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Abstract

Social Network Analysis (SNA) is a primary tool for counter-terrorism operations,
ranging from resiliency and influence to interdiction on threats stemming from illicit
overt and clandestine network operations. In an ideal world, SNA would provide a
perfect course of action to eliminate dangerous situations that terrorist organizations
bring. Unfortunately, the covert nature of terrorist networks makes the effects of these
techniques unknown and possibly detrimental. To avoid potentially harmful changes
to enemy networks, tactical involvement must evolve, beginning with the intelligent
use of network infiltration through the application of the node insertion problem. The
framework for the node insertion problem includes a risk-benefit model to assess the
utility of various node insertion scenarios. This model incorporates local, intermedi-
ate and global SNA measures, such as Laplacian centrality and assortative mixing, to
account for the benefit and risk. Application of the model to the Zachary Karate Club
produces a set of recommended insertion scenarios. A designed experiment validates
the robustness of the methodology against network structure and characteristics. Ul-
timately, the research provides an SNA method to identify optimal and near-optimal
node insertion strategies and extend past node utility models into a general form with

the inclusion of benefit, risk, and bias functions.
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A RISK BASED APPROACH TO NODE INSERTION WITHIN SOCIAL
NETWORKS

I. Introduction

1.1 Background

While social network analysis (SNA) is not a new discipline, first gaining notoriety fol-
lowing three independent research movements occurring in the 1930s, its importance
has exploded in recent years due to the rise of terrorism [7]. A terrorist organization
is one that takes part in actions including, but not limited to, “kidnapping, assassi-
nation, hijacking, nuclear, biological, or chemical agents, the use of firearms or other

dangerous devices” [8] or endorses such actions.

The United States’ primary goal is to achieve and protect “national interests through
diplomacy, economic development, cooperation and engagement, and through the
power of [its| ideas”, but in a world where possible nuclear proliferation and terror-
ism go hand-in-hand “the willingness and ability to resort to force in defense of our
national interests and the common good” becomes a necessity [9]. The mitigation and
elimination of terrorism is crucial, and as the National Strategy for Counterterrorism
states, “the American people and interests will not be secure from attacks until this
threat is eliminated—its primary individuals and groups rendered powerless, and its
message relegated to irrelevance” [10]. The Department of Homeland Security echoes

these focuses with their strategic priorities, shown in the following quote [11]:



“The evolution of the terrorist threat demands a well-informed, highly
agile, and well-networked group of partners and stakeholders to antici-
pate, detect, target, and disrupt threats that challenge national security,
economic prosperity, and public safety. To improve overall unity of effort,
we will work with our partners to identify, investigate, and interdict le-
gitimate threats as early as possible; expand risk-based security; focus on
countering violent extremism and helping to prevent complex mass casu-
alty attacks; reduce vulnerabilities by denying resources and targets; and
uncover patterns and faint signals through enhanced data integration and
analysis.”
In an ideal world, SNA would provide perfect insight as to the correct course of ac-
tion (COA) to eliminate the dangerous situations that terrorism and its associated
organizations bring. Unfortunately, the covert nature, and the unforeseen secondary

and tertiary effects of dealing with theses networks, makes determining the best COA

difficult.

Network research in the private sector emphasizes primarily resiliency, whereas de-
fense research additionally emphasizes network interdiction and influence. Joint Pub-
lication 3-03 specifically defines this interdiction as “actions to divert, disrupt, de-
grade, or destroy” a network [12]. Benjamin in 2008 [13] identifies these actions
as “tactical counterterrorism” and compares them specifically to “the catching and
killing of terrorists and disruption of their operations”. Benjamin also states the need
to continue these methods, while calling for a “significant departure from the current

policy” in strategic counterterrorism (CT) [13].

While the need for the continuation of tactical counterterrorism is apparent, methods
for this tactical involvement must evolve. Currently, the selection and removal of
key network actors and relationships is the primary way by which the United States
attempts to combat terrorist threats. Kathleen Carley in 2003 supported this by

asserting that “node changes can be more devastating on system performance than



relationship changes” [14].

While Carley emphasizes node removal and isolation as the most effective node
changes due to their practicality, the National Strategy for Counterterrorism in 2011
[10] identifies the need to diminish the strength of “local and regional affiliates...monitor
communications...drive fissures between these groups and their bases of support”,
showing the need for multifaceted CT methods [14]. While the current tactics seem
to be effective in removing individual threats, the integration of other methods could

provide additional insight to the counterterrorism decision landscape.

1.2 Undercover Operations and Network Infiltration

The evolution of tactical counterterrorism begins with the intelligent use of network
infiltration, or the covert insertion of assets into a network, otherwise known as node
insertion. The Federal Bureau of Intelligence (FBI) defines an undercover operation
as “an investigation involving a series of related undercover activities over a period of
time by an undercover employee” [15]. These operations aid in the “detection, preven-
tion and prosecution of white collar crimes, public corruption, terrorism, organized
crime, offenses involving controlled substances, and other priority areas of investi-
gation” [15]. The systematic use of this could provide opportunities to increase the

overall effectiveness of US CT efforts.

Fijnaut and Marx [16] trace formal undercover operations to 16th century Europe,
used in order to secure “political, military, and economic interests” later highlighting
their role in the formation of policing agencies in the United States. A more infamous
instance of undercover operations occurred with Operation Black Biscuit. Staged in

response to the growth of the Hell’'s Angels Motorcycle Club (HAMC), Operation



Black Biscuit resulted in the indictment of sixteen Hell’s Angels’ members, raids all
thorughout the western United States, and the seizure of over 1,600 pieces of evidence
[17]. However, this operation is seen as a classic example of “the misuse of informers”
both because of illicit actions some of these informers took part in and the handling

of these agents following the culmination of the operation [18].

In terms of network infiltration, information collection, and overall disruption, the
operations was a success, but Droban in 2007 [19] adds a clarification by saying “the
operatives may have crippled the Hell’s Angels enterprise, but like a true crime fam-
ily, the club was self-perpetuating and there would always be replacements.” This
statement is true but it is also important to note that the network never regained
the level of power and influence it had prior to the operation. The clarification again

highlights the dynamic nature of clandestine organizations.

The purpose behind node insertion is two-fold: information collection and future
network disruption. For the collection purpose, it allows for the possible gather-
ing of intelligence directly from the network, instead of through reconnaissance or
informants, which could prove unreliable. By applying node insertion, information
regarding the individuals within the network, their involvement with other organiza-
tions, possible past and future network activities or operations, and even the means
by which the network operates becomes obtainable. Even the determination of group
ideology and motivations becomes possible prior to the network’s execution of some

major event.

For future network disruption, an asset inserted into a network prior to a proposed

key actor’s removal, or any other node changes, might allow for easier degradation of



relationships. While this second purpose requires more intelligence on the network
to determine which relationships should be degraded, assumptions could be made in
order to apply the node insertion methodology. This could allow for the elimination
of multiple actors, or lines of communication, at a single instant, possibly creating a
disconnect large enough to completely dissolve the network, or disrupt it to the point

where it no longer poses a legitimate threat.

1.3 Problem Statement

According to FBI doctrine, “any official considering approval or authorization of a
proposed undercover application shall weigh the risks and benefits of the operation”
[15].  While protocol exists for undercover operations, there does not seem to be
objective or quantitative methodologies to determine these risks and benefits, only

subjective definitions.

This research aims to provide a structured methodology for covert network infil-
tration through the application of node insertion. This includes the formulation of
quantitative risk and benefit measures from the perspective of the inserted node. The
use of these two independent measure sets allows for the creation of a trade off space,
and ultimately a pareto frontier for possible recommendations. From the analysis we
hope to gain recommendations for the most effective node insertion scenarios, specif-

ically to which actors in the network the inserted node should establish relationships.

The ultimate goal is to provide the ability to make smarter decisions regarding under-
cover operations and node insertion when compared to current qualitative method-
ologies. While this analysis will be performed on randomly generated networks, the

methodology remains applicable to real world networks. The direct application of this



research is towards counterterrorism, but node insertion applies to the infiltration of
any clandestine network, which could include human trafficking cells, gangs, or drug

distribution networks, among others.

1.4 Research Scope

The scope of this research extends to only social networks. While node insertion could
apply to computer network interdiction or disruption, the methodology does not ad-
dress the translation to a cyber-based network. Within a social network sense, the
scope is limited to the identification of relationships for a covert operative to make,
and does not provide information on the strength of the intended relationships. Nei-
ther does it involve the selection of a specific network that would be most susceptible

to node insertion, nor lend any insight to the actual covert action of the insertion.

1.5 Assumptions

Within the analysis, there exists several different stages. Governing assumptions are

made initially and then dropped as the analysis progresses.

The first is that the network model is 100% certain, meaning all of the nodes and
edges that are currently in the network model account for 100% of the true nodes and
edges. The second is that the the network is unweighted and undirected, meaning
that only the relationships existing between between actors matter, not the strength
of the relationship, or where the influence in the relationship comes from. The third is
that the network is not dynamic, and will not change as a result of the recommended
insertion course of action. With this it is also assumed that the communities within
the network are also formed with certainty. Networks following these assumption are

under the category of Overt Networks.



The next assumption set are under the category of Clandestine Networks. As we
encounter clandestine networks, the uncertainty within a network increases, allowing
for the possibility of both missing nodes and missing edges. By allowing for this
uncertainty, the fidelity of this system increases in that it more accurately models
the current intelligence gathering and network disruption situations. However, it also

increases the difficulty in recommending the truly best node insertion strategy.

The inclusion of dynamic networks in this analysis continues to increase both the
fidelity and difficulty of the analysis, making the selection of a node insertion strat-

egy a dynamic decision.

An assumption exists on the actual insertion of nodes. Operationally it would be
unrealistic to attempt to create relationships with every node within a large network.
The risk involved in creating this large number of relationships and the risk involved
with remaining inconspicuous while maintaining them is extremely large. Knowing
this, there is is a realistic limit on the number of relationships that can be created for
an inserted node. The assumption then is that the maximum number of relationships

that can be added is is a function of the total number of node within the network.

1.6 Organization

The structure of the research falls into four remaining chapters. The second chapter
involves a literature review of the applicable techniques and measures involved in
the quantification of the risk and benefit within node insertion. The third chapter
outlines the methodology of research, and creates a framework for how the analysis

will be performed, in addition to justification on why the framework is both correct



and appropriate for the research. The fourth chapter applies the methodology to
multiple experimental runs and case studies, allowing for a real world application of
the proposed technique and theoretical results. In addition, it will provide results
on the differences between node insertion techniques on differing networks. The fifth
chapter discusses the results of the analysis, also analyzing the overall effect of the

technique and identifying areas for future research.



II. Literature Review

Before attempting to explain node insertion analysis techniques among different net-
works it is important to deliver a review of the past Social Network Analysis (SNA)
techniques, the understanding of which is crucial to the following research. Leverag-
ing past research allows for the research at hand to complement previous works and
provide a basis for the methodology used in the application of node insertion to real
world networks. To do this, we highlight work with network structures, centrality

measures, structural holes, network functionality, and network disruption.

Networks in general can range from simple adjacency matrices where only the pres-
ence of a connection is important, to weighted, and directed networks which show
not only the strength of a connection, but also the directions of each connection, an
example of which is shown in Figure 1. Overt networks are characterized as being

known with certainty; they are often the focus of SNA, historically.

Figure 1. Weighted Directed Network Example

As fewer assumptions are made within the network of interest, SNA becomes more
difficult. With Clandestine networks, where networks are uncertain, the stability of
analysis becomes an issue [20]. Dynamic networks, where a network changes in re-

sponse to stimuli, is no longer out of the question and precautions need to be made in



order to ensure actions do not affect the network in a way detrimental to the stake-

holders of the analysis.

In order to explain the measures identified in the following sections, an example

graph will be used. This graph is shown in Figure 2.

© 3 ©)

&

Figure 2. Example Network

2.1 Network Structure

In the study of networks, the importance of the overall structure has been made known
by authors such as 6s and Réyni, Watts and Strogatz, and Barabasi and Albert. The
structure itself of the network gives insight to the actors with high social capital,
purely based on the presence or absence of lines of communication. While looking
solely at structure may lack the insight that could be gained from an analysis of the
characteristics of actors and the purpose behind the links, studies of the structure

allow for an initial profile of the network to be created.

Scale Free.

The first network structure of interest is the scale free network, introduced by Barabasi
and Albert in 1999 [21]. This network type is based on the degree distribution of the

network, which allows for the elicitation of certain parameters that describe the extent
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to which a network is scale free. Given a graph G = (V| E), with V as the set of
vertices in G and F as the set of edges between each vertices in V. The degree of
a node ¢, or d;, is the number of edges that come from that node and extend out to
other nodes. The mathematical interpretation of this is shown in Equations la and

1b.

jEE

dj:ZAz‘j Vo (1b)

i€l

The ith, jth position in A;; represents the existence of a connection or the weight
of a relationship between the ¢th and jth nodes of the adjacency matrix A. For an
unweighted, undirected network is binary. Because of this, the indegree of node 7, the
number of relationships coming into node i, is equivalent to the outdegree of node i,
the number of relationships coming out of node 7. This is not necessarily the case
with a directed network where A;; is not always equivalent to Aj;. When this occurs,

the indegree and outdegree become nontrivial.

In a scale free network, higher degree nodes are less common than low degree nodes.
The degree distribution of a network is based on the overall frequency that a degree
of k occurs. Examples of scale free networks include citation networks, and airline

travel networks [22].

Networks of this structure are defined using the idea of power laws, and more specif-
ically with the exponent of the power law, a, which is a constant for each network
[23]. Equations 2 and 3 below define the relationships between py, k, and «a. py is

this frequency of the appearance of a node with a degree equal to k. According to

11



Newman, the exponent of the power law, a,typically has values between 2 and 3 for
scale free networks.

Inpy, = —alnk+c (2)
Pk = Ck™™ (3)

C is defined as the constant, e®. Newman also explains that bias occurs when using
these straight line fits to determine the « for a particular network. To remedy this
problem, he identifies Equation 4 as a more dependable way to calculate the exponent

for a network [24].

a=1+N

1
min T 9

22-: In dL] _ (4)

d; is the degree of node ¢ and k,,;, is the lowest degree for which the power law
holds. This d,,;, value is such that the distribution is monotonically decreasing and

for Equation 4 works well for d,,;, > 6 [23].

An example of a scale free network, specifically the 9/11 terrorist network collected

by Krebs, is shown in Figure 3.

Figure 3. Krebs’ 9/11 Terrorist Network Scale Free [1]

12



Random Graphs.

The second network structure is that of a random graph, which is generated from a
uniform distribution with exactly n nodes and m edges. Newman identifies that a
random graph is not defined in terms of a single network but with an “ensemble of
networks”, where there is a distribution for all graphs where P(G) = & where P(G)
is probability of a certain random graph appearing. [23]. €2 defines the total number
of possible graphs that can occur in the ensemble [23]. The seminal paper on this
structure was written by Erdds and Rényi in 1959 [25]. An example of what is now

called an ER random graph is shown in Figure 4.

Figure 4. Example ER Random Graph [2]

The generation of random graphs can be governed by necessitating the structure fol-
low certain parameters, such as the number of edges, mean degree, and even global
clustering coefficient. True ER Random graphs have a global clustering coefficient

of essentially zero. Normally, random graphs tend to have a small diameter, usually

log n
log np’

around given the expected degree of a node is at least 1 [26].

These graphs can also be created using the idea of preferential attachment, where
nodes with high degree have a higher probability of being a part of a newly created
edge, in order to create random scale free networks. The degree distributions of ran-

dom graphs also seem to follow a more bell-shaped degree distribution, in contrast to

13



the monotonically decreasing degree distribution of true scale free networks.

Small World.

The work of Watts and Strogatz in the late 1990s introduced the small world network
model as a mix between Erdds-Rényi random networks and simple lattice networks
with boundary conditions [27]. A lattice network is one where no variation exists
within the degree and relationship pattern of each node. The result is a constant

local clustering coefficient, which is further explained in Section 2.5.

The difference between a circle network and a random network comes from the act of
rewiring, or the exchanging or relocation of the edges of a specific actor [27]. For this
process, the parameter p defines the probability of the occurrence for a rewiring of a
node. The probability remains the same for each node, no matter its degree, which
is different from preferential attachment, where higher degree nodes have a higher

probability of receiving an additional edge.

A selected node can undergo one of two different rewiring models. The first is where a
node is selected for rewiring and one of its current edges is deleted, followed by the ad-
dition of a new edge, or "shortcut” [23]. The second model does not delete the initial
edge, but solely performs the rewiring. It is important to note that if p is equal to 1,

the result of the rewiring process would be a random graph with n nodes and m edges.

Examples of a small world network includes the famed “Six Degrees of Separation”,
which states that no one person is more than six contacts way from another person in
terms of relationships. Biological networks also seem follow the small world network

model [28]. An example of a small world network is shown in Figure 5 .

14



Figure 5. Watts and Strogatz’ Small World Model [3]

2.2 Centrality Measures

Throughout the study of networks in the last sixty years, especially social networks,
arguably the most influential and well studied measures are those involved with cen-
trality. In general, a node’s centrality allows for the measure of its overall importance
in the network. The idea of centrality, first introduced by Alex Bavelas in 1948 [29]
as a means for explanation of human communication, has evolved into the multiple
measures we know today including the centralities of degree, closeness, betweenness,

and eigenvector, among others .

While it is generally accepted that the influence of an actor within a network is
strongly correlated with its centrality, different centrality measures allow for strongly
competing ideas as to which node has the most power, or has the most social capital
as defined by Newman [23]. Others like Cook et al. [30], and Bonacich [31] have
determined the need for a family of centrality measures to define the power that an
actor has in a network. The following sections will compare the four centralities men-
tioned because collectively, these four measures seems to describe nodes adequately

enough to allow for sufficient analysis [6].
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Types of Centrality Measures.

According to Everett and Borgatti [32], three types of centrality measures exist,
which encompass the possible conceivable measures known thus far. The three types
include induced, endogenous, and exogenous centralities. Induced centralities are
made up of any measures that involve the calculation of a change in some network
structure, specifically dealing with graph invariants, or properties which depend on
“graph structure and not on a representation or a labeling of a graph” [32]. This

induced centrality, Cy(x), is specifically defined in Equation 5.

Cy(z) = [(G) = (G = {x}) (5)

The variable z is the removed entity, which extends to a vertex or an edge. G — {x}
then is the