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Control of interfacial phenomena in artificial oxide heterostructures
Charles H. Ahn
Yale University
Abstract:

For the Air Force, defense applications require electronic devices for sensing, computing,
communications, and energy storage based on new materials that provide unique capabilities
or superior performance. Novel phases that arise at interfaces between complex oxide
materials provide a promising pathway to realizing new classes of devices that exhibit
functionalities not found in conventional technologies. New materials based on perovskite
oxides are promising because of their wide variety of properties, including electronic
conduction, superconductivity, magnetic response, and optical properties. Research has
focused on discovering new oxide materials systems with novel properties and
demonstrating their potential for high performance electronic applications. We have
successfully developed materials with novel interfacial phenomena for defense applications
in oxides and their heterostructures. Moreover, we have extended our research to the
interfaces of complex oxides and transition metal chalcogenides with novel emergent
electronic phases. Our achievements include the discovery of a new conducting channel
between two oxides, KTaO; and LaTiOs, with the highest room temperature electron mobility
reported so far for oxide interfaces. We have also explored how to control of the properties
of complex oxides and their heterostructures using the field effect to control
superconductivity, magnetism, and metal-insulator transitions. Such control is critical for the
development of oxide-based electronic devices. We also identify the existence of double TiO,
layers at the surface of SrTiO3 in the recently discovered monolayer high temperature
superconductor FeSe/SrTiOs. Theoretical studies show that the double TiO, layers play a
crucial role in determining the superconducting states of monolayer FeSe/SrTiOs. Our
research in these projects has developed new materials systems with unique properties and
has led to progress in achieving high performance electronic applications based on complex
oxides.

Our approach to elucidate and manipulate new materials phases at complex oxide interfaces
focuses on growth and characterization using state-of-the-art techniques. The growth of
complex oxides is performed using molecular beam epitaxy (MBE) facilities within the research
group of the PI. Various characterization techniques are performed at Yale and at user facilities
located at Brookhaven and Argonne National Laboratories.

We have pursued multiple projects funded by AFOSR. The first project resulted in the discovery
of a new conducting 2-dimensional electron system between two complex oxides, KTaOs; and
LaTiOs, both of which are insulating in bulk. This conducting channel has the highest room



temperature electron mobility reported so far for oxide interfaces. Another project explores
general approaches to control the properties of oxides and their heterostructures by the field
effect. Applying a gate voltage through gate insulators leads to a modulation of the carrier
density and properties sensitive to carrier density, such as magnetism and metal-insulator
transitions. Approaches to control these properties are essential for the development of
complex oxide-based electronic devices. A third project is an experimental and theoretical
study of a recently discovered high temperature superconductor, monolayer FeSe/SrTiO3 (STO).
For the first time, we identify the existence of double TiO, layers at the surface of STO. The
double TiO; layers play a crucial role in determining the superconducting states of monolayer
FeSe/STO.

Below, we describe the three projects in detail:
1. Discovery of a new conducting channel at LaTiO3/KTaO; interfaces.

The dominant operation mode of current electronics devices relies on the control of conduction
channels in conventional semiconductors, such as Si. The electronic properties of these
channels, including electron carrier density and mobility, determine the performance of the
devices. One promising and versatile approach to achieving high carrier densities is to use
interfaces involving perovskite oxide ABO;s heterostructures. So far, only SrTiO3 (STO) has been
engineered to serve as the host for high density 2-dimensional electron gases (2DEGs), such as
in LaAlOs (LAO)/STO. The sheet carrier density in LAO/STO can be as high as 2 x 10" cm’z, which
is difficult to achieve in conventional semiconductors. The carrier mobility in LAO/STO also
reaches 800-10,000 cm? /Vs at low temperatures. However, one serious technological
limitation of STO-based conducting oxide interfaces for electronics applications is the relatively
low carrier mobility (0.5 - 10 cm?/Vs) of STO at room temperature.

Motivated by the need for higher mobility systems, we investigate an alternate host for high
carrier density 2DEGs, KTaOs3 (KTO). Scanning transmission electron microscopy images of the
interfaces (Fig. 1(a)) show that the LaTiOs (LTO) films are epitaxial on the KTO substrates and
form a fully crystalline interface. For LTO/KTO interfaces, we observe metallic conduction from
T= 2 K to room temperature (300 K) and electron densities in the order of 1x10* cm™ (Fig. 1(b)).
The electron densities achieved are comparable to the densities in STO based heterostructures
and are higher than in conventional semiconductors.

By using KTO, we achieve mobilities in LTO/KTO interfaces as high as 21 cm?*/Vs at room
temperature, over a factor of 3 higher than observed in doped bulk STO (Fig. 1(c)). In the Drude
model, the carrier mobility u depends on the scattering time t and effective mass m* as

U = et/m*, where e is the electronic charge. The conduction bands in STO heterostructures
have primarily Ti 3d character, while the conduction bands in KTO have primarily Ta 5d
character. Ab initio calculations confirm the formation of a 2DEG in the interfacial LTO/KTO



layer that resides in bands having Ta 5d character. We calculate an electron effective mass
m*/m. of 0.34 for the lowest energy interfacial Ta 5d-dominated bands, which should be
compared to 0.49 for 2DEGs in STO. We attribute the higher mobility in the KTO 2DEGs,
compared to STO 2DEGs, to the smaller effective mass for electrons in KTO in these bands.

Figure 1. (a) Scanning transmission electron microscopy image showing the crystal structure
of a 6uc LaTiO3/KTaO0j; heterostructure. The red boxes are a guide to the eye and highlight the
heavier atoms (La (dashed line) and Ta (solid line)). From the relative locations of Ta and La at
the interface, we find that the interface is TaO, terminated. (b), (c) Thickness dependence of
electron density n and mobility p of LaTiO3/KTaO3 at 300 K (black), 150 K (red), 50 K (blue) and
2 K (magenta). The lines connecting the data are a guide to the eye.

Reference: K. Zou, S. Ismail-Beigi, K. Kisslinger, X. Shen, D. Su, F.J. Walker, and C.H. Ahn,
LaTiOs/KTaOs interfaces: A new two-dimensional electron gas system. APL Materials, 3, 036104,
(2015). DOI: 10.1063/1.4914310.



2. Controlling oxide based devices by field effect.

Successful identification of interfaces exhibiting tunable properties is the first step to integrate
oxide materials into devices. A subsequent step is to control the properties and optimize the
performance of the oxide-based electronic devices. The performance of the complementary
metal oxide semiconductor (CMQS) transistors ubiquitously found in electronic devices has
reached a plateau. This plateau in performance is due in part to the fundamental materials
constraints of Si-based technology. Limitations in carrier mobility and fluctuations in carrier
density can contribute to short-channel effects, which become more pronounced as transistors
are scaled to smaller dimensions. Complex oxides are being developed for post-CMOS
electronics. Key progress in materials growth and device fabrication has opened new pathways
to control correlated phenomena through applied electric fields (Fig. 2). Field-effect transistors
in which magnetism, superconductivity, and metal-insulator transitions can be controlled have
become a reality.

We describe these key developments and outline future directions to be taken in the
development of complex oxide devices. Emphasis is given to our work on tuning the properties
of both the bulk oxides and the heterostructures.

Figure 2. Diagram of electric-field-effect devices. By applying an electric field across the gate
insulator, we can effectively modulate the carrier density in the oxide channel and further
control other properties.

Reference: J. Ngai, F.J. Walker, and C.H. Ahn, Correlated Oxide Physics and Electronics. Annual
Review of Materials Research, 44, 1, (2014). DOI: 10.1146/annurev-matsci-070813-113248.



3. Structural studies of a high temperature superconductor, monolayer FeSe/SrTiOs.

Superconductors that operate at elevated temperatures without loss or heat generation have a
range of applications, from nanoscale devices to macroscale power transmission. Finding new
high temperature superconductors and understanding their origin are current topics in
condensed matter physics with clear applications to electronic devices.

The discovery of the iron-based superconductors exhibiting unconventional superconductivity
promises to enhance our understanding and lead to the development of new materials. A
unique superconducting state exists at the interface of a monolayer of FeSe grown on SrTiO3
(STO) with a critical temperature, Tc, up to 109 K. Because only a single monolayer is
superconducting, while multiple layers are not, we conclude that interactions at the interface
play an important role in the existence of superconductivity. However, a complete
understanding of the relationship between the superconducting state and the structure of
monolayer FeSe has not been elucidated. The goal of this project is to experimentally
determine the physical structure at the interface and the role of charge carrier doping for the
superconducting phase.

Figure 3. Scanning transmission electron microscopy image showing the crystal structure of an
FeSe/SrTiO; interface with double TiO, layers. The symbols of atoms are a guide to the eye.

Monolayer FeSe is grown in a molecular beam epitaxy system dedicated to the growth of
chalcogenides. The substrates are prepared using a high temperature anneal in oxygen at
ambient pressure. This procedure typically results in a double TiO, termination. We determine
the interfacial structure using scanning transmission electron microscopy (Fig. 3) and
synchrotron x-ray diffraction at Brookhaven and Argonne National Laboratories (Fig. 4(a)). We
identify the surface reconstruction of STO present at a monolayer FeSe/STO interface as

V13 X +/13 R33.7 (Fig. 4(a)). This reconstruction is not just a rearrangement of the surface



atoms of a bulk truncation, but is a change in surface stoichiometry, where the surface has a
double TiO; surface termination (Fig. 3).

We show that this reconstruction is critical in two significant ways. First, this reconstruction
facilitates the growth of a coherently strained, epitaxial FeSe monolayer, while a bulk
terminated surface does not. Growth on surfaces terminated with a single layer of TiO, results
in highly disordered films. Monolayer FeSe samples grown on the reconstructed surfaces are
epitaxial and coherently strained, as observed using reflection high-energy electron diffraction
and synchrotron x-ray diffraction.

Figure 4. (a) Reciprocal space maps showing [10/13,11/13, 0.8] SrTiO; superstructure
reflections for 1 monolayer FeSe/SrTiO; capped with 10nm Se. (b) Orbitally resolved band
structures for Fe-3d for four variants of an FeSe monolayer on double TiO, terminated SrTiO3
with 50% oxygen vacancies. Thin black curves represent bands for the whole system, while the
red curves are projections of the Fe-3d orbital. The Fermi level is set to zero in each case. The
energy scale is in eV. The inset represents the zoom-in view of Fe bands around the '-pointin a

small energy window.

Second, in collaboration with S. Ismail-Beigi at Yale, we calculated the band structure of FeSe on
single and double TiO; terminated STO, in order to explore the role of double TiO, surface
structures on the electronic structure of FeSe/STO. These calculations suggest that the
reconstructed surface facilitates the formation of oxygen vacancies and electron transfer to the
FeSe monolayer by modifying both the defect chemistry and electronic structure at the FeSe-
STO interface. One unique feature of the experimentally determined electronic band structure
of superconducting monolayer FeSe/STO is that the hole pocket at the I point is not present, as
it is for bulk or thick FeSe films. We compute band structure for monolayer FeSe/ STO with a



fully stoichiometric interface and find the hole pocket at the I point, in agreement with angle-
resolved photoemission spectroscopy (ARPES) measurements of thick films. Oxygen vacancies
dope the FeSe with electrons and move the Fermi level upwards (Fig. 4 (b)). With a double TiO,
layer termination, this doping opens a gap at the I point and removes the hole pocket,
recovering the band structure observed in ARPES (Fig. 4 (b)).

The importance of a reconstructed surface has not been previously considered in theories of
monolayer FeSe superconductivity and appears to be present in previous reports of monolayer
superconductivity on the STO surface before growth. This work provides compelling evidence
that the charge transfer facilitated by the double TiO; layers is critical for the superconductivity
in monolayer FeSe/STO. There are still many open questions about this novel superconductor
that likely rely on a detailed knowledge of the interface structure determined here.

Reference: K. Zou, S. Mandal, F.J. Walker, Sohrab Ismail-Beigi, C.H. Ahn, et al. The crucial role of
double TiO; layers at the interfaces of FeSe/ SrTiOs; superconductors, in preparation.
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