UNCLASSIFIED

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MARYLAND

TECHNICAL INFORMATION MEMORANDUM

REPORT NO: NAWCADPAX/TIM-2015/294

NANO-ENABLED TECHNOLOGIES FOR NAVAL AVIATION APPLICATIONS

by

William Frazier Venkatesan Manivannan Steven Fagan Sean Field Mark Hurley Mike Allen Mike McGonigle Anisur Rahman Dave Eby Michael Block Tom Donnellan Doug Wolfe

5 June 2015

Distribution Statement A. Approved for public release; distribution is unlimited.

UNCLASSIFIED

DEPARTMENT OF THE NAVY NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MARYLAND

NAWCADPAX/TIM-2015/294 5 June 2015

NANO-ENABLED TECHNOLOGIES FOR NAVAL AVIATION APPLICATIONS

By

William Frazier Venkatesan Manivannan Steven Fagan Sean Field Mark Hurley Mike Allen Mike McGonigle Anisur Rahman Dave Eby Michael Block Tom Donnellan Doug Wolfe

RELEASED BY:

Sto At

5 Jun 2015

BERT FROWEIN / AIR-4.4.5 / DATE Head, Power and Energy Division Naval Air Warfare Center Aircraft Division

RE	PORT DO	CUMENTA	ATION PAG	E	Form Approved OMB No. 0704-0188	
and maintaining th information, include 1215 Jefferson Day	e data needed, and com ing suggestions for redu vis Highway, Suite 1204	pleting and reviewing this of cing this burden, to Departm 4, Arlington, VA 22202-4302	collection of information. See ent of Defense, Washington 1 2. Respondents should be aw	end comments regarding Headquarters Services, I vare that notwithstanding	eviewing instructions, searching existing data sources, gathering this burden estimate or any other aspect of this collection of Directorate for Information Operations and Reports (0704-0188), g any other provision of law, no person shall be subject to any EASE DO NOT RETURN YOUR FORM TO THE ABOVE	
1. REPORT D 5 June 2015	ATE	2. REPORT TYPE Technical Informatio	n Memorandum	3. DATES COV	ERED	
4. TITLE AND	SUBTITLE			5a. CONTRACT N/A	ΓNUMBER	
Nano-Enabled	Technologies for I	Naval Aviation Applic	cations	5b. GRANT NU N/A	MBER	
				5c. PROGRAM N/A	ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT N	IUMBER	
		nivannan, Steven Faga CGonigle, Anisur R		5e. TASK NUM	BER	
	, Tom Donnellan,		annan, Duve Loy,	5f. WORK UNI	T NUMBER	
7. PERFORM	NG ORGANIZAT	TION NAME(S) AND	ADDRESS(ES)	8. PERFORMIN	IG ORGANIZATION REPORT NUMBER	
	fare Center Aircra	ft Division		NAWCADPAX	/TIM-2015/294	
	oad, Patuxent Rive					
9. SPONSORI ADDRESS(ES		G AGENCY NAME(S) AND	10. SPONSOR/MONITOR'S ACRONYM(S) N/A		
Naval Air Syst 47123 Buse Ro	ems Command			11. SPONSOR/MONITOR'S REPORT NUMBER(S) N/A		
	, MD 20670-1547	ILITY STATEMENT	,			
Distribution St		ved for public release;	distribution is unlimit	ted.		
		5				
14. ABSTRAC	2T					
Nano-technology is a rapidly emerging area of importance to Naval aviation. NAWCAD has identified nano-materials and meta-material technologies as an area of strategic importance. In order to better define the investment areas required, three nano-technology study groups were held in the areas of (i) energy and power, (ii) airframe structures, and (iii) electronics & meta-materials. Each study group consisted of a small number of technical experts drawn from academia, industry, DoD, and NAVAIR. The study group on energy and power concluded that power and thermal requirements for Directed Energy Weapons, Unmanned Air Vehicles, Electromagnetic Launch Systems and ground support systems will drive the need for nano-enabled technology. Nano-technologies of importance to naval aviation, to name a few, are: Carbon Nano Tubes for batteries, graphene for capacitors, nano-structured non-precious metal catalysts for Fuel Cells, and phase change materials for thermal management. This paper reports the results of the study group and links together nano-technology, applications, and required core capabilities.						
15. SUBJECT						
	wer, nano-materia Y CLASSIFICATI	ls, metamaterials, nan ON of:	ome 17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON	
UNCLASSIFI	ED		OF ABSTRACT	OF PAGES	William Frazier	
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER	
Unclassified	Unclassified	Unclassified	SAR	31	301 342 8003	

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18

SUMMARY

The Energy and Power Nanomet Study Group meeting was hosted by NAVAIR at NAVMAR in Lexington Park, MD. This was the first of a series of workshops designed to better understand the state-of-the-art in nano-enabling technologies, current challenges, potential benefits, potential application systems, and the required resources needed for investing in nano-material/nano-technology for Energy and Power systems. The primary goal of this study group is to determine what benefits NAVAIR could realize from investing in nano-technology across various platforms. The Energy and Power study group was divided into four subtopics: Batteries, Capacitors, Fuel Cells, and Thermal Management. Various members from Industry, Government and Academia were present and given an opportunity to present their views on nano-enabling technologies. The group discussed the nano-technology benefits, gap analysis, challenges, and benefits to the US Navy for each topic area as well as tried to identify performance attributes associated with each technology/material system for various applications. Break out session summaries of each topic area are listed in Table 1 (batteries), Table 2 (capacitors), Table 3 (fuel cell), and Table 4 (thermal management), respectively.

In general, it is clear that nano-materials and nano-technology will play a significant role in Energy and Power System applications ranging from high powered electronic devices to Unmanned Aerial Vehicles to Directed Energy Weapons and Electromagnetic Aircraft Launch System. The working group discussions resulted in the identification of significant benefits from nano-technology that the Navy could benefit if resources were provided to close the gap and realize the full nano-enabling technologies. Each of the four topical sessions is discussed in more detail in order to address the following questions:

- 1. What did we learn from the study groups?
- 2. What are the nano-enabling technologies?
- 3. What platform systems are most impacted?
- 4. What are the technical challenges/gaps that need to be filled?
- 5. Which of these gaps must/should the Navy address?
- 6. What is needed (people, facilities, funding) to properly address these gaps?
- 7. What are your thoughts as to how the command can best address these needs?
- 8. What immediate action can we take on our own to advance the Navy's needs in this area?

CONTENTS

Page No.

Introduction	1
Background and Purpose	3
Discussion	
Batteries	5
Capacitors	
Capacitors Fuel Cell	
Thermal Management	14
Conclusions	19
References	21
Distribution	23

ACKNOWLEDGEMENTS

The authors would like to thank all work shop participants for their time, input, and insight as well as the NAVAIR 4.4 leadership John Warren, Bert Frowein, Bill Voorhees, Bill Reardon, and Tony Cifone for assisting in making this an extremely successful workshop. Workshop participants included: Michael Allen, Michele Anderson, Michael Block, Charles Chase, Yvonne Chen, Christopher Derby, Thomas Donnellan, Carl Engel, Steven Fagan, Alex Fay, William Frazier, Robert Higgins, Patricia Irwin, Greg Jackson, Viswanath Krishnamoorthy, Michael Lanagan, Benjamin Leever, Venkatesan Manivannan, Michael McGonigle, Scott Miller, Anisur Rahman, Christopher Rahn, Subir Roychoudhury, Art Schuetze, Harmohan Singh, William Voorhees, John Warren, Charles Singer, and Douglas Wolfe.

INTRODUCTION

There has been significant world-wide investment in nano- and meta-materials over the last 15 years. There have been many projections of the tremendous economic benefit of these materials for a broad set of industrial applications. For instance, several reports have described a trillion-dollar impact of nano-materials for industrial applications. The vast majority of the early work was focused appropriately on discovery—fundamental research into methods of development and characterization of the properties of these materials. At present, these materials have not found widespread application, but the current focus of research in the field is more application-centered, as opposed to, material scale-up, system-level characterization of performance benefit, development of affordable materials, etc. Many proposed benefits of nanomet materials would be of interest to NAVAIR. Research performed suggests dramatic reductions in airframe and electronic system size, weight, and power are possible with nanomet materials.

In recognition of the potential of nanomet materials, NAVAIR convened a workshop with a set of subject matter experts to discuss the state-of-the-art and to identify focus areas for aircraft and weapons systems applications. The results of the workshop suggested significant benefits to command platforms in three areas: structures, energy and power, and antennas and metamaterials. The study discussed here is being performed to further define the specific benefits for NANOMETS for naval aircraft and to develop a strategy for enabling the command to certify and implement these innovative materials on future systems.

THIS PAGE INTENTIONALLY LEFT BLANK

BACKGROUND / PURPOSE

The objectives of the current study on nanomets are to identify technologies that could provide significant, game-changing capabilities for naval aircraft and weapons systems applications and to define the actions required by the command to implement systems that these materials enable. A preliminary assessment of nanomet research performed through an extensive literature review identified many interesting and relevant technologies. The study reported on here builds on this information to further explore applications in three important system areas: power and energy, structures, and antennas and metamaterials. Figure 1 illustrates a taxonomy relating relevant NAVAIR system areas and nanomet technologies that could provide a benefit. Figure 2 shows potential component level systems and applicability to aircraft. In the current study, the approach has been to attempt to quantify system performance benefits using NAVAIR-led working groups of subject matter experts. The working groups focused on identification of specific nanomet technologies, quantification of the system-level benefit, and identification of the S&T gaps that need to be addressed to allow implementation. A second, but equally important task for the study team was the identification of the NAVAIR infrastructure, in people and facilities that would be required to support implementation of promising nanomet technologies. The article discusses the results and findings pertaining to the Energy and Power study group.

Figure 1: Relevant NANOMET Technologies to NAVAIR Systems and Platforms (1-22)

Nanomet Capabilities for Aircraft Systems

Figure 2: NANOMET Capabilities for Aircraft Systems and Unmanned Aerial Vehicles (UAVs)

DISCUSSION

BATTERIES

The Energy and Power Nanomet Study Group session on batteries discussed nano-enabling technologies and nano-materials that would impact the following platform systems: Directed Energy Weapons (DEW), Electric Driven Vehicles (EDV), aircraft batteries, and UAVs. Since nano-materials and nano-technologies cover such broad areas, various subcomponents highlighting each contribution were discussed by the study group. The battery session was further divided into anode, cathode, electrolyte, separator and emerging chemistries to discuss the nano-enabling benefits, challenges, US Navy benefit, application systems, and current technical readiness levels (TRLs) of each as listed in Table 1 in order to identify the benefit impact of each. However, there were several cross cutting themes related to all the categories related to the challenges and potential benefits. Nano-enabling technologies for the battery anode includes: using conductive additives (nano-wires and carbon nano-tubes [CNTs]), silicon-based active materials, developing 3-D structures and morphologies, realizing nano-based manufacturing techniques, identifying and developing new alloys and composite systems, CNTbased current collectors, and positive thermal coefficient of resistance safety materials. However, in order to realize the application system level benefits of these nano-enabling technologies, several challenges/gaps must be addressed which include: identifying methods to reduce material costs, reducing processing and manufacturing costs, addressing warfighter health safety concerns associated with nano-particles and nano-materials, identify methods for improving battery cycle life, develop scalable manufacturing processes to produce the necessary high volumes of reproducible nano-materials at affordable costs (i.e., low cost high rate manufacturing), and identify new advanced material systems. If these challenges/gaps could be addressed, then the Navy could realize a significant benefit from nano-enabling technologies that will affect systems performance such as providing higher power density, higher energy density (smaller systems), improved cycle performance (shorter battery recharge cycles), longer cycle life (longer missions), reduced weight, and improved safety. The current TRLs range from 2-4 for the current state of the art nano-enabling technology.

Other nano-enabling technologies for battery components include solid electrolytes, ionic liquids, and silicon-based electrolytes which would provide benefits in the form of improved safety (low flammability), higher operating voltages and higher energy densities, and improved reliability if the processes could be scaled for low-cost processing. Lastly, lithium-air and lithium-sulfur based batteries have the potential to significantly improve (orders of magnitude) energy densities over the current state of the art Li-ion battery provided improved catalysts can be identified, improved conductivity for sulfur addressed, and improved membranes developed.

In summary, addressing the technology challenges and gaps for battery system nano-enabling technologies will provide a significant benefit for the Navy for DEW, EDV, lightweight aircraft batteries, and UAVs.

Nano/Meta-Enabling			
Technologies (ANODE)	Challenges	Potential Benefit	Application Systems
1. Conductive additives	1. Materials cost 2. Processing costs	 Higher power density Improved conduction path 	DEW
(nano-wires, CNT)	 Optimized volume fraction Safety (EHS concerns nanoparticulate) CNT can accept Li+ ions in its structure (even though used as conductive carbon) could lead to irreversible losses 	3. Improved cycle performance by enhanced mechanical stability of particulate in "nano mesh/web"	
1. Active materials (silicon based/anode only);	 Cycle life (mechanical stability) Materials cost 	 High capacity Long cycle life Improved safety 	Electric driven vehicle
Morphologies (3-D structures, design concepts)	 Scalable manufacturing Processing costs Conformal processing techniques 	 Higher power density Improved conduction path Higher rate capability Higher aerial capacity 	
Manufacturing methods	 Traditional methods versus advanced techniques (feasibility) Low cost high rate manufacturing 	 Cost (\$/kg) High active materials loading and low dead weight High energy density 	
 Alloys Composites 	 Identifying novel materials Volume expansion 	 Reduced weight Long cycle life 	Electric driven vehicle
CNT based current collector	 Material cost; Compatibility with existing manufacturing 	 Reduced weight/improved energy density; High current capability 	
Positive Thermal Coefficient of Resistance (PTCR) safety materials as an electrode layer	 Production of materials (consistency) Electrode processing 	 Automatic safety feature incorporated into electrode Allows localized "shutdown" of only the hot spot on the electrode, not the entire cell Potentially reversible effect 	 Aircraft batteries UAV DEW
Nano-enabling Technologies (CATHODE)	Challenges	Potential Benefit	Application systems
Conductive additives (nano-wires, CNT)	 Materials cost Processing costs Optimized volume fraction Safety (EHS concerns nano-particulate) Impurities in CNT might produce shorts 	 Higher power density Improved conduction path Cycle life improvement Reduced self-discharge 	DEW
1. Active materials (silicon based/anode only); 2. Active materials coated on CNTs surface; 3. Active materials	 Cycle life (mechanical stability) Coating scale-up Cost Impurities in CNT can degrade performance High packing density in electrodes 	 High capacity Long cycle life Improved safety 	Electric driven vehicle

Table 1: Battery Working Group Summary Highlighting Nano/Meta-Enabling Technology, Challenges, Benefits, and System Applications

· · · · ·	Γ	1	1
(nano-particle			
enabled multi-			
electron redox			
cathodes)			
Morphologies (3-D	1. Scalable manufacturing	1. Higher power density	
structures, design	2. Processing costs	2. Improved conduction path	
concepts)			
Manufacturing	1. Traditional methods versus	1. Cost (\$/kg)	
methods	advanced techniques (feasibility);		
	2. Low cost high rate manufacturing		
	(scalability)		
1. Alloys	1. Identifying novel materials	1. Reduced weight	Electric driven
2. Composites	2. Rate capability	2. Higher powder density	vehicle
3. High voltage, high	(requires nano-material)	3. Improved conduction path	
capacity cathode		4. High energy density	
materials (i.e.,			
LiCoPO4, LiNiPO4)			
Positive Thermal	1. Production of materials	1. Automatic safety feature	1. Aircraft
Coefficient of	(consistency)	incorporated into electrode	batteries
Resistance (PTCR)	2. Electrode processing	2. Allows localized "shutdown"	2. UAV
safety materials as	r of the second s	of only the hot spot on the	3. DEW
an electrode layer		electrode, not the entire cell	
5		3. Potentially reversible effect	
Nano-Enabling			
Technologies			Application
(Electrolyte)	Challenges	Potential Benefit	systems
Solid electrolytes	1. Scalability	1. Improved safety	
	2. Intrinsic properties (conductivity)	(low flammability)	
	3. Pin hole free films		
	4. Uniformity		
Ionic liquids	1. Cost	1. High voltage	
	2. Scalability	(high energy density)	
	3. Conductivity for high power		
	applications		
Silicone-based	1. Conductivity	1. Reliability	
electrolyte		2. Safety	
·		3. Higher voltage	
1. Potential	1. Increased allowable separator	1. Improved safety due to abuse	
alternative	temperatures	2. Mitigation of internal cell	
designs/systems	2. Improved puncture resistance	shorts	
(separator)			
D '			
Emerging	1. Catalyst for redox reaction	1. Orders of magnitude higher	
Chemistries	2. Electrolytes	theoretical energy density than	
1. Li-Air	3. O2-only permeable membrane	Li-ion	
2. Li-S	1. Polysulfide formation in electrolyte	1. Dramatically higher energy	
	2. Low conductivity of sulfur	density than Li-ion	
	 Low conductivity of sulfur Current low cyclability 	density than Li-ion	

CAPACITORS

The Energy and Power Nanomet Study Group session on capacitors (summarized in Table 2) discussed nano-enabling technologies and nano-materials that would impact platform systems such as DEW, aviation electronics, and UAVs. Electrostatic capacitors, electrochemical capacitors, and polymer film capacitors have the potential to provide higher energy density, higher power density, reduce weight, improve duty cycles (fast discharge and recharge rates for DEW and EMALS systems), and provide enough power for aircraft and ship weapon systems to meet mission requirements by reducing power supply size and weight (especially for aircraft directed energy weapon systems). Similar to the battery session, there were several cross cutting themes related to the challenges/gaps and potential benefits. The nano-enabling technologies include nano-composite dielectrics (ceramic/polymer composites), nano-laminates or nanolayered ceramic coated polymers, core shell materials, nano-based carbon such as CNT and graphene, coated nano-powders, higher temperature polymer systems and polymer coated glass systems. However, in order to realize these benefits, several technology challenges/gaps must first be addressed. For example, nano-layer ceramic coating thickness and material properties must be optimized to achieve good power density (i.e., dielectric constant and break down strength balance), processes must be scalable, systems that allow higher operating temperatures (>200C) with no reduction in performance need to be developed, more effective methods to disperse nano-particles for composite systems need to be developed to improve performance, better design and control of interfacial phenomenon for nano-layer or nano-composite systems are required, new methods to reduce failures due to voltage breakdown in polymer systems, reduced cost and volume, and scaling manufacturing processes need to be addressed. Current TRLs for the majority of the nano-enabling technologies for capacitors are TRL 2-4.

If these challenges could be addressed, then the Navy could realize a significant benefit from nano-enabling technologies that will affect system performance such as providing higher power density with better duty cycles for pulsed power applications, higher energy density (smaller systems), improved cycle performance, faster charging rates, reduced size, and reduced weight that would impact Navy DEW systems, EMALS, and aviation electronic systems.

	Nano/Meta-Enabling Technologies	Challenges	Potential Benefit	Application Systems
1.1 Electrostatic capacitors	 Nano-composite dielectrics: barium titanate + polymer Nano-laminates Core shell materials 	 Optimization of properties to achieve good power density - dielectric constant and break down strength balance Scalability and processability Higher temperature performance (application dependent excess of 200C) Nano-particle dispersion Understanding discharge rate Design and control of the interface 	 Increased mechanical properties, e.g., increased ductility Increased energy density Increased corona resistance Reduced size and weight for devices, e.g., DEW and mission systems Improved duty cycle (discharge and recharge). 	1. DEW 2. Aviation electronics 3. EMALS
1.2 Electrochem ical capacitors	 Nano-carbons, e.g., CNT and graphene; Coated nano-powders (inside and outside) 3D structures, e.g., anodized aluminum 	 Cost - volume Lowering the cost of electrode Failures due to voltage break down in polymer systems Electrochemical stability 	 Higher energy density (multiple times) Higher power density Heat loss Weight savings 	1. DEW 2. UAVs
1.3 Polymer Film Capacitors	 Nano-composite dielectrics: various nonconducting ceramics, including core shell particles + polymers Nano-copolymers and blends High temperature polymers Polymer coatings on glass Polymer nano-laminates 	 Scalability to commercial volumes using cost effective methods is proving difficult Higher temperature polymers are more difficult to process Design of the interface between the nano-particles/phase is not well understood Commercialization of these materials will depend on the cost value to the film manufacturers Processable polymers for extrusion Self-healing mechanism in high temperature polymers Cost competiveness with polypropylene 	1. Increased thermal, mechanical, electrical properties 2. Increased energy density with better duty cycles for pulsed power 3. High ripple current applications for power electronics	1. DEW 2. Aviation electronics

Table 2: Capacitor Working Group Summary Highlighting Nano/Meta-Enabling Technology, Challenges, Benefits, and System Applications

FUEL CELL

The Energy and Power Nanomet Study Group session on fuel cells (summarized in Table 3) discussed nano-enabling technologies and nano-materials that would impact platform systems such as specialized UAVs, auxiliary processing units (APUs), and high efficiency battery recharging stations. The three primary nano-enabling technology areas discussed by the study group team were polymer exchange membrane (PEM) (also known as polymer electrolyte membrane) fuel cells, solid oxide fuel cell (SOFC), and fuel processors that would provide the Navy benefit with higher efficiency fuel cells, improved durability, higher voltage capability, higher power and energy density systems, reduced weight, shorter start up times, and longer continuous power capabilities for UAVs extended missions.

The nano-enabling technologies for fuel cell electrodes and electrolytes include nano-structured catalyst (films and particles) to provide high surface area, catalyst supports, identifying non precious metal (platinum) catalysts to reduce costs, developing nano-structured/scale coating for high temperature electrolyte/electrode interfaces to improve efficiency, improve high temperature electrolytes stability to improve fuel cell performance, identify improved anodes that can be used for regenerative hybrid fuel cell systems (i.e., solar power during the day and fuel cell at night), nano-crystalline ceramic oxide materials to control oxygen reduction reactions, development of nano-based coatings on bi-polar plates to reduce corrosion and maintain fuel cell efficiency, better hydrogen storage material systems, and liquid/gas sorbent materials. The primary challenges/gaps that must be addressed include improving the contamination tolerances that reduce FC efficiencies, improve catalyst dispersion to avoid clumping, improve higher temperature capability/stability, reduce manufacturing costs of complex active compounds, improve electrode stability in pure oxygen or liquid oxidants, reduce catalyst poisoning, improve material compatibility of fuel cell interconnects, improve high temperature stability, and reduce fuel cell costs.

If these challenges could be addressed, then the Navy could realize a significant benefit from nano-enabling technologies that will affect system performance such as providing higher efficiency fuel cells to reduce dependency on fossil fuels, improved component durability and reliability, higher power and energy density systems, reduced size and weight, shorter start up times, and longer UAV missions.

 Table 3: Fuel Cell Working Group Summary Highlighting the Nano/Meta-Enabling Technology, Challenges, Benefits, and System Applications

	Nano/Meta- Enabling Technologies	Challenges	Potential Benefit	Application Systems
PEM FC				
Electrodes	1. Nano- structured catalysts (films and particles) and catalyst supports	 Contaminant tolerance (both air/fuel); Quality of coatings (dispersion); Stability at high power density 	1. Potential for higher efficiency 2. Reduced cost / PGM (platinum group metal) loadings	 Specialized UAVs with H2 operation APUs integrated with fuel processors for

				ground support and high-efficiency battery recharging.
	2. Non-precious metal catalysts	 High manufacturing costs of complex non-PGM active compounds Durability and contaminant resistance of non-PGM catalysts Low activities of non-PGM catalysts (Navy is interested in electrodes stable in pure oxygen or liquid oxidants for the cathode and anodes that can be used for other fuels besides hydrogen (i.e. boron hydride)) 	1. Reduced cost / PGM loadings (reduced system size for fuel and oxidant for UAVs, UUVs, and portable power supplies for marines)	 Specialized UAVs with H2 operation APUs integrated with fuel processors for ground support and high-efficiency battery recharging.
Electrolytes	1. Nano- structured/scale coating for high- temperature electrolyte/elect rode interfaces	 Mitigating catalyst poisoning; Improving durability of electrolyte/catalyst interface 	 Improved durability 2. Lower catalyst loadings; High CO tolerance with more direct integration with hydrocarbon fuel processors Higher operating voltage and thus higher efficiency stacks. 	 High-temp PEMFC systems for UAV power plants High-temp PEMFC systems for APUs
	2. Improved high- temperature electrolytes	1. Immobilizing conducting species without requiring humidity	 Improved durability Improved high- temperature (> 100 deg. C, <200 deg. C) conductivity High CO tolerance More compact systems with smaller heat rejection 	 High-temp PEMFC systems for UAV power plants; High-temp PEMFC systems for APUs
SOFC				
Electrodes	1. Nano- structured nano- material anode catalysts for direct heavy hydrocarbon utilization 2. Anodes that can be used for regenerative fuel cell systems (i.e.,	 Logistic fuel contaminants Coking/sintering; High reforming activity Contaminant tolerance (both air/fuel) Durability Ruggedness (regenerative fuel cells require anode that can be used for electrolysis of water without significant degradation) 	 Higher power and energy density systems Higher efficiency Logistics fuel tolerance Continuous powering of UAVs or balloons for recon missions 	 UAV power plants operating on logistic fuels Onboard APUs integrated with larger heat engines for large UAVs or other aircraft.

	solar power is			
	used during the day for power and electrolysis of water to H2 and O2, using fuel cell in reference, and then run fuel cell forward in the evening)			
	1. Nano- crystalline oxide materials to support high rate thermal transient/transiti ons 2. Nano-catalyst enhancement of cathode for increased oxygen reduction reaction (ORR) kinetics - (cathode displays one of the highest resistance contribution for the fuel cell, researchers are impregnating ferrite and cobaltite nano- particulates into the pre-existing stable cathode to enhance the ORR kinetics)	 Minimizing CTE mismatches Reduced oxide-ion conductivities Sintering and stability at high temperature Microstructural stability of the nano-materials during operation (i.e. sintering/coarsening and reaction with cathode) Impregnation of the needed amount for enhanced ORR may take many impregnation processes) 	 Reduced start-up times for high- efficiency fuel cells Improved load following capabilities and therefore reduced weights for hybrid battery capacity. 	1. UAV power plants operating on logistic fuels 2. Onboard APUs integrated with larger heat engines for large UAVs or other aircraft.
Electrolytes	1. Nano- crystalline electrolytes for low-temp oxide conduction	 Durability Use of rare-earth materials Processing limitations for nano-materials for large area cells, and defect and charge segregation at grain boundaries that eliminate potential enhancement 	 Faster start-up time Improved durability Reduced cost 	
Current Collection	1. Nano- coatings on bi-	1. Metal diffusion/contamination of	1. Improved durability (reduced	

	polar plates	electrodes	oxidation)	
Fuel Processors				
Catalysts	1. Nano- catalysts and additives used in wash-coats and binders; anchoring small diameter (high surface area), highly dispersed active catalyst nano- particles to the ceramic supports.	 High temp stability Cost Tolerating fuel contaminants Need microstructurally and chemically stable oxide or carbide nano-catalyst, and methods to synthesize these nano-materials [Many researchers can make them by bulk mixed-oxide, but can't make them at the nano-level] 	 Smaller footprint Increased fuel conversion at higher space velocity Lower PGM use Durability Fuel variation selectivity More rapid start- up of liquid-fueled system 	1. Compact logistic fuel reformers for UAV and APUs operating on liquid or logistic fuels at lower temperatures.
Sorbents	1. Nano-scale gas-phase sorbent materials	 Sulfur-uptake capacity Effective regeneration of sorbent Stability of sorbent on support mechanism 	 Increased adsorption potential per unit volume Reduced size and volume of sorbent component Extended duration between maintenance action by end user 	 Smaller fuel processors for UAVs Fuel cell APUs Other logistic fueled fuel cell systems (both PEMFC and SOFC) FC power generators Lighter spark ignited IC engine operation on JP-8 Avoidance of wet stacking on tactical quiet generators
	2. Liquid phase sorbent potential use	 Low selectivity and effectiveness of liquid-phase sorbents Poor durability and regeneration capacity of liquid-phase sorbents 	 Ability to make sulfur free fuels from contaminated fuels in field Higher power density for onboard fuel processors 	1. Off board liquid- fuel cleanup for fuel cell systems and other logistic- fueled power plants 2. Efficient use of JP-8 (containing up to 3000 ppm sulfur) for Fuel Cell generators.

THERMAL MANAGEMENT

The Energy and Power Nanomet Study Group session on thermal management discussed nanoenabling technologies and nano-materials that would impact platforms involving high powered electronic devices, radar applications, other power electronic systems, next generation air vehicle skins, and low observable applications. The nano-enabling technologies, benefits, challenges, Navy benefit, application systems, and current TRLs for thermal management is listed in Table 4.

The nano-enabling technologies included advanced materials such as carbon-based electronics (diamond and graphene), nano-enabled heat pipes for cooling, vapor chambers, carbon nanotubes, nano-structured thermal wicking materials, functionalized copper CNTs, silver filled epoxies, improved thermally conductive adhesives, nano-wires, nano-springs, nano-composites, nano-thermal interface materials and nano-layers, nano-enhanced heat fluids, phase change materials (PCM), nano-metamaterial technologies for directional heat flow, nano- and microchannel scale features, micro/nano-textured fins to enhance convection and dissipate heat, identifying nano-composite materials comprised of low density and high conductive material systems, and novel thermoelectric materials. However, in order to realize the application system level benefits of these nano-enabling technologies, several challenges/gaps must be addressed such as improving thermal conductivity of the systems, improve heat flux and operating temperatures for both active and passive cooling architectures, improve integration/packaging methods for high powered devices, addressing system limitations caused by thermal expansion mismatch stresses, enhancing structural strength, improve reliability, chemical compatibility, and develop large scale nano-fabrication methods.

Addressing these gaps and challenges would result in improved "on chip" cooling which would result in improved power handling by a factor of three, which correlates to cheaper, more powerful electronic devices. Highly efficient heat spreading would enable increased power densities, increase operational temperatures, improved system performance (weight and power), and faster devices. Reducing interface thermal resistance on components would allow for better heat conduction/dissipation, increase long-term reliability and consistence from chip to chip, and reduce exotic heat spreading technology approaches to operate devices. Improved cold plate designs would provide higher heat dissipation capabilities for increased effectiveness of electronic components and directional heat dissipation, and uniform internal cooling of assembled components or systems (i.e., no hot spots). High efficiency heat exchangers would reduce power consumption in cooling systems, whereas tailored emitters would allow redistributed internal heat loads, increased thermal capacity, and radiate heat at acceptable wavelengths that are absorbed by atmosphere and therefore be undetectable at a distance. Lastly, thermoelectric conversion could permit effective, selective transfer of waste thermal energy from remote locations in lieu of conventional forced cooling methods resulting in overall system weight and power reductions. The current TRLs range from 2-5 for the current state of the art nano-enabling technologies capable of improving thermal management systems.

In summary, addressing the technology challenges and gaps for thermal management system nano-enabling technologies will provide a significant benefit to the Navy for system applications

involving high powered electronic devices, radar applications, and other power electronic systems.

	1	I	1
Nano/Meta-Enabling			Application
Technologies	Challenges	Potential Benefit	Systems
	Improve conductivity, heat flux		
	and operating temperatures for		
	both active and passive cooling		
	architectures.		
1. Advanced materials	1. Integration/packaging into	Improved 'on chip' cooling,	High
(carbon-based	high powered devices	Conductivity greater than	powered
electronics such as	2. Coefficient of Thermal	current SiC components	electronic
synthetic diamond),	Expansion (CTE) matching	which results in improved	devices;
Graphene	3. structural strength	power handling by a factor	radar
-	4. Reliability	of three, resulting in	applications,
	5. Chemical compatibility	cheaper, more powerful	other power
	6. Large scale nano-fabrication	devices.	electronics
	methods		
1. Chip-level forced	1. Integration/packaging into	Highly efficient 'heat	High
liquid cooling (e.g.	high powered devices	spreading' enable	powered
Near Junction Thermal	2. Coefficient of Thermal	1. Increased power density	electronic
Transport)	Expansion (CTE) matching	2. Increased temperature	devices;
2. Nano-enabled heat	3. structural strength	capabilities	radar
pipes for cooling	4. Reliability	3. Thermal conductivities of	applications,
3. Vapor chambers	5. Chemical compatibility	>1000 W/mk Power savings	other power
4. Carbon Nano-Tubes	6. Large scale nano-fabrication	4. Large 2D area, <1mm	electronics
(CNT)	methods	thick, operation at 10g-20g	
5. Graphene		5. Structural, flexible, thin &	
(integrated spreaders)		light-weight materials	
6. Nano-structured		6. 2-phase heat transfer to	
thermal wicking		eliminate load-driven	
materials for use in the		thermal non-uniformity	
Thermal ground plane,		across substrate, Increased	
including copper-		reliabilities	
functionalized CNTs		7. Heat reduction	
		8. Highly efficient heat	
		spreading for high-power	
		devices	
		9. Reduce operating temps	
		by tens of degrees C.	
		10. Improved system	
		performance (weight and	
		power)	
1. Graphene	1. Integration/packaging into	Reduced interface thermal	High-
2. Silver filled epoxy	high powered devices	resistance 1. improve heat	powered
2. Shiver miled epoxy	ingi powered devices	resistance 1. improve neat	powered

 Table 4: Thermal Management Working Group Summary Highlighting Nano/Meta-Enabling

 Technology, Challenges, Benefits, and System Applications

 3. Thermally conductive adhesives 4. CNT 5. Nano-wires 6. Nano-springs 7. Nano-composites 8. Nano-thermal interface materials based on metallically bonded vertically aligned (VA) carbon nano-tubes (CNT) 9. Nano-structured layers 	 Coefficient of Thermal Expansion (CTE) matching structural strength Reliability Chemical compatibility Large scale nano-fabrication methods 	conduction/dissipation 2. Increase Long-Term Reliability and Consistency from Chip to Chip 4. Three times improvement in RF output power 5. Reduce need for 'heat spreading' technology applications	electronic devices; radar applications, other power electronics
 Nano-enhanced heat fluids Phase change materials (PCM); Reversible PCM Carbon nano-tubes 	 Integration/packaging into high powered devices Coefficient of Thermal Expansion (CTE) matching Structural strength; Reliability Chemical compatibility Large scale nano-fabrication methods 	Improved cold plate designs with 1. on-axis thermal conductivities of greater than 3000 watts/meter kelvin (W/mK) 2. Increased effectiveness of electronic components and directional heat dissipation 3. Improved heat dissipation from electronics boxes	High powered electronic devices; radar applications, other power electronics
 Nano/meta-material technologies for directional heat flow; controlled heat flow. Photonic band gap Topological insulators Advanced heat transport technology including nano- and micro-channel scale features Phase Change Materials 	 Integration/packaging into high powered devices Coefficient of Thermal Expansion (CTE) matching Structural strength Reliability Chemical compatibility Large scale nano-fabrication methods 	Multi function enclosures with 1. Active/passive, non- uniform, tailorable heat dissipation, EMI shielding and grounding properties 2. Directional heat flow/insulation 3. Temperature dependent conduction 4. Increased strength/lower weight 5. Uniform internal cooling of assembled component or system	High powered electronic devices; radar applications, other power electronics
 Micro/nano-textured fins to enhance convection surface area and turbulence Nano-composite materials comprised of low density materials with high conductivity Textured 	 Integration/packaging into high powered devices Coefficient of Thermal Expansion (CTE) matching; Structural strength Reliability Chemical compatibility Large scale nano-fabrication methods Integration/packaging into 	High efficiency heat exchangers with1. Reduced heat sink thermal resistance2. Reduced air/fluid flow resistance through heat sink3. Reduced power consumption in cooling systemsTailored emitters that allow	Thermal Management Systems 1. Next-gen

metamaterials (structures) to varying absorption & emission	high powered devices 2. Coefficient of Thermal Expansion (CTE) matching	 Redistribute internal heat load Increase thermal capacity 	air vehicle skins 2. Low
bands;	3. Structural strength4. Reliability5. Chemical compatibility6. Large scale nano-fabrication methods	3. Radiate heat at acceptable wavelengths that are absorbed by atmosphere and therefore undetectable at a distance	observable applications
Novel thermoelectric materials	 Integration/packaging into high powered devices Coefficient of Thermal Expansion (CTE) matching Structural strength Reliability Chemical compatibility Large scale nano-fabrication methods Improve conductivity, heat flux and operating temperatures for both active and passive cooling 	Thermoelectric conversion could permit effective, selective transfer of waste thermal energy from remote locations in lieu of conventional forced cooling methods resulting in overall system weight and power reductions	High powered electronic devices; radar applications, other power electronics
1. Advanced materials (carbon-based electronics such as synthetic diamond), Graphene	architectures. 1. Integration/packaging into high powered devices 2. Coefficient of Thermal Expansion (CTE) matching 3. Structural strength 4. Reliability 5. Chemical compatibility 6. Large scale nano-fabrication methods	Improved 'on chip' cooling, Conductivity greater than current SiC components which results in improved power handling by a factor of three, resulting in cheaper, more powerful devices.	High powered electronic devices; radar applications, other power electronics

THIS PAGE INTENTIONALLY LEFT BLANK

CONCLUSIONS

The nanomet workshop has identified the following technology areas under the "Energy and Power" discipline that will benefit and significantly improve the capabilities for naval aircraft and weapons systems: lithium-ion batteries, capacitors, fuel cells, and thermal management.

One conclusion from the work accomplished to date is that the command should establish a Naval Aviation Center of Excellence (COE) to address this multidisciplinary cross-competency area. The COE should address important challenges for all of the potential systems applications, such as:

- 1. Multi-scale computational modeling capabilities
- 2. Scalable nano-manufacturing process capabilities
- 3. Quantification of performance/cost relationships

The existing community of interest (COI) comprising of various stakeholders within NAVAIR will be engaged further to identify the necessary infrastructure needed to implement the technologies. The plan is to interface the COI with academia, national labs, industry, and OEMs for standing up of COE.

The general consensus from these three groups is that there are tremendous benefits to be gained in platform performance through the use of these interesting new classes of materials.

THIS PAGE INTENTIONALLY LEFT BLANK

REFERENCES

1. Schuh, C. A., Nieh, T. G., & Yamasaki, T., "Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel," Scripta Materialia, (2002) 735-740.

2. Kawamura, Y., Mano, H., & Inoue, A., "Nanocrystalline aluminum bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorphous powders," Scripta Materialia, (2002) 1599-1604.

3. Zhang, Z., Han, B. Q., Witkin, D., Ajdelsztajn, L., & Laverna, E. J., "Synthesis of nanocrystalline aluminum matrix composites reinforced with in-situ devitrified Al-Ni-La amorphous particles," Scripta Materialia, (2006) 869-874.

4. Choi, H. J., Lee, S. W., Park, J. S., & Bae, D. H., "Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders," Scripta Materialia, (2008) 1123-1126.

5. Calderon, H. A., Garibay-Febles, V., Umemoto, M., & Yamaguchi, M, "Mechanical properties of nanocrystalline Ti–Al–X alloys," Materials Science and Engineering A, (2002) 196-205.

6. Lee, J. S., Cha, B. H., & Kang, Y. S., "Processing of Net-Shaped Nanocrystalline Fe-Ni Material," Advanced Engineering Materials, (2005) 467-473.

7. Koch, C. C., "Synthesis of nanostructured materials by mechanical milling: Problems and opportunities," NanoStructured Materials, (1997) 13-22.

8. Dubey, P. K., Sinha, A. S., Talapatra, S., Koratkar, N., Ajayan, P. M., & Srivastava, O. N., "Hydrogen generation by water electrolysis using carbon nanotube anode," International Journal of Hydrogen Energy, (2010) 3945-3950.

9. Sacca, A., Carbone, A., Pasalacqua, E., D'Epifanio, A., Licoccia, S., Traversa, E., "Nafion–TiO₂ hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs)," Journal of Power Sources, (2005) 16-21.

10. Liu, Y., Wang, H., Shen, H., & Chen, W., "The 3-dimensional dye-sensitized solar cell and module based on all titanium substrates," Applied Energy, (2010) 436-441.

11. Campbell, P., & Green, M. A., "Light trapping properties of pyramidally textured surfaces," Journal of applied physics, (1987) 243-249.

12. Darbandi, A. J., Enz, T., & Hahn, H., "Synthesis and characterization of nanoparticulate films for intermediate temperature solid oxide fuel cells," Solid State Ionics, (2009) 424-430.

13. Aytac, A., Gurbuz, M., & Sanli, A. E., "Electrooxidation of hydrogen peroxide and sodium borohydride on Ni deposted carbon fiber electrode for alkaline fuel cells," International Journal of Hydrgoen Energy, (2011) 10013-10021.

14. Dominguez, S., Bravo, J., Garcia, O., Ezquer, M., Rodriguez, M. J., Jagunas, A. R., "Optimization of 1D photonic crystals to minimize the reflectance of silicon solar cells," Photonics and Nanostructures - Fundamental Applications, (2011).

15. Liu, Y., Wang, H., Shen, H., & Chen, W., "The 3-dimensional dye-sensitized solar cell and module based on all titanium substrates," Applied Energy, (2010) 436-441.

16. Pattantyus-Abraham, A. G., Kramer, I. J., Barkhouse, A. R., Wang, X., Konstantatos, G., Debnath, R., "Depleted-Heterojunction Colloidal Quantum Dot Solar Cells," ACS Nano, (2010) 3374-3381.

17. www.nrel.gov

18. Tomchenko, A. A., Hermer, G. P., & Marquis, B. T., "Detection of chemical warfare agents using nanostructured metal oxide sensors," Sensors and Actuators B, (2005) 41-55.

19. Yuan, L., Dai, J., Fan, X., Song, T., Tao, Y. T., Wang, K., "Self-Cleaning Flexible Infrared Nanosensor Based on Carbon Nanoparticles," ACS Nano, (2011) 4007-4013.

20. Zhang, J., Xi, N., Chen, H., Lai, K. W., & Luo, Y., "Carbon Nanotube based Infrared Detector Array," IEEE Nanotechnology, (2008) 100-103.

21. Kawakami, A., Saito, S., & Hyodo, M., "Fabrication of Nano-Antennas for Superconducting Infrared Detectors," IEEE transactions on applied superconductivity, (2011) 632-635.

22. Kim, Y., Lee, B., Yang, S., Byun, I., Jeong, I., & Cho, S. M., "Use of copper ink for fabricating conductive electrodes and RFID antenna tags by screen printing," Current Applied Physics, (2011).

DISTRIBUTION:

NAVAIRSYSCOM (AIR-4.4 ATTN Miguelez), Bldg. 106 22176 Elmer Road, Patuxent River, MD 20670	(1)
Antonio.miguelez@navy.mil	
NAVAIRSYSCOM (AIR-4.3 ATTN Rudowsky), Bldg. 2187	(1)
48110 Shaw Road, Patuxent River, MD 20670	()
Tom.rudowsky@navy.mil	
NAVAIRSYSCOM (AIR-4.4B ATTN Reardon), Bldg. 106	(1)
22176 Elmer Road, Patuxent River, MD 20670	(1)
william.reardon@navy.mil	
NAVAIRSYSCOM (AIR-4.4T ATTN Voorhees), Bldg. 106	(1)
22176 Elmer Road, Patuxent River, MD 20670	(1)
william.voorhees@navy.mil	
NAVAIRSYSCOM (AIR-4.3T ATTN Rubinsky), Bldg. 2187	(1)
48110 Shaw Road, Patuxent River, MD 20670	(1)
jerrry.rubinsky@anvy.mil	
NAVAIRSYSCOM (AIR-4.4C ATTN Hartsig), Bldg. 106	(1)
	(1)
22176 Elmer Road, Patuxent River, MD 20670	
david.hartsig@navy.mil	(1)
NAVAIRSYSCOM (AIR-4.4 ATTN Sabo), Bldg. 106	(1)
22176 Elmer Road, Patuxent River, MD 20670	
richard.sabo@navy.mil	(1)
NAVAIRSYSCOM (AIR-4.4.5 ATTN Frowein), Bldg. 1461	(1)
48298 Shaw Road, Patuxent River, MD 20670	
Egbert.frowein@navy.mil	
NAVAIRSYSCOM (AIR-4.4.5 ATTN Fagan), Bldg. 1461	(1)
48298 Shaw Road, Patuxent River, MD 20670	
steven.fagan@navy.mil	
NAVAIRSYSCOM (AIR-4.4.5.2 ATTN Kumbar), Bldg. 1461	(1)
48298 Shaw Road, Patuxent River, MD 20670	
Nathan.kumbar@navy.mil	
NAVAIRSYSCOM (AIR-4.4.5.3 ATTN Bassett), Bldg. 1461	(1)
48298 Shaw Road, Patuxent River, MD 20670	
william.bassett@navy.mil	
NAVAIRSYSCOM (AIR-4.4.5.5 ATTN Field), Bldg. 1461	(1)
48298 Shaw Road, Patuxent River, MD 20670	
sean.field@navy.mil	
NAVAIRSYSCOM (AIR-4.4.1.2 ATTN Allen), Bldg. 1461	(1)
48298 Shaw Road, Patuxent River, MD 20670	
michael.t.allen@navy.mil	
NAVAIRSYSCOM (AIR-4.4.5.2 ATTN Hurley), Bldg. 1461	(1)
48298 Shaw Road, Patuxent River, MD 20670	. ,
mark.a.hurley@navy.mil	

(1)
(1)
(1)
~ /
(1)
~ /
(1)
~ /
(1)
~ /
(1)
~ /
(1)
~ /
(1)
~ /
(1)
~ /
(1)
~ /
(1)
~ /
(1)
~ /
(1)
(1)
. /
(1)
. /

UNCLASSIFIED ==

UNCLASSIFIED =