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BAA 1235672148: Final Report

Project Title: Acquiring semantically meaningful models for robotic localization, mapping and
target recognition:

Jana Koseckd, Department of Computer Science George Mason University
4400 University Drive, Fairfax, VA 22032
e-mail: kosecka@cs.gmu.edu, phone: 703-993-1876

1. Foreword

The main goal of this proposal is to develop novel representations of objects and environments for localization,
semantic mapping and target detection. Majority of the research efforts in mapping and visual perception for
robotic systems, focused on the problems of localization, map building of doing both jointly know as simultaneous
mapping and localization (SLAM) problem. The maps proposed in the past ranged from metric, topological of
hybrid representations of the environments. While these models are suitable for navigation tasks, endowing such
models with additional semantic information can enable more complex tasks, such as object search or better
target/object detection as well as more advanced interactions with humans. Semantic labeling techniques strive
to assign different semantic labels to different partitions of the data and use the context of indoors and outdoors
environments improve the state of the art of existing visual localization strategies, contextual target detection and
recognition and semantic mapping. The focus of our approach is on the development of unified representations,
which can be adopted to the task at hand. These representations and framework for learning and inference will
be an integral part of perceptual capabilities of a robotic system and will be evaluated using different sensing
modalities and different tasks in indoors and outdoors environments.

2. Problem Statement

The semantic mapping of the environment requires simultaneous segmentation and categorization of the ac-
quired stream of sensory information. The existing methods typically consider the semantic mapping as the final
goal and differ in the number and types of considered semantic categories. We envision semantic understanding
of the environment as an on-going process and seek representations which can be refined and adapted depending
on the task and robot’s interaction with the environment. In this work we propose a novel and efficient method
for semantic parsing, which can be adopted to the task at hand and enables localization of objects of interest in
indoors environments. For basic mobility tasks we demonstrate how to obtain initial semantic segmentation of the
scene into ground, structure, furniture and props categories which constitute the first level of hierarchy. Then, we
propose a simple and efficient method for predicting locations of objects that based on their size afford a manipu-
lation task. In our experiments we use the publicly available NYU V2 dataset [8] and obtain better or comparable
results than the state of the art at the fraction of computational cost. We show the generalization of our approach
on two more publicly available datasets.

3. Summary of the results

Over the duration of the project we have made several significant contributions in semantic understanding of
multimodal sensory data in indoors and outdoors environments. We will briefly summarize them below, while the



additional details can be found in the accompanying publications.

Priming Object Detection In [2, 3] we have demonstrated very efficient algorithm which for initial semantic
segmentation of the scene into ground, structure, furniture and props categories which constitute the first level
of hierarchy. The main technical insights was the use of minimum weight spanning tree approximation of the
inference graph, which was computed on 3D depth data and effective and efficient to compute features. These
choices enabled us to use well conditioned exact inference techniques for the learning and estimation of the final
labeling and yielding improved performance at the fraction of the computational cost on the standard benchmark
RGB-D dataset on NYU V2. The initial version of this work was published in a workshop, followed by submission
and acceptance of the work to International Journal of Robotics Research [3].

Recursive Semantic Labeling In the follow up work we have extended the static semantic parsing to a video
setting and proposed a recursive Bayes filter style updating mechanism [1]. In this problem we focused on out-
doors environments and exploited widely available exemplars of non-object categories (such as road, buildings,
vegetation) and used geometric cues which are indicative of the presence of object boundaries to gather the evi-
dence about objects regardless of their category. We have carried out extensive experiments on videos of urban
environments acquired by a moving vehicle and show quantitatively and qualitatively the benefits of our proposal.
Another notable feature of the resulting approach was close to real-time performance of the whole system (5 fps),
including the feature computation and inference.

Heterogeneous Coverage In the previous approaches were were able to compute the semantic labeling for
regions of the images and video using only one sensing modality, incorrectly interpolate measurements of other
modalities or at best assign semantic labels only to the spatial intersection of coverages of different sensors. In
this work we proposed a method for inferring semantic labels Using the previously proposed strategy for inducing
the graph structure of Conditional Random Field used for inference, in this work we proposed a novel method
for computing the sensor domain dependent potentials. This strategy enabled us to achieve superior semantic
segmentation for the regions in the union of spatial coverage of the sensors, while keeping the computational cost
of the approach low. The problem is illustrated in Fig. 1. For example with an image sensor note how in column
(b) one portion of the car is confused with the ground because their colors are similar. We demonstrated how
to combine the visual sensing with the evidence from a 3D laser sensor and mitigate sensor specific perceptual
confusers, column (c), but now we are only able to explain a subset of the scene, the spatial intersection coverage,
leaving us without output for the car glass and the building in the top portion of the image. With the strategy we
introduced, we can take the advantage of both sensor modalities without discarding the non-overlapping zones,
column (d) in Fig. 1.

Finer Grained Semantic Labeling The previous techniques we have discussed very efficient semantic labeling
techniques for small number of semantic categories. This was possible due to efficient features and inference
algorithms. In order to obtain better discrimination capabilities for different categories additional features and
alternative inference algorithms have to be computed. We proposed to formulate the multi-class object recognition
and segmentation in RGB-D data using many binary object-background segmentation, using informative set of
features and grouping cues for the small regular superpixels. The main novelty of the proposed approach is the
exploitation of the informative depth channel features which indicate presence of depth boundaries, the use of
efficient supervised object specific binary segmentation and effective hard negative mining exploiting the object
co-occurrence statistics. The binary segmentation is meaningful in the context of robotics applications, where
often only the object of interest need to be sought. This yields an efficient and flexible method, which can be
easily extended to additional object categories. We report the performance of the approach on NYU-V2 indoors



(a)

Figure 1. We propose in this work a new approach to semantic parsing, which can seamlessly integrate evidence from multiple
sensors with overlapping but possibly different fields of view and account for missing data, while predicting semantic labels
over the spatial union of sensors coverages. The semantic segmentation is formulated on a graph, in a manner which depends
on sensing modality. First row: (a) over-segmentation over the image; (b) graph induced by the superpixels; (c) the 3D point
cloud re-projected on the image with a tree graph structure computed in 3D, and (d) the full graph as proposed here for full
scene understanding. In the second row is the semantic segmentation (a) ground truth and results of (b) using the image graph
and only visual information; (c) using the 3D graph and visual and 3D information, and finally (d) the result from using a
graph for full coverage and all the information. Note the best semantic segmentation achieved over the union of the spatial
coverage of both sensors. Color code: Mground, Iobjectgsﬁ, building and Mvegetation.
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Table 1. Performance on the NYUD-V2 dataset in Jaccard index.

dataset and demonstrate improvement in the global and average accuracy compared to the state of the art methods.
The brief summary of the results, highlighting two different performance measures in different categories can be
seen in Tables 1 . More details of the proposed methods can be found in [7] and the follow up submission, which
is currently under review.
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Robotic Perception

- Methods for modeling 3D geometry of the
environment and semantic concepts

- Seamless processing of video streams

- Recursive and multi-view setting

. Efficient Inference



Robotic Tasks Representations

Road, floor, free space
landmarks, locations

Structural Obj.

(doors, ...)

Navigation

Mapping
Localization

Specific Obj.
(traffic signs, cups,
bins, ...)

Manipulation

Dynamic Obj, People

(cars, bikes, ...)

Human
Interaction

« Representation which can be computed efficiently
and are reusable for multiple tasks, extended efficiently to new
semantic concepts



Tasks Representations
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Tasks Representations

« Point features tracking
e Recovery of relative motion, visual odometry
« Loop closure

e « Environment models, sparse clouds of points
Localization 5 L
 Often sufficient for navigation

» Not sufficient for navigation free space/obstacles

e Location recognition

« Data assoc. with large variations of appearance

« Semantic information for object recognition, human
robot interaction

« Obtain high quality denser env. models
« Associate useful semantic inform. with regions/
volumes in 3D space



3D geometry, Features, Semantics

3D geometry: move from sparse feature points to
dense models, reason about surfaces etc.

Overcome challenging, matching and correspondence
problems

Semantic Categorization: learning and inference in a
multi-view/recursive setting Learning and inference

Multi-view reconstruction using super-pixels
Task Dependent Sematic Parsing



Semantic Hierarchy
Strongly depends on the current task

Mapping

Semantic Segmentation
“Background” / Objects

Specific Obj.
(trgfﬁcl; Isignsj, Dynamic Obj. Structural Ob;.

garbage bins, (cars, bikes, ...) (doors, ...)

Human

S Interaction




images — 3D model
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Challenges of indoors and outdoors environment

X no or repetitive texture
x illumination, scale, viewpoint changes, occlusions ...
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Multi-view Superpixel Reconstruction

m pre-segment the reference image into superpixels
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R
i
i

m large support area -> more robust measures
Goal: to find depth and normal for each superpixel, 1I = [mT d]T

Assumption: each super-pixel corresponds to a planar patch in 3D
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v’ Known camera projective matrices Pp = Ki|Rx ti]

m searching for MAP of MRF as a labelling problem

al‘gmin {Z Ephoto + A Z Esmooth}
{nvd}|s| {3} {S,S/}

x Intractable over all depths and normals !



Plane sweeping

v Plane induced homography

Hy,(T1, Py, Kpey) = Ki; (R — tim" /d) K.}

cameras ... Pr = Ki|Rg tg]

Unknown plane ... II =[n' d]'
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Restriction of depths

m For each plane normal sweep along depth range and
remember only depth candidates !

P={nd"}

m and optimize

Z Ephoto + /\1 Z Egeom + )\2 Z Enorm =+ )\3 Z Edepth
{s,s’} {s,8"}

over the depth candidates and dominant normals !

ar gmm

14



Plane-induced homography

ref image

one depth, one normal
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Sweeping

ref ima / s

e
s u

ormalize all splx projections

e

plt 4 p + P
chromacity vector

m compute normalized histograms
|

Cr = —_—

| |

N
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Photometric measure

ref splx C1(d) C's(d) I Cy(d)

m photometric measure for each splx projection — histogram difference
and chromaticity for each reference view/view pair

Cr(d) = xj + aller — cref|?
m composite photometric measure for all views

C(d) = ﬁ S Cu(d)
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Depth candidates
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Labelling Problem - Energy terms

* Nodes of the graph — superpixels
« Edges of the graph — induced by neighboring superpixels
* Typical pair wise MRF

. E E /
arg mﬁn; (s) + (Z) (s,5")

* |[n our case:

argmin '—I— )\.-4 )\2. + A3 .
P 0
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Labeling

v' available solvers: Kolmogorov PAMI'06, Werner PAMI'07

21
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Photoconsistency term

Eohoto(S,1s) Color histogram and
chromacity differences

9.5 10
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Geometric term
v Splx boundaries are usually consistent with dominant directions

gradient mixture model (Coughlan & Yuille NC'03)
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Pair wise normal term

SO

m Force neighboring splxs to have same normal

Enorm (S, s’ s, ls') = 5( ?27ls) 7 Tf27ls’))

Ising prior
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Pair wise depth term

m Force neighboring splxs to touch in 3D

X(x,ng,ds)

n, =n

25
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Utilizing plane priors

m Compute MAP estimate (run the MRF graph solver once)
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GMU building

3D model



3D Reconstruction of street scenes




Oxford corridor

using 6 images
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Multi-view Superpixel Reconstruction

m Superpixel 3D reconstruction of one indoors - outdoors scenes

v' less computational complexity

v' alternaticve photometric/similarity measures

v’ piecewise planar surfaces can be favorably handled

m Extensions to general mostly planar scenes, real-time settings
(Gallup’09)

m Integration of 3D reconstruction with recognition

30



Associating Semantic Information

Segmentation and categorization of different partitions
of sensory data using geometric and appearance cues

- Navigation - free space, occupied space

. Localization/Place recognition - static portions of environment

- Object search, human detection - generate hypotheses about
presence of objects

- Object Categorization
Object Instance recognition




Semantic Segmentation

1. Task Dependent Semantic Hierarchy

2. Multi-view and Recursive formulation

3. Capability of handling missing 3D data (full sensor’s
FOVs coverage)



Proposed Semantic Hierarchy
- Coarse to fine manner

- Strongly depends on the current task

Semantic Segmentation
“Background” / Objects

Specific Obyj. Dynamic Obj. Structural Obj.

. a(:tgaaf;ig zii%r;s, : (cars, bikes, ...) (doors, ...)



Proposed Semantic Hierarchy

“Background” and object categories

Non-object categories
specific to types of
scenes

. we can assume to be
present (almost) always

mostly static or slow
changing

Props/Objects

KITTI da

taset, Geiger e/t al. [IJRR

|

2 Ground

e
T Nl
'JN‘"' = £

-

Vegetation

Mapped from Sengupta et al. ICRA
2013

NYU V2 dataset, Silb_erman et al. ECCV

3

Ground

Furniture
Props




Our formulation

\ 4

Semantic
Segmentation

Conditional Random Fields

Graph Structure

Preprocessing ———»

Potentials

MAP

Marginals

\4

Inference

Learning



Preprocessing: Over-segmentation

SLIC superpixels

£y
avat

Preserve contours - Regularity - Efficiency

R. Achanta et al. SLIC superpixels compared to
state-of-the-art superpixel methods, PAMI, 2012.



Graph Structure: Our choice

Minimum Spanning Tree
Over 3D

Edges are determined by the MST over 3D distances between
superpixels’ centroids



Graph Structure: Our choice

Intra-class components are naturally connected



Formulation as Pairwise CRFs

Directly models p(x|z)

ieN 1.7€€

p(x|z) = 7(2) exp(Zw f(x;,2z)+ ) wpg(x”,z))



Potentials: Pairwise CRFs

T =

5

1

p(x|z) = exp| Y w, f(xi,2) + ) w,g(xi,2)
Z(Z) ieN i,je€



Potentials: Pairwise CRFs

1
p(xlz) = —exp| > w,f(xi,2) + ). w,g(xi;2)
Z(Z) ieN i,j€€



Potentials:  pairwise

- Favor (penalize) same class for nodes close (far) in Lab color
- Favor (penalize) different classes for nodes far (close) in Lab

color

L —exp (=l — ¢
exp (—|le; — ¢jf2)

" g(x;,2) = {

C . Lab col
ab color Same form with 3D positions



Potentials:  unary

unary (local) potential
using a k-NN classifier

f(LOF (L
Pl = o) = ni A

f({;) frequency of label j in a k-NN query
['({;) frequency of label j the database

The database is a kd-tree of features from training data



Features Indoors (15D) | Outdoors(21D)

From Image

Lab-color: mean and std 6D 6D
RGB-color: mean and std 6D
vertical centroid location 1D 1D
entropy from vanishing points 1D

From 3D

3-D centroid position 2D 3D
differences on depth: mean and std 2D 2D
local planarity 1D 1D
neighboring planarity 1D 1D
vertical orientation 1D 1D




Features
- From 3D

-« mean and std of differences
on depth

- local planarity

- neighboring planarity

- vertical orientation

- From Image:

- entropy from vanishing points

=~ " hgy(y = j)log (hg,(y = ))

J=1

.“v g
%% i R
Ut JHRT e
R A L
K] R
|
= i ‘
Nt . |
————r |
JI]III[[’ i
§
L
]
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Inference

We use belief propagation:

- Exact results in MAP/marginals

. Efficient computation, in O (nm?)

Learning
Maximum Likelihood Estimation
Tree graph structure:

[Wua Wp]
- To learn good convergence



Results: NYU-Depth v2 Dataset

Qualitative R GroundTruth
comparison: ‘

Ground
Structure

Furniture

Props



Results: NYU-Depth v2 Dataset

Quantitative comparison:

Recall accuracy in pixel-wise percentage:

Ground | Furniture | Props | Structure | Average | Global
CRF-MST-kNN 88.4 64.1 30.5 78.6 65.4 67.2
only Image Feat. 63.2 47.5 24.5 73.6 52.2 56.1
only 3D Feat. 89.5 70.0 16.9 79.4 62.7 65.8
data-term (kNN) 87.3 60.6 33.7 74.8 64.1 64.9
Silberman et al. 2012 68 70 42 59 59.6 58.6
Couprie et al. 2013 87.3 45.3 35.5 86.1 63.5 64.5




Results: KITTI Dataset

Recall accuracy in pixel-wise percentage:

Ground | Objects | Building | Vegetation | Average | Global
CRF-MST-kNN 97.3 82.9 82.8 86.9 87.5 88.4
only Image Feat. 96.8 49.2 64.6 95.5 76.5 76.8
only 3D Feat. 95.9 84.2 80.5 46.7 76.8 78.8
data-term (kNN) 96.8 75.9 80.7 77.6 82.8 83.5




Results: KITTI Dataset

Ground Truth MAP results

Ground Vegetation
Objects




Overview

2. Multi-view and Recursive formulation



Multi-view:

Different views/nodes in their
local reference frame — mean
3D position



Multi-view:

Use relative pose to
align the nodes to the
same reference frame



Multi-view:

<

O
O O 2
X1 O X9
O O
MST in the common J<7 p(Xl, X2|Z17 Z, Tl?)

reference frame

No need to find hard tx q
correspondences p



Recursive Inference

e.g. visual _

odometry

Semantic e
Segmentation ?



Video sequences:

Z—1

p<Xk—1|Zk—1)

On-line operation

Infer the marginals at
k-1



Recursive Inference

p<Xk_1 |Zk_1> Sensing at time &

Marginals at -1



Recursive Inference

<

Infer marginals at time & %7

& e

P(Xk\Xk—h Zp, )

! 0
,Q

i’



Recursive Inference
- Now, the inference runs over a forest. °

-@
F1 Time Time
KITTI Dataset Ground | Objects | Building | Vegetation | MST BP
Single View 0.977 0.854 0.870 0.811 21 ms | 164 ms
Recursive Inference 0.977 0.853 0.879 0.809 57 ms | 69 ms




Original
video

Singlevie
w mode

Recursiv
e mode

Single view vs. Recursive mode

g 1]
-.ll

l'l

R

Im X
p(x = objects)

Im X
p(x = objects)

Sequence:
2011_09 29/2011_09 29 drive 0071



Test in Dynamic Street - KITTI

Removing the object class
from the reprojected
pointcloud:




Overview

1. Task Dependent Semantic Hierarchy



Multiple Sensor Modalities

- Different fields of view, missing 3D
data

- Every sensor suffers from specific
blind spots, e.q.

- Laser: limited range, specular
surfaces

- Vision: low light conditions

- Depth (Kinect): natural light,
specularities

- Every modality suffers from
different sources of ambiguities



Multiple Sensor Modalities

- So far, we have dealt with the ‘semantic’

ambiguities fusing image and 3D sensors

- But still, only over the common spatial

coverage, and without handling missing data

N\ "
-




Full Coverage - Formulation

- Define a graph structure for full coverage

wu1f1 |m




Full Coverage - Formulation

- Define a graph structure for full coverage
- Domain based potentials

W,




Graph Structure
- Start with the MST over 3D distances as before

]
W)

?«ﬁ 4
%Av" V>’

W
1

]
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Graph Structure
- Sub-graph over 3D

3D




CRFs Formulation

I

p(x|z) = exp ( ¥, w!f(x;,z) + > wgg(xi,j,z))

ieN 1,j€€

Z(z)

wulfl




Unary Potentials
Z Way J1(, Z1m) + Z Wug f2(Xiy ZIm,3D) + Z Wus f3(Xi, Z3D)

iEN;m\gp i€ENImA3D i€EN3p

wu1f1




Pairwise Potentials

Z wmgl(xi,j:zfm)_l' Z wng?(xi,j:ZBD)

isjegfrn iajeg&D

wulfl

wplgl




Inference and Learning

- This graph is not a tree

- We use Loopy Belief Propagation for Inference

- Our experiments always have converged in less than 5
iterations

- Learning with MPL



Results: KITTI Dataset

Im and 3D




* Recall accuracy in pixel-wise percentage:

Results: KITTI Dataset

ground objects building | vegetation| sky | Average | Global | Coverage
road pavem.| car fence post people sign.
Image only
Sengupta et al. [21]]98.3 91.3 |93.9 485 493 — — | 970 93.4 — | 81.7 88.4 -
CRF-Im 97.8 61.1 87.4 94.6 |97.6| 87.7 85.5 100
CRF-Imn3D* [3] 97.3 82.9 82.8 86.9 — | 875 88.4 60.1
CRF-Imu3D 96.6 83.6 86.1 943 197.2] 91.6 90.1 100

Best performance in average and global
accuracies




Results: NYU Depth V2 Dataset

I8 l\
51 Ww

- N &’_n‘ |

Im and 3D

Raw In-painted In-painted




Results: NYU Depth V2 Dataset

* Recall accuracy in pixel-wise percentage:

ground | furniture | props | structure | Average | Global | In-painting | Coverage
Silberman et al. [22] 68 70 42 59 59.6 58.6 | Required 100
Couprie et al. [5] 87.3 45.3 35.5 86.1 63.5 64.5 | Required 100
CRF-Imn 3D [4] 88.4 64.1 |30.5| 78.6 65.4 67.2 | Required 100
CRF-Imn3D raw-depthb 88.5 69.0 |23.1| 78.6 64.8 67.4 No 74.6
CRF-Imu3D 87.9 63.8 | 27.1| 79.7 64.3 67.0 No 100

without In-painting (15s)

State of the art performance in full
coverage



Overview

Proposed Semantic Hierarchy

Basic Formulation: Graph, Appearance and
3D data

Multiview and Recursive formulation
Full sensor’'s FOVs coverage

Conclusions



Timing
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Semantic Segmentation
for Robotic Systems

Segmentation

Semantic > x

Single view and Video



Semantic

Segmentation

Semantic Segmentation
for Robotic Systems

>
O O
Feedback of priming

classes



Semantic Segmentation
for Robotic Systems

3D reconstruction

localization - - —>
Geometrlc class
priors
Semantic ---» > — 3 -
Segmentation

A
O

Specific
detectors

Finer classes




Semantic Refinement

Refinement of the object category
Binary object-of-interest vs background segmentation task

Endow superpixels with richer features

Learned one-vs-all AdaBoost per object.

Equal proportion of positive-negatives ex.

Negative mining to select samples from other objects that co-
occur with the object of interest



Object Level Segmentation Jaccard Index

Z 7 4 . ’ 3 § 8 g
= [ ] R, = = ~ R = = ] 2
T £ £ & £ & y 2 £ £ i 5 = 2 5 z
&3 A @) = = R - m A = ® A & C O O A
Silberman[5] 40.00 2500 32.00 21.00 30.00 23.00 5.70 0.00 000 40.00 550 0.13 33.00 6.50 33.00 27.00 4.60
Ren[4] 42.00 28.00 33.00 17.00 28.00 17.00 19.00 120 7.80 27.00 15.00 330 37.00 9.50 39.00 28.00 10.00
Gupta[2] 55.00 44.00 40.00 30.00 33.00 20.00 9.30 0.65 33.00 44.00 440 4.80 48.00 690 47.00 34.00 10.00
Ours(unary) 50.64 3744 25.00 19.19 2593 23.88 2640 328 3212 2977 9.7 289 2742 979 3468 2559 21.04
Ours(CRF) 56.85 4229 31.44 2078 30.16 30.29 3497 300 3295 33.09 10.06 3.99 29.34 10.04 33.82 30.11 23.35
=
E g g 3 3
[ F - % ) 1] A b5 . fa)
-~ 4 £ = E = s & £ & ® =2 £ L, B B3 Z
g 2 3 5 = 2 % 5 5 = 5 2 2 = 7 £ £
a & @ - = Z. A ¥ - 9 % 7 7! % = = =
Silberman[5] 590 13.00 720 16.00 440 6.30 13.00 6.60 3600 19.00 140 3.30 3.60 25.00 27.00 0.IT 0.00
Ren[4] 13.00 7.00 20.00 1400 18.00 9.20 12.00 14.00 32.00 20.00 190 6.10 540 29.00 35.00 13.00 0.15
Gupta[2] 830 22.00 22.00 6.80 19.00 20.00 1.90 16.00 40.00 28.00 1500 5.10 18.00 26.00 50.00 14.00 37.00
Ours(unary) 1472 3235 3281 6.68 23.09 1622 7.64 19.54 1793 16.16 16.86 10.67 25.54 10.98 26.06 7.62  36.25
Ours(CRF) 17.16 3573 34.19 12.14 2741 21.54 10.07 30.31 2221 2298 20.59 1346 26.84 11.04 38.65 8.61  37.69
2. S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization Silber.[5] 15.12
and recognition of indoor scenes from RGB-D images. (CVPR) 2013. RenFox[4] 17.99
4. X. Ren, L. Bo, and D. Fox. RGB-(D) scene labeling: Features
and algorithms. (CVPR), 2012. Gupta [2] 23.92
5. N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
9 Ours 24.92

segmentation and support inference from rgbd images. (ECCV), 2012.

Table: Summary of results in
mean Jaccard Index metric.



Conclusions

Computational efficient approach for semantic
segmentation

We see it as the first stage of a scalable semantic
understanding for mobile robots

Our approach effectively uses 3D and Images cues

Both 3D reconstruction and semantic segmentation
formulated on the same graph induced by superpixels

We exploited the versatility and flexibility of CRFs to
connect and use different sensory modalities for full
coverage
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Semantic Parsing of Open Environments

Simultaneous segmentation and categorization of partitions
of sensory data into background and object categories

Mcar

B window
wheel

M building
road

M sky

Biree

M sidewalk

W tail light

M parking meter

M headlight

B door

"fence

M column
wall

" sign
windshield




Semantic Parsing of Open Environments

Endowing environment models with semantic information
can enhance robustness and sophistication of robotic tasks

In Computer Vision, often in
single view setting, expensive §
preprocessing, learning and |
inference

Robotics requires processing
of video and multiple sensor
modalities

Semantic categories can
constrained by the tasks

Incremental re-usable
representations




Semantic Segmentation

Task constraints
Navigation (road, free space)

Localization (landmarks)

Manipulation (object
categorization, object search)

Reasoning about static and
dynamic object instances

Ground
Truth



Semantic Concepts & Tasks

Semantic Segmentation
“Background” / Objects

Specific Obj. Dynamic Obj. Structural Obj.

ga(rtgzgi: ;_iggs, ) (cars, bikes, ...) (doors, ...)
Ins, ...




Semantic Hierarchy

“Background” and object categories

Non-object categories KITTI dataset, Geiger et al. IJRR 2013
specific to types of ) = ; 4
scenes l Ground
g Vegetation
we can assume to be | Sky
Objects

present (almost) always

Mapped from Sengupta et al. ICRA 2013
mostly static or slow

Changing NYU V2 dataset, Sllberman et al. ECCV 2012

Ground
Furniture

Props

Generic objects share
some characteristics




Different time scales

Interface/

Language

Semantic

Parser

Task planner

Perception
/\

‘K\
‘ Map Builder

A\

| Action

s

Localization

N

Perception

d Path Planner

Action




Approach

MAP

Semantic
Segmentation

Marginals

MAP

Conditional Random Fields

v Graph Structure v
Preprocessing = -3 Inference
Potentials
Previous methods suffer from : Learning

— EXpensive over-segmentation, Expensive features Expensive Inference



Graph Structure:

Minimum Spanning Tree Over 3D

« SLIC superpixels, preserve contours, regularity, efficiency
* Edges are determined by the MST over 3D distances
between superpixels’ centroids



Graph Structure: Our choice MST over 3D

Intra-class components are naturally
connected



Potentials: Pairwise CRFs

p(x|z) = 7(2) exp(Zw f(x;,z)+ > w g(x”,z))

1eN 1,7€E

MAP inference in CRF:
compute most likely labels x given observations z



Potentials:  unary & pairwise

unary (local) potential
using a k-NN classifier

f(xi,2) = —log P;(x;|z)

f(1)F(;
Px; = 1[z) = 77_( )W)
f()F (1)
f(7;) frequency of label j in a k-NN query

F(lj) frequency of label j the database

L 1—exp(—||C,—C|2)_)l:lJ
(xi..2) = { oxp (—lli — i) — b £



Features indoors (15D)  outdoors(6D)

- From 3D

mean and std of differences
on depth

local planarity
neighboring planarity
vertical orientation

From Image:
entropy from vanishing points




Inference

- We use belief propagation:

Exact results in MAP/marginals

Efficient computation, in - O (nm?)

Learning
- Maximum Likelihood Estimation

Tree graph structure:

To learn [W,, W]
good convergence



Results: NYU-Depth v2 Dataset

GroundTruth MAP results

Qualitative
comparison:

Ground
Structure

Furniture

Props



Results: NYU-Depth v2 Dataset

Quantitative comparison:

* Recall accuracy in pixel-wise percentage:

Ground | Furniture | Props | Structure | Average | Global
CRF-MST-kNN 88.4 64.1 30.5 78.6 65.4 67.2
only Image Feat. 63.2 47.5 24.5 73.6 52.2 56.1
only 3D Feat. 89.5 70.0 16.9 79.4 62.7 65.8
data-term (KNN) 87.3 60.6 33.7 74.8 64.1 64.9
Silberman et al. 2012 68 70 42 59 59.6 58.6
Couprie et al. 2013 87.3 45.3 35.5 86.1 63.5 64.5




Results: Independent datasets

B3DO: Berkeley 3-D Object Dataset RGB-D Object Dataset
Janoch and Karayev, 2011 K. Lai, L. Bo, X. Ren and D. Fox, 2011
http://kinectdata.com/ http://www.cs.washington.edu/rgbd-dataset/




Generating Object Hypotheses

 Given the knowledge of the size of object to be
manipulated, priming object detection

» Generate object hypotheses using the prob. map




Results: KITTI Dataset

Ground Truth MAP

Ground
Vegetation Objects



Results: KITTI Dataset

* Recall accuracy in pixel-wise percentage:

Ground | Objects | Building | Vegetation | Average | Global
CRF-MST-kNN 97.3 82.9 82.8 86.9 87.5 88.4
only Image Feat. 96.8 49.2 64.6 95.5 76.5 76.8
only 3D Feat. 95.9 84.2 80.5 46.7 76.8 78.8
data-term (kNN) 96.8 75.9 80.7 77.6 82.8 83.5




Results: NYU-Depth v2 Dataset

Total
MAP

Pairwise 0.00 0.01
B mean
K-NN 0.04 0.07

B max

MST

F 3D

F_entropy

F_lab
0.00 0.50 1.00

Computational Cost (s)

Initial implementation in C++ with SLIC in GPU 5fps



Multiple Sensor Modalities

Different fields of view

Every sensor suffers from specific
blind spots, e.g.

- Laser: limited range, specular
surfaces

- Vision: low light conditions

« Depth (Kinect): natural light,
specularities

Every modality suffers from
different sources of ambiguities



Multiple Sensor Modalities

Previously ‘'semantic’ ambiguities fusing
Image and 3D sensor

Common spatial coverage

Without handling missing data

Extension to union of FOV'’s \c
7, o I,7/
\ Im /
3D

3D




Graph Structure

Sub-graph over 3D
ny By




Recursive Inference

e.g. visual _
odometry

Semantic

Segmentation



Video sequences:

Z—1

P(Xk—l ‘Zk—l)

On-line operation

Infer the marginals at
k-1



Recursive Inference

%7 ¢ » \’Zk
y o
X1 Xy
O

p(xk—l ‘Zk_l) Sensing at time &

Marginals at -1



Recursive Inference

<

Infer marginals at time &

o 0
° 2



Recursive Inference
- Special case the inference runs over.a forest

| |
o @
" o ®
| —> ﬂ
( ® Q
® o f e °
e @ ® o O
° o °
e
F1 Time Time
KITTI Dataset Ground | Objects | Building | Vegetation | MST BP
Single View 0.977 0.854 0.870 0.811 21ms | 164 ms
Recursive Inference 0.977 0.853 0.879 0.809 57ms | 69ms




Finer Grained Categorization

. We formulate the problem of recognition and segmentation of
objects in indoor scenes as a binary object-of-interest vs
background segmentation task. Learn per category binary
segmentations

- Our choices:
Enrich set of features
Low level per category grouping rules
are learned in CRF setting

= = g
IR




Fine grained categorization

- Extend the set of features:
- Color, Texture histograms Histograms C1, T1
- Geometric Features (previous) G1

- Generic Features G2 (planarity features, alignment with respect to
gravity, orientation context)

Descriptor type || description

Cl 75 dim. histogram HSV values

T1 240 dim. histogram

Gl 11 dim. descriptor of geometric features
G2 60 dim. descriptor of generic features

* Adaboost classifier with Decision trees
 Exploit hard negative mining using context
- Sampling negative example proportional to

- Co-occurrence “ ‘| | ‘ |
Ml Ll 1., [

bookshelve co-occurrence

object co-occurrence



Finer grained categorization

 Object recognition and segmentation
* Train per class object-background models CRF’s

 Evaluation in terms of per class segmentation accurracy,
using Jaccard Index

JI1 PﬂG
PUG
z
Mean JI . = o ,é g
Silberman[15] | 15.12 2 s £ & £ £ z
Ren[13] 17.99 Coupric[d] | 384 24.6 341 102 159 137 60
Gupta[5] 23.92 Hermans[6] | 68.4 28.5 419 27.1 46.1 454 384
Ours 24.99 Ours 87.8 865 83.1 783 785 738 824

 Improves state of the art performance, very efficient
(computational bottleneck feature computation)



More detailed per category results

("
3 ,f':) e " 3 %) fé‘ =

el B 3 _i'; é % en g E % = E ‘é-‘o) g g %

@ & @) = = A 2 2 & m 2 & O o S & o
Silberman[15] 40.00 25.00 32.00 21.00 30.00 23.00 5.70 0.00 0.00 40.00 5.50 0.13 33.00 6.50 33.00 27.00 4.60
Ren[13] 42.00 28.00 33.00 17.00 28.00 17.00 19.00 1.20 7.80 27.00 15.00 3.30 37.00 9.50 39.00 28.00 10.00
Gupta[5] 55.00 44.00 40.00 30.00 33.00 20.00 9.30 0.65 33.00 44.00 440 480 48.00 690 47.00 34.00 10.00
Ours(unary) 50.64 3744 25.00 19.19 2593 2388 2640 3.28 32.12 2977 9.17 289 2742 979 34.68 25.59 21.04
Ours(CRF) 56.03 4251 3059 20.89 30.21 2998 3494 3.13 3394 3477 11.01 3770 29.56 10.68 34.02 30.28 23.02

[=]

- g g o

) : i ¢ = L o0 3 B - — <

s ¢ & & £ & & : 2 2 E 3 % = & T £

o a T 3 = Z. g & & = £ B 9 5 e 8 =
Silberman[15] 5.90 13.00 7.20 16.00 4.40 6.30 13.00 6.60 36.00 19.00 140 3.30 3.60 25.00 27.00 0.11 0.00
Ren[13] 13.00 7.00 20.00 14.00 18.00 9.20 12.00 14.00 32.00 20.00 190 6.10 5.40 29.00 35.00 13.00 0.15
Gupta[5] 8.30 22.00 22.00 6.80 19.00 20.00 1.90 16.00 40.00 28.00 15.00 5.10 18.00 26.00 50.00 14.00 37.00
Ours(unary) 1472 3235 32.81 6.68 23.09 1622 7.64 19.54 1793 16.16 16.86 10.67 2554 10.98 26.06 7.62 36.25
Ours(CRF) 17.18 3580 34.02 11.17 26.66 20.65 1029 29.60 2191 22.00 21.84 13.26 27.49 12.11 39.37 9.71 37.29




Results
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Groun Truth

J i

Data Term CRF



Results

Data Term CRF



Results
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Ground Truth

Data Term CRF



Results
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Data Term

Ground Truth

CRF







Conclusions

- Computationally efficient approach for semantic
segmentation, effective use of image and 3D cues

- Proposed Semantic Hierarchy: Background/Objects
- CRF Framework, Efficient exact inference on trees in 3D
- Recursive setting and multiple sensing modalities

- Refining Semantic Hierarchy for Objects



Life-long Semantic Mapping

» Reusable Representations of sensory streams,
which will generalize across different environments

* New semantic concepts can be learned
incrementally, fine grained semantic categories

* Tightly couple localization, reconstruction, mapping



