the formulation include state dynamics (Eq. 8.2), bounds on state values (Eq. 8.3),
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and mission requirements (Eq. 8.4).

max
U(t)
{x∗(Tf ) } (8.1)

s.t.

X(t+ ∆t) = N(X, P, t) +
∑
s∈S

∑
j∈Js

Fs,j(X, U, Ps,j , t) 0 ≤ t ≤ Tf (8.2)

Xmin ≤ X(t) ≤ Xmax 0 ≤ t ≤ Tf (8.3)

Θk,i ≤
∫ ti+1

ti

ẋk(t) dt ∀xk ∈ X, i ∈ Ik (8.4)

States evolve over time due to nominal dynamics and subsystem functions (see Eq. 8.2). Nominal
dynamics are independent of subsystem functions. The vector of nominal dynamics equations is defined in
Eq. 8.5, where each element k represents the nominal dynamics of state xk. Orbital motion and battery self-
discharge are example nominal dynamics of the state variables position and on-board energy, respectively.

N(X, P, t) = [n1(X, P, t), ..., nk(X, P, t), ...]T , (8.5)

The vector of subsystem functions that operates on the state vector is expressed in Eq. 8.6. The inputs to
each function fs,j,k include the states, parameters, schedule, and time. Note the vector in Eq. 8.6 contains
zero entries when combined subsystems and functions do not operate on specific states.

Fs,j(X, U, Ps,j , t) = [fs,j,1(X, U, Ps,j , t), ..., fs,j,k(X, U, Ps,j , t), ...]
T ∀s ∈ S, j ∈ Js (8.6)

The nominal and functional dynamics in Eqs. 8.5 and 8.6 may each be described by any type of function,
for example they may be analytical or extracted from a simulation system.

The state vector, X, is constrained by lower and upper bounds, {Xmin,Xmax} ∈ P , as in Eq. 8.3.
Example bounds include maximum and minimum battery capacity and maximum data storage capacity.

Operational mission requirements are represented in Eq. 8.4 by enforcing a minimum change in system
state over a specific time period. For example, there may be a mission requirement that a minimum amount
of state (such as energy) must be acquired or consumed during a certain period of time. Each interval i ∈ Ik,
where Ik is the set of intervals spanning the full planning horizon for state xk, has a start time, 0 ≤ ti ≤ Tf ,
where the end of interval i corresponds to the start of interval i + 1. Eq. 8.4 enforces a minimum change
of state xk during every interval i ∈ Ik, represented as Θk,i. The change in state during interval i is its
integrated time rate of change from ti to ti+1. For states without requirements, Θk,i will be zero ∀i ∈ Ik.

Another perspective for describing spacecraft operations is to consider subsystem functions individually.
In particular, consider the analytical relationship between inputs and outputs specific to subsystem s and
function j, Zs,j = gs,j(Ys,j , U, P, t), where the vector of inputs is Ys,j and the vector of outputs is Zs,j ,
which are both comprised of components of X. The function gs,j is the combination of fs,j,k ∀k ∈ K, i.e.,
it models the impact of subsystem s and function j on all state inputs and outputs. These relationships for a
single subsystem are shown in Figure 12.

8.2.3 Block Diagram Representation

We represent the model framework using a conventional control system block diagram to demonstrate the
interaction of the various model elements in Figure 13. The set P of parameters is provided to the input
block, which identifies opportunities for subsystem functions, O, and interprets the mission requirements,

24
DISTRIBUTION A: Distribution approved for public release.



Figure 12: A generic representation of the subsystem function Zs,j = gs,j(Ys,j , U, Ps,j , t) for s = 1 and
j = 1, 2, 3. All values are time dependent.

R, as control inputs. The error signal is expressed as E = R−M, where M is estimated state values, which
are measured by on-board or ground sensors. E, P and R are provided to the scheduler, which generates
the operational schedule, U . Note that U is an output of the controller and an input to the dynamic system.
The states evolve according to both the nominal dynamics and subsystem functions as prescribed by the U ,
where updated states (after time ∆t) are denoted X(t + ∆t). Unmodeled realistic disturbances, D, may
be injected into the system and modify the state. Mission performance is evaluated by measuring the states
and verifying if the mission requirements are satisfied and comparing realized objectives to their expected
values. Feedback control occurs when the scheduler updates U according to mission performance, i.e., uses
E in for future scheduling decisions.

Figure 13: Elements and dynamics of the system model represented with a conventional feedback control
loop diagram. The non-italicized labels are the conventional elements of a control feedback loop. The
italicized labels are the elements of the modeling framework.

8.3 Research Plans

Thus far we developed a sophisticated model for space communication systems and developed an opti-
mization algorithm for single-satellite, multiple ground station scheduling. Our next steps will included the
following:
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• Develop, model, implement and analyze a stochastic version of the single satellite, multiple ground
station problem. Initial results will be reported later in the year.

• Develop concepts for multi-satellite and multi-ground station architectures.
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