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1 Summary 1

Final Report for
GEOMETRIC STRUCTURE-PRESERVING DISCRETIZATION

SCHEMES FOR ELASTICITY

AFOSR GRANT NUMBER FA9550-12-1-0290

Arash Yavari
Department of Civil and Environmental Engineering

Georgia Institute of Technology, Atlanta

1 Summary

We introduced a smooth complex for nonlinear elasticity that can be considered as the tensorial
analogue of the standard grad-curl-div complex. This mathematical structure simultaneously describes
the kinematics and the kinetics of large deformations. The relation between this complex and the de
Rham complex allows one to readily derive the necessary and sufficient conditions for the compatibility
of displacement gradient and the existence of stress functions on non-contractible bodies. The main
application of the nonlinear elasticity complex is in developing mixed finite element methods for large
deformations, which will be pursued in a future project. To this end, the smooth complex should
be extended to also include less smooth tensors. We introduced this extension by using the so-called
partly Sobolev spaces. The result is a Hilbert complex involving second-order tensors on flat compact
manifolds with boundary. We then used the general framework of Hilbert complexes to write Hodge-
type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications
of these decompositions in continuum mechanics, one can study the strain compatibility equations of
nonlinear elasticity in the presence of Dirichlet boundary conditions.

For developing finite element methods for nonlinear elasticity using the above Hilbert complex, we
first discretize this complex by means of appropriate finite element spaces and drive stable mixed finite
element methods for the associated Laplacian. We use the general theory for approximation of Hilbert
complexes and the finite element exterior calculus and introduce some stable mixed finite element
methods for the Laplacian of second-order tensors with appropriate mixed boundary conditions. To
this end, we introduce new finite elements for second-order tensors that are the tensorial analogues
of some standard finite elements for vector fields. One important feature of the finite element spaces
generated by these finite elements is that they respect the global topology of the underlying domains in
the sense that they reproduce some topological properties of the domains regardless of the refinement
level of meshes.

2 Nonlinear Elasticity Complex

Let B ⊂ R3 be an open subset and suppose {XI} is the Cartesian coordinates on B. We equip B with
metric G, which is the Euclidean metric of R3. The gradient of vector fields and the curl and the
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2 Nonlinear Elasticity Complex 2

divergence of (2
0)-tensors are defined as

grad ∶ X(B) → Γ(⊗2TB), (gradY )IJ = Y I
,J ,

curl ∶ Γ(⊗2TB) → Γ(⊗2TB), (curlT )IJ = εIKLT JL,K ,
div ∶ Γ(⊗2TB) → X(B), (divT )I = T IJ ,J ,

where “,J” indicates ∂/∂XJ . We also define the operator

curlT ∶ Γ(⊗2TB) → Γ(⊗2TB), (curlTT )IJ = (curlT )JI .

It is straightforward to show that curlT ○grad = 0, and div ○curlT = 0. Thus, we obtain the following
complex

0 // X(B)grad// Γ(⊗2TB)curl
T
// Γ(⊗2TB) div // X(B) // 0, (2.1)

that, due to its resemblance with the gcd complex (i.e. the standard grad-curl-div complex of vector
fields), is called the gcd complex. Interestingly, similar to the gcd complex, useful properties of the
gcd complex also follow from the de Rham complex. This can be described via the R3-valued de Rham
complex as follows. Let d ∶ Ωk(B) → Ωk+1(B) be the standard exterior derivative given by

(dβ)I0⋯Ik =
k

∑
i=0

(−1)iβI0⋯Îi⋯Ik,Ii ,

where the hat over an index implies the elimination of that index. Any α ∈ Ωk(B;R3) can be considered
as α = (α1,α2,α3), with αi ∈ Ωk(B), i = 1,2,3. One can define the exterior derivative d ∶ Ωk(B;R3) →
Ωk+1(B;R3) by dα = (dα1, dα2, dα3). Since d○d = 0, we also conclude that d○d = 0, which leads to the
R3-valued de Rham complex (Ω(B;R3),d). Given α ∈ Ωk(B;R3), let [α]iI1⋯Ik denote the components

of αi ∈ Ωk(B). By using the global orthonormal coordinate system {XI}, one can define the following
isomorphisms

ı0 ∶ X(B) → Ω0(B;R3), [ı0(Y )]i = δiIY I ,

ı1 ∶ Γ(⊗2TB) → Ω1(B;R3), [ı1(T )]iJ = δiIT IJ ,
ı2 ∶ Γ(⊗2TB) → Ω2(B;R3), [ı2(T )]iJK = δiIεJKLT IL,
ı3 ∶ X(B) → Ω3(B;R3), [ı3(Y )]i123 = δiIY I ,

where δiI is the Kronecker delta. Let T T be the transpose of T , i.e. (T T)IJ = T JI , and let {EI} be

the standard basis of R3. For T ∈ Γ(⊗2TB), we define
Ð→
TN to be the traction of T T in the direction of

unit vector N = N IEI ∈ S2, where S2 ⊂ R3 is the unit 2-sphere. Thus,
Ð→
TN = N IT IJEJ . One can write

ık(T ) = (ık(
Ð→
TE1) , ık(

Ð→
TE2) , ık(

Ð→
TE3)) , k = 1,2. (2.2)

It is easy to show that

ı1 ○ grad = d ○ ı0, ı2 ○ curlT = d ○ ı1, ı3 ○ div = d ○ ı2.
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2 Nonlinear Elasticity Complex 3

Therefore, the following diagram commutes for the gcd complex.

0 // X(B) grad
//

ı0
��

Γ(⊗2TB)curl
T
//

ı1
��

Γ(⊗2TB) div //

ı2
��

X(B) //

ı3
��

0

0 // Ω0(B;R3) d // Ω1(B;R3) d // Ω2(B;R3) d // Ω3(B;R3) // 0

(2.3)

The contraction ⟨T ,Y ⟩ of T ∈ Γ(⊗2TB) and Y ∈ X(B) is a vector field that in the orthonormal
coordinate system {XI} reads ⟨T ,Y ⟩ = T IJY JEI . Clearly, if NC is the unit outward normal vector
field of a closed surface C ⊂ B, then ⟨T ,NC⟩ is the traction of T on C. Suppose Hk

gcd(B) is the k-th
cohomology group of the gcd complex. Diagram (2.3) implies that ık also induces the isomorphism
Hk

gcd(B) ≈ ⊕3
i=1Hk

dR(B) between the cohomology groups. Using this fact, one can prove the following
theorem.

Theorem 2.1. An arbitrary tensor T ∈ Γ(⊗2TB) is the gradient of a vector field if and only if

curlTT = 0, and ∫
`
⟨T , t`⟩dS = 0, ∀` ⊂ B, (2.4)

where ` is an arbitrary closed curve in B and t` is the unit tangent vector field along `.

Similarly, one can derive the necessary and sufficient conditions for the existence of a potential for T
induced by curlT. The upshot is the following theorem.

Theorem 2.2. Given T ∈ Γ(⊗2TB), there exists W ∈ Γ(⊗2TB) such that T = curlTW , if and only
if

divT = 0, and ∫
C
⟨T ,NC⟩dA = 0, ∀C ⊂ B, (2.5)

where C is an arbitrary closed surface in B and NC is its unit outward normal vector field.

We can also write an analogue of the gcd complex for two-point tensors. Let S = R3 with coordinate
system {xi}, which is the Cartesian coordinates of R3. Suppose ϕ ∶ B → S is a smooth mapping and let
TXϕ(B) ∶= Tϕ(X)S. Note that although ϕ is not necessarily an embedding, the dimension of TXϕ(B)
is always equal to dimS. We can define the following operators for two-point tensors that belong to
Γ(Tϕ(B)) and Γ(Tϕ(B) ⊗ TB):

Grad ∶ Γ(Tϕ(B)) → Γ(Tϕ(B) ⊗ TB), (GradU)iI = U i,I ,
CurlT ∶ Γ(Tϕ(B) ⊗ TB) → Γ(Tϕ(B) ⊗ TB), (CurlTF )iI = εIKLF iL,K ,

Div ∶ Γ(Tϕ(B) ⊗ TB) → Γ(Tϕ(B)), (DivF )i = F iI ,I .

We have CurlT ○Grad = 0, and Div ○CurlT = 0. Thus, the GCD complex, which we also call the
nonlinear elasticity complex, can be written as:

0 // Γ(Tϕ(B))Grad// Γ(Tϕ(B) ⊗ TB)CurlT// Γ(Tϕ(B) ⊗ TB) Div// Γ(Tϕ(B)) // 0.

DISTRIBUTION A: Distribution approved for public release



3 Hilbert Complexes and Orthogonal Decompositions 4

By using the following isomorphisms

I0 ∶ Γ(Tϕ(B)) → Ω0(B;R3), [I0(U)]i = U i,
I1 ∶ Γ(Tϕ(B) ⊗ TB) → Ω1(B;R3), [I1(F )]iJ = F iJ ,
I2 ∶ Γ(Tϕ(B) ⊗ TB) → Ω2(B;R3), [I2(F )]iJK = εJKLF iL,
I3 ∶ Γ(Tϕ(B)) → Ω3(B;R3), [I3(U)]i123 = U i,

one concludes that the following diagram commutes.

0 // Γ(Tϕ(B))Grad//

I0
��

Γ(Tϕ(B) ⊗ TB)CurlT//

I1
��

Γ(Tϕ(B) ⊗ TB) Div//

I2
��

Γ(Tϕ(B)) //

I3
��

0

0 // Ω0(B;R3) d // Ω1(B;R3) d // Ω2(B;R3) d // Ω3(B;R3) // 0

The above isomorphisms also induce an isomorphism Hk
GCD(B) ≈ ⊕3

i=1Hk
dR(B), where Hk

GCD(B) is the
k-th cohomology group of the GCD complex. Let {EI} and {ei} be two copies of the standard basis

of R3. For F ∈ Γ(Tϕ(B) ⊗ TB), and n = niei ∈ S2, let
Ð→
Fn = niF iJEJ ∈ X(B). Then, one can write

Ik(F ) = (ık(
Ð→
Fe1) , ık(

Ð→
Fe2) , ık(

Ð→
Fe3)) , k = 1,2.

Let ⟨F ,Y ⟩ ∶= F iIY Iei. The above relations for the GCD complex allow us to obtain the following
results that can be proved similarly to Theorems 2.1 and 2.2.

Theorem 2.3. Given F ∈ Γ(Tϕ(B)⊗TB), there exists U ∈ Γ(Tϕ(B)) such that F = GradU , if and
only if

CurlTF = 0, and ∫
`
⟨F , t`⟩dS = 0, ∀` ⊂ B.

Moreover, there exists Ψ ∈ Γ(Tϕ(B) ⊗ TB) such that F = CurlTΨ, if and only if

DivF = 0, and ∫
C
⟨F ,NC⟩dA = 0, ∀C ⊂ B.

3 Hilbert Complexes and Orthogonal Decompositions

Consider the following linear subspaces of Γ(Tϕ(B̄)) and Γ(Tϕ(B̄) ⊗ T B̄):

Γj(Tϕ(B̄)) ∶= {U ∈ Γ(Tϕ(B̄)) ∶ U ∣∂j B̄ = 0} ,

Γnj(Tϕ(B̄)⊗T B̄) ∶= {F ∈ Γ(Tϕ(B̄)⊗T B̄) ∶ Ð→Fei ⊥ ∂jB̄, i = 1, . . . , n} ,

Γtj(Tϕ(B̄)⊗T B̄) ∶= {F ∈ Γ(Tϕ(B̄)⊗T B̄) ∶ Ð→Fei∥∂jB̄, i = 1, . . . , n} .
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3 Hilbert Complexes and Orthogonal Decompositions 5

The operators Grad, CurlT, and Div can be restricted to the above subspaces which allows one to
impose boundary conditions on the GCD complex. The upshot is the following commutative diagrams.

0 // Γj(Tϕ(B̄))
Gradj

//

I0
��

Γnj(Tϕ(B̄)⊗T B̄)
CurlTj
//

I1
��

Γtj(Tϕ(B̄)⊗T B̄)
Divj
//

I2
��

Γ(Tϕ(B̄)) //

I3
��

0

0 // Ω0
nj
(B̄;R3)

dnj
// Ω1

nj
(B̄;R3)

dnj
// Ω2

nj
(B̄;R3)

dnj
// Ω3

nj
(B̄;R3) // 0

0 Γ(Tϕ(B̄))oo

−I0
��

Γtj(Tϕ(B̄)⊗T B̄)
Divj
oo

I1
��

Γnj(Tϕ(B̄)⊗T B̄)
CurlTj
oo

I2
��

Γj(Tϕ(B̄))
Gradj
oo

−I3
��

0oo

0 Ω0
tj(B̄;R3)oo Ω1

tj(B̄;R3)
δtj
oo Ω2

tj(B̄;R3)
δtj

oo Ω3
tj(B̄;R3)

δtj
oo 0oo

The isomorphisms I0,⋯,I3 are L2-isometries. The Hilbert spaces L2Γ(Tϕ(B̄)), H1Γj(Tϕ(B̄)), HCΓnj(Tϕ(B̄)⊗
T B̄), andHDΓtj(Tϕ(B̄)⊗T B̄) are the completions of (Γ(Tϕ(B̄)),⟪,⟫L2), (Γj(Tϕ(B̄)),⟪,⟫H1), (Γnj(Tϕ(B̄)⊗
T B̄),⟪,⟫HC), and (Γtj(Tϕ(B̄) ⊗ T B̄),⟪,⟫HD), respectively. These Hilbert spaces allow one to write
the following Hilbert complex for two-point tensors:

0 // H1Γ1(Tϕ(B̄))
Grad1// HCΓn1(Tϕ(B̄)⊗T B̄)

CurlT1//

HDΓt1(Tϕ(B̄)⊗T B̄)
Div1// L2Γ(Tϕ(B̄)) // 0

(3.1)

The dual of this Hilbert complex reads:

HCΓn2(Tϕ(B̄)⊗T B̄)
CurlT2oo H1Γ2(Tϕ(B̄))

−Grad2oo 0oo

0 L2Γ(Tϕ(B̄))oo HDΓt2(Tϕ(B̄)⊗T B̄)
−Div2oo

(3.2)

The complex (3.1) is isomorphic to (HdΩn1(B̄),dn1), and hence, it is Fredholm with HkGCD1
(B̄) ≈

Hk
GCD1

(B̄) ≈ ⊕3
i=1Hk

dR(B̄, ∂1B), where Hk
GCD1

(B̄) and HkGCD1
(B̄) are the k-th cohomologies of the smooth

GCD complex (with boundary conditions on ∂1B̄) and the Hilbert complex (3.1), respectively. Let
Hϕn1,t2

(B̄) ∶= kerCurlT1 ∩ kerDiv2 be the kernel of the Laplacian Lϕ associated to (3.1) and (3.2).

Then, Hϕn1,t2
(B̄) only consists of smooth harmonic two-point tensors and Hϕn1,t2

(B̄) ≈ H1
GCD1

(B̄). One
can show that:

Theorem 3.1. Let B̄ ⊂ R3 be a smooth, compact 3-manifold with boundary and suppose ϕ ∶ B̄ → R3

is a smooth mapping. The Hilbert complex (3.1) induces the following L2-orthogonal decompositions:
The Hodge decomposition

L2Γ(Tϕ(B̄) ⊗ T B̄) =
Grad(H1Γ1(Tϕ(B̄))) ⊕Hϕn1,t2

(B̄) ⊕CurlT(HCΓn2(Tϕ(B̄) ⊗ T B̄)) ,

and, equivalently, the Helmholtz decompositions

L2Γ(Tϕ(B̄) ⊗ T B̄) = Grad(H1Γ1(Tϕ(B̄))) ⊕ kerDiv2

= kerCurlT1 ⊕CurlT(HCΓn2(Tϕ(B̄) ⊗ T B̄)) ,
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4 Mixed formulations of the tensor Laplacian 6

where

kerDiv2 = CurlT(HCΓn2(Tϕ(B̄) ⊗ T B̄)) ⊕H
ϕ
n1,t2

(B̄),
kerCurlT1 = Grad(H1Γ1(Tϕ(B̄))) ⊕Hϕn1,t2

(B̄).

If in addition a two-point tensor is of class Cr,µ (C∞), then its components in the above decompositions
are of class Cr,µ (C∞) as well.

Corollary 3.2. Let B̄ ⊂ R3 be a smooth, compact 3-manifold with boundary and suppose ϕ ∶ B̄ → R3

is a smooth mapping. The necessary and sufficient conditions for the existence of a Grad1-potential
for F ∈ L2Γ(Tϕ(B̄) ⊗ T B̄) are

F ∈HCΓn1(Tϕ(B̄) ⊗ T B̄), CurlTF = 0, ⟪F ,K⟫L2 = 0, ∀K ∈ Hϕn1,t2
(B̄).

Similarly, the necessary and sufficient conditions for the existence of a CurlT2 -potential for F are

F ∈HDΓt2(Tϕ(B̄) ⊗ T B̄), DivF = 0, ⟪F ,K⟫L2 = 0, ∀K ∈ Hϕn1,t2
(B̄).

Similar results are also valid for 2-manifolds in R2.

4 Mixed formulations of the tensor Laplacian

By the (weak) 3D Laplacian for second-order tensors (or simply the 3D tensor Laplacian) with mixed
boundary conditions, we mean the following boundary-value problem: Given Q ∈ L2(⊗2TB), find
T ∈ L2(⊗2TB) such that

L (T ) =Q,
T ⊥ S1, (divT )∣S1 = 0, T ∥S2, (curlTT ) ⊥ S2,

(4.1)

where L ∶= curlT ○ curlT − grad ○ div. The space of solutions of (4.1) for Q = 0, is the space of
harmonic tensors defined as

H(B,S1,S2) ∶= kerL1 = kercurlTS1 ∩ kerdivS2 .

One can write
dimH(B,S1,S2) = dimH1(B,S1) = 3b1(B̄,S1). (4.2)

Note that H(B,S1,S2) measures the non-uniqueness of solutions of (4.1) in the sense that if T is a
solution of (4.1), then so is T + T̂ , ∀T̂ ∈ H(B,S1,S2). The integer b1(B̄,S1) depends on the topological
properties of both B and S1. For example, if B is a 3D ball with a spherical hole, then b1(B̄,∅) = 0,
and b1(B̄, ∂B) = 1. Therefore, (4.2) provides a connection between solutions of (4.1) and topological
properties of B and S1.

Since H(B,S1,S2) is finite-dimensional, it is a closed subspace of L2(⊗2TB), and therefore, using
the orthogonal projection theorem, one can write L2(⊗2TB) = H(B,S1,S2) ⊕ H(B,S1,S2)⊥, where
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4 Mixed formulations of the tensor Laplacian 7

H(B,S1,S2)⊥ is the orthogonal complement of H(B,S1,S2), i.e.

H(B,S1,S2)⊥ ∶= {T ∈ L2(⊗2TB) ∶ ⟪T ,S⟫L2⊗2 = 0, ∀S ∈ H(B,S1,S2)} .

One can show that:

Theorem 4.1. The boundary-value problem (4.1) admits a solution if and only if Q ∈ H(B,S1,S2)⊥.

For approximating solutions of the tensor Laplacians with mixed boundary conditions by means
of Galerkin methods, we need suitable weak formulations for these boundary-value problems. The
boundary-value problem (4.1) can be considered as a special case of the abstract Hodge Laplacian
and therefore, one can define the following mixed formulation for (4.1): Given Q ∈ L2(⊗2TB), find
(U ,T ,P ) ∈H1(TB,S1) ×Hc(⊗2TB,S1) ×H(B,S1,S2) such that

⟪U ,Υ⟫L2T − ⟪T ,gradΥ⟫L2⊗2 = 0, ∀Υ ∈H1(TB,S1),
⟪gradU ,Θ⟫L2⊗2 + ⟪curlTT ,curlTΘ⟫L2⊗2+⟪P ,Θ⟫L2⊗2

= ⟪Q,Θ⟫L2⊗2 , ∀Θ ∈Hc(⊗2TB,S1),
⟪T ,Π⟫L2⊗2 = 0, ∀Π ∈ H(B,S1,S2).

(4.3)

The above equations are the Euler-Lagrange equations corresponding to a saddle point of the functional
I ∶H1(TB,S1) ×Hc(⊗2TB,S1) ×H(B,S1,S2) → R given by

I (Υ,Θ,Π) = 1

2
⟪Υ,Υ⟫L2T − ⟪gradΥ,Θ⟫L2⊗2 − 1

2
⟪curlTΘ,curlTΘ⟫L2⊗2

− ⟪Π,Θ⟫L2⊗2 + ⟪Q,Θ⟫L2⊗2 .

The first equation in (4.3) implies that U = divS2T . The second equation says that T solves the
equation L (T ) = Q − P , where the harmonic tensor P is the harmonic part of Q provided by
a Hodge-type decomposition. Hence Q − P ∈ H(B,S1,S2)⊥, which is the necessary and sufficient
condition for the existence of a solution due to Theorem 4.1. Finally, the third equation eliminates the
degree of freedom for choosing a solution T by requiring that T ∈ H(B,S1,S2)⊥. The well-posedness
of the mixed formulation (4.3) follows from the Fredholm property of the associated Hilbert complex.
The upshot is the following theorem.

Theorem 4.2. The mixed formulation (4.3) is well-posed. Thus, for any Q ∈ L2(⊗2TB), the problem
(4.3) admits a unique solution (U ,T ,P ) ∈ H1(TB,S1) ×Hc(⊗2TB,S1) ×H(B,S1,S2), and there is a
constant c > 0 such that

∥U∥H1T + ∥T ∥Hc + ∥P ∥L2⊗2 ≤ c∥Q∥L2⊗2 .

In the mixed formulation (4.3), the boundary conditions on S1 and S2 are the essential and the
natural boundary conditions, respectively, i.e. the boundary conditions on S1 are explicitly imposed
in the solution spaces while the boundary conditions on S2 are imposed by the mixed formulation.
Alternatively, one can write another mixed formulation of (4.1) as follows: Given Q ∈ L2(⊗2TB), find
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(S,T ,P ) ∈Hc(⊗2TB,S2) ×Hd(⊗2TB,S2) ×H(B,S1,S2) such that

⟪S,Σ⟫L2⊗2 − ⟪T ,curlTΣ⟫L2⊗2 = 0, ∀Σ ∈Hc(⊗2TB,S2),
⟪curlTS,Θ⟫L2⊗2 + ⟪divT ,div Θ⟫L2T+⟪P ,Θ⟫L2⊗2

= ⟪Q,Θ⟫L2⊗2 , ∀Θ ∈Hd(⊗2TB,S2),
⟪T ,Π⟫L2⊗2 = 0, ∀Π ∈ H(B,S1,S2).

(4.4)

In this mixed formulation, in contrary to (4.3), the boundary conditions on S2 are the essential
boundary conditions and those on S1 are the natural boundary conditions.

5 Discrete Hilbert Complexes

It is possible to discretize the Hilbert complex mentioned earlier using some appropriate finite element
spaces. Let Bh be a 3D triangulation. Then, one can write the following polynomial complexes for
second-order tensors:

0Ð→PHr (TBh,S1)
gradÐÐÐ→Pc

r−1(⊗2TBh,S1)
curlTÐÐÐ→Pd

r−2(⊗2TBh,S1)
divÐÐ→Pr−3(TBh)Ð→0, (5.1a)

0Ð→PHr (TBh,S1)
gradÐÐÐ→Pc

r−1(⊗2TBh,S1)
curlTÐÐÐ→Pd−

r−1(⊗2TBh,S1)
divÐÐ→Pr−2(TBh)Ð→0, (5.1b)

0Ð→PHr (TBh,S1)
gradÐÐÐ→Pc−

r (⊗2TBh,S1)
curlTÐÐÐ→Pd

r−1(⊗2TBh,S1)
divÐÐ→Pr−2(TBh)Ð→0, (5.1c)

0Ð→PHr (TBh,S1)
gradÐÐÐ→Pc−

r (⊗2TBh,S1)
curlTÐÐÐ→Pd−

r (⊗2TBh,S1)
divÐÐ→Pr−1(TBh)Ð→0. (5.1d)

Note that (5.1a) is a subcomplex of (5.1b), (5.1b) is a subcomplex of (5.1c), and (5.1c) is a subcomplex
of (5.1d). These discrete complexes are Hilbert complexes. Regardless of the refinement level of the
mesh Bh, the cohomology groups of the above discrete Hilbert complexes are the same as those of the
nonlinear elasticity complex.

6 Stable Mixed Finite Element Methods for the Tensor Laplacian

The bounded cochain projections between the nonlinear elasticity complex and the discrete complexes
introduced earlier allow one to use the general theory for approximation of Hilbert complexes for
approximating the nonlinear elasticity complexes. Consider the following mixed formulation, which is
associated to the first Laplacians of the discrete Hilbert complexes (5.1): Given Q ∈ L2(⊗2TB), find
(Uh,T h,P h) ∈ V H

h × V c
h ×Hh such that

⟪Uh,Υ⟫L2T − ⟪T h,gradΥ⟫L2⊗2 = 0, ∀Υ ∈ V H
h ,

⟪gradUh,Θ⟫L2⊗2 + ⟪curlTT h,curlTΘ⟫L2⊗2 + ⟪P h,Θ⟫L2⊗2 = ⟪Q,Θ⟫L2⊗2 , ∀Θ ∈ V c
h ,

⟪T h,Π⟫L2⊗2 = 0, ∀Π ∈ Hh,
(6.1)

where the pair (V H
h , V c

h ) can be either

(PHr+1(TBh,S1),Pc
r (⊗2TBh,S1)) or (PHr (TBh,S1),Pc−

r (⊗2TBh,S1)) ,
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with r ≥ 1. Also depending on the choice of (V H
h , V c

h ), Hh ∶= kercurlTS1 ∩ kergrad∗h, is the space of
discrete harmonic tensors associated to one of the discrete Hilbert complexes (5.1). Clearly, we have
V H
h ⊂ H1(TB,S1) and V c

h ⊂ Hc(⊗2TB,S1). However, Hh /⊂ H(B,S1,S2), in general. Therefore, the
discrete mixed formulation (6.1) is a generalized (or non-conformal) Galerkin method for the mixed
formulation (4.3).

The Fredholm property of the original Hilbert complex and the existence of the bounded cochain pro-
jections imply that for a shape regular family of triangulations {Bh}, the mixed finite element methods
based on (6.1) are stable and convergent. The rate of convergence is determined by the smoothness of
the data Q, the smoothness of the domain, and the degrees of polynomials that generate the finite ele-
ment spaces. One can also show that the error is the optimal order allowed by discrete solution spaces
if there is sufficient elliptic regularity. For example, let (V H

h , V c
h ) = (PHr+1(TBh,S1),Pc

r (⊗2TBh,S1)),
and suppose that the solutions T and P are of Sobolev class H2. Then, one can write

∥U −Uh∥L2T + h∥grad(U −Uh)∥L2⊗2 + h∥T − T h∥L2⊗2

+ h2∥curlT(T − T h)∥L2⊗2 + h∥P −P h∥L2⊗2 = O(hr+2).

Therefore, regarding the degree of the polynomial approximation, all components converge with the
optimal order.

For implementing (6.1), one needs to calculate the space of discrete harmonic tensors Hh. To this end,
consider the following homogeneous problem: Find (Uh,T h) ∈ V H

h × V c
h such that

⟪Uh,Υ⟫L2T − ⟪T h,gradΥ⟫L2⊗2 = 0, ∀Υ ∈ V H
h ,

⟪gradUh,Θ⟫L2⊗2 + ⟪curlTT h,curlTΘ⟫L2⊗2 = 0, ∀Θ ∈ V c
h .

Then, (Uh,T h) is a solution if and only if Uh = 0, and T h ∈ Hh.
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