

 ARL-TN-0681 ● OCT 2015

 US Army Research Laboratory

Porting Extremely Lightweight Intrusion
Detection (ELIDe) to Android

by Ken F Yu and Garret S Payer

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TN-0681 ● OCT 2015

 US Army Research Laboratory

Porting Extremely Lightweight Intrusion
Detection (ELIDe) to Android

by Ken F Yu and Garret S Payer
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

Oct 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

April 2014–September 2014
4. TITLE AND SUBTITLE

Porting Extremely Lightweight Intrusion Detection (ELIDe) to Android
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Ken F Yu and Garret S Payer
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIN-D
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TN-0681

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes how to port Extremely Lightweight Intrusion Detection (ELIDe) from Linux to Android. A step-by-step
guide is provided for engineers who want to develop ELIDe software for the Android operating system.

15. SUBJECT TERMS

ELIDe, Android, pcap

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

32

19a. NAME OF RESPONSIBLE PERSON

Ken F Yu
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

(301) 394-3181
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

1. Background 1

2. Configuration 1

2.1 Development Work Station 1

2.2 Development Mobile Device 2

3. Developing the Software 2

3.1 Rooting Android Device 3

3.2 Android OS on Virtual Machine 3

3.3 Building a New Android Application 4

3.4 Compile C++ and FORTRAN Dependencies for ELIDe on Android 4

3.5 The Elide Native Code Back End 5

3.6 Compile ELIDe Native Executable 5

3.7 The Android Application Front End 6

4. Application Operational Breakdown 6

5. Elide for Android Application Package 7

5.1 Deploying the Application 8

6. Application Configuration 8

7. Application Usage 10

7.1 Notifications 10

8. Conclusions 11

9. References 12

Appendix A. Example Struct Declaration Using Extern “C” 13

Appendix B. Example Android.mk File for ELIDe 15

iv

Appendix C. AndroidManifest.xml Example 19

Appendix D. ELIDe Android Application Class Diagrams 23

List of Symbols, Abbreviations, and Acronyms 25

Distribution List 26

1

1. Background

Current breakthroughs in mobile computing technology will allow unprecedented
computational power and information from almost anywhere via hand-held
devices. The explosion of mobile devices presents unique security concerns that
may not have been considered because productivity software has migrated from a
traditional wired-network architecture utilizing personal computers (PCs) to mobile
phones entirely dependent on wireless communications.

Initial work using the Extremely Lightweight Intrusion Detection (ELIDe) system
focused on replicating the malicious-packet detection that is achieved using larger,
more computationally heavy systems through machine-learning techniques. If a
combination of N-gram hashing, stochastic gradient descent, and linear classifiers
is used, it is possible to closely match the performance of traditional packet
classification but significantly reduce the computational load, which leads to lower
power requirements.

Because ELIDe was found to be effective in performing network packet
classification, it is now necessary to determine how this capability will perform on
a mobile device such as a consumer-targeted Android phone. Ritchey et al.1
established how to build the dependencies needed to run ELIDe on a mobile
platform. This process included compiling both Basic Linear Algebra Subprograms
(BLAS) and libpcap for the Android platform. The work described in this document
continues the effort required to migrate ELIDe to Android.

2. Configuration

The following is a list of the software and hardware used as part of the development
effort needed to migrate ELIDe to the Android platform.

2.1 Development Work Station

The work station has the following configuration:

• Operating System: Red Hat Enterprise Linux, version 6.5

• Android Development Tools, version 22.3.0-887826

• Android NDK Revision 9

• Dell Precision T7400

○ 8-GB memory

2

○ Dual Xeon X5472 central processing unit

▪ Quad Core

▪ 3.00 GHz

2.2 Development Mobile Device
The following mobile devices were used to develop the mobile version of ELIDe:

• Android 4.3 Jelly Bean (Application Programming Interface Level 18)

• Sprint-branded Galaxy S3

○ Qualcomm Snapdraggon S4 Plus MSM8960

○ Dual-core 1.5-GHz Krait processor

○ Adreno 225 graphics processor

○ 2048 MB of RAM

○ 32-GB internal storage

○ 2100-mAh battery

3. Developing the Software

Much of this work extends from research efforts accomplished in Compilation of a
Network Security/Machine Learning Toolchain for Android ARM Platforms.1
However, it utilizes several other pieces of work that will be referenced throughout
the document. The following steps were taken to port ELIDe to the Android
platform.

• Root the Android device to use the libpcap to access the device’s
hardware interfaces

• Set up Android x86 on VirtualBox

• Build a new Android application

• Compile ELIDe’s C++ and FORTRAN code for Android

• Generate the ELIDe native code at back end

• Develop the Android application at front end

• Deploy the application

3

Although there are several different ways to port the ELIDe functionality over to
the Android platform, a C++ based native code for ELIDe was chosen. The Android
ELIDe native code was developed based on the existing ELIDe Linux version with
some modifications, which improved speed and performance as well as the network
data-capturing capability. In addition, the same native code can be used to operate
the software on both the Linux and Android operating systems. An advantage to
using the non-native code is the Android device does not have to be rooted;
however, the absence of the native code would mean dramatically decreased speed
performance, and this makes the ELIDe application inoperable.

3.1 Rooting Android Device

“Rooting” refers to the process of gaining access to the administrative commands
and functions of an operating system (OS). An Android device comes with a
number of protections so that applications developed by the platform are not
supposed to be able to run with a root context. However, in order to listen to the
network communications transmitted and received on the wireless adapter, root
privileges are required. Because Android does not provide root capabilities by
default, it became necessary to take steps to root the device so that root privileges
for specific ELIDe processes can be used.

The procedure needed to root an Android phone varies by device. The technical
note Rooting Android Device2 details how the experimental Android device is
rooted. When virtualized Android x86 is used, the root context is allowed by
default.

3.2 Android OS on Virtual Machine

A lot of the initial development for virtual machines was achieved without running
code on the mobile device. The Android Software Development Kit (SDK) includes
the ability to emulate several different Android devices, called Android Virtual
Devices (AVDs). These AVDs are tools used to debug the Android software
without using the actual Android devices. The major drawback to using AVDs is
that they perform a direct translation for ARM instructions to x86 instructions in
order to run Android applications on work stations equipped with an Intel or
Advanced Micro Devices processor. Although this process allows for a more
accurate reproduction of the application, AVDs run much slower than actual
hardware because of the translation. The slowdown may intensify significantly if
the application developed is intended for a heavy computational load. Due to the
slow performance of AVDs, the application cannot handle relatively high-speed
network traffic during testing. In order to test the application on the development

4

work station, a version of Android for x86 processors was utilized. This technique
can then be virtualized on the development work station and integrated into the
compilation process used by the Android SDK. Although this representation is not
as accurate as the application running on a device, it was more than satisfactory for
study purposes. The report Android Virtual Machine (VM) Setup on Linux3 has a
more detailed explanation of this method.

3.3 Building a New Android Application

The ELIDe application is built based on the Default Android Auto-Generated
Android project. To build a new Android application, follow these steps:

1. Use Eclipse from the Android SDK. From File->New->Android
Application Project, it will bring up the New Android Project setting page.

2. Click the “Next” button. Supply the names for the fields of Application
Name (i.e., ElideTest), Project Name, and Package Name.

3. Use the default settings on the Configure Project setting page, click the
“Next” button.

4. Use the default settings, click “Next” from the Configure Launch Icon
setting page.

5. Use the default settings, with Create Activity checked and blank activity
selected, click “Next” from the “Create Activity” page.

6. Type in the Activity Name (i.e., ElideActivity), Layout Name, and
Navigation Type from the “Blank Activity” page. Click “Finish”.

Now the new application is created. To add support for native code compiled
through the use of the Android NDK, create a “jni” directory under the new project
directory. If it is assumed that the project is called “ElideTest”, then this new path
is called “ElideTest/jni”.

3.4 Compile C++ and FORTRAN Dependencies for ELIDe on
Android

A major challenge for using C/C++ and FORTRAN together when developing the
Android platform is establishing a relationship between the data types that the
FORTRAN library uses and understanding which C/C++ data type to use as an
argument. If there is a mismatch in the data type using the FORTRAN function, the
code may compile without any errors; however, the linker will produce an error. To
solve this problem, the proper relationships between the data types used need to be

5

established. This can be achieved by using the keyword “extern” accompanied by
“C.” (An example of how this task is accomplished is shown in Appendix A.) Be
warned that it is not sufficient to simply use the standard C convention using the
keyword “extern” with a function or struct. More details can be seen in an online
tutorial.4

The additional steps needed to compile the FORTRAN and C++ dependencies for
ELIDe are found in Ritchey et al.1 By following the procedure called out in the
Ritchey et al.1 report, both the libpcap and BLAS dependencies will be compiled for
use by ELIDe for Android.

3.5 The Elide Native Code Back End

There are 2 major ways Android applications can communicate with natively
compiled applications: call Java Native Interface (JNI) directly and call native
executable. These methods are discussed in details in Monitor Network Traffic with
Packet Capture (pcap) on Android Device.5 Both methods must satisfy the root
access requirement needed to listen to raw network traffic; however, to perform this
task, the native executable was necessary. The libpcap and BLAS were used to
accomplish this task, as stated in the previous section.

To utilize libpcap and BLAS, libpcap, BLAS, and “elide” must be on the same
source project level. In order for the executable produced by “elide” to use BLAS
and libpcap, their compiled libraries needed to be linked. This process was
accomplished by modifying the Android project make file (Android.mk) and
including the libraries “pcap” and “blas” as well as creating a separate library for
the ELIDe functions called “elide_test”. The makefile produces a binary called
“pcapElide” using the other 3 dependencies as static libraries. An example of the
Android.mk file is provided in Appendix B.

3.6 Compile ELIDe Native Executable

The steps to properly compile and build the ELIDe native code are as follows:

• Build the BLAS libraries

• Build the pcap libraries

• Build the ELIDe native code using the “ndk-build” command from the
“elide/jni” project directory

• Build the ELIDe C++ header files in the ElideTest directory using the
“build-header-script” script

6

• Build the ELIDe executable by using the “build-script” from the
ElideTest/jni directory

3.7 The Android Application Front End

Android applications (apps) are written using the Java programming language.
They generally use one or more of the following components as per the Android
Developers website6:

• Services—A service application is a component that can perform long-
running operations in the background and does not provide a user interface.
ELIDe for Android makes use of 2 services: ElideTestService and
ElideFileStatusService.

• Activities—An activity is a user interface that utilizes the entire screen of a
mobile device. An application can utilize multiple activities if it requires
multiple full-screen user interfaces. ELIDe for Android makes use of 3
activities: ElideActivity, ViewLogActivity, and ElideSettingActivity.

• Content Providers—Content providers allow for the structure, storage, and
security of data within an application. ELIDe for Android uses a single
content provider to store the configuration settings for the application.

• Broadcast Receivers—A broadcast receiver is a component that receives
notification when a registered event has occurred. ELIDe for Android
makes use of 2 broadcast receivers: battery level and service termination.

In addition to the components used by Android applications, ELIDe for Android
utilizes a single native-code executable called pcapElide. The Android front end
will spawn the pcapElide executable, which performs the data capture and ELIDe
analysis natively.

4. Application Operational Breakdown

An Android application requires a main activity to run when the application starts.
ElideActivity provides the main user interaction to the ELIDe application. In
addition, this activity can be configured to be notified when the available battery
power drops by a percentage and record this information along with the current run
time of the ElideTestService. This option will help to determine how much power
the ELIDe application uses.

In order to turn on the detection capabilities of ELIDe, the ElideTestService
initiates the ELIDe native executable pcapElide when the user presses the “Start
Service” button in the ElideActivity. This service also initiates the privilege

7

escalation needed to run the executable with root context. As the pcapElide native
executable runs, it 1) records the alerts to a file that the ElideFileStatusService can
read, 2) sends Android notifications to the device, and 3) provides the alert statistics
to ElideActivity for display. The service is currently configured to retrieve this
information every 2 s.

The ViewLogActivity allows users to view the current power-statistics logs, and it
can be modified to view other logs such as the alert log. The ElideSettingActivity
provides a user interface in which the configuration settings of the application can
be modified. This activity is derived from the AndroidPreference Fragment
container class so that the information that is stored can be shared among other
classes within the application. Diagrams of the ELIDe Android application classes
are located in Appendix D.

When the user presses the “Stop Service” button located in the ElideActivity, this
will terminate the pcapElide native binary. In addition, if using ELIDe on an offline
packet-capture (pcap) file, the JNI module that does not require root escalation to
handle ELIDe analysis will terminate once the file has been processed.
ElideTestService will then broadcast an intent indicating that ElideTestService has
stopped. Because ElideActivity is registered with the ElideTestService,
ElideActivity will receive the intent, disable the “Stop Service” button, and enable
the “Start Service” button.

5. Elide for Android Application Package

An Android application includes a number of different components, not just the
Java source code, and it also includes but is not limited to the following:

• Android Manifest—an XML file that contains the metadata about the
application including the application name, required permissions, types of
components, component interactions, etc.

• Resources—items such as image files, text information, and user-interface
elements are defined here.

• Source—the Java source code for the application.

The AndroidManifest.xml resides in the project’s root directory. It is the “must
have” file that is generated when the new Android application project is created
using Eclipse. In addition, it is an xml file that describes the essential parts of the
app. This file contains multiple sections such as the permission section, which
indicates the permissions needed that must be granted by the user, and the version

8

section, which contains information indicating the specific minimum versions of
Android required to run the application.

Furthermore, the AndroidManifest.xml file also describes the elements of the
Android application including the component name, component type, and
component-related elements as well as the interactions among the components via
intents. The components described in the file for test application include those listed
previously in Section 3.7. An example of an AndroidManifest.xml file is illustrated
in Appendix C.

5.1 Deploying the Application

There are 2 methods of deploying the Android ELIDe app. For Method 1, use the
“adb install” command on the command console to install the app onto the device.
Next, open the shell console and type “adb devices” to make sure the device is
connected. Change the directory to the project’s bin path, and an .apk file (i.e.,
ElideTest.apk) should appear. Type the “adb install ElideTest.apk” command on
the console, and the app should be installed onto the device. For Method 2, use
Eclipse for the deployment: open Eclipse, select the ElideTest project, right click
the ElideTest project, and select the “Run As->Android Application” option. This
process will install the app to the device.

6. Application Configuration

The ELIDe application for Android has a number of configuration items that can
be changed directly from the ElideSettingActivity. Several configuration options
were designed to support the research project to measure how much power the
Android device utilizes with ELIDe. Initial versions of the program required
changing hard-coded configuration options and redeploying the application to the
mobile device; therefore, these values became user changeable from the settings
activity. The configuration options include the following:

• Notification Interval—changes the delay in which the ElideTestService
pulls information from the file generated from pcapElide. The default is 2
s.

• Network Device to Capture—changes the network device to be used for
monitoring. The default is wlan0: the primary Wi-Fi network adapter on the
device. In addition, none or one offline pcap file on the device can be set.

• Promiscuous Mode—sets the device used for monitoring into promiscuous
mode. Typically, this will not change anything because the appropriate

9

drivers that allow the network device to enable promiscuous mode are not
included in a stock Android installation.

• Data Capture Only—activation of ELIDe classification, but it only utilizes
libpcap to capture network traffic and move it into a buffer.

• Weight File to Chose From—ELIDe can be trained with different data or at
different N-gram lengths or hash lengths. All of this can influence how the
weight file is produced. This configuration allows for changing to different
weight files.

• pcap File to Be Analyzed—If the network device is set to an offline pcap
file, the name of the file can be specified in this configuration option.

• Save Stat Data—By default, ELIDe for Android only saves the network and
classification statistics to an alert file after the service has stopped.
However, this information can be saved on a regular interval by enabling
this option.

• Update Interval—set the update interval for the statistics file.

• Stat File Name to Be Saved—name of the file to save the statistics
information.

• Record Battery Levels to File—enables ELIDe for Android to save the
current service run time to file every time the battery power drops a
percentage.

• Battery Filename to Be Saved—name of the file on which to save battery
information.

• Save All Data to pcap File—saves all network traffic to a pcap file.

• pcap File to Be Saved—the name of the pcap file on which to save all traffic.

• Save Alert Data—saves onto a pcap file on which all network-traffic alerts
caused by ELIDe analysis.

• Alert pcap File to Be Saved—the name of the pcap file on which to save the
alert network traffic.

• Save None Alert Data—saves to a pcap file on which all network traffic that
did not cause an alert.

• None Alert pcap File to Be Saved—name of the file on which to store
network traffic that did not generate an alert.

10

All of these options are available from the application during run time. Changes
occur once the service is started or restarted. They will not be applied when the
service is in capture or classification mode.

7. Application Usage

When starting the ELIDe for Android application, the first activity to greet the user
is the ElideActivity. From this screen, the user can start and stop the detection
service as well as observe the relevant statistics from the service itself, including
the number of alerts generated. In addition, certain network statistics (such as
packets captured and dropped) are displayed here. To start or stop the service, the
user can press the <start service> button or <stop service> button.

Because the service requires root context to view packets coming into a network
interface, a prompt will be presented to the user allowing the program to assume
root privileges once the <start service> button is pressed. If the permission is not
granted, the service will not start.

Once the ELIDe service is started, all files that are written to the device from within
the application are overwritten rather than appended to the same file. For instance,
the alert file or statistics file will be cleaned and only updated with the information
retrieved during the currently running instance of the service. This information is
preserved after service is stopped and only reset after the service is started again.
This process will allow data to be retrieved for further analysis without having to
reset the files each time the service is run.

If any of the configuration options need to be changed, they can be accessed via the
normal Android settings button. Once the <settings> button is pressed, the user will
be able to access the ElideSettingActivity. In addition, this process is also used to
view the logs or manually refresh the statistics displayed on the main activity page.

7.1 Notifications

While the application is running and the service is performing network-packet
classification, the device will receive a notification if an alert has been generated
from network traffic. As the alert file produced by the native binary pcapElide is
polled, new alerts will generate a notification that will be listed in the Android
notification list. The interval to poll can be changed in the configuration settings.
Notifications can also be disabled in the configuration settings. If the application is
configured to disable ELIDe detection, no notifications will be generated.

11

8. Conclusions

In this study, ELIDe was found to be effective in performing network packet
classification with fewer computational requirements. As a result, this technology
has a proven benefit for mobile devices due to its normal battery-usage
consumption.7 This document provides a general guide for any software engineer
to write an Android application using ELIDe.

12

9. References

1. Ritchey RP, Payer GS, Harang RE. Compilation of a network security/machine
learning toolchain for android ARM platforms. Adelphi (MD): Army Research
Laboratory (US); 2014 Jul. Report No.: ARL-CR-0739.

2. Yu KF. Rooting Android device. Adelphi (MD): Army Research Laboratory
(US); 2015 Sep. Report No.: ARL-TN-0706.

3. Yu KF. Android Virtual Machine (VM) Setup on Linux. Adelphi (MD): Army
Research Laboratory (US); 2014 Dec. Report No.: ARL-TN-0651.

4. Using C/C++ and Fortran together. YoLinux.com: Linux Tutorials and
Information Portal; c1999–2014 [accessed 2014 Dec 03].
http://www.yolinux.com/TUTORIALS/LinuxTutorialMixingFortranAndC.ht
ml/.

5. Yu KF. Monitor network traffic with packet capture (pcap) on Android device.
Adelphi (MD): Army Research Laboratory (US); 2014 Dec. Report No.: ARL-
TN-0650.

6. Android Developers [accessed 2014 Dec 03]. http://developer.android.com/.

7. Payer GS, Yu KF, Harang RE. Characterization of extremely lightweight
intrusion detection (ELIDe) power utilization with varying throughput and
payload sizes. Adelphi (MD): Army Research Laboratory (US); 2015 Sep.
Report No.: ARL-TN-0705.

http://www.yolinux.com/TUTORIALS/LinuxTutorialMixingFortranAndC.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialMixingFortranAndC.html
http://developer.android.com/

13

Appendix A. Example Struct Declaration Using Extern “C”

This appendix appears in its original form, without editorial change.

Struct declaration:

14

 FORTRAN:
 DOUBLE X
 INTEGER Y, Z
 COMMON/XYZ/ X, Y, Z

 C:
 extern struct{
 double x;
 int y, z;
 } xyz_;

 C++:
 extern "C" {
 extern struct{
 double x;
 int y, z;
 } xyz_;
 }

Function declaration:
 FORTRAN:
 subroutine fortfunc(a,b)
 integer a
 real*4 b

 C:
 extern {
 void fortfunc_(int *a, float *b);
 }

 C++:
 extern"C" {
 void fortfunc_(int *a, float *b);
 }

15

Appendix B. Example Android.mk File for ELIDe

 This appendix appears in its original form, without editorial change.

16

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)
LOCAL_MODULE := blas_LINUX
ifeq "$(TARGET_ARCH_ABI)" "armeabi-v7a"
LOCAL_SRC_FILES :=
$(LOCAL_PATH)/../../blas/obj/local/armeabi-
v7a/libblas_LINUX.a
else ifeq "$(TARGET_ARCH_ABI)" "x86"
LOCAL_SRC_FILES :=
$(LOCAL_PATH)/../../blas/obj/local/x86/libblas_LINUX.a
else
LOCAL_SRC_FILES :=
$(LOCAL_PATH)/../../blas/obj/local/armeabi/libblas_LINUX.a
endif
include $(PREBUILT_STATIC_LIBRARY)

include $(CLEAR_VARS)
LOCAL_MODULE := pcap
ifeq "$(TARGET_ARCH_ABI)" "armeabi-v7a"
LOCAL_SRC_FILES :=
$(LOCAL_PATH)/../../pcap_test/obj/local/armeabi-
v7a/libpcap.a
else ifeq "$(TARGET_ARCH_ABI)" "x86"
LOCAL_SRC_FILES :=
$(LOCAL_PATH)/../../pcap/obj/local/x86/libpcap.a
else
LOCAL_SRC_FILES :=
$(LOCAL_PATH)/../../pcap/obj/local/armeabi/libpcap.a
endif
include $(PREBUILT_STATIC_LIBRARY)

include $(CLEAR_VARS)
LOCAL_MODULE := elide_test
LOCAL_SRC_FILES := MurmurHash3.cpp cmdline_parsing.cpp
snort_oracle.cpp elide.cpp
LOCAL_STATIC_LIBRARIES := blas_LINUX pcap
include $(BUILD_STATIC_LIBRARY)

include $(CLEAR_VARS)
LOCAL_MODULE := pcapElide
LOCAL_SRC_FILES := pcapElide.cpp
LOCAL_LDLIBS := -llog -landroid
LOCAL_CFLAGS += -std=c++11
LOCAL_STATIC_LIBRARIES := elide_test
include $(BUILD_EXECUTABLE)

17

This scheme basically creates 3 static libraries (blas, pcap, and elide_test) and one
executable (pcapElide). This executable can be called by the Android ELIDe
application.

18

INTENTIONALLY LEFT BLANK.

19

Appendix C. AndroidManifest.xml Example

 This appendix appears in its original form, without editorial change.

20

<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.elidetest"
 android:versionCode="1"
 android:versionName="1.1" >
 <uses-permission
android:name="android.permission.WRITE_INTERNAL_STORAGE" />
 <uses-permission
android:name="android.permission.READ_INTERNAL_STORAGE" />
 <uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE" />
 <uses-permission
android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <uses-permission
android:name="android.permission.INTERACT_ACROSS_USERS" />
 <uses-permission
android:name="android.permission.VIBRATE" />
 <uses-permission android:required="true"
 android:name="android.permission.INTERNET" />
 <uses-permission android:required="true"
 android:name="android.permission.NETWORK" />
 <uses-permission android:required="true"

android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:required="true"
 android:name="android.permission.ACCESS_WIFI_STATE"
/>
 <uses-permission android:required="true"

android:name="android.permission.CHANGE_NETWORK_STATE" />
 <uses-permission android:required="true"

android:name="android.permission.CHANGE_WIFI_STATE" />
 <uses-sdk
 android:minSdkVersion="16"
 android:targetSdkVersion="19" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity

android:name="com.example.elidetest.ElideActivity"
 android:label="@string/app_name" >
 <intent-filter>

21

 <action
android:name="android.intent.action.MAIN" />

 <category
android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=".ViewLogActivity" />
 <activity
 android:name=".ElideSettingActivity" />
 <service
android:name="ElideFileStatusService"></service>
 <service android:name="ElideTestService"></service>
 <receiver
android:name="BootCompleteReceiver"></receiver>
 <intent-filter>
 <action
android:name="android.intent.action.BOOT_COMPLETED" />
 <action
android:name="android.intent.action.ACTION_EXTERNAL_APPLICA
TIONS_AVAILABLE" />
 <category
android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 <receiver
android:name="ServiceReceiver"></receiver>
 <intent-filter>
 <action
android:name="com.example.elidetest.ElideActivity.SERVICE_C
OMPLETED" />
 </intent-filter>
 <intent-filter>
 <action
android:name="com.example.elidetest.ElideActivity.STATUS_UP
DATE" />
 </intent-filter>
 </application>

</manifest>

22

INTENTIONALLY LEFT BLANK.

23

Appendix D. ELIDe Android Application Class Diagrams

 This appendix appears in its original form, without editorial change.

24

o mTVl: Text'Vietll

o mr vz: Text'Vietll

<<Java class»

G ElideActivity

0 mTVBateryLevel: Text'Vietll

oSmoata~lAPath~ieName: §!!:!!9:

oSmNotificationiO: Wwl

oSmo a.taPath: Stma

o5mweictwt~ie: §!!:!!9:
oSmpcap~Je: Stri'!Q

oSmEXecPcaeEiide: §!!:!!9:

V PCAP EXE: §!!:!!9:

t. mSian.Bonon: Button

.o.SmseMceSianed: boolean

.o. mSiopBulton: Button

t. mEXiiBunon: Button

0 MBytes: Song

e t EiideActMiyO

• oncreate(&n:le):void

PauseQ:void

o esuoyQ:void

o on
o on

hatiCU'feoiSiateQ:void ••
"" o on

egisterMyRec«YerQ:void

Rest.meQ:void

egisterBaneryRec«YerQ:void ., ,
ecotdBaneryLevel(float,W.):void "' ' e onc reateopcionsMeru(Meoo):boolean

$ """""""'

• """" e on

nemselec:ted(Meoonem):boolean

tMiyRestAI(n!,W.,Inleol):void

EXiiApp(Vie'll):void

tanseMce(Vie'll):void

topseMce(Vie'll):void

NE!'IIInleol(lnleol):void

e s
e s ...

eadSiatus~ieQ:void

etrieve~ie:s~tomAssetsQ:void
••
s r
., c opy~ie~tomAssets(Siring,String,String):void

J tmN etvrortoevicesQ:Nr~List<SI!!g>

canNetvrorto evicesQ:void s s
. get

., ;.
WrliSqlalStrength(Cootext):Wwl

ElideRl.n'lir'9():boolean

l tSiotageSpaceQ:void .""' $ T ooaiMemoryQ:Iong

teeMemotyQ:blg

yMemoryQ:Iong
••

.,;.
<<Java class»

G ElideSettingActivity
«nl~Jle.dl(ltllC:Sl

SJ mseMceName: Stri'!Q

SJwm R~t code: n
rl m&oadcastRec«Yer: &oadcastRec«Yer

et ElideseningAc tMiyO

• oncreate(&n:le):void

e ooPrepareopcionsMeru(Meoo):boolean

fl"

<<Java class»

G ViewLogActivity
«nl~Jle.dl(ltllC:Sl

.o. mLvHeacing: List'Viet11

.o. mLvData: List'Viet11

ll. mMapHeacing: HashMap<Siring,String>

ll. mlistData: NrayList<HashMap<String,String»

b. mlistTiiSe: NrayList<HashMap<String,String»

.o. mcobnns: Wwl

e t 'Vie'IILogN; tMiyO

• oncreate(&n:le):void

e sha11Data(Siring):void

& readData(Bull eredReader,boolean):boolean

.a. sha11Heading():void

.a. fiiData():void

"' e ge~•ilel.isr(String)
.. · e onclickOpeo~ie(Vie'll):void

.. ..
· ·· · ••• · · ·· · · ••• · · · · ••• · · ·· · · •• · •

....

...... . · •••••··· ·········•••••••············•••· ••· ·
~-···· · · ·· ·

·······
<<Java class>>

G ElideFileStatusService
«nl~Jle.dl(ltllC:Sl

.o. sdl: SimJ*!'Date~ormat

.,s~ "'
"·· ··~ .•. .•. oSrxTOial: Slri'!Q .•.

' •
oSrxor~: §!!:!!9:

etEiide~ieSiatusseMceQ

e setR lftlling(boolean):void

• stanr twead():void

• stopr twead():void

e oncreateQ:void

e ooBind(lnleot):IBindef

e ooo esuoyQ:void

e oounbind(lnleol):boolean

e n>l():void

e onstancommand(lnleoi,Wwi,Wwi):Wwl

• chec:kEiideTest~ieSiatusO:void

e shaiiN~ilicatioo():void

"' <<Java class»

G MyPreferenceFragment
«nl~Jle.dl(ltllC:Sl

fiMyPrelerence~tCJ911eot0
e oncreate(&n:le):void

e ooRest.meQ:void

e OOSharedPrelerencechanged(SharedPrelerences,String):void

• up:latePreference(Preference,boolean):void

• get~ielist(String,String)

f/isWdiCornect!!(Cootext}:boolean

J isWifiEnaNedi'Cootext}:boolean

J Qe!Wifilnlo(Cootext}:Wifilnlo

Jgg:JWrliManaoerlContext}:WrfiM~
f/isNetvrortcornect!!(Cootext}:boolean

e onActMiyRestAI(n!,W.,Inleol):void

<<Java class»

G EiideTestService

V En None: Wwl

$,{En service Not Rl!!'!g: Wwl

s./ En Eldeeonfiq Mallorm: Wwl

s./ En Confiq Name Empt~: W.

oSEider estseMceSiatus: §!!:!!9:

oSmEid!?Procf!'Ss: Procf!'Ss

t. mReader: Bull eredReader

$ CEiideTestseMceQ

e ooBind(lnleoi):IBindef

e setRlftlling(boolean):void

e nrEiide():inl

e stanEideQ

1!1 stanr twead():void

1!1 stopTtwead():boolean

$ isseMceRl.n'lir'9():boolean

e oncreateQ:void

e ooo esuoyQ:void

$ OOUnbind(lnleol):boolean

$ n>l():void

e onstancommand(lnleoi,Wwi,Wwi):Wwl

1!1 cteateProcess(Siring):boolean

$ getRootQ:void

e termCapt\l'ePack etsQ:boolean

JcreateDt.mm~~~SI!!!!!)::boolean

e roocaptl.l'ePack etsQ:boolean

$ isROOIAccessQ:boolean

J nat,.Eide(Stmci.St!!g.:§!!!g.St!!!!!)::Wwl

J naSianEidf!TestO

J naSiopseMceQ:void

J natsseMceRl.lrilaO:W.

J~CJ!!!!~

f
<<Java class»

e BootCompleteReceiver
«nl~Jle.dl(ltllC:Sl

et BootComJ*!'teRec«YerO

e ooRec«Ye(cootext,lnleol):void

& up:lateWrfiPreferenceSiate(ListPreference,WrliManager,boolean):void

.a. up:lateWrliS'IatusO:void

25

List of Symbols, Abbreviations, and Acronyms

AVD Android Virtual Device

BLAS Basic Linear Algebra Subprograms

ELIDe Extremely Lightweight Intrusion Detection

JNI Java Network Interface

OS operating system

PC personal computer

pcap packet capture

SDK Software Development Kit

26

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RSRCH LAB
 RDRL CIO LL
 RDRL IMAL HRA RECORDS MGMT

 2 DIRECTOR
 (PDF) US ARMY RSRCH LAB
 RDRL CIN D
 K YU
 G PAYER

	1. Background
	2. Configuration
	2.1 Development Work Station
	2.2 Development Mobile Device

	3. Developing the Software
	3.1 Rooting Android Device
	3.2 Android OS on Virtual Machine
	3.3 Building a New Android Application
	3.4 Compile C++ and FORTRAN Dependencies for ELIDe on Android
	3.5 The Elide Native Code Back End
	3.6 Compile ELIDe Native Executable
	3.7 The Android Application Front End

	4. Application Operational Breakdown
	5. Elide for Android Application Package
	5.1 Deploying the Application

	6. Application Configuration
	7. Application Usage
	7.1 Notifications

	8. Conclusions
	9. References
	Appendix A. Example Struct Declaration Using Extern “C”
	Appendix B. Example Android.mk File for ELIDe
	Appendix C. AndroidManifest.xml Example
	Appendix D. ELIDe Android Application Class Diagrams
	List of Symbols, Abbreviations, and Acronyms

