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Statement of Objectives 

Ever since Kahneman and Tversky’s extremely influential research (1974, and supported 
by AFOSR) exposing the failures of classical probability to describe human reasoning and 
decision making under uncertainty, researchers gave up almost all hope to find an axiomatic 
foundation for understanding human judgments and decisions. Separate and disconnected 
heuristic explanations have been proposed using variants of classical decision theory to explain a 
number of paradoxical findings, such as violations of the classical probability laws of 
commutativity and distributivity. The paradoxical findings have resisted explanation under a 
common classical theoretical framework. Our past research (supported by AFOSR in the past 
three years) applies mathematical principles from quantum theory to cognitive and decision 
sciences. Our findings demonstrate that quantum theory provides a viable new direction toward 
the possibility of accounting for paradoxical findings from decision research using a unified and 
principled theoretical framework. 

Research Effort 

1. What is Quantum Probability Theory Applied to Decision Making Research?
Quantum probability theory (Von Neumann, 1932; Gudder, 1988; Sakurai, 1994) is 

unfamiliar to most cognitive, computer, and engineering scientists, so we provide a brief but 
general overview and a comparison with the more familiar classical probability theory 
(Kolmogorov, 1933). To keep it simple, we assume finite spaces although both probability 
theories can be extended to infinite spaces.  (More details about these principles can be found in 
Griffiths, 2003; Gudder, 1988; Busemeyer & Bruza, 2012.)  

(1) Classical theory begins by postulating a set called the sample space, Ω, which is a set 
of elements that contains all the events, and in the finite case this set has cardinality N.  Quantum 
theory begins by postulating a vector space (technically, a Hilbert space), V, which contains all 
the events, and in the finite case this vector space has dimension N.   

(2) Classical theory is based on the premise that an event, such as A, is a subset A⊆Ω of 
the sample space. Quantum theory is based on the premise that an event, such as A, is a subspace 
A⊆V of the vector space. Corresponding to each subspace A is a projector, PA, that projects 
points in V onto the subspace A.   

(3) Classical theory postulates a state represented by a function p: Ω ![0,1], which 
assigns probabilities to events in an additive manner. In other words, p(A) is the probability 
assigned to event A∈Ω, and if A∩B=∅, then p(A∪B) = p(A)+p(B).  Quantum theory postulates 
a state represented by a unit length vector ψ∈V, which assigns probabilities to events also in an 
additive manner: p(A) = ||PAψ||2 and if A∩B=∅ then p(A∪B) = p(A)+p(B).   

(4) Classical theory defines a conditional state, pA, that is a conditional probability 
function, as follows: If event A is observed, then pA(B) = p(B|A) = p(A∩B)/p(A). Bayes’s rule 
follows from this definition. Quantum theory defines a conditional state, ψA, as follows: If event 
A is observed, then ψA = PAψ/√p(A), so that p(B|A) = ||PBPAψ||2/p(A).   

(5) According to classical theory, if A,B are two events in Ω, then we can always define 
the intersection event  A∩B = B∩A, and p(A∩B) = p(A)p(B|A) = p(B)p(A|B) = p(B∩A), so the 
order of events does not matter. According to quantum theory, if A, B are two events in V, then 
we can define the sequence of events A and then B, denoted (A, B) and p(A,B) = p(A)p(B|A) = 
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||PBPA ψ||2 and the order of the events matters. The intersection event, A∩B = B∩A, only exists 
in quantum theory if PBPA = PAPB, that is, the projectors commute, and then there is no order 
effect (see Griffiths, 2003, p. 53; Niestegge, 2008, p. 247). Commutativity is a key point where 
the two theories diverge.  
 
2. What Is the Evidence from Our Research? 

This section reviews our research that was supported by previous funds from AFOSR to 
accumulate evidence for the viability of applying quantum theory to human judgment and 
decision behavior. In particular, we focus on interference effects, which are violations of the 
classical law of total probability. This law holds an important role in our theories of cognition 
and decision because it is the foundation of Bayesian and Markov models. This law can be 
empirically tested by measuring the single event A alone in one condition, and measuring the 
joint events (A∩B), (A∩ not B) together in another condition. Violations occur when p(A) from 
the single event condition differs from p(A∩B) + p(A∩ not B). Below we present five lines of 
evidence from our previous AFOSR work on interference effects, and our quantum account of 
all five effects.  

The first line of evidence comes from a quantum probability theory explanation for the 
well-known research on probability judgment errors by Tversky and Kahneman (1983). A 
conjunctive fallacy occurs when a person judges the probability of the conjunction of two events 
to be more likely than one of the constituent events. For example, the probability that a man is 
over 50 years old (event O) and has a heart attack (event H) is judged more likely than the 
probability that a man has a heart attack, even though according to the law of total probability 
p(H) = p(H∩O)+p(H∩ not O) ≥ p(H∩O). The disjunction fallacy occurs when a person judges 
the probability of the disjunction of two events to be less likely than one of the constituent 
events. For example, the probability that a man is over 50 or has a heart attack is judged less 
likely than a man is over 50. Busemeyer, Pothos, Franco, and Trueblood (2011) developed a 
simple quantum probability (QP) theoretical account for these puzzling findings, and we will 
describe the basic idea later after we present some additional lines of evidence. 

Our model of the conjunction and disjunction fallacies was developed after the facts were 
known, and so more important tests of the model arise from new predictions. According to the 
QP model, if two events are incompatible, we must predict order effects when deciding about the 
pair of events, e.g., p(Ay and then Bn) ≠ p(Bn and then Ay). However, much more important 
than that, the QP model must predict a very special pattern of order effects, which we call the 
QQ equality: p(Ay and then Bn) + p(An and then By) = p(Bn and then Ay) + p(By and then An). 
This is an a priori, precise, quantitative, and parameter free prediction about the pattern of order 
effects, and thus the strongest test to the QP model. Recently we have shown that our QQ 
equality prediction was statistically supported across a wide range of 70 national field 
experiments that examined question order effects (Wang & Busemeyer, 2013; Wang, Solloway, 
Shiffrin, & Busemeyer, 2014).   

 
The second line of evidence is based on a categorization-decision paradigm that was 

designed for testing the law of total probability (Townsend, Silva, Spencer-Smith, & Wenger, 
2000). On each trial, participants are shown pictures of faces, which vary along two dimensions 
(face width and lip thickness). The participants are asked to categorize the faces as belonging to 
either a “good” guy or “bad” guy group, and/or they are asked to decide whether to take an 
“attack” or “withdrawal” action. The participants are provided explicit instructions about 
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relations between facial features, categories, and actions. A within-subjects manipulation is used 
to examine two conditions. In the C-then-D condition, participants categorize the face and then 
make an action decision; in the D-Alone condition, participants only make an action decision.  

According to the law of total 
probability, the probability of 
attack under the D-alone 
condition should equal the 
total probability of attack 
obtained from the C-then-D 
condition. However, 
empirical data show that they 
are not equal, and the 
difference demonstrates the 
interference of categorization 

on the decision process. The results of our first experiment using this paradigm are reported by 
Busemeyer, Wang, and Lambert-Mogiliansy (2009). More recently, Wang and Busemeyer 
(2015) reported additional five sets of experiments with study design variations to replicate and 
extend our initial findings, including varying number of training trials, counterbalancing face 
types with categories, and manipulating the probability at the trial level vs. at the block of trials 
level. The aggregated results (N = 400) are summarized in Table 1. The row labeled “good face” 
represents faces that came from a population (e.g., wide faces) that were associated with the 
good guy category, and the row labeled “bad face” represents faces that came from a population 
(e.g., narrow faces) that were associated with the bad guy category. The columns labeled p(G) 
and p(B) indicate the probability of categorizing a face as a good vs. bad guy, and  p(A|G) and 
p(A|B) indicate the probability of attack conditioned on being categorized as a good vs. bad guy. 
The column labeled pT(A) is the total probability of attack from the C-then-D condition, and 
p(A) is the probability of attack under the D-alone condition.  

As shown in Table 1, the probability of attack under the D-alone condition substantially 
exceeds the total probability (t(399) =4.82, p<.001). More dramatic is the fact that when the face 
came from the bad guy population, the probability of attack in the D-alone condition is even 
greater than that after categorizing the face as a bad guy. The interference is positive for the 
attack action, p(A) > pT(A) (correspondingly, negative for withdraw, p(W) < pT(W)). We 
(Busemeyer et al., 2009; Wang & Busemeyer, 2015) developed a specific quantum model to 
account for these interference effects (see quantum model probabilities in Table 1). The model is 
summarized later after presenting another line of evidence. 

 
 
 
 
 
 
 
 
 
 
 

 
Table 1. The categorization-decision task results.  
(N = 400 across five studies) 
 p(G) p(A|G) p(B) p(A|B) pT(A) p(A) 
Good face .78 .36 .22 .53 .39 .39 
Quantum .80 .38 .20 .62 .43 .43 
Bad face .23 .38 .77 .60 .56 .61 
Quantum .20 .37 .80 .61 .56 .62 
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The third line of evidence comes from findings of violations of a basic “rational” axiom 

of decision-making, called the “sure thing” principle (Savage, 1954) that states the following: If 
you prefer action A over B under state of the world X, and you also prefer action A over B under 
the complementary state of the world ~X, then you should prefer action A over B even if the 
state of the world is unknown. Shafir and Tversky (1992) first examined this axiom using the 
prisoner dilemma (PD) game. Here we briefly describe a version of the game (Croson, 1999). 
Eighty individuals participated in the study and each played 2 PD games. The critical 
manipulation was that half were required to predict what the opponent would do and then decide 
on an action (P-then-D), and the other half only made an action decision (D-only). The critical 
comparison is between the probability of defecting under the D-only condition and the total 
probability of defecting under the P-then-D condition. The difference demonstrates the 
interference effect of prediction on decision. The row labeled “Croson” in Table 2 shows the 
average results from the first two payoff conditions in Croson’s study. In Table 2, p(d) is the 
probability of predicting that the opponent would defect; p(D|d) is the probability that the player 
defects given the opponent has been predicted to defect; p(D|c) is the probability player defects 

given the opponent has been 
predicted to cooperate; pT(D) is 
the total probability to defect, 
and; p(D) is the probability to 
defect when opponent’s action 
was not predicted in the D-only 
condition. As shown in Table 2, 
the total probability of defecting 
in the P-then-D condition far 
exceeds the probability of 
defecting in the D-only 
condition, which demonstrates 

the interfering effect of prediction on decisions. The interference is negative for defection, p(D) 
< pT(D) (correspondingly, positive for cooperation, p(C) > pT(C)).  The earlier results by Shafir 
and Tversky (1992) are summarized in row S & T of Table 2. We also replicated these findings 
when the human player played against a computerized agent (Busemeyer, Matthews, & Wang, 
2006; see rows labeled BMW). Pothos and Busemeyer (2009) developed a quantum model, as 
summarized below, to account for the results (see Table 2).  

 
A brief description of the quantum theoretical account.  All three lines of evidence 

discussed above (conjunction/disjunction judgment, categorization-decision process, and 
prisoner dilemma tasks) showed violations of the law of total probability of the classical theory 
and interference effects. Quantum theory provides a natural account for the findings. In all three 
experimental paradigms, the decision maker makes an inference and then a decision. During the 
first stage, the decision maker is placed into one of three inference states: (1) a state ψ1 in which 
one type of inference is made (e.g., the man is young, the face is a good guy, the opponent will 
cooperate); (2) a state ψ2 in which the other type of inference is made (e.g., the man is old, the 
face is a bad guy, the opponent will defect); or (3) a superposition state ψU = (√a⋅ψ1 + √b⋅ψ2) in 
which the decision maker remains indefinite or uncertain about the inference (e.g., the man’s 
age, the category of a face, the disposition of an opponent), such as in the decision-alone 

 
Table 2. Violation of the sure thing principle. 
 p(d) p(D|d) p(c) p(D|c) pT(D) p(D) N 
Croson .56 .67 .44 .32 .45 .30 40 
S &T .50 .97 .50 .84 .91 .63 80 
BMW1  .50 .92 .50 .84 .88 .65 88 
BMW 2  .50 .88 .50 .73 .81 .65 410 
Quantum  .50 .82 .50 .72 .77 .65  
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conditions in the experiments. Then the decision maker is asked to take a decision (e.g., decide 
whether or not the man will have a heart attack, decide whether or not to attack, decide whether 
or not to defect). If PA represents the projector matrix for taking an action A, then the probability 
of taking action A from the first inference state ψ1 equals p(A|state 1) = ||PA⋅ψ1||2; the probability 
of taking action A from the second inference state ψ2 equals p(A|state 2) = ||PA⋅ψ2||2; and for the 
superposition state, we have p(A|superposed) = ||PA⋅ψU||2 = ||PA⋅(√a⋅ψ1 + √b⋅ψ2)||2  = a⋅||PA⋅ψ1||2 
+ b⋅||PA⋅ψ2||2 + Int, where Int represents the cross-product terms produced by squared length of 
the sum. Thus, the probability of taking the action from the uncertain state is the weighted 
average of the two known states (corresponding to the classical “total probability”) plus 
interference. The interference term Int can be positive or negative, which is used to account for 
the violations of the law of total probability. Of course the critical part of the model is to derive 
the interference term from basic principles. This is exactly what was done in all three lines of 
research by deriving the interference term from a dynamic quantum model based on the 
Schrödinger equation. To further test the quantum model, a stronger quantitative test was 
conducted in the application below. 

 
The fourth line of evidence for interference effects comes from research we conducted 

on a phenomenon called dynamic inconsistency (Barkan & Busemeyer, 1999, 2003). Most 
complex decisions involve multiple stages that require planning for the future across sequences 
of actions and events. Optimal strategies use backward induction algorithms that require 
planning from the last stage and working backwards to the current stage. Dynamic consistency 
requires that the planned actions are actually carried out once those decisions are realized. 
Barkan and Busemeyer (2003) investigated dynamic consistency by using a modification of a 
two-stage gambling paradigm originally used by Tversky and Shafir (1992). A total of 100 
people participated in the experiment. Each person played 17 different gambles, and each gamble 
was played twice. The first play was obligatory, but the player was given a choice whether or not 
to play the gamble again on the second round. For each gamble, the player made two choices: a 
planned choice contingent on winning or losing the first stage, and a final choice after actually 
playing and experiencing the outcome of the first stage. The planned and the final decisions were 
made equally valuable because the experimenter randomly selected either the planned action or 
the final action to determine the final monetary payoff.  A dynamic inconsistency effect 
occurred—people changed systematically away from their plans on the final decision. Actually 
winning the first stage decreased the probability of playing the gamble again at the second stage 
compared to the plan, while actually losing the first stage increased the probability compared to 
the plan. Once again, these effects, called dynamic inconsistency, were inconsistent with the law 
of total probability.  

 
Quantitative model comparisons. To explain the dynamic inconsistency effects, Barkan 

and Busemeyer (2003) used a reference point change model based on prospect theory (originally 
proposed by Tversky and Shafir, 1992, for this two stage game paradigm). However, the 
quantum model developed by Pothos and Busemeyer (2009) for the prisoner dilemma game can 
also account for these results. Naturally the question is: Which model is better? To answer this, 
Busemeyer, Wang, and Shiffrin (2014) completed a rigorous quantitative comparison of these 
two competing models using the data from Barkan and Busemeyer (2003). Both models use only 
three parameters (a risk aversion parameter, a loss aversion parameter, and a parameter related to 
the choice probability function) to predict 34 data points (plan vs. final choices for 17 payoff 
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conditions). First, each model was fit to the means, and R2 was used to compare fits. The R2 for 
the quantum model (.82) substantially exceeded the R2 for the reference point change model 
(.77).  Second, a Bayes factor, BF = p(quantum model | data) / p(reference point model | data) 
was computed for each participant, where p(model | data) equals the expected likelihood for a 
model based on the sequence of 66 planned and final choices made by each participant to the 17 
gambles. The Bayes factor was computed using both uniform and normal priors on the 
parameters. In both cases, the Bayes factor strongly supported the quantum model. For the 
uniform prior, the total (across participants) log Bayes factor equaled 74.5 and over 90% of the 
participants produced positive log Bayes factors with this prior; for the normal prior, the total log 
Bayes factor equaled 83.05 and over 93% of the participants produced positive log Bayes factors 
with this prior (Busemeyer et al., 2014). 

 
The fifth line of evidence extended our testing of (the predicted violations of) the law of 

total probability with dynamic decision problems. The new evidence was recently obtained from 
research on signal detection type tasks in which a decision maker must decide whether a target is 
present or absent based on noisy and uncertain information (e.g., to decide whether an enemy is 
located at a position based on a poor and fuzzy image). Human performance (accuracy, decision 
time, and confidence) observed with signal detection tasks has traditionally been modeled using 
Markov type of random walk models of decision-making (e.g., see Busemeyer & Townsend, 
1993; Pleskac & Busemeyer, 2010). The basic idea is that the decision maker accumulates 
evidence for each hypothesis until the accumulated evidence reaches a threshold. The first 
hypothesis to reach the threshold is chosen and the time to reach the threshold determines the 
decision time, and the difference in evidence soon after the decision determines the confidence. 
Alternatively, Busemeyer, Wang, and Townsend (2006) developed a quantum random walk 
model for signal detection, which assumes that a person’s evidence state is represented by a 
wave function spread over levels of evidence. The Markov model evolves probabilities over time 
according to the Kolmogorov forward equation, and the quantum model evolves amplitudes over 
time according to the Schrödinger equation. 

Busemeyer and Bruza (2012, ch. 8) derived a key prediction that provides a critical 
method to empirically distinguish and test the two theories. The experiment consists of two 
conditions: In the choice-confidence condition, the person makes a choice (signal present or 
absent) at time t1 and then rates confidence at time t2; in the confidence-alone condition, the 
person only provides a confidence rating at time t2. For both conditions, the focus is on the 
marginal distribution of confidence ratings that are obtained at time t2. Confidence is defined as 
the probability that a signal is present on a scale ranging from 0 = the target is not present, to 50 
= undecided, to 100 = the target is present. The Markov model obeys the Chapman-Kolmogorov 
equation, which is a dynamic form of the law of total probability and predicts no difference 
between the two conditions. The quantum model predicts that an interference effect is produced 
by decision on the confidence rating that makes the confidence distributions differ between the 
two conditions.  

Kvam, Pleskac, Yu, and Busemeyer (2015) empirically tested this prediction and 
obtained strong support for the predicted interference effect. Figure 1 shows the density of a 
participant’s confidence responses (in blue) over each confidence level, scaled such that 0 is 
complete certainty in target absent and 100 is complete certainty target present. Model 
predictions for the quantum random walk (black dashed) and Markov random walk (gray 
dashed) are also shown, which are based on the maximum likelihood estimates for each model.  
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Figure 1 clearly illustrates the interference, and the interference was statistically significant for 
seven out of nine participants (each participant contributing over 2500 trials). 
 
Figure 1. Interference effects of choice on subsequent confidence. 

 
 
3. Existing Engineering Applications of Quantum Decision Theory to the Predator – Prey 
Dynamic Game    

The applications of quantum decision theory described so far have been restricted to 
fairly simple, basic decision situations. In our previous work supported by AFOSR, we have also 
examined applications of quantum decision theory to more complex dynamic decision problems 
within the class of Markov decision problems (MDP’s) (Fakhari, Rajagopal, Balakrishnan, & 
Busemeyer, 2013). This class of problems includes situations such as predator-prey target 
tracking and goal seeking tasks, which are relevant to Air Force applications. In particular, we 
developed a new quantum reinforcement learning algorithm for MDP’s. The quantum 
reinforcement-learning algorithm does not require a quantum computer, and can be directly used 
to learn to perform practical sequential decision-making tasks.  Our research, summarized below, 
indicates that the proposed quantum reinforcement learning algorithm is more robust for learning 
optimal strategies in complex dynamic decision environments than traditional models.      

The quantum reinforcement learning algorithm.  It uses the same Q-learning 
algorithm to estimate values of actions as used in traditional reinforcement learning models 
(Sutton & Barto, 1998). The key difference is concerned with the probabilistic rules to select 
actions. Unlike traditional models that use, for example, the epsilon greedy algorithm, or the soft 
max rule for action selection, the quantum model uses quantum probability rules for selecting 
actions. The idea of using a quantum rule for action selection was first proposed and tested by 
Dong et al. (2008). We have, however, made major modifications to substantially improve 
Dong’s original algorithm. The basic idea is that the current environmental state puts the agent in 
a superposition state over the set of possible actions. The superposition state is a vector in an m 
dimensional space spanned by m orthonormal basis vectors denoted |ak〉, k=1,...m and each basis 
vector corresponds to one of the actions. If the current environmental state is ej, then the 
superposition state over actions is |ψj〉=∑k=1,m ψjk⋅|ak〉, with two constraints on the amplitudes: 
ψjk=0 for any action that is not available from state ej, and given the previous constraint, we also 
require |ψj〉 to remain unit length. Then the probability of taking action ak from state ej equals 
|ψjk|². The key new idea is the updating rule for modifying the amplitudes ψjk that experience 
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rewards. Hereafter, the m×1 column matrix ψ will refer to the amplitudes for m actions and each 
action is assumed to be a potential choice.  

Amplitude amplification. The amplitude amplification algorithm is an extension of 
Grover (1997)’s quantum information search algorithm (Hoyer, 2000). The algorithm begins 
with any arbitrary initial amplitude distribution represented by the m×1 column matrix ψ₀, but it 
is common to start with ψ = (1/(√m)) for m actions. Define ψt as the m×1 matrix of amplitudes 
after experiencing t trials of training. Suppose action aj was chosen on the last trial t. The 
amplitude for action aj is amplified or attenuated in proportion to reward [r(t)+γ⋅maxlQ(e,al,t)] 
experienced by taking that action, where Q(e,al,t) is the value of an action learned by a temporal 
difference Q learning algorithm. The amplification computed as follows. Define Ak as an m×1 
matrix with zeros in every row except the row k corresponding to action ak, which is set equal to 
one. This is essentially the coordinates corresponding to the basis vector |ak〉. Next define two 
matrices 

 Q₁ =I – (1 – exp{iφ₁})⋅(Ak⋅Ak
†), and Q₂ =(1 – exp{iφ₂})⋅(ψt⋅ψt

†) – I, (2) 
where φ₁,φ₂ are two learning parameters that control the amount of amplification or attenuation. 
Then the new amplitude distribution is formed by ψt+1  = (Q₂⋅Q₁)L⋅ψt, where the matrix power L 
indicates the integer number of applications of the update used on a single trial. The new idea is 
to relate the parameters (L, φ₁, φ2 ) to the Q value of the selected action.  Dong et al. (2008) 
proposed to map Q values into the parameter L, which is an integer number of amplifications. 
However, this becomes very problematic for small numbers of actions. Also this method only 
amplifies and never attenuates the amplitude assigned to an action. Instead, our new model fixes 
L at one, and we map normalized values of Q from the Q-learning algorithm into the two phases 
φ₁, φ2 to amplify rewarded actions and to attenuate actions that are punished. The key idea for 
robustness is that for a given number of actions, N, the mapping from the Q values of the Q-
learning model to the parameters ϕ1 and ϕ2 can be determined a priori to provide robust 
learning. Unlike the epsilon greedy and softmax rules, the quantum parameters do not need to be 
adjusted post hoc for each variation in the environment.  
 Evaluating quantum algorithm. To evaluate our quantum algorithm practically, we 
conducted computer simulations within a large grid world, using a prey-predator game involving 
two competing predators and one randomly moving prey. The predators are given information 
about the distance from the prey in each direction on each step. One predator was based on the 
traditional soft max probabilistic choice rule, and the other was based on our new quantum 
probabilistic rule. (We also compared results with the epsilon greedy choice rule, but this did not 
perform as well as the soft max rule, and so we focus on the latter.) The aim of the task is to find 
a policy that will let the predator find the prey with minimum punishment. Fakhari et al. (2013) 
conducted extensive simulations varying the size of the grid world and the number of actions.  
The main results are summarized in Table 3, which shows the number of times each agent 
captured the prey when both agents were competing to catch the same prey. At the early stage of 
training on the task (learning Q values), the soft max algorithm caught more prey than our 
quantum algorithm; however, at intermediate and later stages, the quantum algorithm strongly 
outperformed the soft max rule. 
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probability distribution ( )/ ,s ap x tµ . However, there are two problems associated with such an 
action selection mechanism. Both the agents might select the same target state as the goal state. 
Another issue will be that since the state ax  evolves in an uncertain environment the probability 
distribution ( )/ ,s ap x tµ might not be stationary. Our desired composite state i.e. the decision-state 
that will reflect the global objective is given by 

 12 1 1 2 2 2 1, ,dψ τ µ µ τ µ µ= +   (1) 
The above form ensures that if robot ‘1’ chooses 1µ , then robot ‘2’ will definitely choose 

2µ and vice versa irrespective of their rational choices. In quantum mechanics, Eq. (1) is called 
the Einstein-Podolsky-Rosen state and is a famous example of entangled state. For implementing 
the above idea, assume that each agent has an independent target selection mechanism. However, 
the target selection mechanism should result in a composite representation consistent with Eq. 
(1). For achieving that, each agent models the influence of other robot’s behavior on its action 
choices by an entanglement factor. Let ( )1

1 tµγ and ( )2
1 tµγ  represent the entanglement factors as 

perceived by robot ‘1’ for action choices 
1µ  and 

2µ  respectively. The new, entangled 
composite decision-state representation for agent 1 is given by, 

 ( ) ( )1 2
1 11

12 1 2 2 1sin , sin ,
2 2

t t
i

µ µγ γ
ψ µ µ µ µ

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

  (2) 

The updating of entanglement factors is proposed below: 
i) Initialize the entanglement factors: ( ) ( ) ( ) ( )1 1 1 1

1 0 1 0 1 0 1 0 / 2t t t tµ µ µ µγ γ γ γ π= = = = .  
At every time instant t  
ii) Based on ( )1 2. / : ,p x x t  assign each robot a unique target. Hence, the robot should 

communicate among them the ( ). / ,ap x t  values at every time instant. 
iii) Based on the assigned target increase/decrease the corresponding entanglement 

factors. For example, if at time t  robot ‘1’ is assigned to goal state 1µ  and robot ‘2’ is assigned 
to goal state 2µ  then the respective entanglement factors are updated in the following way: 

 
   

!γ 1
µ1 t( )∝ p . / x1,t( )T

p . / x2 ,t( ), !γ 1
µ2 t( ) = − !γ 1

µ1 t( )
!γ 2

µ2 t( )∝ p . / x1,t( )T
p . / x2 ,t( ), !γ 2

µ1 t( ) = − !γ 1
µ2 t( )

  (3) 

The above example demonstrates how quantum decision theory can be employed for 
multi-agent task assignment problems. For demonstration the proposed approach was compared 
the potential game theory approach described in Arslan et al. (2007). The simulation was 
performed for a scenario where are three robots and three target points. The objective is each 
robot should reach a unique target point. It was assumed that robots have motion uncertainty. For 
potential game theory approach, a utility function similar to that defined in Arslan et al. (2007) 
was used. 100 sample cases were run for comparison. Using the quantum decision theory 
method, we observed that the robots reach unique targets. Also, it was observed that the 
entanglement method performed way better than the potential game theory approach. The results 
indicated that with potential game theory approach, for at least 35 cases robots were quite far 
from the target points at the final time. Note that Eq. (3) is just one way of updating the 
entanglement factor. Our research work has concentrated on optimally updating the 
entanglement factor keeping in line with the objective of “minimization of deviation from 
rational decisions.”  
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