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Abstract  

 

Mixed-Integer Programming has traditionally been restricted to deterministic models.  

Recent research has opened the door to stochastic optimization models, which are 

typically dynamic in nature.  This project lays the foundation for stochastic dynamic 

mixed-integer and linear programming (SD-MIP). This project has produced several new 

ideas in connection with  a) convexification of two-stage mixed-integer sets and  b) 

multi-stage (including two-stage) stochastic linear programming.  Together a) and b) 

provide the foundations for SD-MIP problems.   From  new concepts and algorithms to 

applications and software,  this project has made significant breakthroughs in all aspects. 

This report provides a synopsis of both theoretical and computational results. As a 

preview, we mention that currently available deterministic MIP solvers, as powerful as 

they are known to be, are unable to solve SD-MIP models of modest size within an hour 

of computing.  In contrast, our decomposition approach provides provably optimal 

solutions within the hour time-limit.    

Introduction 

 

This project deals with the solution of (SD-MIP) problems which arise in several 

application domains of interest to the Air Force.   For instance, multi-aircraft trajectory 

planning problems with aircraft dynamics lead to such SD-MIP problems.  Our project 

focuses on the mathematical structure of, and algorithms for SD-MIP problems.   We 

begin this report by first presenting the general mathematical structure of such models. 

 

In stating the SD-MIP model, we borrow the notion of a scenario tree, commonly 

used in stochastic programming (SP).  This construct (i.e., a scenario tree) provides the 

probabilistic structure of information that may be expected to evolve over the planning 

horizon.  A scenario tree 𝒩 consists of nodes (𝑛) and with each node one associates a 

time index 𝑡(𝑛). The links of a scenario tree represent the flow of information from one 
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scenario node (𝑛) to a child node (𝑛+),  and one has 𝑡(𝑛) < 𝑡(𝑛+), and the conditional 

probability 𝑝(𝑛 + |𝑛) is denoted 𝑝𝑛+.   

An important concept in our formulation is the description of state variables, which 

consists of two components, that is,  𝑠𝑛 ∶= (𝑥𝑛,  𝜔𝑛) includes: 𝑥𝑛 ∈ ℝ𝑞𝑛, an endogenous 

part of the state vector (or simply “endogenous state”)
1
, and 𝜔𝑛 denoting an outcome of 

the exogenous random variable (or simply “exogenous state”).  Here the term 

“endogenous” refers to the fact that the algorithm may be used to exercise some control 

on the trajectory of {𝑥𝑛}, while the term “exogenous” refers to the fact that the algorithm 

does not exercise any control on the outcomes 𝜔𝑛. For example, in a stochastic inventory 

(or reservoir) control model 𝑥𝑛 will represent inventory (or water-level) while  𝜔𝑛 will 

represent demand (or load/precipitation resp.).  In situations where we need to refer to an 

entire arbitrary sample path (outcome), we simply denote it as 𝜔.  Finally, we adopt 

following notational convention:  The root node is indexed by node 0, and an initial 

vector  𝑥0 (as well as the information 𝑠0) is assumed to be given (fixed). 

 

Given a scenario tree, the SD-MIP model may be stated as follows.  

Min {𝑑0
⊤𝑢0 +  𝐸[ℎ0+(�̃�0+)] ∶  𝑢0 ∈ 𝑈0, 𝑥0+ = 𝑎0+ + 𝐴0+𝑥0 + 𝐵0+𝑢0 }   (0) 

 

where {ℎ𝑛} are defined recursively for 𝑛 ≥ 1 as  

  ℎ𝑛(𝑠𝑛) = 𝑐𝑛
⊤𝑥𝑛 +   Min {

𝑑𝑛
⊤𝑢𝑛 + 𝐸[ℎ𝑛+(�̃�𝑛+)]

s.t.  𝑢𝑛 ∈ 𝑈𝑛( 𝑥𝑛),

𝑈𝑛(𝑥𝑛) = {𝑢𝑛 ∈ ℝ𝑚𝑛 × ℤℓ𝑛| 𝐷𝑛𝑢𝑛 ≤ 𝑏𝑛 −  𝐶𝑛𝑥𝑛} 

}  (1) 

and, 

  𝑥𝑛+ = 𝑎𝑛+ + 𝐴𝑛+𝑥𝑛 + 𝐵𝑛+𝑢𝑛. (2) 

This is a very general setting for stochastic dynamic mixed-integer programming because 

it not only allows a multi-stage decision process, but it also allows both continuous and 

discrete variables 𝑈𝑛(𝑥𝑛) ⊆ ℝ𝑚𝑛 × ℤℓ𝑛 which evolve over time.   

 

In our applications (e.g. mission planning for UAVs and other aircrafts), discrete choices 

(e.g. choosing which “way-points” to use) will be made at the start, and revised at an 

intermediate point of the mission.  In total, this constitutes two points in time where 

discrete choices (way-points, targets etc.) are made, and several time points at which 

continuous choices are enacted (namely, speed, altitude, etc.)  The cost associated with 

carrying out such missions is unknown at the start, and the total cost is typically revealed 

only at the end of the mission.  Thus decisions (both discrete and continuous) are made 

under uncertainty.  We should emphasize that our models are best suited for a collection 

                                                 
1
 As with 𝜔𝑛 we use a uniform size of the vector 𝑥𝑛 so as to keep the notation 

manageable.    
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of aircrafts, so that the synergy can be utilized to get the most out of the available 

resources.  In this sense, we are interested in vector-valued decisions and constraint 

spaces.  

 

This report outlines the main results produced to solve problems whose models may be 

looked upon as Stochastic – Dynamic Mixed-Integer Programming (MIP) problems.  

While the presence of discrete choices leads to MIP, it is important to recognize that the 

discrete and continuous decisions must work hand-in-hand.  As a result, we will study 

both stochastic mixed-integer programming (SMIP) as well as stochastic linear 

programming (SLP) problems.   By using a combination of ideas from cutting plane 

theory of deterministic MIP (especially disjunctive programming of Balas 1979) and 

nested decomposition (e.g., Birge 1985, Pereira and Pinto 1991), the algorithms 

developed in this study lead to several important breakthroughs.   

a) In the SMIP thrust, we have developed the first general purpose algorithm for 

general stochastic mixed-integer programming problems.  Here the term general 

is intended to convey the notion that randomness in the model is allowed in all 

data elements, and the discrete decisions are allowed to be general integers, rather 

than simply binary. These capabilities are particularly important because 

decisions like the size of the payload to deliver matters, and they are typically 

discrete. In addition, uncertainty in data is allowed to appears in every type of 

data element, be they objective function coefficients, constraint right-hand sides, 

or even within the constraint coefficients themselves.  Prior studies of this class of 

problems have usually been restricted to special cases (e.g. binary).  While others 

have attempted such generality in the past, there have not been any practical 

algorithms with which to conduct computational studies in the case of general 

SMIP models considered in this project.  The algorithm which we have 

developed, referred to as the Ancestral Benders’ Cutting plane (ABC) algorithm is 

by far the most general approach developed to date. 

b) As part of this project, we have also developed tools for very large scale 

Stochastic Linear Programming (SLP).  There are several reasons for this. First, 

SLP models continue to challenge many of the fastest computers to date, and 

many applications within the DoD (e.g. planning airlift operations) lead to some 

of the largest optimization models to date. Towards this end, we have developed a 

new notion of optimality that is especially geared towards very large scale SP 

models.  This new concept, which we refer to as statistical optimality, allows one 

to predict the quality of a proposed decision on the basis of statistical tests which 

measure the likelihood that a proposed decision is within a certain tolerance level 

from an optimal solution. With this new concept, we have been able to show the 

validity of our algorithms for certain instances which have been identified by the 

Defense Science Board Report (2011) as one of the major challenges in trade-
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studies conducted for DoD acquisitions.  We also observe that just as LP-

technology is critical in the solution of large deterministic MIPs, the ability to 

solve large scale SLP problems is just as important in the solution of SD-MIP. 

 

We begin this report with a presentation of the ABC algorithm for the two-stage case, and 

then show how such an algorithm may be applied to the kind of mission planning 

examples that were mentioned earlier. Following the summary of the discrete case, we 

will present the ideas underlying our SLP advances.  In all cases, we provided a 

illustrative computational results, although our publications, and dissemination material 

include much more extensive computational results. 

Ancestral Benders’ Cutting-plane  (ABC) Algorithm for Discrete 
Choices 

 

The discussion presented in this section is based on material that is available in Qi and 

Sen (2015), although the notation used in that paper is more in keeping with two-stage 

models.  Using the notation introduced in (0-2) a two-stage SMIP model may be stated as 

follows: 

 

Min {𝑑0
⊤𝑢0 +  𝐸[ℎ𝑛(𝑠𝑛)] ∶  𝑢0 ∈ 𝑈0, 𝑥𝑛 = 𝑎𝑛 + 𝐴𝑛𝑥0 + 𝐵𝑛𝑢0 , 𝑢0 ∈ ℝ𝑚0 × ℤℓ0  }   (3) 

 

where the functions  {ℎ𝑛} are defined for 𝑛 ≥ 1 as  

 

    ℎ𝑛(𝑠𝑛) = 𝑐𝑛
⊤𝑥𝑛 +   Min {

𝑑𝑛
⊤𝑢𝑛

s.t.  𝑢𝑛 ∈ 𝑈𝑛( 𝑥𝑛),

𝑈𝑛(𝑥𝑛) = {𝑢𝑛 ∈ ℝ𝑚𝑛 × ℤℓ𝑛| 𝐷𝑛𝑢𝑛 ≤ 𝑏𝑛 −  𝐶𝑛𝑥𝑛} 

}  (4) 

 

where the probability 𝑝𝑛 > 0 to be used in (3) is assumed to be given, and the number of 

outcomes indexed by 𝑛 is finite.  As in (0-2), the initial state 𝑥0 and correspondingly 𝑠0 

are given.  However, in contrast to the statement in (0-2), we have dropped the notation 

“0+” in the objective function in favor of using scenario nodes with index “0” in stage 1, 

and 𝑛 = 1, … , 𝑁 in stage 2.  One more observation about the second stage problem in (4) 

is that there is no future cost because the second stage is the end of the horizon.  This 

simpler statement in the objective function allows us to focus on the main difficulty at 

hand, which are the mixed-integer requirements in the constraints for 𝑢0 in the first-stage, 

and 𝑢𝑛 in the second-stage.  However, we will return to the case of terminal (third-stage) 

costs in the sub-section which extends the ABC algorithm.  
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The algorithm consists of two major elements: a first stage branch-and-bound (B&B) 

algorithm in which the objective function is approximated in a sequential manner. This 

B&B scheme is an extension of Benders’ decomposition to cases where the objective 

function is difficult to approximate, as is the case in SMIP models. The next piece of the 

ABC algorithm is to provide set-convexification (of the second-stage), and value-

function approximations which are easily managed within the B&B process. These two 

elements are described first, and we follow that up with how one might extend this idea 

to the class of DoD applications which motivated this study.  We also provide a summary 

of our computational experience with SMIP instances, many of which are unsolvable by 

one of the most advanced commercial code. 

 

First Stage Branch-and-Bound 

 

The ABC algorithm starts out the branch-and-bound process (B&B) process at node 0 of 

the tree, with the objective function 𝑑0
⊤𝑢0 +  𝐸[ℎ𝑛(𝑠𝑛)] replaced by a value function 

approximation as is common in dynamic programming; namely, the approximation has 

the following form. 

Min {𝑑0
⊤𝑢0 + ℎ0

𝑘(𝑢0) : 𝑢0 ∈ 𝑈0, 𝑢0 ∈ ℝ𝑚0 × ℤℓ0  } (5) 

As is common in the MIP literature, we assume that inputs to the instance include upper 

and lower bounds for all integer variables, and these box-constraints will be denoted 𝑄0. 

 

While value functions ℎ0
𝑘 of MIP problems are notoriously complex to discover, and their 

use within (5) is even more complicated because of the presence of mixed-integer 

variables in (5).  The value functions ℎ0
𝑘 have a close kinship with MIP duality, and 

Caroe and Tind (1998) were the first to propose using MIP duality to create these value 

function for use in (5).  However, MIP value functions are themselves non-convex, and 

discontinuous in general, and solving (5) directly is impractical at best.   

 

Our approach is to replace ℎ0
𝑘(𝑢0) and the set 𝑢0 ∈ ℝ𝑚0 × ℤℓ0  by creating functional 

approximations ℎ0,𝑗
𝑘  that are valid over a family of subsets {𝑄0,𝑗

𝑘 }, which cover all integers 

in 𝑄0.  Hence the lower bounding approximations will replace (5) by the following family 

of problems, one for each 𝑄0,𝑗
𝑘 . 

Min {𝑑0
⊤𝑢0 + ℎ0,𝑗

𝑘 (𝑢0) : 𝑢0 ∈ 𝑈0, 𝑢0 ∈ 𝑄0,𝑗
𝑘  }.   (6) 

The functions {ℎ0,𝑗
𝑘 } will be required to satisfy certain properties as specified below. To 

do so, recall that 𝑥𝑛 =  𝑎𝑛 + 𝐴𝑛𝑥0 + 𝐵𝑛𝑢0.  Hence, for a given 𝑢0 one can associate an 

MIP value denoted ℎ𝑛(𝑠𝑛(𝑢0)).  Hence we will require the approximations ℎ0,𝑗
𝑘 (𝑢0) to 

satisfy  
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ℎ0,𝑗
𝑘 (𝑢0) ≤ ∑ 𝑝𝑛ℎ𝑛(𝑠𝑛(𝑢0))

𝑛

  ∀ 𝑢0 ∈ 𝑄0,𝑗
𝑘  . (7) 

Because of the above minorizing property, (6) will provide lower bounds on (5).  In the 

B&B phase, each subset 𝑄0,𝑗
𝑘  will be associated with a first stage decision 𝑢0,𝑗

𝑘 , and a 

lower bound 𝑣0,𝑗
𝑘  defined as  

𝑣0,𝑗
𝑘 ≔  𝑑0

⊤𝑢0,𝑗
𝑘 + ℎ0,𝑗

𝑘 (𝑢0,𝑗
𝑘 ) ∶=  Min {𝑑0

⊤𝑢0 + ℎ0,𝑗
𝑘 (𝑢0) : 𝑢0 ∈ 𝑈0, 𝑢0 ∈ 𝑄0,𝑗

𝑘  }.   (8) 

Then, the B&B process of the ABC algorithm will estimate the most optimistic lower 

bound as  

�̅�0
𝑘 ≔  Min𝑗  {𝑑0

⊤𝑢0,𝑗
𝑘 + ℎ0,𝑗

𝑘 (𝑢0,𝑗
𝑘 )}, and �̅�0

𝑘 ∈ argmin {𝑑0
⊤𝑢0,𝑗

𝑘 + ℎ0,𝑗
𝑘 (𝑢0,𝑗

𝑘 )}, (9) 

If the solution  �̅�0
𝑘 satisfies the mixed-integer requirement, then we update the incumbent 

and the upper bound, as in any B&B algorithm.  On the other hand, if  �̅�0
𝑘 does not satisfy 

the mixed-integer requirements, we identify which of the remaining boxes need further 

exploration, and depending on the exploration rule, one would refine one of the boxes in 

the collection {𝑄0,𝑗
𝑘 }.   We should bear in mind however, that further branching should 

also be accompanied by obtaining improved approximations of the collection of functions 

ℎ0,𝑗
𝑘 . 

 

Improving Second-Stage Approximations 

 

One of the main insights underlying the ABC algorithm is value functions to be used in 

the first stage can be improved by using parametric cutting planes similar to the ones that 

have been developed in the context of stochastic combinatorial optimization algorithms 

as in Sen and Higle (2005) and Sen and Sherali (2006).  One of the major advantages of 

using parametric cutting planes in the second stage is that they are designed to adapt to 

adjust to changes in the first-stage decision which is a parameter for the second-stage in 

the context of decomposition algorithms.  As a result, these cuts automatically provide a 

memory of past visits to fractional solutions.  In addition, the strengthened relaxations 

provide stronger value function approximations (i.e. Benders’ cuts) which are used to 

update {ℎ0,𝑗
𝑘 } as the iteration counter 𝑘 increases.  These second-stage approximations are 

described next. 

 

In the notation used below, each node 𝑛 will have variables 𝑢𝑛, and these will be 

influenced by decisions made by the parent node, designated as node 0 in the two stage 

case.  Because we are interested in generalizing the two-stage algorithm to the multi-

stage case, it will be convenient to refer to the parent node of 𝑛, as the node 𝑛 −.    Thus, 

in the following development, the variables 𝑢0 and those referred to as 𝑢𝑛− will be the 

same.  This shift in notation will facilitate our development for dynamics after stage 2 in 

our multi-stage application. 
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Because multi-term disjunctive sets have been shown to provide the convex hull of 

mixed-integer sets, we adopt the use of multi-term disjunctions to obtain cutting planes to 

convexify the second-stage problem.  These cuts can be generated in one of two ways: a) 

by generating disjunctions based on the cutting plane tree (CPT) algorithm (Chen et al 

2011) which was one of the fundamental results obtained from the 2011-12 portion of our 

AFOSR-funded research, or b) using a truncated B&B tree where the second-stage 

approximation for scenario node 𝑛 is solved until either a maximum time or B&B node 

limit is reached.  At that point in the algorithmic process for the second stage will 

typically have a fractional solution which can be cut away by using a parametric cutting 

plane.  The resulting cuts will then be added to improve the approximation used in the 

second-stage constraints.  The details of this strategy are summarized next. 

 

Let 𝑢𝑛−
𝑘  be given, and suppose that we proceed to a scenario indexed by 𝑛.  We then find 

an approximate solution 𝑢𝑛
𝑘, and if this solution satisfies the mixed-integer requirements, 

then, no additional cutting planes will be added for the current iteration.  On the other 

hand, if  some integer restrictions are violated, then we generate a lifted cut in the space 

(𝑢𝑛−, 𝑢𝑛).   The cut will delete the point (𝑢𝑛−
𝑘 , 𝑢𝑛

𝑘), but will not delete any mixed-integer 

feasible pair (𝑢𝑛−, 𝑢𝑛).  In order to accomplish this task, let us first examine the 

following set. 

𝒴𝑛,𝑗
𝑘 ≔ {(𝑥𝑛, 𝑢𝑛)|𝐶𝑛

𝑘𝑥𝑛 + 𝐷𝑛
𝑘𝑢𝑛 ≤ 𝑏𝑛

𝑘,  𝑥𝑛 = 𝑎𝑛 + 𝐴𝑛𝑥0 + 𝐵𝑛𝑢𝑛−,  

𝑢𝑛− ∈ 𝑄𝑛−,𝑗
𝑘 , 𝑢𝑛 ∈  [∪𝜏 (𝑄𝑛,𝜏

𝑘 )] }, 
(10) 

 

where 𝑢𝑛
𝑘 ∉ [∪𝜏 (𝑄𝑛,𝜏

𝑘 )].  Note that the matrices 𝐶𝑛 and 𝐷𝑛, and the vector 𝑏𝑛 from (1) are 

subsumed within matrices 𝐶𝑛
𝑘  and 𝐷𝑛

𝑘 respectively, and the vector 𝑏𝑛
𝑘.  Also, 𝑥0 is fixed.  

Thus, substituting the state variable 𝑥𝑛 using the linear dynamics, we obtain a 

representation completely in terms of the variables (𝑢𝑛−, 𝑢𝑛).  This set has the following 

representation (with an appropriate matrix 𝐶�̅�
𝑘, and the right-hand side �̅�𝑛

𝑘).  

𝒵𝑛,𝑗
𝑘 ≔ {(𝑢𝑛−, 𝑢𝑛)|𝐶�̅�

𝑘𝑢𝑛− + 𝐷𝑛
𝑘𝑢𝑛 ≤ �̅�𝑛

𝑘,  𝑢𝑛− ∈ 𝑄𝑛−,𝑗
𝑘 , 𝑢𝑛 ∈  [∪𝜏 (𝑄𝑛,𝜏

𝑘 )] }. (11) 

The set in (11) is a disjunctive relaxation of the mixed-integer requirement, and can 

therefore be used to generate a valid inequality using disjunctive programming.  Suppose 

that the resulting cut is denoted 𝜋𝑛−
𝑘 𝑢𝑛− + 𝜋𝑛

𝑘𝑢𝑛 ≤ 𝜌𝑛
𝑘 .  Then, assuming 𝐵𝑛 is invertible, 

and recalling that 𝑥𝑛− = 𝑥0 (fixed), we obtain the cut coefficients in the space of state 

and decision variables (𝑥𝑛, 𝑢𝑛), and the set (10) can now be updated as 𝒴𝑛,𝑗
𝑘+1, with 

appropriately updated matrices 𝐶𝑛
𝑘+1, 𝐷𝑛

𝑘+1 and the vector 𝑏𝑛
𝑘+1 which include the new 

parametric cut.   
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Using disjunctive programming results (Balas 1979), and outcomes of our AFOSR-

funded research (Chen et al 2011), we have shown that for the two stage case, this 

approach provides a finitely convergent algorithm as stated below.   

 

Proposition 1. (Qi and Sen 2015)  Suppose that the set of first and second stage decisions 

form a compact set of integers.  Let the cuts be derived using multi-term disjunctive cuts 

as in Chen et al (2011), and the updates of the approximations in (10) and (11) are carried 

out accordingly.  Finally, suppose that the first stage B&B method uses (6) and (7) as 

discussed above. Then the ABC algorithm terminates with an optimal solution in finitely 

many iterations. ∎ 

 

Application of SMIP Models for Mission Planning 

 

Consider a mission dealing with carrying out reconnaissance and/or addressing threats 

over possibly hostile territory.  There are three stages of decision-making, with the first 

two involving the discrete choices:  a) which target/threat/way-point to assign to a 

particular vehicle b) should we reassign this vehicle based on observed conditions, and c) 

identify the safest route back to base.  The first decision will be denoted 𝑢0, which will 

specify both a way-point, as well as the pay-load.  While the way-point and pay-load 

combinations are important, they are not unique.  In other words, if at some point in the 

future, the way-point changes, there may be a subset of locations which can be served 

with the pay-load decision chosen at the beginning.  As in the presentation of the ABC 

algorithm, it will be more convenient to consider this variable as being denoted 𝑢𝑛−, with 

𝑛 − representing node “0” of a scenario tree. Once this decision is made, and the mission 

begins, the aircrafts receive data, which allows them to make some adjustments (recourse 

decisions), which will be denoted 𝑢𝑛 where, 𝑛 is a label associated with the specific kind 

of data that is observed.  After the decision 𝑢𝑛 is implemented, the aircraft will carry out 

the mission, and will use a sequence of maneuvers which will deliver the pay-load, and 

bring the aircraft back to home base.  These decisions will be represented as 𝑢𝑛+ The 

decisions associated with returning to the base may be looked up as linear/quadratic 

programming problem, whereas the first two choices are based on discrete selections.  

This last aspect (delivering the pay-load and returning to home-base) is difficult to 

predict at the start of the mission, but will depend on which specific node of the scenario 

tree actually transpires.  Hence decisions in this phase will be denoted 𝑢𝑛+.   In our setup, 

the decisions 𝑢𝑛− and 𝑢𝑛 are mixed-integer, whereas, 𝑢𝑛+ is continuous.   Thus, while 

the model is in fact a three stage model, only the first two stages have mixed-integer 

variables, and the setup of the ABC algorithm work is applicable to this situation.  A 

summary of these choices are provided in Table 1.   
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Because such stochastic dynamic mixed-integer problems (SD-MIP) are computationally 

challenging, it is important to trade-off accuracy with tractability.  We do so by using 

linear dynamics, although the parameters are all allowed to be governed by observations 

which could be stochastic.  Solving such a model helps both planning and execution 

because optimal (risk minimization) strategies can be studied prior to the mission.  

 

Table 1.  Layout of Discrete and Continuous Decisions in Mission Planning 

 

Stage States 
State Transition 

Equations 

Decisions 

(Continuous/Integer) 

0 
𝑥0 ≔  Locations of 

aircrafts in the fleet 
𝑥0 is given 

𝑢0 ≔ Target, Pay-load 

combination. 

(Discrete Choices) 

1 

𝑥𝑛 ≔ Locations and data 

(conditions) prior to 

adjustments 

𝑥𝑛 = 𝑎𝑛 

+𝐴𝑛𝑥0 + 𝐵𝑛𝑢0 

𝑢𝑛 ≔ Re-assessment/re-

assignment based on 

conditions. (Discrete 

Choices) 

2 

𝑥𝑛+ ≔ Locations and 

data immediately after 

the attack  

𝑥𝑛+ = 𝑎𝑛+ 

+𝐴𝑛+𝑥𝑛

+ 𝐵𝑛+𝑢𝑛 

𝑢𝑛+ ≔  Return path to base 

(Continuous Choices) 

 

 

It is also important to note that the stagewise approach of ABC is also consistent with 

many multi-stage SLP algorithms such as Nested Benders Decomposition, Stochastic 

Dual Dynamic Programming, and others.  Accordingly, this application is very well 

suited for a combination of SMIP and SLP models. 

 

Computational Results 

Computational results with the ABC algorithm has demonstrated that deterministic MIP 

solvers, even the most sophisticated ones (e.g. CPLEX) are not reliable enough to solve 

SMIP models.  The paper by Qi and Sen (2015) presents many examples where CPLEX 

fails after an hour computing on a desktop machine. However, the same machine is able 

to compute provably optimal solutions using the ABC algorithm.  Some of the larger 

examples reported by Qi and Sen (2015) are summarized in Table 2.  Here an instance of 

the type (mx5), (nx5) pertains to a problem with m potential server locations, each of 

which can accommodate 5 different types of servers, which will serve n potential 

locations, again with at most 5 different types of clients.  As one can observe, CPLEX 

12.6, which is one of the most sophisticated deterministic MIP solvers, and has been 

under development for the past 25 years, struggles to solve instances with a large number 

of scenarios.  Interestingly, when CPLEX 12.6 does find an optimal solution, it does so 
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within fewer CPU secs. (s) as shown for the examples in Table 2.  However, as the 

number of scenarios increases, the deterministic solver is unable to scale up, and failed on 

6 out of 9 instances shown in Table 2.  These results demonstrate the practical value 

behind the approaches produced as a result of this project. 

 

Table 2.  Computations Comparing ABC with CPLEX 12.6 with SMIP Instances 

 

Instance  |𝓝| 

Size 

Optimal 

Value 

Variables Constraints ABC 

(s) 

CPLEX 

12.6 (s) 

(2x5),(15x5) 50 -457.24 1602 1601 4.26 > 3600 

(2x5),(15x5) 100 -420.35 3202 3201 1.64 0.78 

(2x5), (15x5) 500 -399.47 16002 16001 51.28 > 3600 

(3x5),(15x5) 50 -436.42 2403 1651 191.92 9.73 

(3x5),(15x5) 100 -371.24 4803 3301 19.56 > 3600 

(3x5),(15x5) 500 -426.54 24003 16501 1069.92 > 3600 

(4x5), (10x5) 50 -308.69 2204 1201 3.6 0.98 

(4x5),(10x5) 100 -350.08 4404 2401 261.89 > 3600 

(4x5),(10x5) 500 -311.3 22004 12001 745.62 > 3600 

Large-scale Stochastic Linear Programming 

 

As mentioned in the previous section, both 2-stage and multi-stage SMIP models can be 

embedded within the setting of algorithms which solve 2-stage and multi-stage SLP 

problems.  As a result, we are also interested in solving large-scale SLP models which 

can end up as a platform for Stochastic-Dynamic MIPs.  This section is devoted to two-

stage and multi-stage SLPs. 

 

Statistical optimality for two stage algorithms 

The two stage SP model with recourse may be stated as the following optimization 

problem. 

 𝑓∗ =  Min
𝑢0 ∈𝑈

𝑓(𝑢0) ∶= 𝑑(𝑢0) + 𝐸[ℎ(𝑢0, �̃�)]. (12a) 

The function ℎ is referred to as the recourse function and is defined as 

 ℎ(𝑢0, 𝜔) ∶= Min{𝑑1
⊤𝑢1| 𝐷𝑢1 = 𝑏(𝜔) − 𝐶(𝜔)𝑢0, 𝑢1 ≥ 0}, (12b) 

where 𝜔 denotes an outcome of the random variable �̃� defined on an appropriate 

probability space.  When the space of outcomes is very large (or we have continuous 

random variables), sampling-based algorithms provide a tractable approach to two stage 

SP.  For such algorithms, optimality can only be verified in a statistical sense. There are 

two classes of statistical optimality tests: a) In-Sample stopping rules (e.g., Higle and Sen 

DISTRIBUTION A: Distribution approved for public release.



 11 

1999) and b) Out-of-Sample stopping rules (e.g., Higle and Sen 1996, Mak et 1999 and 

Bayraksan and Morton 2011).  The former apply to algorithms which are classified as 

“internal-sampling” algorithms, while the latter apply to both “internal” as well as 

“external” sampling algorithms.  The current project has designed a new concept called 

the Compromise Solution for out-of-sample stopping (Sen and Liu 2015).   

. 

In order to give the reader a concrete sense of progress, we present recent computational 

results with the Sonet Switched Network (SSN) cited in the Defense Science Board 

Report (2011) for the potential power of SP.  This is a two-stage SP, and in 1994, we had 

reported major improvements in network robustness by using solutions which were 

obtained on a Sun Sparc II machine after about an hour of computing using SD (Sen et al 

1994). Because the SSN model involves a sample space of O(10
70

) possible scenarios, we 

had no hope of ascertaining whether the design we obtained was close to optimum.  From 

a deterministic point of view, this is true even today.  Even if one had access to exascale 

computing (O(10
18

) flops), there is no hope of predicting the expected number of lost 

packets deterministically.  If one accepts statistical assessments of optimality, then there 

is hope. 

SAA Computations for SSN 

The methods discussed below (i.e. SAA and SD) use the above rules in a manner suited 

within the context of their specific algorithmic procedures.  SAA is an acronym for 

Sample Average Approximation (Kleywegt et al 2002), and the strategy here  is to 

replace the expectation  𝐸[ℎ(𝑢, �̃�)]  in the objective function of (12a) by a sample 

average approximation created by sampling a batch of 𝑁 outcomes {𝜔𝑡}𝑡=1
𝑁 .  Thus, the 

expectation is replaced by 

 �̂�(𝑢) =
1

𝑁
∑ ℎ(𝑢, 𝜔𝑡).

𝑁

𝑡=1

 (13) 

In the machine learning literature, this function is referred to as “empirical risk”. Using 

concentration inequalities and large deviations theory, suggests a sample size which 

ensures an 𝜖-optimum with high probability.  Nevertheless, as the authors of SAA 

suggest that such sample sizes are much too large to be computationally practical 

(Kleywegt et al 2002).  Instead a sequential application of SAA is recommended 

(Linderoth et al 2006).  For each sample size 𝑁, the sequential approach creates 𝑚 =

1, , … , 𝑀 replications denoted {�̂�𝑚} of the form (13).  After optimizing these 

𝑀 replications, one calculates a lower bound confidence interval, and an upper bound 

confidence interval as suggested in Mak et al (1999). If the pessimistic gap
2
 is large, then 

                                                 
2
 The pessimistic gap is the difference between the upper end-point of the upper bound confidence interval 

and the lower end-point of the lower bound confidence interval. 

DISTRIBUTION A: Distribution approved for public release.



 12 

the sample size 𝑁 is increased; otherwise, the method stops and declares the solution to 

be close to optimum. 

 

Table 3: Results for SSN using SAA and LHS Sampling on a Computing Grid 

Sample Size 

(𝑁) 

Lower Bound (𝐿)  

Confidence Interval 

Upper Bound (𝑈) 

Confidence Interval 

Pessimistic Gap 

Max (𝑈 − 𝐿) 

50 10.10 (+/-0.81) 11.380 (+/-0.023) 2.113 

100 8.90(+/-0.36) 10.542(+/-0.021) 2.023 

500 9.87(+/-0.22) 10.069(+/-0.026) 0.445 

1000 9.83(+/-0.29)  9.996(+/-0.025) 0.445 

5000
3
 9.84(+/-0.10) 9.913(+/-0.022)  0.195 

 

 

The results for SSN in Linderoth et al (2006) are reproduced in Table 3.  For 𝑁 =

5000 the pessimistic gap is less than 0.5%. Thus with very high probability the optimal 

value of SSN is in the suggested confidence intervals. The results in Table 2 were 

obtained using a computational grid with several hundred desktop PCs, although no more 

than one hundred machines were in operation at any given time.  Even so, each SAA 

instance of SSN in the final row of Table 3 (with 𝑁 = 5000) required about 30-45 (wall 

clock) minutes. To the best of our knowledge, the authors use 𝑀 = 6 for SSN. 

 

 

 

 Two-stage SD computations for SSN 

The statistical tests used in SD include both in-sample as well as out-of samples rules. 

The in-sample rule verifies whether a large proportion of resampled instances provide 

duality gap estimates below a given tolerance (loose, nominal, or tight). In addition, for 

out-of-sample tests SD chooses the number of replications 𝑚 = 1, … , 𝑀. Because the 

specifics of the algorithms (SAA and SD) are different, the tables present slightly 

different information, although the bounds and pessimistic gap appear in both. 

 

 

 

 

 

 

 

                                                 
3
 Runs with 𝑁 = 5000 took 30-45 mins. of wall clock time per replication with 100 PCs on a computing 

grid 
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Table 4: SD with Common Random Numbers (on a MacBook Air with 

CPLEX12.4) 

Stopping 

Tolerance 

(Relative) 

Sample Size 

(Standard 

Dev) 

Lower 

Bound (𝐿)  

Confidence 

Interval 

Upper 

Bound (𝑈) 

Confidence 

Interval 

Pessimistic 

Gap 

Max 

(𝑈 − 𝐿) 

CPU sec. per 

replication 

Loose (0.01) 
1023.33 

(167.62) 

9.366 

(+/-0.244) 

9.953 

(+/-0.050) 
0.881 32.73(6.97) 

Nominal 

(0.001) 

2353.43 

(343.33) 

9.764 

(+/-0.120) 

9.928(+/-

0.050) 
0.334 109.96(26.31) 

Tight 

(0.0001) 

3137.50 

(605.17) 

9.876 

(+/-0.107) 

9.925 

(+/-0.050) 
0.206 189.79(74.57) 

 

The main observations from the above comparison (Tables 3 and 4) are provided below: 

 

1. (Choosing decisions). As reported by Linderoth et al (2006), the 6 solutions for 

SSN found using SAA were quite disparate even though these experiments were 

done using Latin-Hypercube Sampling, a variance reduction tool commonly used 

for discrete-event simulation.  This was attributed to the inherent ill-conditioning 

of SSN.  Nevertheless, solution variability (due to sampling) does appear in many 

practical instances, and decision-makers need guidance on which choice to adopt.   

2. (Computing Platforms v Algorithms).  The MacBook Air has a processor speed of 

about 1.8 GHz, and the average Pentium IV processor from 2004/2005 ran at 

about 2 – 2.2 GHz.  Based on the similarity in processing speeds, and following 

the arguments in a PCAST report of (Holdren et al 2011), Sen and Liu (2015) 

argue that the speed-up reported in Table 4 is on par with Moore’s law, as long as 

the grid computing platform spent less than 87.2% of its time on either idling or 

communicating.  Similar conclusions have been drawn while comparing Batch 

and Online Stochastic Learning (Bottou  2003), where “Batch” refers to empirical 

risk minimization as in SAA, and “Online” is similar to SD.  Similarly 

computations reported by Nemirovski et al (2009) also support this conclusion. 
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Out-of-sample Test: Compromise Decision.   

 is that the lines on the left represent estimated objective function values at the solution to 

a Compromise Problem  (14) which uses the replications to recommend a nearly optimal 

decision. 

 Min
𝑢∈𝑈

{𝑑(𝑢) +
1

𝑀
∑ ℎ𝑚(𝑢)

𝑚

+
𝜎

2
‖𝑢 − 𝑢𝑚 ‖2)}. (14) 

Consider models which have the structure shown in (12), and assume that  i) (𝑈, Ω) are 

compact sets, 𝑈 is a convex set, and 𝑑(𝑢) is a convex function,  ii) the second stage 

satisfies the relatively complete recourse property, and iii) the random process affects 

either activities (columns) of the first or resources (right hand side) of the second stage.   

Let an interior sampling algorithm (such as SD) run 𝑀 times with each seed creating i.i.d. 

sequences of outcomes {𝜔𝑘
𝑚}, for 𝑚 = 1, … , 𝑀, where 𝑀 is large enough and 𝑁 denotes 

the smallest sample size discovered by SD among all 𝑀 runs..  Suppose each run 

produces a solution 𝑢𝑚 as well as an approximate value function ℎ𝑚(𝑢) such that 

 

𝑢𝑚 ∈ argmin{𝑓𝑚(𝑢) ≔  𝑑(𝑢) + ℎ𝑚(𝑢) ∶ 𝑢 ∈ 𝑈} 

and |𝐸[ℎ(𝑢𝑚, �̃�)] − ℎ𝑚(𝑢𝑚)| = 𝑂𝑝 (
1

√𝑁
). 

(15) 

where the right-hand side
4
 in (15) is due to the Central Limit Theorem. Let �̅�𝑀(𝑢) denote 

the grand mean value function approximation 
1

 𝑀
∑ 𝑓𝑚(𝑢)𝑚  used in (11).   Suppose that 

 𝑢𝑐 ∈ argmin{ �̅�𝑀(𝑢)|𝑢 ∈ 𝑈 }.  We say that the statistical optimality principle is satisfied 

if 

where 𝑓∗ denotes the optimal value in (12), and 𝜂 = 𝑂𝑝 (
1

√𝑁𝑀
).  This is the principle that 

leads us to the kind of computational performance that is reported in Table 4.  Further 

details for SLP problems are provided in the Sen and Liu (2015). 

 

Multi-stage Stochastic Linear Programming 

 

This part of the project deals with successive approximation schemes within the context 

of multi-stage stochastic programming, and should be interpreted as a bridge between 

stochastic and dynamic programming.  The method presented in Sen and Zhou (2014) is  

the only MSLP algorithm which discovers the stochastic process “on the fly”, and in this 

sense it is the multis-stage analog of two-stage Stochastic Decomposition (SD). Among 

sampling-based approaches for MSLP, the most popular ones trace back to the work on 

stochastic dual dynamic programming (SDDP)  of  Pereira and Pinto (1991). Algorithmic 

                                                 
4
 Let 𝑂𝑝(1) denote stochastic boundedness. Any sequence of random variables {𝑅𝑛} is stochastically 

bounded if for every 𝜖 > 0 there exists 𝐶 > 0 such that Pr[|𝑅𝑛| > 𝐶] < 𝜖. 

 �̅�𝑀(𝑢𝑐) − 𝜂 ≤ 𝑓∗ ≤  �̅�𝑀(𝑢𝑐) + 𝜂, (16) 
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enhancements for this class of methods have appeared in Infanger and Morton (1996) and 

more recently as abridged Benders’ decomposition in Donahue and Birge (2006).  

Asymptotic results by Philpott and Guan (2008) highlight the need for certain analytical 

safeguards for asymptotic convergence.  

 

One of our main goals was to present an approach that generalizes the two-stage SD 

algorithm to the multi-stage setting. More specifically, the MSD algorithm provides a 

dynamic extension of regularized multi-stage SLP.  As with the two stage case, the 

multistage extension provides an asymptotically optimal solution (wp1), even without 

requiring the scenario probabilities as input into the algorithm.  While the approach for 

sampled approximations share some of the recursive features of ADP, some 

approximation tools (e.g. duality) and asymptotic analysis draw upon concepts  that are 

central to SP (e.g. epigraphical nesting). In this sense, MSD provides a bridge between 

SP and ADP.   

 

In order to appreciate the above goals, it is important to place the two-stage SD algorithm 

in the context of other sample-based methods for two-stage SP.  Among the earliest 

approaches for sample-based algorithms we have the Stochastic Approximation method 

(SA, Robbins and Monro 1951). The work of Ermoliev and Shor (1968) appears to be the 

first application of SA to SP, and as demonstrated by the work of Nemirovski et al 

(2009), there is continuing interest in using SA methods for SP problems.  This genre of 

methods creates a sequence of sampled subgradients which are used with certain step size 

rules to ensure convergence (wp1) of the random sequence of solutions generated by SA.  

Thus one might consider an SA algorithm to be a sampled version of the deterministic 

subgradient method, just as two-stage SD is a sampled version of Benders’ 

decomposition.  The advantage of these sample-based schemes is that they are able to 

work with statistical estimates, and for large scale models they have the advantage of not 

having to calculate a subgradient using every potential outcome of the random variable.  

The main point here is that SA and SD are both randomized versions of their 

deterministic counterparts.  

 

In order to extend algorithms that use Benders’ cuts (e.g. Nested Benders, SDDP, etc.) to 

cases where a simulation of the randomness is available, but not exact distributional 

information,  a variety of issues were addressed. 

 (Sampling and Convergence)  In current sampling-based methods motivated by 

Benders’ decomposition the essential role of sampling is to reduce the number of 

nodes traversed by the algorithm in any iteration.  However, the approximations 

themselves are formed by using deterministic Benders’ cuts.  This requires a 

probabilistic description of uncertainty to be characterized before an SP algorithm 

can be used.  Note that there are many emerging applications in which stagewise 
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independence may not be justified. For instance, in Philpott and Matos (2012) the 

authors try to include a Markov Chain within an SDDP framework (see also Higle 

and Kempf 2011).  However, the MSD framework provides a more natural setting 

for such applications because the setup is based on a dynamic systems framework 

which admits Markov chains seamlessly.   The question then arises whether 

asymptotically convergent algorithms can be designed for such applications.  For 

MSLP, this open question will be resolved, in a mathematical sense, by the MSD 

algorithm. This paper will establish asymptotic results, although computational 

realizations will require further attention to data structures, stopping rules, and 

other advances.   

  (Uniqueness)  Under what circumstances will the algorithm produce a unique 

solution?  

 (Specializations for stochastic structure) Are there specializations (e.g. stagewise 

independence or autoregressive structures) of the general MSLP structure that will 

allow a streamlined algorithm compared with the case of correlated random 

variables?  

 (Specializations for constraint structure) Suppose that some of the matrices have 

specialized structures (e.g. networks).  Are there ways to specialize the MSD 

algorithm in a way that can exploit such special structures?  Finally, does the 

MSD algorithm reduce to two-stage SD when applied to two-stage SLP? 

 

By developing the MSD algorithm, our project has addressed all of the questions posed 

above.  The MSD algorithm is a dynamic version of Higle and Sen (1994) which is a 

regularized approach to the original version of SD.  In the SP literature, such 

regularization was already an effective tool within the deterministic approach proposed in 

Ruszczyński (1986), as well as non-smooth optimization methods, as in Kiwiel (1990).  

Finally, these ideas were also studied more recently in Oliviera et al (2012).  However, 

there has been very little attention paid to multistage extensions using regularized 

algorithms (e.g. see comments by Shapiro 2011). The MSD approach is the first 

regularized algorithm for MSLP.  Details of this approach are available in Sen and Zhou 

(2014).  

 

 

 

 

 

 

 

 

DISTRIBUTION A: Distribution approved for public release.



 17 

1. Dissemination  

Stochastic Programming Software (Freely Distributed) 

 

 Available at  www.neos-server.org/neos/solvers/slp:sd/SMPS.html 

 Available through Github at: https://github.com/imliuyifan/sd 

 Have created interfaces for PySP (Open Source Software for Stochastic 

Programming) 

 

Presentations 

(Featured Presentation) S. Sen, “Stochastic Mixed-Integer Programming,” INFORMS 

Optimization Conference, Miami, FL, February 2012. 

 

S. Sen, “Multi-stage Stochastic Decomposition,” Symposium of the Mathematical 

Optimization Society, Berlin, August 2012. 

 

S. Sen and Y. Liu, “Optimization Statistics for Stochastic Linear Programming” 

INFORMS Computing Society Meeting, Santa Fe, NM, January 2013. 

 

S. Sen and Y. Qi, “The ABC algorithm for two-stage Stochastic Mixed-Integer 

Programming,” International Conference on Stochastic Programming, Bergamo, Italy, 

2013 (also presented at the INFORMS Annual Conference in Minneapolis) 

 

S. Sen  “Specializations of Multi-stage Stochastic Decomposition,”  Applied Probability 

Society Conference, Costa Rica, July 2013 

 

S. Sen (Plenary/Advance Tutorial) “Conceptual v. Computational Stochastic 

Programming: Perspectives as SP turns 60” INFORMS Computing Society Conference, 

Richmond, VA, January 2015. 

 

Lectures at Universities 

 

90 min. Lecture at Winter School at Tignes, France (2013) 

Lecture at Ohio State University (2013) 

Lecture at UC – Davis (2014) 

Offered ISE 638 to Ph.D. students at USC (9 students enrolled) 

 

Students Supported 

Y. Liu, S. Atakan and A. Ozkan.  Their dissertations are on-going at this point. 
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Publications 

 

[1] B. Chen, S. Küçükyavuz, and S. Sen, “A Computational Study of the Cutting Plane 

Tree Algorithm for General Mixed-Integer Linear Programs,” Operations Research 

Letters, Vol. 40, pp. 15-19, 2012. 

 

[2] D. Gade, S. Küçükyavuz, and S. Sen, “Decomposition algorithms with parametric 

Gomory cuts for two-stage stochastic integer programs,” Mathematical Programming, 

vol. 144, pp. 39-64, 2012. 

 

[3] K. Huang, S. Sen, and F. Szidarovszky, “Connections among Decision Field Theory 

models of Cognition,” Journal of Mathematical Psychology, Vol. 56, pp. 287 – 296, 

2012. 

 

[4] Y. Qi and S. Sen, “Ancestral Benders' Cuts and Multi-term Disjunctions for Mixed-

Integer Recourse Decisions in Stochastic Programming,” revised and resubmitted to 

Mathematical Programming. 

 

[5] S. Sen, “Stochastic Programming," Encyclopedia of Operations Research and 

Management Science (S. Gass and M. Fu, eds.), Springer, pp. 1486 – 1497, 2013. 

 

[6] S. Sen and Y. Liu, “Mitigating Uncertainty via Compromise Decisions in Stochastic 

Linear Programming” revised and resubmitted to Operations Research 

 

[7] S. Sen and Z. Zhou, “Multi-stage Stochastic Decomposition” SIAM Journal on 

Optimization, Vol. 24, pp. 127-153, 2014. 

 

[8] H. Gangammanavar, S. Sen and V. Zavala, “Simulation and Stochastic  Optimization 

for Sub-hourly Economic Dispatch of Wind Energy” accepted for publication  in  IEEE 

Transactions on Power Systems. 
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