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ABSTRACT   
 

Hugoniot states of heterogeneous materials obtained in shock experiments transit through 
various thermodynamic states that are not necessarily in equilibrium. Detailed numerical 
analysis employing a multi-phase constitutive material model has been conducted earlier 
which stressed the role of achieving equilibrium between the gaseous and condensed phases. 
The analysis also showed that the abnormal response of highly porous materials is closely 
associated with the attainment of the inter-phase equilibrium of both pressure and 
temperature. Mie-Grüneisen equations of state with the Murnaghan cold compression term 
were used earlier in the numerical analysis to illustrate the abnormal response. The present 
work shows that very simple equations of state for the phases are sufficient to describe the 
abnormality with the key necessary consideration a two-phase description of porous 
materials. 
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Executive Summary    
 
 
Personnel and platform vulnerability analyses to mitigate effects of Improvised 
Explosive Devices (IEDs) in the Counter IED and National Security research areas 
require advanced predictive capabilities. Relevant tools for the analysis are physics 
based hydrocodes simulating the material response to blast and impact. DSTO (now 
called DST Group) researchers in cooperation with the TTCP community and 
universities require adequate material models of advanced materials involved in the 
mitigation analysis. The main elements specifying any material model are constitutive 
equations and Equations of State (EOSs). In particular, EOSs for materials representing 
porous mitigants are frequently obtained from fundamental properties. These 
properties are determined from first principles by employing material micro-structure 
and physics of the material response on micro- and meso-level. An important feature 
of the shock response of highly porous materials is the abnormality manifested as a 
decrease of the bulk material density as pressure increases. The traditional EOSs do not 
allow one to describe adequately such material response. To do so, high-temperature 
non-linear corrections in EOSs are introduced with reference to high-order interactions 
at the material shock compression. The present work demonstrates that accounting for 
the inter-phase interaction in the porous material represented as a two-phase mixture 
is sufficient even if very basic EOSs are employed for the phase materials. The 
approach allows us to predict features of the material response at high pressures for a 
wide range of material porosities, and to design reference Hugoniots for porous 
mitigants, thus, enhancing DSTO modelling capability. 
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1. Introduction  

The shock loading of materials by stimulants such as near-field blast and high-velocity 
fragment impact requires knowledge of the material response in a wide range of pressures 
and temperatures. Use of materials containing pores filled with gas (e.g., air) allows 
experimentalists to increase the temperature range up to extreme values even when 
loading materials moderately. During such loads porous materials at high porosities may 
respond in unconventional ways and exhibit abnormalities, which are not captured by 
conventional equations of state. In order to describe this response, the thermodynamic 
analyses available in the literature [1-3] focus on incorporation of high-temperature effects 
into equations of state (EOS) by non-linear additives to conventional EOSs [3]. A Hugoniot 
is a locus of points connecting the material states in front and behind a shock wave 
regardless of the thermodynamic path leading to the state behind the front. The Hugoniot 
analysis extrapolating the response of solid materials to that of porous materials using 
enhanced EOSs is routinely employed [1, 3]. A comparative analysis has been published 
elsewhere [2]. An alternative way of building a single-phase EOS [4] is based on a 
constitutive consideration. The latter approach specifies Hugoniot states from a family of 
non-equilibrium Hugoniot for a given pressure thus constructing an integral Hugoniot for 
a porous material. It should be noted that the constitutive single-phase approach [4], or 
two-phase approaches [5, 6], are physically more sound because they take into account 
possible non-equilibrium in the state described by a Hugoniot point. However, a simple 
and universal way of building up Hugoniots when evaluating the mechanical response or 
constructing EOSs would still be beneficial.  
 
An important feature of using the high temperature adjustments [1-3] when designing an 
EOS for a porous material is an application of the EOS high-temperature extension to the 
condensed phase of the porous material. Let us consider two major heat producers during 
compression of a porous material, which are the adiabatic compression of the gaseous 
phase and the heat due to plastic work generated from the deformation of particles. The 
heat due to the plastic work may reach hundreds of degrees in conventional metals [7]. At 
the same time, temperature due to collapse of pores filled with gas/air may easily exceed 
thousands of degrees. Therefore, the need to use high-temperature EOS corrections for 
plastic work is questionable due to the relatively small temperature increase that occurs at 
the highly localised deformation, regardless of the deformation nature. Some of the 
heating mechanisms mentioned in the literature [7] are cracking, adiabatic shear banding, 
cumulative jetting, etc. In addition, the flow from the gaseous phase to the condensed 
phase could be much higher but it does take some time. Heat transfer from the collapsing 
gaseous phase to the condensed phase also depends on the size of particles and the heat 
conductivity of the condensed phase. The heat transfer may take from a few nanoseconds 
up to fractions of microseconds and even a few microseconds [5]. Therefore, for some 
shocked porous materials the heat absorbed by the condensed phase may be relatively 
slow and use of the high-temperature EOS corrections in the condensed phase may be 
unnecessary. At the same time, the abnormality, for treatment of which the EOS 
corrections are introduced, is observed in practically any porous material provided that 
porosity is sufficiently high. Thus, an extra influential factor could be missed which could 
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explain why the abnormality occurs for the porous material as a whole rather than just for 
the condensed phase.  
 
When conducting the constitutive numerical analysis [5, 6] of two-phase porous materials 
employing conventional Mie-Grüneisen equations of state, previous studies have 
demonstrated the importance of a two-phase description of abnormalities at high material 
porosities. The analysis indicated that the time required for the inter-phase equilibrium 
between certain variables in shock wave compression is critical. For example, the shock 
waves resulting in extreme pressures may not provide sufficient time to achieve 
temperature equilibrium between the phases, whereas at moderate shock pressures below 
a threshold pressure the equilibrium might be achieved. The analysis employed a 
simplified version of EOS [8] with the Murnaghan cold compression term [9, 10] 
demonstrated [5] that the abnormality is typically manifested for a highly porous material 
when pressure and temperature equilibrium between the phases has been achieved. 
Remarkably, the conventional behaviour of the Hugoniot is observed if phase 
temperatures are not in equilibrium and this occurs at higher pressures because the 
corresponding shock wave provides a faster transition than when equilibrium is obtained. 
The non-linear form of this EOS allowed the author [5] to analyse the abnormality only 
numerically for the case when different equilibriums between the phases, namely, non-
equilibrium (independent thermodynamic states), pressure, and pressure-temperature 
equilibriums were assumed. Another less likely equilibrium assumption such as the sole 
temperature equilibrium has been analysed for a two-phase solid material subject to phase 
transitions [11]. In the analyses [5, 6] it has been shown that the abnormality for highly 
porous materials is typical in the case of both pressure and temperature equilibriums 
between the phases. 
 
We show here that the choice of an equation of state for the phases is not critical, but the 
two-phase consideration might be used to detect an abnormality of the Hugoniot. In order 
to analyse the Hugoniot behaviour, the present work employs simplest EOSs 
thermodynamically consistent with shock-wave compression.  For the gaseous phase, the 
simplest EOS consistent with shock compressibility and heating is the ideal gas EOS, and 
for the condensed phase, a similar EOS is a stiffened EOS. The important feature of an EOS 
is selection of a constant power exponent for the polytropic gas, and constant positive 
Grüneisen parameters for the stiffened EOS. It will be shown that in the case of pressure 
and temperature equilibrium between the phases of a highly porous material the abnormal 
behaviour is typical, and the conditions of abnormality will be derived for these EOSs. The 
present analysis will deal with the typical types of parameter equilibrium observed within 
the shock wave propagation that includes two scenarios, namely, the pressure and 
temperature equilibrium resulting in possible Hugoniot abnormality, and in pressure 
equilibrium and temperature non-equilibrium in the case of faster compression at the 
shock loading above the threshold pressure. 
 
The present work demonstrates that selection of the two-phase consideration with such 
simple EOSs enables us to derive an analytical EOS for the porous material. The resulting 
composite EOS is shown to be sufficient for description of the abnormality and the main 
important high-pressure features of the material response. During the analysis, it is 
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observed that the Grüneisen parameter is the key one controlling the Hugoniot behaviour 
at high pressures. 
 
 

2. Hugoniot with the Pressure-temperature Equilibrium 

The Rankine-Hugoniots conditions derived from the mass, momentum and energy 
conservation laws across the shock jump routinely include the following equations [1]: 
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here the parameters are associated with the laboratory system where the material is 
stationary in front of the shock wave. The states in front of the wave are referred by the 
subscript ‘f ’, D is the shock velocity, e is specific internal energy, ρ is material density 
related to specific volume v as v = 1/ρ, p is pressure and u is particle velocity.  
 
For a material fully specified by two independent thermodynamic parameters such as 
pressure and specific volume, the last equation of (1), a consequence of the energy 
conservation law from the three conservation laws, is sufficient to determine the Hugoniot 
as p = pH(v) if an EOS in the form e = e(p,v) is given. This approach, as discussed in the 
previous section, is routinely used for analysis of condensed materials and frequently 
extrapolated to the porous material case. 
 
The first part of the present analysis will deal with the states loaded to pressure below the 
pressure threshold and, therefore, the equilibrium of pressure and temperature between 
the phases is assumed. 
 
It should be mentioned that even with common pressure and temperature parameters in 
the case of the equilibrium, specific volume is an individual characteristic of each phase. 
At the same time, for the Hugoniot determination, when compressing a porous material 
with a flyer plate or with the use of explosive products, providing a given pressure p or 
velocity u behind the shock front, we need to identify individual characteristics. These are 
specific volumes v1 and v2 or densities ρ1 and ρ2 (vk = 1/ρk, k = 1,2), for condensed and 
gaseous phases, respectively, from independent EOSs for the phases. Due to its two-phase 
nature, the additivity rule has to be applied to internal energy and specific volume: 
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here c1 and c2 are mass concentration of the condensed and gaseous phases respectively 
such that c1 + c2 = 1. Therefore, the actual change of specific volumes depends on 
individual capacity of each phase to be compressed, and the thermal characteristics are 
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affected by individual thermo-physical laws for each of the phases dictated by individual 
EOSs. The above-mentioned Mie-Grüneisen-type simple EOSs specified for each of the 
phases are: 
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Here γkm =  γk – 1,  γkm (k = 1,2) are the Grüneisen parameters (γ2 is the polytropic index for 
the gaseous  component),  p0  is  the stiffening  constant for  the condensed material  EOS, 
p0 = ρ10c102/γ1. Denotation Γ = γ1m for the Grüneisen parameters in the solid constituent will 
also be used below.  The arbitrary parameters ek0 are the calibrating constants which could 
be formally selected, for example, to adjust the internal energies to constants, e0k, at the 
normal conditions at  p = pa and  ρk = ρk0  (k = 1, 2) with the reference densities ρk0 so that e10 
= (pa + γ1 p0)/( γ1m ρ10) and e20 = pa/( γ2m ρ20). 
 
Constant heat capacities cv1 and cv2 are assumed for each phase where cv = (∂e/∂T)v. Then 
the EOSs (3) allow one to determine temperatures for each of the phases: 
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The equations above, which are specific for each of the phases of the two-phase mixture, 
are to be completed by the equilibrium conditions following the present assumptions: 
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Summarising, we have the system of 10 equations, including one energy conservation law 
across the shock jump in Equation (1), two additivity rules expressed by Equation (2), four 
formulations of the phases’ equations of state (Equations (3) and (4)), and three 
equilibrium conditions formulated in Equation (5). This system contains 11 independent 
variables, namely, e, p, v, e1, e2, p1, p2, v1, v2, T1, and T2. It should be noted that for the single-
phase material there is no need in the auxiliary formulation (Equation (4)) of EOSs for 
temperature because the temperature limitations are not imposed on a single-phase 
material. 
 
Thus, similarly to the conventional single-phase case we have a thermodynamical 
parameter, for example, pressure p, which we should be able to use to determine the 
remaining parameters, including all parameters of the individual phases. In the next 
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section we will specify the Hugoniot in an explicit form and analyse when the abnormality 
may occur. 
 

3. Analysis of the Hugoniot Abnormality 

In this section we derive an Hugoniot on the assumption of thermal and force equilibrium. 
We assume that the state ‘f ’ is associated with the reference state in the laboratory system 
selected such that uf  = 0, which has the reference specific volume for the mixture vf = c1 v01+ 
c2 v02, where v01 = 1/ρ01 and v02 = 1/ρ02; ρ01 and ρ02 are the reference densities of the 
individual condensed and gaseous phases. The ‘f ’-state is associated with pf = pa and ef = 0, 
where pa is ambient pressure. 
 
The energy conservation law in Equation (1) with substitutions from EOSs (Equations (3)) 
gives: 
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where the following denotation is used e0 = c1 e01+ c2 e02.  
 
The additivity rule (Equation (2)) for the specific volume and the temperature equilibrium 
conditions (5) along with necessary EOSs (4) give another two equations: 
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Thus, the reduced system of three Equations (6) and (7) for four parameters p, v1, v2, and v 
allows us to derive the Hugoniot p = pH(v). Specifically, we can express v1 and v2 from (7) 
as dependencies on p and v and after substitution in (6) we have Hugoniot in the following 
form: 
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Denoting c′v1 = c1cv1 and c′v2 = c2cv2 and introducing the denotations below for the thermo-
mechanical characteristics of the mixture: 
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we can rewrite (8) in the following compact form: 
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The Hugoniot p = pH(v) can be found by solution of the quadratic Equation (9). The 
analysis shows that for a positive discriminant of Equation (9), two different pressure 
values corresponding to the same specific volume exist as a solution of the equation. These 
pressures have physical meaning and they indicate the Hugoniot abnormality. For the 
sake of convenience, we can conduct an analysis of the inversed Hugoniot v = vH(p) that is 
free of the multifold issue.  
 
Equation (9) in the inverse form can be written as follows: 
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The abnormality occurs for particular thermo-mechanical material constants and a 
combination of pressure and specific volume. For a conventional Hugoniot represented as 
p = pH(v) or v = vH(p), this event, expressed by the relation (∂vH/∂p) > 0, cannot occur due to 
thermodynamical limitations for the corresponding EOS. In the present case, when 
pressure and specific volume are not linked via a single EOS, this is possible.  
 
In order to formulate the abnormality condition in a compact representation, we can 
consider an approximation of Equation (10) at pf = 0: 
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where  
 

mvvgvgmvmvsvsm cccccc 22
1

2
1 , +=+=  

 
In order to substantiate the use of Equation (11), we evaluate difference δ between the 
solution of Equations (10), v(p, ε), and (11), v(p, 0), using pf = ε as a small parameter. A first 
order approximation of the difference is: 
 

( ) ( ) ( ) ( ) ( ) ( )εεεδ εε 0,0,0,0,0,, pvpvpvpvpvpv =−+≈−=  
 
This equation is applicable because the solution (Equation (10)) at ε = 0 is identical to the 
solution (Equation (11)), as easily checked. The derivative of v(p, ε) over ε calculated from 
Equation (10) at ε = 0 is obviously finite because the denominators in Equations (10) and 
(11) are positive for finite v. Thus, the solution (Equation (11)) is a sufficient 
approximation, if the loading pressure is orders higher than the atmospheric one. This is 
the case for the shock loading of porous materials when the shock pressure exceeds the 
ambient pressure by several orders of magnitude. If necessary, in case of weak shocks, 
Equation (10) can be analysed directly.  
 



UNCLASSIFIED 
DST-Group-TR-3152 

UNCLASSIFIED 
7 

If we consider the analysis of the solution (Equation (11)), we can calculate derivative 
∂vH/∂p at any given p as follows: 
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The sign of the derivative (12) is coincident with that of the numerator. The numerator can 
be rewritten as follows: 
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Discriminant D0 = b2 + ac of the numerator (13) (scaled by 1/(e0 p0)) is: 
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The numerator (the first row in system (13)) has initially (at small p) a negative sign due to 
c < 0 that does not change if the denominator is negative. Otherwise, when the pressure 
increases, the denominator sign changes at the following critical pressure pc: 
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We define a critical initial specific volume vb as a limit of volumes vf, above which the 
abnormality takes place for the Hugoniots with vf  > vb. This volume can be easy found 
from Equation (14) when D0 is changing its sign to positive at D0 = 0, which gives 
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The case resulting in the Pressure-Temperature Equilibrium (PTE) Hugoniot vHPTE(p), has 
been fully analysed above, following established terminology [5]. 
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Commenting on the specific volume vb, if pressure and temperature were in equilibrium 
for the whole process of the shock loading and vf  > vb, which means that the Hugoniot is 
abnormal, then it would be easy to show that v > vb for any point of the given PTE 
Hugoniot and vb would be a lower limit of specific volume. Thus, in the case of abnormal 
Hugoniot vb also plays the role of limiting volume. If there was a transition to another 
regime with pressure equilibrium and temperature non-equilibrium vb may be not the 
limiting volume in a global sense and the actual limiting volume may be managed by the 
alternative Hugoniot. This case will be analysed in the next section. 
 
 
 

4. The Pressure Equilibrium and Composite Hugoniots 

Following the established analysis [5], another limiting case for possible Hugoniot states 
relates to the Pressure Equilibrium (PE) and independent temperatures in the phases. For 
this case with the resulting PE Hugoniot vHPE(p), each phase is subject to independent 
shock compression identified by the same final pressure behind the shock front [5]. For the 
case of ambient pressure in front of the wave, pf = pa, application of the jump conditions to 
the individual phases with EOSs (Equations (3)) gives the following well-known 
Hugoniots for the condensed and gaseous phases: 
 

( ) ( )
( ) ( )

mfp

mpf

mfp

mpf

pp
pp

vv

pppp
pppp

vv

222

222
022

10101

10110
011

γγ
γγ

γγ
γγ

+

+
=

+++

+++
=

                 (17) 

 
where γkp =  γk + 1 (k = 1,2). 
 
The Equations (17) along with the equilibrium conditions for pressure and the additivity 
rule (Equation (2)) for the specific volume form the following system: 
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Thus, for 6 variables p, v, p1, p2, v1, and v2 we have 5 equations (Equations (17)-(18)) which 
can be easily reduced to the following Hugoniot for the two-phase mixture: 
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The derivative ∂v/∂p for this Hugoniot can be directly calculated from Equation (19) and 
the result is: 
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The relation (Equation (20)) clearly demonstrates that this Hugoniot has no abnormality 
due to ∂v/∂p  < 0 for any pressure. Similar to the case of conventional single-phase 
Hugoniots based on a Mie-Grüneisen EOS, when pressure increases infinitely, the limiting 
specific volume va (the subscript ‘a’ refers to the Hugoniot associated with the one 
eventuated above the pressure threshold) for the PE Hugoniot can be easily found from 
Equation (19) as follows 
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It should be kept in mind however that the actual limiting specific volume may differ from 
this value and be controlled by the PTE Hugoniot if vb  < va. 
 
We can assume that with increasing strength of shock wave and, thus, pressure behind the 
shock, the shock front width is decreasing along with the time of inter-phase equilibrating 
of thermodynamical parameters [5]. Hypothetically, the time of transformation in the 
shock wave can be so short in the material such that even pressure equilibrium is not 
achieved, which can be described by a Non-Equilibrium Hugoniot [5]. Alternatively, in 
some exotic imaginable cases the temperature equilibrium occurs prior the pressure 
equilibrium, the Hugoniot may be better described by a Temperature Equilibrium 
Hugoniot [11]. However, such cases are physically less likely than the case of Pressure 
Equilibrium (PE) and Pressure-Temperature Equilibrium (PTE) analysed above. 
 
Thus, accepting the transition from the pressure and temperature equilibrium to solely the 
pressure equilibrium with the final pressure increasing behind the shock front, we have 
the PTE and PE cases predominantly. Numerical analysis of the inter-phase equilibrium 
for both pressure and temperature associated with the Hugoniot state obtained in 
experiment is likely to be achieved at pressures up to a pressure threshold that may be 
taken as a point of intersection between the PTE and PE Hugoniots [5]. An alternative 
scenario is the wave specified by the behind-shock final pressure that is above the 
threshold pressure. In this case, the transition within the shock front may occur during 
such a short time that the thermal equilibrium has not been achieved leaving the material 
at the pressure equilibrium only. The pressure equilibrium occurs well before the main 
shock front within a pre-compaction precursor wave [5]. A combination of the PTE 
Hugoniot below the threshold and the PE Hugoniot above the threshold gives us a single 
composite Hugoniot denoted below by vHS(p). 
 
An example beyond the single composite Hugoniot case would be a porous material with 
large solid particles surrounded by significant gaseous pockets, which may prevent 
achieving temperature equilibrium even at the slow rate of loading occurring at a final 
pressure below the threshold. This may result in an extension of the PE Hugoniot 
contribution, vHPE(p), into vHS(p) below the threshold. On the other side, a porous material 
with ultra-dispersed particles within the nanometer size region may lead to achieving 
pressure-temperature equilibrium even for very quick loading corresponding to a large 



UNCLASSIFIED 
DST-Group-TR-3152 

UNCLASSIFIED 
10 

final pressure, thus resulting in an extension of the PTE Hugoniot contribution, vHPTE(p), 
into vHS(p) above the threshold pressure. Some of the extensions occurring for real 
materials will be illustrated below on the case-to-case basis. 
 
The case accepted for derivation of an analytical EOS is the composite Hugoniot obtained 
with the above-described rule. Due to possible multi-valuedness of the PTE Hugoniot, the 
Hugoniot will be represented as specific volume versus pressure. It should be noted that 
this form is acceptable for the present EOSs (Equations (3)-(4)). However this presentation 
may be cumbersome for EOSs where multi-valuedness is possible for the thermodynamic 
variable of specific volume if, for example, the Van-der-Waals EOS is used for one of the 
phases.  
 
Summarising, the combined single Hugoniot can be represented in the following simple 
form from the contributing Hugoniots 
 

( ) ( ) ( ){ }.,min pvpvpv PE
H

PTE
H

S
H =                  (21) 

 
It should be noted that the transition from the PTE Hugoniot, vHPTE(p), to the PE Hugoniot, 
vHPE(p), at the threshold pressure occurs not only for the abnormal PTE Hugoniot within 
the experimentally observed pressure range. Illustrations in the next section will 
demonstrate when this is the case for the PTE Hugoniots with conventional behaviour. 
 

 
Figure 1 Schematic of derivation of the Hugoniot vHS(p) from the pressure-temperature 

equilibrium Hugoniot vHPTE(p) and the pressure equilibrium Hugoniot vHPE(p). 

 
The algorithm of construction of the composite Hugoniot vHS(p) is illustrated in Fig. 1. 
Thermo-mechanical constants used for the contributing Hugoniots, vHPTE(p) from Equation 
(10) and vHPE(p) from Equation (19), will be specified in details in the subsequent section. 
Copper powder is used to illustrate the use of the Hugoniots, using a porosity m = 4, 
where m = ρ01/ρ0, and ρ0 is the average density of the powder tested.  As seen in Fig. 1 (a) 
with the legend in Fig. 1(b), curve 1 (the Hugoniot vHPTE(p)) intersects curve 2 (the 
Hugoniot vHPE(p)). The composite Hugoniot vHS(p) (curve 3 in Fig. 1(b)) is combined from 
sections of the contributing Hugoniots with the specific volume taking the minimal value 
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as follows from the representation in Equation (21). It may seem that the abnormal 
Hugoniot (curve 1 in Fig. 1(a)) has no critical point defined by equation (15) when the 
Hugoniot vHPTE(p) changes its slope. However, both curves 1 and 2 must originate from the 
same point v = vf at atmospheric pressure. When analysing closely the corresponding 
fragment of curve 1 in Fig. 1(a), the result can be seen in Fig. 1(c) with easily identifiable 
critical pressure pc. 
 
The next section will illustrate how the Hugoniot vHS(p) calculated from Equation (21), 
when composing the pressure-temperature branch vHPTE(p) from Equation (10) and the 
pressure branch vHPE(p) Equation (19), agrees with available experimental observations, 
and what limitations the derived Hugoniot might have. 
 
 
 

5. Numerical Examples 

The analytical Hugoniot for porous material will be illustrated below with a number of 
calculated Hugoniots compared with experiments for several metallic powders, an organic 
porous material and a porous rock composition in a wide variety of porosities. All the 
examples will be calculated with the reference pressure equal to atmospheric pa = 0.1 MPa. 
For the air at room temperature T = 300 K, only two constants are needed in order to 
specify EOS represented by the second equations from the pairs (3)-(4). To represent the 
air we select well tabulated values c02 = 0.34 km/s and γ2 = 1.4. For a solid constituent we 
need four constants to specify the corresponding EOS, which can be accomplished by 
specifying ρ01, c01, cv1, and Γ.  
 
Table 1 Equation of State constants employed for solid constituents of porous materials and the 

calculated limiting density corresponding to the abnormality transition. 

 ρ01, g/cm3 c01, km/s cv1, J/(g·K) Γ ρb, g/cm3 mb 
Cobalt 8.82 4.79 0.4145 1.99 4.4 2.0 
Copper 8.93 3.94 0.45 1.97 4.43 2.02 
Iron 7.84 4.6336 0.45 2.2 4.1 1.91 
Molybdenum 10.2 5.42 0.256 1.61 5.06 2.02 
Zinc 7.14 4.6 0.39 1.6 3.17 2.25 
Calcite 2.71 5.08 1.2 1.18 0.58 4.6 
PMMA 1.186 2.32 1.6 0.5 0.24 4.94 
 
As examples of condensed constituent for the metallic powders we take Cobalt, Copper, 
Iron, Molybdenum and Zinc. We take calcite (CaCO3) to represent a rock composition and 
a Polymethylmethacrylate – (C5O2H8)n (PMMA) granular material to represent an organic 
mixture (a polymer powder). Four necessary EOS constants for each of the materials are 
summarised in Table 1. The material constants for the condensed constituents (the first 
phase of corresponding porous materials) are taken from literature and are in agreement 
with the well-known thermo-physical characteristics of the solid materials. The last two 
rows are the limiting initial density of the corresponding porous material ρb calculated 
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from Equation (16), below which the PTE Hugoniot is abnormal, and the corresponding 
critical porosity mb = ρ01/ρb. It should be noted that the limiting density, ρb, is slightly 
fluctuating with the change of porosity due to the mass concentration entering the formula 
in Equation (16) via the parameters cvs, cvm, etc. These thermo-mechanical parameters are 
constant only at a fixed mass concentration, i.e., for material with a given porosity. 
However, due to the large density mismatch between the condensed and gaseous phases 
this fluctuation typically affects only the third digit of the porosity value at the porosities 
up to mb. The variation of ρb with porosity is noticeable only at extreme porosities above 
100, when determination of the critical porosity mb is not an issue because the Hugoniot 
behaviour is already abnormal at much lower porosities. 
 
The majority of experimental Hugoniot data are taken from the popular compendiums 
[12-14] that summarize numerous experiments conducted in the world on the shock 
loading of condensed and porous materials. 
 

 
Figure 2 Calculated composite Hugoniots (curves) for copper powders compared with experiment 

(points) at different porosities (a): m = 1.4(1); 2.0(2); 2.5(3); 3.0(4); 3.5(5); 4.0(6); and 
5.45(7), and (b): m = 7.2(1); and 10.034(2). 

 
One of the most extensive sets of shock data obtained in the literature are the Hugoniots 
for copper at various porosities. A representative set of experimental points is drawn in 
Fig. 2 for pressures up to 2 Mbar and for 9 different porosities. It is seen that the critical 
Hugoniot indicating transition to the abnormality is curve 2 in Fig. 2(a) that corresponds to 
m = 2. This experimentally observed limiting porosity agrees very well with the calculated 
critical porosity mb = 2.02 from Table 1. It is interesting to note that the Hugoniots visually 
originate from a single point. In fact, as it has been commented in the previous section 
regarding Fig. 1(c), the original point of the corresponding PTE Hugoniots is v = vf. To 
illustrate, for the first three curves in Fig. 2(a), the actual originating points are                    
vf = 0.158(1); 0.224(2); and 0.28(3). That means that according to the analysis for the PTE 
Hugoniot in the present case mb = 2.02 or vb = 0.2256 and vf < vb for curves 1 and 2, whereas 
vf > vb for the remaining curves. Thus vf may be far away from the visual point 
corresponding to v = vb. The slight fluctuation of vb is barely noticeable in Fig. 2(b) only at 
extreme porosities.  
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Commenting on observed deviations of calculated Hugoniots from the experimental 
points it is seen that they are greater for some selected porosities and vary from one 
porous material to another. For example, the observed error is within the experimental 
scatter for curves 5-7 at relatively high porosities but is moderate (about 8%) for curves 1 
to 4. In particular, the accuracy of the Hugoniots at the extreme porosities shown in Fig. 
2(b) is surprisingly good (less than 5%). It should be noted that accuracy in the primary 
compaction zone (within a few GPa for the loading pressure) is not expected to be good 
because of the kinetic processes involved in the compaction and strength of the material at 
these pressures (for detailed analysis, see [5, 6]). Nevertheless, even at low pressures the 
trend and behaviour of the PTE Hugoniot with a different observed pc is correct. Several 
possible causes of the deviations at moderate porosities could be noted. The first one 
relates to experimental errors which will be discussed when analysing the next metallic 
powder. The second one could be a variation in experimental set-ups for different sets of 
data. For example, several points are taken from the compendium [13], and the majority 
from the collection [12] for the data set 2 in Fig. 1 for porosity m = 2. Finally, the 
compression behaviour is significantly affected by the cold part of an equation of state at 
moderate porosities when the behaviour of the condensed constituents predominates. This 
behaviour is obviously oversimplified with the use of the present EOS. 
 

 
Figure 3 Calculated composite Hugoniots (curves) for iron powders compared with experiment 

(points) at different porosities (a): m = 1.129(1); 1.316(2); 1.653(3); 1.826(4); 2.328(5); 
and 2.9(6), and (b): m = 10.0(1); and 20.0(2). 

 
The family of Hugoniots for a material with different condensed phase, iron, is 
summarised in Fig. 3. These results show similar scatter with some specifics related to 
selected porosities. In this case, the low-porosity description is even better than in the case 
of copper powders possibly due to a better description of the condensed phase by the 
present simple EOS. The transition to the abnormality is seen to occur between curve 4 and 
curve 5 that agree quite well with the experimental data (points 4 and 5). The 
corresponding porosities are 1.826 and 2.32 and the calculated critical porosity listed in 
Table 1 is mb = 1.91. Thus, the agreement is again remarkably good. Data and calculations 
shown for high porosities in Fig. 3(b) look more divergent.  For example, for porosity m = 
10 (curve 1 and points 1), the error is close to 30%. However, it is well known and can be 
easily assessed from (1) that the density and specific volume errors for Hugoniots with the 
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shock and particle velocity errors ΔD/D and Δu/u, respectively, are of the order of 
m(ρ/ρ01)(|ΔD/D| +|Δu/u|). Thus, for a 1% error in experimental measurement of the 
Hugoniot particle and shock velocities, the density or specific volume error Δv/v achieves 
as a minimum 10×0.02 (or 20%) for the m = 10 - porous material and it is proportionally 
larger at high compression with the factor of ρ/ρ01. Correspondingly, for the m = 20 - 
porous material the error should be at least 40%. Keeping in mind that the Hugoniots are 
calculated with a constant Grüneisen parameters for different iron powders with the 
porosities from 1.129 up to 20 the description is actually very good. An interesting note can 
be made on the limiting volumes for the highly porous iron in Fig. 3(b). For porous 
materials with a moderate porosity the limiting specific volume is usually controlled by 
the PE Hugoniot such that va  < vb with reference to the comment in the previous section. 
In the cases of Fig. 3(b) the limiting specific volume is controlled by the PTE Hugoniot (vb  
< va) with vb ≈ 0.243 for the both porosities and va ≈ 0.258 at m = 10 and va ≈ 0.47 at m = 20. 
It is seen in Fig. 3(b) that the PTE Hugoniots at extreme porosities exhibit a noticeable 
variability of vb. 
 
The last set of metallic powders addressed in the report is analysed in Fig. 4. The 
description for Molybdenum powders is very good at porosities up to m = 4 and the last 
curve 4 in Fig. 4(a) can unfortunately be compared only for the experimental data available 
at pressures lower than the threshold value. Nevertheless, the error is quite moderate and 
disagreement of the calculated Hugoniots with the experimental points at the maximal 
pressure is approximately 18% which is not large for the porosity m = 8 following the error 
estimate discussed above. It should be reminded again that the low pressure behaviour is 
managed by kinetic mechanisms of the material deformation that are out of the scope of 
the present work. The Cobalt powder description shown in Fig. 4(b) and the Zinc powder 
description shown in Fig. 4(c) are very good for all available data that cover quite wide 
range of pressures both below and above the threshold pressure. 
 

 
Figure 4 Calculated composite Hugoniots (curves) compared with experiment (points) for 

Molybdenum powders at different porosities (a): m = 1.82(1); 3.5(2); 4.0(3); and 8.0(4), 
for Cobalt powders (b): m = 1.59(1); 2.12(2); and 3.39(4), and for Zinc powders (c):      
m = 1.5(1); 1.798(2); 2.1(3); and 3.145(4).  
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The last was undertaken on organic and rock mixtures. The rock mixture represented by 
calcite porous materials is an interesting one and two experimental sets of data are 
analysed. The first dataset for low porosities (experimental points 1 in Fig. 5(a)) is taken 
from Ahrens et al [15] for porous Spergen limestone and the second dataset (points 2 and 
3) are taken from the compendium by Trunin et al [12]. According to literature data, the 
Grüneisen parameter for calcite manifests some variability as noted below. The high-
pressure data reported by Trunin et al [12] for calcite porous mixture have actually been 
borrowed from Kalashnikov et al [16]. This study determines the most suitable value for 
the Grüneisen parameter to be Γ = 1.18 that is used as a material constant in Table 1. 
However, a sharp increase of the parameter at pressures above 15 GPa from a value at 
normal conditions is discussed by Ahrens et al [15] possibly because of the calcite-
aragonite transition at high temperatures and pressures [17] with claimed values below 1 
at low pressure. This low-pressure value is not well defined and varies from 0.5 [17] to 0.98 
in [18]. The nature of this two regime variation in Pasternak et al [18] is not explained but 
in view of the study by Kerley et al [17] it is likely to be associated with the phase 
transition.  It is seen from Fig. 5(a) that these transition regimes are highly likely for this 
material and for many geological porous materials in general due to the abundance of 
silicone and calcite in rock compositions. 
 

 
Figure 5 Calculated composite Hugoniots (curves) compared with experiment (points) for calcite 

powders at different porosities (a): m = 1.165(1); m = 1.319(2); and 1.563(3), and for 
PMMA powder (b): m = 10.782(1); and 23.72(2). Dashed composite Hugoniots for 
calcite 1-3 (a) are calculated with Γ = 0.5. 

 
The data available for PMMA powders from Trunin et al [12] are used for the Hugoniot 
calculation shown in Fig. 5(b). The well-known assessment of the Grüneisen parameters at 
the reference conditions from bulk modulus, thermal expansion and heat capacity gives 
the value used in Table 1. The corresponding Hugoniots, assessed for these polymer 
powders and shown in Fig. 5(b), describe the experimental points very well within the 
experimentally available pressure region. The porosities are extreme, therefore, the 
variability of vb is noticeable. It is interesting to note that because of a smaller density 
mismatch between the phases in this case the variability is essentially larger than for the 
iron powder in Fig. 3(b) at approximately the same porosity variation. 
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6. Conclusion  

The work proposes a simple way of constructing reference Hugoniots for porous material 
using basic equations of state for the phases. These Hugoniots describe satisfactorily a 
variety of materials within a wide porosity range. This family of Hugoniots can be used for 
derivation of equations of state (EOSs) for a porous material with both normal and 
abnormal behaviour which could be useful for deriving EOSs in hydrocodes.  
 
The Hugoniots designed are applicable within the ‘hydrodynamic’ pressure range, where 
the strength and material kinetic effects associated with the material packing and 
compaction are negligible. The non-hydrodynamic effects should be described by 
constitutive relations complementing the EOS. For advanced models, the inter-phase non-
equilibrium or individual phase behaviour could be described directly either with an EOS 
integrating the non-equilibrium via some kinetic assumptions [4] or with constitutive 
relations dealing with the phase interaction [5-6, 11]. 
 
When the cold compression of a solid constituent exhibits elastically non-linear behaviour 
such as that substantially involving the Murnaghan EOS description, accuracy of the 
present description invoking simple EOS for the condensed phase can be worse at 
moderate porosities than at high porosities.  
 
The inter-phase equilibration depends on the material microstructure which controls the 
time of equilibration. Therefore, some porous materials may demonstrate a better 
description with composite Hugoniots that extend transfer of the pressure-temperature 
equilibrium description above the pressure threshold, or the pressure equilibrium and 
temperature non-equilibrium description below the threshold. 
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