Imaging Under Extreme Conditions

AHMED ZEWAIL
CALIFORNIA INSTITUTE OF TECHNOLOGY

07/28/2015
Final Report

DISTRIBUTION A: Distribution approved for public release.
ABSTRACT

The study of materials and their surfaces under extreme conditions is fundamental to their functions and to control of properties. In order to visualize the changes in the structure, we have advanced ultrafast electron microscopy (and diffraction) to a new level. The electron pulses typically have an energy of 30 keV for diffraction and 100-200 keV for microscopy, corresponding to speeds of 33-70% of the speed of light. The atomic-scale resolution is achieved with a time resolution of femtoseconds, as reported in the publications; attosecond resolution has also been described therein. Such attosecond electron pulses are significantly shorter than those achievable with extreme UV light sources near 25 nm (~50 eV) and have the potential for applications in the visualization of ultrafast electron dynamics.

SUBJECT TERMS

- Imaging Under Extreme Conditions
- Extreme Conditions
- Electron Microscopy
- Attosecond Pulses
- Ultrafast Dynamics
- Femtosecond Resolution
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
Annual Accomplishments:

The study of materials and their surfaces under extreme conditions is fundamental to their functions and to control of properties. In order to visualize the changes in the structure, we have advanced ultrafast electron microscopy (and diffraction) to a new level. The electron pulses typically have an energy of 30 keV for diffraction and 100-200 keV for microscopy, corresponding to speeds of 33-70% of the speed of light. The atomic-scale resolution is achieved with a time resolution of femtoseconds, as reported in the publications; attosecond resolution has also been described therein. Such attosecond electron pulses are significantly shorter than those achievable with extreme UV light sources near 25 nm (~50 eV) and have the potential for applications in the visualization of ultrafast electron dynamics.

A number of variant techniques of 4D Ultrafast Electron Microscopy (UEM) imaging have been reported including 4D tomography, sub-particle imaging, electron energy-loss spectroscopy, and photon-induced near-field microscopy, the PINEM effect. Publications of research at Caltech were reported in *Science*, *Nature*, *JACS*, *JPC*, *ChemPhysChem*, *PNAS*, *Nano Lett.*., and *Angewandte Chemie*.

The applications of 4D UEM (and diffraction) are numerous, and we have successfully reported, using direct imaging, the atomic-scale of molecular nanocrystals, the phase transition in metal-insulator transitions, the embryonic crystallization following extreme melting, the discovery of nanogating in quasi-1D materials, and the nature of interface electric fields for free nanoparticles and nanoparticles on surfaces. We also reported on the theoretical foundation for the phenomena, and research continues in these new directions. Recent highlights are published as overviews and reviews in *Science* (Review), *Accounts of Chemical Research* (Review), *Scientific American*, and in a book.

Archival Publications (published) during reporting period:

Some Recent Reviews & Books:

Changes in Research Objectives, if any: None.

Change in AFOSR Program Manager, if any: None.

Extensions granted or milestones slipped, if any: None.
1. Report Type

Final Report

Primary Contact E-mail

Contact email if there is a problem with the report.

dlewis@caltech.edu

Primary Contact Phone Number

Contact phone number if there is a problem with the report

626-395-2611

Organization / Institution name

California Institute of Technology (Caltech)

Grant/Contract Title

The full title of the funded effort.

Imaging Under Extreme Conditions.

Grant/Contract Number

AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".

FA9550-11-1-0055

Principal Investigator Name

The full name of the principal investigator on the grant or contract.

Professor Ahmed H. Zewail

Program Manager

The AFOSR Program Manager currently assigned to the award

Dr. Michael Berman

Reporting Period Start Date

05/15/2011

Reporting Period End Date

05/14/2015

Abstract

The study of materials and their surfaces under extreme conditions is fundamental to their functions and to control of properties. In order to visualize the changes in the structure, we have advanced ultrafast electron microscopy (and diffraction) to a new level. The electron pulses typically have an energy of 30 keV for diffraction and 100-200 keV for microscopy, corresponding to speeds of 33-70% of the speed of light. The atomic-scale resolution is achieved with a time resolution of femtoseconds, as reported in the publications; attosecond resolution has also been described therein. Such attosecond electron pulses are significantly shorter than those achievable with extreme UV light sources near 25 nm (~50 eV) and have the potential for applications in the visualization of ultrafast electron dynamics.

A number of variant techniques of 4D Ultrafast Electron Microscopy (UEM) imaging have been reported including 4D

The applications of 4D UEM (and diffraction) are numerous, and we have successfully reported, using direct imaging, the atomic-scale of molecular nanocrystals, the phase transition in metal-insulator transitions, the embryonic crystallization following extreme melting, the discovery of nanogating in quasi-1D materials, and the nature of interface electric fields for free nanoparticles and nanoparticles on surfaces. We also reported on the theoretical foundation for the phenomena, and research continues in these new directions. Recent highlights are published as overviews and reviews in Science (Review), Accounts of Chemical Research (Review), Scientific American, and in a book.

Distribution Statement

This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement

If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form

Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF The maximum file size for an SF298 is 50MB.

[SF298_Form_22Jul15.pdf](#)

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF. The maximum file size for the Report Document is 50MB.

[AFOSR_FinalRpt_Zewail_Due14Aug15.pdf](#)

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

DISTRIBUTION A: Distribution approved for public release

Some Recent Reviews & Books:

Changes in research objectives (if any):
None.

Change in AFOSR Program Manager, if any:
None.

Extensions granted or milestones slipped, if any:
None.

AFOSR LRIR Number

LRIR Title
Reporting Period
Laboratory Task Manager
Program Officer
Research Objectives
Technical Summary
Funding Summary by Cost Category (by FY, $K)

DISTRIBUTION A: Distribution approved for public release
Starting FY FY+1 FY+2

<table>
<thead>
<tr>
<th></th>
<th>Salary</th>
<th>Equipment/Facilities</th>
<th>Supplies</th>
<th>Total</th>
</tr>
</thead>
</table>

Report Document

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Jul 22, 2015 14:45:13 Success: Email Sent to: dlewis@caltech.edu

Response ID: 4788

<table>
<thead>
<tr>
<th>Survey Submitted:</th>
<th>Jul 22, 2015 2:45 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address:</td>
<td>131.215.21.76</td>
</tr>
<tr>
<td>Language:</td>
<td>English (en-us)</td>
</tr>
<tr>
<td>User Agent:</td>
<td>Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit/600.7.12 (KHTML, like Gecko) Version/7.1.7 Safari/537.85.16</td>
</tr>
<tr>
<td>Page Path:</td>
<td>1 : (SKU: 1)</td>
</tr>
<tr>
<td></td>
<td>1 : (SKU: 1)</td>
</tr>
<tr>
<td></td>
<td>2 : Thank You (SKU: 2)</td>
</tr>
<tr>
<td>SessionID:</td>
<td>1437500386_55ae83e2945783.07825672</td>
</tr>
</tbody>
</table>

Response Location

<table>
<thead>
<tr>
<th>Country:</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region:</td>
<td>CA</td>
</tr>
<tr>
<td>City:</td>
<td>Pasadena</td>
</tr>
<tr>
<td>Postal Code:</td>
<td>91125</td>
</tr>
</tbody>
</table>